
Neutrosophic Boolean Function and Rejection Sampling in

Post Quantum Cryptography

Shashi Kant Pandey0000−0002−0818−6984∗

February 2023

Abstract

The use of random seeds to a deterministic random bit generator to generate uniform
random sampling has been applied multiple times in post-quantum algorithms. The finalists
Dilithium and Kyber use SHAKE and AES to generate the random sequence at multiple stages
of the algorithm. Here we characterize one of the sampleing techniques available in Dilithium
for a random sequence of length 256 with the help of the neutrosophic Boolean function.

The idea of the neutrosophic Boolean function came from the theory of neutrosophy and it
is useful to study any ternary distributions. We present the non-existence of neutrobalanced
bent functions specifically with respect to the sampling named SampleInBall in Dilithium.

Keywords: Post-quantum cryptography, Bent function, Neutrosophy, Linear structure
Mathematics Subject Classification: 16Z05, 94D10

1 Introduction

Any equation or a function having class symbols x, y, ... is termed a “logical equation” or a “logical
function” by Georg Boole(1815-1864). Every logical function f(x) can be written as f(x) = ax +
b(1 − x), under the convention for the law of symbols by George Boole [1]. If a and b are equal
then this function is a balanced function. The extension of the idea of Boole’s representation of
a Boolean function for two variables x and y is f(x, y) = f(1, 1)xy + f(1, 0)x(1 − y) + f(0, 1)(1 −
x)y + f(0, 0)(1 − x)(1 − y). With the abuse of notation, a Boolean function in cryptography
is termed as a function f from an n dimensional vector space Fn

2 to the base field F2 of order
2. Later on, the development of cryptography produces many such mathematical properties of
Boolean functions [3–6]. To a certain extent, the enumeration of cryptographic properties of a
Boolean function starts with an important transformation of a Boolean function named Walsh
transformation(WT). This transformation depends on the first-order correlation of a bit stream
of a Boolean function. Another important cryptographic requirement of a Boolean function is
its nonlinearity(NL) and it is based on the maximum value of the Walsh transformation. Those
Boolean functions having maximum nonlinearity are called bent Boolean functions [7]. Other than
the correlation nature of the input-output of a Boolean function, there is a well-known feature of
algebraic resistance and it is named Algebraic immunity(AI) [8, 9].

∗shashi@setsindia.net, Society For Electronic Transaction and Security, Chennai, TN, Bharat.

1

The generalization of the Boolean function and its other cryptographic features is an interesting
area of work. These functions are named as Generalized Boolean function(GBF) in the literature
[10–13]. The generalization of the bent Boolean function proposed by O.S. Rothus in [7]. A
generalization of Boolean function based on neutrosophy and logic is presented in [14, 21] and
termed as a neutrosophic Boolean function.

The idea of neutrosophy came from the classification of a set. An imagination of three disjoint
classifications refers that any set S can be classified as P1, P2 and P3 such that the given condition
for a set is satisfied by elements in P1, not satisfied by elements in P2 and undefined or not decidable
for elements in P3. In this way, any set with any condition uniformly obeys the idea of neutrality
or neutrosophy. This partition leads us to define a neutrosophic function ψ from any set S to any
arbitrary set K, where ψ is defined on the partition P1, not defined on P2 and indeterminate on
P3. The same analogy is useful for studying every rejection sampling where some condition is fixed
for the selection of the sample. In particular, any arbitrary evaluation of a function f(x) can be
used to reject or accept in the sampling procedure. One simple example for the partition of the
sample can be seen as three sets P0 = {x : 0 = f(x) mod 2}, P1 = {x : 0 ̸= f(x) mod 2} and
P3 = {x : rejection}. We focus here on the sampling function SampleInBall of Dilithium for
one of the main random vectors c during the signing process in the algorithm [20]. In section 2,
we introduce the LWE problem and its background for lattice-based problems. The sampling in
Dilithium with the analogy of neutrosophic Boolean function is presented in section 2.1. Further
in section 3 we present the analysis of the extendable output function(XOF) and SampleInBall
function of Dilithium with the characterization of the neutrosophic bent Boolean function.

2 Learning with error problem

The reduction of hard maths problems in the classical domain is an ongoing and open-ended prob-
lem. Learning with error is one of those hard maths problems about which more discussion is after
the NIST PQC competition. However, it is one of the types of uniformity in the finalists of the
PQC competition. Oded Regev was the person who coined this in [15]. The problem of LWE is
framed as to find a vector s ∈ Zn

2 for some integer n ≥ 1 and a real number ϵ such that the following
set of linear equations with errors,

< a1, s >=ϵ b1(mod 2)

< a2, s >=ϵ b2(mod 2)

................................

................................

where each ai are sampled from the uniform distribution on Zn
2 and the inner product < ai, s >

is defined as
∑n

j=1(sja
j
i) on modulo 2. Here, the meaning of an equation with errors is that each

equation is correct independently with probability 1 − ϵ. The case of zero error can be easily
solvable by Gaussian elimination therefore the insertion of hardness in this problem comes from the
sampling of errors. The sampling of a is independently and uniformly on Zn

2 and b is independent
with probability 1− ϵ.

Hash function plays a key role in the uniform distribution for the sampleing of vector a ∈ Zn
2 .

In the next section, we elaborate on the sampling techniques in post-quantum algorithms.

2

2.1 Sampling of errors in post-quantum solutions

The future of Quantum computing is a great threat to the available cryptographic infrastructure.
Taking this threat into mind NIST has started an open competition for the possible solutions for
public key cryptographic(PKC) algorithms and signature schemes. Most of the finalists in the
available procedures are based on the LWE problem proposed by Regev in [15]. This problem refers
to the idea of introducing some error with some randomized sampling. In every design of PKC
which is based on the LWE problem, there is a provision for the randomization of the public key or
secret key. This process is based on the various classical rejection sampling techniques [16–18]. The
trade-off between the parameters of rejection sampling and security is interesting for every design.
KYBER and Dilithium are the two finalists in the list of NIST final rounds of public key encryption
decryption algorithm and digital signature algorithm [19,20]. Both of the algorithms are based on
hard problem learning with errors.

2.2 Rejection sampling in Dilithium

Dilithium is a finalist algorithm in the NIST competition for post-quantum cryptography. It is an
algorithm for digital signature and is based on the hard lattice problem named learning with errors.
The core idea of this problem is to solve a linear system of equations having intentionally inserted
errors in their coefficients.

Dilithium Algorithm
KeyGen:
01. A← Rk×l

q

02. (s1s2)← Sl
η × Sk

η

03. t = As1 + s2
04. Return (pk = A, t), sk = (A, t, s1, s2)

Sign(sk,M):
05. Initialize z =⊥
06. while z =⊥
07. y ← Sl

γ1

08. w1 = HighBits(Ay, 2γ2)
09. ĉ ∈ {0, 1}256 = H(M ||w1)
10. c ∈ Bτ = SampleInBall(ĉ)
11. z = y + cs1
12. if ||z||∞ ≤ γ1 − β or ||LowBis(Ay − cs2, 2γ2)||∞ ≥ γ2 − β then z =⊥
13. return σ = (z, c)

Verification(pk,M, σ = (z, ĉ)):
14. w

′

1 = HighBits(Az− ct, 2γ2)
15. if return [||z||∞ < γ2 − β] and [ĉ = H(M ||w′

1)]

A short explanation of the algorithm of Dilithium is presented in the above block. Here A
represents a matrix of size k × l, where each of the elements aij is a polynomial taken from the

ring Rq,
Zq [x]

<xn−1> , where n = 256 and q = 8380417 for every version of Dilthium algorithm. The

3

NIST Security Level q d τ γ1 γ2 (k,l) η β ω
2 8380417 13 39 217 (q-1)/88 (4,4) 2 78 80
3 8380417 13 49 219 (q-1)/32 (6,5) 4 196 55
5 8380417 13 60 219 (q-1)/32 (8,7) 2 120 75

Table 1: Dilithium security parameters

key generation part of the algorithm uses sampling of the public key and secret key from the
output of the hash function. The matrix A is sampled from the output of the extendable output
function(XOF) and it is part of the public as well as secret key. (s1, s2) are part of the secret key
and they are sampled from the XOF function denoted as Sl

η and Sk
η . Secret keys s1 and s2 are

elements of the same ring Rq. Other parameters for security leveling are presented in table 1.
The function ExpandS computes each of the l + k polynomials in s1 and s2 independently.

For the i − th polynomial, 0 ≤ i ≤ l + k, it absorbs the 64 bytes of ρ concatenated with 2 bytes
representing i in little-endian byte order into SHAKE-256. Then the output bytes are used to create
a sequence of uniformly random positive numbers in the range {0, ..., 2η} by performing rejection
sampling. Concretely, the lower and upper four bits of each output byte are interpreted as two
integers in {0, ..., 15}. Then, in the case of η = 2, an integer is accepted when it is less than 15 and
then reduced modulo 5. In the case of η = 4, an integer is accepted when it is less than 2η+1 = 9.
Finally, the polynomial coefficients are obtained by subtracting the positive numbers from η.

Now we present a discussion on the sampling technique of s1 and s2 for three versions of
Dilithium named security levels 2,3 and 5. Here we frame some generalized Boolean functions w.r.t
these sampling techniques.

Dilithium-2:
This is the first version of Dilithium and here the security parameter η is selected as 2, therefore
the sampling function for this version is S2. The function ExpandS, used for generating the
secret vectors in key generation, maps a seed ρ′ to (s1, s2) ∈ Sl

η × Sk
η . The value of k and l

is 4, therefore the sampling of vectors s1 and s2 independently with the help of XOF uniform
distribution. In total there is l + k polynomial need to be sampled from the output of XOF
therefore for this version, eight polynomials have to be sampled from index 0 ≤ i ≤ 7. Since
rho′ is fixed 64 bytes for all input of XOF function, therefore, we assume this to be known
and constant, therefore to generate each polynomial or 256 integer sequence we feed only 2
bytes representing i in little-endian byte order into SHAKE-256. For the sake of convenience
in the case of version-2, where 0 ≤ i ≤ 7, the input vector of SHAKE-256 can be taken as three
bits, and if we take little-endian order then they are of sixteen bits. The mapping without
little-endian byte order input can be treated as a Boolean function f : Z3

2 7→ Z5. The mapping
with little-endian order can be treated as a generalized Boolean function f : Z16

2 7→ Z5.

Dilithium-3:
This is the second version of Dilithium and here η is selected as 4, therefore the sampling
function for this version is S4. The function ExpandS, used for generating the secret vectors
in key generation, maps a seed ρ′ to (s1, s2) ∈ S6

4 × S5
4 .

Similar to the explanation in Dilithium-2, the mapping without little-endian byte order

4

input can be treated as a Boolean function f : Z4
2 7→ Z9. The mapping with little-endian order

can be treated as a Boolean function f : Z16
2 7→ Z9.

Dilithium-5:
This is the final version of Dilithium and security parameter η is 2, therefore the sampling
function for this version is S2. The function ExpandS, used for generating the secret vectors
in key generation, maps a seed ρ′ to (s1, s2) ∈ S8

2 × S7
2 .

Similar to the explanation in Dilithium-2, the mapping without little-endian byte order
input can be treated as a generalized Boolean function f : Z4

2 7→ Z5. The mapping with
little-endian order can be treated as a generalized Boolean function f : Z16

2 7→ Z5.

Now we explore the balancedness property of a generalized Boolean function coined from the re-
jection sampling SampleInBall in all three cases of the Dilithium- 2, 3 and 5. However, unbalanced
generalized Boolean functions are only bent functions and they achieve the highest nonlinearity. It
refers to the idea of nonlinearity analysis of all these Boolean functions for cryptanalysis of this
algorithm.

3 XOF function and neutrosophic Boolean function

XOF or extendable output functions are hash functions where we can change the length of the
output based on our choice. There are many places in PQC algorithms Kyber and Dilithium where
XOF is used for random sampling. The technique of sampling mentioned in section 2.2 is based on
the uniformity of output of XOF functions. therefore, the efficiency of PQC algorithms depends on
the efficient implementation of these XOF functions.

The performance of rejection sampling for the selection of vectors s1 and s2 depends on the
SHAKE256. In every version of the Dilithium, the rejection sampling SampleInBall can be treated
as a neutrosophic Boolean function. Here in the Dilithium algorithm steps 9 is for the sampling of
a vector c. In the final proposed algorithm from [20], this c is sampled from another vector ĉ. The
function named SampleInBall(ĉ) gives the output c. After signing the message ĉ becomes the part
of the signature and c will be safe as a secret. The proposed algorithm fixed security parameters for
the sampling of c. The condition is directly related to frequency distribution in a vector of length
256 having entry {1,−1, 0}. More specifically the security parameter τ is the total count of 1 and
−1 in c. The value of τ in all three versions of Dilithium is presented in figure 1. We made an
analogy of Boolean function to SampleInBall(ĉ) function based on the distribution of 1,−1, and 0
in the outcome of that function which is c. Since the outcomes of the SampleInBall function are of
256 length, therefore, we can treat them as a truth table of a Boolean function, in the next definition
we present the idea to analyze the SampleInBall function as a Boolean function, However, The
inputs are not of the size of eight bits but the length of output c is 256, therefore, we have taken it
as an eight-bit Boolean function.

Definition 3.1. A SampleInBall is a generalized Boolean function f from Z8
2 to Z3.

Now the Walsh transformation of Boolean function f from Z8
2 to Z3 can be defined as,

Definition 3.2. The Walsh Transformation of SampleInBall is defined as

WT f (a) =
∑
x∈Z8

2

(−1)<x,a>(ω)f(x), (1)

5

where ω is 3rd root of unity which is −1+
√
3i

2 .

A generalized Boolean f : Zn
2 7→ Z3 function is called balanced if the cardinality of every sets

{x : f(x) = i} is 3n−1 for every 0 ≤ i ≤ 2. The flat Walsh spectrum i.e. |WT f (a)| = 2n for all
a ∈ Zn

2 is the condition for f to be bent function. This can be generalized for a Boolean function
f from Zn

q to Z3 for any prime q.
In the case of a generalized Boolean function f from Zn

q to Zq, where q is a prime number, the
generalized Walsh transformation is defined as

WT f (a) =
∑
x∈Zn

q

(ζ)f(x)+a.x, (2)

where ζ is qth root of unity. Following is an example of a generalized Boolean function f : Z2
3 7→ Z3

with its Walsh spectrum

x (0,0) (1,0) (1,1) (-1,1) (0,-1) (-1,0) (-1,-1) (1,0) (0,1)
f(x) 1 -1 -1 -1 -1 0 0 0 0

|WT f (x)| 2.99 3 3 3 3 3 3 3 3

Table 2: A Boolean function f : Z2
3 7→ Z3

A generalized Boolean f : Zn
q 7→ Zq function is called balanced if the cardinality of every sets

{x : f(x) = i} is qn−1 for every 0 ≤ i ≤ q − 1. Now in the next section, we present the results for
the existence of bent functions with various other generalized properties of neutrobalancedness.

3.1 Classicalbalanced bent function

Definition 3.3. A function f : Zn
q 7→ Z3 is said to be a Classicalbalanced function if it takes an

equal number of 1’s, 0’s, and -1’s.

Theorem 3.4. A Classicalbalanced function f : Zn
q 7→ Zq never be a bent function.

Proof. From the definition3.3 we know that a function f : Zn
q 7→ Zq is Classicalbalanced if and only

if ∑
x∈Zn

q ,f(x)=k

1 = qn−1, (3)

for all 0 ≤ k < q. Using (3) it is proved in [26], that the Classicalbalanced function never be
bent function. Now in the next section, we explore other generalizations of balancedness and bent
functions.

In the case of a neutrosophic Boolean function f : Zn
2 7→ Z3, it is obvious to say that no classical

balanced function exists.

3.2 Neutrobalanced bent function

Definition 3.5. A function is said to be a Neutrobalanced function if the number of 1’s, 0’s, and
-1’s are not the same but exactly two of them are equal.

6

Theorem 3.6. The Neutrobalanced bent function f : Zn
2 7→ Z3 does not exist for odd n.

Proof. Let a, b and c be the cardinality of {x ∈ Zn
2 : f(x) = 1 = α}, {x ∈ Zn

2 : f(x) = −1 = β} and
{x ∈ Zn

2 : f(x) = 0 = γ} respectively. We can observe that

a+ b+ c = |Zn
2 | = 2n (4)

Here f is Neutrobalanced therefore any of two from a, b and c are always equal therefor taking
symbolic equality of a and c, we can write that

2a+ b = 2n. (5)

From (1) the Walsh transformation of a Neutrobalanced function at t ∈ Zn
3 can be written as

WT f (t) =
∑

x∈Zn
3
ωf(x)(−1)t.x.

Walsh transformation at t = 0

WT f (0) =
∑
x∈Zn

3

ωf(x) = aωα + bωβ + cωγ (6)

where ω is the 3rd root of unity. Now since f is Neutrobalanced and bent after taking the symbolic
equality of a and c

WT f (0) = a(ωα + ωβ) + bωγ (7)

and
|WT f (0)|2 = 3n. (8)

Now using (7) and (8), we can characterize the necessary condition for the Neutrobalanced bent
function in the Diophantine equations. For all values of (α, β, γ), (7) and (8) implies that

|a(1 + ω) + bω2| = 3
n
2

=⇒ (b− a)2 = 3n (9)

Now from (5) and (9)

a =
3n −

√
3n

3
and b =

3n + 2
√
3n

3
. (10)

a and b are irrational numbers for odd values of n. Hence the theorem is proved.

It is interesting to see the construction of symmetric and rotational symmetric Neutrobalanced
bent Boolean functions for even values of n. In [26], for n = 2, the list of eight symmetric and
rotational symmetric bent Boolean functions is presented. From the available list of bent functions,
we can say that f5, f6, f7 and f8 presented in [26] are neutrobalanced symmetric and rotational
bent Boolean functions. Their Algebraic Normal Form is presented as
Neutrobalanced symmetric and rotational symmetric bent Boolean function f : Z2

3 7→ Z3

f(x1, x2) = 1− x1x2,
f(x1, x2) = 1 + x1 + x2 + x1x2,

f(x1, x2) = x1 + x2 − x1x2 − 1,

f(x1, x2) = x1x2 − 1.

7

3.3 Antibalanced bent function

Definition 3.7. A function is said to be an Antibalanced function if the number of 1’s, 0’s, and
-1’s are all distinct from each other.

Theorem 3.8. There does not exist any Antibalanced bent function f : Zn
2 7→ Z3.

Proof. Walsh transformation of the Antibalanced function f : Zn
2 7→ Z3 at t = 0

WT f (0) =
∑
x∈Zn

3

ωf(x)

= aωα + bωβ + cωγ (11)

where ω is the 3rd root of unity. Now for all possible values of (α, β, γ),11 implies that

WT f (0) =
2a+ b+ c+ i

√
3(b− c)

2
. (12)

Therefore the Walsh transformation of bent Antibalanced function satisfy

4|WT f (0)| = (2a+ b+ c)2 + 3(b− c)2

or

(a+ 3n)2 + 3(b− c)2 = 4(3n). (13)

Using (4) and (13) we can get a quadratic equation in b,

b2 − (3n + c)b+ 32n + c2 − (3n)c− 3n = 0.

After solving this quadratic equation for b, we get

b =
(3n + c)± i

√
32n+1 + 3c2 + 2c(3n) + 4(3n)

2
. (14)

Here b is a positive integer, therefore,

32n+1 + 3c2 + 2c(3n) + 4(3n) = 0. (15)

Now solving (15), for the integer values of c, we found that the real roots do not exist. Hence no
Anitibalanced bent function f : Zn

2 7→ Z3 exist.

4 Conclusion: SampleInnBall function and Neutrobalanced
bent function

It is interesting to use the observation in the previous section to characterize the SampleInBall
function in Dilithium based on the security parameter τ . In all three versions of Dilithium, the
value of τ is 39, 49, and 60. Therefore it is straightforward that in the security level, 2 and 3, the
SampleInBall function never be a Neutrobalanced bent function and achieves the highest nonlin-
earity. Consequently SampleInBall for τ = 39, 49 is an Antibalanced Boolean function, and from

8

theorem 3.8, no Antibalanced Bent function exists, therefore SampleInBall has not achieved the
highest nonlinearity.

In the case of Dilithium of security level, 5 the value of τ is 60, therefore the sampling may or
may not be highly nonlinear based on the frequency distribution of 1 and −1 in c. In case of τ = 60
SampleInBall is Neutrobalanced if #1 = 30 = # − 1. Now from theorem 3.6, if SampleInBall is
bent then it is sampled through an even number of bits only to achieve bentness. SampleInBall for
τ = 60 is Antibalanced if #1 ̸= #− 1 and from theorem 3.8, SampleInBall is not a bent function.

We have done experiments through the available implementation of Dilithium in [27] and found
that out of 122 test vectors, ĉ in Dilithium-5 only 22 are neutrobalanced therefore they are not with
the highest nonlinearity. It would be interesting to study another rejection sampling with respect
to the idea of corresponding generalized Boolean function and neutrosphy.

References

[1] Project Gutenberg’s An Investigation of the Laws of Thought, by George Boole

[2] Mathematics of the 19th century, Mathematical logic Algebra Number Theory Probability the-
ory, A.N Kolmogorov and A.P. Yushkevich, Springer Basel AG

[3] C. Carlet. Boolean Functions for Cryptography and Coding Theory. Cambridge University Press,
Cambridge, 2021.

[4] J. F. Dillon. Elementary Hadamard difference sets. PhD thesis, Univ. of Maryland, 1974.

[5] S. Kavut. Boolean functions with excellent cryptographic properties in autocorrelation and
walsh spectra. PhD thesis, Middle East Technical University, 2008.

[6] T. W. Cusick and P. Stanica (Year). Cryptographic Boolean Functions and Applications. Boca
Raton, FL: CRC Press.

[7] O.S Rothaus, On “bent” functions, Journal of Combinatorial Theory, Series A, Volume 20, Issue
3,1976,Pages 300-305, ISSN 0097-3165, https://doi.org/10.1016/0097-3165(76)90024-8

[8] N. T. Coutois and Wili Meier, ”Algebraic attacks on stream ciohers with linear feedback”
in Advances in Cryptology-EROCRYPT 2003 LNCS 2656, Berlin:Springer-verlag, pp. 346-359,
2003.

[9] C. Carlet, D. Dalai, K. Kupta and S. Maitra, ”Algebraic immunity for cryptographically signifi-
cant Boolean functions: Analysisi and Construction”, IEEE Transactions on Information Theory,
vol. IT-52, no. 7, pp. 3105-3121, 2006.

[10] Nicolae Tǎndǎreanu, On generalized Boolean functions, Discrete Mathematics, Volume 34,
Issue 3, 1981, Pages 293-299, ISSN 0012-365X, https://doi.org/10.1016/0012-365X(81)90007-8.

[11] Martinsen, T., Meidl, W., Pott, A., Stănică, P. (2018). On Symmetry and Differential Proper-
ties of Generalized Boolean Functions. In: Budaghyan, L., Rodŕıguez-Henŕıquez, F. (eds) Arith-
metic of Finite Fields. WAIFI 2018. Lecture Notes in Computer Science, vol 11321. Springer,
Cham. https://doi.org/10.1007/978-3-030-05153-2-11

9

[12] C. Carlet, Vectorial Boolean functions for cryptography, In: Y. Crama, P. Hammer,
Boolean Methods and Models, Cambridge Univ. Press, Cambridge. Available: http://www-
roc.inria.fr/secret/Claude.Carlet/pubs.html

[13] Pante Stanica, Thor Martinsen, Octal Bent Generalized Boolean Functions, arXiv:1102.4812v2

[14] Smarandache, F., A Unifying Field in Logics: Neutrosophic Logic, Neutrosophy, Neutrosophic
Set, Neutrosophic Probability, American Research Press, Rehoboth, 2003.

[15] Regev, O. 2009. On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56, 6, Article 34 (September 2009), 40 pages. DOI = 10.1145/1568318.1568324
http://doi.acm.org/10.1145/1568318.1568324

[16] Decru, T., Panny, L., Vercauteren, F. (2019). Faster SeaSign Signatures Through Im-
proved Rejection Sampling. In: Ding, J., Steinwandt, R. (eds) Post-Quantum Cryptogra-
phy. PQCrypto 2019. Lecture Notes in Computer Science(), vol 11505. Springer, Cham.
https://doi.org/10.1007/978-3-030-25510-7-15

[17] Zhongxiang Zheng, Anyu Wang, Lingyue Qin, ”Rejection Sampling Revisit: How to Choose
Parameters in Lattice-Based Signature”, Mathematical Problems in Engineering, vol. 2021, Ar-
ticle ID 9948618, 12 pages, 2021. https://doi.org/10.1155/2021/9948618

[18] S. Agrawal, D. Stehlé, and A. Yadav. Round-optimal lattice-based threshold signatures, revis-
ited. In ICALP, 2022.

[19] CRYSTALS-Kyber (version 3.02) – Submission to round 3 of the NIST post-quantum project.
Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. Specification document
(update from August 2021). 2021-08-04

[20] CRYSTALS-Dilithium – Algorithm Specifications and Supporting Documentation (Version 3.1)
Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. Specification document (update from February 2021). 2021-02-08

[21] Vadiraja G. R, Pandey, S. K. ., P. R. Mishra, Poojary, P. . (2022). ClassicalBalanced, AntiBal-
anced and NeutroBalanced functions. Neutrosophic Sets and Systems, 48, 386-398. Retrieved
from https://fs.unm.edu/NSS2/index.php/111/article/view/2111

[22] Smarandache, F. Introduction to NeutroAlgebraic Structures and AntiAlgebraic Structures
(revisited). Neutrosophic Sets and Systems, 31, 2020; pp.1-16.

[23] Smarandache, Florentin, Introduction to NeutroAlgebraic Structures and AntiAlgebraic Struc-
tures, in his book ”Advances of Standard and Nonstandard Neutrosophic Theories”, Pons Ed.,
Brussels, European Union, 2019

[24] Smarandache, F., Neutrosophy. / Neutrosophic Probability, Set, and Logic, ProQuest Infor-
mation & Learning, Ann Arbor, Michigan, USA, 105 p., 1998.

[25] Smarandache, F. NeutroAlgebra is a Generalization of Partial Algebra, International Journal
of Neutrosophic Science, 2(1), 2020; pp. 08-17.

10

[26] Count and cryptographic properties of a generalized symmetric Boolean function, Shashi Kant
Pandey, P.R. Mishra, B.K. Dass; Italian Journal of Pure and Applied Mathematics, 37, 2016

[27] https://github.com/GiacomoPope/dilithium-py

11

	1 Introduction
	2 Learning with error problem
	2.1 Sampling of errors in post-quantum solutions
	2.2 Rejection sampling in Dilithium

	3 XOF function and neutrosophic Boolean function
	3.1 Classicalbalanced bent function
	3.2 Neutrobalanced bent function
	3.3 Antibalanced bent function

	4 Conclusion: SampleInnBall function and Neutrobalanced bent function

