
Fine-Grained Proxy Re-Encryption:
Definitions & Constructions from LWE

Yunxiao Zhou1,2, Shengli Liu2,3(�) , Shuai Han1,2(�) , and Haibin Zhang4

1 School of Cyber Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{cloudzhou,dalen17}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

slliu@sjtu.edu.cn
4 Beijing Institute of Technology, Beijing 100081, China

bchainzhang@aliyun.com

Abstract. Proxy re-encryption (PRE) allows a proxy with a re-encryption
key to translate a ciphertext intended for Alice (delegator) to another
ciphertext intended for Bob (delegatee) without revealing the underlying
message. However, with PRE, Bob can obtain the whole message from
the re-encrypted ciphertext, and Alice cannot take flexible control of the
extent of the message transmitted to Bob.

In this paper, we propose a new variant of PRE, called Fine-Grained
PRE (FPRE), to support fine-grained re-encryptions. An FPRE is asso-
ciated with a function family F , and each re-encryption key rkf

A→B is
associated with a function f ∈ F . With FPRE, Alice now can authorize
re-encryption power to proxy by issuing rkf

A→B to it, with f chosen by
herself. Then the proxy can translate ciphertext encrypting m to Bob’s
ciphertext encrypting f(m) with such a fine-grained re-encryption key,
and Bob only obtains a function of message m. In this way, Alice can
take flexible control of the message spread by specifying functions.

For FPRE, we formally define its syntax and formalize security notions
including CPA security, ciphertext pseudo-randomness, unidirectional-
ity, non-transitivity, collusion-safety under adaptive corruptions in the
multi-user setting. Moreover, we propose a new security notion named
ciphertext unlinkability, which blurs the link between a ciphertext and
its re-encrypted ciphertext to hide the proxy connections between users.
We establish the relations between those security notions.

As for constructions, we propose two FPRE schemes, one for bounded
linear functions and the other for deletion functions, based on the learning-
with-errors (LWE) assumption. Our FPRE schemes achieve all the afore-
mentioned desirable securities under adaptive corruptions in the stan-
dard model. As far as we know, our schemes provide the first solution to
PRE with security under adaptive corruptions in the standard model.

https://orcid.org/0000-0003-1366-8256
https://orcid.org/0000-0002-8156-7089
https://orcid.org/0000-0001-5865-3408

1 Introduction

A proxy re-encryption (PRE) scheme is a public-key encryption (PKE) scheme
augmented with two functionalities. One is the generation of re-encryption key
rki→j for user i and user j. The other is ciphertext re-encryption which trans-
lates a ciphertext ct(i) encrypting message m under user i’s public key pk(i) to a
ciphertext ct(j) encrypting the same message m under user j’s public key pk(j).
With PRE, user i (delegator) can authorize re-encryption power to a proxy by is-
suing a re-encryption key rki→j . Then the proxy can use rki→j to accomplish the
ciphertext translation from ct(i) to ct(j), which further enables user j (delegatee)
to recover the message. Beyond the traditional semantic security of PKE, PRE
also requires that the knowledge of rki→j does not help any proxy to gain (in a
computational sense) any information on the message encrypted in ciphertexts
ct(i) and ct(j).

PRE has found lots of applications since introduced by Blaze et al. [4]. For
example, a patient i may issue a re-encryption key rki→j to a hospital. When
he receives his own medical testing report ct(i) encrypted under his public key
pk(i) and would like to see a doctor for diagnosis, he can forward ct(i) to the
hospital. Then the hospital converts ct(i) to ct(j) under doctor j’s public key, and
the doctor can use his/her own secret key sk(j) to decrypt ct(j) to recover the
patient’s original medical testing report, which helps him for disease diagnosis.
• Unidirectional vs. Bidirectional. A PRE scheme is unidirectional if rki→j

only allows re-encryption from pk(i) to pk(j) but not vice versa. In contrast,
a bidirectional PRE scheme allows bidirectional ciphertext translations between
pk(i) and pk(j) with a single rki↔j . Compared to unidirectional PRE, the proxies
in a bidirectional PRE scheme are authorized more re-encryption power, and this
is not welcomed especially when the other direction is not permitted by user
j. Therefore, unidirectional PRE is preferable to its bidirectional counterpart.
Moreover, as shown by [6], a unidirectional PRE implies a bidirectional one.
• Single-hop vs. Multi-hop. A PRE scheme is single-hop if a re-encrypted
ciphertext cannot be further re-encrypted by any re-encryption key. In contrast,
with a multi-hop PRE, a ciphertext ct(i) is translated to ct(j) by rki→j , and
ct(j) can be further translated to ct(k) by rkj→k. With the multi-hop property,
a malicious proxy may lead to lost of control of authorization. For example,
a proxy with rki→j , rkj→k can easily obtains re-encryption power from i to k
which may be undesirable for user i.
• Non-Interactive vs. Interactive. A PRE scheme is non-interactive if the
generation of re-encryption key rki→j does not need user j’s secret key sk(j).
In contrast, an interactive PRE needs sk(j), and hence user j must be on-line
and involved in the generation of rki→j . Clearly the non-interactive property is
preferable to the interactive one.

In this paper, we focus on unidirectional, single-hop and non-interactive PRE.
Security of PRE. PRE is usually deployed in multi-user settings, where the
adversary is able to corrupt some users by obtaining their secret keys, and it is

2

also able to obtain re-encryption keys between some users. The main security
notion for a PRE scheme is indistinguishability under chosen-plaintext attacks
(CPA) or chosen-ciphertext attacks (CCA) for some challenge ciphertext ct∗ un-
der some target user i∗, against probabilistic polynomial-time (PPT) adversaries
who corrupt users and obtain re-encryption keys of its own choices. Of course,
the knowledge of corrupted secret keys and re-encryption keys should not lead
to trivial decryption of ct∗. According to the way that the adversary corrupts
the users, there are two types of security notions.

• Security under selective corruptions. At the beginning of the security
game, the adversary submits a set of users that it wants to corrupt, and
the challenger returns all the secret keys of users in the corruption set.

• Security under adaptive corruptions. Throughout the security game, the
adversary issues corruption queries adaptively.

Obviously, CPA/CCA security under adaptive corruptions is stronger than that
under selective corruptions. In [12], Fuchsbauer et al. proposed a security reduc-
tion from selective corruptions to adaptive corruptions for PRE, but it suffers
from a super-polynomial security loss nO(log n) with n the number of users. To
the best of our knowledge, all existing PRE schemes with adaptive corruptions
are based on the Random Oracle (RO) model, and there is no PRE scheme
achieving even CPA security under adaptive corruptions in the standard model.

Similarly, the rest of security notions including CPR, UNID, NTR, CUL, CS
can be defined either under selective corruptions or under adaptive corruptions.

• Ciphertext Pseudo-Randomness (CPR). CPR is similar to but stronger
than CPA security. It requires that the challenge ciphertext is computationally
indistinguishable to an element randomly chosen from the ciphertext space.

• Unidirectionality (UNID). Roughly speaking, unidirectionality requires that
it is hard for adversaries to compute rki→j with the knowledge of rkj→i.

• Non-Transitivity (NTR). For a single-hop unidirectional PRE scheme, non-
transitivity requires that it is hard for adversaries to compute rki→k even with
the knowledge of rki→j and rkj→k. It is easy to see that NTR, as well as UNID,
captures the precise authorization of re-encryption power.

• Ciphertext Unlinkability (CUL). For a single-hop unidirectional PRE scheme,
if ct(j) is encrypted from ct(i) with re-encryption key rki→j , then ct(j) is linked to
ct(i). Ciphertext unlinkability requires that the linked ciphertext pair (ct(i), ct(j))
is computationally indistinguishable from independently generated ciphertexts
ct′

(i) and ct′
(j). The indistinguishability should also be considered in the corrup-

tion scenario in the multi-user settings. As far as we know, there is no formal
security definition for ciphertext-unlinkability yet.

• Collusion-Safety (CS). For a single-hop unidirectional PRE scheme, collusion-
safety requires that it is hard for adversaries to compute secret key sk(i) even
with the knowledge of rki→j and sk(j). This notion is also called master secret
security in [3, 9, 16, 21, 22, 23]. Note that secret key sk(i) may not be unique

3

w.r.t. pk(i). Therefore, in this paper, we consider a stronger notion of Collusion-
Safety (CS), which requires the CPA security of the ciphertext under public key
pk(i) against adversaries who obtains rki→j , sk

(j) and can also corrupt users and
issue re-encryption queries. Clearly, CS implies the master secret security.

Related Works. Let us recall existing works on single-hop unidirectional PRE.
In [23], Shao et al. designed the first CCA-secure unidirectional single-hop PRE
scheme from the DDH assumption under adaptive corruptions in the RO model.
However, Chow et al. [9] showed an attack on the scheme of [23], and presented
a fixed PRE scheme, which achieves CCA-security but only under selective cor-
ruptions in the RO model. Moreover, Selvi et al. [21] pointed out a weakness
in the proof in [9] and presented a PRE scheme achieving CCA security under
selective corruptions, also in the RO model. Later, Canard et al. [5] proposed a
CCA-secure PRE scheme under adaptive corruptions again in the RO model.

As for standard model, Ateniese et al. [3] designed the first unidirectional
single-hop PRE scheme from the DBDH assumption, achieving weak-CPA secu-
tiy. Later, Libert et al. [16] designed the first CCA-secure scheme from 3-QDBDH
assumption. In [14], Kirshanova proposed the first lattice-based weak CCA1-
secure scheme. However, Fan et al. [11] pointed out a mistake of the proof in [14]
and presented a new latticed-based scheme, achieving tag-based CCA (tbCCA)
security, with a security level between weak-CCA1 in [14] and CCA security in
[16]. Unfortunately, these schemes only achieve selective security in the standard
model.

There are also a variety of PRE with extended functionalities. Shao [22]
proposed the notion of anonymous identity-based PRE and presented a scheme
achieving CCA security under adaptive corruptions in the RO model. Chandran
et al. [7, 8] generalized PRE to functional re-encryption scheme and constructed
functional PRE schemes from obfuscations, which are secure under selective
corruption. In their schemes, the policy function F defines the access policy. Only
the policy is satisfied, can a user decrypt the re-encrypted ciphertext to recover
the original message successfully. Similarly, Weng et al. [25] and Liang et al. [15]
proposed attribute-based conditional PRE schemes to achieve attribute-based
policy control, and their schemes are CPA secure under selective corruptions.
Recently, Miao et al. [17] proposed a unidirectional multi-hop updatable PRE
from DDH with security under selective corruptions in the standard model.

The related works on PRE shows that there is no PRE or its variant schemes
achieving CPA or CCA security under adaptive corruptions in the standard
model.1 It is natural to ask:

Q1: Can we construct a PRE scheme meeting the CPA security under adaptive
corruptions in the standard model, possibly also achieving ciphertext unlinkabil-
ity, unidirectionality, non-transitivity and collusion-safety?

1 In fact, to the best of our knowledge, there is no PRE with security under adaptive
corruptions in the standard model, no matter single-hop or multi-hop, unidirectional
or bidirectional, interactive or non-interactive PREs.

4

Fine-Grained PRE. Up to now, the re-encryption of ct(i) under pk(i) only
generates ct(j) under pk(j) encrypting the same message as ct(i). This is an all-
or-nothing style of re-encryption.

Let us take the patient-hospital-doctor example again. With PRE, either
a doctor sees all the medical testing data, say (m1,m2,m3), in the reports or
nothing at all. In fact, the patient may only want to reveal a part of the data,
like (m1, ∗,m3), to the doctor and hide some sensitive data m2 from the doctor.
Even more generally, the patient may only allow revealing a function of his data,
say f(m1,m2,m3), to another party. If we resort to PRE, then the PRE must be
able to do a fine-grained re-encryption authorization to proxies. More precisely,
re-encryption key rkfi→j for user i and user j must be associated with a function
f . With rkfi→j , the proxy is authorized with re-encryption power, but limited
by function f . Accordingly, the proxy is only able to translate a ciphertext ct(i)

encrypting message m under user i’s public key pk(i) to a ciphertext ct(j) en-
crypting f(m) under pk(j) of user j. Such a fine-grained single-hop unidirectional
PRE is able to accurately control message spread to other parties by means of
functions {f}. Up to now, there is no work on this topic. Thus, question Q1 is
now upgraded to another interesting question:

Q2: Can we construct a Fine-Grained PRE scheme achieving the CPA secu-
rity under adaptive corruptions in the standard model, possibly also achieving
ciphertext unlinkability, unidirectionality, non-transitivity and collusion-safety?

Our Contributions. In this work, we answer the above question in the affir-
mative. Our contributions are three-fold.

– Formal Definitions for Fine-Grained PRE and Its Securities. We present
the formal definitions for the new concept Fine-Grained PRE (FPRE), which
generalizes PRE by enabling fine-grained re-encryption power.

Moreover, we present the formal definitions for a set of security notions for
FPRE, including CPA security, ciphertext pseudorandomness (CPR), unidi-
rectionality (UNID), non-transitivity (NTR) and collusion-safety (CS). We
also propose a new security notion named ciphertext unlinkability (CUL),
which blurs the link between a ciphertext and its re-encrypted ciphertext.
All the security notions are formalized in a multi-user setting where the ad-
versary is able to corrupt users and obtain re-encryption keys adaptively.

We establish the relations between these security notions: CPA implies
both UNID and NTR, CUL implies CPA, and CPR (trivially) implies CPA.
See Fig. 1 for an overview.

– Construction of FPRE for Bounded Linear Functions from LWE. We pro-
pose a unidirectional, single-hop, non-interactive FPRE scheme FPRElin

LWE,
and the fine-grained function family consists of bounded linear functions
Flin (with coefficients of bounded norm). Our FPRElin

LWE achieves CPA, UNID,
NTR, CS and CUL security under adaptive corruptions in the standard model,
based on the learning-with-errors (LWE) assumption. The LWE assumption
makes our scheme quantum-safe. In addition, our scheme is key-optimal (in

5

the sense of [3]), where the delegatee’s secret storage remains constant re-
gardless of the number of delegations it accepts.

When setting the linear function to be the identity function, we im-
mediately get a single-hop unidirectional (traditional) PRE scheme, which
contributes as the first PRE scheme with security under adaptive corruptions
in the standard model.

– Construction of FPRE for Deletion Functions from LWE. As a by-product,
our FPRElin

LWE for bounded linear functions can be easily adapted to a scheme
FPREdel

LWE for deletion functions Fdel, which can be applied in various realistic
scenarios.

Ciphertext Unlinkability

CUL (Def. 6)

CPA Security

(Def. 2)

Unidirectionality

UNID (Def. 3)

Collusion-Safety

CS (Def. 5)

Ciphertext Pseudorandomness

CPR (Def. 2)

Non-Transitivity

NTR (Def. 4)

Lemma 6

Lemma 7

Lemma 1

(trivial)

Fig. 1. Security notions of FPRE under adaptive corruptions and their relations.

We refer to Table 1 for a comparison of our scheme with known single-hop
unidirectional PRE schemes.2

Technical Overview of Our LWE-based FPRE Scheme. Below we give
a high-level overview of our FPRE scheme FPRElin

LWE for the bounded linear
function family based on LWE, and in particular, explain how we realize fine-
grained re-encryptions. For simplicity, we do not specify the dimensions of ma-
trices/vectors.

We start with the dual Regev PKE scheme [20] encrypting a multiple-bit
message m ∈ {0, 1}ℓ. The ciphertext under user i’s public key A(i) =

(
A

(i)

A(i)

)
is

ct(i) = A(i)s+ e+

(
0

bq/2cm

)
=

(
A

(i)
s+ e1

A(i)s+ e2 + bq/2c ·m

)
, (1)

where e =
(
e1

e2

)
is an error vector.

2 We explain the security notions in Table 1: “weak-CPA/CCA1” does not allow the
adversary to issue any re-encryption key query from an honest user to a corrupted
user, while “CPA/CCA” allows such queries (except for trivial attacks). “tbCCA”
refers to tag-based CCA and was first introduced in [11], with a security level be-
tween weak-CCA1 and CCA. “HRA” refers to security against honest re-encryption
attacks), proposed in [10], and its does not allow such re-encryption key query, but
provides re-encryption oracle to answer re-encryptions of honestly generated cipher-
texts for corrupted users. On the one hand, HRA does not allow the adversary to
obtain any re-encryption key from the honest user to the corrupted user, which is
weaker than our CPA; on the other hand, the adversary in the HRA model can
obtain re-encryptions of the honestly-generated ciphertexts from the challenge user
to the corrupted user, which is not allowed in our CPA model.

6

Table 1. Comparison of single-hop unidirectional PRE schemes. The column Stan-
dard Model? asks whether the security is proved in the standard model. The column
Adaptive Corruptions? asks whether all the security notions support adaptive cor-
ruptions. The column Security shows the type of security that the scheme achieves,
where “HRA” refers to security against honest re-encryption attack [10] and “tbCCA”
refers to tag-based CCA [11]. The column UNID shows whether the scheme has unidi-
rectionality. The column CUL shows whether the scheme has ciphertext unlinkability.
The column NTR shows whether the scheme has non-transitivity. The column CS
shows whether the scheme is collusion-safe. The column Assumption shows the as-
sumptions that the security of the scheme is based on, where DBDH refers to the
Decision Bilinear Diffie-Hellman assumption, DCDH refers to the Divisible CDH as-
sumption and 3-QDBDH refers to the 3-Quotient DBDH assumption. The column
Post Quantum? asks whether the scheme is based on a post quantum assumption
like LWE. The column Fine-Grained? asks whether the scheme supports fine-grained
re-encryptions. “–” means that no proof is provided.

PRE Scheme Standard
Model?

Adaptive
Corruptions? Security UNID NTR CUL CS Assumption Post

Quantum?
Fine–

Grained?

SC09 [23] × ✓ CCA ✓ ✓ – ✓ DDH × ×

CWYD10 [9] × × CCA ✓ ✓ – ✓ CDH × ×

CDL11 [5] × ✓ CCA ✓ ✓ – ✓ CDH × ×

Shao12 [22] × ✓ CCA ✓ ✓ – ✓ DBDH × ×

SPR17 [21] × × CCA ✓ ✓ – ✓ DCDH × ×

AFGH05 [3] ✓ × weak-CPA ✓ – – ✓ DBDH × ×

LV08 [16] ✓ × CCA ✓ ✓ – ✓ 3-QDBDH × ×

Kirshanova14 [14] ✓ × weak-CCA1 ✓ – – – LWE ✓ ×

FL19 [11] ✓ × tbCCA ✓ ✓ – – LWE ✓ ×

SDDR21 [24] ✓ × HRA ✓ ✓ – – LWE ✓ ×

LWYYJW21 [15] ✓ × CPA ✓ – – – LWE ✓ ×

This work ✓ ✓ CPA ✓ ✓ ✓ ✓ LWE ✓ ✓

(a) The generation of re-encryption key. Let I be the identity matrix.
Multiplying a small-norm matrix

(
R

∣∣∣∣ 0I
)

to ct(i) yields

(
R

∣∣∣∣ 0I
)
· ct(i) =

(
RA

(i)
+

(
0

I

)
A(i)

︸ ︷︷ ︸
(∗)

)
· s+Re1 +

(
0

I · e2

)
︸ ︷︷ ︸

e′

+

(
0

bq/2c · I ·m

)
.

With the help of the trapdoor T(i) of A(i), a small-norm R can be found with the
pre-image sampling algorithm [13] so that RA

(i)
= A(j)−

(
0
I

)
A(i). Consequently,

A(j) = (∗) and ct(j) :=

(
R

∣∣∣∣ 0I
)
· ct(i) = A(j) · s+ e′ +

(
0

⌊q/2⌋·m
)
, which can be

decrypted to recover message m by user j. Taking R as the re-generation key
rki→j , then we can translate ct(i) to ct(j) successfully.
(b) The CPA security of ct(i). There is a dilemma to prove the CPA security
of ct(i): applying the LWE assumption to ct(i) requires A(i) be a uniformly
distributed matrix with trapdoor unknown; but the generation of rki→j = R
needs a trapdoor T(i). Moreover, we can hardly change the generation of R to

7

avoid using T(i) since the relation between public keys pk(i) = A(i), pk(j) = A(j)

and the re-generation key R can be easily checked by RA
(i)

= A(j) −
(
0
I

)
A(i).

To solve the problem, we change the way of generating rki→j = R: now R

is sampled with the pre-image sampling algorithm so that RA
(i)

= A(j) · S +

E−
(
0
I

)
A(i), instead of RA

(i)
= A(j) −

(
0
I

)
A(i), where S and E are small-norm

matrices following discrete Gaussian distribution. Thus, A(j) · S+E = (∗) and

ct(j) :=

(
R

∣∣∣∣ 0I
)
· ct(i) = A(j) · S · s+E · s+ e′︸ ︷︷ ︸

e′′

+

(
0

bq/2c · I ·m

)
. (2)

When s is a small-norm vector, e′′ is small enough so that ct(j) can also be
successfully decrypted by user j’s secret key.

When targeting on the CPA security of ct(i), the adversary must not corrupt
j if it has already obtained rki→j = R (to avoid trivial attacks). According
to the LWE assumption, A(j) · S + E is computationally indistinguishable to
a uniform distribution, and so is RA

(i)
(
= A(j) · S+E−

(
0
I

)
A(i)

)
. Then we

can modify the generation of rki→j = R by sampling from a discrete Gaussian
distribution independently. According to [13], such a R makes RA

(i) uniformly
distributed. Therefore, the adversary hardly realizes this modification of R. Now
the generation of R is free of trapdoor T(i), and the LWE assumption assures
the pseudo-randomness of ct(i).

Up to now, we obtain a multi-hop PRE since ct(j) can be similarly re-
encrypted to ct(k) with rkj→k generated in a similar way.
(c) Achieving single-hop with ciphertexts of two levels. We resort to
two level ciphertexts to achieve single-hop for PRE, inspired by [3, 16]. The
first-level ciphertext ct(i)1 is defined as in (1). The second-level ciphertext ct(i)2 =

A′(i)s+ e+
(

0
⌊q/2⌋m

)
is also a dual Regev ciphertext. Then user i’s public key is

pk(i) = (A(i),A′(i)) and secret key is sk(i) = (T(i),K(i)) with A′(i) = K(i)A′(i).
Now the re-encryption key rki→j translates the first-level ciphertext ct

(i)
1 under

i to the second-level ciphertext ct(j)2 under j. If user j has no trapdoor for A′(j),
then he cannot generate re-encryption key rkj→k for further hops. This can be
accomplished by putting A′(= A′(j)) in public parameter and shared by all
users. In this way, we obtain a single-hop PRE.
(d) Achieving fine-grained re-encryption for deletion functions and
bounded linear functions. According to (2), the re-encrypted ciphertext ct(j)2

is in fact an encryption of I·m. If I is replaced by a binary matrix M (of bounded
norm), then rki→j :=

(
R

∣∣ 0
M

)
and ct

(j)
2 becomes an encryption of M ·m, which

is a bounded linear function of m. For example, setting M := I′ with I′ is almost
equal to I except that its v-th row is a zero-row, then the v-th entry in I ·m is
erased to 0. This highlights the idea of designing fine-grained PRE with deletion
functions (see Sect. 5 for details.) To support larger message space and more

8

linear functions, we set q = p2 and replace ⌊q/2⌋ with p in ciphertexts. In this
way, the message space and (small-norm) M can be defined over Zp.
(e) Achieving adaptive security for fine-grained PRE. The CPA security
of fine-grained PRE focuses on the first-level ciphertext ct

(i)
1 for the target user

i, even if the adversary obtains re-encryption keys and corrupts users adaptively.
We allow the adversary obtains rki′→j′ and corrupts j′ to obtain sk(j

′), as long
as i′ ̸= i (i′ = i will lead to a trivial attack). Therefore, our CPA security is
actually stronger than the CPA notion defined in [3, 10, 12], where rki′→j′ is
invisible to the adversary when i′ is uncorrupted and j′ is corrupted.

To prove adaptive CPA security, we first use the guessing strategy for the
target user i, and this only leads to a security loss of n, the number of users.
Note that if j is corrupted, then the adversary cannot see rki→j (to avoid trivial
attacks). But the adversary is able to obtain rki→j for all uncorrupted j. For
those rki→j , the generation of R can be indistinguishably changed to indepen-
dently sampling R with some discrete Gaussian distribution, thanks to the LWE
assumption which makes RA

(i)
(= A′(j) · S + E −

(
0
I

)
A(i)) pseudo-random. As

a result, all rki→j w.r.t. uncorrupted j are independent of the challenge cipher-
text ct

(i)
1 . Meanwhile, the generations of rki′→j′ and sk(i

′) with i′ ̸= i are only
related to A(i′), and hence are also independent of ct

(i)
1 . Then we can use the

LWE assumption to prove the pseudo-randomness of the challenge ciphertext
ct

(i)
1 , and CPA security follows.

Moreover, the sampling of R retains enough entropy, and a uniform ct
(i)
1 can

act as an extractor on R so that ct
(j)
2 :=

(
R

∣∣∣∣ 0I
)
· ct(i)1 is statistically close

to a uniform distribution. Hence it is hard for an adversary to realize the link
between ct

(i)
1 and its re-encrypted ciphertext ct(j)2 , thus CUL security is achieved.

It is easy to check that CPA security implies unidirectionality (UNID) and
non-transitivity (NTR). In the CPA security, adversary is able to see rki′→i and a
corrupted secret key sk(i

′). If UNID does not hold, then the adversary can recover
rki→i′ from rki′→i and obtain the ability to decrypt the challenge ciphertext of
i from rki→i′ and sk(i

′), thus breaking the CPA security. Similarly, in the CPA
security, adversary is able to see rki→j , rkj→k and a corrupted secret key sk(k).
If NTR does not hold, the adversary can recover rki→k from rki→j and rkj→k.
Then it obtains the ability to decrypt the challenge ciphertext of i from rki→k

and sk(k), thus breaking the CPA security.

2 Preliminaries

Notations. Let λ ∈ N denote the security parameter throughout the paper,
and all algorithms, distributions, functions and adversaries take 1λ as an implicit
input. If x is defined by y or the value of y is assigned to x, we write x := y.
For i, j ∈ N with i < j, define [i, j] := {i, i + 1, ..., j} and [j] := {1, 2, ..., j}. For
a set X , denote by x ←$ X the procedure of sampling x from X uniformly at
random. If D is distribution, x ←$ D means that x is sampled according to D.

9

All our algorithms are probabilistic unless stated otherwise. We use y ←$ A(x)
to define the random variable y obtained by executing algorithm A on input
x. If A is deterministic we write y ← A(x). “PPT” abbreviates probabilistic
polynomial-time. Denote by negl some negligible function. By Pri[·] we denote
the probability of a particular event occurring in game Gi.

For random variables X and Y , the min-entropy of X is defined as H∞(X) :=
− log(maxx Pr[X = x]), and the statistical distance between X and Y is defined
as ∆(X,Y) := 1

2 ·
∑

x |Pr[X = x]−Pr[Y = x]|. If ∆(X,Y) = negl(λ), we say that
X and Y are statistically indistinguishable (close), and denote it by X ≈s Y .

Let n,m,m′, q ∈ N, and let A ∈ Zm×n
q , v ∈ Zn

q , B ∈ Zm′×n
q . Define the lattice

Λ(A) := {Ax | x ∈ Zn}, the q-ary lattice Λq(A) := {Ax | x ∈ Zn
q } + qZm, its

“orthogonal” lattice Λ⊥
q (A) := {x ∈ Zm | x⊤A = 0 mod q}, and the “shifted”

lattice Λv
q (A) := {r ∈ Zm | r⊤A = v⊤ mod q}, which can be further extended

to ΛB
q (A) := {R ∈ Zm′×m | RA = B mod q}. Let ∥v∥ (resp., ∥v∥∞) denote its

ℓ2 (resp., infinity) norm. For a matrix A, we define ∥A∥ (resp., ∥A∥∞) as the
largest ℓ2 (resp., infinity) norm of A’s rows. A distribution χ is B-bounded if its
support is limited to [−B,B]. Let Zq be the ring of integers modulo q, and its
elements are represented by the integers in (−q/2, q/2].

Due to space limitations, we present lattice backgrounds in Appendix A.1,
where we recall the definition of discrete Gaussian distribution, LWE assump-
tion, and the TrapGen, Invert, SamplePre algorithms introduced in [1, 13, 19].

3 Fine-Grained PRE

In this section, we propose a new primitive called Fine-Grained PRE (FPRE), by
extending the concept of proxy re-encryption (PRE) to fine-grained settings. (For
completeness, we recall the formal definition of PRE in Appendix A.2.) More-
over, we formalize a set of security notions for FPRE, including CPA security,
ciphertext pseudorandomness (CPR), unidirectionality (UNID), non-transitivity
(NTR), collusion safety (CS), and ciphertext unlinkability (CUL), all of which
are under adaptive corruptions. We refer to Fig. 1 in the introduction for an
overview of the relations between these security notions.

Single-hop PRE can prevent the proxies from spreading ciphertexts without
permission, and it is usually achieved by ciphertexts of two levels. Only the first
level ciphertexts can be re-encrypted (to second level ciphertexts) and the second
level ciphertexts can not be re-encrypted anymore. Accordingly, we define FPRE
with two encryption and two decryption algorithms.

Now we present the syntax of fine-grained PRE.

Definition 1 (Fine-Grained PRE). Let F be a family of functions from
M to M, where M is a message space. A fine-grained proxy re-encryption
(FPRE) scheme for function family F is defined with a tuple of PPT algorithms
FPRE = (Setup,KGen,FReKGen,Enc1,Enc2,FReEnc,Dec1,Dec2).

– pp ←$ Setup: The setup algorithm outputs a public parameter pp, which
serves as an implicit input of other algorithms.

10

– (pk, sk) ←$ KGen(pp): Taking pp as input, the key generation algorithm out-
puts a pair of public key and secret key (pk, sk).

– rkfi→j ←$ FReKGen(pk(i), sk(i), pk(j), f): Taking as input a public-secret key
pair (pk(i), sk(i)), another public key pk(j) and a function f ∈ F , the fine-
grained re-encryption key generation algorithm outputs a fine-grained re-
encryption key rkfi→j that allows re-encrypting ciphertexts intended to i into
ciphertexts encrypted for j.

– ct1 ←$ Enc1(pk,m): Taking as input a public key pk and a message m ∈
M, this algorithm outputs a first-level ciphertext ct1 that can be further
re-encrypted into a second-level ciphertext.

– ct2 ←$ Enc2(pk,m): Taking as input a public key pk and a message m ∈
M, this algorithm outputs a second-level ciphertext ct2 that cannot be re-
encrypted anymore.

– ct
(j)
2 ←$ FReEnc(rkfi→j , ct

(i)
1): Taking as input a re-encryption key rki→j and

a first-level ciphertext intended for i, the fine-grained re-encryption algorithm
outputs a second-level ciphertext re-encrypted for user j.

– m← Dec1(sk, ct1): Taking as input a secret key sk and a first-level ciphertext
ct1, the deterministic decryption algorithm outputs a message m.

– m ← Dec2(sk, ct2): Taking as input a secret key sk and a second-level ci-
phertext ct2, the deterministic decryption algorithm outputs a message m.

Correctness. For all m ∈M, pp ←$ Setup, (pk, sk) ←$ KGen(pp), ct1 ←$ Enc1(pk,m)
and ct2 ←$ Enc2(pk,m), it holds that Dec1(sk, ct1) = m = Dec2(sk, ct2).
Fine-Grained One-Hop Correctness. For all m ∈ M, f ∈ F , pp ←$ Setup,
(pk(i), sk(i)) ←$ KGen(pp), (pk(j), sk(j)) ←$ KGen(pp), rkfi→j ←$ FReKGen(pk(i),

sk(i), pk(j), f), ct(i)1 ←$ Enc1(pk
(i),m) and ct

(j)
2 ← FReEnc(rkfi→j , ct

(i)
1), it holds

Dec2(sk
(j), ct

(j)
2) = f(m).

The notion of FPRE generalizes PRE by enabling fine-grained re-encryption,
which is captured by the two fine-grained algorithms FReKGen and FReEnc. With
a fine-grained re-encryption key rkfi→j generated by FReKGen, one can convert
a first-level ciphertext ct

(i)
1 encrypting message m for user i into a second-level

ciphertext ct
(j)
2 encrypting a function f(m) of m for another user j by invoking

FReEnc, where f ∈ F . If the function family F consists of only the identity
function, i.e., f(m) = m, then we recover the (traditional) PRE.

Next, we formalize the indistinguishability of ciphertexts under chosen-plaintext
attacks (CPA) and Ciphertext Pseudorandomness (CPR) for FPRE.
Definition 2 (CPA Security & Ciphertext Pseudorandomness for FPRE).
An FPRE scheme FPRE is CPA secure, if for any PPT adversary A and any poly-
nomial n, it holds that AdvCPAFPRE,A,n(λ) :=

∣∣Pr[ExpCPAFPRE,A,n ⇒ 1] − 1
2

∣∣ ≤ negl(λ),
where the experiment ExpCPAFPRE,A,n is defined in Fig. 2.

An FPRE scheme FPRE has ciphertext pseudorandomness (CPR), if for any
PPTA and any polynomial n, it holds that AdvCPRFPRE,A,n(λ) :=

∣∣Pr[ExpCPRFPRE,A,n(λ)⇒
1]− 1

2

∣∣ ≤ negl(λ), where ExpCPRFPRE,A,n is also defined in Fig. 2.

11

ExpCPAFPRE,A,n

/
ExpCPRFPRE,A,n :

pp ←$ Setup. For i ∈ [n]: (pk(i), sk(i)) ←$ KGen(pp)

Qrk := ∅ �record re-encryption key queries
Qc := ∅ �record corruption queries
i∗ := ⊥ �record challenge user
(i∗,m0,m1, st) ←$ AOReKey(·,·,·),OCor(·)(pp, {pk(i)}i∈[n])

(i∗,m, st) ←$ AOReKey(·,·,·),OCor(·)(pp, {pk(i)}i∈[n])

If (i∗ ∈ Qc) or (∃j ∈ Qc s.t. (i∗, j) ∈ Qrk):
Return b ←$ {0, 1} �avoid TA1, TA2

β ←$ {0, 1}

ct∗1 ←$ Enc1(pk
(i∗),mβ)

If β = 0: ct∗1 ←$ Enc1(pk
(i∗),m); Else: ct∗1 ←$ C

β′ ←$ AOReKey(·,·,·),OCor(·)(st, ct∗1)

If β′ = β: Return 1; Else Return 0.

OReKey(i, j, f):
If (i = i∗) and (j ∈ Qc):

Return ⊥ �avoid TA2

Qrk := Qrk ∪ {(i, j)}
rkf

i→j ←$ FReKGen(pk(i), sk(i), pk(j), f)

Return rkf
i→j

OCor(i):
If (i = i∗) or (i∗, i) ∈ Qrk:

Return ⊥ �avoid TA1, TA2

Qc := Qc ∪ {i}
Return sk(i)

Fig. 2. The CPA security experiment ExpCPAFPRE,A,n (with framed boxes) & the Cipher-
text Pseudorandomness (CPR) security experiment ExpCPRFPRE,A,n (with gray boxes) for
FPRE, where C denotes the ciphertext space.

Remark 1 (On the formalization of CPA and CPR securities and discussion on
trivial attacks). We formalize the CPA and CPR security notions by defining the
experiments ExpCPAFPRE,A,n and ExpCPRFPRE,A,n, respectively, in Fig. 2. More precisely,
we consider a multi-user setting, and the adversary A is allowed to make two
kinds of oracle queries adaptively:

– through OReKey(i, j, f) query, A can get re-encryption keys rkfi→j , and
– through OCor(i) query, A can corrupt user i and obtain its secret key sk(i).

We stress that the adversary can issue multiple OReKey(i, j, f) queries, even for
the same delegator i and same delegatee j, thus achieving multiple delegations.
At some point, A generates an output and receives a challenge ciphertext ct∗1,
which are the only different places in the two experiments. In ExpCPAFPRE,A,n, A
outputs a challenge user index i∗ as well as a pair of messages (m0,m1), and
receives a challenge ciphertext ct∗1 which encrypts mβ under pk(i

∗), where β is
the challenge bit that A aims to guess. This captures the indistinguishability
of ciphertexts. In ExpCPRFPRE,A,n, A outputs a challenge user index i∗ and a single
message m, and receives a challenge ciphertext ct∗1 which either encrypts m
under pk(i

∗) or is uniformly chosen from the ciphertext space C, depending on
the challenge bit β. This captures the pseudorandomness of ciphertexts. Clearly,
CPR is stronger than CPA.

Note that CPA (and CPR) only consider the security of the first-level cipher-
texts. In fact, the CPA security for the second-level ciphertexts can be simi-
larly defined: A outputs a challenge (j∗,m0,m1), receives a challenge ciphertext
ct∗2 ←$ Enc2(pk

(j∗),mβ), and aims to guess the challenge bit β. Here we do not
capture the CPA security for the second-level ciphertexts in the CPA security
definition, but instead, we will formalize it in the security definition of collusion
safety (CS) later (cf. Def. 5).

12

To prevent trivial attacks from A, we keep track of two sets: Qc records the
corrupted users, and Qrk records the tuples (i, j) that A obtains a re-encryption
key rkfi→j . Based on that, there are two trivial attacks TA1-TA2 to obtain
information about the plaintext underlying the challenge ciphertext ct∗1.
TA1: i∗ ∈ Qc, i.e., A ever corrupts user i∗ and obtains its secret key sk(i

∗). In
this case, A can decrypt ct∗1 directly by invoking Dec1(sk

(i∗), ct∗1).
TA2: ∃ j ∈ Qc, s.t. (i∗, j) ∈ Qrk, i.e., A gets a re-encryption key rkfi∗→j starting

from the challenge user i∗ to some corrupted user j that A ever obtains its
secret key sk(j). In this case, A can re-encrypt ct∗1 to a ciphertext ct

(j)
2

encrypted for j via ct
(j)
2 ←$ FReEnc(rkfi∗→j , ct

∗
1), then simply decrypt ct

(j)
2

with sk(j) to obtain a function of the plaintext underlying ct∗1, which is
f(mβ) in ExpCPAFPRE,A,n, and is f(m) in the case of β = 0 in ExpCPRFPRE,A,n.

As such, we exclude the above trivial attacks in both CPA and CPR experiments.
Below, we formalize the property of Unidirectionality (UNID), which basically

means that the proxy ability in one direction shouldn’t imply the proxy ability
in the other direction. Roughly speaking, it requires that given a fine-grained re-
encryption key rkfj∗→i∗ , it is hard for an adversary to come up with a fine-grained
re-encryption key rkf

′

i∗→j∗ of the other direction.
Definition 3 (Unidirectionality for FPRE). An FPRE scheme FPRE is
unidirectional (UNID), if for any PPT adversary A and any polynomial n, it holds
that AdvUNIDFPRE,A,n(λ) := Pr[ExpUNIDFPRE,A,n ⇒ 1] ≤ negl(λ), where the experiment
ExpUNIDFPRE,A,n is defined in Fig. 3.

ExpUNID
FPRE,A,n:

pp ←$ Setup. For i ∈ [n]: (pk(i), sk(i)) ←$ KGen(pp)

Qrk := ∅ �record re-encryption key queries
Qc := ∅ �record corruption queries
i∗ := ⊥, j∗ := ⊥ �record challenge users
(i∗, j∗, f, st) ←$ AOReKey(·,·,·),OCor(·)(pp, {pk(i)}i∈[n])

If (i∗ = j∗) or (i∗ ∈ Qc) or ((i∗, j∗) ∈ Qrk) or (∃j ∈ Qc s.t. (i∗, j) ∈ Qrk):
Return ⊥ �avoid TA1′, TA2′, TA3′, TA4′

rkf
j∗→i∗ ←$ FReKGen(pk(j∗), sk(j∗), pk(i∗), f)

Qrk := Qrk ∪ {(j∗, i∗)}
(rkf ′

i∗→j∗ , f
′) ←$ AOReKey(·,·,·),OCor(·)(st, rkf

j∗→i∗)

If f ′ does not have output diversity: Return ⊥ �avoid TA5′

�check the functionality of rkf ′

i∗→j∗ in the following way
m ←$ M, ct

(i∗)
1 ←$ Enc1(pk

(i∗),m), ct
(j∗)
2 ←$ FReEnc(rkf ′

i∗→j∗ , ct
(i∗)
1)

If Dec2(sk(j∗), ct
(j∗)
2) = f ′(m): Return 1; Else: Return 0

OReKey(i, j, f):
If (i = i∗) and (j = j∗ or j ∈ Qc):

Return ⊥ �avoid TA3′, TA4′

Qrk := Qrk ∪ {(i, j)}
rkf

i→j ←$ FReKGen(pk(i), sk(i), pk(j), f)

Return rkf
i→j

OCor(i):
If (i = i∗) or (i∗, i) ∈ Qrk:

Return ⊥ �avoid TA2′, TA4′

Qc = Qc ∪ {i}
Return sk(i)

Fig. 3. The Unidirectionality (UNID) security experiment ExpUNID
FPRE,A,n for FPRE, where

“output diversity” is defined as Pr[m0,m1 ←$ M : f ′(m0) 6= f ′(m1)] ≥ 1/poly(λ) (see
Remark 5 in Appendix B.1 for more details).

In Appendix B.1, we give some explanations of the UNID security definition
and discuss the trivial attacks TA1′-TA5′ in Remark 5, and then show that the
UNID security is implied by the CPA security in Lemma 6.

13

Next, we formalize the property of Non-Transitivity (NTR), which essentially
requires that given two fine-grained re-encryption keys rkf1i∗→k∗ and rkf2k∗→j∗ from
i∗ to k∗ and from k∗ to j∗, respectively, it is hard for an adversary to compute a
fine-grained re-encryption key rkf

′

i∗→j∗ from i∗ directly to j∗. Below we present
the formal definition of NTR security.

Definition 4 (Non-Transitivity for FPRE). An FPRE scheme FPRE is
non-transitive (NTR), if for any PPT adversary A and any polynomial n, it holds
that AdvNTRFPRE,A,n(λ) := Pr[ExpNTRFPRE,A,n ⇒ 1] ≤ negl(λ), where the experiment
ExpNTRFPRE,A,n is defined in Fig. 4.

ExpNTRFPRE,A,n:
pp ←$ Setup. For i ∈ [n]: (pk(i), sk(i)) ←$ KGen(pp)

Qrk := ∅ �record re-encryption key queries
Qc := ∅ �record corruption queries
i∗, k∗, j∗ := ⊥ �record challenge users
(i∗, k∗, j∗, f1, f2, st) ←$ AOReKey(·,·,·),OCor(·)(pp, {pk(i)}i∈[n])

If (i∗ = k∗ or k∗ = j∗ or j∗ = i∗) or (i∗ ∈ Qc) or ((i∗, j∗) ∈ Qrk)

or (∃j ∈ Qc s.t. (i∗, j) ∈ Qrk):
Return ⊥ �avoid TA1′,TA2′,TA3′,TA4′

rkf1
i∗→k∗ ←$ FReKGen(pk(i∗), sk(i∗), pk(k∗), f1)

rkf2
k∗→j∗ ←$ FReKGen(pk(k∗), sk(k∗), pk(j∗), f2)

Qrk = Qrk ∪ {(i∗, k∗)} ∪ {(k∗, j∗)}
(rkf ′

i∗→j∗ , f
′) ←$ AOReKey(·,·,·),OCor(·)(st, rkf1

i∗→k∗ , rk
f2
k∗→j∗)

If f ′ does not have output diversity: Return ⊥ �avoid TA5′

�check the functionality of rkf ′

i∗→j∗ in the following way
m ←$ M, ct

(i∗)
1 ←$ Enc1(pk

(i∗),m), ct
(j∗)
2 ← FReEnc(rkf ′

i∗→j∗ , ct
(i∗)
1)

If Dec2(sk(j∗), ct
(j∗)
2) = f ′(m): Return 1; Else: Return 0

OReKey(i, j, f):
If (i = i∗) ∧ (j = j∗ or j ∈ Qc):

Return ⊥ �avoid TA3′,TA4′

Qrk := Qrk ∪ {(i, j)}
rkf

i→j ←$ FReKGen(pk(i), sk(i), pk(j), f)

Return rkf
i→j

OCor(i):
If (i = i∗) or (i∗, i) ∈ Qrk:

Return ⊥ �avoid TA2′,TA4′

Qc = Qc ∪ {i}
Return sk(i)

Fig. 4. The Non-Transitivity (NTR) security experiment ExpNTRFPRE,A,n for FPRE, where
“output diversity” is defined as Pr[m0,m1 ←$ M : f ′(m0) 6= f ′(m1)] ≥ 1/poly(λ) (see
Remark 6 in Appendix B.2 for more details).

In Appendix B.2, we give some explanations of the NTR security definition
and discuss the trivial attacks TA1′-TA4′ in Remark 6, and then show that the
NTR security is implied by the CPA security in Lemma 7.

Now, we formalize the Collusion-Safety (CS) for FPRE. Our CS security def-
inition captures the CPA security for the second-level ciphertexts, instead of the
master secret security as defined in [3, 16]. Nevertheless, we note that our CS
security is at least as strong as theirs. See Appendix B.3 for more discussions.
Below we present the formal definition of our CS security.

Definition 5 (Collusion-Safety for FPRE). An FPRE scheme FPRE is
collusion-safe (CS), if for any PPT adversary A and any polynomial n, it holds
that AdvCSFPRE,A,n(λ) :=

∣∣Pr[ExpCSFPRE,A,n ⇒ 1] − 1
2

∣∣ ≤ negl(λ), where the experi-
ment ExpCSFPRE,A,n is defined in Fig. 5.

14

ExpCSFPRE,A,n:
pp ←$ Setup. For i ∈ [n]: (pk(i), sk(i)) ←$ KGen(pp)

Qc := ∅ �record corruption queries
i∗ := ⊥ �record challenge user
(i∗,m0,m1, st) ←$ AOReKey(·,·,·),OCor(·)(pp, {pk(i)}i∈[n])

If i∗ ∈ Qc: Return ⊥ �avoid trivial attacks
β ←$ {0, 1}
ct∗2 ←$ Enc2(pk

(i∗),mβ)

β′ ←$ AOReKey(·,·,·),OCor(·)(st, ct∗2)

If β′ = β: Return 1; Else Return 0.

OReKey(i, j, f):
rkf

i→j ←$ FReKGen(pk(i), sk(i), pk(j), f)

Return rkf
i→j

OCor(i):
If i = i∗:

Return ⊥ �avoid trivial attacks
Qc = Qc ∪ {i}
Return sk(i)

Fig. 5. The Collusion-Safety (CS) security experiment ExpCSFPRE,A,n for FPRE.

Remark 2 (On the formalization of CS security). We formalize the CS security
by defining the experiment ExpCSFPRE,A,n in Fig. 5. Similar to previous security
notions, we consider a multi-user setting, and the adversary A is allowed to make
OReKey and OCor queries adaptively. At some point, A outputs a challenge user
index i∗ as well as a pair of messages (m0,m1), and receives a challenge second-
level ciphertext ct∗2 which encrypts mβ under pk(i

∗), where β is the challenge
bit that A aims to guess. This captures the indistinguishability of second-level
ciphertexts. Clearly, to avoid trivial attack, A cannot obtain the secret key sk(i

∗).

In real world, re-encryption relations between ciphertexts often imply the
proxy connections between users, therefore it is desirable to hide the relations/
connections. We formalize this as the property of Ciphertext Unlinkability (CUL),
which basically requires that given two ciphertexts (ct∗1, ct

∗
2), it is hard for an

adversary to tell whether ct∗2 is a re-encryption of ct∗1, or the two ciphertexts are
independently and freshly generated. Below we present the formal definition.

Definition 6 (Ciphertext Unlinkability for FPRE). An FPRE scheme
FPRE has ciphertext unlinkability (CUL), if for any PPT adversary A and any
polynomial n, it holds that AdvCULFPRE,A,n(λ) :=

∣∣Pr[ExpCULFPRE,A,n ⇒ 1] − 1
2

∣∣ ≤
negl(λ), where the experiment ExpCULFPRE,A,n is defined in Fig. 6.

ExpCULFPRE,A,n:
pp ←$ Setup. For i ∈ [n]: (pk(i), sk(i)) ←$ KGen(pp)

Qrk := ∅ �record re-encryption key queries
Qc := ∅ �record corruption queries
i∗ := ⊥, j∗ := ⊥ �record challenge users
(i∗, j∗, (f,m), (m1,m2), st) ←$ AOReKey(·,·,·),OCor(·)(pp, {pk(i)}i∈[n])

If (i∗ ∈ Qc) or (j∗ ∈ Qc) or
(
∃j ∈ Qc s.t. (i∗, j) ∈ Qrk

)
:

Return b ←$ {0, 1} �avoid TA1′′,TA2′′

β ←$ {0, 1}
If β = 0: �ciphertexts generated with re-encryption relation

ct∗1 ←$ Enc1(pk
(i∗),m)

rkf
i∗→j∗ ←$ FReKGen(pk(i∗), sk(i∗), pk(j∗), f), ct∗2 ←$ FReEnc(rkf

i∗→j∗ , ct
∗
1)

If β = 1: �ciphertexts generated independently
ct∗1 ←$ Enc1(pk

(i∗),m1), ct∗2 ←$ Enc2(pk
(j∗),m2)

β′ ←$ AOReKey(·,·,·),OCor(·)(st, ct∗1, ct
∗
2)

If β′ = β: Return 1; Else Return 0.

OReKey(i, j, f):
If (i = i∗) and (j ∈ Qc) :

Return ⊥ �avoid TA2′′

Qrk := Qrk ∪ {(i, j)}
rkf

i→j ←$ FReKGen(pk(i), sk(i), pk(j), f)

Return rkf
i→j

OCor(i):
If (i = i∗) or (i = j∗) or (i∗, i) ∈ Qrk:

Return ⊥ �avoid TA1′′,TA2′′

Qc = Qc ∪ {i}
Return sk(i)

Fig. 6. The Ciphertext Unlinkability (CUL) security experiment ExpCULFPRE,A,n for FPRE.

15

Remark 3 (On the formalization of CUL security and discussion on trivial at-
tacks). We formalize the CUL security by defining the experiment ExpCULFPRE,A,n

in Fig. 6. Similar to previous security notions, we consider a multi-user setting,
and the adversary A is allowed to make OReKey and OCor queries adaptively. At
some point, A outputs a pair of challenge users (i∗, j∗), a pair of function and
message (f,m) as well as a pair of messages (m1,m2), and receives two challenge
ciphertexts (ct∗1, ct

∗
2) which are

- (Case β = 0) either two ciphertexts generated with re-encryption relation,
namely ct∗1 ←$ Enc1(pk

(i∗),m), rkfi∗→j∗ ←$ FReKGen(pk(i
∗), sk(i

∗), pk(j
∗), f)

and ct∗2 ←$ FReEnc(rkfi∗→j∗ , ct
∗
1),

- (Case β = 1) or two ciphertexts that are generated independently, namely
ct∗1 ←$ Enc1(pk

(i∗),m1) and ct∗2 ←$ Enc2(pk
(j∗),m2).

A aims to guess which case it is.
Actually, there are two trivial attacks TA1′′-TA2′′ to obtain information

about the plaintexts underlying the challenge ciphertexts (ct∗1, ct
∗
2).

TA1′′: i∗ ∈ Qc or j∗ ∈ Qc, i.e., A ever obtains sk(i
∗) or sk(j

∗). In this case, A
can decrypt the challenger ciphertext ct∗1 or ct∗2 itself and trivially win.

TA2′′: ∃ j ∈ Qc, s.t. (i∗, j) ∈ Qrk, i.e., A gets sk(j) and rkfi∗→j for some user
j. In this case, A can re-encrypt ct∗1 to a ciphertext ct

(j)
2 encrypted for j via

ct
(j)
2 ←$ FReEnc(rkfi∗→j , ct

∗
1), then simply decrypt ct

(j)
2 with sk(j) to obtain

a function of the plaintext underlying ct∗1, which is f(m) in the case of β = 0
and is f(m1) in the case of β = 1.

As such, we exclude the above trivial attacks in the CUL experiment.
Below we show that the CUL security is stronger than the CPA security via

Lemma 1, with proof postponed to Appendix B.4 due to space limitations.
Lemma 1 (CUL⇒ CPA). For any PPT adversary A breaking the CPA security
of FPRE and any polynomial n, there exists a PPT adversary B breaking the CUL
security of FPRE with AdvCULFPRE,B,n+1(λ) =

1
2 · Adv

CPA
FPRE,A,n(λ).

4 Fine-Grained PRE for Bounded Linear Functions from
LWE

In this section, we present a construction of fine-grained PRE (FPRE) scheme
FPRElin

LWE for the family of bounded linear functions Flin (with coefficient of
bounded norm). Then based on the LWE assumption, we prove the security of
our FPRElin

LWE, including CPA security in Theorem 1, ciphertext pseudorandom-
ness (CPR) in Corollary 1, ciphertext unlinkability (CUL) in Theorem 2, and
collusion-safety (CS) in Theorem 3. Combining with Lemma 6 and Lemma 7
in Appendix B, our FPRElin

LWE also achieves unidirectionality (UNID) and non-
transitivity (NTR).
Parameters. Let ppLWE = (p, q, n,N, ℓ, γ,∆, χ) be LWE-related parameters
that meet the following conditions:

16

– p, q, n,N, ℓ, γ,∆ ∈ N are integers, where q := p2, N ≥ 2n log q + 2ω(log λ)
and γ ≥ O(

√
n log q) · ω(

√
log n);

– χ is a B-bounded distribution, where B satisfies γ ·ω(log n) ≤ B < min{p/2,
q/(10N)} and (N + 1)(nB +NB + ℓ∆)B < p/2.

More precisely, see Table 2 for a concrete parameter choice. For simplicity, we
assume that all algorithms of our FPRE scheme take ppLWE as an implicit input.

Table 2. Concrete parameters setting, where λ denotes the security parameter.

Parameters p q n N ℓ γ ∆ B

Settings λ5 λ10 λ 21λ log λ λ
√
λ(log λ)2 λ

√
λ(log λ)4

Bounded Linear function family. The message space isM := Zℓ
p. Define the

family of bounded linear functions Flin from M to M over Zp as follows:

Flin =

{
fM : Zℓ

p → Zℓ
p

m 7→M ·m mod p

∣∣∣∣ M ∈ Zℓ×ℓ
p , ‖M‖∞ ≤ ∆

}
. (3)

LWE-based FPRE scheme for Flin. Let TrapGen, SamplePre, Invert be the
PPT algorithms defined in Lemmas 2, 3 and 4 in Appendix A.1, respectively. Our
LWE-based FPRE scheme FPRElin

LWE = (Setup,KGen, FReKGen,Enc1,Enc2,FReEnc,
Dec1,Dec2) for the linear function family Flin defined in (3) is shown in Fig. 7.

pp ←$ Setup:
A′ ←$ ZN×n

q

Return pp := A′

(pk, sk) ←$ KGen(pp):
(A ∈ ZN×n

q ,T) ←$ TrapGen(1n, 1N), A ←$ Zℓ×n
q

A :=
(
A
A

)
∈ Z(N+ℓ)×n

q

K ←$ {0, 1}ℓ×N , A′ := −KA′

pk := (A,A′), sk := (T,K)

Return (pk, sk)

rkfM
i→j ←$ FReKGen(pk(i) = (A(i),A′(i)), sk(i) = (T(i),K(i)),

pk(j) = (A(j),A′(j)), fM ∈ Flin):
S ←$ χn×n, E ←$ χ(N+ℓ)×n

A′(j) :=
(

A′

A′(j)
)

R ∈ Z(N+ℓ)×N ←$ SamplePre
(
T(i),A

(i)
,A′(j)S+E−

(
0
M

)
A(i), γ

)
rkfM

i→j :=

(
R

∣∣∣∣∣ 0

M

)
∈ Z(N+ℓ)×(N+ℓ)

p �M is the description of fM

Return rkfM
i→j

ct1 ←$ Enc1(pk = (A,A′),m ∈M):
s ←$ χn, e ←$ χN+ℓ

ct1 := As+ e+
(

0
pm

)
∈ ZN+ℓ

q

Return ct1

ct2 ←$ Enc2(pk = (A,A′),m ∈M):
s ←$ χn, e ←$ χN+ℓ

A′ :=
(
A′

A′

)
ct2 := A′s+ e+

(
0

pm

)
∈ ZN+ℓ

q

Return ct2

ct
(j)
2 ← FReEnc(rkfM

i→j ∈ Z(N+ℓ)×(N+ℓ)
p ,

ct
(i)
1 ∈ ZN+ℓ

q):
ct

(j)
2 := rkfM

i→j · ct
(i)
1 ∈ ZN+ℓ

q

Return ct
(j)
2

m← Dec1(sk = (T,K), ct1 ∈ ZN+ℓ
q):

Parse ct1 =
(ct1∈ZN

q

ct1∈Zℓ
q

)
(s, e1)← Invert(T, ct1)

m̃ = (m̃1, . . . , m̃ℓ) := ct1 −As

For all i ∈ [ℓ] :

mi := dm̃i/pc
Return m = (m1, . . . ,mℓ)

m← Dec2(sk = (T,K), ct2 ∈ ZN+ℓ
q):

m̃ = (m̃1, . . . , m̃ℓ) := (K | Iℓ×ℓ) · ct2
For all i ∈ [ℓ] :

mi := dm̃i/pc
Return m = (m1, . . . ,mℓ)

Fig. 7. The LWE-based FPRE scheme FPRElin
LWE for the linear function family Flin.

17

Correctness. Let pp = A′, pk = (A,A′) and sk = (T,K). For a first-level ci-
phertext ct1 generated by Enc1(pk,m), we have ct1 =

(
ct1
ct1

)
=

(
As+e1

As+e2+pm

)
, where

e1 ←$ χN , e2 ←$ χℓ, and the upper part is an LWE instance of A. Since e1 is
B-bounded with B < q/(10N), ∥e1∥ ≤

√
N ∥e1∥∞ ≤

√
NB < q/(10

√
N). Then

by Lemma 3 in Appendix A.1, (s, e1) can be correctly recovered via (s, e1) ←
Invert(T, ct1). Thus according to the decryption algorithm Dec1(sk, ct1), we get
m̃ = ct1 − As = e2 + pm, and by parsing e2 = (e21, . . . , e2ℓ)

⊤, we have that
m̃i = e2i + pmi for all i ∈ [ℓ]. Moreover, since e2 is B-bounded with B < p/2,
each |e2i| ≤ B < p/2. Consequently, ⌈m̃i/p⌋ = mi and Dec1 can recover m
correctly from ct1.

For a second-level ciphertext ct2 generated by Enc2(pk,m), we have

ct2 =

(
A′s+ e1

A′s+ e2 + pm

)
=

(
A′s+ e1

−KA′s+ e2 + pm

)
,

where e1 ←$ χN , e2 ←$ χℓ. According to the decryption algorithm Dec2(sk, ct2),
we get m̃ = (K | I) · ct2 = Ke1 + e2 + pm, and by defining e′ = (e′1, ..., e

′
ℓ) :=

Ke1 + e2, we have that m̃ = e′ + pm and m̃i = e′2i + pmi for all i ∈ [ℓ]. Since
e1, e2 are B-bounded with B satisfying (N + 1)(nB + NB + ℓ∆)B < p/2 and
K ∈ {0, 1}ℓ×N , we have ∥e′∥∞ ≤ (N + 1)B < p/2 and each |e′2i| ≤ B < p/2.
Consequently, ⌈m̃i/p⌋ = mi and Dec2 can recover m correctly from ct2.

Fine-Grained One-Hop Correctness. Let ct(i)1 ←$ Enc1(pk
(i),m) and rkfMi→j

←$ FReKGen(pk(i), sk(i), pk(j), fM). For a fine-grained re-encrypted ciphertext
ct

(j)
2 ←$ FReEnc(rkfMi→j , ct

(i)
1), we have

ct
(j)
2 :=

(
R

∣∣∣∣ 0
M

)
· ct(i)1 =

(
R

∣∣∣∣ 0
M

)
·
((

A
(i)

A(i)

)
s+

(
e1

e2

)
+

(
0

pm

))

=

(
RA

(i)
+

(
0

M

)
A(i)

)
· s+Re1 +

(
0

Me2

)
+

(
0

pMm

)
.

Since R is generated by R ←$ SamplePre(T(i),A
(i)
,A′(j)S+E−

(
0
M

)
A(i), γ), by

Lemma 4 in Appendix A.1, we have RA
(i)

= A′(j)S+E−
(
0
M

)
A(i). Consequently,

we get

ct
(j)
2 = A′(j) Ss︸︷︷︸

:=s̃

+Es+Re1 +

(
0

Me2

)
︸ ︷︷ ︸

:=ẽ

+

(
0

p · Mm︸ ︷︷ ︸
=fM(m)

)
.

By Lemma 4 in Appendix A.1, we know that ∥R∥∞ ≤ γ ·ω(log n), which further
yields ∥R∥∞ ≤ B due to γ · ω(log n) ≤ B. Now that E, s,R, e1, e2 are all B-
bounded and M is ∆-bounded, so we have ∥ẽ∥∞ ≤ (nB + NB + ℓ∆)B. By
a similar argument like the correctness of second-level ciphertexts, since (N +
1)∥ẽ∥∞ ≤ (N + 1)(nB + NB + ℓ∆)B < p/2, the decryption algorithm Dec2
can recover the function value fM(m) = M ·m correctly from the re-encrypted
ciphertext ct

(j)
2 .

18

Next, we show the CPA security of our FPRElin
LWE scheme.

Theorem 1 (CPA Security of FPRElin
LWE). Assume that the LWEn,q,χ,N+ℓ-

assumption holds, then the scheme FPRElin
LWE proposed in Fig. 7 is CPA secure.

More precisely, for any PPT adversary A that makes at most Q times of OReKey
queries and for any polynomial n, there exists a PPT algorithm B against the
LWE assumption s.t. AdvCPAFPRE,A,n(λ) ≤ (n2nQ+n) ·AdvLWE

[n,q,χ,N+ℓ],B(λ)+negl(λ).

Proof of Theorem 1. We prove the theorem via a sequence of games G0 –G5,
where G0 is the CPA experiment, and in G5, A has a negligible advantage.

Game G0: This is the CPA experiment ExpCPAFPRE,A,n (cf. Fig. 2). Let Win denote
the event that β′ = β. By definition, AdvCPAFPRE,A,n(λ) = |Pr0[Win]− 1

2 |.
Let pp = A′ and let pk(i) = (A(i),A′(i)), sk(i) = (T(i),K(i)) denote the

public key and secret key of user i ∈ [n]. In this game, the challenger answers
A’s OReKey, OCor queries and generates the challenge ciphertext ct∗1 as follows.

– On receiving a re-encryption key query OReKey(i, j, fM) from A, the chal-
lenger returns ⊥ to A directly if trivial attacks (i = i∗) and (j ∈ Qc) occur.
Otherwise, the challenger adds (i, j) toQrk, samples S ←$ χn×n,E ←$ χ(N+ℓ)×n,
invokes R ←$ SamplePre

(
T(i),A

(i)
,A′(j)S+E−

(
0
M

)
A(i), γ

)
, where A′(j) =(

A′

A′(j)

)
, and returns rkfMi→j :=

(
R

∣∣ 0
M

)
to A.

– On receiving a corruption query OCor(i) from A, the challenger returns ⊥
to A directly if trivial attacks (i = i∗) or (i∗, i) ∈ Qrk occur. Otherwise, the
challenger adds i to Qc and returns sk(i) to A.

– On receiving the challenge tuple (i∗,m0,m1) from A, the challenger first
checks if trivial attacks (i∗ ∈ Qc) or (∃j ∈ Qc s.t. (i∗, j) ∈ Qrk) occur. If
yes, the challenger aborts the game with A by returning a random bit. Oth-
erwise, the challenger chooses a random bit β ←$ {0, 1}, samples s ←$ χn,
e ←$ χN+ℓ, and sends ct∗1 := A(i∗)s+ e+

(
0

pmβ

)
to A.

Game G1: It is the same as G0, except that, at the beginning of the game,
the challenger chooses a random user index i′ ←$ [n] uniformly as the guess of
the challenge user i∗, and will abort the game and return a random bit in the
following cases.

– Case 1. A issues the challenge tuple (i∗,m0,m1) but i′ ̸= i∗.
– Case 2. A issues a re-encryption key query OReKey(i, j, fM) such that (i = i′)

and (j ∈ Qc) before issuing its challenge.
– Case 3. A issues a corruption query OCor(i) such that (i = i′) or (i′, i) ∈ Qrk

before issuing its challenge.

Case 1 suggests that the challenger’s guess is wrong. Now in G1, the challenger
will abort the game if the guess is wrong. If the guess is correct, i.e., i′ = i∗,
Case 2 and Case 3 are in fact trivial attacks, so they will lead to abort anyway
in G0 and do not contribute to A’s advantage. Since the challenger will guess i∗

correctly with probability 1/n, we have
∣∣Pr0[Win]− 1

2

∣∣ = 1
n

∣∣Pr1[Win]− 1
2

∣∣.
19

Game G1.v, v ∈ [0, n]: It is the same as G1, except for the reply to A’s re-
encryption key query OReKey(i, j, fM) which does not lead to any trivial attack.

– If i = i′ and j ≤ v, the challenger uniformly samples U ←$ Z(N+ℓ)×n
q and

invokes R ←$ SamplePre
(
T(i),A

(i)
,U, γ

)
to get rkfMi′→j :=

(
R

∣∣ 0
M

)
, rather

than using A′(j)S+E−
(
0
M

)
A(i) with S ←$ χn×n,E ←$ χ(N+ℓ)×n as in G1.

– Otherwise, the challenger answers the query just like G1, that is, R ←$ SamplePre(
T(i),A

(i)
,A′(j)S+E−

(
0
M

)
A(i), γ

)
with S ←$ χn×n,E ←$ χ(N+ℓ)×n.

Clearly, G1.0 is identical to G1. Thus, we have Pr1[Win] = Pr1.0[Win]

For v ∈ [n], let Corrv denote the event that A queries v to the corruption
oracle OCor. If Corrv occurs, A is not allowed to issue any re-encryption key
query of the form OReKey(i

′, v, fM) to avoid trivial attacks. Therefore, G1.v−1 is
identical to G1.v in the case Corrv occurs, i.e., Pr1.v−1[Win∧Corrv] = Pr1.v[Win∧
Corrv]. Consequently, we have∣∣Pr1.v−1[Win]−Pr1.v[Win]

∣∣ = ∣∣Pr1.v−1[Win∧¬Corrv]−Pr1.v[Win∧¬Corrv]
∣∣. (4)

Claim 1. For each v ∈ [n],
∣∣Pr1.v−1[Win]− Pr1.v[Win]

∣∣ ≤ AdvnQ-LWE
[n,q,χ,N+ℓ],B(λ).

Proof. We construct a PPT algorithm B to break the nQ-LWEn,q,χ,N+ℓ assump-
tion by simulating G1.v−1/G1.v for A as follows.

Algorithm B. Given (B ∈ Z(N+ℓ)×n
q ,Z ∈ Z(N+ℓ)×nQ

q), B wants to distin-
guish Z = BS+E from Z ←$ Z(N+ℓ)×nQ

q , where B ←$ Z(N+ℓ)×n
q , S ←$ χn×nQ,

E ←$ χ(N+ℓ)×nQ. B parses B =
(
B
B

)
with B ∈ ZN×n

q ,B ∈ Zℓ×n
q , and parses

Z = (Z1 | · · · | ZQ) with each Zk ∈ Z(N+ℓ)×n
q . In the case of Z = BS+E, if we

parse S = (S1 | · · · | SQ) with each Sk ∈ Zn×n
q and parse E = (E1 | · · · | EQ)

with each Ek ∈ Z(N+ℓ)×n
q , then we have Zk = BSk + Ek. In the case of

Z ←$ Z(N+ℓ)×nQ
q , we have that Zk is uniformly distributed over Z(N+ℓ)×n

q .
B simulates G1.v−1/G1.v for A as follows. B sets pp = A′ := B. For the user

v, B invokes (A
(v)

,T(v)) ←$ TrapGen(1n, 1N), samples A(v) ←$ Zℓ×n
q , and sets

pk(v) := (A(v) :=
(
A

(v)

Av)

)
,A′(v) := B). It is clearly that A′(v) =

(
A′

A′(v)

)
=

(
B
B

)
=

B. For all other users i ∈ [n] \ {v}, B invokes KGen(pp) honestly to generate
(pk(i), sk(i)). B sends (pp, {pk(i)}i∈[n]) to A. B also chooses a random user index
i′ ←$ [n] uniformly as the guess of the challenge user i∗.

– On receiving a re-encryption key query OReKey(i, j, fM) from A, if (i = i′)
and (j ∈ Qc), B aborts the game, just like G1.v−1 and G1.v. Otherwise, B
replies the query as follows:

• If i = i′ and j ≤ v−1, B samples U ←$ Z(N+ℓ)×n
q and invokes R ←$ SamplePre(

T(i),A
(i)
,U, γ

)
to get rkfMi′→j :=

(
R

∣∣ 0
M

)
, the same as G1.v−1 and G1.v.

20

• If i = i′ and j = v, suppose that this is the k-th OReKey query with k ∈
[Q], B makes use of Zk to invoke R ←$ SamplePre

(
T(i′),A

(i′)
,Zk −

(
0
M

)
A(v), γ

)
to get rkfMi′→v :=

(
R

∣∣ 0
M

)
.

In the case of Z = BS+E, we have Zk = BSk +Ek = A′(v)Sk +Ek

for Sk ←$ χn×n and E ←$ χ(N+ℓ)×n, so B’s simulation is identical to
G1.v−1. In the case of Z ←$ Z(N+ℓ)×nQ

q , we have that Zk is uniformly
distributed over Z(N+ℓ)×n

q , so B’s simulation is identical to G1.v.
• Otherwise, B samples S ←$ χn×n,E ←$ χ(N+ℓ)×n and invokes R ←$ SamplePre(

T(i),A
(i)
,A′(j)S+E−

(
0
M

)
A(i), γ

)
to get rkfMi′→j :=

(
R

∣∣ 0
M

)
, the same

as G1.v−1 and G1.v.
– On receiving a corruption query OCor(i) from A, if (i = i′) or (i′, i) ∈ Qrk,
B aborts the game, just like G1.v−1 and G1.v. If i = v (which means that
Corrv occurs), B also aborts the game. Otherwise, B returns sk(i) to A.

– On receiving the challenge tuple (i∗,m0,m1) from A, if i′ ̸= i∗, B aborts
the game. Otherwise, B chooses a random bit β ←$ {0, 1} and generates the
challenge ciphertext ct∗1 which encrypts mβ , just like G1.v−1 and G1.v.

– Finally, B receives a bit β′ from A, and B outputs 1 to its own challenger if
and only if β′ = β and A never corrupts v (i.e., ¬Corrv).

Now we analyze the advantage of B. Overall, if Z = BS + E, B simulates
G1.v−1 perfectly for A in the case ¬Corrv, and if Z ←$ Z(N+ℓ)×nQ

q , B simulates
G1.v perfectly for A in the case ¬Corrv. Thus, we have

AdvnQ-LWE
[n,q,χ,N+ℓ],B(λ) =

∣∣Pr[B(B,Z = BS+E) = 1]− Pr[B(B,Z ←$ Z(N+ℓ)×nQ
q) = 1]

∣∣
=

∣∣Pr1.v−1[Win ∧ ¬Corrv]− Pr1.v[Win ∧ ¬Corrv]
∣∣. (5)

Taking (4) and (5) together, Claim 1 follows.
Game G2: It’s the same as G1, except for the reply to A’s re-encryption query
OReKey(i

′, j, fM) when the query leads to no trivial attacks.

– If i = i′ (and j ∈ [n]), the challenger uniformly samples U ←$ Z(N+ℓ)×n
q

and uses U to invoke R ←$ SamplePre
(
T(i′),A

(i′)
,U, γ

)
to obtain rkfMi′→j :=(

R
∣∣ 0

M

)
, and return rkfMi′→j to A.

Clearly, G2 = G1.n and Pr2[Win] = Pr1.n[Win]. Thus by Claim 1, we have∣∣Pr1[Win]− Pr2[Win]
∣∣ ≤ n · AdvnQ-LWE

[n,q,χ,N+ℓ],B(λ). (6)

Game G3: It is the same as G2, except for the reply to A’s re-encryption query
OReKey(i = i′, j, fM). If the query does not lead to any trivial attack, then the
challenger samples R by R ←$ DZ(N+ℓ)×N ,γ , instead of invoking R ←$ SamplePre(
T(i′),A

(i′)
,U ←$ Z(N+ℓ)×n

q , γ
)

as in G2.
Since γ ≥ O(

√
n log q) · ω(

√
log n), according to the indistinguishability of

preimage-sampling of Lemma 4 in Appendix A.1, G3 is statistically close to G2.
Thus,

∣∣Pr2[Win]− Pr3[Win]
∣∣ ≤ negl(λ).

21

Note that in G3, the trapdoor T(i′) is not needed any more.

Game G4: It is the same as G3, except for the generation of pk(i′) = (A(i′),A′(i′)).
In this game, the challenger samples A(i′) ←$ Z(N+ℓ)×n

q uniformly, rather than
using the algorithm TrapGen as in G3. According to Lemma 2 in Appendix A.1,
G4 is statistically close to G3. Thus,

∣∣Pr3[Win]− Pr4[Win]
∣∣ ≤ negl(λ).

Game G5: It is the same as G4, except for the generation of the challenge cipher-
text ct∗1. Now the challenger picks ct∗1 ←$ ZN+ℓ

q uniformly, rather than generating
it by ct∗1 := A(i∗)s+ e+

(
0

pmβ

)
with s ←$ χn, e←$ χN+ℓ as in G4.

Clearly, the challenge bit β is completely hidden to A, thus Pr5[Win] = 1
2 .

Next we show that G4 and G5 are computationally indistinguishable.

Claim 2.
∣∣Pr4[Win]− Pr5[Win]

∣∣ ≤ AdvLWE
[n,q,χ,N+ℓ],B′(λ).

Proof. We construct a PPT algorithm B′ to break the LWEn,q,χ,N+ℓ assumption
by simulating G4/G5 for A as follows.

Algorithm B′. Given (B ∈ Z(N+ℓ)×n
q , z ∈ ZN+ℓ

q), B′ wants to distinguish z =

Bs+ e from z ←$ ZN+ℓ
q , where B ←$ ∈ Z(N+ℓ)×n

q , s ←$ χn and e←$ χN+ℓ.
B′ simulates G4/G5 for A as follows. B′ invokes Setup honestly to generate

pp = A′, and chooses a random user index i′ ←$ [n] uniformly as the guess of
the challenge user i∗. For the user i′, B′ samples K(i′) ←$ {0, 1}ℓ×N , and sets
pk(i

′) = (A(i′) := B,A′(i′) := −K(i′)A′) and sk(i
′) = ⊥. For all other users

i ∈ [n] \ {i′}, B′ invokes KGen(pp) honestly to generate (pk(i), sk(i)). B′ sends
(pp, {pk(i)}i∈[n]) to A.

– On receiving a re-encryption key query OReKey(i, j, fM) from A, B′ replies
A just like G4 and G5. More precisely, if (i = i′) and (j ∈ Qc), B aborts the
game; otherwise, B′ replies the query as follows:
• If i = i′, B′ samples R ←$ DZ(N+ℓ)×N ,γ to get rkfMi′→j :=

(
R

∣∣ 0
M

)
.

• If i ̸= i′, B′ invokes R ←$ SamplePre
(
T(i),A

(i)
,A′(j)S+E, γ

)
to get rkfMi′→j :=(

R
∣∣ 0

M

)
using the secret key sk(i) = (T(i),K(i)) of user i.

– On receiving a corruption query OCor(i) from A, B′ replies A just like G4 and
G5. More precisely, if (i = i′) or (i′, i) ∈ Qrk, B′ aborts the game; otherwise,
B′ returns sk(i) to A.

– On receiving the challenge tuple (i∗,m0,m1) from A, if i′ ̸= i∗, B′ aborts
the game. Otherwise, B′ chooses a random bit β ←$ {0, 1} and computes
ct∗1 := z+

(
0

pmβ

)
. Then B′ sends ct∗1 to A.

In the case of z = Bs+ e, ct∗1 = Bs+ e+
(

0
pmβ

)
= A(i∗)s+ e+

(
0

pmβ

)
, so

B′’s simulation is identical to G4. In the case of z ←$ ZN+ℓ
q , ct∗1 = z+

(
0

pmβ

)
is uniformly distributed, so B′’s simulation is identical to G5.

– Finally, B′ receives a bit β′ from A, and B′ outputs 1 to its own challenger
if and only if β′ = β.

22

Now we analyze the advantage of B′. Overall, if z = Bs+e , B′ simulates G4

perfectly for A, and if z ←$ ZN+ℓ
q , B′ simulates G5 perfectly for A. Thus,

AdvLWE
[n,q,χ,N+ℓ],B′(λ) =

∣∣Pr[B′(B, z = Bs+ e) = 1]− Pr[B′(B, z ←$ ZN+ℓ
q) = 1]

∣∣
=

∣∣Pr4[Win]− Pr5[Win]
∣∣.

Finally, taking all things together, Theorem 1 follows. ⊓⊔

Note that in the proof of Theorem 1, in G5, the challenge ciphertext ct∗1 has
been replaced by a random vector in ZN+ℓ

q , thus, we have the following corollary.

Corollary 1 (Ciphertext Pseudorandomness of FPRElin
LWE). Assume that

the LWEn,q,χ,N+ℓ-assumption holds, then the scheme FPRElin
LWE proposed in Fig. 7

has ciphertext pseudorandomness (CPR). More precisely, for any PPT adver-
sary A that makes at most Q times of OReKey queries and for any polyno-
mial n, there exists a PPT algorithm B against the LWE assumption such that
AdvCPRFPRE,A,n(λ) ≤ (2n2nQ+ n) · AdvLWE

[n,q,χ,N+ℓ],B(λ) + negl(λ).

Proof sketch. We can prove the corollary via a sequence of games G0 –G9. Here
G0-G5 are similar to those in the proof of Theorem 1, and in particular, in G5,
the challenge ciphertext ct∗1 is already pseudorandom. The only thing we need
to do is to reverse the changes introduced in G1 –G4, and this can be done by
the additional games G6 –G9 which are symmetric to G4 –G0. ⊓⊔

Theorem 2 (Ciphertext Unlinkability of FPRElin
LWE). Assume that the LWEn,q,χ,N+ℓ-

assumption holds, then the scheme FPRElin
LWE proposed in Fig. 7 has ciphertext

unlinkability (CUL). More precisely, for any PPT adversary A that makes at
most Q times of OReKey queries and for any polynomial n, there exists a PPT
algorithm B against the LWE assumption such that

AdvCULFPRE,A,n(λ) ≤ (3n2nQ+ n2 + 2n) · AdvLWE
[n,q,χ,N+ℓ],B(λ) + negl(λ).

Proof of Theorem 2. We prove the theorem via a sequence of games G′
0-G′

9,
where G′

0 is the CUL experiment, and in G′
9, A has a negligible advantage.

Game G′
0: This is the CUL experiment ExpCULFPRE,A,n (cf. Fig. 6). Let Win denote

the event that β′ = β. By definition, AdvCULFPRE,A,n(λ) = |Pr
′
0[Win]− 1

2 |.
Let pp = A′ and pk(i) = (A(i),A′(i)), sk(i) = (T(i),K(i)) the public key and

secret key of user i ∈ [n]. In this game, the challenger answers A’s OReKey, OCor
queries and generates the challenge ciphertexts (ct∗1, ct

∗
2) as follows.

– On receiving a re-encryption key query OReKey(i, j, fM) from A, the chal-
lenger returns ⊥ to A directly if trivial attacks (i = i∗) and (j ∈ Qc) occur.
Otherwise, the challenger adds (i, j) toQrk, samples S ←$ χn×n,E ←$ χ(N+ℓ)×n,
invokes R ←$ SamplePre

(
T(i),A

(i)
,A′(j)S+E −

(
0
M

)
A(i), γ

)
, where A′(j) =(

A′

A′(j)

)
, and returns rkfMi→j :=

(
R

∣∣ 0
M

)
to A.

23

– On receiving a corruption query OCor(i) from A, the challenger returns ⊥
to A directly if trivial attacks (i = i∗) or (i = j∗) or (i∗, i) ∈ Qrk occur.
Otherwise, the challenger adds i to Qc and returns sk(i) to A.

– On receiving the challenge tuple (i∗, j∗, (fM,m), (m1,m2)) from A, the chal-
lenger first checks if trivial attacks (i∗ ∈ Qc) or (j∗ ∈ Qc) or (∃j ∈ Qc

s.t. (i∗, j) ∈ Qrk) occur. If yes, the challenger aborts the game with A by
returning a random bit. Otherwise, the challenger chooses a random bit
β ←$ {0, 1}. In the case β = 0, the challenger generates ct∗1 by invoking
ct∗1 ←$ Enc1(pk

(i∗),m) and generates ct∗2 by invoking ct∗2 ←$ FReEnc(rkfMi∗→j∗ , ct
∗
1)

where rkfMi∗→j∗ ←$ FReKGen(pk(i
∗), sk(i

∗), pk(j
∗), fM). In the case β = 1, the

challenger generates ct∗1 by invoking ct∗1 ←$ Enc1(pk
(i∗),m1) and generates

ct∗2 by invoking ct∗2 ←$ Enc2(pk
(j∗),m2). The challenger sends the challenge

ciphertexts (ct∗1, ct
∗
2) to A.

Game G′
1: This game is similar to G′

0, except that, in the case of β = 0, the
challenger picks the first-level challenge ciphertext ct∗1 ←$ ZN+ℓ

q uniformly at
random, rather than generating it by ct∗1 ←$ Enc1(pk

(i∗),m) as in G′
0.

Claim 3.
∣∣Pr′0[Win]− Pr′1[Win]

∣∣ ≤ AdvCPRFPRE,B,n(λ).

Proof. We construct a PPT algorithm B to break the ciphertext pesudorandom-
ness (CPR) of FPRElin

LWE by simulating G′
0/G′

1 for A as follows.

Algorithm B. Algorithm B is given the public parameter pp, {pk(i)}i∈[n] from
its own challenger and has access to its own oracles OReKey,OCor. B initializes
Qrk = ∅,Qc = ∅, i∗ = ⊥, j∗ = ⊥ and sends pp, {pk(i)}i∈[n] to A.

– On receiving a re-encryption key query (i, j, fM) from A, B checks A’s trivial
attack by checking if (i = i∗) and (j ∈ Qc), just like G′

0 and G′
1. If trivial

attacks occur, B returns ⊥ to A, otherwise B adds (i, j) to Qrk and queries
(i, j, fM) to its own oracle OReKey. On receiving rkfMi→j from OReKey(i, j, fM),
B returns rkfMi→j to A.

– On receiving a corruption query i from A, B checks A’s trivial attack by
checking if (i = i∗) or (i = j∗) or (i∗, i) ∈ Qrk, just like G′

0 and G′
1. If trivial

attacks occur, B returns ⊥ to A, otherwise B adds i to Qc and queries i to
its own oracle OCor. On receiving sk(i) from OCor(i), B returns sk(i) to A.

– On receiving the challenge tuple (i∗, j∗, (fM,m), (m1,m2)) from A, B first
checks if (i∗ ∈ Qc) or (j∗ ∈ Qc) or (∃j ∈ Qc s.t. (i∗, j) ∈ Qrk) to identify triv-
ial attacks, just like G′

0 and G′
1. If yes, trivial attacks happen, and B aborts

the game with A and returns a random bit b′ ←$ {0, 1} to its own challenger.
Otherwise, B queries (i∗, j∗, fM) to its own oracle OReKey to obtain rkfMi∗→j∗ .
Moreover, B sends a challenge tuple (i∗,m) to its own challenger, and receives
a challenge ciphertext c̃t

∗
1 from its own challenger, which either encrypts m

under pk(i
∗), i.e., c̃t∗1 ←$ Enc1(pk

(i∗),m), or is uniformly chosen from ZN+ℓ
q ,

i.e., c̃t∗1 ←$ Enc1(pk
(i∗),m), depending on the challenge bit b that B’s chal-

lenge picks. Then B chooses a random bit β ←$ {0, 1}. In the case β = 0,

24

B sets ct∗1 := c̃t
∗
1 and generates ct∗2 by invoking ct∗2 ←$ FReEnc(rkfMi∗→j∗ , ct

∗
1).

In the case β = 1, B generates ct∗1 by invoking ct∗1 ←$ Enc1(pk
(i∗),m1) and

generates ct∗2 by invoking ct∗2 ←$ Enc2(pk
(j∗),m2), just like G′

0 and G′
1.

– Finally, B receives a bit β′ from A, and B outputs 1 if and only if β′ = β.

In the simulation, as long as A implements trivial attacks i∗ ∈ Qc or j∗ ∈
Qc or (∃j ∈ Qc s.t. (i∗, j) ∈ Qrk), B will abort the experiment, just like G′

0

and G′
1. Otherwise, no trivial attacks from A implies that i∗ /∈ Qc and there

doesn’t exist any re-encryption key query (i∗, j) ∈ Qrk ∪ {(i∗, j∗)} from i∗ to
j ∈ Qc, where Qrk ∪ {(i∗, j∗)} is exactly the re-encryption key query set for B’s
challenger. Therefore, B’s query (i∗, j∗, fM) to its own oracle OReKey does not
lead to any trivial attacks in the ciphertext pesudorandomness (CPR) experiment
(cf. Fig. 2), and B’s challenger will answer this query and return rkfMi∗→j∗ to B.
So B’s simulation of rkfMi∗→j∗ for A is perfect.

Now we analyze the advantage of B. Overall, if the challenge ciphertext c̃t
∗
1

that B received from its own challenger is generated by c̃t
∗
1 ←$ Enc1(pk

(i∗),m),
B simulates G′

0 perfectly for A, and if c̃t
∗
1 is uniformly chosen from ZN+ℓ

q by
B’s challenger, B simulates G′

1 perfectly for A. Therefore, B will successfully
distinguish c̃t

∗
1 ←$ Enc1(pk

(i∗),m) from c̃t
∗
1 ←$ ZN+ℓ

q and break the ciphertext
pesudorandomness (CPR) of FPRElin

LWE as long as the probability that Win occurs
in G′

0 differs non-negligibly from that in G′
1, and we have

∣∣Pr′0[Win]−Pr′1[Win]
∣∣ ≤

AdvCPRFPRE,B,n(λ).

Game G′
2: It is the same as G′

1, except that, at the beginning of the game, the
challenger chooses i′ ←$ [n] uniformly as the guess of the challenge user i∗, and
will abort the game and return a random bit in the following cases.

– Case 1. A issues the challenge tuple (i∗, j∗, (fM,m), (m1,m2)) but i′ ̸= i∗.
– Case 2. A issues a re-encryption key query OReKey(i, j, fM) such that (i = i′)

and (j ∈ Qc) before issuing its challenge.
– Case 3. A issues a corruption query OCor(i) such that (i = i′) or (i = j∗) or

(i′, i) ∈ Qrk before issuing its challenge.

Case 1 suggests that the challenger’s guess is wrong. Now in G′
2, the challenger

will abort the game if the guess is wrong. If the guess is correct, i.e., i′ = i∗,
Case 2 and Case 3 are in fact trivial attacks, so they will lead to abort anyway
in G′

1 and do not contribute to A’s advantage. Since the challenger will guess i∗

correctly with probability 1/n, we have
∣∣Pr′1[Win]− 1

2

∣∣ = 1
n

∣∣Pr′2[Win]− 1
2

∣∣.
Game G′

3: It is the same as G′
2, except for the reply to A’s re-encryption query

OReKey(i
′, j, fM) which does not lead to any trivial attack.

– If i = i′ (and j ∈ [n]), the challenger uniformly samples U ←$ Z(N+ℓ)×n
q

and uses U to invoke R ←$ SamplePre
(
T(i′),A

(i′)
,U, γ

)
to obtain rkfMi′→j :=(

R
∣∣ 0

M

)
, and return rkfMi′→j to A.

25

Moreover, G′
3 also differs from G′

2 in the generation of the second-level chal-
lenge ciphertext ct∗2 in the case of β = 0. Recall that in G′

2, in the case of β = 0,
the challenger invokes rkfMi∗→j∗ ←$ FReKGen(pk(i

∗), sk(i
∗), pk(j

∗), fM) to compute
ct∗2 ←$ FReEnc(rkfMi∗→j∗ , ct

∗
1). Now in this game, the challenger also uniformly

samples U ←$ Z(N+ℓ)×n
q , uses U to invoke R ←$ SamplePre

(
T(i∗),A

(i∗)
,U, γ

)
to

obtain rkfMi∗→j∗ :=
(
R

∣∣ 0
M

)
, then uses rkfMi∗→j∗ to compute ct∗2 ←$ FReEnc(rkfMi∗→j∗ , ct

∗
1).

With a similar argument like G1-G2(= G1.0-G1.n) in the proof of Theorem 1,
cf. (6), we have

∣∣Pr′2[Win]− Pr′3[Win]
∣∣ ≤ n · AdvnQ-LWE

[n,q,χ,N+ℓ],B1
(λ).

Game G′
4: It is the same as G′

3, except for the reply to A’s re-encryption query
OReKey(i = i′, j, fM). If the query does not lead to any trivial attack, then the
challenger samples R by R ←$ DZ(N+ℓ)×N ,γ , instead of invoking R ←$ SamplePre(
T(i′),A

(i′)
,U ←$ Z(N+ℓ)×n

q , γ
)

as in G′
3.

Moreover, G′
4 also differs from G′

3 in the generation of ct∗2 in the case of
β = 0. Now in this game, in the case of β = 0, the challenger also samples R by
R ←$ DZ(N+ℓ)×N ,γ , instead of invoking R ←$ SamplePre

(
T(i∗),A

(i∗)
,U ←$ Z(N+ℓ)×n

q , γ
)

to obtain rkfMi∗→j∗ :=
(
R

∣∣ 0
M

)
, and uses rkfMi∗→j∗ to compute ct∗2 ←$ FReEnc(rkfMi∗→j∗ , ct

∗
1).

With a similar argument like G2-G3 in the proof of Theorem 1, we know that
G′
4 is statistically close to G′

3. Thus,
∣∣Pr′3[Win]− Pr′4[Win]

∣∣ ≤ negl(λ).

Note that in G′
4, the trapdoor T(i′) is not needed any more.

Game G′
5: It is the same as G′

4, except for the generation of ct∗2 in the case of
β = 0. In this game, in the case of β = 0, the challenger picks the second-level
challenge ciphertext ct∗2 ←$ ZN+ℓ

q uniformly at random.
Recall that in G′

4, ct∗2 is generated by invoking ct∗2 ←$ FReEnc(rkfMi∗→j∗ , ct
∗
1),

where ct∗1 ←$ ZN+ℓ
q and rkfMi∗→j∗ :=

(
R

∣∣ 0
M

)
with R ←$ DZ(N+ℓ)×N ,γ , thus

ct∗2 := rkfM
i∗→j∗ · ct

∗
1 =

(
R

∣∣∣∣ 0
M

)
· ct∗1 = R · ct∗1 +

(
0

M

)
· ct∗1.

Since R ←$ D
(N+ℓ)×N
Z,γ with γ ≥ O(

√
n log q) · ω(

√
log n) and ct∗1 is uniformly

distributed over ZN
q , according to the indistinguishability of preimage-sampling

of Lemma 4 in Appendix A.1, we have that R · ct∗1 is statistically close to the
uniform distribution over ZN+ℓ

q . Due to the independence between R · ct∗1 and(
0
M

)
·ct∗1, we know that the second-level challenge ciphertext ct∗2 = R ·ct∗1+

(
0
M

)
·

ct∗1 generated in G′
4 is statistically indistinguishable from the uniformly chosen

ct∗2 ←$ ZN+ℓ
q in G′

5. Thus we have
∣∣Pr′4[Win]− Pr′5[Win]

∣∣ ≤ negl(λ).

Game G′
6: It is the same as G′

5, except for the generation of pk(i′) = (A(i′),A′(i′)).
Recall that from G′

4 on, the trapdoor T(i′) of A(i′) is not needed any more. In
G′
6, the challenger samples A(i′) ←$ Z(N+ℓ)×n

q uniformly, rather than using al-
gorithm TrapGen as in G′

5. According to Lemma 2, G′
6 is statistically close to G′

5.
Thus,

∣∣Pr′5[Win]− Pr′6[Win]
∣∣ ≤ negl(λ).

26

Game G′
7: It is the same as G′

6, except that, in the case of β = 1, the challenger
also picks the first-level challenge ciphertext ct∗1 ←$ ZN+ℓ

q uniformly at random,
rather than generating it by ct∗1 ←$ Enc1(pk

(i∗),m1) as in G′
6, i.e., ct∗1 := A(i∗)s+

e+
(

0
pm1

)
with s ←$ χn, e←$ χN+ℓ in G′

6.
Due to the game changes introduced in G′

2 and G′
6, we have that i′ = i∗ and

A(i∗) = A(i′) is uniformly sampled from Z(N+ℓ)×n
q . Then according to the LWE

assumption, A(i∗)s + e is computationally indistinguishable from the uniform
distribution over ZN+ℓ

q . Thus the challenge ciphertext ct∗1 := A(i∗)s+ e+
(

0
pm1

)
generated in G′

6 in the case of β = 1 is also computationally indistinguishable
from the uniformly chosen ct∗1 ←$ ZN+ℓ

q in G′
7 in the case of β = 1. Thus we have∣∣Pr′6[Win]− Pr′7[Win]

∣∣ ≤ AdvLWE
[n,q,χ,N+ℓ],B2

(λ).

Game G′
8: It is the same as G′

7, except for the following differences. Firstly,
at the beginning of the game, the challenger also chooses a random user index
j′ ←$ [n] uniformly as the guess of the challenge user j∗, and will abort the game
and return a random bit in the following cases.

– Case 1. A issues the challenge tuple (i∗, j∗, (f,m), (m1,m2)) but j′ ̸= j∗.
– Case 2. A issues a corruption query OCor(i) s.t. i = j′ before challenge.

Case 1 suggests that the challenger’s guess is wrong. Case 2 will lead to abort
anyway and does not contribute to A’s advantage, just like G′

7.
Secondly, for the generation of pk(j′) = (A(j′),A′(j′)), now the challenger gen-

erates A′(j′) by sampling A′(j′) ←$ Zℓ×n
q , instead of computing A′(j′) := K(j′)A′

with K(j′) ←$ {0, 1}ℓ×N as in G′
7. Note that for each row of K(j′) ←$ {0, 1}ℓ×N

and for any q’s prime factor p′, we have that H∞(each row of K(j′) mod p′) = N .
Given N ≥ 2n log q + 2ω(log λ), we know that H∞(each row of K(j′) mod p′) ≥
2n log q + 2ω(log λ). Then according to Lemma 5, A′(j′) := K(j′)A′ generated
in G′

7 is statistically close to the uniform distribution A′(j′) ←$ Zℓ×n
q as in G′

8.
Moreover, since j∗ is not allowed to be corrupted by A, it is needless to keep
K(j′) as long as j′ = j∗.

Since the challenger will guess j∗ correctly with probability 1/n, we have∣∣Pr′7[Win]− 1
2

∣∣ = 1
n

∣∣Pr′8[Win]− 1
2

∣∣.
Game G′

9: It is the same as G′
8, except for the generation of ct∗2 in the case

of β = 1. In this game, in the case of β = 1, the challenger also picks the
second-level challenge ciphertext ct∗2 ←$ ZN+ℓ

q uniformly at random.
Now in G′

9, both ct∗1 and ct∗2 are independently and uniformly chosen from
ZN+ℓ
q , regardless of the value of β. Thus, the challenge bit β is completely hidden

to A, and we have Pr′9[Win] = 1
2 . Next we show that G′

8 and G′
9 are computa-

tionally indistinguishable.
Recall that in G′

8, ct∗2 is generated by invoking ct∗2 ←$ Enc1(pk
(j∗),m2), i.e.,

ct∗2 := A′(j∗)s + e +
(

0
pm2

)
with s ←$ χn and e ←$ χN+ℓ. Due to the game

change introduced in G′
8, we have that j′ = j∗ and A′(j∗) =

(
A′

A′(j∗)

)
=

(
A′

A′(j′)

)
is uniformly sampled from Z(N+ℓ)×n

q . Then according to the LWE assumption,

27

A′(j∗)s + e is computationally indistinguishable from the uniform distribution
over ZN+ℓ

q . Thus the challenge ciphertext ct∗2 := A′(j∗)s + e +
(

0
pm2

)
gener-

ated in G′
8 in the case of β = 1 is also computationally indistinguishable from

the uniformly chosen ct∗2 ←$ ZN+ℓ
q in G′

9 in the case of β = 1. Thus we have∣∣Pr′8[Win]− Pr′9[Win]
∣∣ ≤ AdvLWE

[n,q,χ,N+ℓ],B3
(λ).

Finally, taking all things together, Theorem 2 follows. ⊓⊔

Theorem 3 (Collusion-Safety of FPRElin
LWE). Assume that the LWEn,q,χ,N+ℓ-

assumption holds, then the scheme FPRElin
LWE proposed in Fig. 7 is collusion-safe

(CS). More precisely, for any PPT adversary A and any polynomial n, there exists
a PPT algorithm B against the LWE assumption such that AdvCSFPRE,A,n(λ) ≤
n · AdvLWE

[n,q,χ,N+ℓ],B(λ) + negl(λ).

Due to space limitations, we postpone the proof of Theorem 3 to Appendix C.

5 Fine-Grained PRE for Deletion Functions for LWE

In this section, we construct an FPRE scheme FPREdel
LWE for deletion function

family Fdel based on the scheme FPRElin
LWE proposed in Sect. 4 for the bounded

linear function family Flin.
Deletion function family. Let ℓ ∈ N and M := {0, 1, ∗}ℓ be the message
space, where “∗” is a special symbol indicating that this bit is invalid or deleted.
Given a subset P ⊆ [ℓ], the deletion function fP :M→M indexed by P is

fP(m1, . . . ,mℓ) := (m′
1, . . . ,m

′
ℓ), where m′

i :=

{
∗, if i ∈ P ;
mi, if i ̸∈ P .

That is, fP will delete the message bits whose indices are contained in the set
P by setting them as the invalid symbol ∗.

Then we define the family of deletion functions Fdel from M to M as

Fdel =
{
fP : {0, 1, ∗}ℓ → {0, 1, ∗}ℓ

∣∣∣ P ⊆ [ℓ]
}
.

Message encoding and expressing deletion functions in Fdel as bounded
linear functions in Flin. In order to construct an FPRE scheme FPREdel

LWE

with message space M = {0, 1, ∗}ℓ for deletion function family Fdel based on
the scheme FPRElin

LWE in Fig. 7 for the bounded linear function family Flin, we
will show

– how to encode a message m ∈ M = {0, 1, ∗}ℓ to a message m̃ ∈ M̃ =
{0, 1}2ℓ ⊆ Z2ℓ

p with an encoding algorithm Encode (and also how to decode
with an decoding algorithm Decode) so that the symbol “∗” of erasure can
be encoded by binary bits and later be correctly decoded, and

– how to express a deletion function fP ∈ Fdel as a bounded linear function
fM ∈ Flin with a converting function Ψ : Fdel → Flin.

28

The algorithms Encode and Decode and the converting function Ψ should be
compatible in the sense that for any m ∈ M = {0, 1, ∗}ℓ and any fP ∈ Fdel, by
setting fM := Ψ(fP), we have

fP(m) = Decode(fM(Encode(m))). (7)

The encoding algorithm Encode : {0, 1, ∗}ℓ → {0, 1}2ℓ and the corresponding
decoding algorithm Decode : {0, 1}2ℓ → {0, 1, ∗}ℓ are defined as follows.

– m̃ ∈ {0, 1}2ℓ ← Encode(m ∈ {0, 1, ∗}ℓ): Parse m = (m1, . . . ,mℓ). For i ∈
[ℓ], set m̃2i−1m̃2i = 00 if mi = ∗, set m̃2i−1m̃2i = 01 if mi = 0, and set
m̃2i−1m̃2i = 10 if mi = 1. Return m := (m̃1, . . . , m̃2ℓ).

– m ∈ {0, 1, ∗}ℓ ← Decode(m̃ ∈ {0, 1}2ℓ): Parse m̃ = (m̃1, . . . , m̃2ℓ). For
i ∈ [ℓ], set mi := ∗ if m̃2i−1m̃2i = 00, set mi := 0 if m̃2i−1m̃2i = 01, and set
mi := 1 if m̃2i−1m̃2i = 10. Return m := (m1, . . . ,mℓ).

The converting function Ψ : Fdel → Flin is defined as follows. On input a deletion
function fP with P ⊆ {0, 1}ℓ, Ψ(fP) := fM, where M = (Mi,j) ∈ {0, 1}2ℓ×2ℓ

with


M2i−1,2i−1 = M2i,2i = 0 if i ∈ P , i ∈ [ℓ];

M2i−1,2i−1 = M2i,2i = 1 if i /∈ P , i ∈ [ℓ];

Mi,j = 0 if i ̸= j, i, j ∈ [2ℓ].

It is routine to check that the (Encode,Decode, Ψ) defined above are compatible,
i.e., satisfying (7). More precisely, for any m = (m1, . . . ,mℓ) ∈ {0, 1, ∗}ℓ and
any fP ∈ Fdel, let m̃ = (m̃1, . . . , m̃2ℓ) := Encode(m) and fM := Φ(fP), we have
fM(Encode(m)) = Mm̃. Let m̃′ = (m̃′

1, m̃
′
2, . . . , m̃

′
2ℓ) := Mm̃. We will show

that Decode(m̃′) successfully recovers fP(m), i.e., Decode(m̃′
2i−1m̃

′
2i) = ∗ for all

i ∈ P and Decode(m̃′
2i−1m̃

′
2i) = mi for all i ∈ [ℓ] \ P.

– If i ∈ P , we have m̃′
2i−1m̃

′
2i = 00, since M2i−1,j = M2i,j = 0 for all j ∈ [2ℓ].

Then Decode will result in mi = ∗, and thus the i-th bit of m is deleted.
– If i ∈ [ℓ] \P , we have m̃′

2i−1m̃
′
2i = m̃2i−1m̃2i, since M2i−1,2i−1 = M2i,2i = 1,

M2i−1,j = 0 for all j ∈ [2ℓ] \ {2i − 1} and M2i,j = 0 for all j ∈ [2ℓ] \ {2i}.
Then Decode keeps mi unchanged.

Therefore, we have Decode(m̃′) = fP(m) and (7) follows.
Constructing FPRE scheme FPREdel

LWE for Fdel from FPRElin
LWE for Flin.

Let FPRElin
LWE = (Setup,KGen,FReKGen,Enc1,Enc2,FReEnc,Dec1,Dec2) be the

FPRE scheme for the bounded linear function family Flin as described in Fig. 7
in Sect. 4 with message space m̃ ∈ M̃ = {0, 1}2ℓ, and let (Encode,Decode, Ψ)
be the encoding algorithm, decoding algorithms and the converting function
defined above. We are ready to present the FPRE scheme FPREdel

LWE for the
deletion function family Fdel := {fP : {0, 1, ∗}ℓ → {0, 1, ∗}ℓ | P ⊆ {0, 1}ℓ} with
message space M = {0, 1}ℓ. The scheme FPREdel

LWE = (Setup′,KGen′,FReKGen′,
Enc′1,Enc

′
2,FReEnc

′,Dec′1,Dec
′
2) is described as follows. For the ease of reading,

we emphasize the parts related to (Encode,Decode, Ψ) in gray boxes .

29

• pp ←$ Setup′: It invokes pp ←$ Setup and returns pp.
• (pk, sk) ←$ KGen′(pp): It invokes (pk, sk) ←$ KGen(pp) and returns (pk, sk).
• rkfPi→j ←$ FReKGen′(pk(i), sk(i), pk(j), fP): It first computes fM := Ψ(fP) , in-

vokes rkfMi→j ←$ FReKGen(pk(i), sk(i), pk(j), fM), and returns rkfPi→j := rkfMi→j .

• ct1 ←$ Enc′1(pk,m ∈ {0, 1, ∗}ℓ): It first encodes m̃← Encode(m) , then in-
vokes ct1 ←$ Enc1(pk, m̃), and returns ct1.

• ct2 ←$ Enc′2(pk,m ∈ {0, 1, ∗}ℓ): It first encodes m̃← Encode(m) , then in-
vokes ct2 ←$ Enc2(pk, m̃), and returns ct2.

• ct
(j)
2 ←$ FReEnc′(rkfPi→j , ct

(i)
1): It invokes ct(j)2 ←$ FReEnc(rkfPi→j , ct

(i)
1) and re-

turns ct
(j)
2 .

• m← Dec′1(sk, ct1): It invokes m̃← Dec1(sk, ct1), then decodes m← Decode(m̃) ,
and returns m.

• m← Dec′2(sk, ct2): It invokes m̃← Dec2(sk, ct2), then decodes m← Decode(m̃) ,
and returns m.

We also present a full description of FPREdel
LWE in Appendix D for completeness.

Correctness and fine-grained one-hop correctness of FPREdel
LWE follow from

those of FPRElin
LWE and the compatibility of (Encode,Decode, Ψ), i.e., (7).

Remark 4 (Further optimization of FPREdel
LWE). Note that in our construction of

FPREdel
LWE, we only require the underlying FPRElin

LWE to work with a message space
of M̃ = {0, 1}2ℓ (rather than Z2ℓ

p). This enables us to optimize the Enc1,Enc2 and
Dec1,Dec2 algorithms as follows. In ct1 := As+e+

(
0

pm

)
and ct2 := A′s+e+

(
0

pm

)
,

the multiplication factor p can be replaced by ⌊q/2⌋, i.e., ct1 := As+e+
(

0
⌊q/2⌋m

)
and ct2 := A′s+e+

(
0

⌊q/2⌋m
)
. Correspondingly, the decryption algorithms output

0 or 1 depending on the intermediate result is close to 0 or q/2. In this way, the
parameters q can be much smaller. For example, in the parameter setting in
Table 2, q can be set as q = 2λ5 instead of q = λ10.

Acknowledgments. We would like to thank the reviewers for their valuable
comments. Yunxiao Zhou, Shengli Liu and Shuai Han were partially supported
by the National Key R&D Program of China under Grant 2022YFB2701500,
National Natural Science Foundation of China (Grant Nos. 61925207, 62372292,
62002223), Guangdong Major Project of Basic and Applied Basic Research
(2019B030302008), and Young Elite Scientists Sponsorship Program by China
Association for Science and Technology (YESS20200185). Haibin Zhang was par-
tially supported by the National Key R&D Program of China under Grant
2022YFB2701500, the National Natural Science Foundation of China under
62272043, Major Program of Shandong Provincial Natural Science Foundation
for the Fundamental Research under ZR2022ZD03.

30

References
[1] Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:

28th ACM STOC. pp. 99–108. ACM Press (May 1996)
[2] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives

and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (Aug
2009)

[3] Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: NDSS 2005. The In-
ternet Society (Feb 2005)

[4] Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT’98. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (May / Jun 1998)

[5] Canard, S., Devigne, J., Laguillaumie, F.: Improving the security of an efficient
unidirectional proxy re-encryption scheme. J. Internet Serv. Inf. Secur. 1(2/3),
140–160 (2011), https://doi.org/10.22667/JISIS.2011.08.31.140

[6] Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM CCS 2007. pp.
185–194. ACM Press (Oct 2007)

[7] Chandran, N., Chase, M., Liu, F.H., Nishimaki, R., Xagawa, K.: Re-encryption,
functional re-encryption, and multi-hop re-encryption: A framework for achieving
obfuscation-based security and instantiations from lattices. In: Krawczyk, H. (ed.)
PKC 2014. LNCS, vol. 8383, pp. 95–112. Springer, Heidelberg (Mar 2014)

[8] Chandran, N., Chase, M., Vaikuntanathan, V.: Functional re-encryption and
collusion-resistant obfuscation. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 404–421. Springer, Heidelberg (Mar 2012)

[9] Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient unidirectional proxy re-
encryption. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 10. LNCS, vol.
6055, pp. 316–332. Springer, Heidelberg (May 2010)

[10] Cohen, A.: What about bob? The inadequacy of CPA security for proxy reen-
cryption. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II. LNCS, vol. 11443, pp.
287–316. Springer, Heidelberg (Apr 2019)

[11] Fan, X., Liu, F.H.: Proxy re-encryption and re-signatures from lattices. In: Deng,
R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 19. LNCS, vol.
11464, pp. 363–382. Springer, Heidelberg (Jun 2019)

[12] Fuchsbauer, G., Kamath, C., Klein, K., Pietrzak, K.: Adaptively secure proxy
re-encryption. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II. LNCS, vol. 11443,
pp. 317–346. Springer, Heidelberg (Apr 2019)

[13] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC.
pp. 197–206. ACM Press (May 2008)

[14] Kirshanova, E.: Proxy re-encryption from lattices. In: Krawczyk, H. (ed.)
PKC 2014. LNCS, vol. 8383, pp. 77–94. Springer, Heidelberg (Mar 2014)

[15] Liang, X., Weng, J., Yang, A., Yao, L., Jiang, Z., Wu, Z.: Attribute-based con-
ditional proxy re-encryption in the standard model under LWE. In: Bertino, E.,
Shulman, H., Waidner, M. (eds.) ESORICS 2021, Part II. LNCS, vol. 12973, pp.
147–168. Springer, Heidelberg (Oct 2021)

[16] Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379.
Springer, Heidelberg (Mar 2008)

31

https://doi.org/10.22667/JISIS.2011.08.31.140

[17] Miao, P., Patranabis, S., Watson, G.J.: Unidirectional updatable encryption and
proxy re-encryption from DDH. In: Boldyreva, A., Kolesnikov, V. (eds.) Public-
Key Cryptography - PKC 2023 - 26th IACR International Conference on Practice
and Theory of Public-Key Cryptography, Atlanta, GA, USA, May 7-10, 2023,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 13941, pp. 368–
398. Springer (2023), https://doi.org/10.1007/978-3-031-31371-4_13

[18] Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of
LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 465–484. Springer, Heidelberg (Aug 2011)

[19] Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (Apr 2012)

[20] Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC. pp. 84–93. ACM Press
(May 2005)

[21] Selvi, S.S.D., Paul, A., Rangan, C.P.: A provably-secure unidirectional proxy re-
encryption scheme without pairing in the random oracle model. In: Capkun, S.,
Chow, S.S.M. (eds.) CANS 17. LNCS, vol. 11261, pp. 459–469. Springer, Heidel-
berg (Nov / Dec 2017)

[22] Shao, J.: Anonymous ID-based proxy re-encryption. In: Susilo, W., Mu, Y., Se-
berry, J. (eds.) ACISP 12. LNCS, vol. 7372, pp. 364–375. Springer, Heidelberg
(Jul 2012)

[23] Shao, J., Cao, Z.: CCA-secure proxy re-encryption without pairings. In: Jarecki,
S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 357–376. Springer, Heidel-
berg (Mar 2009)

[24] Susilo, W., Dutta, P., Duong, D.H., Roy, P.S.: Lattice-based HRA-secure
attribute-based proxy re-encryption in standard model. In: Bertino, E., Shulman,
H., Waidner, M. (eds.) ESORICS 2021, Part II. LNCS, vol. 12973, pp. 169–191.
Springer, Heidelberg (Oct 2021)

[25] Weng, J., Deng, R.H., Ding, X., Chu, C.K., Lai, J.: Conditional proxy re-
encryption secure against chosen-ciphertext attack. In: Li, W., Susilo, W., Tu-
pakula, U.K., Safavi-Naini, R., Varadharajan, V. (eds.) ASIACCS 09. pp. 322–332.
ACM Press (Mar 2009)

32

https://doi.org/10.1007/978-3-031-31371-4_13

Supplementary Material
A Additional Preliminaries

A.1 Lattice Backgrounds

Definition 7 (Discrete Gaussian Distribution). The Gaussian function
with parameter s and center c ∈ Rn is defined as ρs,c : Rn → R, ρs,c(x) :=

e−π∥x−c∥2/s2 . For a countable set S ⊂ Rn, the discrete Gaussian distribution
DS,s,c parameterized with s and c is defined as DS,s,c(x) := ρs,c(x)/

∑
x∈S ρs,c(x)

for x ∈ S and DS,s,c(x) := 0 for x /∈ S. Usually, s is omitted when s = 1 and c
is omitted if c = 0.

Below we recall the LWE and multi-secret LWE assumptions, where both
the secret vector and the error vector are sampled from the same distribution
(say χ). This version of LWE was formalized by Applebaum et al. [2] and was
proved at least as hard as the usual definition of LWE where the secret vector
is sampled uniformly at random.

Definition 8 (LWE Assumption [20, 2]). Let n,m, q ∈ N and χ be a distri-
bution over Zq. The LWEn,q,χ,m-assumption requires that for any PPT adversary
A, it’s advantage function satisfies AdvLWE

[n,q,χ,m],A(λ) :=
∣∣Pr[A(A,As+e) = 1]−

Pr[A(A,u) = 1]
∣∣ ≤ negl(λ), where A ←$ Zm×n

q , s ←$ χn, e ←$ χm, u ←$ Zm
q .

For Q ∈ N, the Q-LWEn,m,q,χ-assumption requires that for any PPT A, its
advantage satisfies AdvQ-LWE

[n,q,χ,m],A(λ) :=
∣∣Pr[A(A,AS+E) = 1]−Pr[A(A,U) =

1]
∣∣ ≤ negl(λ), where A ←$ Zm×n

q , S ←$ χn×Q, E ←$ χm×Q and U ←$ Zm×Q
q .

A simple hybrid argument shows that AdvQ-LWE
[n,q,χ,m](λ) ≤ Q · AdvLWE

[n,q,χ,m](λ).
In [1, 19], an algorithm named TrapGen is proposed to sample a “nearly”

uniform random matrix A along with a low-norm trapdoor matrix TA such
that TA ·A = 0 (cf. Lemma 2). Meanwhile, another algorithm called Invert is
proposed to make use of TA to invert an LWE sample (A,As + e) to obtain s
and e (cf. Lemma 3).

Lemma 2 ([1, 19]). There exists a PPT algorithm TrapGen that takes as input
positive integers n, q (q ≥ 2) and a sufficiently large m = O(n log q), outputs a
matrix A ∈ Zm×n

q and a trapdoor matrix TA ∈ Zm×m
q such that A is statistically

close to the uniform distribution, TA ·A = 0, and ∥T̃A∥ ≤ O(
√
n log q), where

T̃A denotes the Gram-Schmidt orthogonalization of TA.

Lemma 3 ([19, Theorem 5.4]). There exists a deterministic polynomial-time
algorithm Invert that takes as inputs the trapdoor information TA and a vector
v := A · s+ e with s ∈ Zn

q and ∥e∥ ≤ q/(10
√
m), and outputs s and e.

Lemma 4 ([13]). Let n,m, q ∈ N with q ≥ 2, and γ ≥ O(
√
n log q) ·ω(

√
log n).

33

– Preimage-sampling. Let A ∈ Zm×n
q be a matrix with a trapdoor TA. Let

B ∈ Zm′×n
q . There exists a PPT algorithm SamplePre(TA,A,B, γ) that out-

puts a matrix R ∈ Zm′×m which is sampled from a distribution statistically
close to DΛB

q (A),γ and satisfies R ·A = B and ∥R∥∞ ≤ γ · ω(log n) (except
with a negligible probability).

– Indistinguishability of preimage-sampling. Let TrapGen be the algorithm
defined in Lemma 2. Let m ≥ O(n log q). Then we have (A,R,B) ≈s

(A,R′,B′), where the probability is over (A,TA) ←$ TrapGen(n, q,m), B←$

Zm′×m
q , R ←$ SamplePre(TA,A,B, γ), R′ ←$ DZm′×m,γ , and B′ := R′ ·A.

Lemma 5 (Randomness Extraction, Particular case of [18, Lemma
2.3]). Let n,m, q ∈ N, ϵ ∈ (0, 1). Suppose that r is chosen from some distribu-
tion over Zm

q s.t. for q’s prime factor p it holds that H∞(r mod p) ≥ 2n log q +

2 log(1ϵ). Then for A ←$ Zm×n
q , u ←$ Zn

q , we have ∆
(
(A, r⊤ ·A), (A,u⊤)

)
≤ ϵ.

A.2 Proxy Re-Encryption

We recall the syntax of proxy re-encryption according to [3, 5, 9, 16, 21, 22, 23].

Definition 9 (PRE). A proxy re-encryption (PRE) scheme PRE = (Setup,KGen,
ReKGen,Enc1,Enc2,ReEnc,Dec1,Dec2) with message space M consists of eight
PPT algorithms:

– pp ←$ Setup: The setup algorithm outputs a public parameter pp, which
serves as an implicit input of other algorithms.

– (pk, sk) ←$ KGen(pp): Taking pp as input, the key generation algorithm out-
puts a pair of public key and secret key (pk, sk).

– rki→j ←$ ReKGen(pk(i), sk(i), pk(j)): Taking as input a public-secret key pair
(pk(i), sk(i)) and another public key pk(j), the re-encryption key generation
algorithm outputs a re-encryption key rki→j that allows re-encrypting ci-
phertexts intended to i into ciphertexts encrypted for j.

– ct1 ←$ Enc1(pk,m): Taking as input a public key pk and a message m ∈
M, this algorithm outputs a first-level ciphertext ct1 that can be further
re-encrypted into a second-level ciphertext.

– ct2 ←$ Enc2(pk,m): Taking as input a public key pk and a message m ∈
M, this algorithm outputs a second-level ciphertext ct2 that cannot be re-
encrypted anymore.

– ct
(j)
2 ←$ ReEnc(rki→j , ct

(i)
1): Taking as input a re-encryption key rki→j and

a first-level ciphertext intended for i, the re-encryption algorithm outputs a
second-level ciphertext re-encrypted for user j.

– m← Dec1(sk, ct1): Taking as input a secret key sk and a first-level ciphertext
ct1, the deterministic decryption algorithm outputs a message m.

– m ← Dec2(sk, ct2): Taking as input a secret key sk and a second-level ci-
phertext ct2, the deterministic decryption algorithm outputs a message m.

34

Correctness. For all m ∈M, pp ←$ Setup, (pk, sk) ←$ KGen(pp), ct1 ←$ Enc1(pk,m)
and ct2 ←$ Enc2(pk,m), it holds that Dec1(sk, ct1) = m = Dec2(sk, ct2).

One-Hop Correctness. For all m ∈M, pp ←$ Setup,(pk(i), sk(i)) ←$ KGen(pp),
(pk(j), sk(j)) ←$ KGen(pp), rki→j ←$ ReKGen(pk(i), sk(i), pk(j)), ct(i)1 ←$ Enc1(pk

(i),m)

and ct
(j)
2 ←$ ReEnc(rki→j , ct

(i)
1), it holds that Dec2(sk(j), ct(j)2) = m.

Note that the above PRE is defined as a non-interactive one, since sk(j) is
not needed in algorithm ReKGen for the generation of rki→j .

B More Discussions on Security Definitions for FPRE in
Sect. 3

B.1 More Discussions on UNID Security (Def. 3) and Its Relation to
CPA Security

Remark 5 (On the formalization of UNID security and discussion on trivial at-
tacks). We formalize the UNID security by defining the experiment ExpUNIDFPRE,A,n

in Fig. 3. Similar to previous security notions, we consider a multi-user setting,
and the adversary A is allowed to make OReKey and OCor queries adaptively to
obtain re-encryption keys and secret keys, respectively. At some point, A out-
puts a pair of challenge users (i∗, j∗) as well as a function f ∈ F , and receives a
fine-grained re-encryption key rkfj∗→i∗ . A continues to make OReKey and OCor

queries, and finally outputs a fine-grained re-encryption key rkf
′

i∗→j∗ of the other
direction for some f ′ ∈ F (not necessarily the same as f). A succeeds if rkf

′

i∗→j∗

is indeed a fine-grained re-encryption key from i∗ to j∗, and the UNID security
requires that A hardly succeeds.

We note that there might not exist a specialized PPT algorithm to check
whether rkf

′

i∗→j∗ is indeed a fine-grained re-encryption key from i∗ to j∗. Thus
in ExpUNIDFPRE,A,n, we actually check the functionality of rkf

′

i∗→j∗ , i.e., whether it
can convert a first-level ciphertext of user i∗ that encrypts a randomly chosen
message m into a second-level ciphertext of user j∗ that encrypts f ′(m).

Actually, there are four trivial attacks TA1′-TA4′ to obtain rkf
′

i∗→j∗ or ob-
tain the functionality of rkf

′

i∗→j∗ for some f ′.

TA1′: i∗ = j∗, in this case, A directly gets rkf
′

i∗→j∗ = rkfj∗→i∗ for f ′ = f .
TA2′: i∗ ∈ Qc, i.e., A ever obtains sk(i∗). In this case, A can use sk(i

∗) to gener-
ate rkf

′

i∗→j∗ itself by invoking rkf
′

i∗→j∗ ←$ FReKGen(pk(i
∗), sk(i

∗), pk(j
∗), f ′).

TA3′: (i∗, j∗) ∈ Qrk, i.e., A directly gets a rkf
′

i∗→j∗ from the OReKey oracle.
TA4′: ∃ j ∈ Qc, s.t. (i∗, j) ∈ Qrk, i.e., A gets sk(j) and rkf

′

i∗→j for some user j.
In this case, A can use sk(j) and rkf

′

i∗→j to fulfill the functionality of rkf
′

i∗→j∗ .
To see this, given a first-level ciphertext ct

(i∗)
1 that encrypts a message m,

it can firstly use rkf
′

i∗→j to re-encrypt ct(i
∗)

1 to a second-level ciphertext ct(j)2

35

that encrypts f ′(m) by invoking ct
(j)
2 ←$ FReEnc(rkf

′

i∗→j , ct
(i∗)
1), then use

sk(j) to decrypt ct
(j)
2 via f ′(m) ← Dec2(sk

(j), ct
(j)
2) to recover f ′(m), and

finally encrypt f ′(m) under pk(j
∗) to obtain a second-level ciphertext ct

(j∗)
2

via ct
(j∗)
2 ←$ Enc2(pk

(j∗), f ′(m)).

As such, we exclude the above trivial attacks in the UNID experiment.
Moreover, there is an additional trivial attack TA5′ to obtain the function-

ality of rkf
′

i∗→j∗ for certain f ′.
TA5′: The function f ′ is a constant function or an almost constant function,

i.e., f ′ maps (almost) all messages m ∈ M to a constant c = f ′(m) ∈ M.
In this case, A trivially obtains the functionality of rkf

′

i∗→j∗ , since it can
simply encrypt the constant c via Enc2(pk

(j∗), c) to produce a second-level
ciphertext of user j∗ that encrypts c = f ′(m).

To exclude this additional trivial attack, we require that the function f ′ for
which A produces rkf

′

i∗→j∗ satisfies the property of output diversity, i.e.,

Pr[m0,m1 ←$M : f ′(m0) ̸= f ′(m1)] ≥ 1/poly(λ). (8)

The output diversity of f ′ can be checked efficiently as follows: pick mℓ0,mℓ1 ←$M
randomly for ℓ ∈ [λ ·poly(λ)], and return success if ∃ℓ s.t. f ′(mℓ0) ̸= f ′(mℓ1) and
return failure otherwise. If f ′ has output diversity, the above procedure returns
success with an overwhelming probability 1− (1− 1/poly(λ))λ·poly(λ) ≈ 1− e−λ;
otherwise, the above procedure returns failure with an overwhelming probability
(1− negl(λ))λ·poly(λ) ≥ 1− λ · poly(λ) · negl(λ) = 1− negl′(λ).

Below we show that the UNID security is implied by the CPA security.

Lemma 6 (CPA ⇒ UNID). For any PPT adversary A breaking the UNID
security of FPRE, there exists a PPT adversary B breaking the CPA security of
FPRE with AdvCPAFPRE,B,n(λ) = 1/2 · AdvUNIDFPRE,A,n(λ).

Proof. We construct B to break the CPA security by simulating the UNID ex-
periment ExpUNIDFPRE,A,n for A as follows.

Algorithm B. Algorithm B is given the public parameter pp, {pk(i)}i∈[n] from
its own challenger and has access to its own oracles OReKey,OCor.
(1) B initializes Qrk = ∅,Qc = ∅, i∗ = ⊥, j∗ = ⊥ and sends pp, {pk(i)}i∈[n] to A.

– On receiving a re-encryption key query (i, j, f) from A, B checks A’s trivial
attacks by checking if (i = i∗) and (j = j∗ or j ∈ Qc), just like ExpUNIDFPRE,A,n.
If trivial attacks occur, B returns ⊥ to A, otherwise B adds (i, j) to Qrk

and queries (i, j, f) to its own oracle OReKey. On receiving rkfi→j from
OReKey(i, j, f), B returns rkfi→j to A.

– On receiving a corruption query i from A, B checks A’s trivial attacks by
checking if (i = i∗) or (i∗, i) ∈ Qrk, just like ExpUNIDFPRE,A,n. If trivial attacks
occur, B returns ⊥ to A, otherwise B adds i to Qc and queries i to its own
oracle OCor. On receiving sk(i) from OCor(i), B returns sk(i) to A.

36

– On receiving the challenge tuple (i∗, j∗, f) from A, B first checks if (i∗ ∈ Qc)
or ((i∗, j∗) ∈ Qrk) or (∃j ∈ Qc s.t. (i∗, j) ∈ Qrk) to identify trivial attacks,
just like ExpUNIDFPRE,A,n. If yes, B aborts the experiment with A and returns
a random bit β′ ←$ {0, 1} to its own challenger. Otherwise, B adds (i∗, j∗)
to Qrk, and queries j∗ to its own oracle OCor. On receiving sk(j

∗) from
OCor(j

∗), B invokes rkfj∗→i∗ ←$ FReKGen(pk(j
∗), sk(j

∗), pk(i
∗), f) and return

rkfj∗→i∗ to A.
(2) Finally, on receiving A’s answer (f ′, rkf

′

i∗→j∗), B checks whether f ′ has out-
put diversity efficiently. If f ′ does not have output diversity, B aborts the
experiment with A and returns a random bit β′ ←$ {0, 1} to its own chal-
lenger. Otherwise, B chooses m0,m1 ←$M s.t. f ′(m0) ̸= f ′(m1), and sends
challenge tuple (i∗,m0,m1) to its own challenger.

On receiving ct∗1 from its own challenger, B invokes ct(j
∗)

2 ←$ FReEnc(rkf
′

i∗→j∗ ,

ct∗1) using the rkf
′

i∗→j∗ produced byA and computes m′ := Dec2(sk
(j∗), ct

(j∗)
2).

If m′ = f ′(m0), B sets β′ = 0, and if m′ = f ′(m1), B sets β′ = 1, otherwise,
B picks a random bit β′ ←$ {0, 1}. B returns β′ to its own challenger.

In the simulation, if A implements trivial attacks TA1′-TA5′, B will abort
the experiment, just like ExpUNIDFPRE,A,n. Otherwise, no trivial attacks from A im-
plies that i∗ /∈ Qc and there does not exist any re-encryption key from i∗ to
j ∈ Qc ∪ {j∗}, while Qc ∪ {j∗} is exactly the corrupted users set for B’s chal-
lenger. Thus, B never issue queries leading to trivial attacks TA1 and TA2. So
B simulates ExpUNIDFPRE,A,n perfectly for A.

Now we analyze the advantage of B. Note that A wins in ExpUNIDFPRE,A,n means
that the rkf

′

i∗→j∗ produced by A passes the check of functionality. Therefore, in
the case of A wins, for the challenge ciphertext ct∗1 that encrypts the randomly
chosen message mβ , the re-encrypted ciphertext ct

(j∗)
2 ←$ FReEnc(rkf

′

i∗→j∗ , ct
∗
1)

using the rkf
′

i∗→j∗ produced by A will decrypt to m′ := Dec2(sk
(j∗), ct

(j∗)
2) =

f(mβ), and thus B can guess β correctly with probability 1. Otherwise, B will
submit a random bit β′ to its own challenger, and thus guess β correctly with
probability 1/2. Overall,

AdvCPAFPRE,B,n(λ) = |Pr[β′ = β]− 1
2 |

= |Pr[A wins] · Pr[β′ = β |A wins] + Pr[¬A wins] · Pr[β′ = β |¬A wins]− 1
2 |

= |Pr[A wins] · 1 + (1− Pr[A wins]) · 12 −
1
2 | =

1
2 · Pr[A wins] = 1

2 · Adv
UNID
FPRE,A,n(λ).⊓⊔

B.2 More Discussions on NTR Security (Def. 4) and Its Relation to
CPA Security

Remark 6 (On the formalization of NTR security and discussion on trivial at-
tacks). We formalize the NTR security by defining the experiment ExpNTRFPRE,A,n

in Fig. 4. Similar to previous security notions, we consider a multi-user setting,
and the adversary A is allowed to make OReKey and OCor queries adaptively. At
some point, A outputs a triple of challenge users (i∗, k∗, j∗) as well as a pair of

37

functions (f1, f2), and receives two fine-grained re-encryption keys rkf1i∗→k∗ and
rkf2k∗→j∗ . A continues to make OReKey and OCor queries, and finally outputs a
fine-grained re-encryption key rkf

′

i∗→j∗ from i∗ directly to j∗ for some f ′ ∈ F .
A succeeds if rkf

′

i∗→j∗ is indeed a fine-grained re-encryption key from i∗ to j∗,
and the NTR security requires that A hardly succeeds. Similar to Remark 5, in
ExpNTRFPRE,A,n, we also check the functionality of rkf

′

i∗→j∗ , and we also exclude the
five trivial attacks TA1′-TA5′ as defined in Remark 5 (with a slight change in
TA1′ that i∗, k∗, j∗ should be distinct) which can trivially obtain rkf

′

i∗→j∗ or
obtain the functionality of rkf

′

i∗→j∗ .

Below we show that the NTR security is implied by the CPA security.

Lemma 7 (CPA⇒ NTR). For any PPT adversary A breaking the NTR security
of FPRE, there exists a PPT adversary B breaking the CPA security of FPRE with
AdvCPAFPRE,B,n(λ) = 1/2 · AdvNTRFPRE,A,n(λ).

Proof. The proof is similar to that of Lemma 6. We construct B to break the
CPA security by simulating the NTR experiment ExpNTRFPRE,A,n for A as follows.

Algorithm B. Algorithm B is given the public parameter pp, {pk(i)}i∈[n] from
its own challenger and has access to its own oracles OReKey,OCor.

(1) B initializes Qrk = ∅,Qc = ∅, i∗, k∗, j∗ = ⊥ and sends pp, {pk(i)}i∈[n] to A.
– On receiving a re-encryption key query (i, j, f) from A, B checks A’s trivial

attacks by checking if (i = i∗) and (j = j∗ or j ∈ Qc), just like ExpNTRFPRE,A,n.
If trivial attacks occur, B returns ⊥ to A, otherwise B adds (i, j) to Qrk

and queries (i, j, f) to its own oracle OReKey. On receiving rkfi→j from
OReKey(i, j, f), B returns rkfi→j to A.

– On receiving a corruption query i from A, B checks A’s trivial attacks by
checking if (i = i∗) or (i∗, i) ∈ Qrk, just like ExpNTRFPRE,A,n. If trivial attacks
occur, B returns ⊥ to A, otherwise B adds i to Qc and queries i to its own
oracle OCor. On receiving sk(i) from OCor(i), B returns sk(i) to A.

– On receiving the challenge tuple (i∗, k∗, j∗, f1, f2) from A, B first checks
whether (i∗ ∈ Qc) or ((i∗, j∗) ∈ Qrk) or (∃j ∈ Qc s.t. (i∗, j) ∈ Qrk) to iden-
tify trivial attacks, just like ExpNTRFPRE,A,n. If yes, B aborts the experiment with
A and returns a random bit β′ ←$ {0, 1} to its own challenger. Otherwise,
B adds (i∗, k∗) and (k∗, j∗) to Qrk, queries (i∗, k∗, f1), (k

∗, j∗, f2) to its own
oracle OReKey to obtain rkf1i∗→k∗ , rk

f2
k∗→j∗ and sends them to A.

(2) Finally, on receiving A’s answer (f ′, rkf
′

i∗→j∗), B checks whether f ′ has out-
put diversity efficiently. If f ′ does not have output diversity, B aborts the
experiment with A and returns a random bit β′ ←$ {0, 1} to its own chal-
lenger. Otherwise, B chooses m0,m1 ←$M s.t. f ′(m0) ̸= f ′(m1), and sends
challenge tuple (i∗,m0,m1) to its own challenger.

On receiving ct∗1 from its own challenger, B first queries j∗ to its own oracle
OCor to obtain sk(j

∗) fromOCor(j
∗). Then B invokes ct(j

∗)
2 ←$ FReEnc(rkf

′

i∗→j∗ ,

38

ct∗1) using the rkf
′

i∗→j∗ produced byA and computes m′ := Dec2(sk
(j∗), ct

(j∗)
2).

If m′ = f ′(m0), B sets β′ = 0, and if m′ = f ′(m1), B sets β′ = 1, otherwise,
B picks a random bit β′ ←$ {0, 1}. B returns β′ to its own challenger.

In the simulation, if A implements trivial attacks TA1′-TA5′, B will abort
the experiment, just like ExpNTRFPRE,A,n. Otherwise, no trivial attacks from A im-
plies that i∗ /∈ Qc and there doesn’t exist any re-encryption key from i∗ to
j ∈ Qc ∪ {j∗}, while Qc ∪ {j∗} is exactly the corrupted users set for B’s chal-
lenger. Thus, B never issue queries leading to trivial attacks TA1 and TA2. So
B simulates ExpNTRFPRE,A,n perfectly for A.

Now we analyze the advantage of B. Note that A wins in ExpNTRFPRE,A,n means
that the rkf

′

i∗→j∗ produced by A passes the check of functionality. Therefore, in
the case of A wins, for the challenge ciphertext ct∗1 that encrypts the randomly
chosen message mβ , the re-encrypted ciphertext ct

(j∗)
2 ←$ FReEnc(rkf

′

i∗→j∗ , ct
∗
1)

using the rkf
′

i∗→j∗ produced by A will decrypt to m′ := Dec2(sk
(j∗), ct

(j∗)
2) =

f(mβ), and thus B can guess β correctly with probability 1. Otherwise, B will
submit a random bit β′ to its own challenger, and thus guess β correctly with
probability 1/2. Overall,

AdvCPAFPRE,B,n(λ) = |Pr[β′ = β]− 1
2 |

= |Pr[A wins] · Pr[β′ = β |A wins] + Pr[¬A wins] · Pr[β′ = β |¬A wins]− 1
2 |

= |Pr[A wins] · 1 + (1− Pr[A wins]) · 12 −
1
2 | =

1
2 · Pr[A wins] = 1

2 · Adv
NTR
FPRE,A,n(λ).⊓⊔

B.3 More Discussions on CS Security (Def. 5) and Its Relation to
Existing Formalizations

Traditionally, Collision-Safety (CS) requires that given a fine-grained re-encryption
key rkfi∗→j∗ starting from i∗ to some j∗ and a secret key sk(j

∗) of j∗, it is hard
for an adversary to compute a secret key sk(i

∗) of i∗ (or obtain the functionality
of sk(i∗)). See [3, 16] for example. This notion is also called master secret secu-
rity in [3]. In fact, the secret key sk(i

∗) of i∗ has three functionalities/abilities,
and two of them can already be fulfilled with (rkfi∗→j∗ , sk

(j∗)), so the CS se-
curity essentially stipulates the hardness for the adversary to obtain the third
functionality of sk(i∗).

(1) The first is the ability of sk(i∗) to generate fine-grained re-encryption keys
rkfi∗→k starting from i∗ to any user k via rkfi∗→k ←$ FReKGen(pk(i

∗), sk(i
∗), pk(k), f),

and the generated rkfi∗→k has the functionality of re-encrypting any first-
level ciphertext ct(i

∗)
1 of user i∗ into a second-level ciphertext ct(k)2 of user k.

In fact, this functionality can also be fulfilled with (rkfi∗→j∗ , sk
(j∗)): given

ct
(i∗)
1 , one can firstly re-encrypt ct

(i∗)
1 to a second-level ciphertext ct

(j∗)
2 via

ct
(j∗)
2 ←$ FReEnc(rkfi∗→j∗ , ct

(i∗)
1), then decrypt ct

(j∗)
2 via Dec2(sk

(j∗), ct
(j∗)
2)

39

to recover a function f(m) of the plaintext underlying ct
(i∗)
1 , and finally en-

crypt f(m) under pk(k) to obtain a second-level ciphertext ct
(k)
2 encrypted

for k via ct
(k)
2 ←$ Enc2(pk

(k), f(m)).
(2) The second is the ability of sk(i

∗) to decrypt first-level ciphertexts ct
(i∗)
1

intended for i∗ via Dec1(sk
(i∗), ct

(i∗)
1). This functionality can also be ful-

filled with (rkfi∗→j∗ , sk
(j∗)): given ct

(i∗)
1 , one can firstly re-encrypt ct(i

∗)
1 to a

second-level ciphertext ct(j
∗)

2 encrypted for j∗ via ct
(j∗)
2 ←$ FReEnc(rkfi∗→j∗ , ct

(i∗)
1),

then simply decrypt ct
(j∗)
2 via Dec2(sk

(j∗), ct
(j∗)
2) to learn a function of the

plaintext underlying ct
(i∗)
1 .

(3) The third is the ability of sk(i
∗) to decrypt second-level ciphertexts ct

(i∗)
2

intended for i∗ via m← Dec2(sk
(i∗), ct

(i∗)
2).

Consequently, CS security essentially characterizes the hardness to obtain the
decryption ability of second-level ciphertexts ct

(i∗)
2 intended for i∗, and accord-

ingly, we will formalize our CS security as the CPA security for the second-level
ciphertexts. We stress that our CS security is at least as strong as the existing
collusion-safety formalizations like [3, 16], since the adversary can easily decrypt
second-level ciphertexts intended for i∗ if it is able to compute sk(i

∗), but not
vice versa.

B.4 Proof of Lemma 1 (CUL ⇒ CPA)

Lemma 1 (CUL⇒ CPA) For any PPT adversary A breaking the CPA security
of FPRE and any polynomial n, there exists a PPT adversary B breaking the CUL
security of FPRE with AdvCULFPRE,B,n+1(λ) =

1
2 · Adv

CPA
FPRE,A,n(λ).

Proof. We construct B to break the CUL security by simulating the CPA exper-
iment ExpCPAFPRE,A,n for A as follows.

Algorithm B. Algorithm B is given the public parameter pp, {pk(i)}i∈[n+1] from
its own challenger and has access to its own oracles OReKey,OCor.

(1) B initializes Qrk = ∅,Qc = ∅, i∗ = ⊥ and sends pp, {pk(i)}i∈[n] to A.
– On receiving a re-encryption key query (i, j, f) from A, B checks A’s trivial

attacks by checking if (i = i∗) and (j ∈ Qc), just like ExpCPAFPRE,A,n. If trivial
attacks occur, B returns ⊥ to A, otherwise B adds (i, j) to Qrk and queries
(i, j, f) to its own oracle OReKey. On receiving rkfi→j from OReKey(i, j, f), B
returns rkfi→j to A.

– On receiving a corruption query i from A, B checks A’s trivial attacks by
checking if (i = i∗) or (i∗, i) ∈ Qrk, just like ExpCPAFPRE,A,n. If trivial attacks
occur, B returns ⊥ to A, otherwise B adds i to Qc and queries i to its own
oracle OCor. On receiving sk(i) from OCor(i), B returns sk(i) to A.

– On receiving the challenge tuple (i∗,m0,m1) from A, B first checks if (i∗ ∈
Qc) or (∃j ∈ Qc s.t. (i∗, j) ∈ Qrk) to identify trivial attacks, just like

40

ExpCPAFPRE,A,n. If yes, B aborts the experiment with A and returns a random bit
β′ ←$ {0, 1} to its own challenger. Otherwise, B chooses m2 ←$M, f ←$ F
and sends challenge tuple (i∗, j∗ := n+1, (f,m0), (m1,m2)) to its own chal-
lenger. On receiving (ct∗1, ct

∗
2) from its own challenger, B returns ct∗1 to A.

(2) Finally, on receiving A’s answer β′, B returns β′ to its own challenger.
In the simulation, if A implements trivial attacks TA1-TA2, B will abort the

experiment, just like ExpCPAFPRE,A,n. Otherwise, no trivial attacks from A implies
that i∗ /∈ Qc and there does not exist any re-encryption key from i∗ to j ∈ Qc,
while Qc is exactly the corrupted users set for B’s challenger. Moreover, since
B sets j∗ := n + 1 and user n + 1 is invisible to A, we have j∗ /∈ Qc. Thus, B
never issue queries leading to trivial attacks TA1′′ and TA2′′. So B simulates
ExpCPAFPRE,A,n perfectly for A.

Now we analyze the advantage of B. We denote the challenge bit chosen by
B’s challenger by βC . Note that A wins in ExpCPAFPRE,A,n means that β′ = β, where
B implicitly sets β := βC . If βC = 0, ct∗1 is generated by ct∗1 ←$ Enc1(pk

(i∗),m0),
which implies that β = 0. If βC = 1, ct∗1 is generated by ct∗1 ←$ Enc1(pk

(i∗),m1),
which implies that β = 1. Thus, if β′ = β, we have β′ = βC and B can guess
βC correctly with probability 1. Otherwise, B will submit a random bit β′ to its
own challenger, and thus guess βC correctly with probability 1/2. Overall,

AdvCULFPRE,B,n+1(λ) = |Pr[β′ = βC]− 1
2 |

= |Pr[A wins] · Pr[β′ = βC |A wins] + Pr[¬A wins] · Pr[β′ = βC |¬A wins]− 1
2 |

= |Pr[A wins] · 1 + (1− Pr[A wins]) · 12 −
1
2 | =

1
2 · Pr[A wins] = 1

2 · Adv
CPA
FPRE,A,n(λ).⊓⊔

C Proof of Theorem 3 (Collusion-Safety of FPRElin
LWE)

Theorem 3 (Collusion-Safety of FPRElin
LWE) Assume that the LWEn,q,χ,N+ℓ-

assumption holds, then the scheme FPRElin
LWE proposed in Fig. 7 is collusion-safe

(CS). More precisely, for any PPT adversary A and any polynomial n, there exists
a PPT algorithm B against the LWE assumption such that AdvCSFPRE,A,n(λ) ≤
n · AdvLWE

[n,q,χ,N+ℓ],B(λ) + negl(λ).

Proof of Theorem 3. We prove the theorem via a sequence of games G′′
0 -G′′

3 ,
where G′′

0 is the CS experiment, and in G′′
3 , A has a negligible advantage.

Game G′′
0 : This is the CS experiment ExpCSFPRE,A,n (cf. Fig. 5). Let Win denote

the event that β′ = β. By definition, AdvCSFPRE,A,n(λ) = |Pr
′′
0 [Win]− 1

2 |.
Let pp = A′ and let pk(i) = (A(i),A′(i)), sk(i) = (T(i),K(i)) denote the

public key and secret key of user i ∈ [n]. In this game, the challenger answers
A’s OReKey, OCor queries and generates the challenge ciphertext ct∗2 as follows.

– On receiving a re-encryption key query OReKey(i, j, fM) from A, the chal-
lenger invokes R ←$ SamplePre

(
T(i),A

(i)
,A′(j)S+E−

(
0
M

)
A(i), γ

)
, where

A′(j) =
(

A′

A′(j)

)
, and returns rkfMi→j :=

(
R

∣∣∣∣ 0
M

)
to A.

41

– On receiving a corruption query OCor(i) from A, the challenger returns ⊥
to A directly if trivial attack i = i∗ occurs. Otherwise, the challenger adds i
to Qc and returns sk(i) to A.

– On receiving the challenge tuple (i∗,m0,m1) from A, the challenger first
checks if trivial attack i∗ ∈ Qc occurs. If yes, the challenger aborts the
game with A by returning a random bit. Otherwise, the challenger chooses a
random bit β ←$ {0, 1}, samples s ←$ χn, e ←$ χN+ℓ, sets A′(i∗) :=

(
A′

A′(i∗)

)
,

and sends ct∗2 := A′(i∗)s+ e+
(

0
pmβ

)
to A.

Game G′′
1 : It is the same as G′′

0 , except that, at the beginning of the game,
the challenger chooses a random user index i′ ←$ [n] uniformly as the guess of
the challenge user i∗, and will abort the game if A issues the challenge tuple
(i∗,m0,m1) but i′ ̸= i∗. Since the challenger will guess i∗ correctly with proba-
bility 1/n, we have

∣∣Pr′′0 [Win]− 1
2

∣∣ = 1
n

∣∣Pr′′1 [Win]− 1
2

∣∣.
Game G′′

2 : It is the same as G′′
1 , except that, for the generation of pk(i

′) =

(A(i′),A′(i′)), now the challenger generates A′(i′) by sampling A′(i′) ←$ Zℓ×n
q ,

instead of computing A′(i′) := K(i′)A′ with K(i′) ←$ {0, 1}ℓ×N as in G′′
1 . Note

that for each row of K(i′) ←$ {0, 1}ℓ×N and for any q’s prime factor p′, we have
that H∞(each row of K(i′) mod p′) = N ≥ 2n log q+ 2ω(log λ). Then according
to Lemma 5, A′(i′) := K(i′)A′ generated in G′′

1 is statistically close to the uniform
distribution A′(i′) ←$ Zℓ×n

q as in G′′
2 . Moreover, since i∗ is not allowed to be

corrupted by A, it is needless to keep K(i′) as long as i′ = i∗. Therefore, G′′
2 is

statistically close to G′′
1 , and we have

∣∣Pr′′1 [Win]− Pr′′2 [Win]
∣∣ ≤ negl(λ).

Game G′′
3 : It is the same as G′′

2 , except for the generation of ct∗2. In this game,
the challenger picks ct∗2 ←$ ZN+ℓ

q uniformly, rather than generating it by ct∗2 :=

A′(i∗)s+ e+
(

0
pmβ

)
with s ←$ χn, e ←$ χN+ℓ, A′(i∗) :=

(
A′

A′(i∗)

)
as in G′′

2 .
Clearly, the challenge bit β is completely hidden to A, thus Pr′′3 [Win] = 1

2 .
Next we show that G′′

2 and G′′
3 are computationally indistinguishable.

Due to the game changes introduced in G′′
1 and G′′

2 , we have that i′ = i∗ and
A′(i∗) =

(
A′

A′(i∗)

)
=

(
A′

A′(i′)

)
is uniformly sampled from Z(N+ℓ)×n

q . Then according
to the LWE assumption, A′(i∗)s + e is computationally indistinguishable from
the uniform distribution over ZN+ℓ

q . Due to the independence between A′(i∗)s+e

and
(

0
pmβ

)
, we know that the challenge ciphertext ct∗2 := A′(i∗)s+e+

(
0

pmβ

)
gen-

erated in G′′
2 is also computationally indistinguishable from the uniformly chosen

ct∗2 ←$ ZN+ℓ
q in G′′

3 . Thus we have
∣∣Pr′′2 [Win]− Pr′′3 [Win]

∣∣ ≤ AdvLWE
[n,q,χ,N+ℓ],B(λ).

Finally, taking all things together, Theorem 3 follows. ⊓⊔

42

D Description of FPREdel
LWE for Deletion Functions

pp ←$ Setup′:
A′ ←$ ZN×n

q

Return pp := A′

(pk, sk) ←$ KGen′(pp):
(A ∈ ZN×n

q ,T) ←$ TrapGen(1n, 1N), A ←$ Z2ℓ×n
q

A :=
(
A
A

)
∈ Z(N+2ℓ)×n

q

K ←$ {0, 1}2ℓ×N , A′ := −KA′

pk := (A,A′), sk := (T,K)

Return (pk, sk)

rkfP
i→j ←$ FReKGen′(pk(i) = (A(i),A′(i)), sk(i) = (T(i),K(i)),

pk(j) = (A(j),A′(j)), fP ∈ Fdel):
M = (Mi,j) := 02ℓ×2ℓ

For i ∈ [ℓ]:
If i /∈ P: M2i−1,2i−1 := 1,M2i,2i := 1 �not delete

S ←$ χn×n, E ←$ χ(N+2ℓ)×n

A′(j) :=
(

A′

A′(j)
)

R ∈ Z(N+2ℓ)×N ←$ SamplePre
(
T(i),A

(i)
,A′(j)S+E−

(
0
M

)
A(i), γ

)
rkfP

i→j :=

(
R

∣∣∣∣∣ 0

M

)
∈ Z(N+2ℓ)×(N+2ℓ)

Return rkfP
i→j

ct1 ←$ Enc′1(pk = (A,A′),m ∈ {0, 1, ∗}ℓ):
m′ ∈ {0, 1}2ℓ ← Encode(m)

s ←$ χn, e ←$ χN+2ℓ

ct1 := As+ e+
(

0
pm′

)
∈ ZN+2ℓ

q

Return ct1

ct2 ←$ Enc′2(pk = (A,A′),m ∈ {0, 1, ∗}ℓ):
s ←$ χn, e ←$ χN+2ℓ

A′ :=
(
A′

A′

)
m′ ∈ {0, 1}2ℓ ← Encode(m)

ct2 := A′s+ e+
(

0
pm′

)
∈ ZN+2ℓ

q

Return ct2

ct
(j)
2 ← FReEnc′(rkfP

i→j ∈ Z(N+2ℓ)×(N+2ℓ),

ct
(i)
1 ∈ ZN+2ℓ

q):
ct

(j)
2 := rkfP

i→j · ct
(i)
1 ∈ ZN+2ℓ

q

Return ct
(j)
2

m← Dec′1(sk = (T,K), ct1 ∈ ZN+2ℓ
q):

Parse ct1 =
(ct1∈ZN

q

ct1∈Z2ℓ
q

)
(s, e)← Invert(T, ct1)

m̃ = (m̃1, . . . , m̃2ℓ) := ct1 −As

For all i ∈ [2ℓ] :

m′
i := dm̃i/pc

m ∈ {0, 1, ∗}ℓ ← Decode(m′ = (m′
1, . . . ,m

′
2ℓ))

Return m

m← Dec′2(sk = (T,K), ct2 ∈ ZN+2ℓ
q):

m̃ = (m̃1, . . . , m̃2ℓ) := (K | I2ℓ×2ℓ) · ct2
For all i ∈ [2ℓ] :

m′
i := dm̃i/pc

m ∈ {0, 1, ∗}ℓ ← Decode(m′ = (m′
1, . . . ,m

′
2ℓ))

Return m

Fig. 8. The LWE-based FPRE scheme FPREdel
LWE for the deletion function family Fdel.

43

	Fine-Grained Proxy Re-Encryption: Definitions & Constructions from LWE
	Introduction
	Preliminaries
	Fine-Grained PRE
	Fine-Grained PRE for Bounded Linear Functions from LWE
	Fine-Grained PRE for Deletion Functions for LWE
	Additional Preliminaries
	Lattice Backgrounds
	Proxy Re-Encryption

	More Discussions on Security Definitions for FPRE in sec:FPRE-def
	More Discussions on UNID Security (sfgPRE-uni-def) and Its Relation to CPA Security
	More Discussions on NTR Security (no-trans-sfgPRE-def) and Its Relation to CPA Security
	More Discussions on CS Security (CS-mfgPRE-def) and Its Relation to Existing Formalizations
	Proof of lem:CUL-INDCPA (CULCPA)

	Proof of Theorem 3 (Collusion-Safety of FPRELWElin)
	Description of FPRELWEdel for Deletion Functions

