
1

MAFIA: Protecting the Microarchitecture of
Embedded Systems Against Fault Injection Attacks

Thomas Chamelot, Damien Couroussé, Karine Heydemann

Abstract—Fault injection attacks represent an effective threat
to embedded systems. Recently, Laurent et al. have reported that
fault injection attacks can leverage faults inside the microarchi-
tecture. However, state-of-the-art counter-measures, hardware-
only or with hardware support, do not consider the integrity
of microarchitecture control signals that are the target of these
faults.

We present MAFIA, a microarchitecture protection against
fault injection attacks. MAFIA ensures integrity of pipeline
control signals through a signature-based mechanism, and en-
sures fine-grained control-flow integrity with a complete indirect
branch support and code authenticity. We analyse the security
properties of two different implementations with different secu-
rity/overhead trade-offs: one with a CBC-MAC/Prince signature
function, and another one with a CRC32. We present our
implementation of MAFIA in a RISC-V processor, supported
by a dedicated compiler toolchain based on LLVM/Clang. We
report a hardware area overhead of 23.8 % and 6.5 % for the
CBC-MAC/Prince and CRC32 respectively. The average code size
and execution time overheads are 29.4 % and 18.4 % respectively
for the CRC32 implementation and are 50 % and 39 % for the
CBC-MAC/Prince.

Index Terms—fault injection attacks, code integrity, control-
flow integrity, control-signal integrity, code authenticity, control
logic, counter-measures

I. INTRODUCTION

CONTEXT. Fault injection attacks are an important threat
to the security of embedded systems [1]. An attacker

injects physical disturbances in a circuit, such as power or
clock glitches, electromagnetic pulses, or laser beams, to
induce a faulty behaviour. This may result at the logical level
in the alteration of several bits in different ways. State-of-the-
art attackers are able to control the alteration of one or few
bit values [1], [2]. The attacker aims at inducing computation
errors or modifying values in the circuit under attack in order
to leverage fault injection for many attack objectives such as
the extraction of confidential data or privilege escalation.

State-of-the-art counter-measures against fault injection at-
tacks ensure three security properties: data integrity, code
integrity, and control-flow integrity. Data integrity ensures that
data in storage, in transit or manipulated by the processor
are not modified by any illegitimate means, e.g. by a fault
inducing a bit-flip in a register. Code integrity ensures that

This work was partially funded by the French National Research
Agency (ANR) under grant agreement ANR-18-CE39-0003. Thomas
Chamelot and Damien Couroussé are with the Univ. Grenoble Alpes,
CEA, List, F-38000 Grenoble, France (e-mail: thomas.chamelot@cea.fr;
damien.courousse@cea.fr). Karine Heydemann is with the Sorbonne Univer-
sité, CNRS, LIP6, 75005 Paris, France and with Thales DIS France (e-mail:
karine.heydemann@thalesgroup.com).

instructions of the program are not modified before their exe-
cution, for example a fault inducing a bit-flip in an instruction
encoding. Control-flow integrity ensures that the control-flow
transfers, such as branches and calls, are correct with respect
to a reference control-flow graph (CFG). A full control-flow
integrity also ensures the correct execution order of branchless
instructions sequences, e.g. protects against a fault inducing an
instruction skip. All these properties are required to ensure the
correct processing of a program.

Several works study code and control-flow integrity hard-
ware mechanisms based on the computation of an integrity
signature. In [3], a hardware monitor, external to the processor,
computes a code integrity signature and uses additional meta-
data to validate the code and control-flow integrity in separate
verification mechanisms. In [4], a single signature mechanism
ensures both code and control-flow integrity. Finally, recent
counter-measures for code and control-flow integrity are based
on the authenticated decryption of program instructions [5]–
[7]. They also ensure code confidentiality and code authentic-
ity in addition to control-flow integrity. Note that code con-
fidentiality prevents non-authorized entities from reading the
program instructions thanks to encryption. Code authenticity
ensures that the binary program is emitted by an authorized
entity, and if based on sound cryptographic mechanisms, also
implies code integrity.

Problem. Recently, Laurent et al. have reported that attacks
can leverage faults inside the microarchitecture [8]. For exam-
ple, a fault corrupting the write-back control signals after the
decode stage will change the instruction behaviour. State-of-
the-art code and control-flow integrity counter-measures fail
to catch such fault injection attacks because the fault does
not modify the binary encoding of the instruction nor the
control flow. We argue that integrity of the control logic in
the processor is required, together with data integrity, code
integrity and control-flow integrity, to protect against fault
injection attacks. We call control-signal integrity the security
property ensuring the integrity of the control logic in the
processor.

Goal & Challenges. Our goal is to design a counter-
measure against fault injection attacks simultaneously sup-
porting control-flow integrity, code authenticity, and control-
signal integrity. Control-signal integrity protects the whole in-
struction path of the processor microarchitecture against fault
injection attacks. The first challenge is to implement a control-
signal integrity mechanism, that is, to protect the whole control
signals in the processor microarchitecture against fault injec-
tion attacks. The second challenge is to combine control-signal
integrity with a code and control-flow integrity approach that



2

is robust against fault injection attacks. Our last challenge is to
implement the counter-measure in an embedded system with
complete hardware and software support while maintaining a
minimum overhead.

Contributions. This paper presents MAFIA, the first
counter-measure of our knowledge to ensure control-signal
integrity against fault injection attacks, in combination with
control-flow integrity and code authenticity.

MAFIA is designed around the concept of pipeline state,
which is a selection of control signals representative of the
current state of the processor. An integrity signature is derived
from the pipeline state, and any deviation from the expected
signature values can be detected, highlighting a fault injection.
This approach ensures the integrity of all the control signals
monitored upstream from the pipeline state. Downstream from
the pipeline state, the monitored control signals are protected
by a redundancy scheme, typical of counter-measures against
fault injection attacks. The combination of an integrity signa-
ture derived from the pipeline state with a redundancy-based
protection ensures a full protection coverage of the control
signals in the processor microarchitecture.

We detail the properties of the function signature required to
ensure code integrity and control-flow integrity in our attacker
model. Code authenticity is also ensured when the function
signature provides message authentication.

MAFIA is extended with support for indirect control-flow
transfers and interrupts, which provides full support of soft-
ware used in embedded systems.

MAFIA is implemented as an extension of the CV32E40P
RISC-V in-order processor, and is supported by a dedicated
compiler toolchain. We describe how MAFIA is integrated
to the processor architecture, and we describe the modifica-
tions required for the compiler toolchain to fully support the
counter-measure.

The signature function at the core of MAFIA supports many
possible implementations. We evaluate two implementations
with different security/overhead trade-offs: one with a CBC-
MAC integrating the Prince block cipher providing code
authenticity, and another one with a CRC32 error detection
code providing code integrity only. Notably, the integration of
MAFIA in the microarchitecture of the CV32E40P does not
impact the design critical paths, allowing to maintain the target
frequency of the reference ASIC implementation, at 400 MHz
in the GF-22FDX FDSOI technology. We report a hardware
area overhead of 23.8 % and 6.5 % for CBC-MAC/Prince and
CRC32 respectively. The average code size and execution time
overheads are 29.4 % and 18.4 % respectively for CRC32 and
are 50 % and 39 % for CBC-MAC/Prince.

This paper is an extension of the work published in [9],
in particular it presents support for indirect branches, branch
prediction and interrupts. It also gives more details regarding
the hardware and software implementations, and it provides
an analysis of MAFIA’s security.

Outline. Section II illustrates why control-signal integrity
is necessary. Section III introduces our threat model and then
gives some background on code and control-flow integrity.
Section IV details the design of MAFIA, Section V details
our implementation. Section VI provides a security analysis

loop:
ff f2 82 93 addi t0, t0, #-1
fe 04 9e e3 bne t0, zero, loop

Listing 1. Example of RISC-V instructions sequence implementing a loop.
Binary code on the left, assembly machine instructions on the right.

loop:
ff f2 82 93 addi t0, t0, #-1
fe 04 8e e3 beq t0, zero, loop

Listing 2. Instructions sequence from Listing 1 with a single bit-flip applied
on bit 15 of the second binary instruction (in bold face). The faulted bne
instruction is decoded as a beq.

of MAFIA, and Section VII presents an evaluation of the re-
sulting hardware and software overheads. Finally, Section VIII
discusses related work and Section IX concludes.

II. MOTIVATING EXAMPLE

We illustrate the necessity of protecting the control signals
in the microarchitecture with control-signal integrity, and of
combining this security property with code and control-flow
integrity. Listing 1 is a small piece of RISC-V assembly code
implementing a loop that exits when register t0 equals 0.

A single bit-flip applied on the binary encoding of the
instructions, for example in program memory, could lead to
the replacement of instruction bne by an instruction beq, as
illustrated in Listing 2, leading to an inversion of the branch
conditions. Counter-measures ensuring code integrity would
detect such a fault [3], [4], [6], [7], [10], [11].

If a fault with a similar branch inversion effect occurs in the
microarchitecture during or after instruction decoding, code
integrity counter-measures fail to detect the fault because it
does not modify the instruction encoding. Moreover, regarding
the control flow, the fault only appears as a branch inversion
and does not alter the original program CFG. Therefore the
fault can only be detected by control-flow integrity counter-
measures tracking the integrity of branch conditions [12].

Other faults in the microarchitecture can have harmful
effects. For example in Listing 1, a single bit-flit in the control
signal of the forwarding mechanism can prevent forwarding of
the addi instruction result in register t0 to the bne instruc-
tion. If such a fault is injected during the last loop iteration,
the bne instruction uses the previous value in t0, leading
to an additional iteration instead of exiting the loop. This is
why ensuring control-signal integrity in the microarchitecture
is required to ensure the correct execution of a program.
Note that a fault applied before instruction decoding, i.e. into
program memory or during instruction fetch, may be detected
by code integrity but not by control-signal integrity. Therefore,
it is necessary to ensure code, control-flow and control-signal
integrity and to cover the entire instruction path.

III. BACKGROUND

A. Threat Model

We consider an attacker that only has physical access to
the device under attack. The attacker is supposed to use
fault injection on the device. They can arbitrarily inject two



3

kinds of faults in the memory or in the processor logic:
either a fault with full control over a few bits (typically
less than 8 bits), or a fault altering many bits but without
any control on the faulted value (random bit-flips). They can
inject multiple faults at different time locations. Note that
state-of-the-art attackers are able to selectively inject up to
4 bit faults thanks to laser illumination [2]. We consider fault
injections targeting the instruction path only; faults targeting
the data path are assumed to be covered by a complementary
dedicated mechanism ensuring data integrity, typically, error
detection code in internal data registers and data memory.
Besides, the attacker does not have logical access to the device,
and therefore cannot perform common software attacks, nor
cannot modify the memory contents through logical access,
e.g. by reprogramming it. Moreover, side-channel analysis and
invasive attacks such as micro-probing are out of scope.

B. Signature-Based Code and Control-Flow Integrity
A program can be decomposed in maximal instruction

sequences with a single entry instruction and a single exit in-
struction, commonly called basic blocks. A standard technique
to ensure code integrity is to compute a runtime signature
for each basic block from the binary encoding of its instruc-
tions [3], [10]. The signature Si associated to a basic block Bi

composed of instructions I0, . . . , In is computed using a sig-
nature function f and an initialization vector IVi (1). Note that
fine-grained signature mechanisms are required in the context
of fault injection attacks in order to detect any alteration of
instructions. Hence, the signature is usually computed from
the binary encoding of every machine instruction executed.

si0 = f(IVi , I0), sin = f(sin−1
, In), Si = sin (1)

The runtime signature is updated each time a new instruc-
tion or sequence of instructions (e.g. basic block) is processed.
The runtime signature is regularly verified, for example during
control-flow transfers. Verification is usually performed by
checking the signature for equality with a reference value,
thereafter called reference signature. Reference signatures are
precomputed offline, they are either stored in a dedicated
memory or embedded in the program memory, e.g. at the end
of basic blocks.

Generalized path signature analysis (GPSA) ensures a fine-
grained code and control-flow integrity by computing signa-
tures that depend on the control-flow graph [13]. Typically, the
signature of the basic block Bi−1 is used as the initialization
vector IVi of the successor basic block Bi . Each basic block
(and each instruction in a basic block) is associated with
a single and distinct signature value. As a consequence, if
several execution paths merge into a basic block, patch values
are applied to the signature of all but one of each predecessor
basic blocks Bj ,Bk , . . .: an update function u generates a
unique initialization vector IVi for every tuple of signatures
Sj , Sk, . . . and patch values Pj , Pk, . . . (2):

IV i = u(Sj , Pj) = u(Sk, Pk) = . . . (2)

GPSA requires that reference signatures are accessible to
the signature verification mechanism. Similarly to code in-
tegrity presented above, such signatures are intertwined with

program instructions, or stored in a separate memory section.
Additionally, GPSA requires to instrument the program for the
application of patch values.

C. Indirect Branch Integrity

Control-flow integrity (CFI) was first studied to prevent
control-flow attacks on indirect branches such as ROP or JOP
attacks [14], [15]. The main bottleneck lies in the precise iden-
tification of the possible targets of indirect branches. As a con-
sequence, CFI techniques rely on some over-approximations,
for example equivalence classes, to regroup targets reachable
from the same indirect branch [16]. Equivalence classes can
be defined by various means, but usually exploit some type
information associated with the target functions. From a secu-
rity perspective, the equivalence classes need to be as small
as possible, because their size define the number of targets
reachable by permitted control-flow transfers [16].

CFI techniques typically associate a unique label to each
equivalence class, and an equivalence class to each indirect
branch. The label is verified at runtime before the control
flow transfer [17]. Similarly, in GPSA, all the basic blocks
belonging to the same equivalence class are associated to the
same entry signature (i.e. IV value). We call this signature
confusion.

Other techniques protect indirect branches by replacing
them with sequences of direct branches [18], which removes
the need for shared labels in classical CFI approaches or
signature confusion in GPSA. Note that, this approach does
not prevent control-flow hijacking resulting from an alteration
of the stack or of the register stroing the branch target address.

IV. MAFIA CONCEPTS

A. MAFIA Overview

MAFIA combines GPSA with a redundancy-based mech-
anism to ensure control-flow integrity, code authenticity, and
control-signal integrity. Fig. 1 illustrates how MAFIA would
typically be integrated into a 5-stage in-order pipeline pro-
cessor architecture. MAFIA is composed of two modules:
The Code Authenticity and Control-Flow Integrity module
(CACFI) implements the hardware support for GPSA and
ensures control-signal integrity up to the decode stage. The
Control Signal Integrity module (CSI) completes the coverage
of control-signal integrity through a redundancy-based mecha-
nism. The two modules run in parallel with the pipeline stages
and therefore do not modify the information flow within the
pipeline. On the software side, MAFIA requires modifications
of the compiler backend to insert GPSA signature verifications
and patch values.

Instead of using binary encoding of program instructions
to compute a signature, CACFI uses signals coming from the
decode pipeline stage, called the pipeline state. CSI checks
that signals from the pipeline state are correctly propagated
up to their consumption in the subsequent pipeline stages. The
selected signals are duplicated into CSI at the output of the
decode stage. Then, for each subsequent pipeline stage, CSI
checks the original control signals against their duplicates.
Therefore, the CSI module can detect any fault on control



4

Fetch Decode Execute Memory Write
Back

CACFI CSI
Reference
Signatures

Pipeline State

Fig. 1. Illustration of a 5-stage processor extended with MAFIA (CACFI and
CSI modules, in grey)

signals included in the pipeline state after the decode stage
up to the pipeline end. Control-signal integrity of the whole
instruction path is ensured by the combination of the CACFI
and CSI modules: CACFI ensures the integrity of the pipeline
state, and CSI then ensures the integrity of control signals up
to their consumption stage.

We argue that the design of a single module dealing with
the control signals in all the pipeline stages, instead of two
separate modules as presented in our approach, would be
increasingly more complex, if not impossible. Indeed, many
dynamic events (e.g. stalls due to memory latencies or jumps)
may make the computation of reference signatures and the
design of the hardware module more complex. Our decomposi-
tion into two coordinated modules avoids such complexity: the
control signals selected in the decode stage are not impacted
by the execution of instructions in later stages. Moreover, it
allows different implementations of the two modules as they
are independent.

B. Pipeline State
The pipeline state is a bit vector composed of control

signals coming from the decode stage. To ensure that each
instruction is associated with a single signature independently
of the previously executed instructions, each instruction must
also be associated with a unique pipeline state value. We call
this property pipeline state uniqueness. In order to ensure
code integrity, the pipeline state must include the control
signals that deterministically result from the decoding of
binary instructions. Also, GPSA requires that the reference
signature is computed ahead of program execution (i.e. by
static analysis), which implies that the value of the signals
monitored by the signature (and hence included in the pipeline
state) can also be computed ahead of program execution. We
discuss below which control signals can be included in the
pipeline state.

There are two kinds of control signals: the static ones and
the dynamic ones. The static control signals only depend on
the instruction currently in the decode stage. These signals
can be integrated in the pipeline state, since their value
can be computed from the only knowledge of the related
instruction. For example, the signals for selecting the source
and destination operands are directly linked to the binary
encoding of instructions. The binary encoding also contains
opcode fields which control the operation to perform in the
execute and memory stages. To ensure full code integrity,
the pipeline state can in addition include the contents of any
immediate field in instruction encodings.

The dynamic control signals depend on processed data or on
other processed instructions. Data-dependent control signals,
such as branch decision, cannot be integrated into the pipeline
state because their values cannot be statically computed.
Dynamic control signals that depend on other instructions
in flight in the pipeline can be integrated to the pipeline
state under certain conditions. In the context of the processor
architectures targeted by our counter-measure, that is, simple
in-order processors targeting embedded systems, this restricts
to forwarding control signals. A forwarding mechanism en-
ables to bypass the write-back stage when there is a data
dependency between two instructions. The computation of the
forwarding signal is implementation-dependant, but without
loss of generality we assume that forwarding is computed in
the decode stage, and hence that its control signals can be
integrated to the pipeline state. Note that forwarding control
signals that are computed after the decode stage can be
protected by the CSI module. Figure 2 illustrates cases where
forwarding is involved. Figure 2a illustrates a basic block
where the forwarding is enabled between the two successive
add instructions. The sequence of instructions is invariable
(program-dependant), the forwarding control signal can be
statically determined, and hence can be safely integrated into
the pipeline state. In Figure 2b, forwarding is enabled in the
transition B1 → B2 between the mov and add instructions,
but is disabled in the transition B2 → B2 between the bneq
and add instructions. This case illustrates that forwarding
may be involved at the transitions between basic blocks. As a
consequence, the value of the forwarding control signal cannot
be statically computed. In such case, the forwarding depen-
dency must be broken to ensure the pipeline state uniqueness
property, for example by the insertion of additional instructions
(Section V-D1). Such modification is not required when the
forwarding mechanism is placed after the decode stage as its
control signals cannot be included in the pipeline state.

C. CACFI – Code Authenticity and Control-Flow Integrity
The CACFI module implements the hardware support for

GPSA. It requires two functions, for the signature computation
and for the application of patch values, with specific properties
summarized in this section. Cf. Werner et al. [4] for a
detailed discussion. Note that most cryptographic functions
intrinsically support all these properties.

1) The signature function: The signature function f is the
core of GPSA. In CACFI, f computes the runtime signature
from the pipeline state and the previous runtime signature.
The runtime signature is stored in the signature register within
CACFI. The signature register should not be directly accessible
from any instruction to limit the attack surface on CACFI. The
GPSA fault detection capabilities depend on f ’s properties.

1) Collision resistance: prevents an attacker from forging
a faulted basic block presenting the same signature as
the signature of the original basic block (also known as
second-preimage resistance). This property also prevents
the attacker from reverting the signature to a valid value
after the introduction of one or many faults.

2) Error preservation: alterations of signature values are
not cancelled by any following fault-free sequence. This



5

add t0, t0, #1
add t1, a0, t0
load t1, 0(t1)

B1

(a)

mov t0, #0

B1

add t0, t0, #1
. . .
bne t0, #16, B2

B2

(b)

Fig. 2. Illustration of forwarding: intra (left) and inter basic block (right)

I1.0

. . .
I1.n

;; S ← S1.0 = f(Σ1.0, IV )
;; S ← . . .
;; S ← S1.n = f(Σ1.n, S1.n−1)

B1

I3.0

. . .
I3.n

;; S ← S3.0 = f(Σ3.0, S1.n)
;; S ← . . .
;; S ← S3.n = f(Σ3.n, S3.n−1)

B3

I2.0

. . .
I2.n

;; S ← S2.0 = f(Σ2.0, S1.n)
;; S ← . . . + Patch loading
;; S ← S2.n = f(Σ2.n, S2.n−1)

B2

I4.0

. . .
I4.n

;; S ← S4.0 = f(Σ4.0, S2.n)
;; S ← . . .
;; S ← S4.n = f(Σ4.n, S4.n−1)

B4
S ← S2.n = u(S3.n, Patch)

Fig. 3. Illustration of the application of GPSA to a small program sequence
of 4 basic blocks. The application of a patch is required in basic block B2

because of the merging of two execution paths.

property, in combination with collision resistance, allows
for the arbitrary placement of signature verifications.

3) Non associativity: sequences of instructions with differ-
ent orderings produce different signatures. This property
ensures control-flow integrity at the granularity of ma-
chine instructions.

4) Invertibility: is introduced by [4] to compute patch val-
ues. However, it is not required by our approach because
patch values are applied on the basic block signature
instead of being applied on intermediate signatures (see
below).

Note that many function signatures can support the prop-
erties listed above, which allows for many implementation
trade-offs. For example, key-based cryptographic signature
functions such as Message Authentication Codes (MAC) are
good candidates. MACs require a secret key, which prevents
the generation of valid reference signatures without knowledge
of the secret key. Using such function signatures, MAFIA
ensures code authenticity in addition to code integrity. In
Section V, we present two implementations, one using CBC-
MAC with the Prince block cipher and another one, only
supporting code integrity and not code authenticity, using an
error detection code.

2) The update function: GPSA requires the application of
an update function u before merging execution paths. This
function must support the following properties:

1) Full control: given a signature, there exists a patch value
for any target IV.

2) Error preservation: any fault previously introduced in
the signature cannot be reverted by applying an error-

free update.
3) Invertibility: a patch value can be computed from an

initialization vector and a signature.
The update function is triggered at each control-flow transfer

(i.e. taken branch, call and return). The runtime signature in the
signature register is updated using function u and the current
patch value. The patch value is stored in a patch register in
CACFI, and can be updated by a dedicated instruction that
loads a patch value from memory. Additionally, the patch
register is reset to a default, constant patch value after the
processing of each control-flow instruction (taken or not). This
default patch value must be known at compile time to compute
the reference signatures, and the identity element of u, if it
exists, can be used as the default patch value.

When several basic blocks Bi ,Bk , . . . have the same suc-
cessor Bs , there is at most a single basic block Bf falling
into Bs (i.e. the basic block immediately preceding Bs in
the memory layout). If Bf exists, its signature Sf is used
as the initialization vector IVs of Bs : IVs = Sf . Otherwise,
IVs is chosen randomly among the signatures of Bi ,Bk , . . ..
Knowing IVs and u−1, a patch value is computed for all
the other predecessors of Bs . Fig. 3 shows a simple example
of a CFG that requires an update on one of its edges. The
instructions in basic blocks B1, B2 and B3 do not require
an update because they all have only one predecessor. The
instruction I4.0 has two predecessors, I2.n and I3.n, and
therefore requires an update. B3 falls into B4 which means
that if I3.n is a branch, then it is not taken on this execution
path. Therefore, it is not possible to have an update on the
execution path B3–B4. This is why the update is applied in B2
during the control transfer to the taken branch, i.e. B4.

3) Signature verification: A runtime signature is computed
for every instruction in the program. Thanks to the properties
of the functions f and u, any fault captured in the signature
will be forwarded into the next ones (cf. IV-C1). Therefore, it
is possible to insert verifications anywhere in the program.

MAFIA uses custom control-flow transfer instructions,
thereafter called verification instructions, which have the same
semantics as their original counterpart. Verification instruc-
tions load a reference signature immediately following in the
program memory, and trigger the signature verification. Then,
they proceed similarly to other control-flow instructions: if
the branch is taken, the runtime signature is updated with the
current patch value. Finally, the current patch value is reset to
its default value.

The substitution of a control-flow instruction by a verifi-
cation instruction impacts code size, as a reference signature
is inserted after each verification instruction, and potentially
execution time if the delay due to the loading of the reference
signature is not masked. When the verification fails, it triggers
an exception that calls a software user-designed fault handler.

Thanks to the use of verification instructions as control-
flow instructions, our approach provides great flexibility in the
insertion of signature verifications, which allows to fine-tune
the trade-off between the detection delay and the overheads
due to code size and execution time. Similarly to GPSA,
it is possible to use a single verification instruction at the
exit point of a secured function to minimize the performance



6

overheads without reducing the detection coverage of the
counter-measure. We discuss the security impact of such trade-
offs in Section VI.

D. CSI – Control Signal Integrity

The CSI module ensures control-signal integrity for the
pipeline stages following the decode stage. The principle is to
use a redundancy scheme to detect any change in the control
signals constituting the pipeline state, from their emission
to their consumption stage. This approach is lightweight
because it involves only a small part of the pipeline’s control
logic. The CSI module duplicates the propagation of selected
signals between the different stages in the pipeline. In each
pipeline stage, the duplicated signals are checked against
the original ones. The duplication can use any redundancy
scheme, potentially with several duplicates, e.g. a simple copy,
a complementary copy or the initial value xored with an
arbitrary value.

E. Indirect Control-Flow Handling

In this section we focus on the protection of indirect
function calls and function returns. Other indirect branches
can be removed using a compiler option. We discuss this in
Section V-D.

MAFIA uses equivalence classes derived from function
prototypes to identify indirect call targets. Equivalence classes
regroup functions with identical function prototypes (return
type, number of arguments and type of each argument).

MAFIA combines GPSA with indirect call elimination to
remove signature confusion, hence reducing the attack sur-
face. Each indirect function call is replaced by a dispatcher
(illustrated in Listing 4), that is, a sequence of direct branch in-
structions that forwards the control flow to the target function.
With this approach, each function remains associated with a
unique IV even if the function is the target of indirect branches.

For function returns, which are also indirect branches,
MAFIA uses signature confusion only, although it would be
possible to use dispatchers. All the basic blocks that follow the
calls to a given function belong to the same equivalence class,
and hence share the same IV. When a function has several exit
points, MAFIA assumes a constant signature value at each of
the exit points. As a consequence, patch values are applied
to all but one of the exit points. Note that without indirect
call elimination, all the function sharing the same indirect call
site would also share the same signature at their exits, hence
increasing the attack surface. To increase the protection level
of function returns, it is possible to extend MAFIA with a
shadow stack.

F. Branch Prediction

When the pipeline implements branch prediction, the control
flow might roll back to the previous branch in case of a mispre-
diction. The pipeline then flushes the speculatively executed
instructions and the execution resumes at the correct address.
In order to be compatible with branch prediction, CACFI
saves the signature register after a branch in order to support

void bar();
void baz();

void foo(void (*fptr)()) {
/* fptr is either assigned to &bar or to &baz */
fptr();

}

Listing 3. Example of indirect function call in language C

foo:
call dispatcher_EC0_a0_0
ret

dispatcher_EC0_a0_0:
push ra
push s11

dispatcher_EC0_a0_0_bar:
li s11, bar
bne s11, a0, dispatcher_EC0_a0_0_baz
load_patch PATCH_bar
call bar
load_patch PATCH_ret_dispatcher
jmp dispatcher_EC0_a0_0_ret

dispatcher_EC0_a0_0_baz:
li s11, baz
bne s11, a0, error_handler
load_patch PATCH_target1
call baz

dispatcher_EC0_a0_0_ret:
pop ra
pop s11
ret

Listing 4. Protection of the source-code example from Figure 3 with MAFIA
(in RISC-V pseudo assembly). The indirect function call is replaced by a
dispatcher. In the original code of function foo, register a0 stores the branch
target address.

signature roll back. On misprediction, the signature register is
restored to the saved signature. When a branch is predicted not
taken, the update function is applied to the signature register
before saving it so that in case of misprediction the restored
signature is the one that would have been computed if the
branch had been taken.

After a misprediction, the instructions in the pipeline are
invalidated but may impact the value of the dynamic con-
trol signals of the next pipeline state, which may impact
the pipeline state uniqueness (Section IV-B). Since MAFIA
already requires breaking dependencies such as forwarding de-
pendency at basic block transitions, branch prediction does not
add more constraints to the CACFI module. In Section V-D1,
we propose to break forwarding dependency at basic block
boundaries using a dedicated compiler pass.

To protect speculatively executed instructions and invali-
dated instructions, the CSI module should also cover all the
control signals related to branch prediction.

In conclusion, branch prediction can be supported by
MAFIA with a negligible increase of the complexity of the
CACFI and CSI modules.

Note that the branch prediction mechanism itself remains
sensitive to some fault injection attacks. MAFIA is not able
to detect a fault targeting the misprediction control signal that
would change the branch decision. To protect against such
case, it would be necessary to ensure data integrity or/and
to duplicate the misprediction control signal. Any other fault



7

affecting the control flow is detected by MAFIA.

G. Interrupts Handling and Protection

Interrupts can occur at any time during program execution
and hence interrupt handlers cannot be associated with a set
of predecessor instructions. As a consequence, a dedicated
mechanism is required to handle interrupts and to protect
interrupt handlers. MAFIA is designed to fully protect the
execution of interrupt handlers and to increase the difficulty
to leverage interrupts in an attack scenario.

Each interrupt handler is associated to a different IV, and
all the IVs are stored in a table similar to the interrupt vector
table. Upon triggering of an interrupt, the signature register is
saved in a dedicated register, called the context register. The
CACFI module selects the IV corresponding to the triggered
interrupt to reset the signature register, and the processor starts
the execution of the interrupt handler. A verification instruction
can be placed at the end of the interrupt handler to ensure
its integrity. Similarly to other sequences of code, verification
instructions can be added inside the interrupt handler if needed
to reduce the delay between verifications. When the interrupt
handler returns, the signature register is restored to the value
saved in the context register.

After the interrupt handler has returned, the last instruc-
tions of the interrupt handler are still in the pipeline. This
might impact the pipeline state uniqueness the same way as
forwarding dependency between basic blocks (Section IV-B).
To avoid this, MAFIA delays interrupt processing until the end
of a basic block, since forwarding dependencies are already
broken at basic block transitions.

In our design, the signature register is not saved in memory,
which prevents attacks on the saved signature, e.g. during
memory transactions. This helps reduce the attack surface of
interrupts, for a negligible hardware overhead, and allows for
the use of dedicated protections on the context register if need
be. To support nested interrupts, a context stack, internal to
the processor, can be used in place of the context register.

V. IMPLEMENTATION

We integrate MAFIA to the CV32E40P processor [19], a
32-bit, in-order, 4-stage RISC-V core implementing the RV32I
base instruction set version 2.1. We select the CV32E40P
because such a small in-order core is representative of typ-
ical fault injection targets, and because a 4-stage pipeline is
representative of the main challenges of microarchitectural
design due to control and data hazards such as forwarding
mechanisms. The integration to more complex processors is
left for future work.

A. Pipeline State

We manually select the control signals to integrate to the
pipeline state. The pipeline state consists of 64 bits composed
as follows:

1) All the non-redundant control signals internal to the
decode stage that are involved in the operand selec-
tion and the forwarding mechanisms: 23 bits from the

operand selection multiplexers; 4 bits from the operand
forwarding multiplexers.

2) All the control signals produced by the decode stage and
transmitted to the next stages and that deterministically
result from the decoding of the instruction opcode: 7 bits
to control the arithmetic and logic unit; 2 bits to control
the read and write enable of the load store unit; 10 bits
to control the registers to write in the write-back stage.

3) All the signals derived from the immediate data fields:
10 bits from the binary instruction’s immediate fields.
Note that RISC-V ISA supports up to 20 bits immediate,
but the remaining immediate fields overlap with the
operand selection fields that are already included in the
pipeline sate.

4) 8 bits of padding to fill the 64 bits of the pipeline state.
The control signals outputted by the decode stage and that

will go through subsequent stages are duplicated in the CSI
module. The remaining ones are directly used after the decode
stage and do not go through more than one other stage. We use
a simple duplication scheme to implement the CSI redundancy.

B. Signature and Update Functions

MAFIA is implemented with two different single cycle
signature functions for the CACFI module:

• a CBC-MAC based on a fully unrolled hardware imple-
mentation of the Prince block cipher, which is selected
for its small silicon area and for its capability to deliver
output within one CPU clock cycle. Prince is a symmetric
cipher using 64-bit blocks and a 128-bit key, and the
CBC-MAC therefore generates 64-bit tags. In order to
limit the code size and runtime overheads, the CACFI
signature is composed of the 32 lowest significant bits of
the CBC-MAC output tag. We discuss the security impact
of this design choice in Section VI.

• a CRC32 designed to detect up to 8 bit-flips per basic
block. Because CRC32 functions do not use any secret
to compute the signature, MAFIA only ensures code
integrity and not code authenticity in this case.

We select the exclusive or (XOR) for the update function in
the two implementations.

C. MAFIA RISC-V ISA Extension

The CV32E40P is modified as follows. All the control-
flow instructions update the runtime signature with the cur-
rent patch value if the branch is taken (Section IV-C2).
The core is also extended with custom instructions: we
implement a verification instruction (Section IV-C3) for
each control-flow instruction in the RV32I instruction
set (MAFIA.beq, MAFIA.bne, MAFIA.blt, MAFIA.bge,
MAFIA.bltu, MAFIA.bgeu, MAFIA.jal, MAFIA.jalr). We
also add a load patch instruction (MAFIA.ldp) that fetches a
patch value from memory, in the .patches section; the base
address is stored in a new Control Status Register (CSR). This
CSR is set during the core bootstrap to point to the memory
section of the binary program that gathers all the patches. The
patch value offset in the memory section is encoded as a 20-bit



8

LLVM 12.0
lld

Program
(.elf)

LLVM 12.0 
 clang

Objects
(.o)

Dispatcher
Generator

Dispatchers
(.o)

Signature
Generator

Signed Program
(.elf)

Sources 
 (.c)

Newlib
(.o/.a)

Fig. 4. MAFIA compiler toolchain with the files in light gray and the tools
in rounded boxes

immediate value in the MAFIA.ldp instruction, which limits
the number of patch values accessible to 220. If patch values
are aligned on 4-byte boundaries in memory, it is possible to
fix to 0 the two least significant bits of the offset, and increase
the number of accessible patch values to 222.

Note that it is not desirable to store patch values in the
immediate fields of instruction encoding, because this would
introduce a circular dependency between the signature values
and the patch values. A solution to avoid this dependency is
to remove the immediate fields from the pipeline state for
MAFIA.ldp instructions, hence increasing the complexity of
the decoding logic. Furthermore, locating patch values in a
dedicated section offers the possibility to store the values in a
separate, secured memory.

D. Software Support

Fig. 4 presents the complete MAFIA compilation process.
We select LLVM version 12.0 to build MAFIA compiler
toolchain. We extend the RISC-V backend with several passes
to apply the code modification required by MAFIA.

1) Forwarding dependency elimination pass: This pass
ensures the pipeline state uniqueness property at basic block
transitions (Section IV-B), which is mandatory to support
basic blocks with multiple predecessors, branch prediction and
interrupts. For the first instructions of a basic block, this pass
ensures that the forwarding mechanism is deactivated for all
the predecessors and if need be inserts a nop instruction to
break the forwarding dependency. The insertion of a single
instruction is sufficient for the 4-stage CV32E40P core, but
longer instruction sequences may be required for more com-
plex pipeline architectures.

2) Dispatcher pass: This pass replaces each indirect call by
a direct call to a dispatcher (Section IV-E). The code for each
dispatcher is generated separately by the Dispatcher Generator
before the linking process.

Indirect branches that do not represent function calls are
eliminated using the -fno-jump-table option.

3) Patch placement pass: This pass performs a control-
flow analysis to insert the MAFIA.ldp instructions. As de-
scribed in Section IV-C2, MAFIA requires a patch for all
but one predecessor for each basic block. A MAFIA.ldp is
also inserted before each call instruction and all but one
functions returns. Loops require a dedicated analysis regarding
the update function to prevent circular dependencies during the

reference signature computation. The simple rule of placing a
MAFIA.ldp in all but one predecessor can fail to break such a
circular dependency. In this case, the pass adds a MAFIA.ldp

in one of the loop’s basic blocks. Note that this pass disables
tail call optimization only when a function has multiple exit
points so that the caller function and the tail-called function
do not share the same signature.

The patch values and offsets in the .patches section are
computed later by the Signature Generator tool.

4) Reference signature placement pass: The third pass
identifies all the functions annotated with the dedicated at-
tribute, MAFIA_secured, and replaces the control-flow in-
structions by the MAFIA equivalent ones that trigger the
signature verification. This pass inserts a signature placeholder
after each branch that performs a signature verification.

5) Dispatcher Generator: Before the link process, this
tool builds the dispatchers by leveraging debug information
from the clang compiler. The Dispatcher Generator computes
the equivalence classes through a context-insensitive analysis
from the type information of the target function prototypes
(Section IV-E). Each equivalence class is associated with one
dispatcher for each register storing a target address in an
original function call (e.g. register a0 in Figure 4). From
the perspective of an attacker, this design choice increases
the difficulty to fault the target function address because the
address can be stored in different registers, depending on the
register allocation policy used by the compiler.

6) Instrumentation of the Newlib C-library: We use LLVM
infrastructure to link the sources object files with the dispatch-
ers and the Newlib C-library. The C-library is not protected
with verification instruction, but it is instrumented with signa-
ture updates (MAFIA.ldp instructions) so that the signatures
are correctly propagated through the library. Yet, extending
the C-library with signature verifications only requires mini-
mum changes by adding the MAFIA_secured attribute to the
desired function prototypes.

7) Signature Generator: Post link, the Signature Generator
extracts the CFG by static analysis. Then, it computes the
reference signatures and patch values. The computation is
done by exploring the CFG recursively basic block per basic
block. Each basic block is processed through a stateful signal-
accurate model of the CV32E40P’s decode stage to extract the
pipeline state and derive the signature. When a MAFIA.ldp is
present in a basic block, the Signature Generator attributes
it a unique offset in the .patches section. The associated
patch value is computed from the basic block signature and its
successor signature. Finally, the Signature Generator creates a
new ELF file with the reference signature placeholder and the
MAFIA.ldp offset filled and the additional .patches section
containing the patch values.

VI. SECURITY ANALYSIS

This section presents a security analysis of MAFIA regard-
ing our threat model. MAFIA is designed to ensure code au-
thenticity or code integrity, control-flow integrity and control-
signal integrity. The data integrity property is not supported by
MAFIA and is supposed to be ensured by a complementary
dedicated mechanism.



9

A. Pipeline State Verification

The pipeline state is the cornerstone of MAFIA as the
control signals included in the pipeline state feed both the
CACFI and CSI modules. The construction of the pipeline
state determines the capability of MAFIA to ensure code in-
tegrity and control-signal integrity. As presented in Section V,
in our implementation, we build the pipeline state through a
manual analysis of the control signals emitted by the decode
stage. Such analysis and the resulting implementation are
prone to errors, which could lead to vulnerabilities.

1) Verification Workflow: We perform a formal verifica-
tion of our implementation of the pipeline state and of the
control-signal integrity property with the workflow of Tollec
et al. [20], which targets the formal vulnerability analysis
against fault injection attacks from both a hardware (RTL)
and a software (binary code) description. The workflow works
as follows. The processor implementation, in SystemVerilog,
is translated using the Yosys tool [21] into a formal model in
the Satisfiability Modulo Theory Language (SMT-LIB), which
represents at the RTL level the combinatorial and sequential
logic of the CPU, memories, and peripherals. This translation
preserves a complete correspondence between RTL signals and
SMT variables. The binary program is expressed, in the Yosys
SMTC constraints language, as constraints applied to the SMT
model of the processor memories (typically, the RAM). The
fault model, specified by the user in SMTC, defines: the target
SMT variables, the effect of fault injection, the maximum
number of injections, and the timing constraints (CPU cycles
where fault injection is possible). The fault model is automat-
ically instantiated as controllers applied to all the target SMT
variables. The verification engine performs Bounded Model
Checking (BMC), leveraging the Yosys-SMTBMC tool for
BMC and Yices 2 for satisfiability queries. During verification,
the BMC engine drives the fault controllers, and verification
targets a property ϕ specified by the user. When ¬ϕ is
satisfiable (i.e. ϕ does not hold), the workflow generates a
VCD trace as a counter-example.

2) Verification Use Case and Verified Properties: We verify
the security of MAFIA running a VerifyPIN program under
fault injection. VerifyPIN is an authentication procedure where
an input (user) PIN code is compared to a secret (card)
code. This small program includes control flow (conditional
and unconditional branches, function calls), memory accesses,
etc., and is similar to the memcmp procedure widely used
in software. Hence, it is representative of the many ways
to leverage fault injection in an attack of the authentication
procedure, e.g. bypassing authentication, bypassing the PIN
comparison, modifying the status value returned, altering the
computation of PIN comparison. Data integrity is not verified
(although it can be) because it is not included in our threat
model. The formal verification targets ¬ϕ := ψ ∧¬φ1 ∧¬φ2,
where properties ψ, φi are informally described as follows:

ψ Authentication succeeds with different user and card
PIN codes.

φ1 Fault injection leads to an alteration of the pipeline
state.

φ2 Fault injection is detected by the CSI module.

If φ1 holds, we know that the CACFI module ensures code
and control-signal integrity, since any alteration of the pipeline
state is captured by the signature function (Section VI-B). If
φ2 holds, we know that the CSI module ensures control-signal
integrity for the pipeline stages after decode.

The verification considers a single fault (mono- or multi-bit)
applied to any control signal of size smaller or equal to 8 bits,
at each of the CPU cycles in a 60-cycles window overlapping
with the full execution of the VerifyPIN procedure. Note that,
in our target implementation, the control signals of size larger
than 8 bits don’t need to be considered since they drive unused
features, e.g. multiplier, performance monitoring module.

3) Verification Results: The verification fails to find any
fault leading to an invalidation of property ϕ. Furthermore,
MAFIA eliminates all the vulnerabilities identified by the same
workflow on the original (unprotected) CV32E40P processor
running the VerifyPIN procedure. Note that, due to the error
preservation property of the signature function, multiple fault
injections that do not exceed the attacker capabilities in our
threat model (e.g. 8 cumulative bit flips for the CRC32 imple-
mentation) are also detected by the CACFI module. Multiple
fault injections may not be captured by our implementation
of the CSI module, but can be supported by other redundancy
schemes for a negligible increase in overhead (Section IV-D).

This brings confidence in the pipeline state construction and
in MAFIA’s capacity to protect the execution of an application
against fault injections in the microarchitecture.

B. Signature Functions

The CBC-MAC/Prince signature function uses a secret
key, which prevents an attacker from inverting the signature
function to identify collision values. Furthermore, CBC-MAC
with Prince provides strong resistance to collision attacks
because in our threat model the attacker cannot control the
whole contents of a basic block. In our implementation, only
32 bits of the 64-bit signature are verified, which reduces the
probability to find a collision to 1/216 because of the birthday
paradox. Yet, a successful collision attack is unlikely because
the complexity of this attack combines with the complexity of
fault injection. Last, the known weaknesses of CBC-MAC,
such as message forgery for variable length messages or
variable initialization vectors, are not relevant here because
our threat model assumes that it is not possible to modify the
memory contents except by the use of fault injection.

The CRC32 signature function protects against a weaker
attacker model, because it is designed to ensure code and
control-flow integrity only. Moreover, CRC functions are
invertible, meaning that an attacker could identify the fault
to inject to create a signature collision. Yet, CRC functions
are designed so that collisions are possible only above a
fixed amount of bit-flips. Therefore, instead of relying on
direct collision resistance, CRC functions rely on the detection
capabilities to increase the fault injection complexity.

For CRC32, We determine the best candidate function
according to our security model. To do so, we search, in a
list of polynomials known for providing good detection capa-
bilities [22], the polynomial that requires the highest minimal



10

number of bit-flips to create a collision in the signature. The
search tests exhaustively all the basic block lengths up to 40
instructions, and all the collision vectors with a Hamming
Weight value smaller than 11. The best generator polynomial
identified is 0xFA567D89, which detects up to 8 bit-flips in
the input sequence. Thus, in order to create a collision in the
signature, an attacker has to control precisely the alteration of
at least 8 bits in the pipeline state. Note that such collision
can be obtained in one or several fault injections. It can also
be obtained indirectly by faults targeting the update function
(including the patch value) or the runtime signature value,
since these values are in the end combined with subsequent
values of the pipeline state. However, such fault targets do not
reduce the security level of the candidate CRC32 function.

C. Signature Verification

A possible attack is the case where a fault triggers a
jump outside the program sections instrumented with signature
verifications. This attack is equivalent to the case where several
faults target all the subsequent verifications after a first fault.
In such case, the attack is undetected by the counter-measure,
and the security level of MAFIA is determined by the time
intervals between verifications. As the substitution of control-
flow instructions by verification instructions is performed at
compile time, it is possible to determine the maximum delay
between successive verifications, or to constrain it by inserting
extra verification instructions (i.e. direct branch instructions
jumping to the instruction following in program memory). A
watchdog could then ensure that this maximum delay is never
reached, and so detect an attacker jumping outside the program
section instrumented with signature verification.

D. Control Signal Integrity

The CSI module covers all the control signals transmitted
from the decode stage to the next stages. An attack targeting
the pipeline stages after the decode stage can be effective if
it simultaneously faults the original signal and its duplicate
in the CSI module. If such an attack is relevant, it can be
mitigated by using redundancy schemes with better detection
capabilities, and we believe that the implementation of such
schemes will have a negligible impact on the hardware area
overhead, since the number of control signals monitored by
CSI is low. Additionally, the comparison result is encoded as a
single bit connected to the exception mechanism. A single fault
could then prevent the detection propagation and the software
handler triggering. A typical protection is the use of specific
encoding (e.g. differential encoding) for the connection to the
exception mechanism.

E. Control-Flow Integrity

MAFIA ensures a static CFI policy, which ensures that:
i) for indirect branches, the target address is part of the identi-
fied equivalence class; ii) for returns, the target address follows
a valid call site of the current function for return. MAFIA thus
considerably reduces the number of reachable addresses that
would not be detected. Thanks to the combination of CFI with

TABLE I
ANALYSIS OF THE BENCHES INCLUDING INDIRECT BRANCHES: NUMBER

OF DISPATCHER FUNCTIONS, NUMBER AND SIZES OF CLASSES, AND
NUMBER OF NON-LEGITIMATE FUNCTIONS IN EACH CLASS.

Bench Nb. dis-
patchers

Nb. eq.
classes

Classes
size

Nb. non-leg.
fun. in classes

picojpeg (Os) 1 1 [1] [0]
picojpeg (O2) 2 1 [1] [0]
sglib-combined (Os) 2 2 [1, 3] [1, 3]
sglib-combined (O2) 1 1 [3] [3]
wikisort (Os) 9 2 [1, 9] [0, 0]
wikisort (O2) 3 2 [1, 9] [0, 0]

code authenticity and control-signal integrity, the replacement
of a control-flow target address by a valid address is restricted
to data corruption, which is outside our threat model.

In the following, we proceed with an in-depth security
analysis of our design, considering the possibility of attacks
outside our threat model. Regarding the protection of indirect
branches, the security level is impacted by the precision
of the analysis of indirect branch targets, e.g. the size of
equivalence classes (Section III-C). Table I reports an analysis
of the evaluated benches with indirect branches (Section VII),
showing the number of dispatchers inserted, the number of
equivalence classes, the size of each equivalence class, and
the number of non-legitimate functions per class. The number
of dispatchers depends on the number of indirect call sites
in the original bench. The classes size reports the number of
reachable functions in each equivalence class. In the evaluated
benches, the number of equivalence classes does not exceed
2 and the largest class is limited to 9 elements, which
fairly restricts the possibility of attacks. Note that several
dispatchers can correspond to the same equivalence class (but
using different registers for the target branch address): for
wikisort and for sglib-combined -Os there are more
dispatchers than equivalence classes. Finally, non-legitimate
functions are functions that are not reachable from a given
call site. In an equivalence class, the non-legitimate functions
correspond to functions unreachable from an indirect call site
but that share the same property (e.g. prototype) with the other
functions. Out of 3 benches, sglib-combined is the only
one to present equivalence classes that include non-legitimate
functions, and furthermore each class is composed of non-
legitimate functions only. Here, the context-insensitive analysis
performed by the Dispatcher Generator is not able to detect
that there is a function pointer set to NULL in the source code,
resulting in one or two useless dispatchers depending on the
optimization level. Such issue could be avoided by manually
selecting the dispatchers to include into the program after a
cross-analysis of the source code and of the metrics reported
by the Dispatcher Generator. In conclusion, even against an
attacker able to control data, MAFIA only leaves a small attack
surface against attack such as ROP or JOP.

VII. EXPERIMENTAL EVALUATION

To evaluate the hardware overhead due to MAFIA, we
synthesize the modified CV32E40P into an Application Spe-
cific Integrated Circuit (ASIC). The ASIC is designed for a
frequency of 400MHz, in the GF-22FDX FDSOI technology,



11

TABLE II
EMBENCH-IOT RESULT WITH THE SIZE (IN BYTES, AND OVERHEAD WRT. UNPROTECTED VERSION), SIGNATURES AND PATCHES AND THE EXECUTION

TIME (IN CPU CYCLES, AND OVERHEAD WRT. UNPROTECTED VERSION) FOR MAFIA WITH THE CRC SIGNATURE FUNCTION

Bench O2 Os
Size Signatures Patches Exec. time Size Signatures Patches Exec. time

aha-mont64 6204 (×1.30) 124 106 75335 (×1.38) 4720 (×1.28) 92 70 67461 (×1.18)
crc32 824 (×1.34) 8 21 380997 (×1.21) 856 (×1.35) 9 21 381006 (×1.21)
cubic 97460 (×1.16) 98 1611 14787617 (×1.16) 96920 (×1.16) 95 1608 14802517 (×1.16)
edn 3564 (×1.29) 53 63 1157814 (×1.22) 3944 (×1.25) 53 64 1157585 (×1.22)
huffbench 4028 (×1.39) 90 90 382404 (×1.20) 3548 (×1.33) 61 73 383163 (×1.16)
matmult-int 3376 (×1.26) 29 70 1119255 (×1.21) 2588 (×1.23) 10 54 1200057 (×1.21)
minver 21472 (×1.24) 56 489 151685 (×1.18) 21404 (×1.24) 59 474 178843 (×1.17)
nbody 20576 (×1.20) 52 404 55767175 (×1.18) 19944 (×1.20) 42 387 55780098 (×1.18)
nettle-aes 5600 (×1.14) 46 63 136279 (×1.10) 5512 (×1.14) 44 59 136447 (×1.10)
nettle-sha256 7864 (×1.07) 39 44 9573 (×1.03) 7720 (×1.08) 46 46 10239 (×1.03)
nsichneu 25204 (×1.45) 654 565 3693 (×1.44) 25152 (×1.45) 648 546 3685 (×1.44)
qrduino 21840 (×1.39) 554 455 1605197 (×1.18) 18304 (×1.37) 448 357 1610103 (×1.16)
slre 7604 (×1.55) 242 211 – 6760 (×1.52) 214 168 45480 (×1.17)
st 21964 (×1.20) 58 420 6618952 (×1.17) 21764 (×1.19) 44 409 6626187 (×1.17)
statemate 8956 (×1.29) 203 141 1573 (×1.09) 9116 (×1.28) 198 138 1672 (×1.08)
ud 3456 (×1.25) 39 62 23674 (×1.16) 3232 (×1.27) 37 62 24125 (×1.16)
picojpeg 31116 (×1.47) 881 665 2403701 (×1.21) 22548 (×1.49) 642 485 2424312 (×1.16)
sglib-combined 8332 (×1.47) 197 219 409637 (×1.18) 8736 (×1.46) 206 214 466871 (×1.31)
wikisort 32340 (×1.30) 354 647 28465027 (×1.38) 31956 (×1.29) 318 625 24817089 (×1.20)
geometric average (×1.30) (×1.19) (×1.29) (×1.18)

and the target frequency is not impacted by the addition of
MAFIA. The core occupies 64 kGE with CBC-MAC/Prince
and 55 kGE with CRC32, which represents an area overhead
wrt. the unmodified core of 23.8% and 6.5% respectively.

The software evaluation is carried out through HDL cycle-
accurate simulations of the modified CV32E40P with CRC32.
We benchmark our implementation with the Embench-IoT [23]
test suite, which targets embedded systems without operating
system. All the test programs are compiled with the MAFIA
toolchain, with optimization levels -Os and -O2, and are
linked with the Newlib C-library and the LLVM multiplication
and soft float libraries. The benches are compiled with the
option -ffunction-section to eliminate any dead code.
Embench-IOT contains 4 benches with indirect branches. We
prevent the compiler from using indirect branches with the
-fno-jump-table compiler option, which leaves 3 benches
with indirect function calls (picojpeg, sglib-combined

and wikisort). Note that slre could not be compiled with
the -O2 optimization level because our reference signature
generation does not support the inter-procedural loop caused
by a recursive call.

We add the attribute MAFIA_secure to the benchmarked
functions only, meaning that only those functions contain
signature verifications. The C-library and the LLVM library do
not contain any signature verification but are still instrumented
with MAFIA.ldp instructions.

The code size evaluation considers only the sections im-
pacted by MAFIA (.text and .patches), which provides a
pessimistic, upper bound of the overall code size overheads
for a complete firmware image.

Table II and Figure 5 summarize the results of our ex-
perimental evaluation. The results show that MAFIA can
handle different kind of software as selected by Embench-
IOT. Execution time overheads range between 2.5% and 44.0%
with a geometric average of 18.4%. The code size overheads

range between 7.3% and 55.4% with a geometric average
of 29.4%. For the majority of the benches, the difference
between the optimization levels -Os and -O2 is negligible,
except for aha-mont64, sglib-combined, and wikisort.
The difference is explained by the execution of instruction
sequences where a MAFIA.ldp is immediately followed by a
branch. In this case, the pipeline controller stalls the processor
so that the memory stage can fetch the patch before the branch
is taken. For those 3 benches, this pattern is present in a
loop nest increasing considerably the number of stalled cycles
between optimization level -O2 and -Os.

The evaluation results show that the update function (patch
values and MAFIA.ldp) is responsible for the largest part of
the code size overhead. The number of reference signatures
is dependent of the number of branches in the functions
annotated with MAFIA_secured. In our evaluations, reference
signatures are only inserted for the benches core functions.
But, all the functions need MAFIA.ldp independently whether
they come from the benchmark core or from libraries.

The forwarding dependency elimination pass and the patch
placement pass (Section V-D) also contribute to the code size
overhead (“Other” in Fig. 5). Those passes insert nop in-
structions to break some forwarding dependencies and disable
some tail call optimization respectively. Also, MAFIA LLVM
passes insert new instructions in the code (e.g. MAFIA.ldp
instructions). This requires to adapt direct branch offsets. The
new offsets might not fit in the original branch binary encoding
anymore. In such a case, an additional direct branch is inserted
which increases the code size.

Table III reports the overhead induced by the dispatchers.
In the worst case, the dispatchers contribute to 15.3% of the
total overhead for wikisort -Os. The absolute overhead
induced is only 4% at worst. For all the other benches, the
dispatchers contribute to less than 10% of the total overhead.
Note that this overhead could even be reduced by replacing



12

Fig. 5. Execution time (left) and code size (right) overheads for the Embench-IoT benchmarks, with the -Os and -O2 compiler optimization levels for
MAFIA with the CRC signature function.

TABLE III
CONTRIBUTION OF DISPATCHERS TO THE TOTAL CODE SIZE OVERHEAD:

IN BYTES, NUMBER OF ADDED PATCHES AND ADDED SIGNATURES

Bench Code Size (Bytes, %) Patches Signatures
picojpeg (Os) 84 (1.1%) 4 2
picojpeg (O2) 168 (1.7%) 4 4
sglib-combined (Os) 256 (9.3%) 8 6
sglib-combined (O2) 172 (6.4%) 6 4
wikisort (Os) 1108 (15.3%) 34 26
wikisort (O2) 604 (8.2%) 22 14

dispatcher targeting equivalence classes with a single element
to a direct call to the target function. This demonstrates
that using dispatchers is a practical solution to avoid GPSA
signature confusion for a small additional overhead.

We observe that the compiler optimization level has a mod-
erate impact on the code size and execution time overheads,
but that there is a large variation of overheads, which are
due to the different code structures used in the benches.
Furthermore, smaller basic block sizes are more impacted by
the instrumentation with MAFIA instructions. The maximum
code size overhead is 400% (×4) for a single basic block
composed of a single branch instruction, as MAFIA’s code
instrumentation requires the addition of 3 memory words: a
MAFIA.ldp instruction, the corresponding patch value, and the
reference signature. Our results show that the average code size
overhead is far less because basic blocks have greater sizes.
Some optimizations (such as tail duplication or loop unrolling)
could increase the size of basic blocks or reduce the number
of branches to reduce the execution time overheads.

It is possible to get an approximation of the CBC-
MAC/Prince overheads from the CRC32 results. Both CBC-
MAC/Prince and CRC32 compute a signature in a single
cycle and verify 32-bit reference signature. However, CBC-
MAC/Prince works with 64-bit blocks and therefore requires
64-bit patch values. To handle 64-bit patch values MAFIA uses
two update instructions, one for the 32 most significant bits
and the other for the 32 least significant bits. Such implemen-
tation leads to double the software overheads induced by the
update function (patch values and MAFIA.ldp). Therefore,
with the CBC-MAC/Prince implementation, MAFIA induces
an average execution time overhead close to 39% and an
average code size overhead close to 50%, but it also ensures

code authenticity. Replacing Prince with a 32-bit block cipher,
such as Simon [24], could close the performance gap between
the CBC-MAC and the CRC32 implementations of MAFIA.

VIII. RELATED WORK

Counter-measures ensuring code and control-flow integrity
are often implemented as hardware components external to the
processor microarchitecture [3], [10]. Such counter-measures
are easier to integrate in a processor design but are intrinsi-
cally blind to faults targeting the microarchitecture. For these
reasons, they are not further discussed in this section.

Table IV provides a comparison between MAFIA and the
related counter-measures. It reports the claimed security prop-
erties ensured by the counter-measures, the estimated hard-
ware area, code size execution time overhead. Regarding the
hardware area overhead, note that Table IV is only indicative
of a trend because each work is based on different processor
architectures and different technologies.

Werner et al. use GPSA in the context of fault injection [4].
The signature is derived from the binary encoding of program
instructions using a CRC32 signature function. In MAFIA,
the CRC32 implementation presents slightly larger hardware
overhead due to the additional CSI module. Actually, the
CACFI module, which handles GPSA in MAFIA, is equivalent
to the GPSA monitor in [4]. The main difference is the
origin of the signature input which in MAFIA is the pipeline
state instead of the binary encoding of program instructions.
On the software side, MAFIA induces half less code size
overhead and execution time overhead. The reason is that
MAFIA handles the loading of patch values in a single
dedicated MAFIA.ldp instruction while [4] requires several
standard loads and stores to place the patch values in a
memory mapped register. Regarding the security properties,
both MAFIA and [4] ensure code and control-flow integrity.
Additionally, MAFIA supports control-signal integrity, mean-
ing that it can detect fault targeting the control signals after
the fetch stage.

[5]–[7] are code and control-flow integrity counter-
measures based on authenticated decryption. MAFIA ensures
code authenticity, but is not designed to ensure code confi-
dentiality as is. [6] is the closest to MAFIA implemented
with a CBC-MAC signature function. Both designs have
similar hardware overheads. They are both based on the Prince



13

TABLE IV
SECURITY AND OVERHEAD COMPARISON OF CODE AND CONTROL FLOW INTEGRITY PROTECTION TARGETING FAULT INJECTION ATTACKS

Security Target Technology Area
overhead

Exec. time
overhead

Code size
overhead

Arora et al. [10] CI/CFI ARM9TDMI ARM920T FPGA Virtex 2 13.7% 100% NA
Werner et al. [4] CI/CFI ARMv7-M Cortex-M3 ASIC UMC 130nm 4% 32% 57%
Danger et al. [3] CI/CFI RISC-V PicoRV32 FPGA Artix 7 20% 2% to 63% 118% to 160%
Clercq et al. [5] CC/CA/CFI SPARC LEON3 FPGA Virtex 6 28.2% 13.7% 140%
Werner et al. [6] CC/CA/CFI RISC-V CV32E40P ASIC UMC 65nm 28.8% 9.1% 19.8%
Savry et al. [7] CC/CA/CFI/DC/DA RISC-V CV32E40P – – 167% 24%
MAFIA CRC CI/CFI/CSI RISC-V CV32E40P ASIC FDSOI 22nm 6.5% 18.4% 29.4%
MAFIA CBC-MAC CA/CFI/CSI RISC-V CV32E40P ASIC FDSOI 22nm 23.8% 39% 50%

CI: Code Integrity, CA: Code Authenticity, CC: Code Confidentiality, CFI: Control Flow Integrity, DC: Data Confidentiality, DA: Data Authenticity,
CSI: Control-Signal Integrity, NA: Non-Applicable, –: Not provided

cryptographic primitive, which is responsible for the most
important usage of extra silicon area. However, the software
overheads of [6] are approximately 30% smaller for two
reasons: (i) faults are detected in case of bad instruction
decoding, which alleviates the need for reference signatures;
(ii) control-flow instructions simultaneously load patch values,
whereas MAFIA requires a dedicated instruction.

Regarding indirect control flow, [5] also relies on indirect
branch elimination. By design, the basic blocks cannot have
more than 4 or 5 instructions, and cannot have more than
2 predecessors. Those limitations considerably increase the
complexity of the dispatchers, which leads to larger software
overheads as compared MAFIA. In [6] all the functions
reachable from the same indirect branch share the same state,
which is similar to signature confusion. However, the state is
also used for code encryption. To avoid possible cryptographic
vulnerabilities, an additional patch value is inserted at the
beginning of the target functions, which restricts possible
signature confusions to the function entry points. In [7],
indirect branch patch values are stored in a word placed
before the indirect branch target. This approach prevents any
signature confusion and allows more flexibility to support
software constructs such as C++ vtables. However, this
mechanism requires confidential patch values to prevent the
forging of new indirect branches. MAFIA relies on indirect
branch elimination to prevent signature confusion. We evalu-
ated that the overheads due to the use of dispatchers are low,
and that they could be further reduced with additional code
optimizations in the toolchain. Finally, all the related works
in the context of control-flow integrity against fault injection
attacks implicitly assume that indirect branch targets can be
identified by external means. This is a major bottleneck for
the use of any counter-measure in practice. It implies either
that the burden is moved to another tool or to an application
designer, or in the worst case the use of a single equivalence
class containing all the targets of indirect branches. Our work
is the only one to provide a fully automated solution for
indirect branch target identification.

While MAFIA has comparable overheads to the related
counter-measures, it is still possible to reduce those overheads.
First, the area overhead is estimated considering the overhead
on the processor core only. However, the CV32E40P is a small
processor core and we expect the contribution of the core to
the area of a full system to be small, even in the case of IoT

devices. Hence, MAFIA’s relative area overhead measured in
a complete system, including memory and peripherals, would
be much smaller. It is also possible to reduce MAFIA’s area
overhead and code size overhead, at the expense of security, by
selecting a more lightweight signature function such as CRC8.
Finally, our work reports MAFIA’s code size and execution
time overheads when applied globally to the application. By
extending MAFIA with a secure on/off mechanism, it would
be possible to enable MAFIA protection for sensitive code
only. The local overheads on the sensitive code would be
the same as the ones reported in Section VII, but the global
overheads on the application would be much smaller.

MAFIA is, to the best of our knowledge, the only counter-
measure to ensure control-signal integrity against fault injec-
tion attacks. Kim and Somani propose an on-line integrity
monitoring of the microprocessor control logic for safety-
critical systems sensible to soft errors [25]. They use a non-
secure function (XOR) to derive a signature from the static
control signals in every pipeline stages, and dynamic control
signals are protected by duplication. A caching mechanism
is used to store reference signatures from the first execution
(cache miss), and verifies the runtime signatures in the subse-
quent executions (cache hit). However, such a caching mech-
anism does not protect against attacks targeting executions
leading to a signature cache miss (e.g. first program execution)
because the reference signature is not available. Moreover, this
solution does not detect attacks targeting the program memory,
hence does not ensure code integrity. Another independent
mechanism ensures control-flow integrity. In MAFIA, a unique
signature is derived from static and dynamic control signals
of the decode stage. This signature ensures simultaneously
execution, code and control-flow integrity.

IX. CONCLUSION

This paper presents MAFIA, a counter-measure extending
the state-of-the-art against fault injection attacks by combining
control-signal integrity with code integrity, code authentic-
ity and control-flow integrity. MAFIA articulates two secu-
rity mechanisms to protect the control logic of the proces-
sor against faults targeting the processor microarchitecture.
MAFIA also protects against faults injected outside of the
processor that have an impact on the processor control logic.
A first module implements generalized path signature analysis
(GPSA). The signature is computed from the pipeline state, a



14

set of data-independent control signals that deterministically
result from the decoding of the binary instruction. This module
ensures simultaneously control-flow integrity, code authentic-
ity, and control signal integrity from the fetch stage to the
end of the decode stage. A second module, implementing
a redundancy-based mechanism, ensures the integrity of the
same control signals in the subsequent pipeline stages, which
completes the full protection coverage of the processor mi-
croarchitecture.

The flexibility of the design allows for trade-offs between
security and overheads. The paper presents two implementa-
tions of MAFIA based on the CV32E40P RISC-V proces-
sor, with different signature functions: one with CBC-MAC
and Prince, and another one with a CRC32 error detector
code. CBC-MAC/Prince makes use of the full capabilities of
MAFIA. It induces a hardware area overhead of 23.8 %, and
average code size and an execution time overheads of 50 %
and 39 % respectively. CRC32 detects a minimum number of
8 bit-flips and ensures code integrity only instead of code
authenticity; it induces a hardware area overhead of 6.5 %,
and average code size and an execution time overheads of
29.4 % and 18.4 % respectively. On the software side, the
compiler extension offers a complete automatic processing of
the program source code to generate the MAFIA executable
program. Moreover, thanks to the support of indirect branches
and interrupts, MAFIA is fully compliant with software stacks
used in embedded system.

ACKNOWLEDGEMENTS

We thank Mikael Le Coadou and Juan Suzano Da Fonseca
for their contributions to the hardware evaluation, and Simon
Tollec for his contribution to the formal verification.

REFERENCES

[1] B. Yuce, P. Schaumont, and M. Witteman, “Fault Attacks on Secure
Embedded Software: Threats, Design, and Evaluation,” J Hardw Syst
Secur, 2018.

[2] B. Colombier, P. Grandamme, J. Vernay, É. Chanavat, L. Bossuet, L. de
Laulanié, and B. Chassagne, “Multi-Spot Laser Fault Injection Setup:
New Possibilities for Fault Injection Attacks,” in CARDIS, 2022.

[3] J.-L. Danger, A. Facon, S. Guilley, K. Heydemann, U. Kühne, A. Si Mer-
abet, and M. Timbert, “CCFI-Cache: A Transparent and Flexible Hard-
ware Protection for Code and Control-Flow Integrity,” in DSD, 2018.

[4] M. Werner, E. Wenger, and S. Mangard, “Protecting the Control Flow
of Embedded Processors against Fault Attacks,” in CARDIS, 2015.

[5] R. de Clercq, R. D. Keulenaer, B. Coppens, B. Yang, P. Maene,
K. de Bosschere, B. Preneel, B. de Sutter, and I. Verbauwhede, “SOFIA:
Software and control flow integrity architecture,” in DATE, 2016.

[6] M. Werner, T. Unterluggauer, D. Schaffenrath, and S. Mangard,
“Sponge-Based Control-Flow Protection for IoT Devices,” in EuroS&P,
2018.

[7] O. Savry, M. El-Majihi, and T. Hiscock, “Confidaent: Control FLow
protection with Instruction and Data Authenticated Encryption,” in DSD,
2020.

[8] J. Laurent, V. Beroulle, C. Deleuze, F. Pebay-Peyroula, and A. Pa-
padimitriou, “Cross-layer analysis of software fault models and coun-
termeasures against hardware fault attacks in a RISC-V processor,”
Microprocessors and Microsystems, 2019.

[9] T. Chamelot, D. Couroussé, and K. Heydemann, “SCI-FI: Control Sig-
nal, Code, and Control Flow Integrity against Fault Injection Attacks,”
in DATE, 2022.

[10] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, “Hardware-Assisted
Run-Time Monitoring for Secure Program Execution on Embedded
Processors,” IEEE Trans. on VLSI Systems, 2006.

[11] R. de Clercq and I. Verbauwhede, “A survey of Hardware-based Control
Flow Integrity (CFI),” arXiv:1706.07257, 2017.

[12] R. Schilling, M. Werner, and S. Mangard, “Securing Conditional
Branches in the Presence of Fault Attacks,” arXiv:1803.08359, 2018.

[13] K. Wilken and J. P. Shen, “Continuous signature monitoring: Low-cost
concurrent detection of processor control errors,” IEEE TCAD, 1990.

[14] H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86),” in CCS, 2007.

[15] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: A new class of code-reuse attack,” in ASIACCS, 2011.

[16] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler,
and M. Payer, “Control-Flow Integrity: Precision, Security, and Perfor-
mance,” ACM Comput. Surv., 2017.

[17] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Trans. Inf.
Syst. Secur., 2009.

[18] W. Arthur, B. Mehne, R. Das, and T. Austin, “Getting in control of your
control flow with control-data isolation,” in CGO, 2015.

[19] OpenHW Group, “CV32E40P,” https://github.com/openhwgroup/cv32e40p,
2021.

[20] S. Tollec, M. Asavoae, D. Couroussé, K. Heydemann, and M. Jan,
“Exploration of Fault Effects on Formal RISC-V Microarchitecture
Models,” in FDTC, 2022.

[21] Yosys, “Yosys – Yosys Open SYnthesis Suite,” Yosys, 2023, https://
github.com/YosysHQ/yosys.

[22] P. Koopman, “32-bit cyclic redundancy codes for Internet applications,”
in DSN, 2002.

[23] “Embench™: Open Benchmarks for Embedded Platforms,”
https://github.com/embench/embench-iot, 2021.

[24] P. Maene and I. Verbauwhede, “Single-cycle implementations of block
ciphers,” in LightSec. Springer, 2015.

[25] S. Kim and A. K. Somani, “On-line integrity monitoring of micropro-
cessor control logic,” Microelectronics Journal, 2001.

Thomas Chamelot received the M.S. degree in
Cybersecurity from the University Toulouse III,
Toulouse, France in 2019, and the Ph.D. degree from
Sorbonne Univeristé, Paris, France, in 2022. His
current research interests include hardware security
and computer architecture.

Damien Couroussé is with CEA-List since 2011, as
a Research Engineer and Senior Expert. He received
the Ph.D. from the Institut National Polytechnique
de Grenoble in 2008. His research interests include
embedded software and its interaction with hard-
ware, compilation and runtime code generation for
performance and security, with a recent focus on
hardware security.

Karine Heydemann is an Associate Professor at
Sorbonne University / LIP6 since 2006 and a Senior
Expert Architect at Thales DIS since September
2022. She received the Ph.D. degree in Computer
Science from the University of Rennes 1 in 2004.
Her areas of expertise encompass hardware micro-
architecture, compilation, code optimization, and
physical attacks, including modelling of hardware
fault injection effects, automated code hardening and
robustness analysis.

https://github.com/YosysHQ/yosys
https://github.com/YosysHQ/yosys

	Introduction
	Motivating Example
	Background
	Threat Model
	Signature-Based Code and Control-Flow Integrity
	Indirect Branch Integrity

	MAFIA Concepts
	MAFIA Overview
	Pipeline State
	CACFI – Code Authenticity and Control-Flow Integrity
	The signature function
	The update function
	Signature verification

	CSI – Control Signal Integrity
	Indirect Control-Flow Handling
	Branch Prediction
	Interrupts Handling and Protection

	Implementation
	Pipeline State
	Signature and Update Functions
	MAFIA RISC-V ISA Extension
	Software Support
	Forwarding dependency elimination pass
	Dispatcher pass
	Patch placement pass
	Reference signature placement pass
	Dispatcher Generator
	Instrumentation of the Newlib C-library
	Signature Generator


	Security Analysis
	Pipeline State Verification
	Verification Workflow
	Verification Use Case and Verified Properties
	Verification Results

	Signature Functions
	Signature Verification
	Control Signal Integrity
	Control-Flow Integrity

	Experimental Evaluation
	Related Work
	Conclusion
	References
	Biographies
	Thomas Chamelot
	Damien Couroussé
	Karine Heydemann


