
FHEDA: Efficient Circuit Synthesis with Reduced

Bootstrapping for Torus FHE

Animesh Singh1, Smita Das1, Anirban Chakraborty1, Rajat Sadhukhan1,
Ayantika Chatterjee1, and Debdeep Mukhopadhyay1

1IIT Kharagpur

June 18, 2024

Abstract

Fully Homomorphic Encryption (FHE) schemes are widely used cryptographic
primitives for performing arbitrary computations on encrypted data. However, FHE
incorporates a computationally intensive mechanism called bootstrapping, that resets
the noise in the ciphertext to a lower level allowing the computation on circuits of
arbitrary depth. This process can take significant time, ranging from several minutes
to hours. To address the above issue, in this work, we propose an Electronic Design
Automation (EDA) framework FHEDA that generates efficient Boolean representations
of circuits compatible with the Torus-FHE (ASIACRYPT 2020) scheme. To the best
of our knowledge, this is the first work in the EDA domain of FHE. We integrate logic
synthesis and gate optimization techniques into our FHEDA framework for reducing
the total number of bootstrapping operations in a Boolean circuit, which leads to a
significant (up to 50%) reduction in homomorphic computation time. Our FHEDA is
built upon the observation that in Torus-FHE two consecutive Boolean gate evaluations
over fresh encryptions require only one bootstrapping instead of two, based on appropriate
parameter choices. By integrating this observation with logic replacement techniques
into FHEDA, we could reduce the total number of bootstrapping operations along with
the circuit depth. This eventually reduces the homomorphic evaluation time of Boolean
circuits. In order to verify the efficacy of our approach, we assess the performance of
the proposed EDA flow on a diverse set of representative benchmarks including privacy-
preserving machine learning and different symmetric key block ciphers.

1 Introduction

In the era of increasing digitization and data-driven technologies, ensuring the security and
privacy of sensitive information has become a paramount concern. One of the privacy-
preserving technologies that made rapid inroads in recent years is Fully Homomorphic
Encryption (FHE) which allows arbitrary computations on encrypted data. This enables
users to offload their private and sensitive data on “honest-but-curious” cloud servers enabling
secure computations on sensitive data while preserving confidentiality. FHE holds immense
promise for various applications, such as cloud computing, machine learning, and data

1

outsourcing, where privacy concerns have hindered the adoption of conventional data processing
approaches. In particular, Machine Learning (ML) based application has seen rapid advances
in recent years, driven by the availability of data and sophisticated algorithms. Most ML
models that are developed to solve real-world problems involve complex structures and
require high computational power to work on large datasets. Moreover, in multiple real-
world scenarios, ML models are developed and trained by one party (or entity) and made
available to the public as ML-as-a-service (MLaaS) in the pay-per-use model. While in the
first case, a user makes use of the computational power of the cloud by outsourcing both
model and data (in encrypted form) to the server1, in the second case, it aims to avail
services provided by the cloud keeping its own data private.

Fully Homomorphic Encryption [1, 2, 3, 4] has enabled the power of computing on encrypted
data, which means it allows computations on a collection of ciphertexts for a set of plaintext
m1, . . .mℓ and returns an encryption of a function/circuit evaluated on the input plaintexts
f(m1, . . .mℓ), without the knowledge of secret key. The security of FHE schemes relies on
hard problems such as Learning With Error (LWE) or its ring variant (RLWE). While the
idea of Homomorphic Encryption (HE) has been around in the cryptography community
since the 1970s, the significant impetus to the field of FHE came after the breakthrough of
Gentry’s work [5] in 2009, which proposed a Lattice-based scheme allowing any computations,
albeit computationally intensive but can perform arbitrary depth circuit using the technique
called “bootstrapping”. Owing to this seminal work and the introduction of bootstrapping,
multiple practical FHE schemes were proposed such as BF/V [6], BGV [2], CKKS [4],
etc. These are considered second-generation FHE schemes, that could perform arbitrary
homomorphic computations. The bootstrapping operation and the memory overhead for
the bootstrapping key (encryption of the secret key) have unfortunately restricted the
wide adoption of this promising primitive. Finally, the third generation schemes, namely
FHEW [7] and TFHE [3], allow arbitrary computations with unrestricted depth of circuits.
These schemes have revisited the concept of bootstrapping, making it relatively cheaper and
faster. But after every gate, a bootstrapping operation is performed. Therefore, the number
of gates as well as the depth of the circuit contributes to the overall latency and throughput
of FHE-based applications.

1.1 Motivation and Contribution

While FHE resolves the problem of computing homomorphic operations on encrypted data,
it comes with a computationally expensive operation, called bootstrapping. Amongst other
widely used FHE schemes like BGV/BFV, TFHE provides one of the most efficient gate-wise
bootstrapping operations, which operates after the homomorphic evaluation of every binary
gate. However, bootstrapping is still the costliest computation, taking up almost 99% of
the homomorphic gate computation in the TFHE scheme. Moreover, to implement a full-
fledged application one needs to create FHE-amenable circuits using TFHE gates. Although
manually designing such circuits is trivial for small applications, it becomes tedious for larger
circuits to perform complex tasks, such as performing ML-based operations. While attempts
have been made to provide synthesis frameworks for other privacy-preserving schemes like
Multi-Party Computation (MPC) [8], the literature currently lacks an automated framework
for synthesizing FHE-amenable circuits that can be utilized to perform homomorphic operations

1We use the terms cloud and server interchangeably.

2

on the cloud. In order to take advantage of the computational capabilities of FHE libraries
and integrate them with real-life applications, it is imperative to have an end-to-end framework
for synthesizing FHE-amenable circuits. Additionally, such a framework must optimize
the homomorphic gates used in the circuitry in order to minimize the huge overhead of
bootstrapping. In this work, we propose the first hardware synthesis framework for the
automated generation of FHE-friendly circuits for the TFHE scheme, wherein high-level
function descriptions are automatically compiled to efficient and optimized circuit representation
using logic synthesis and commercially available CAD tools. In particular, we make the
following contributions:

- We propose FHEDA, an automated framework for synthesizing depth-optimized Boolean
circuits with reduced bootstrapping and time-efficient implementation for TFHE scheme.

- We incorporate three novel optimizations in our framework to reduce the number
of gate and bootstrapping operations. First, we show that using multiple fan-in
gates with reduced bootstrapping instead of 2-input can optimize the total number
of bootstrapping required; as well as reduce the depth of the circuit. Secondly, we
perform NOT gate-based optimization which reduces the overall computation time
for the circuit. Thirdly, we define custom standard cell library sets to automatically
synthesize the most efficient circuit.

- We evaluated our proposed FHEDA flow on a set of representative benchmarks consisting
of privacy-preserving neural networks, popular symmetric key ciphers, and private set
intersections. We could exhibit a percentage reduction in circuit depth and homomorphic
evaluation time up to 50%. Finally, we describe an end-to-end implementation for the
oblivious inference of a CNN on encrypted data using our FHEDA flow.

Comparison with existing works. To the best of our knowledge it’s the first work
on developing EDA frameworks for generating efficient FHE circuits by reducing the total
number of bootstrapping operations. Whereas, recent works [9, 10] have proposed synthesis
flows related to FHE circuits considering bootstrapping time optimizations. A recently
proposed FHE-specific circuit synthesis tool [9] performs amortized bootstrapping for FHEW-
like FHE schemes. However, these flows are only applicable to the Field Programmable
Gate Array (FPGA) domain as they are only capable of performing Look-Up-Table (LUT)
optimizations. In contrast, our proposed flow is more generic and can work on gate-
level circuits integrating three distinct optimizations (as elaborated later in the paper).
As bootstrapping is the most resource-intensive operation, we present, both empirical and
theoretical evidence demonstrating that two consecutive gates in TFHE can be computed
without the need for bootstrapping leading to the efficient use of 3-input Boolean gates.
However, some other works [11, 12, 13] propose circuit synthesis flows with the objective of
optimizing Garbled and MPC circuits concerning latency, gate count, and area footprint. It
may be emphasized that the optimization techniques adopted in these MPC and Garbled
circuit-related approaches are not applicable to the FHE domain. For instance, Songhori
et al.[11] propose Garbled circuits optimization with the objective of using more NAND
gates to generate the latency-optimized circuit as it is preferred by classical flow over AND-
XOR gates due to their lower area footprint and latency costs. In contrast, our proposed
flow uses more AND-XOR gates during optimization to synthesize FHE-friendly circuits.
Similarly, CryptoNAS [13] offers a ReLU network optimization strategy by reducing ReLU
layers for latency optimization related to MPC problems. In contrast, our approach adopts

3

a bottom-up optimization method for FHE circuits, building FHE-friendly components from
fundamental levels ensuring FHE-related constraints are met at the gate level in the design
cycle process.

2 Related Works

Adapting the hardware at a refined level facilitates detailed parallel processing and efficient
resource utilization thereby yielding enhanced performance and energy efficiency. Multiple
optimizations and acceleration strategies are being explored to handle the computational and
memory requirements of FHE. In the realm of FHE computations on CPU, many software
libraries such as SEAL [14], HELib[15], TFHE, PALISADE2 accelerate the performance of
different FHE schemes. Several research illustrated that GPU-based implementations [16,
17, 18, 19] make use of inherent parallelism in FHE. Intel proposed Intel Homomorphic
Encryption Acceleration Library (HEXL) [20] for fast number theoretic transform (NTT)
operations. Several NTTs are inefficient on CPUs and GPUs, however, can be accelerated
using specific functional units for which prior literature studies [21, 22, 23, 24, 25, 26]
focus on Application Specific Integrated Circuit (ASIC) and Field Programmable Gate
Array (FPGA) based accelerators. Existing literature suggests GPU-enabled TFHE libraries
such as cuFHE, NuFHE [27]. The computations on encrypted AND gates on the TFHE
scheme take 13ms [3] on a CPU. However, these improvements are also slow and to mitigate
the speed limitations, FPT [28], a Fixed-Point FPGA accelerator is proposed for TFHE which
is compute-bound with 937× faster than CPU implementations and 2.5× faster than the
prior FHE accelerator, MATCHA [29] by Jiang et al. and cuFHE. SynCirc [30], an efficient
hardware synthesis framework is designed to generate multiplicative depth optimizations
for secure MPC applications. Past studies have proposed ASIC accelerators that combine
homomorphic encryption with MPC [31, 32]. Cheetah [32] introduced algorithmic and
hardware optimizations for HE DNN and used MPC instead of bootstrapping to reduce the
errors during the HE operation. F1 [22] is the first programmable FHE accelerator that has
achieved ASIC-level performance and introduced effective design by accelerating primitive
FHE schemes. BTS [33], a bootstrappable FHE accelerator achieved a speedup of 2237×
in HE multiplication throughput in contrast to the state-of-the-art CPU implementations.
However, the existing literature does not offer any automated framework for synthesizing
FHE-amenable circuits.

3 Preliminaries and Background

3.1 Notations and Mathematical Background

We use T to denote the Torus (the set of all real numbers modulo 1). We write x ← χ
to represent that an element x is sampled uniformly at random from a set/distribution X .
For a, b ∈ Z such that a, b ≥ 0, we denote by [a] and [a, b] the set of integers lying between
1 and a (both inclusive), and the set of integers lying between a and b (both inclusive)
respectively. We denote ⟨x,y⟩ to represent a vector dot product between the vectors x and

2https://gitlab.com/palisade/palisade-release

4

y. We refer to λ ∈ N as the security parameter and denote by poly(λ) and negl(λ) any
generic (unspecified) polynomial function and negligible function in λ, respectively.3

3.2 Fully Homomorphic Encryption

Here we briefly discuss the definition of FHE and its functionality. For example, in an
additive homomorphic encryption scheme, FHE.Dec(FHE.Enc(m0+m1)) = FHE.Dec(FHE.Enc(m0))+
FHE.Dec(FHE.Enc(m1)). Fully Homomorphic Encryption (FHE) extends this property to
support both addition and multiplication over encrypted data. Modern FHE schemes
rely on hardness assumptions like Learning with Errors (LWE) or Ring Learning with
Errors (RLWE) to introduce carefully calibrated noise during encryption. However, this
noise grows during computation, potentially leading to incorrect decryption once it surpasses
a certain threshold. To address this issue, FHE schemes employ ciphertext maintenance
operations called bootstrapping that reduce the noise growth without altering the result.

3.3 Torus FHE (TFHE)

Here we provide a formal definition of TFHE scheme [3], which is the underlying encryption
scheme in the present work.

Definition 1 (Torus FHE) TFHE scheme is a tuple of five PPT (Probabilistic Polynomial
Time) algorithms (TFHE.Setup,TFHE.KeyGen,TFHE.Enc,TFHE.Dec,
TFHE.Eval).

• params ← TFHE.Setup(1λ): Given a security parameter λ, this function returns a
public parameter params.

• (sk, pk) ← TFHE.KeyGen(params): It takes the public parameter params as input and
generates a secret key sk and the corresponding public key pk.

• ct ← TFHE.Enc(m, pk): It takes a message m ∈ {0, 1} and the public key pk =
⟨a, sk⟩+ e as input. Samples a random vector a ∈ Zn

q and a noise value e← Gα and
computes b =

∑
S pk + ∆(m), where,

∑
S denotes random subset sum over the set

S, ∆(m) be the encoding of the plaintext m and Gα be a Gaussian distribution with
standard deviation α. It finally returns a ciphertexts ct = (b,a).

• m ← TFHE.Dec(ct⋆, sk): Given an evaluated ciphertext ct⋆ = (b⋆,a⋆) ∈ Tn+1 and
the secret key sk, returns a message bit m⋆ ∈ {0, 1} which minimizes |b⋆ − ⟨a⋆, sk⟩ −
∆(m⋆)|.

• ct⋆ ← TFHE.Eval({cti}i∈ℓ, pk, C): It takes a set of ciphertexts {ct1, . . . , ctℓ}, the
public key pk and a circuit C : {0, 1}ℓ → {0, 1}ℓ′ . Returns an evaluated ciphertext ct⋆

which is an encryption of m⋆ = C(m1, . . . ,mℓ) under the secret key sk, where ml is
the underlying plaintext of ctl for all l ∈ ℓ.

3A function f : N→ N is said to be negligible in λ if for every positive polynomial p, f(λ) < 1/p(λ) when
λ is sufficiently large.

5

3.4 Security Definition of TFHE Scheme

We now discuss the formal security definition of our underlying encryption scheme TFHE [3].

Definition 2 (IND-Security) We define GTFHE,Ch,Ad
(1λ) a game between a PPT challenger

Ch and a PPT adversary Ad.

GTFHE,Ch,Ad
(1λ):

Initialization Phase.

1 Ch samples public key pk and secret key sk and the public key pk is sent to Ad.

Query Phase. In the query phase Ad may generate polynomially many queries. Each of
the queries consists of the following two steps:

2 Ad sends ℓ plaintexts {m0, . . . ,mℓ−1} ∈ M to Ch. Ch encrypts each mi to generate
ciphertexts cti = TFHE.Enc(mi, sk). Ad is handed over {cti}i∈[ℓ].

3 Ad sends a circuit C : {0, 1}ℓ → {0, 1}⋆. Ch computes the evaluated ciphertext as

ct = TFHE.Eval({cti}i∈{0,1}, C, pk).

Ad is handed over ct.

Challenge Phase.

4 In the challenge phase, Ad sends m′
0,m

′
1 ∈M and m′

i /∈ {m0, . . . ,mℓ−1}, ∀i ∈ {0, 1} of
its choice. Ch then samples r ← {0, 1} randomly and returns ct′r = TFHE.Enc(m′

r, sk)
to Ad.

Output Phase.

5 Adversary Ad eventually outputs a bit r′ ∈ {0, 1}.

6 if r′ = r, the game outputs 1, otherwise it outputs 0.

We say that the TFHE scheme is IND-secure if, for any security parameter λ ∈ N, for
any PPT adversary Ad, letting γβ = Pr[GTFHE,Ch,Ad

(1λ) = β], for β ∈ {0, 1} (where the
probability is over the random coins used by TFHE.KeyGen,TFHE.Enc, TFHE.Eval, and the
adversary Ad), we have

∣∣γ0 − γ1
∣∣ ≤ negl(λ).

3.5 HDL Synthesis using Bristol Format

In this section, we present an essential step in the design flow of digital hardware circuits
or, Hardware Description Language (HDL) synthesis that involves the transformation of a
high-level description of hardware functionality into gate-level representations amenable for

6

hardware implementation. Using an HDL function description as input, a logic synthesis
tool analyses it and generates an appropriate result for various hardware platforms such as
FPGAs and ASICs. In our framework, we perform the logic synthesis using the industry-
leading software, Cadence Genus Synthesis Solution4. The design flow begins with the
Register Transfer Level (RTL) design behavioral description in Verilog HDL followed by the
logic synthesis of the circuit in Cadence Design Framework to generate gate-level synthesized
netlists, such as Bristol formats.

Without
bootstrapping gate

With
bootstrapping gate

(a) Gate representation with
and
without Bootstrapping

x1
x2

x3
yx4

(b) Function representation
with 2-input
AND gates (Evaluation time:
0.17 secs)

x1
x2

x3
yx4

3-input AND gate with
reduced bootstrapping

(c) Function representation
with 2-input and 3-input
AND gates with reduced
bootstrapping (Evaluation
time: 0.12 secs)

Figure 1: Notation of Bootstrapping and Comparison between 2-input and 3-input AND
gates with reduced bootstrapping with a toy example

Now, we provide a brief description of the structure of Bristol formats5. Consider the Bristol
format of Half-Adder circuit presented in Listing 1. In line-1, ‘2’ and ‘4’ denote the number
of gates and the wires respectively. In line-2, the first two values i.e., ‘2’ and ‘2’ refer to the
size of the two inputs, and the third value ‘2’ is the size of the output. The last entry in the
line-3 represents XOR operation taking the third and the fourth values i.e., ‘1’ and ‘2’ as
input wires, and the result after homomorphic XOR operation will be written in the output
wire number ‘3’. The first two values ‘2’ and ‘1’ denote the number of inputs and the number
of outputs. The Bristol formats are known to be TFHE-friendly as it is represented using
only binary gates. In the following sections, we present a detailed discussion on constructing
optimal Boolean representations of circuits, which is used for homomorphic evaluation using
the TFHE scheme.

Listing 1: Bristol Format of Half Adder

1 2 4
2 2 2 2
3 2 1 1 2 3 XOR
4 2 1 1 2 4 AND

4https://www.cadence.com/en US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-
solution.html

5https://homes.esat.kuleuven.be/ nsmart/MPC/old-circuits.html

7

4 TFHE Friendly Circuit Representations

Despite recent advancements in homomorphic encryption schemes and optimization techniques,
the performance overhead remains a significant challenge in practical implementations of
FHE systems. This is due to the large overhead of the bootstrapping time during homomorphic
computation. Ample FHE schemes have been proposed in the last decade; amongst them
BGV [2], BFV [1], TFHE [3], CKKS [4] are widely used FHE schemes. Here, BGV and BFV can
directly operate on integer plaintexts, whereas CKKS allows homomorphic operations on real
numbers (or, complex numbers). But TFHE is generally used for binary messages ∈ {0, 1},
and can evaluate any binary logic gate. TFHE supports bootstrapping after evaluation of
every binary gate (except NOT gate), thus one can evaluate any arbitrary depth Boolean
circuits. Compared to other FHE schemes like BGV/BFV, TFHE provides much faster
bootstrapping for binary gate evaluation6. As mentioned earlier, our present work is to
generate an optimal Boolean representation of circuits by introducing a few optimization
techniques, which are currently focused on the TFHE scheme.

Due to the notion of the gate-bootstrapping technique in the TFHE scheme, one can evaluate
a binary gate followed by a bootstrapping operation. However, bootstrapping is essentially
homomorphic decryption, which means only one binary gate evaluation can be performed
without bootstrapping (refer to Section 5.1 for more details). This means that evaluating
one binary gate without bootstrapping will result in correct decryption, but the output
will be a noisy ciphertext, which when fed into another binary gate may result in incorrect
decryption. This happens due to the noise growth after the second binary gate, that might
exceed the threshold of correct decryption. However, in this work, we propose 3-input gates
instead of 2-input (or, binary) gates, where a 3-input gate requires only one bootstrapping.
While in the original TFHE scheme, to evaluate a 3-input Boolean gate, two binary gates are
required resulting in two bootstrapping. In Section 5.5 we discuss why it is sufficient to have
only 3-input gates rather than n-input gates with n ≥ 4. This helps us to construct optimal
circuit descriptions for the TFHE scheme. In Figure. 1a, we denote the Boolean gate with
“ × ” symbol as “without bootstrapping”, whereas the other one as “with bootstrapping”.
We now mention the optimization techniques for the homomorphic circuit evaluation, which
is as follows:

- In Figure. 1c we can reduce one bootstrapping from the first gate given a chain of
two gates connected in series (shown within dotted lines), resulting in a construction
of 3-input gate. Thus a total of two bootstrappings are required for the entire circuit
evaluation. We use this method of “reduced bootstrapping” to replace such a chain of
Boolean gates. Consequently, if a Boolean circuit has n inputs, then with the reduced
bootstrapping technique we can effectively reduce the total number of bootstrapping
operations almost by ⌈n2 ⌉, as illustrated in the subsequent section.

- The NOT gates in TFHE require no bootstrapping, this motivates us to reduce other
bootstrappable gates such as XORs, ANDs by involving more number of NOT gates
without altering the functionality of the circuits. For example, consider the following
algebraic operations: (a∧ b)⊕ a, (a∧ b)⊕ b, where a and b are Boolean variables with
⊕, ∧ and ·̄ denoting XOR, AND and NOT gate operations respectively. Here, we can

6Note that, for arithmetic circuits, BGV/BFV can perform better than TFHE, because in TFHE
evaluating arithmetic circuits requires first decomposing the input plaintexts into bits and encrypting each
bit separately, resulting in large number of ciphertexts.

8

replace the above algebraic operation with a ∧ (b̄) and b ∧ (ā) respectively. Thus we
reduce one bootstrappable gate (XOR) and introduce one NOT gate, resulting in sub-
optimal algebraic formulation with lesser homomorphic evaluation time. We denote
this technique as “Inverter based optimization”.

We use the above-mentioned techniques to further optimize the efficient Boolean representation
generated using our circuit synthesis tool. Throughout our evaluation of Boolean circuits,
we have made significant and crucial observations concerning two key factors: circuit depth
and evaluation time. In the following section, we explore some intriguing test cases that
will play a pivotal role in optimizing circuit synthesis for our framework.

Lib Set1 = {XOR,AND,NOT},

Lib Set2 = {NAND,NOR,OR}
⋃

Lib Set1,
(1)

4.1 Notable Observations on Evaluating Boolean Circuits in TFHE

As the TFHE scheme operates in binary message space, it provides an efficient evaluation
of Boolean circuits of unrestricted depth for computing arbitrary functions, due to the per
gate bootstrapping technique. As we already mentioned, in TFHE at most two binary
gates can be evaluated without bootstrapping (ref. Figure. 1c) with suitable parameter
choices (discussed in Section 5.3). This allows us to construct efficient 3-input Boolean
gates requiring only one bootstrapping. We now note some unique observations related to a
Boolean circuit evaluation in TFHE scheme that pave the way for optimized circuit synthesis
for our framework (discussed in Section 6). We resort to following three simple experiments
by evaluating toy Boolean functions to showcase our observations.

Experiment 1. Let us consider a Boolean function, y = x1 ∧ x2 ∧ x̄3 ∧ x4. We synthesized
and represented the Boolean function using Bristol format for the circuits with different gate
constructions as shown in Figure. 1b and Figure. 1c. We then evaluated both the circuit’s
constructions using the TFHE scheme and observed the following: an evaluation time of 0.17
secs is achieved using the construction as in Figure. 1b (using all bootstrap-enabled gates).
While using the gate construction of Figure. 1c (using a reduced number of bootstrapping),
we achieve an evaluation time of 0.12 secs. Thus we gained an efficiency of around 30% on
this simple Boolean function using the construction as shown in Figure. 1c. Now, consider
the dotted line in Figure. 1c, where two binary gates are connected in series. In this case,
we can avoid the bootstrapping in the first gate which leads to the construction of a 3-input
Boolean gate with reduced bootstrapping. Here, with “reduced” we refer that our 3-input
gates require only one bootstrapping unlike in the original TFHE scheme. Extending the
notion of per-gate bootstrapping from TFHE scheme, we can introduce these 3-input gates
with reduced bootstrapping as a part of basic Boolean gates to construct our modified
TFHE scheme, because our 3-input gates support the per gate bootstrapping notion like
in the TFHE scheme. With this introduction of 3-input gates with reduced bootstrapping
technique, we can achieve the depth improvement of 33.3%, considering a 3-input gate
has depth 1 due to single bootstrapping requirement. Therefore, we make the following
inference.

9

Employing Boolean gates with reduced bootstrapping has the potential to enhance the
efficiency of executing Boolean functions in our modified TFHE scheme.

In the succeeding section (cf. Section. 5), we explore this observation in greater detail
and provide theoretical insights to substantiate the underlying reasons behind the above
observation.

Experiment 2. Here we consider a Boolean function, (x1 ∧ x2) ⊕ x1, where ⊕ represents
XOR operation. We conducted synthesis and evaluation of this function in the TFHE setup,
which took approximately 0.174 secs with a reported circuit depth of 2. Next, we applied
our Inverter based optimization where we use NOT gate to transform the function into the
form x1 ∧ x̄2, resulting in a reduced depth of 1 and an evaluation time of 0.086 secs. As a
result, we observed an approximate 50% improvement in both evaluation time and circuit
depth. Therefore, we make the following inference.

Inverter gates do not require bootstrapping, leading to more efficient homomorphic
computation times when using Inverter-based optimization.

Experiment 3. We now elaborate on using standard cell library (shown in Equation 1),
which includes basic AND, NAND, NOR, XOR and NOT gates to construct Boolean circuits.
In Lib Set1 we keep only the Boolean gates used in Bristol formats and in Lib Set2 we
keep other basic Boolean gates along with XOR, AND and NOT, therefore, our optimal
Boolean representation is not specific to Bristol formats, it can consist of Boolean gates from
Lib Set2. For example, consider a Boolean circuit: (x̄0 ∧ x̄1)⊕ (¯x2 ∧ x3). The homomorphic
evaluation of the Bristol representation of the above circuit takes around 259.32ms, but using
Boolean gates from the standard library cell we achieve the following optimal representation:
(x0 ∨ x1)⊕ (x2∧̄x3), where ∨ and ∧̄ represents OR and NAND gates respectively. Using the
later Boolean representation, we achieve an improvement with 258.99ms of homomorphic
evaluation time. We now make our third inference. This improvement will have a noticeable
effect on large circuits such as AES block ciphers or neural networks.

Using Boolean gates from standard cell library in the TFHE scheme resulting in more
efficient homomorphic evaluation time.

A summary of all our experimental observations is provided in Table 1. Overall, we show
that this exploration of gate-level design techniques and their evaluation on the TFHE scheme
contributes valuable insights towards advancing the field of homomorphic encryption and
enhancing its practicality in various domains requiring privacy-preserving computations.
We utilize these techniques to introduce the FHEDA flow, which will be further explored
in greater detail in the subsequent sections. Before delving into that, our aim in the next
section is to offer a comprehensive analytical and theoretical demonstration, highlighting
how the integration of Boolean gates with reduced bootstrapping can enhance the efficiency
of homomorphic evaluation of Boolean circuits in the FHE domain.

5 Boolean Gates with Reduced Bootstrapping

In the Bristol Formats, the circuits are mainly represented with 2-input XOR and AND
gates with unary NOT gates. Interestingly, these Bristol representations can be modified

10

Table 1: Summary of Results from Toy Experiments. (τ -Evaluation Time, δ-Depth of the
Circuit)

Expt.
τ(sec.), δ % Gain

(τ , δ)
Inference

Initial Final

1 0.17, 3 0.12, 2 31.3, 33.3
Reduced

bootstrapping
gates

2 0.174, 2 0.086, 1 50.5, 50
Inverter-based
optimization

3 0.2593, NA 0.2589, NA 0.0015, NA
Using

NAND-OR gates
during synthesis

to incorporate multi-input Boolean gates to improve the efficiency and throughput of the
Boolean circuit evaluations. In this section, we show, both theoretically and analytically,
that using 3-input gates with reduced bootstrapping in place of 2-input gates provides a
significant advantage in terms of homomorphic computational time. In particular, we show
that by using 3-input gates, we reduce the total number of bootstrapping operations required
in a circuit and simultaneously lead to a lower depth of the circuits.

In general, the majority of standard cell libraries consist of both 2-input and multi-input
gates, often supporting up to five inputs. In terms of hardware area/latency, in most cases
using a multi-input gate is generally smaller and more efficient in terms of latency than the
combined areas of multiple 2-input gates. Consequently, if a logic synthesizer is provided
with a behavioral description of a system in a hardware description language and tasked
with generating an area-optimized/latency-optimized circuit, it typically designs a circuit
that utilizes a combination of gates having multiple inputs. In this section, we will dive
deeper into this approach and demonstrate through both empirical and theoretical analysis
that the utilization of a combination of 2-input and 3-input reduced bootstrapping gates
leads to the creation of highly optimized TFHE-friendly circuits. Specifically, these circuits
exhibit improved performance in terms of homomorphic evaluation.

5.1 Evaluating Single 2-input Gate Without Bootstrapping

In the previous section, we observed that in Figure. 1c, bootstrapping is not required for the
first stage 2-input AND gate. Here, we present a theoretical explanation for why it is possible
to evaluate a 2-input Boolean gate without the need for performing the bootstrapping
operation within the Torus-FHE scheme. Let us assume, ct1 = (b1,a1) and ct2 = (b2,a2)
are two TFHE ciphertexts encrypting m1 ∈ {0, 1} and m2 ∈ {0, 1} respectively. According
to the TFHE library, the plaintexts m1 and m2 are scaled in the range [− 1

8 ,
1
8]. Assume, ∆

be the scaling function that maps ∆(0) = − 1
8 and ∆(1) = 1

8 . Hence, we have

b1 = ⟨a1, sk⟩+∆(m1) + e1,

b2 = ⟨a2, sk⟩+∆(m2) + e2,

where, sk ∈ {0, 1}n be the secret key and e1, e2 ∈ Gα are the encryption noise sampled
from a Gaussian distribution with standard deviation α. According to the TFHE library, to
perform correct decryption the encryption noises should satisfy ∥e1∥∞, ∥e1∥∞ < 1

16 .

11

Now, we demonstrate the homomorphic AND opertion between ct1 and ct2,

HomAND(ct1, ct2) =

(
−1

8
,0

)
+ (ct1 + ct2).

Let, ct⋆ = (b⋆,a⋆) be the output of the homomorphic AND operation HomAND(ct1, ct2).
Hence, we have

a⋆ = (a1 + a2),

b⋆ = −1

8
+ a⋆ · sk+ (∆(m1) + ∆(m2)) + (e1 + e2)

Now, let us analyze what will happen if we perform decryption of ct⋆ without performing
the bootstrapping over ct⋆ for each of the cases of choosing the messages (m1,m2) and
noises (e1, e2). In order to decrypt ct⋆, first compute a phase Φ = b⋆−a⋆ · sk (mod 1), now
if Φ > 0 then return 1, otherwise return 0.

Consider the following analysis of the decryption operation of ct⋆ with m1 = 0,m2 = 0,
i.e., ∆(m1) = − 1

8 ,∆(m2) = − 1
8 and the encryption noises with the same sign, i.e., either

0 ≤ e1, e2 < 1
16 , or −

1
16 < e1, e2 ≤ 0,

Φ = −1

8
+ (∆(m1) + ∆(m2)) + (e1 + e2),

= −1

8
+

(
−1

8
− 1

8

)
+ (e1 + e2),

= −3

8
+ (e1 + e2),

= −3

8
+ δ

[
0 ≤ δ <

1

8
, as 0 ≤ e1, e2 <

1

16

]
,

= δ′
[
−3

8
≤ δ′ < −1

4
, for both m1 = 0,m2 = 0

]
.

Now, with another extreme scenario when both the encryption noises are negative,

= −3

8
+ (e1 + e2),

= −3

8
+ δ

[
0 ≥ δ > −1

8
, as − 1

16
< e1, e2 ≤ 0

]
,

= δ′
[
−1

2
< δ′ ≤ −3

8
, for both m1 = 0,m2 = 0

]

In both of these cases, − 1
2 < Φ < − 1

4 , i.e., Φ (mod 1) = Φ < 0, hence the decryption of
AND upon m1 = 0 and m2 = 0 is 0, which is a correct decryption. Now, consider when
both the plaintexts are m1 = m2 = 1, i.e., ∆(m1) = ∆(m2) =

1
8 ,

12

Φ = −1

8
+ (∆(m1) + ∆(m2)) + (e1 + e2),

= −1

8
+

(
1

8
+

1

8

)
+ (e1 + e2),

=
1

8
+ (e1 + e2),

=
1

8
+ δ

[
0 ≤ δ <

1

8
, as 0 ≤ e1, e2 <

1

16

]
,

= δ′
[
1

8
≤ δ′ <

1

4
, for both m1 = 1,m2 = 1

]
.

Now, with another extreme when both the encryption noises are negative,

=
1

8
+ (e1 + e2),

=
1

8
+ δ

[
0 ≥ δ > −1

8
, as − 1

16
< e1, e2 ≤ 0

]
,

= δ′
[
0 ≤ δ′ <

1

8
, for both m1 = 1,m2 = 1

]
.

In both of these cases, 0 ≤ Φ < 1
4 , i.e., Φ (mod 1) = Φ > 0, hence the decryption of AND

upon m1 = 1, m2 = 1 is 1, which is a correct decryption. We now consider the case when
both the plaintexts are of opposite sign, without loss of generality consider m1 = 0,m2 = 1,
and thus ∆(m1) = − 1

8 and ∆(m2) =
1
8 ,

Φ = −1

8
+ (∆(m1) + ∆(m2)) + (e1 + e2),

= −1

8
+

(
−1

8
+

1

8

)
+ (e1 + e2),

= −1

8
+ (e1 + e2),

= −1

8
+ δ

[
0 ≤ δ <

1

8
, as 0 ≤ e1, e2 <

1

16

]
,

= δ′
[
−1

8
< δ′ < 0, for m1 = 0,m2 = 1

]
.

Again consider another extreme case when both the encryption noises are negative,

13

= −1

8
+ (e1 + e2),

= −1

8
+ δ

[
0 ≥ δ > −1

8
, as − 1

16
< e1, e2 ≤ 0

]
,

= δ′
[
−1

4
< δ′ < −1

8
, for m1 = 0,m2 = 1

]
.

In both of these cases, − 1
4 < Φ < 0, i.e., Φ (mod 1) = Φ < 0 hence the decryption of AND

upon m1 = 0 and m2 = 1 is 0, which is a correct decryption. So far, we have demonstrated
that the extreme choices of encryption noises i.e., when both of them are of the same sign,
we can achieve correct decryption without the bootstrapping and it is trivial to show similar
cases when noises are of the opposite sign; that is the value of δ′ in each of the above cases
will remain in the same range. A similar approach as mentioned above can be achieved for
homomorphic XOR operation on ct1 and ct2, which is,

HomXOR(ct1, ct2) =

(
1

4
,0

)
+ 2 · (ct1 + ct2).

5.2 Construction of 3-input Gates

The above analysis motivates us to construct 3-input AND and XOR gates. In TFHE
homomorphic XOR is defined as HomXOR(ct1, ct2) =

(
1
4 ,0

)
+ (ct1 + ct2). Now to perform

homomorphic XOR over three inputs ct1, ct2 and ct3, we perform the following,

cttmp =

(
1

4
,0

)
+ (ct1 + ct2),

ct⋆ =

(
1

4
,0

)
+ (cttmp + ct3).

Here, cttmp can be computed without bootstrapping as described earlier, but ct⋆ should
result in a decryption correctness. Note here that, to achieve correctness of a 3-input XOR
gate taking ct1, ct2 and ct3 as input, the noise in the resultant ciphertext ct⋆ should lie
within the threshold of decryption correctness even without bootstrapping; because the
bootstrapping operation is essentially a homomorphic decryption operation which only
helps to retain correctness in further computations by reducing the noise within a required
threshold. For that, we propose a 3-input XOR gate construction that results in correct
decryption even without bootstrapping. However, our 3-input gate is followed by a bootstrapping
to retain the correctness in further homomorphic computation. We define our 3-input
homomorphic XOR as,

HomXOR(ct1, ct2, ct3) =

(
1

2
,0

)
+ 2 · (ct1 + ct2 + ct3),

14

Table 2: Homomorphic Evaluation time in ms of 2-input and 3-input XOR gate

Fan-in HomXOR time Bootstrapping time
Total eval.

time
2 0.083 86.25 86.33
3 0.166 86.25 86.41

and, we define our 3-input homomorphic AND gate as,

HomAND(ct1, ct2, ct3) =

(
−1

8
,0

)
+

1

2
· (ct1 + ct2 + ct3).

In the following section, we prove the correctness of our proposed 3-input gates. As
bootstrapping is the primary bottleneck of evaluating a Boolean gate, both the 2-input
and 3-input gates take approximately similar evaluation time (ref. Table 2).

5.3 Proof of Correctness of 3-input Gates

In this section, we provide a detailed mathematical explanation for the correctness of our
proposed 3-input Boolean gates. Recall from Section 5.2 that our 3-input XOR is defined
as,

HomXOR(ct1, ct2, ct3) =

(
1

2
,0

)
+ 2 · (ct1 + ct2 + ct3).

Before, diving into the correctness, we recall that our correctness of 3-input gates relies on
the fact that the noise ê in the ciphertext after two Boolean operations remain within the
threshold of correct decryption, i.e., ê < 1

16 , as mentioned in the TFHE scheme. There are
two extreme limits of Gaussian noise distribution are mentioned in TFHE; one distribution
having standard deviation αmin = 2−15 corresponds to the minimum value to achieve
the required security (128-bit) and the other standard deviation αmax = 2−6 provides
the maximum value to retain correctness. From the property of Gaussian distribution,
we have |ê| < 4 · αmax = 1

16 . Observe that, in a Boolean gate the noises in the input
ciphertexts are added, and after bootstrapping they are reduced within a required threshold
to retain correctness. A bootstrapping operation is a homomorphic decryption; thus the
output of a 3-input homomorphic Boolean gate should result in correct decryption even
without bootstrapping (ref. Section 5.2), for that the noise in the resultant ciphertext
should lie within the threshold. Therefore, we sample the encryption noises from αmin,
maintaining 128-bit security. Hence, the initial noise e in the input ciphertexts lies within
|e| < 4 · αmin = 2−13. As a result, the final noise ê after a 3-input homomorphic gate lies
within 2−4; and after bootstrapping ê is removed and a fresh noise sampled from Gαmin

, a
Gaussian distribution with standard deviation αmin is added.

Let us now delve into the correctness of a 3-input gate without bootstrapping. Here, we
choose 3-input HomXOR as an example. Extending from Section 5.1, the phase computed
during decryption of after a 3-input HomXOR can be written as,

Φ =
1

2
+ 2 · (∆(m1) + ∆(m2) + ∆(m3)) + 2 · (e1 + e2 + e3)

15

.

Consider the analysis of the decryption operation of with m1,m2,m3 = 0, i.e., ∆(m1) =
∆(m2) = ∆(m3) = − 1

8 .

Φ =
1

2
+ 2 ·

(
−1

8
− 1

8
− 1

8

)
+ 2 · (e1 + e2 + e3),

= −1

4
+ 2 · (e1 + e2 + e3),

= −1

4
+ δ

[
|δ| < 2−10, as |e1|, |e2|, |e3| < 2−13

]
.

In this cases, Φ ≈ − 1
4 , or, Φ (mod 1) = − 1

4 < 0. Hence, the decryption of 3-input XOR
upon m1 = m2 = m3 = 0 is 0, which is a correct decryption. Now, consider when the
plaintexts are m1 = m2 = m3 = 1, or, ∆(m1) = ∆(m2) = ∆(m3) =

1
8 ,

Φ =
1

2
+ 2 ·

(
1

8
+

1

8
+

1

8

)
+ 2 · (e1 + e2 + e3),

=
5

4
+ 2 · (e1 + e2 + e3),

=
5

4
+ δ

[
|δ| < 2−10, as |e1|, |e2|, |e3| < 2−13

]
.

In this cases, Φ ≈ 5
4 , or, Φ (mod 1) ≈ 5

4 − 1 = 1
4 > 0 hence, the decryption of 3-input

XOR upon m1 = m2 = m3 = 1 is 1, which is a correct decryption. Now, consider when
two plaintext bits are 0, without loss of generality consider m1 = m2 = 0, and m3 = 1, or,
∆(m1) = ∆(m2) = − 1

8 , and ∆(m3) =
1
8 ,

Φ =
1

2
+ 2 ·

(
−1

8
− 1

8
+

1

8

)
+ 2 · (e1 + e2 + e3),

=
1

4
+ 2 · (e1 + e2 + e3),

=
1

4
+ δ

[
|δ| < 2−10, as |e1|, |e2|, |e3| < 2−13

]
.

In this cases, Φ ≈ 1
4 , or, Φ (mod 1) = 1

4 > 0, hence the decryption of 3-input XOR upon
m1 = m2 = 0, and m3 = 1 is 1, which is a correct decryption. Now, consider when two
plaintext bits are 1, without loss of generality consider m1 = m2 = 1, and m3 = 0, or,
∆(m1) = ∆(m2) =

1
8 , and ∆(m3) = − 1

8 ,

Φ =
1

2
+ 2 ·

(
1

8
+

1

8
− 1

8

)
+ 2 · (e1 + e2 + e3),

=
3

4
+ 2 · (e1 + e2 + e3),

=
3

4
+ δ

[
|δ| < 2−10, as |e1|, |e2|, |e3| < 2−13

]
.

16

In this cases, Φ ≈ 3
4 , or, Φ (mod 1) ≈ 3

4 − 1 = − 1
4 < 0 hence, the decryption of 3-input

XOR upon m1 = m2 = 1, and m3 = 0 is 0, which is a correct decryption.

Similarly, for 3-input AND gate, i.e., HomAND(ct1, ct2, ct3) =
(
− 1

8 ,0
)
+ 1

2 · (ct1 + ct2 +
ct3) we can prove the correctness as follows, from Section 5.1, the phase computed during
decryption of after a 3-input HomAND can be written as,

Φ = −1

8
+

1

2
· (∆(m1) + ∆(m2) + ∆(m3)) +

1

2
· (e1 + e2 + e3)

.

Consider the analysis of the decryption operation of with m1,m2,m3 = 0, i.e., ∆(m1) =
∆(m2) = ∆(m3) = − 1

8 .

Φ = −
1

8
+

1

2
·
(
−
1

8
−

1

8
−

1

8

)
+

1

2
· (e1 + e2 + e3),

= −
5

16
+

1

2
· (e1 + e2 + e3),

= −
5

16
+ δ

[
|δ| < 2−12, as |e1|, |e2|, |e3| < 2−13

]
.

In this cases, Φ ≈ − 5
16 , or, Φ (mod 1) = − 5

16 < 0, hence, the decryption of 3-input AND
upon m1 = m2 = m3 = 0 is 0, which is a correct decryption. Now, consider when the
plaintexts are m1 = m2 = m3 = 1, or, ∆(m1) = ∆(m2) = ∆(m3) =

1
8 ,

Φ = −
1

8
+

1

2
·
(
1

8
+

1

8
+

1

8

)
+

1

2
· (e1 + e2 + e3),

=
1

16
+ 2 · (e1 + e2 + e3),

=
1

16
+ δ

[
|δ| < 2−12, as |e1|, |e2|, |e3| < 2−13

]
.

In this cases, Φ ≈ 1
16 , or, Φ (mod 1) ≈ 1

16 > 0 hence, the decryption of 3-input AND
upon m1 = m2 = m3 = 1 is 1, which is a correct decryption. Now, consider when two
plaintext bits are 0, without loss of generality consider m1 = m2 = 0, and m3 = 1, or,
∆(m1) = ∆(m2) = − 1

8 , and ∆(m3) =
1
8 ,

Φ = −
1

8
+

1

2
·
(
−
1

8
−

1

8
+

1

8

)
+

1

2
· (e1 + e2 + e3),

= −
3

16
+

1

2
· (e1 + e2 + e3),

= −
3

16
+ δ

[
|δ| < 2−12, as |e1|, |e2|, |e3| < 2−13

]
.

In this cases, Φ ≈ − 3
16 , or, Φ (mod 1) = − 3

16 < 0, hence the decryption of 3-input AND
upon m1 = m2 = 0, and m3 = 1 is 0, which is a correct decryption. Now, consider when
two plaintext bits are 1, without loss of generality consider m1 = m2 = 1, and m3 = 0, or,
∆(m1) = ∆(m2) =

1
8 , and ∆(m3) = − 1

8 ,

17

Φ = −
1

8
+

1

2
·
(
1

8
+

1

8
−

1

8

)
+

1

2
· (e1 + e2 + e3),

= −
1

16
+

1

2
· (e1 + e2 + e3),

= −
1

16
+ δ

[
|δ| < 2−12, as |e1|, |e2|, |e3| < 2−13

]
.

In this cases, Φ ≈ − 1
16 , or, Φ (mod 1) ≈ − 1

16 < 0 hence, the decryption of 3-input AND
upon m1 = m2 = 1, and m3 = 0 is 0, which is a correct decryption.

5.4 Security Analysis of 3-input Gates

In this section, we discuss the impact on the security notion of the underlying TFHE scheme
for using 3-input homomorphic Boolean gates. Here, we define our security definition as,

Definition 3 (Our Security Definition) Our modified TFHE scheme (TFHEm) using 3-
input gates is IND-secure for any security parameter λ ∈ N, for any PPT adversary Ad,
i.e.,

∣∣Pr[GTFHEm,Ch,Ad
(1λ) = 0]− Pr[GTFHEm,Ch,Ad

(1λ) = 1]
∣∣ ≤ negl(λ).

We prove our security notion by showing indistinguishability between two hybrid models
(Hybrid0 and Hybrid1) of GTFHE,Ch,Ad

(1λ) (from Section 3.4). By Definition 2, Hybrid0

follows the notion of IND-security, whereas the Hybrid1 depicts the security of our modified
TFHE scheme, that incorporates 3-input homomorphic gates. These two hybrids only differ
in the stage 3 of Query Phase of the security game GTFHE,Ch,Ad

(1λ), as follows

Hybrid0. This game is between challenger Ch and adversary Ad.

Query Phase.

3 Ad queries a circuit C : {0, 1}3 → {0, 1}, having 3-input and 1-output structure.
Now, C is evaluated using two consecutive 2-input gates, requiring a total of two
bootstrapping. Ch computes the evaluated ciphertext as ct0 = TFHE.Eval({cti}i∈{0,1}, C, pk).
Ad is handed over ct.

Hybrid1. This game is between challenger Ch and adversary Ad.

Query Phase.

3 Ad queries a circuit C : {0, 1}3 → {0, 1}, that has 3-input and 1-output structure.
Now, the circuit C is evaluated using a 3-input gate, that requires only one bootstrapping
in total. Ch computes the evaluated ciphertext as ct1 = TFHE.Eval({cti}i∈{0,1}, C, pk).
Ad is handed over ct.

Indistinguishability Argument. In Hybrid0 two consecutive 2-input gates are used,
and the evaluated ciphertext ct0 contains a fresh noise e0 due to bootstrapping. While in
Hybrid1 a 3-input gate is used, for which the evaluated ciphertext ct1 contains a different
but fresh noise e1 due to the final bootstrapping. Both e0 and e1 are sampled from the

18

same Gaussian distribution Gα and are independent of each other. Thus in the view of
Ad both the evaluated ciphertexts ct0, ct1 are indistinguishable due to the LWE hardness
assumption. Therefore, Hybrid0 and Hybrid1 are indistinguishable and Hybrid1 achieves
the notion of IND security.

5.5 3-input vs. n-input Gate (n ≥ 4)

In this section, we elaborate on why an n-input gate for n ≥ 4 is not possible to construct
using TFHE. For example, let us construct a 4-input XOR following a similar approach
mentioned in Section 5.2. We can now define a 4-input XOR as, HomXOR(ct1, ct2, ct3, ct4) =
(1,0)+2 · (ct1+ ct2+ ct3+ ct4) (mod 1) = 2 · (ct1+ ct2+ ct3+ ct4). Now, the decryption
of a 4-input XOR can be written as,

Φ = 2 · (∆(m1) + ∆(m2) + ∆(m3) + ∆(m1))+

2 · (e1 + e2 + e3 + e4)

Consider, 2 · (e1 + e2 + e3 + e4) = δ, where δ being small given ei ← Gαmin
, ∀i ∈ [1, 4]. Now,

for m1,m2,m3,m3 = 0, or, ∆(m1) = ∆(m2) = ∆(m3) = ∆(m4) = − 1
8 , where mi be the

underlying plaintext of cti, ∀i ∈ [1, 4], we have

Φ = 2 ·
(
−1

8
− 1

8
− 1

8
− 1

8

)
+ δ = −1 + δ.

Now, Φ = −1+ δ (mod 1) = δ. Therefore, the decryption of 4-input XOR depends upon the
sign of δ, which can be either positive or negative; thus the decryption is invalid.

Similarly, for other values of mi’s and 4-input AND gate, we can show that the decryption
will fail. This implies in TFHE scheme it is hard to construct a 4-input gate (similarly for
n-input gates n ≥ 4) with only one bootstrapping. Therefore, to evaluate a 4-input gate, we
require a combination of a 3-input and a 2-input gate as shown in Figure. 2. Consequently,
for any n-input gate (n ≥ 4) an optimal combination of 3-input and 2-input gates can be
constructed with at most ⌈n2 ⌉ bootstrapping operations in total.

6 FHEDA: Our Proposed EDA Flow

In this section, we elaborate on our automated FHE circuit synthesis framework, FHEDA.
We start with the challenges of classical logic synthesis flow on FHE circuits, followed by
a detailed description of our proposed flow. The high-level architecture of our framework
is shown in Figure. 3. The purpose of this framework is to generate depth-optimized and
bootstrap-efficient circuit modules for deployment into the secure computation using TFHE
framework. In particular, the framework aims to automatically and efficiently synthesize
a Boolean circuit written in HDL into an optimized representation. Our proposed EDA
flow FHEDA essentially comprised three major stages: 1○ stage deals with the custom
synthesis of the given behavioral module constrained under various standard cell library
sets (discussed in Section 7.2) to generate multiple gate-level netlists of the circuit. 2○

19

x1
x2

x3
yx4

4-input AND gate
 with reduced bootstrapping

(a) With 4-input AND gates (Evaluation
time: 0.12 secs)

x1
x2

x3
yx4

3-input AND gate with
reduced bootstrapping

(b) With both 2 and 3-input AND gates
(Evaluation time: 0.12 secs)

Figure 2: Comparison between 4-input and 3-input AND gates with reduced
bootstrapping.

Figure 3: Proposed EDA flow to Generate Optimized TFHE-friendly Circuit

converts the generated gate-level netlists to the corresponding Bristol format and optimizes
these with the objective of minimizing the number of bootstrapping, thereby significantly
improving the overall performance and efficiency of the circuit evaluation. In the final stage
3○, we evaluate the optimized Bristol formats where we assess the circuits in terms of both
circuit depth and bootstrapping time. The goal of this step is to identify and select the most
optimized circuit description, considering both of these essential factors. In the following
sections, we delve into these stages in greater detail.

6.1 Logic Synthesis Challenges for FHE Circuits

The generation of TFHE friendly circuits for secure computation using hardware synthesis
presents two primary obstacles. Initially, the classical hardware synthesis flows (both
commercial and open-source) are designed to optimize hardware platforms which come with
distinct technology constraints concerning PPA (power, performance, and area) optimization
not applicable to FHE Boolean circuits. In Section 5 we have seen that using a 4-input gate
with reduced bootstrapping does not add any advantage to the evaluation time of the FHE
circuit. But classical synthesis flow is typically biased towards using 4-input gates with
the objective of optimizing area and latency. The second challenge lies in the considerable
variation in gate costs between classical synthesis flow and FHE circuits. In classical logic
synthesis tools, Boolean NAND gates are preferred over AND-XOR gates due to their lower
placement and area footprint costs. However, in FHE circuits, AND-XOR gates can be

20

used to generate FHE-friendly circuits as demonstrated through Experiment 3 results in
Section 4.1. As a result, it becomes imperative to modify and fine-tune classical logic
synthesis tools to align with our objectives in security applications, especially when creating
depth-optimized and bootstrapping time-optimized FHE-friendly Boolean circuits. In the
following subsection, we will explore the different stages of our proposed FHEDA flow to
generate optimized TFHE-friendly circuits in detail.

6.2 FHEDA Flow: Stages

Figure. 3 illustrates the high-level architecture of our proposed FHEDA framework. The
primary objective of this framework is to produce FHE-friendly circuit modules that are
optimized for depth and bootstrap efficiency, making them suitable for deployment within
the secure computation in TFHE framework. The FHEDA flow comprises three key stages
and in the following subsections, we will provide a detailed exploration of these stages

6.2.1 Stage: 1○- Custom Synthesis

Our third experimental demonstration in Section 4.1 has clearly shown that leveraging
customized library sets provides substantial benefits in the FHE domain, resulting in noteworthy
enhancements in computation efficiency. By tailoring the library sets to the specific library
cells, we can achieve faster computation times and reduced resource consumption concerning
circuit depth and bootstrapping requirements. Furthermore, in Section 5, we have both
empirically and theoretically demonstrated that using multi-input gates with reduced bootstrapping
limited to a maximum of three inputs can significantly enhance the efficiency of FHE circuits.
Taking into account the mentioned facts and figures, we primarily create standard cell library
sets, denoted as N sets (set1, set2, . . . , setN) (described elaborately in Section 7.2). Each set
consists of various combinations of 2-input, 3-input, and/or both logic gates. These library
sets are utilized for synthesizing a given FHE circuit effectively. Thus, with N number of
sets, this stage produces N synthesized netlists for a given FHE behavioral model. These
generated netlists are then converted into their respective Bristol Format (we call this our
baseline circuit representation) and forwarded to stage 2○ of the flow. In this stage, each
netlist is optimized to reduce bootstrapping components, as detailed in the following section.

6.2.2 Stage: 2○- Optimization of Bootstrapping Component

As we already know, in Bristol Formats the Boolean circuits are mainly represented using
basic Boolean gates XOR, AND, and NOT. Among these gates, only NOT gate over encrypted
input is computationally much lighter (almost 103 × faster) because NOT gate does not
require bootstrapping, unlike other Boolean gates. Therefore, it is advisable to increase the
number of NOT gates while reducing other Boolean gates by specific algebraic reductions (mentioned
in Experiment 2, Section 4.1) without altering the circuit functionality in the Bristol representation,
or we can find ways to simplify Boolean clauses into their compact forms. By doing so, we
can substantially reduce the number of bootstrappable gates, resulting in more efficient
and faster computations. In this section, we provide a detailed discussion of this step as
shown in Figure. 4. Consider N sets (set1, set2, . . . , setN) containing different combinations
of logic gates, e.g., seti may contain 2-input and 3-input XOR, AND, and NOT along with

21

Figure 4: Optimization of Bootstrapping Components

NAND, NOR and OR gates. Assume, C : {0, 1}⋆ → {0, 1}⋆ be a Boolean circuit and let
BC be its Bristol representation. The functionality in BC is then converted into multiple
Boolean formats using the Boolean gates from each of the sets in {set1, . . . , setN} using
our Convert(seti, BC) algorithm that takes a set seti and the baseline Bristol Format BC as
input and returns a different circuit description Bi

C of C only using the Boolean gates from
set seti. Running Convert(·) algorithm N times we get the set

(
B1

C , . . . , B
N
C
)
representing

N circuit descriptions of the same circuit.

After the above conversion we again parse all theN circuit representations, i.e.,
(
B1

C , . . . , B
N
C
)

using our Parse(·) algorithm. This algorithm takes a set struct and
(
B1

C , . . . , B
N
C
)
as input

and outputs another set
(
B1⋆

C , . . . , BN⋆
C

)
. The set struct consists of a set of tuples described

as follows: struct =
{(

(a · b)⊕a, a · (b̄)
)
,
(
(a · b)⊕ b, b · (ā)

)
,
(
(a · b)⊕ (b · c), b · (a⊕ c)

)
,
(
(a⊕

b) ⊕ (a ⊕ c), (b ⊕ c)
)}

, here a, b and c are Boolean variables, ⊕, ∧ and ·̄ denotes XOR,

AND and NOT gate operation respectively. Now, our Parse(struct, Bi
C) algorithm parses

each B
ii∈[N]

C representation to find the Boolean clauses present in the first component of the
tuples in struct and replaces with the second component of the corresponding tuples. Hence,
running Parse(·) algorithm gives another set containing N circuit descriptions with compact
representations, i.e., (B1⋆

C , . . . , BN⋆
C). This proposed technique of converting the original

Bristol Format into an optimal circuit representation is briefly described in Algorithm 1.
We demonstrate the improvement of our proposed struct replacement both mathematically
and experimentally in Table 3. Furthermore, we visually depict the struct replacement
in Figure. 4, where the gate count of the sample circuit is reduced from 6 to 4, resulting
in only 3 bootstrappable gates due to our Inverter based optimization, that yields a 2×
improvement in efficient computation. Moreover, in the upcoming section, we will explain
the circuit depth optimization process by assessing the generated designs at this stage in
the TFHE platform.

22

Table 3: Homomorphic Evaluation time of the tuples of the set struct

Expression
Before Replacement

Eval. time
(in ms.)

Expression
After Replacement

Eval. time
(in ms.)

(a · b)⊕ a 172.80 a · (b̄) 86.48
(a · b)⊕ b 172.80 b · (ā) 86.51

(a · b)⊕ (b · c) 259.20 b · (a⊕ c) 172.80
(a⊕ b)⊕ (a⊕ c) 259.20 (b⊕ c) 86.43

Algorithm 1: Optimal Circuit Formation

Require: {set1, . . . , setN}, BC , struct
Ensure: (B1⋆

C , . . . , BN⋆
C)

1: Initialize empty sets B = {} and B⋆ = {}
2: for i = 1 to N
3: Bi

C ← Convert(seti, BC)

4: B← B ∪Bi
C

5: for i = 1 to N
6: Bi⋆

C ← Parse(struct,B[i])

7: B⋆ ← B⋆ ∪Bi⋆
C

8: return B⋆

Figure 5: Three-layered Execution of Proposed EDA Flow

6.2.3 Stage- 3○: Depth-optimized Building Block Generation

In this section, we will describe the homomorphic evaluation of Boolean circuits using TFHE
scheme that is generated in stage 2○ of our proposed flow. As we already described in the
previous section we can build an optimal Boolean representation of any circuit, and this
optimal representation is now evaluated homomorphically over the encrypted inputs. In
Algorithm 2 we briefly presented the homomorphic evaluation procedure. Let’s assume,
(m1, . . . ,mℓ) be the inputs of a circuit C⋆ : {0, 1}ℓ → {0, 1}ℓ′ . Now, before evaluating the
circuit C⋆ we parse its Bristol Format through the procedure mentioned in Algorithm 1 to
retrieve the optimal Boolean representations of C⋆. Let us assume, {B1

C⋆ , . . . , BN
C⋆} are the

N optimal Boolean representation of C⋆. Now, to evaluate C⋆, we first encrypt the inputs
(m1, . . . ,mℓ) using public key pk and return the ciphertexts (µ1, . . . , µℓ), such that µi =

23

Algorithm 2: Evaluation of Optimal Circuit

Require: {B1
C⋆ , . . . , BN

C⋆}, pk, {m1, . . . ,mℓ}
Ensure: eval⋆, B⋆

C
1: Initialize empty sets µ = {} and eval = {}
2: for i = 1 to ℓ
3: µi ← TFHE.Enc(mi, pk)
4: µ← µ ∪ µi

5: for i = 1 to N
6: evali ← TFHE.Eval(µ, pk,B⋆[i])
7: eval← eval ∪ evali
8: eval⋆ = min(eval1, . . . , evalN)
9: Set B⋆

C as the optimal circuit with the minimum evaluation time
10: return eval⋆, B⋆

C

TFHE.Enc(mi, pk), ∀i ∈ [ℓ]. Each Bj
C⋆ , ∀j ∈ [N], we invoke TFHE.Eval((µ1, . . . , µℓ), pk, B

j
C⋆),

∀j ∈ [N] and compute the homomorphic evaluation time evalj for circuit representation Bj
C⋆ .

Finally, we retrieve the minimum of {eval1, . . . , evalN} as eval⋆ and also returns the optimal
Boolean representation for which the minimum evaluation time is achieved.

Table 4: Evaluation Time Reduction and Depth Gains of FHE-circuits at Block and Main
Level when Compared to Baseline Library. (∗∗-Baseline Library, ∗-(I,O)-Input bit-width, Output bit-

width))

Circuit
bitwidth
(I,O)∗

Lib-Set 1∗∗ Circuit
Depth

Lib-Set 2 Circuit
Depth

Lib-Set 3 Circuit
Depth

Lib-Set 4 Circuit
Depth

% Depth
Gain

% Eval Time
ReductionEval Time

(in secs.)
Eval Time
(in secs.)

Eval Time
(in secs.)

Eval Time
(in secs.)

Block Layer

Carry Select Adder 16,16 11.52 39 10.2 39 11.66 20 9.96 20 48.72 13.54
Mux 2:1 8,8 2.08 5 2.08 5 1.76 3 1.76 3 40.00 15.38
Mux 4:1 8,8 3.74 7 3.12 7 3.69 6 2.95 5 28.57 21.12

Comparator 4,3 1.83 16 1.67 16 1.75 9 1.36 9 43.75 25.68
PRESENT S-Box 4,4 2.65 10 1.73 9 2.23 8 1.32 7 30 50.18

AES S-Box 8,8 58.57 39 40.84 24 49.48 40 38.55 25 38.46 34.18
Keccak S-Box 5,5 1.38 5 1.21 4 1.47 7 1.21 5 20.00 12.32

Main Layer

Division 8,8 47.11 238 37.71 237 43.62 147 35.02 140 41.17 25.66
Multiplication 8,16 28.64 60 22.85 60 26.31 38 20.95 38 36.67 26.85

Private Set Intersection 40,10 2.16 2 1.43 2 2.16 2 1.43 2 0.00 33.80
PRESENT Encryption 64,64 1,314.4 310 858.08 279 1,106.08 248 654.72 217 30.00 50.19

AES Encryption 128,128 16,030.53 507 11,071.94 317 17,676.81 487 11,146.18 327 37.47 30.93
AES Non-Expanded 128,128 2758.37 NA 2224.60 NA 2758.24 NA 2232.40 NA NA 19.35
LowMC Encryption 128,128 660.71 84 434.85 56 660.41 84 434.45 56 34.24 34.24

Maxpool 8,8 3.38 28 2.7 23 3.32 18 2.66 13 53.57 21.30
ArgMax 32,32 22.31 308 22.30 306 21.91 179 21.91 177 42.53 1.82
ReLU 32,32 2.16 2 2.16 2 2.16 2 2.16 2 0.00 0.00

7 Three Layer Execution of FHEDA

Our proposed flow FHEDA follows a three-tiered execution strategy as shown in Figure. 5.
The three layers are comprised of the core layer, block layer, and main layer, constituting
FHEDA. The main layer which represents the topmost tier, is eventually responsible for
implementing a privacy-preserving version of various functionalities using FHE-friendly
circuits. In the subsequent subsections, we will explore each of these layers in greater
detail supported with experimental evaluation details and results on a set of representative
benchmark circuits.

24

7.1 Experimental Setup

Here, we describe the experimental setup and tools integrated to FHEDA. We evaluated
our benchmarks on a high-end x86-based computing platform. At stage 1○ of FHEDA flow
(Figure. 3) we have used Cadence Genus (version:17.24−s038 1) for synthesis. The standard
cell library used for synthesis is the TSL18FS120 cell library from Tower Semiconductor Ltd.
at the 180nm technology node. In stage 2○ of the flow, we employ our custom Python-based
utility to optimize the Bristol formats. At stage 3○ of the flow our baseline TFHE scheme is
used to implement the homomorphic evaluation function for different Boolean circuits. Our
evaluation function takes a Boolean representation of a circuit and sequentially evaluates
the binary gates according to the circuit representation. We use TFHE built-in functions for
different binary gate evaluations followed by the bootstrapping operation implemented in
the TFHE library7 itself. We implement our evaluation algorithm on a high-end workstation
with an Intel(R) Xeon(R) CPU E5-2690 v4 CPU (2.60GHz clock-frequency), 28 physical
cores, and 128GB RAM. We now discuss the different three tiers of our proposed FHEDA

execution flow.

7.2 Core Layer

This layer serves as a foundation layer for the block layer which incorporates depth and
reduced-bootstrapping versions of FHE-friendly circuits. As observed in Section 4.1, by
introducing diverse gate types (beyond the classical Bristol Format’s 2-input AND and XOR
gates) and incorporating multi-input gates, we can achieve substantial enhancements in
evaluation time and depth for Boolean circuits. Therefore, this layer deals with constructions
of standard cell library sets that will be used to generate and evaluate FHE-friendly circuit
blocks at the next layer by FHEDA flow. Primarily, we construct Lib− Set1, which includes
only 2-input XOR and AND gates along with NOT gates, aligning precisely with the Bristol
Format and serves as our baseline library set. To incorporate multi-input gates we construct
Lib− Set2 that consist of both 2 and 3-input XOR and AND gates with unary NOT gates.
Using Lib− Set2 for Boolean representation leads to a notable reduction in the number of
binary gates in circuits. This improvement is due to the fact that each 3-input gate requires
approximately the same evaluation time (bootstrapping reduction) as compared to 2-input
gates (as discussed in Section 5). This results in significant time savings and improved
depth efficiency during the homomorphic evaluation process. Lib− Set3 incorporates all
fundamental 2-input universal gates, including NAND and NOR, alongside XOR, AND,
OR, and NOT gates. By combining Lib− Set2 with Lib− Set3, we establish Lib− Set4,
harnessing the benefits of both sets to achieve an optimal reduction in homomorphic computation
time. We present these library sets below for readers’ convenience,

Lib− Set1 = {XOR2,AND2,NOT},

Lib− Set2 = {XOR3,AND3}
⋃

Lib− Set1,

Lib− Set3 = {NAND2,NOR2,OR2}
⋃

Lib− Set1,

Lib− Set4 = {XOR3,AND3}
⋃

Lib− Set3.

where GATEp is a Boolean gate GATE with p inputs.

7https://github.com/nucypher/TFHE.jl.git

25

7.3 Block Layer

By skillfully designing personalized library sets, as demonstrated in the previous section, the
synthesis tool incorporated into our FHEDA flow employs these custom sets to synthesize and
generate FHE-friendly netlists of fundamental building blocks in this layer. This approach
allows for the creation of numerous critical functionalities, such as carry select adder,
multiplexer, comparator circuit, and S-Boxes with dimensions 4 × 4 and 5 × 5 (utilized in
AES, PRESENT, and Keccak ciphers). The computation time and circuit depth achieved
by employing different library sets for these block-level circuits are presented in Table 4.
One can observe that the percentage reduction in circuit depth and FHE-evaluation time
of these fundamental blocks under various library sets is in the range from 30 − 40% and
13 − 50%, respectively. An interesting observation to note here is that even though the
overall percentage reduction values are significant, they are not uniform. For instance, let’s
consider the PRESENT S-Box, which exhibits a time reduction of approximately 50.18%,
while the AES S-Box shows only a 34.18% reduction. Similarly, for Mux2:1 the percentage
gain in circuit depth is 40%, while evaluation time reduction is just 15%. The reasons for
these differences can be explained as follows:

Listings 2 and 3 display a synthesized netlist of a Mux2:1 schematic as synthesized by
Cadence. The circuit depicted in Listing 2 is generated using Lib− Set2, while the one in
Listing 3 is generated using Lib− Set4. Even though Lib− Set2 and Lib− Set4 comprises
3-input gates, however, the synthesis tool could not perform 3-input gate replacement in
Mux2:1, resulting in similar evaluation time. One can also notice a higher reduction in
evaluation time in the case of PRESENT S-Box than AES S-Box. The PRESENT S-
Box is represented using gates from Lib− Set1, encompassing both XOR and AND gates,
along with NOT gates. When converting the Boolean representations from Lib− Set1 to
Lib− Set2 (comprising 2 and 3-input XOR and AND gates), some of the 2-input gates in
both XOR and AND are merged into 3-input gates, resulting in a significant reduction of gate
counts by approximately 25% for AND and 14% for XOR. On the other hand, the AES S-Box
only employs AND and NOT gates and lacks XOR gates. As a consequence, the gate counts
are reduced by approximately 22% solely for the AND gates when converting the Boolean
representations from Lib− Set1 to Lib− Set2. Therefore, the PRESENT S-Box achieves a
higher cumulative reduction compared to the AES S-Box. In Appendix .3 we provide a
brief comparison between different block layer circuits with respect to the homomorphic
evaluation time and circuit depth using our four library sets.

Listing 2: Synthesis of Mux2:1 using Lib− Set2

1 module multiplexer_2x1
2 (input A, B, S, output Y);
3 INV n1 (nS, S);
4 NAND2 a1 (Y1, nS, A);
5 NAND2 a2 (Y2, S, B);
6 NAND2 o1 (Y, Y1 , Y2);
7 endmodule

Listing 3: Synthesis of Mux2:1 using Lib− Set4

1 module multiplexer_2x1
2 (input A, B, S, output Y);
3 INV n1 (nS, S);
4 AND2 a1 (Y1, nS, A);
5 INV aa1 (nY1 , Y1);
6 AND2 a2 (Y2, S, B);

26

7 INV aa2 (nY2 , Y2);
8 AND2 o1 (nY, nY1 , nY2);
9 INV o2 (Y, nY);

10 endmodule

Furthermore, to capitalize on the advantages achieved in these circuits, these fundamental
components are assembled and combined to create advanced functionality blocks in the FHE
domain. This takes place at the main level of the FHEDA flow, as elaborated in the following
section.

7.4 Main Layer

In order to make the most of the benefits obtained from the functional circuit blocks obtained
as described in the last section, these basic elements are brought together and integrated to
form sophisticated FHE functional units comprising of Privacy Preserving Neural Networks,
Private Set Intersection (PSI), etc. This process occurs at the main layer of our proposed
FHEDA flow, as detailed in this section. We generated the following FHE-units through our
FHEDA flow:

Privacy Preserving Neural Networks: In this work, we use a Convolutional Neural
Network (CNN), in which the convolutional layer performs a convolution operation with
the encrypted inputs and weight matrix (known as kernel/filter). A convolution operation
consists of element-wise “multiplication” between a part of the input and the weights
and followed by an “addition” operation (for more details of the convolution operation
we refer to Figure. 6 in Appendix .1). This “multiplication” is implemented using a k-bit
multiplier (k = 8 in our case) and the encrypted “addition” is implemented using a k′-bit Full
Adder (FA) (k′ = 8). These fundamental circuits are presented at the block layer (Table 4)
with depth and evaluation time reduction of 48% and 13% respectively. The next significant
component is the activation function that determines the neuron’s output. In this work,
we consider the rectified linear unit (ReLU) denoted as ReLU(y) = max(0, y), with y as
the input. The output of this function is characterized by the maximum value between
encrypted 0 and encrypted y and realized using the Mux2:1. Note that, no gain in circuit-
depth or evaluation time is observed, because Mux2:1 operation cannot be represented using
3-input Boolean gates as shown in Listing 2 and 3. Next, in the pooling layer, the MaxPool

Table 5: Lenet-5 Architecture Evaluation Time Reduction of FHE-circuits when Compared
to Baseline Library. (∗∗-Baseline Library))

Layer Layer Type Specification
Execution Time

Lib-Set 1∗∗

(in hrs.)

Execution Time
Lib-Set 2
(in hrs.)

Execution Time
Lib-Set 3
(in hrs.)

Execution Time
Lib-Set 4
(in hrs.)

Efficiency (%)

1
CONV 32× 32→ 28× 28 1.65 1.36 1.56 1.27 23.03
ReLU 28× 28→ 28× 28 0.0036 0.0036 0.0036 0.0036 0.00

MaxPool 28× 28→ 14× 14 0.0169 0.0135 0.0166 0.0133 21.30

2
CONV 14× 14→ 10× 10 4.40 3.63 4.16 3.39 22.95
ReLU 10× 10→ 10× 10 0.0096 0.0096 0.0096 0.0096 0.00

MaxPool 10× 10→ 5× 5 0.045 0.037 0.044 0.035 22.22

3
CONV 5× 5→ 1× 1 0.275 0.227 0.26 0.212 22.90
ReLU 1× 1→ 1× 1 0.0006 0.0006 0.0006 0.0006 0.00

4
FC1 120→ 84 1.34 1.10 1.26 1.02 23.88
ReLU 84→ 84 0.0006 0.0006 0.0006 0.0006 0.00

5
FC2 84→ 10 0.93 0.77 0.88 0.71 23.65
ReLU 10→ 10 0.0006 0.0006 0.0006 0.0006 0.00
Total 32× 32→ 10 8.672 7.152 8.196 6.665 23.14

27

circuit is implemented using an encrypted multiplexer that chooses the maximum of the two
inputs using a comparator circuit. We have obtained efficient Mux and comparator at the
block level of FHEDA flow and that is utilized to generate a MaxPool circuit with 53% and
21% reduction in depth and evaluation time.

Symmetric Key Ciphers: Using symmetric-key ciphers a party can encrypt the inputs
using the cipher’s key and at the server’s end a homomorphic decryption operation is
performed to convert the encryption into an FHE ciphertext. This helps to reduce the
bandwidth of communication between the party and the computing server (supported by
Hybrid homomorphic encryption).

This emerges in applications like private set intersection [34] and encrypted databases [35].
In this work, we considered AES [36], PRESENT [37], and LowMC [35] ciphers as our
benchmark netlists. The AES implementation from Archer et al. [38] was employed and
processed through our FHEDA flow. By utilizing Lib− Set2, we managed to achieve an
improvement of up to 19% in the evaluation time for AES. In the case of LowMC, Lib− Set3
resulted in the maximum depth improvement, while Lib− Set4 led to better evaluation time
improvement. Finally, for PRESENT, Lib− Set4 produced the best circuit in terms of both
depth and evaluation time enhancement.

Private Set Intersection (PSI): PSI allows two parties to securely compute a function
based on the common elements in their respective private input sets. Each set is represented
as a binary vector, and the intersection of these sets is determined by performing a bit-wise
AND operation on the sets provided by both parties. Since this circuit mainly involves an
AND gate chain, we observed an improvement in evaluation time when using Lib− Set4.
However, there is no improvement in circuit depth as synthesis won’t replace the pure AND
chain with other gate types, as doing so might introduce an increase in depth. In the next
section, we present a comprehensive implementation of a Convolutional Neural Network
(CNN) using FHEDA flow.

8 Homomorphic Inference of Convolution Neural Network

We describe an end-to-end implementation for the homomorphic evaluation of a convolutional
neural network (CNN) on encrypted inputs. A CNN basically consists of a series of convolution
operations [39] followed by a non-linear activation function [40] and pooling layers [41]. The
output of the convolution layers is finally fed to a series of “fully connected” layers (FC),
which are also followed by an activation function. A detailed description of the architecture
for different layers of a CNN is presented in Appendix .1. In our present work, we have used
Lenet-5 [42], a simple convolution neural network with only 5-network layers (3 convolution
and 2 fully connected layers). The Lenet-5 architecture uses the convolution operation with
a filter/kernel size of (5, 5) and stride of 1, Average pooling layer [43] with a window size of
(2, 2) and stride of 2, and the Tanh [44] activation function except for the last layer which
uses a Softmax activation [45]. But, in this work, we used a simple modified version of the
Lenet-5 network, where all other parameters remain the same except for activation and the
pooling layers. We chose Maxpool layer [46] and ReLU activation [47] in our present CNN
architecture. In Table 5 we present different layers of our CNN model with input/output
specifications. Below is our CNN architecture in short: (CONV + ReLU + MaxPool) →
(CONV + ReLU + MaxPool) → (CONV + ReLU) → (FC1 + ReLU) → (FC2 + ReLU). Here,

28

CONV denotes a convolution layer with filter/kernel size of (5, 5) and stride 1, ReLU denotes
the Rectified linear unit activation layer, MaxPool denotes a max-pooling layer with window
size (2, 2) and stride 2, FC1 and FC2 denote fully connected layers with weight matrices of
dimensions (120, 84) and (84, 10), respectively. In our current setup, we used the MNIST
image (grayscale) dataset with dimensions of (32, 32) for every image sample. In the
homomorphic inference of CNN, we encrypt both the inputs and the network weights using
TFHE secret key sk. We then outsource these encrypted values and the TFHE public key
pk to a high-end computing platform for performing the homomorphic evaluation. Due
to the page limitations, we refer to Appendix .1 for a detailed discussion of our CNN
implementation, evaluation approach using process-level threads for parallel computation
and homomorphic evaluation results in Table 5 using our four different library sets.

9 Conclusion

The growing focus on data privacy has sparked significant interest in FHE from both
industry and academia. FHE enhances data security by introducing noise, but this can
lead to increased computation time and costs. To address these issues we developed FHEDA,
an EDA framework for generating efficient TFHE-friendly Boolean circuits. Our proposed
framework reduces the number of bootstrapping operations in Boolean circuits, thereby
resulting in up to 50% faster homomorphic computation when compared to baseline netlists
(comprising of 2-input gates). To validate our approach, we tested the proposed EDA flow on
various benchmarks, including privacy-preserving machine learning blocks, symmetric key
block ciphers like AES and LowMC, and oblivious neural network inference. In the future
direction, we would like to extend the work further to develop an efficient FHE accelerator.

References

[1] Z. Brakerski, “Fully homomorphic encryption without modulus switching from classical
gapsvp,” in Annual Cryptology Conference. Springer, 2012, pp. 868–886.

[2] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic
encryption without bootstrapping,” ACM Transactions on Computation Theory
(TOCT), vol. 6, no. 3, pp. 1–36, 2014.

[3] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe: fast fully homomorphic
encryption over the torus,” Journal of Cryptology, vol. 33, no. 1, pp. 34–91, 2020.

[4] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for
arithmetic of approximate numbers,” in Advances in Cryptology–ASIACRYPT 2017:
23rd International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I
23. Springer, 2017, pp. 409–437.

[5] C. Gentry, A fully homomorphic encryption scheme. Stanford university, 2009.

[6] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryption,”
Cryptology ePrint Archive, 2012.

29

[7] L. Ducas and D. Micciancio, “Fhew: bootstrapping homomorphic encryption in less
than a second,” in Annual international conference on the theory and applications of
cryptographic techniques. Springer, 2015, pp. 617–640.

[8] P. Mukherjee and D. Wichs, “Two round multiparty computation via multi-key fhe,”
in Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2016, pp. 735–763.

[9] J. Mono, K. Kluczniak, and T. Güneysu, “Improved circuit synthesis with
amortized bootstrapping for fhew-like schemes,” Cryptology ePrint Archive,
Paper 2023/1223, 2023, https://eprint.iacr.org/2023/1223. [Online]. Available:
https://eprint.iacr.org/2023/1223

[10] S. Carpov, M. Izabachène, and V. Mollimard, “New techniques for multi-value input
homomorphic evaluation and applications,” in Topics in Cryptology – CT-RSA 2019,
M. Matsui, Ed. Cham: Springer International Publishing, 2019, pp. 106–126.

[11] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and F. Koushanfar,
“Tinygarble: Highly compressed and scalable sequential garbled circuits,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015, pp. 411–428.

[12] D. Demmler, G. Dessouky, F. Koushanfar, A.-R. Sadeghi, T. Schneider, and S. Zeitouni,
“Automated synthesis of optimized circuits for secure computation,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security, 2015,
pp. 1504–1517.

[13] Z. Ghodsi, A. K. Veldanda, B. Reagen, and S. Garg, “Cryptonas: Private inference
on a relu budget,” Advances in Neural Information Processing Systems, vol. 33, pp.
16 961–16 971, 2020.

[14] “Microsoft SEAL (release 4.1),” https://github.com/Microsoft/SEAL, Jan. 2023,
microsoft Research, Redmond, WA.

[15] S. Halevi and V. Shoup, “Helib-an implementation of homomorphic encryption,”
Cryptology ePrint Archive, Report 2014/039, 2014.

[16] W. Dai and B. Sunar, “cuhe: A homomorphic encryption accelerator library,”
in Cryptography and Information Security in the Balkans: Second International
Conference, BalkanCryptSec 2015, Koper, Slovenia, September 3-4, 2015, Revised
Selected Papers 2. Springer, 2016, pp. 169–186.

[17] A. Al Badawi, B. Veeravalli, C. F. Mun, and K. M. M. Aung, “High-performance fv
somewhat homomorphic encryption on gpus: An implementation using cuda,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, pp. 70–95, 2018.

[18] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, “Over 100x faster bootstrapping
in fully homomorphic encryption through memory-centric optimization with gpus,”
IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 114–148,
2021.

[19] Ö. Özerk, C. Elgezen, A. C. Mert, E. Öztürk, and E. Savaş, “Efficient number
theoretic transform implementation on gpu for homomorphic encryption,” The Journal
of Supercomputing, vol. 78, no. 2, pp. 2840–2872, 2022.

30

https://eprint.iacr.org/2023/1223
https://eprint.iacr.org/2023/1223
https://github.com/Microsoft/SEAL

[20] F. Boemer, S. Kim, G. Seifu, F. DM de Souza, and V. Gopal, “Intel hexl: Accelerating
homomorphic encryption with intel avx512-ifma52,” in Proceedings of the 9th on
Workshop on Encrypted Computing & Applied Homomorphic Cryptography, 2021, pp.
57–62.

[21] D. B. Cousins, J. Golusky, K. Rohloff, and D. Sumorok, “An fpga co-processor
implementation of homomorphic encryption,” in 2014 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, 2014, pp. 1–6.

[22] N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski, C. Peikert,
and D. Sanchez, “F1: A fast and programmable accelerator for fully homomorphic
encryption,” in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, 2021, pp. 238–252.

[23] D. B. Cousins, K. Rohloff, and D. Sumorok, “Designing an fpga-accelerated
homomorphic encryption co-processor,” IEEE Transactions on Emerging Topics in
Computing, vol. 5, no. 2, pp. 193–206, 2016.

[24] S. S. Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede, “Fpga-based
high-performance parallel architecture for homomorphic computing on encrypted data,”
in 2019 IEEE International symposium on high performance computer architecture
(HPCA). IEEE, 2019, pp. 387–398.

[25] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “Heax: An architecture for computing
on encrypted data,” in Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems, 2020, pp.
1295–1309.

[26] F. Turan, S. S. Roy, and I. Verbauwhede, “Heaws: An accelerator for homomorphic
encryption on the amazon aws fpga,” IEEE Transactions on Computers, vol. 69, no. 8,
pp. 1185–1196, 2020.

[27] J. Zhang, X. Cheng, L. Yang, J. Hu, X. Liu, and K. Chen, “Sok: Fully homomorphic
encryption accelerators,” arXiv preprint arXiv:2212.01713, 2022.

[28] M. Van Beirendonck, J.-P. D’Anvers, and I. Verbauwhede, “Fpt: a fixed-point
accelerator for torus fully homomorphic encryption,” arXiv preprint arXiv:2211.13696,
2022.

[29] L. Jiang, Q. Lou, and N. Joshi, “Matcha: A fast and energy-efficient accelerator for
fully homomorphic encryption over the torus,” in Proceedings of the 59th ACM/IEEE
Design Automation Conference, 2022, pp. 235–240.

[30] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “Syncirc: Efficient synthesis
of depth-optimized circuits for secure computation,” in 2021 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 2021, pp. 147–
157.

[31] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “{GAZELLE}: A low latency
framework for secure neural network inference,” in 27th USENIX Security Symposium
(USENIX Security 18), 2018, pp. 1651–1669.

31

[32] B. Reagen, W.-S. Choi, Y. Ko, V. T. Lee, H.-H. S. Lee, G.-Y. Wei, and D. Brooks,
“Cheetah: Optimizing and accelerating homomorphic encryption for private inference,”
in 2021 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2021, pp. 26–39.

[33] S. Kim, J. Kim, M. J. Kim, W. Jung, J. Kim, M. Rhu, and J. H. Ahn, “Bts: An
accelerator for bootstrappable fully homomorphic encryption,” in Proceedings of the
49th Annual International Symposium on Computer Architecture, 2022, pp. 711–725.

[34] D. Kales, C. Rechberger, T. Schneider, M. Senker, and C. Weinert, “Mobile private
contact discovery at scale,” in 28th USENIX Security Symposium (USENIX Security
19). Santa Clara, CA: USENIX Association, Aug. 2019, pp. 1447–1464. [Online].
Available: https://www.usenix.org/conference/usenixsecurity19/presentation/kales

[35] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner, “Ciphers
for mpc and fhe,” in Advances in Cryptology – EUROCRYPT 2015, E. Oswald and
M. Fischlin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 430–454.

[36] V. Rijmen and J. Daemen, “Advanced encryption standard,” Proceedings of federal
information processing standards publications, national institute of standards and
technology, vol. 19, p. 22, 2001.

[37] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe, “Present: An ultra-lightweight block cipher,”
in Cryptographic Hardware and Embedded Systems - CHES 2007, P. Paillier and
I. Verbauwhede, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 450–
466.

[38] D. Archer, V. A. Abril, S. Lu, P. Maene, N. Mertens, D. Sijacic, and N. Smart, “Bristol
fashion mpc circuits,” 2021.

[39] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang,
J. Cai et al., “Recent advances in convolutional neural networks,” Pattern recognition,
vol. 77, pp. 354–377, 2018.

[40] W. Hao, W. Yizhou, L. Yaqin, and S. Zhili, “The role of activation function in
cnn,” in 2020 2nd International Conference on Information Technology and Computer
Application (ITCA). IEEE, 2020, pp. 429–432.

[41] M. Sun, Z. Song, X. Jiang, J. Pan, and Y. Pang, “Learning pooling for convolutional
neural network,” Neurocomputing, vol. 224, pp. 96–104, 2017.

[42] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[43] J. Kakarla, B. V. Isunuri, K. S. Doppalapudi, and K. S. R. Bylapudi, “Three-class
classification of brain magnetic resonance images using average-pooling convolutional
neural network,” International Journal of Imaging Systems and Technology, vol. 31,
no. 3, pp. 1731–1740, 2021.

[44] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma,
J. Santamaŕıa, M. A. Fadhel, M. Al-Amidie, and L. Farhan, “Review of deep learning:

32

https://www.usenix.org/conference/usenixsecurity19/presentation/kales

Concepts, cnn architectures, challenges, applications, future directions,” Journal of big
Data, vol. 8, pp. 1–74, 2021.

[45] I. Kouretas and V. Paliouras, “Simplified hardware implementation of the softmax
activation function,” in 2019 8th international conference on modern circuits and
systems technologies (MOCAST). IEEE, 2019, pp. 1–4.

[46] N. Murray and F. Perronnin, “Generalized max pooling,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2014, pp. 2473–2480.

[47] G. Lin and W. Shen, “Research on convolutional neural network based on improved
relu piecewise activation function,” Procedia computer science, vol. 131, pp. 977–984,
2018.

.1 Architecture and Implementation of CNN

Convolutional Neural Network (CNN) is a type of Neural Network which has redefined
various fields like image classification, face recognition, object detection, etc. A CNN consists
of multiple convolutional layers, activation layers, and pooling layers followed by a series of
fully connected (FC) layers.

.1.1 Convolutional Layer

Architecture. Convolutional layers are the core building blocks of a CNN model. A
Convolutional layer takes a 2-D image (or, feature map) as input and performs the Convolutional
operation using a kernel/filter of pre-defined size. The kernel basically performs shifts based
on the value of the stride across the input/feature map. Each sifting operation of the kernel
results in an element-wise multiplication of the values in the kernel with the elements in
the input image and accumulates these results using addition operation (Figure. 6 shows
a pictorial representation of the Convolutional operation). Assume, an input of dimension
(N,N) is fed into a Convolutional layer with kernel/filter size (f, f) and stride s. It outputs

a feature map (known as “convolved feature map”) of dimension
(

N−f+1
s , N−f+1

s

)
. As

already mentioned, we used a simple modified Lenet-5 [42] CNN architecture as described
in Table 5. Our CNN model uses a Convolutional kernel of size 5× 5 and stride 1. The first
Convolutional layer takes a (32, 32) image as input and outputs a (28, 28) convolved feature
map, the other Convolutional layers perform a similar operation using the feature maps
from the previous layers as input. Now, we briefly discuss our implementation approach of
a Convolutional layer.

Implementation. In this work, we present a CPU-based implementation of CNN8,
in which we adopt parallelism using process-level threads. There are several approaches
to perform parallel implementation using threads, but in our current work, we initialize
the number of threads equal to the number of elements in the output feature map. Let
us observe this scenario using Figure. 6, in this figure a (32, 32) image is convolved using
a kernel of size (5, 5), consequently the output feature map will have the dimension of
(28, 28). For each element in the output feature map, we initialize a thread that will perform

8As we are evaluating a CNN on encrypted inputs and weights, it is not trivial to perform the
Convolutional operation on TFHE ciphertexts on a GPU-based platform.

33

the Convolutional operation, i.e., (5 × 5) = 25 multiplications followed by 24 addition
operations. Hence, a total of (28×28) = 784 threads will be initialized and thus we are able
to perform 784 Convolutional operations in parallel. Now, if a Convolutional operation has
c output channels, we perform a serialized computation for these c channels (e.g., the first
Convolutional layer in our CNN model has c = 6).

INPUT

5 0 1 2 4
4 1 3 9 1
1 3 8 4 0
2 3 1 8 2
4 3 6 2 5

3 1 4 1 2 0
6 5 2 8 1 1
5 2 1 0 4 2
1 3 0 4 7 3
2 0 7 4 5 2

296 224

275

1 1 0 1 2
3 9 2 1 7
2 2 6 0 5
3 1 1 9 8
2 3 6 5 0

CONVOLUTION

KERNEL
5x5

CONVOLVED FEATURE MAP

Threa
d 1

Threa
d 2

Threa
d 784

32 32
28 28

Figure 6: Convolutional Layer

235 -183

172

CONVOLVED FEATURE MAP

235 0

172

OUTPUT

ReLU

Threa
d 784

Threa
d 1

Threa
d 2

28 28

28 28

Figure 7: Rectified Linear Unit

34

.1.2 Rectified Linear Unit

Architecture. Every Convolutional layer in our CNN architecture is followed by a
Rectified Linear Unit (ReLU) activation layer, which maps every element in the convolved
feature map to a new feature map of the same dimension. A ReLU function is defined as
ReLU(x) = max(0, x), where max(a, b) is denoted as finding the maximum between a, b.

Implementation. The ReLU activation function is also implemented using thread-level
parallelism. In this approach, the ReLU activation function on each element from the
convolved feature map is performed by a thread. Hence, applying ReLU activation on a
feature map of dimension (28, 28) requires a total of (28 × 28) = 784 threads, as described
in Figure. 7.

.1.3 Maxpool Layer

Architecture. After performing the ReLU activation function, our CNN model performs
a max-pooling operation with a window size of (2, 2) and stride of 2. Assume, a (28, 28)
image is fed into a Maxpool layer, it will output a feature map of dimension (14, 14). The
primary work of a Maxpool layer is to extract the relevant and important features from a
feature map, thus reducing the feature map size which helps in faster and precise learning
of the CNN.

Implementation. The Maxpool layer in a CNN model is parallelized similarly to a
Convolutional layer as shown in Figure. 8. For each element in the output feature map of
a Maxpool, we initialize a process-level thread, which means for an output feature map of
dimension (14, 14) we initialize a total of (14×14) = 196 threads. Each thread is responsible
for computing the maximum of the elements in the input feature map that lies within the
boundaries of the Maxpool window (which is (2, 2) in our case). Similarly, for c number of
channels in the input feature map, we perform c sequential max-pooling operations.

.1.4 Fully Connected Layer

Architecture. A fully connected (FC) layer is an essential part of a CNN architecture
and generally presents in the last layers of a CNN model. An FC layer consists of a 2-D
matrix and a vector of random elements, known as weights and biases respectively. These
weights and biases are optimized during the training of CNN (along with the elements in the
Convolutional kernel). In our CNN model, we have two FC layers; the first FC layer takes
an input vector of dimension (1, 120) and multiplies it with a weight matrix of dimension
(120, 84) and outputs a vector of dimension (1, 84). The output feature vector of an FC
layer is then followed by a ReLU activation function (except for the last layer that uses a
Softmax activation). The final FC layer takes a vector of dimension (1, 84) and outputs a
vector of dimension (1, 10), i.e., it uses a weight matrix of dimension (84, 10), as specified
in Table 5.

Implementation. For each element in the output vector, we initialized a thread and a total
of 84 threads perform in parallel (see Figure. 9). Each thread is responsible for computing a
vector dot product between the input vector and each column vector of the weight matrix.
Similarly, for the final FC layer, we have 10 threads perform in parallel to produce the final
output (after passing through the Softmax activation) of our CNN architecture.

35

Thr
ea

d 1

4 3

5 6

2 8

7 1

28 28
INPUT

6 8

Thr
ea

d 2

9 8

6 2
9

Thr
ea

d 1
96

14 14
OUTPUT

Figure 8: Maxpool Layer

INPUT VECTOR

WEIGHT MATRIX

72

OUTPUT VECTOR

Thr
ea

d 1
Thr

ea
d 2

4 7 8 54 91

2 1

5 7

3 8

0

7

120 84

1 120 1 84

Thr
ea

d 8
4

3

Figure 9: Fully Connected Layer

Note. Here, we describe a different approach of performing parallel computation using
process-level threads. Consider the scenario when after convolution/pooling operation the

output feature map size if smaller in compared to the kernel/window size, i.e.,
(

N−f+1
s < f

)
or,

(
N
w < w

)
, for the input dimension (N,N), convolution filter size (f, f), pooling window

size (w,w) and stride s. Then initializing threads according to the output map size like
mentioned above will not be efficient. Rather, in the situation of this kind, we initialize a
total of (5 × 5) = 25 threads for performing convolution operation using kernel size (5, 5).
That means, 25 element-wise multiplications are getting performed in parallel; and followed
by 24 additions, which can be done using a logarithmic depth adder circuit. A similar case
happens for our MaxPool operation, i.e., we initialize (2× 2) = 4 threads to be executed in
parallel. Thus, we can optimize of thread-based parallel implementation of CNN.

36

Mux
 2:

1

Mux
 4:

1

Com
pa

rat
or

PR
ES

EN
T

S-B
ox Ke

cca
k

S-B
ox

2.5

5.0

7.5

10.0

12.5

15.0

AN
D

de
pt

h
of

 th
e

cir
cu

it Lib Set 1
Lib Set 2
Lib Set 3
Lib Set 4

Figure 10: AND depth of block layer

.2 Some Additional Related Works

EDA tools play a pivotal role in developing efficient and secure hardware implementation
in the context of FHE and MPC, that form an integral part of the privacy preserving
computations. Adapting the hardware at a refined level facilitate detailed parallel processing
and efficient resource utilization thereby yielding enhanced performance and energy efficiency.
Multiple optimizations and acceleration strategies are being explored to handle the computational
and memory requirements of FHE. In the realm of FHE computations on CPU, many
software libraries such as SEAL [14], HELib[15], TFHE, PALISADE9 accelerate the performance
of different FHE schemes. Several research illustrated that GPU based implementations [16,
17, 18, 19] make use of inherent parallelism in FHE. Intel proposed Intel Homomorphic
Encryption Acceleration Library (HEXL) [20] for fast number theoretic transform (NTT)
operations. Several NTTs are inefficient on CPUs and GPUs, however, can be accelerated
using specific functional units for which prior literature studies [21, 22, 23, 24, 25, 26]
focus on Application Specific Integrated Circuit (ASIC) and Field Programmable Gate
Array (FPGA) based accelerators. Existing literature suggests GPU-enabled TFHE libraries
such as cuFHE, NuFHE [27]. The computations on encrypted AND gates on TFHE scheme
take 13ms [3] on a CPU. However, these improvements are also slow and to mitigate the
speed limitations, FPT [28], a Fixed-Point FPGA accelerator is proposed for TFHE which
is compute-bound with 937× faster than CPU implementations and 2.5× faster than the
prior FHE accelerator, MATCHA [29] by Jiang et al. and cuFHE. SynCirc [30], an efficient
hardware synthesis framework is designed to generate multiplicative depth optimizations
for secure MPC applications. Past studies have proposed ASIC accelerators that combine
homomorphic encryption with MPC [31, 32] Cheetah [32] introduced algorithmic and hardware
optimizations for HE DNN and uses MPC instead of bootstrapping for reducing the errors

9https://gitlab.com/palisade/palisade-release

37

Mux
 2:

1

Mux
 4:

1

Com
pa

rat
or

PR
ES

EN
T

S-B
ox Ke

cca
k

S-B
ox

1.5

2.0

2.5

3.0

3.5

Ev
al

ua
tio

n
Ti

m
e

(in
 se

cs
) Lib Set 1

Lib Set 2
Lib Set 3
Lib Set 4

Figure 11: Evaluation time of block layer

during the HE operation. F1 [22] is the first programmable FHE accelerator that has
achieved ASIC-level performance and introduced effective design by accelerating primitive
FHE scheme. BTS [33], a bootstrappable FHE accelerator achieved a speedup of 2237×
in HE multiplication throughput in contrast to the state-of-the-art CPU implementations.
However, the existing literature does not offer any automated framework for synthesizing
FHE-amenable circuits capable of performing homomorphic operations on cloud platforms.

.3 Comparison of Different Block layer Circuits

In this section, we present a brief discussion on the circuit depth and evaluation time
reduction for a set of circuits mentioned in the block layer in Table 4. In Figure. 10 we
present a comparison of multiple block layer circuits with respect to AND-depth vs. gate
count of the block layer circuits. Similarly, Figure. 11 shows the variations of homomorphic
evaluation time with respect to the number of gates present in the different block layer
circuits.

38

	Introduction
	Motivation and Contribution

	Related Works
	Preliminaries and Background
	Notations and Mathematical Background
	Fully Homomorphic Encryption
	Torus FHE (TFHE)
	Security Definition of TFHE Scheme
	HDL Synthesis using Bristol Format

	TFHE Friendly Circuit Representations
	Notable Observations on Evaluating Boolean Circuits in TFHE

	Boolean Gates with Reduced Bootstrapping
	Evaluating Single 2-input Gate Without Bootstrapping
	Construction of 3-input Gates
	Proof of Correctness of 3-input Gates
	Security Analysis of 3-input Gates
	3-input vs. n-input Gate (n 4)

	FHEDA: Our Proposed EDA Flow
	Logic Synthesis Challenges for FHE Circuits
	FHEDA Flow: Stages
	Stage:①- Custom Synthesis
	Stage:②- Optimization of Bootstrapping Component
	Stage-③: Depth-optimized Building Block Generation

	Three Layer Execution of FHEDA
	Experimental Setup
	Core Layer
	Block Layer
	Main Layer

	Homomorphic Inference of Convolution Neural Network
	Conclusion
	Architecture and Implementation of CNN
	Convolutional Layer
	Rectified Linear Unit
	Maxpool Layer
	Fully Connected Layer

	Some Additional Related Works
	Comparison of Different Block layer Circuits

