To extend or not to extend: Agile Masking
Instructions for PQC

Markus Krausz!, Georg Land!, Florian Stolz!, Dennis Naujoks**, Jan
Richter-Brockmann®, Tim Giineysu'? and Lucie Kogelheide?*

! Ruhr-University, Bochum, Germany, firstname.lastname@rub.de,mail@georg.land
2 DFKI GmbH, Bremen, Germany
3 BWI GmbH, Bonn, Germany
4 ETAS GmbH, Bochum, Germany

Abstract. Splitting up sensitive data into multiple shares — termed masking — has
proven an effective countermeasure against various types of Side-Channel Analy-
sis (SCA) on cryptographic implementations. However, in software this approach
not only leads to dramatic performance overheads for non-linear operations, but
also suffers from microarchitectural leakage, which is hard to avoid. Both problems
can be addressed with one solution: masked hardware accelerators. In this context,
Gao et al. [GGM™T21] presented a RISC-V Instruction Set Extension (ISE) with
masked Boolean and arithmetic instructions to accelerate masked software implemen-
tations of block ciphers. In this work, we demonstrate how this ISE can be applied
to and extended for Post-Quantum Cryptography (PQC) components, forming a
crypto-agile solution. We provide masked implementations based on three different
ISE constellations for multiple highly relevant components, including Cumulative
Distribution Table (CDT) sampling and polynomial rotation, which, to the best of
our knowledge, have not been masked before. With the masked instructions, we
measure speedups of more than one order of magnitude compared to sophisticated
bitsliced implementations and even up to two orders of magnitude for non-bitsliced
implementations. We assert the first-order security of our implementation with a
practical evaluation.

Keywords: PQC, Fixed Weight Polynomial Sampling, SCA, Masking, RISC-V, BIKE,
Frodo, HQC

1 Introduction

Nowadays, embedded devices are interconnected via a broad variety of communication
channels. In case sensitive data is transmitted via these channels, the communication
should be encrypted. Although the chosen algorithms are considered secure, implementa-
tions of cryptographic algorithms are generally vulnerable to side-channel attacks on any
platform. For example, an adversary can exploit secret-dependent runtime differences of
the algorithms caused by memory accesses, branching or instructions with data-dependent
runtime. Moreover, having physical access to the target device allows the adversary to
measure the device’s power consumption directly or indirectly via its electromagnetic emis-
sion, thereby gaining information on secret key material. Especially power Side-Channel
Analysis (SCA) recently became more and more accessible due to simple and inexpensive
measurement setups [Inc].

*The respective work has been conducted at TUV Informationstechnik GmbH.

mailto:markus.krausz@rub.de, mail@georg.land, florian.stolz@rub.de, jan.richter-brockmann@rub.de, tim.gueneysu@rub.de

2 To extend or not to extend: Agile Masking Instructions for PQC

Researchers from academia and industry proposed many approaches to counteract
these attack vectors. In order to prevent timing attacks, the so-called constant-time
programming paradigm [Por] emerged as a generic defense mechanism. The most promising
countermeasure against power SCA is masking [PR13], splitting sensitive data into secret
shares. Consequently, underlying operations have to be transformed to be able to perform
these operations on shares.

A fact that is rarely expressed explicitly is that a correctly masked implementation is
necessarily also secure against timing side-channels, because secret-dependent branches and
memory accesses cannot be masked and thus must be secured using constant-time methods.
Additionally, instructions with operand-dependent runtime can usually not be performed
with masked values. Protection against timing attacks with constant-time implementations
is often achieved by always executing with worst-case runtime and applying dummy memory
accesses to all possible locations instead of only accessing the secret-dependent value. In
order to achieve protection against power SCA, these extra operations need to be masked
as well, introducing additional overhead.

Applying masking techniques to implementations of novel cryptographic schemes
raises new challenges. This includes novel schemes designed to be secure against attacks
mounted on quantum computers. The US-American National Institute of Standards and
Technology (NIST) already selected four different Post-Quantum Cryptography (PQC)
schemes for standardization, at least one of the Round 4 candidates is expected to
be selected too, and 40 new schemes are currently examined in the call for additional
signature schemes. On top of that, agencies from other countries with a strong economic
infrastructure (e.g. the French ANSSI or German BSI) partially recommend other PQC
schemes, South Korea even started a similar competition process as NIST. On the other
hand, the cryptographic foundations of many schemes require more scrutiny, which can
lead to drop-outs of promising candidates [CD23]. The set of relevant PQC schemes is
therefore extensive and dynamic, and brings new issues regarding efficient and secure
implementations.

For example, as shown by Krausz et al. [KLRBG23], protecting fixed-weight polynomial
samplers of common PQC schemes like BIKE, HQC, NTRU and many others with masking
introduces a huge overhead with respect to the runtime and randomness requirements of
the design. One reason for this huge overhead lies in the simultaneous protection against
timing and power side channels.

Besides performance degradation, masked software implementations also have to tackle
the issue of microarchitectural power leakage [MPW22], where a masked implementation
can be secure from a source code perspective, but still exhibits side-channel leakage due to
unforeseeable combinations of shares induced by microarchitectural behavior.

A powerful solution to tackle performance degradation and microarchitectural leakage
at the same time, is to extend cores with dedicated accelerators for masking. In this context,
Gao et al. [GGM™21] presented a RISC-V Instruction Set Extension (ISE) with masked
Boolean and arithmetic instructions. With masked instructions we refer to instructions that
operate on both shares (for first-order masking) of their masked operands simultaneously.
Their low-level masked instructions mirror common general-purpose instructions, e.g.,
a Boolean AND. The simultaneous computation on both shares leads to acceleration of
linear operations and with hardware logic for non-linear operations, the speed-up can be
even more increased. Additionally, controlling the hardware allows for mitigation of any
microarchitectural behavior that would lead to unexpected power leakage, such as hidden
registers. However, the evaluation done by Gao et al. is limited to block ciphers.

In this work, we explore the application of masked instructions for PQC. To be able to
demonstrate their versatility, we do not limit our evaluation to a single scheme. On the
other hand, developing masked implementations for multiple complete PQC schemes is not
feasible within the scope of this work. Therefore, we opt to evaluate masked instructions

Krausz et al. 3

Table 1: Masked implementations presented and evaluated in this work. A green check mark
indicates an implementation that completely originates from this work. The orange check
marks (with brackets) indicate implementations that are based on the public code by Krausz et
al. [KLRBG23]. Dashes indicate combinations that are not applicable.

Application Scheme Algorithm Represenvta.tlon
standard bitsliced

. Fisher-Yates v (v)

Fixed-Weight each applicable to Sorting v ()
. BIKE, HQC, .

Polynomial Rejection v (+)
. NTRU, and many .

Sampling . Comparison v (+)

on-ramp signatures .

12C Conversion v (+)

FrodoKEM CDT Sampling 4 v

Gaussian Sampling Haetae CDT Sampling v v

Hawk CDT Sampling v

Polynomial Rotation BIKE Barrel Shifter v —

Hashing all PQC Keccak 4 —

based on several components that are used in a wide range of PQC schemes. We select three
components that have been already targeted by side-channel attacks and are very costly
to implement with masking without hardware acceleration. Besides the already mentioned
fixed-weight sampling, this includes discrete Gaussian sampling based on Cumulative
Distribution Tables (CDTs), and polynomial rotation by a secret amount. Furthermore,
we implement a masked Keccak, which is used within SHA-3 and SHAKE, both of which
are deployed in the majority of relevant PQC schemes.

We identify a small set of performance-critical core operations, relevant for most of the
previously mentioned use cases. These operations are the conditional move (cmov) and
integer comparisons (cmp) with Boolean shared operands. We extend the core by Gao et
al. [GGM™21] with corresponding instructions and evaluate (1) the impact of the masked
instructions from the original core alone, and (2) our additional instructions.

The general purpose nature of the masked instructions evaluated in this work makes
them useful for any cryptographic primitive or scheme and leads to great crypto-agility:
Instead of accelerating only one or a small subset of the relevant PQC schemes, they
are able to significantly improve the performance of a large quantity of quantum-secure,
asymmetric cryptography on top of symmetric cryptography.

Contribution. To summarize the contributions of this work, we provide masked software
implementations for a wide set (see Table 1) of algorithms used in PQC in multiple variants,
to evaluate the impact of masked instructions as proposed by Gao et al. [GGM™21] beyond
their application for symmetric cryptography. To allow a fair and in-depth comparison
we develop or adapt existing bitsliced implementations, besides our non-bitsliced variants.
The latter profit significantly more from masked instructions. Nevertheless, we are able
to reach speed-up factors over an order of magnitude. To the best of our knowledge, we
provide the first masked software implementation for CDT samplers and syndrome rotation
in BIKE.

Moreover, we identify core operations (cmov, cmp) required in multiple critical PQC
components and extend the RISC-V core presented in [GGM*21] with masked instructions
for these operations. Furthermore, we discover and fix a flaw in the randomness generation
implemented by Gao et al., which caused power leakage. Underlining the necessity of a
masked syndrome rotation, we confirm the power SCA attack on BIKE presented in very
recent work [CARG23] with our own measurements. We validate the side-channel security

4 To extend or not to extend: Agile Masking Instructions for PQC

of our implementations by performing ¢-test evaluations on our additional instructions
and an exemplary sampling algorithm. Finally, we perform extensive benchmarks with
multiple parameter sets and Instruction Set Architecture (ISA) constellations to evaluate
the performance impact of masked instructions on PQC. To facilitate adaption and future
research, our source code for software and hardware will be publicly available.

Related Work. Gao et al. [GGM™'21] present an ISE for RISC-V featuring power side-
channel secure (first masking order) instructions operating on shared values. The ISE
consists of instructions for Boolean and arithmetic operations in the Boolean and arithmetic
masking domain, conversions between the two domains and arithmetic operations in finite
fields. They implement the masked instructions in the SCARV CPU, a 5-stage pipelined
microprocessor, and evaluate it with common block ciphers. Marshall et al. [MP21]
investigate how higher masking orders can be realized, utilizing RISC-V’s vector ISE.
Cheng et al. [CP23] also work with an ISE to address power side-channel leakage, but
instead of accelerating instructions by computing over multiple shares, they only focus on
the microarchitectural leakage aspect.

Accelerators for masked Kyber and Saber implementations have been presented by
Fritzmann et al. [FBR"22]. In contrast to our work, they provide masked accelerators for
higher-level functionalities. Nevertheless, they include, e.g., a masked adder for Boolean
shared values.

2 Applications

In this work, we focus on three different PQC components: fixed-weight polynomial sam-
pling, CDT sampling, and syndrome rotation. All three components have in common that
unprotected implementations are susceptible to SCA as shown in prior work and demon-
strated in this section. The next commonality is that masked software implementations
for these algorithms unfortunately suffer from extraordinary performance overheads. For-
tunately, they can all significantly be accelerated by the same small set of core operations.
Additionally, we examine Keccak, which is used in the majority of PQC schemes.

2.1 Fixed-Weight Polynomial Sampling

A wide range of PQC schemes requires fixed-weight polynomial samplers to randomly
generate a binary or ternary polynomial with a fixed length N and a fixed number of
non-zero coefficients (weight) W from a uniform distribution.

Algorithms. The known algorithms for this problem can be divided into three categories.
The index rejection method and its bounded variant [ND22] sample the non-zero coefficients
with rejection sampling. Another approach aims at generating random bitstrings, this
direction is followed by the Comparison method [KLRBG23]. Lastly, two algorithms
start with fixed polynomials with the correct length N and weight W and then apply
shuffling with a Fisher-Yates variant [Sen21] or sorting [Ber22]. Notably, these algorithms
generate polynomials in one of two possible representations: the index representation stores
indices of the non-zero coefficients whereas the coefficient representation stores the plain
coefficients. The index representation allows for a denser representation of polynomials
with a low W/N ratio. Ultimately, the implementation of the operations on the polynomial
following the sampling process determine which representation is required. For most
operations, the coefficient representation is required. A masked conversion from index to
coefficient representation and vice versa is straightforward but costly.

Krausz et al. 5

Applications. Fixed-weight polynomial sampling is used in BIKE, HQC, McEliece, NTRU,
Streamlined NTRU Prime, and NTRU LPRrime, well-known from NIST’s standardization
process, and also SMAUG [CCHY 23|, which was recently submitted to the Korean Post-
Quantum Cryptography Competition. Moreover, several schemes for NIST’s signature on-
ramp call feature fixed-weight-sampling procedures (CROSS, EagleSign, Raccoon, ALTEQ)
or random shuffling functions (FulLeeca, LESS). A recent paper [BCMP24] about sampling
random permutations in PQC presents further applications. While requirements and
parameters slightly differ between the schemes, the sampling problem at its heart is the
same. Timing side-channel attacks on the samplers of BIKE and HQC have already been
demonstrated [KAA21, GHJ 22, Sen21] and without any dedicated protection, similar
attacks could be performed based on information gained from power side-channel attacks.

Masking. A recent work [KLRBG23] compares the performance of all known fixed-weight
polynomial sampling algorithms as masked software implementations. The benchmarks
show that the performance of the algorithms clearly varies depending on the parameters
N and W, and the preference for different algorithms depends on the individual use case.
However, all reported runtimes are far from satisfying. The situation is worst for BIKE
and HQC, where the sampling is required during decapsulation, which imposes additional
requirements. The most efficient algorithms cannot be applied here for a side-channel
secure implementation, because they inherently leak the secret seed for the Pseudorandom
Number Generator (PRNG) via their timing behavior (cf. [GHJ"22]). For these cases,
the most efficient algorithms require millions to hundreds of millions of clock cycles on a
Cortex-M4, depending on the polynomial representation form. An efficient approach for a
masked implementation has been presented earlier [CGTZ23], but as [KLRBG23] already
points out, it is likely susceptible to a horizontal SCA [BCPZ16].

The most performance-critical operation for almost all sampling algorithms is either a
masked conditional move or a masked integer comparison. In Section 3.2, we explain why
exactly these operations are so crucial.

2.2 Sampling from a Discrete Gaussian Distribution

As mentioned above, discrete Gaussian sampling is essential for many lattice-based crypto-
graphic schemes [DDLL13,BCD*16, GPV08]. Hence, efficient and secure implementations
of these sampling algorithms are important for reliable modern cryptography. In order
to discuss and highlight crucial parts, we denote the discrete Gaussian distribution with
variance o2 as Nz(0?). Then, N (0?) is defined to have the same distribution as N7(co?)
for all samples in N, half the probability for sampling zero and probability zero for sampling
negative values.

Algorithm. There are multiple well-studied algorithms to perform sampling from discrete
Gaussian distribution [DN12, BCG*14,DDLL13]. The most common approach is CDT
sampling [Peil0], where a uniform random bit string is compared with the entries in a
pre-computed Cumulative Distribution Table. This CDT approximates A (02) for a
given precision and 2. For a random bit string 7, the output sample is the index ¢ in the
table T, for which T; < r > T;+1. The optimal way to achieve this in terms of memory
access and number of comparisons is an adapted binary search that takes into account the
distribution itself. Unfortunately, this opens a (cache-)timing side channel, because the
memory access pattern would depend on the sampled value. Thus, to avoid branches and
secret-depending memory accesses, the random bit string must be compared against each
entry in the table. Then, the comparison result bits are accumulated to obtain the sample,
which is mapped to Nz(c?) by conditional negation with another random bit.

6 To extend or not to extend: Agile Masking Instructions for PQC

Applications. The most notable application of CDT sampling is FrodoKEM, where it is
used for sampling error terms during key generation, encapsulation and decapsulation.
In particular, the procedure is performed deterministically during decapsulation in the
re-encryption step, because of the Fujisaki-Okamoto transform. Obtaining (side-channel)
information about these errors may result in a recovery of the shared secret or the private
key. Notably, a practical attack on FrodoKEM was shown recently [MKK™23]. Thus, the
sampling operation requires masking to comprehensively secure FrodoKEM.

Another important example is Hawk [DPPvW22], a PQC signature scheme based on the
newly proposed lattice isomorphism problem. In contrast to prior work, it does not require
floating-point arithmetic which would prohibit a masked implementation. Furthermore,
the authors claim that the only missing part to enable a fully masked implementation is
sampling discrete Gaussian variates from a CDT.

Finally, the recently presented scheme Haetae [CCD 23], which is similar to Dilithium,
samples the signature nonce y from a Gaussian distribution. Again, CDT sampling is
deployed for that purpose. For a high-assurance version of its deterministic variant, this
sampler must be protected accordingly using masking countermeasures.

Squirrels is another scheme in NIST’s signature on-ramp, that features CDT sampling.

Masking. The basic operation within the sampler is the comparison of a secret bit string
with a public constant. A standard software approach to achieve this is bitslicing the inputs
and then using the optimized comparison as described in [KLRBG23]. However, bitslicing
transformations also cause an overhead and may lead to additional microarchitectural
leakage. A non-bitsliced implementation with hardened instructions may yield better overall
results. For a masked comparison, masked subtraction and shift operations as provided
by [GGM™21] are sufficient. However, a dedicated masked greater-than comparison
instruction could further improve the performance while inducing only a miniscule area
overhead in the core.

2.3 BIKE Syndrome Rotation

Our third example is related to the power side-channel resistance of BIKE, which is one
of the three remaining Key Encapsulation Mechanism (KEM) candidates in NIST’s PQC
standardization process. In contrast to the numerous lattice-based schemes, BIKE’s security
foundation relies on linear error-correcting codes. Just recently, Cheriere et al. [CARG23]
demonstrated a power side-channel attack on the optimized Cortex-M4 microcontroller
implementation presented at CHES 2021 by Chen, Chou, and Krausz [CCK21]. Inde-
pendently, we developed the same attack for the portable software implementation of
BIKE [DGK] (see Appendix A).

The decapsulation in BIKE is conducted by the iterative Black-Grey-Flip (BGF)
decoder [DGK20] which rotates the syndrome of the underlying linear error-correcting
code by the secret indices of the private key. To avoid timing side-channel attacks, a
secure algorithm always loads the rotated and unrotated polynomial from the memory
(cf. Algorithm 4). The decision which of those two are stored — and therefore represent
the correct result — is made based on a mask m which either is set to OxFFFFFFFF or
0x00000000. Due to the significant difference between the two valid values for m, they
can be easily distinguished in the power consumption of a device executing the algorithm.
Therefore, an attacker can learn major parts of all secret indices of the private key, since
the mask m is directly connected to the bits representing the indices.

Masking. The aforementioned procedure is required to achieve a constant-time imple-
mentation and masking all relevant parts is straightforward — apart from introducing a
huge implementation overhead. More precisely, as described above, the crucial operation

Krausz et al. 7

that generates the leakage is the conditional move controlled by the mask m. To this end,
first-order masking of the syndrome would double the implementation’s memory footprint
and thus double the cost for loads and stores for this already memory instruction intense
operation. A masked implementation should therefore focus on improving the performance
of a conditional move instruction.

2.4 Hashing

Hashing, or related tasks like deterministic randomness expansion as a Pseudo-Random
Function (PRF) or an Extendable-output Function (XOF), are part of nearly all PQC
schemes. For the NIST standardization efforts, it is required to use NIST-standardized
algorithms for these tasks, and the overwhelming majority of submissions deploy SHA-3
and SHAKE variations. The basic permutation function behind these is Keccak.

Often, these tasks process or generate secret data that needs to be protected against
power SCA. Apart from that, hashing, PRFs, and XOFs have a major influence on
the overall performance of the execution of PQC schemes. This is especially the case
for embedded devices, as shown impressively by the “pqm4” benchmarks [KRSS19],
where hashing takes up to 75 % of the clock cycles for relevant procedures. For masked
implementations, it is to be expected that this percentage even increases for some schemes
(e.g., Haetae), as Keccak involves many non-linear operations.

Algorithm. Keccak-f, the underlying function for all SHA-3 and SHAKE variations,
consists of 24 permutation rounds, each of which performs the five steps 6, p, 7, x, and
¢ on the 1600-bit state. The overall permutation is utilized within a so-called sponge
construction, which allows the design of different functionalities, such as hash functions,
where an arbitrary-length input generates a fixed-length output, or XOFs, where an
arbitrary-length input is transformed into an arbitrary-length output. Consequently, the
only difference between the single SHA-3 and SHAKE variations is

e a domain separation byte, and

o the size of the state’s part that the input is mixed into and that the output will be
taken from.

Applications. Keccak is used (1) in all post-quantum schemes already selected by NIST
for standardization, (2) the fourth-round KEM candidates, and (3) almost all schemes
submitted to the additional signature call. Consequently, the importance of secure and
efficient implementations cannot be overstated. Moreover, as highlighted above, many
schemes have Keccak as a main contributor to their latency. For instance, the signature
generation in the reference implementation of Haetae reportedly spends around 60 % with
Keccak [CCDT23].

Masking. The first three steps of each permutation round (€, p,7) are linear in the
Boolean sharing domain, and the ¢ step is an affine function. Thus, these steps can be
masked trivially, either by applying the steps share-wise for linear functions, or only to the
first share for ¢. The crux of masking Keccak is the x step, which is a quadratic mapping
that requires special care.

3 Software Implementation

We develop efficient C code for all applications to evaluate the hardware accelerators.
Table 1 provides an overview of the algorithms implemented in this work. We implement

8 To extend or not to extend: Agile Masking Instructions for PQC

four different fixed-weight polynomial sampling algorithms and one conversion algorithm,
adapt existing bitsliced variants, and develop secure CDT samplers for FrodoKEM, Haetae
and Hawk, as well as a rotation function for BIKE. Additionally, we develop a masked
implementation of Keccak. Our code works for arbitrary masking orders, however, the
masked instructions on the core only support first-order masking.

Bitslicing. For highspeed symmetric cryptographic software implementations, bitslic-
ing [Bih97] has been an important technique for many years. The general idea is to
reach better resource utilization by using the full register width although operating on
values bounded by fewer bits — in particular when operating on single bits. Therefore,
data has to be transformed to the bitsliced representation. This operation corresponds
to a matrix transposition. For example, given a register width of 32 bit, in a bitsliced
implementation 32 10-bit values are not stored in 32 registers, instead the i-th bit of each
value is aggregated in one register. Therefore, the values are stored in ten registers in total.
Operations can then be done on 32 values in parallel, always using the full register width.
In theory, a speedup of a factor equal to the register width can be achieved for operations
on single-digit values, whenever parallelization is possible. However, transformations from
and to the bitsliced representation and sometimes padding introduce overhead.

Bitslicing is also a very efficient technique to optimize masked software implementations
because it can reduce the number of costly non-linear operations significantly [BC22,
KLRBG23]. However, for hardware accelerators that execute a masked instruction in a
single or only few cycles, the overhead introduced by bitslicing can be unprofitable in
some cases. To allow a fair comparison, we provide standard (non-bitsliced) and bitsliced
implementations for all algorithms if applicable.

Masked Instructions. We implement wrapper functions with inline assembly utilizing
the masked instructions. Via preprocessor directives, we are able to determine whether
our code is compiled (1) without any masked instructions, (2) with the Boolean and
arithmetic, masked instructions developed by Gao et al. [GGM™21], or (3) additionally
with the instructions we deem useful for PQC.

From the masked instructions by Gao et al., only a subset is used in our code, all of
them operate on Boolean shares: mask, unmask, not, and, or, xor, slli, srli, add and sub. The
rest of the instructions — e.g., instructions to switch from Boolean to arithmetic masking
domain and vice versa — do not apply. Without masked instructions, all masked operations
are realized by secure gadgets presented by [BC22, KLRBG23], which rely on unmasked
instructions. We implement some inner loops with inline assembly to have more control
over the memory and register usage. This allows us to use the benefit of reduced register
pressure, which comes with the masked instructions leading to fewer memory loads and
stores. Nevertheless, the parametrizability of our high-level C code (arbitrary masking
order, parameters N and W and different ISEs) leads to some unnecessary memory accesses,
which could be avoided with implementations optimized towards a specific parameter set.

3.1 Additional Masked Instructions

As already mentioned before, during our work we identified a small set of repeatedly
occurring operations. For a branch-less, secret-dependent selection of different values,
timing side-channel secure implementations rely on dedicated select or conditional move
instructions, if available on the architecture. A corresponding masked cmov can be applied
at performance critical locations for multiple fixed-weight polynomial sampling algorithms,
all CDT samplers and is the most relevant operation for a polynomial rotation. Two other
common general purpose instructions are integer comparison. Many sampling algorithms

Krausz et al. 9

repeatedly check if a random value exceeds a threshold (cmpgt), or if two values collide
(cmpeq).

We therefore investigate, if dedicated masked instructions for these operations are
worthwhile. They clearly do not provide an advantage for the block ciphers implemented by
Gao et al., but are potentially useful for asymmetric cryptography beyond the applications
presented in this paper.

To allow a fair evaluation of the benefit of the additional instructions, we examine in
detail how the operations can alternatively be computed with only the masked instructions
by Gao et al. and without any masked instructions.

cmov. Given a mask c of zeros, if the condition is false and a mask of ones if the condition
is true, we can implement a conditional move of b to a with only three Boolean operations.
We compute tmp := b &® a, followed by tmp := tmp A c and a := a & tmp leading to
a:=a®bda = b, if the condition bits are set and a := a & 0 = a, if not. All of
these sub-operations must be side-channel secure and can be realized with their respective
masked instructions by Gao et al. if available.

cmpeq. For the base ISA, we use the operation sequence depicted in Algorithm 1, to
express a cmpeq. As can be seen there, the performance will be dominated by the five
secure or operations. In contrast to this, we use a dedicated operation sequence whenever
masked, Boolean instructions are available. In this case, we compute the first operand
minus the second one and vice versa, combining the two results with a secure or, which is
shown in Algorithm 2. Then, the most significant bit is set, if the operands are not equal.
To obtain the single-bit result, we shift this value right by the offset 31 using the b_srli
instruction.

Algorithm 1 cmpeq with base ISA. All Algorithm 2 cmpeq with ISE by Gao et al.
Boolean operations are performed with se- All arithmetic operations are performed with

cure gadgets. the Boolean-masked instructions.
Input: Boolean-shared values a, b Input: Boolean-shared values a, b
Output: Boolean-shared res, 1 if a and b ~ Output: Boolean-shared res, 1 if a and b
are equal are equal
res:=a®b tmpy :=a —b
res ;= res V (res > 16) tmp; :=b—a
res :=res V (res > 8) res 1= tmp, V tmp,
res :=res V (res > 4) return (res > 31) ® 1

res :=res V (res > 2)
return (resV (res > 1)) & 1

cmpgt. We apply a similar handling for the cmpgt operation. For the base ISA, we adapt
the optimized comparison from [KLRBG23] to the standard representation. However, this
is very slow and usually yields impractical results, which is why a bitsliced implementation
is preferable when no ISE is available. For the evaluation case in which a dedicated masked
cmpgt instruction is not available, but masked subtraction and shift instructions are, we
can express the comparison efficiently with a subtraction followed by a shift to the right to
get the most significant bit. This is only correct when both operands can be represented
with at most 31 bit, or in other words, when the most significant bit of both operands is
zero. Due to the possible parameter ranges for N and W, this is always the case in our
applications.

10 To extend or not to extend: Agile Masking Instructions for PQC

3.2 Masked Fixed-Weight Polynomial Sampling

In addition to implementing non-bitsliced variants of the sampling algorithms, we adapted
the bitsliced implementations from [KLRBG23] so that they can be compiled with masked
instructions to enable a fair comparison. In the following, we briefly summarize the
algorithms presented in [KLRBG23] and discuss their key instructions.

The side-channel secure Fisher-Yates method has a quadratic runtime in the weight
W. In the inner loop, a masked cmov based on the result of a masked cmpeq is executed.
Nevertheless, for the standard implementation, we use bitslicing for another single loop,
because it requires a 48-bit transformation from the Boolean to the arithmetic domain
and vice versa. Although the core by Gao et al. has dedicated instructions for these
conversions, they only work for 32-bit operands. In contrast, the gadget implemented
by Bronchain and Cassiers [BC22| allows (with minor modifications) efficient bitsliced
conversions for this size, and thus the costs are amortized.

Constant-time sorting can be done with sorting networks. The bitsliced sorting
algorithm in [KLRBG23] is based on Batchers’s Bitonic mergesort, which is easy to
parallelize. For the standard implementation, we opted for djb-sort [BCLv17] instead.
Both sorting algorithms have an asymptotic runtime of O(N log?(N)), where N in our case
is the polynomial length, but djb-sort is capable of reaching a slightly lower constant factor.
The fundamental operation in a sorting network is a cmpgt followed by a conditional
swap (i.e., two cmov). Although the values to be swapped during sorting cover the full
32-bit registers, only the upper 30 bits consist of the random values that are compared.
By shifting the values to the right before the cmpgt, we can use the optimized operation
sequence based on subtraction.

Rejection sampling requires a cmpgt to verify whether a sampled bitstring represents
a valid index below N. Additionally, a loop over the already sampled indices checks for
collisions using cmpeq. We did not implement and evaluate the bounded rejection sampling
method, because the Fisher-Yates approach is strictly superior as already pointed out by
Krausz et al. [KLRBG23].

Comparison sampling sets each coefficient bit individually with probability p = W/N.
This is implemented by comparing a random I-bit string with the constant |2!p] and
setting the coefficient to one if the random value is below the threshold. This obviously
heavily relies on a cmpgt operation.

Both the Fisher-Yates shuffle and rejection sampling generate polynomials in the index
representations. In most cases, however, the coefficient representation is required. The
conversion is straightforward: we start from a polynomial in coefficient representation
where all coefficients are set to zero. Then, a public counter ¢ runs from 0 to N — 1 and
in each iteration, we check whether ¢ is equal to each coefficient in the list of indices.
Depending on this cmpeq result, we cmov a one into the position ¢ in the result polynomial.
Thus, the conversion performs exactly N - W cmpeq and cmov.

3.3 Masked CDT Sampler

To the best of our knowledge, we are the first to report masked CDT samplers. The most
important masked operations are integer greater-than comparison and bit accumulation.
For our bitsliced variant, we implement the optimized comparison with a public constant ¢
from [KLRBG23], which only uses [log, t] secure and operations. Bit accumulation can
be performed with half adders, adapting the masked implementation from Bronchain and
Cassiers [BC22]. This requires up to [log, |T|] secure and operations, where |T'| is the
number of entries in the CDT.

Our non-bitsliced implementation varies depending on the masked instructions available.
Similar to our fixed-weight polynomial sampling algorithms, the operands for the greater-
than comparison are bounded (e.g., 15 bits in the case of FrodoKEM), which allows us to

Krausz et al. 11

use different optimal operation sequences. The comparison results are accumulated with
a masked addition. Thus, both operations are executed |T'| times for each sample and
dominate the computation time. Note that for the case of Hawk, the CDT entries have a
size of 80bit, which renders a non-bitsliced implementation infeasible.

3.4 Masked BIKE Rotation

A nalve implementation of the polynomial rotation with word granularity in BIKE could be
structured very similarly to Algorithm 4. However, this would lead to many unnecessary
loads and stores. For example, when the array is rotated by one, the naive implementation
would begin by loading the first and second entries, conditionally move the second to the
first and then store both entries back. Then, the same procedure is done with the second
and third entries; therefore, most entries are loaded and stored two times. Following
the optimized, unmasked BIKE implementation for the Cortex-M4 [CCK21], the memory
accesses can be reduced to one per entry by operating on chains of values and thus keeping
an entry in the registers during the cmov to the next entry and the cmov from the previous
entry. The rotation obviously relies heavily on the masked cmov.

Bitslicing is not applicable here, because the conditional move already operates on the
full register width. Our implementation expects a pointer to three consecutive instances
of the masked polynomial. Three instances are required because the number of registers
for one polynomial, which is the maximum secret rotation amount r, is not a power of
two. As the side-channel secure rotation works bitwise, it covers rotation amounts up to
2Mogaml _ 1 > and thus, extends over the second copy. Apart from [log, 7] masked shift
operations that are required to select the desired bit for each round, the rotation mainly
consists of [log, r|r masked cmov operations.

3.5 Masked Keccak

As already explained before, Keccak consists of three linear steps, one affine step, and a
quadratic step. For the linear and affine steps, the masked xor instructions are expected to
yield a moderate speed-up, while the biggest contribution to an overall acceleration will
come from the masked and instructions that speed up the quadratic x step. Note, however,
that in contrast to the other use cases, Keccak does not profit from the additional cmov
and cmp instructions.

4 Hardware Implementation

Our hardware implementation is based on the SCARV CPU!, an embedded class processor
implementing the RISC-V 32-bit base ISA, as well as the multiply and compressed
instruction set extensions. Internally, it employs a 5-stage pipeline with forwarding paths
to improve performance, but does not feature more advanced features such as branch
prediction or a cache subsystem.

The ISE for masking by Gao et al. is tightly integrated into the core without the
need to manage separate register banks, but at the cost of additional engineering effort
on the hardware level. They provide Boolean (and, or, ...) and arithmetic (add, sub,
...) instructions for operands masked in the Boolean (a = ag @® a;, where @ represents
the bitwise addition mod2) and arithmetic domain (a = ag + a; mod 23%) as well as
conversion between the two domains. The Arithmetic Logic Unit (ALU) is extended with
a masked ALU module, which implements all necessary primitives. The shares are stored
in the general-purpose registers, allowing seamless integration into existing RISC-V code.
However, to enable the CPU to load both shares during the register fetch phase, they

Ihttps://github.com/scarv

https://github.com/scarv

12 To extend or not to extend: Agile Masking Instructions for PQC

Algorithm 3 cmov Implementation

Data: masked 32-bit values dest, new, cond
Result: new is moved into dest if the least significant bit in cond is 1

function cMmov(dest,new,cond)

a < dest @ new > share-wise
b <+ a A cond > using secure and
return b @ dest > share-wise

end function

must be stored in adjacent registers. Additional data paths and logic were added to the
forwarding and hazard unit to account for the shares. Furthermore, one of the shares is
stored in bit-reversed form preventing accidental combination in other pipeline stages. The
original representation is only restored inside the masked ALU.

We add three new instructions for the dedicated acceleration of the frequent core
operations that we identified in the PQC applications. This requires us to modify the
masked ALU as well as the data paths inside the processor.

Randomness Generation Flaw. During the implementation and subsequent testing of
our extension, we detected leakage when using both existing and our new instructions.
We found that the authors used the whole state of two 32-bit Linear-Feedback Shift
Registers (LFSRs) to generate 64 bits of randomness. However, it has been shown that
this LFSR configuration is not ideal and can, in fact, create detectable leakage [CMM™23].
For our testing and evaluation purposes, we changed the randomness generation to use
a unique LFSR for each pseudo-randomly generated bit, instead of employing the whole
state.

General Architecture. RISC-V instructions support up to two source operands and one
destination operand. In the SCARV CPU, the destination operand only acts as a pointer
to a register which is utilized in the writeback stage. However, we require three operands
to implement the cmov instruction. More specifically, we have to use the value of the
destination register as a third input to be able to hide the condition. Thus, we have
to change the register module to allow the transfer of three operands in their shared
representation during the decode and register fetch phase. The decoder will fetch the
destination register’s value whenever a cmov instruction is detected. We modify the
forwarding and hazard unit to account for a third operand and extend the data path to the
CPU, however, the third operand is only routed into the masked ALU. Accidental share
combinations are again prevented by loading and storing a bit-reversed representation.

Masked ALU. Our new instructions cmov and cmpeq are implemented as additional units,
while cmpgt is an extension to an existing unit inside the masked ALU. The cmov module
receives three input operands in their shared representation: the destination register’s
contents, a value and a 1-bit condition, which decides whether the value is moved into
the destination register or not. Internally, the 1-bit condition is expanded to 32-bits. The
result is computed according to Algorithm 3.

Notably, the cmov operation completes within a single clock cycle, as we reuse the
Domain-Oriented Masking (DOM) and gadget provided by Gao et al., which latches its
input on the positive edge and adds randomness on the negative edge.

The cmpeq instruction generates a 1-bit condition based on the equality of two input
operands and is implemented as its own subunit inside the masked ALU. It checks for
equality by first xoring both operands and afterwards, the result is propagated through

Krausz et al. 13

an or-tree, which at each stage computes the inclusive or of adjacent bits within the
intermediate result. Thus, each stage compresses the input by half of its bit length.
Therefore, a 32-bit input will be compressed to just a single bit after five stages. If the
inputs are equal, the input to the or-tree will be zero and the final output will be zero. Vice
versa, if they are unequal, the input will at least contain one digit which is not zero and
the final output will be one. We again reuse the DOM and gadget to build the required
inclusive or gate. Because the protected and gate can compute its result in just one cycle,
the overall latency of this instruction is five cycles.

Lastly, the cmpgt operation compares two input values and sets a 1-bit condition based
on which of the two inputs was greater. Unlike the previous instructions, this operation is
implemented as a minor extension to the existing bit arithmetic module, which provides
masked addition as well as subtraction over Boolean shares. When subtracting a larger
value from a smaller value, a carry bit is generated, which is currently unused and not
extracted from the Kogge-Stone adder present in the design. Therefore, we modify the
adder to output the carry bit in its shared representation, which acts as our 1-bit condition.
The adder computes the result of a 32-bit subtraction within six cycles, thus cmpgt exhibits
the same performance overhead.

5 Evaluation

We evaluate our modified SCARV Core using the ChipWhisperer CW305 FPGA board,
which features an Artix xc7a100tftg256 FPGA as well as connections to supply power
from a separate power supply and to read out the power consumption. Furthermore, we
use the SCARV SoC project to connect the Central Processing Unit (CPU) to an Advanced
extensible Interface (AXI) providing access to memory, peripherals such as serial and
General Purpose Input/Output (GPIO), thus allowing us to send inputs to the system as
well as setting up precise triggers for our measurements. The CPU has access to 256 kB of
shared RAM/ROM and runs at 25 MHz. In the following, we present our results regarding
hardware overhead, software performance and side-channel measurements.

Table 2: Hardware performance results. Note that for the Field-Programmable Gate Array
(FPGA) results cover the whole core, whereas the Application-Specific Integrated Circuit (ASIC)
numbers only feature the ALU.

(a) FPGA performance results. (b) Hardware overhead of our modified ALU using

45 nm technology.

Area Freq.

[LUTs] [FFs] [Slices] [MH7] Bool. ,arith. all
Bool.,arith. 7203 2670 2324 29.29 zmzsq B Zgéjgg gg
cmov 128 64 52 Add/Sub 9582.24 GE 2627.02 GE
Magied cmpeq 127116 3 Other Masking 6265.88 GE 6265.88 GE
cmpgt 64 8 35 Other 729.17 GE 834.28 GE
other ~ 655 64 137 Total Arca 9577.31 GE 11454.40 GE

combined 8177 2922 2629 26.93
Overhead 13.5% 9.4 % 13.1% -8.1%

5.1 Hardware

Table 2a shows that the hardware overhead of the additional instructions is moderate.
Overall, there is an increase of approximately 13 % in combinatorial logic and 10 % in
registers. For the maximum frequencies, we note that we did not perform iterative

14 To extend or not to extend: Agile Masking Instructions for PQC

synthesizing to optimize the frequency, but rather set the target to 25 MHz. The maximum
frequency from Table 2a is then computed from the reported worst negative slack.

We note that SCARYV is a very simple core, without a cache subsystem or floating point
unit. Gao et al. report a frequency drop of 5 MHz as well as a 80 % LUT and a 25% FF
overhead for their masked ISE. Thus, when adding our extension on top of their modified
core, the overhead is overall moderate.

The area costs in Table 2a that are not directly associated with one of our three
instructions, but rather introduced as other, mainly come from the extended data path for
a third operand, which is necessary for our cmov instruction.

Furthermore, we determined the area overhead created by our modified masked ALU for
an ASIC implementation by synthesizing it using Synopsys Design Compiler and Silvaco’s
Open-Cell 45nm FreePDK. The results are shown in Table 2b. In general, the extended
ALU features 1877.09 additional gates, which are mainly comprised of the cmpeq and cmov
modules. The cmpgt instruction only requires minimal modifications to the subtraction
circuit.

5.2 Software

Figures 3, 4, 5a and 5b show our software benchmark results for the four different
applications. Note that for each use case, the generation of input randomness is not
benchmarked, and may take another significant part of the cycle counts. This is especially
the case if a masked Keccak is used (e.g., as XOF).

Fix-weight Sampling. Table 3 shows our benchmark results for all fix-weight sampling
algorithms applied to a representative selection of parameter sets such that our results can
be generalized to other parameter sets easily. For our selection, we choose polynomial sizes
(N) from each relevant order of magnitude, and consider different W/N ratios. Moreover,
we include use cases from key generation, encapsulation, and decapsulation, which all
have different requirements, as pointed out in more details in [KLRBG23]. Particularly,
for the BIKE decapsulation, the last parameter set, only Fisher-Yates and sorting are
secure algorithms, because their runtime is independent of the randommess, which is
extended from a secret value in this case. This counters a recent attack [GHJ22], and
our implementation results can be generalized to HQC decapsulation as well. In general,
our results show that bitslicing improves the performance for all algorithms significantly,
when no accelerators are available.

Fisher-Yates and rejection sampling generate polynomials in index representation,
sorting and the comparison method generate polynomials in coefficient representation.
In most applications, subsequent operations on the polynomials require the coefficient
representation. For these applications, comparison sampling is superior, when implementing
for the base ISA, confirming the results from Krausz et al. [KLRBG23]. When index
representation is required, rejection sampling is clearly faster. For the fourth use case,
where IV is 12323, rejection sampling combined with the conversion is even faster than the
comparison method.

Because sorting requires more than the available 256 kB of RAM, for the BIKE decap-
sulation use case only Fisher-Yates remains as a suitable algorithm. To get the required
coefficient representation, the costs of the index-to-coefficient conversion lead to unpractical
cycle counts of over 360 million cycles.

The picture changes distinctly when we utilize masked instructions. With the ISE, the
non-bitsliced standard implementations are faster for Fisher-Yates, sorting and rejection
sampling, as they get accelerated in many cases by a factor of 30.

Due to the speed-up of more than an order of magnitude, sorting becomes fastest for
small N. With greater values for N, comparison sampling is again faster. For the index
representation, rejection sampling remains the preferable method. The advantage of the

Krausz et al. 15

Table 3: Masked fixed-weight polynomial sampling performance with different parameters and
ISEs in kilo cycles. For each parameter set, we underline the cycle count — for masked ISA “Bool.,
arith.”, which represents the core by Gao et al., and “all” separately — of the fastest algorithm
with output in coefficient representation. For Fisher-Yates and Rejection sampling, we also take
the index-to-coefficient (I2C) conversion into account. Sorting requires too much memory with the
BIKE decapsulation parameters on our evaluation platform, and other options are not available
because of existing timing attacks (cf. [KLRBG23] for an extensive discussion on applicable

algorithms).

Bitsliced Standard
Parameter Algorithm Poly. Base Masked ISE Base Masked ISE
set Format [qp — ISA

Bool., arith. Bool., arith. all
Fisher-Yates index 6 876 6455 44729 2059 1674
kZ'yTgeLfl Sorting coeff. 13678 4569 25017 944 850
N = 677 Rejection index 1214 909 4144 156 138
W = 254 Comparison coeff. 2243 1010 73289 1137 1105
12C Conv. coeff. 5605 4273 236071 9312 5871
. Fisher-Yates index 12112 11108 108352 4490 3551
sNTRU Prime Sorting coeff. 19687 6509 38289 1433 1288
N osa Rejection index 2660 1927 6741 247 231
W = 396 Comparison coeff. 4791 2124 147623 2305 2260
12C Conv. coeff. 11186 8348 517980 20415 12866
) Fisher-Yates index 3244 3082 11474 680 583
'\é'rgg'gscé Sorting coeff. 217048 66040 446669 16191 14479
N — 6688 Rejection index 402 311 2073 7 70
W = 128 Comparison coeff. 24173 9705 661901 10426 10223
12C Conv. coeff. 27020 18765 1175949 46506 29353
Fisher-Yates index 1854 1762 3651 351 321
keBy' ZQEH. Sorting coeff. 460872 136838 941111 33854 30231
N — 12323 Rejection index 187 152 1554 58 52
W =71 Comparison coeff. 34208 13269 899499 14164 13908
12C Conv. coeff. 29568 20529 1203042 47761 30203
BIKE decaps. Fisher-Yates index 5990 5518 27594 1431 1195
N = 49318 Sorting coeff. — — — — —
W =199 12C Conv. coeff. 360683 24352713475741 532081 335510

additional masked instructions compared to the plain Boolean and arithmetic instructions
is in the range of about 10 to 20 percent.

Although Fisher-Yates is more than five times faster with the ISE compared to the
bitsliced variant for the base ISA, the combined costs (including I12C conversion) remain
very high at more than 240 million cycles, for the BIKE decapsulation application. With
more RAM available to be able to run the sorting method, it is expected to be faster than
Fisher-Yates plus the I12C conversion. Still, the estimated costs of more than 100 million
cycles, would not be practical.

CDT Sampling. Our results for the CDT sampler of FrodoKEM, Haetae, and Hawk
can be found in Table 4. Most importantly, the base ISA numbers for the bitsliced
representation indicate that side-channel resistant sampling from a CDT is generally
feasible but costly for all use cases. The bitsliced variants, moreover, are constantly
faster than the implementations on standard representation for FrodoKEM, albeit the

16 To extend or not to extend: Agile Masking Instructions for PQC

Table 4: Masked CDT sampler performance in kilo cycles. IV is contained in the parameter set
name. For Haetae, all parameter sets have N = 256.

Bitsliced Standard

Algorithm Base ISA Masked ISE Base ISA Masked ISE

Bool., arith. Bool., arith. all
FrodoKEM-640 1197 244 26 787 400 319
FrodoKEM-976 1578 323 34 858 530 433
FrodoKEM-1344 1376 272 31499 511 426
Haetae 2294 369 49909 545 289
Hawk-256 2895 549 — — —
Hawk-512 7535 1425 — — —
Hawk-1024 15078 2851 — — —

Table 5: Masked BIKE and Keccak results.

(a) Masked BIKE rotation performance in kilo cycles. (b) Masked SHA/Keccak performance in kilo cy-
cles. Note that one Keccak permutation consists of

Masked ISE 24 rounds.

Parameter Base
set N ISA |, = .
Bool., arith. all # Keccak Base Masked ISE
BIKE-1 12323 283 100 72 Permutations ISA Bool. arith.
BIKE-3 24659 620 217 157 1 488 176
BIKE-5 40973 1146 340 244 9 975 359
3 1463 529
4 1951 705
5 2439 881
6 2926 1057

featured numbers do not include transformation into and from bitsliced representation.
Consequently, this application does not profit from a dedicated acceleration of the core
operations, but achieves a significant speed-up with the masked ISE of approximately
factor five to six, lowering the costs from 1197 to 244 kilocycles for the smallest parameter
set.

The picture is different for Haetae, where the standard representation not only yields
the fastest result, but also our acceleration achieves an overall speed-up of more than
two orders of magnitude. For Hawk, finally, only a bitsliced implementation is reasonable,
because of the large CDT values, and we achieve a speed-up of factor five to six, similar to
FrodoKEM.

Polynomial Rotation. Table 5a shows the speed-ups that can be achieved for rotation of
BIKE polynomials. Again, the base ISA numbers indicate that this operation is generally
feasible when implemented with side-channel countermeasures, with cycle counts ranging
from 284 to 1146 thousand cycles. Still, the ISE brings a significant speed-up of about factor
three with only the Boolean and arithmetic, masked instructions. With the dedicated,
masked cmov instruction the rotation is even four times faster.

Keccak. As shown in Table 5b, the masked instructions achieve a speed-up of factor 2.7 in
addition to eliminating microarchitectural leakage. This translates to a significant overall
speed-up for various PQC schemes. As mentioned before, it is reported for Haetae that

Krausz et al. 17

more than 60 % of the signing cycles account for randomness generation of the hyperball
sample. Then, a fully masked deterministic Haetae implementation requires at least
102 masked Keccak permutations for generating a hyperball sample, which translates to an
approximated cycle count of nearly 50 million cycles without ISE, but only 18 million with
masked ISE. Another example, Kyber-768 decapsulation, requires eight masked Keccak
permutations where the masked ISE would yield an acceleration from approximately
3.9 million cycles down to 1.4 million cycles in addition to eliminating microarchitectural
leakage for the Keccak part alone.

Table 6: Algorithm and data representation recommendations for masked fixed-weight polynomial
sampling in different use cases.

Masked ISE

Parameter set

Bool., arith.

all

NTRU key gen., N =677, W = 254

sNTRU Prime key gen., N =953, W = 396

McEliece encaps., N = 6688, W = 128

BIKE key gen., N = 12323, W =71

sorting
standard rep.

sorting
standard rep.

comparison
bitsliced rep.

comparison
bitsliced rep.

sorting
standard rep.

sorting
standard rep.

comparison'

bitsliced rep.

comparison’

bitsliced rep.

Fisher-Yates, bs. Fisher-Yates, std.

BIKE decaps., N = 49318, W' = 199 I12C conversion, bs. 12C conversion, bs.

! no acceleration by additional masked instructions

5.3 Implementation Recommendations

Table 6 summarizes our recommendations for implementing masked fixed-weight sampling
with masked instructions. Non-bitsliced sorting is the preferable algorithm for the exem-
plary NTRU and Streamlined NTRU Prime parameters. For the McEliece encapsulation
and BIKE key generation use cases, the bitsliced comparison methods is the fastest option,
the cmov and cmp instructions can not be applied here and therefore do not bring an
advantage.

For FrodoKEM, generally, the bitsliced sampler is the fastest, and the additional ISE
does not yield an advantage. In contrast, if for Haetae only the original masked ISE is
available, the bitsliced sampler is superior, but if the additional ISE is available, the
standard representation is faster.

5.4 Side-Channel Security

We verify first-order power side channel resistance by creating microbenchmarks for each of
our new instructions and performing a fized vs. random t-test with 100 000 measurements.
All measurements were performed using a sample rate of 2.5 GS/s. The results are shown
in Figure 1. We performed two t-tests per instruction to ensure that the supplied or
generated condition does not leak any information. The results seen in Subfigures (a)-(f)
show that our implementation is first-order secure. Additionally, we verified our results by
disabling the internal randomness generator for the masked ALU. As seen in Figure 2,
without any randomness, the cmov instruction already shows strong signs of leakage after
40 000 measurements.

18 To extend or not to extend: Agile Masking Instructions for PQC

@
=
a y
-5 \ \ - =5 L ‘ : >
0 200 400 534 0 200 400 534
time (ns) time (ns)
(a) cmov supplied with false condition (b) cmov supplied with true condition
5F I I I = 5[I I I =
T 25[1 g a25) |
= 0 WWWMM = 0
z -25 1 I 25 4
-5 \ \ \] =5 L ‘ . ‘ -
0 200 400 600 819 0 200 400 600 819
time (ns) time (ns)
(¢) cmpeq evaluating to false (d) cmpeq evaluating to true
5 T T T N 5[I I I 7
L 25 | £ 251 N
= 0 S 0 N
A ' o ' T o Y i W"ﬁ
—5E \ \ \ =) —5E \ \ \ -
0 200 400 600 819 0 200 400 600 819
time (ns) time (ns)
(e) cmpgt evaluating to false (f) cmpgt evaluating to true

Figure 1: Side-channel evaluation of our instruction set extension using a fixed vs. random ¢-test
with 100,000 measurements.

T T

S =~

t-value

o g

-8

| |
0 200 400 534
time (ns)

Figure 2: Side-channel measurement setup verification by performing a fixed vs. random t-test
with 40,000 measurements of our cmov instruction with the internal randomness engine disabled,
causing significant leakage.

6 Conclusion

In our work, we demonstrate how an ISE featuring masked instructions for Boolean and
arithmetic operations, developed in previous work for symmetric cryptography can be
applied to widespread PQC components. We identify common critical operations, for which
we develop efficient instruction sequences based on the masked Boolean and arithmetic
instructions. Furthermore, we evaluate the introduction of dedicated masked instructions
for these critical operations.

For fixed-weight sampling, this leads to speed-ups of more than an order of magnitude.
However, further research is required for sampling in the BIKE and HQC decapsulation,
which is inefficient even with the acceleration. While we reach considerable accelerations for
all applications, we note that the execution time of the sampling and rotation algorithms

Krausz et al. 19

is limited by their extensive memory accesses, which is further amplified by masking.

In addition to more efficient fixed-weight sampling methods that are suitable for BIKE
and HQC decapsulation, fully masked implementations of both algorithms would be an
important next step for research, especially in the light of a potential standardization of one
of the schemes. A fully masked implementation of FrodoKEM, which is recommended by
the French ANSSI and the German BSI, is now feasible with the CDT sampler presented
in this work.

Acknowledgements

The work described in this paper has been supported by the German Federal Ministry
of Education and Research BMBF through the projects 6GEM (16KISK038) and FlexKI
(01IS220861), by the German Research Foundation (Deutsche Forschungsgemeinschaft,
DFG) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972, and by the
FEuropean Commission under the grant agreement number 101070374.

A BIKE Syndrome Rotation

In this section, we show that the conditional move operations in BIKE’s portable C
implementation [DGK] allow to perform a Simple Power Analysis (SPA) leading to a
partial secret key recovery even for ephemeral keys. In the ephemeral key setting, a
side-channel adversary can only acquire the power consumption of one secret key used in
the decoding process. The same attack has been presented by Cheriere et al. in [CARG23].

Algorithm In the decapsulation of BIKE, the error polynomials, which are intentionally
added to the encrypted message in the encapsulation are iteratively decoded by the BGF
decoder [DGK20]. In this decoding step, the syndrome s is rotated by the secret indices of
the private key (similar to the multiplication presented in [Chol6]). More precisely, these
indices are represented by [logr] bits where r denotes the size of the polynomials used in
BIKE. On a 32-bit architecture, the vector storing the syndrome s is divided into [r/32]
chunks. Hence, applying a rotation by & bits (i.e., a secret index of the private key), can
be accomplished by performing a word-unit rotation by the upper [logr] — 5 bits of k
(denoted by d in the following) and a subsequent bit-unit rotation by the lower five bits
of k. However, in the presented attack, we only measure the power consumption of the
word-unit rotation (i.e., rotation by §) as differences in the power consumption depending
on the applied private key can already be distinguished by using just one single trace.

An implementation of the word-unit rotation, that is not timing side-channel secure,
could simply change the pointer to the syndrome, but then subsequent operations on the
syndrome would leak the rotation value via their memory access pattern. To this end, we
show the constant-time implementation of the word-unit rotation in Algorithm 4. For each
bit §; in d, the algorithm computes a mask m which is set to OxFFFFFFFF in case the bit
is one or to 0x00000000 in case the bit is zero. Afterwards, the implementation loops over
the whole syndrome, loads the shifted and the unshifted value, and selects one of them
based on m. This procedure ensures that both — the rotated and unrotated values are
loaded from the memory — and no timing differences with respect to the secret index (i.e.,
d) can be observed.

While the constant-time implementation protects the rotation against timing attacks,
it unfortunately introduces two attack surfaces for side-channel adversaries exploiting the
power consumption of the device. First, the computation of the mask m in Lines 6 in
Algorithm 4 causes variations in the power consumption due to the huge difference of the
Hamming weight which is directly connected to the i-th bit of the secret index §. Second,

20 To extend or not to extend: Agile Masking Instructions for PQC

Algorithm 4 Word-unit rotation used in BIKE’s decapsulation.

1: Data: Vector v = {s, s, s} holding three consecutive copies of s, secret index §
2: Result: Rotated syndrome s

3: function WORD__UNIT__ROTATION(v, 4)

4 i < log(r/32/2)

5 while : > 1 do

6: m < (6 > i 7 OxFFFFFFFF : 0x00000000) > constant-time
7 d0—(t&m)

8 for j=0tor/32+ido

9 vlj] = (il & ~m) [(v[j +1] &m)
10: end for

11: 141 >>1

12: end while

13: return Lower r bits of v

14: end function

m is used again in Line 9 to decide whether the rotated or unrotated value of the syndrome
is used to update it. Again, due to the huge difference of the Hamming weight of m, it
is expected to observe corresponding variations in the power consumption of the target
device.

Side-Channel Attack In our side-channel attack, we first record a power trace of the
decoding step of BIKE’s decapsulation. Since the BGF decoder always performs seven
iterations, each secret index of the private key is used exactly seven times to execute the
rotation described in Algorithm 4. In order to achieve cleaner traces, we compute the mean
of these seven sub-traces. Now, we select Points of Interest (Pol) by visually inspecting
our preprocessed power traces, i.e., the points in the power traces where the mask m is
computed or used. The selection of the Pols is done for each bit position i separately
since minor differences can occur in the power traces (e.g., in the horizontal appearance).
To recover all W secret indices of one private key at the same time, we apply a k-means
clustering of all power traces processing the i-th bit of the indices.

Practical Results We perform the described attack on BIKE’s security level A = 1 param-
eter set utilizing only W = 142 rotations. As target device, we use an ARM Cortex-M4
processor supplied with a 120 MHz clock. The measurement results for the most significant
bit for ten different secret indices d are shown in Figure 3. The differences between a one
and a zero can clearly be distinguished without any further postprocessing of the traces.
Repeating the same experiment for the remaining bits of § would result in recovering the
upper bits of a secret index k of BIKE’s private key. The remaining lower five bits could
be recovered by solving linear equation systems.

To demonstrate that our attack works reliably, we measure the power consumption
of the word-unit rotation of 1000 different secret keys. We are able to recover 98.40 %
of the partial secret keys without erroneous bits. In general, 99.99 % of all upper secret
bits (8 - 142 - 10®) could be recovered correctly. Optimized versions [CCK21, CGKT22] of
BIKE significantly reduce the Hamming weight, but the attack is still possible in a similar
fashion as recently demonstrated in [CARG23].

Krausz et al.

21

150

100 |

Voltage [LSB]

50

200
g 180
= :
& 160 ff
&
S 140
TR TR N N AR (Y N S 120 l I | I ; | 1
0 50 100 150 200 250 300 0 50 100 150 200
Sample Points Sample Points

(a) Calculation of the mask m (cf. Algorithm 4, (b) Use of the mask m (cd. Algorithm 4, Line 14)
Lines 7-11). Frequent visual differences over the in two subsequent iterations. Visual differences are
period of the calculation. highlighted.

Figure 3: Ten raw power traces (500MS/s) of the word-unit rotation from different secret
key indices § at bit position i = 13. The power traces are measured on an ARM Cortex-M4
processor of the FRDM-K22F development board (rev.D) and clocked with 120 MHz. The C code
is compiled with arm-none-eabi-gcc compiler (v9.2.1) and optimization level -03.

References

[BC22]

[BCD*16]

[BCGT14]

[BCLv17]

[BCMP24]

[BCPZ16]

Olivier Bronchain and Gaétan Cassiers. Bitslicing arithmetic/boolean masking
conversions for fun and profit with application to lattice-based KEMs. TACR
TCHES, 2022(4):553-588, 2022.

Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig,
Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take
off the ring! Practical, quantum-secure key exchange from LWE. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
Shai Halevi, editors, ACM CCS 2016, pages 1006-1018. ACM Press, October
2016.

Johannes Buchmann, Daniel Cabarcas, Florian Gopfert, Andreas Hiilsing,
and Patrick Weiden. Discrete ziggurat: A time-memory trade-off for sampling
from a Gaussian distribution over the integers. In Tanja Lange, Kristin
Lauter, and Petr Lisonek, editors, SAC 2013, volume 8282 of LNCS, pages
402-417. Springer, Heidelberg, August 2014.

Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine
van Vredendaal. NTRU prime: Reducing attack surface at low cost. In Carlisle
Adams and Jan Camenisch, editors, SAC 2017, volume 10719 of LNCS, pages
235-260. Springer, Heidelberg, August 2017.

Alessandro Budroni, Isaac A. Canales-Martinez, and Lucas Pandolfo Perin.
Sok: Methods for sampling random permutations in post-quantum cryp-
tography. Cryptology ePrint Archive, Paper 2024/008, 2024. https:
//eprint.iacr.org/2024/008.

Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina
Zeitoun. Horizontal side-channel attacks and countermeasures on the ISW
masking scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors,
CHES 2016, volume 9813 of LNCS, pages 23—-39. Springer, Heidelberg, August
2016.

https://eprint.iacr.org/2024/008
https://eprint.iacr.org/2024/008

22

To extend or not to extend: Agile Masking Instructions for PQC

[Ber22]

[Bih97]

[CARG23]

[CCD*+23]

[CCHY?23)

[CCK21]

[CD23]

[CGKT22]

[CGTZ23]

[Chol6)

[CMM*23]

[CP23]

Daniel J Bernstein. Divergence bounds for random fixed-weight vectors
obtained by sorting, 2022.

Eli Biham. A fast new DES implementation in software. In Eli Biham, editor,
FSE’97, volume 1267 of LNCS, pages 260-272. Springer, Heidelberg, January
1997.

Agathe Cheriere, Nicolas Aragon, Tania Richmond, and Benoit Gérard.
BIKE key-recovery: Combining power consumption analysis and information-
set decoding. In Mehdi Tibouchi and Xiaofeng Wang, editors, Applied
Cryptography and Network Security - 21st International Conference, ACNS
2023, Kyoto, Japan, June 19-22, 2023, Proceedings, Part I, volume 13905 of
Lecture Notes in Computer Science, pages 725—-748. Springer, 2023.

Jung Hee Cheon, Hyeongmin Choe, Julien Devevey, Tim Giineysu, Dongyeon
Hong, Markus Krausz, Georg Land, Marc Moller, Damien Stehlé, and Min-
June Yi. Haetae: Shorter lattice-based fiat-shamir signatures. Cryptology
ePrint Archive, Paper 2023/624, 2023. https://eprint.iacr.org/2023/
624.

Jung Hee Cheon, Hyeongmin Choe, Dongyeon Hong, and MinJune Yi. Smaug:
Pushing lattice-based key encapsulation mechanisms to the limits. Cryptology
ePrint Archive, Paper 2023/739, 2023. https://eprint.iacr.org/2023/
739.

Ming-Shing Chen, Tung Chou, and Markus Krausz. Optimizing BIKE for
the intel haswell and ARM cortex-M4. JACR TCHES, 2021(3):97-124, 2021.
https://tches.iacr.org/index.php/TCHES/article/view/8969.

Wouter Castryck and Thomas Decru. An efficient key recovery attack on
SIDH. In Carmit Hazay and Martijn Stam, editors, FUROCRYPT 2023,
Part V, volume 14008 of LNCS, pages 423-447. Springer, Heidelberg, April
2023.

Ming-Shing Chen, Tim Giineysu, Markus Krausz, and Jan Philipp Thoma.
Carry-less to BIKE faster. In Giuseppe Ateniese and Daniele Venturi, editors,
ACNS 22, volume 13269 of LNCS, pages 833-852. Springer, Heidelberg, June
2022.

Jean-Sébastien Coron, Francois Gérard, Matthias Trannoy, and Rina Zeitoun.
High-order masking of NTRU. TACR TCHES, 2023(2):180-211, 2023.

Tung Chou. QcBits: Constant-time small-key code-based cryptography. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016, volume
9813 of LNCS, pages 280-300. Springer, Heidelberg, August 2016.

Gaétan Cassiers, Loic Masure, Charles Momin, Thorben Moos, Amir Moradi,
and Francois-Xavier Standaert. Randomness generation for secure hardware
masking - unrolled trivium to the rescue. TACR Cryptol. ePrint Arch., page
1134, 2023.

Hao Cheng and Daniel Page. eliminate: a leakage-focused ise for masked
implementation. Cryptology ePrint Archive, Paper 2023/966, 2023. https:
//eprint.iacr.org/2023/966.

https://eprint.iacr.org/2023/624
https://eprint.iacr.org/2023/624
https://eprint.iacr.org/2023/739
https://eprint.iacr.org/2023/739
https://tches.iacr.org/index.php/TCHES/article/view/8969
https://eprint.iacr.org/2023/966
https://eprint.iacr.org/2023/966

Krausz et al. 23

[DDLL13] Léo Ducas, Alain Durmus, Tancréde Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal Gaussians. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 40-56.
Springer, Heidelberg, August 2013.

[DGK] Drucker, Gueron, and Kostic. Additional Implementation of BIKE (Bit Flip-
ping Key Encapsulation). https://github.com/awslabs/bike-kem. Ac-
cessed: 2023-05-20.

[DGK20] Nir Drucker, Shay Gueron, and Dusan Kostic. QC-MDPC decoders with
several shades of gray. In Jintai Ding and Jean-Pierre Tillich, editors, Post-
Quantum Cryptography - 11th International Conference, PQCrypto 2020,
pages 35-50. Springer, Heidelberg, 2020.

[DN12] Léo Ducas and Phong Q. Nguyen. Faster Gaussian lattice sampling using lazy
floating-point arithmetic. In Xiaoyun Wang and Kazue Sako, editors, ASI-
ACRYPT 2012, volume 7658 of LNCS, pages 415-432. Springer, Heidelberg,
December 2012.

[DPPvW22] Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, and Wessel P. J. van
Woerden. Hawk: Module LIP makes lattice signatures fast, compact and
simple. In Shweta Agrawal and Dongdai Lin, editors, ASTACRYPT 2022,
Part IV, volume 13794 of LNCS, pages 65-94. Springer, Heidelberg, December
2022.

[FBRT22] Tim Fritzmann, Michiel Van Beirendonck, Debapriya Basu Roy, Patrick
Karl, Thomas Schamberger, Ingrid Verbauwhede, and Georg Sigl. Masked
accelerators and instruction set extensions for post-quantum cryptography.
TACR TCHES, 2022(1):414-460, 2022.

[GGM*21] Si Gao, Johann Grofschidl, Ben Marshall, Dan Page, Thinh Pham, and
Francesco Regazzoni. An instruction set extension to support software-based
masking. JACR TCHES, 2021(4):283-325, 2021. https://tches.iacr.org/
index.php/TCHES/article/view/9067.

[GHJ*22] Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexan-
der Nilsson, and Robin Leander Schroder. Don’t reject this: Key-recovery
timing attacks due to rejection-sampling in HQC and BIKE. TACR TCHES,
2022(3):223-263, 2022.

[GPVO08§] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In Richard E. Ladner and
Cynthia Dwork, editors, J0th ACM STOC, pages 197-206. ACM Press, May
2008.

[Inc] NewAE Technology Inc. ChipWhisperer). https://www.newae.com/
chipwhisperer. Accessed: 2023-06-25.

[KAA21] Emre Karabulut, Erdem Alkim, and Aydin Aysu. Single-trace side-channel
attacks on w-small polynomial sampling: With applications to ntru, NTRU
prime, and CRYSTALS-DILITHIUM. In IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2021, Tysons Corner, VA,
USA, December 12-15, 2021, pages 35—45. IEEE, 2021.

[KLRBG23] Markus Krausz, Georg Land, Jan Richter-Brockmann, and Tim Giineysu. A
holistic approach towards side-channel secure fixed-weight polynomial sam-
pling. In Alexandra Boldyreva and Vladimir Kolesnikov, editors, PKC 2023,

https://github.com/awslabs/bike-kem
https://tches.iacr.org/index.php/TCHES/article/view/9067
https://tches.iacr.org/index.php/TCHES/article/view/9067
https://www.newae.com/chipwhisperer
https://www.newae.com/chipwhisperer

24

To extend or not to extend: Agile Masking Instructions for PQC

[KRSS19]

[MKK+23]

[MP21]

[MPW22]

[ND22]

[Peil0)

[Por]

[PR13]

[Sen21]

Part II, volume 13941 of LNCS, pages 94-124. Springer, Heidelberg, May
2023.

Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
pqm4: Testing and benchmarking NIST PQC on ARM cortex-M4. Cryptology
ePrint Archive, Report 2019/844, 2019. https://eprint.iacr.org/2019/
844.

Soundes Marzougui, levgen Kabin, Juliane Kramer, Thomas Aulbach, and
Jean-Pierre Seifert. On the feasibility of single-trace attacks on the gaus-
sian sampler using a CDT. In Elif Bilge Kavun and Michael Pehl, editors,
Constructive Side-Channel Analysis and Secure Design - 14th International
Workshop, COSADE 2023, Munich, Germany, April 8-4, 2023, Proceedings,
volume 13979 of Lecture Notes in Computer Science, pages 149-169. Springer,
2023.

Ben Marshall and Dan Page. SME: Scalable masking extensions. Cryptology
ePrint Archive, Report 2021/1416, 2021. https://eprint.iacr.org/2021/
1416.

Ben Marshall, Dan Page, and James Webb. MIRACLE: MIcRo-ArChitectural
leakage evaluation A study of micro-architectural power leakage across many
devices. TACR TCHES, 2022(1):175-220, 2022.

Dusan Kostic Nir Drucker, Shay Gueron. Isochronous implementation of the
errors-vector generation of BIKE. https://github.com/awslabs/bike-kem,
2022. Accessed: 2022-10-25.

Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In Tal
Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 80-97. Springer,
Heidelberg, August 2010.

Thomas Pornin. Why Constant-Time Crypto? https://www.bearssl.org/
constanttime.html. Accessed: 2023-06-30.

Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen,
editors, FUROCRYPT 2013, volume 7881 of LNCS, pages 142-159. Springer,
Heidelberg, May 2013.

Nicolas Sendrier. Secure sampling of constant-weight words — application
to BIKE. Cryptology ePrint Archive, Report 2021/1631, 2021. https:
//eprint.iacr.org/2021/1631.

https://eprint.iacr.org/2019/844
https://eprint.iacr.org/2019/844
https://eprint.iacr.org/2021/1416
https://eprint.iacr.org/2021/1416
https://github.com/awslabs/bike-kem
https://www.bearssl.org/constanttime.html
https://www.bearssl.org/constanttime.html
https://eprint.iacr.org/2021/1631
https://eprint.iacr.org/2021/1631

	Introduction
	Applications
	Fixed-Weight Polynomial Sampling
	Sampling from a Discrete Gaussian Distribution
	BIKE Syndrome Rotation
	Hashing

	Software Implementation
	Additional Masked Instructions
	Masked Fixed-Weight Polynomial Sampling
	Masked CDT Sampler
	Masked BIKE Rotation
	Masked Keccak

	Hardware Implementation
	Evaluation
	Hardware
	Software
	Implementation Recommendations
	Side-Channel Security

	Conclusion
	BIKE Syndrome Rotation

