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Abstract—Proof-carrying data (PCD) is a cryptographic prim-
itive enabling mutually distrustful parties to perform distributed
computations on directed acyclic graphs with efficient and incre-
mental verification. Key performance metrics include the prover
cost at each step and the recursion overhead, which measures
the additional cost beyond proving the original computation.
Despite substantial advancements in constructing efficient PCD
schemes, these metrics continue to be bottlenecks hindering their
widespread application.

In this paper, we advance the research by constructing a new
PCD scheme based on a new generalized construction of multi-
folding schemes. Compared with the state-of-the-art PCD scheme
by Bünz et al. (CRYPTO’21), our scheme reduces the prover cost
at each step from 4r + 6 multi-scalar multiplications (MSMs)
of size O(|C|) to 1 MSM of the same size, and the recursion
overhead from 6 MSMs of size 2r−1, 1 MSM of size 6r−3 to 1
MSM of size 2r− 1, where r is the number of incoming edges at
certain step and |C| is the proving computation size. Additionally,
our PCD scheme supports a more expressive constraint system
for encoding computations, namely the customizable constraint
system, which supports high-degree constraints, in contrast to
the rank-1 constraint system adopted by existing PCD schemes
that only supports quadratic constraints.

We implement our PCD scheme and report the concrete
recursion overhead and practical efficiency for different values
of r and |C|. Compared with Bünz et al. (CRYPTO’21), our
PCD scheme achieves a 2.5 times lower recursion overhead when
r = 2 and |C| = 220. Additionally, when r = 2 and a proving
computation size (excluding recursion overhead) of 224, it takes
49 seconds to generate a PCD proof at each step. Using a SNARK
to compress the proof reduces the proof size from 1031 MB to
13 KB, with a tradeoff in the verifier time, which increases from
11 seconds to 22 seconds.

I. INTRODUCTION

Proof-carrying data (PCD), introduced by Chiesa and
Tromer [17], is a powerful cryptographic primitive that enables
mutually distrustful parties to perform distributed computations
on directed acyclic graphs, while every intermediate state
of the computation can be verified efficiently. It generalizes
incrementally verifiable computation (IVC) [41] which enables
a possibly infinite computation on path graphs such that the
correctness can be verified efficiently at any point. PCD has
found numerous applications in enforcing language seman-
tics [19], verifiable MapReduce computations [18], image
authentication [31], verifiable registries [40], privacy pools [1]
and blockchains [6], [15], [25].

There has been tremendous interest and progress in design-
ing efficient PCD schemes. A classic method for constructing
PCD is via recursive composition of succinct non-interactive
argument of knowledge (SNARK) [3], [2], [16]. Informally, at
each step i, the prover uses a SNARK to prove that the i-th

step of the computation is executed correctly and the SNARK
verifier expressed as a circuit has accepted the SNARK proof
from step i− 1. The performance of PCD schemes is mainly
measured by the prover cost at each step and the recursion
overhead. In particular, the recursion overhead indicates the
verifier’s operations expressed as a circuit that the prover must
prove at each step besides proving the original computation.
The SNARK-based method yields a secure PCD construction.
However, the concrete efficiency is limited by the use of cycles
of expensive pairing-friendly elliptic curves for pairing-based
SNARKs [2] or heavy use of cryptographic hash functions for
hash-based SNARKs [16].

Bünz et al. [10] introduced an alternative method for
constructing PCD by formalizing a novel notion—atomic
accumulation scheme from Halo [7]. Instead of expressing the
entire SNARK verifier as a circuit, this approach requires only
the verifier of the atomic accumulation scheme to be expressed
as a circuit, significantly reducing its size. However, the prover
at each step has to perform expensive fast Fourier transforms
(FFTs) and the recursion overhead is still dominated by group
operations that scale logarithmically with the computation
size. Subsequently, Bünz et al. [9] extended the notion of
atomic accumulation scheme to split accumulation scheme. By
designing a non-interactive argument of knowledge (NARK)
with a split accumulation scheme for rank-1 constraint system
(R1CS) [23], they constructed a PCD scheme where the re-
cursion overhead is dominated by a constant number of group
operations. Despite this improvement, the prover at each step
still has to generate a NARK proof, leading to relatively high
prover cost and recursion overhead. Moreover, the computation
at each step is encoded as R1CS which only supports degree-
2 gates, limiting the PCD’s capability to succinctly express
complex computations.

Following [10], [9], Kothapalli et al. [29] introduced an
elegant notion—folding scheme to construct an IVC scheme
called Nova. Due to the simplicity of the folding scheme,
Nova has significantly low prover cost and recursion overhead.
However, the folding scheme and consequently Nova are
specifically tailored to R1CS, which has limited expressivity.
Later, Kothapalli and Setty [28] generalized the folding scheme
to a multi-folding scheme and then constructed an IVC scheme
named HyperNova. In particular, the multi-folding scheme is
designed for customizable constraint system (CCS) [37] that
captures not only R1CS but also Plonkish1, which supports
more expressive high-degree gates, thereby allowing certain
computations to be expressed with smaller circuit sizes. Nev-
ertheless, both Nova and HyperNova are IVC schemes, which
are a specialized case of PCD. How to adapt them to construct

1https://zcash.github.io/halo2/concepts/arithmetization.html



a PCD scheme with high performance and expressivity remains
an unsolved problem.

A. Our Contributions

In this paper, we construct and implement a PCD scheme
from the multi-folding scheme. Our concrete contributions are
elaborated below.

A multi-folding scheme for an arbitrary number of
instances. We extend the multi-folding scheme in Hyper-
Nova [28], which originally folds two instances, to support
folding an arbitrary number of instances. Our scheme could
reduce the task of checking multiple instances to the task of
checking a single instance. By using the Fiat-Shamir transfor-
mation [22] we could make it non-interactive, which is the
basis of our PCD scheme.

An efficient PCD scheme supporting the customizable
constraint system. We construct an efficient PCD scheme
that supports the customizable constraint system with high
expressivity. We provide a comparison of PCD schemes in
Table I. For fairness, we treat CCS as R1CS here and report the
corresponding efficiency measurements. The exact efficiency
with CCS can be found in the efficiency analysis part in
Section IV-B. For a proving computation of size |C| and
PCD arity r (the number of incoming edges of a node), the
recursion overhead of our PCD scheme is dominated by 1
multi-scalar multiplication (MSM)2 of size 2r−1, O(r log |C|)
field operations and O(log |C|) hash operations. The prover
cost at each step is dominated by 1 MSM of size O(|C|).
Compared to the state-of-the-art PCD scheme BCLMS21 [9],
these metrics are significantly improved3. Additionally, by
using the SNARK called SuperSpartan [37] to compress the
proof, our PCD scheme achieves a logarithmic proof size, with
the verifier cost dominated by 1 MSM of size O(|C|).

TABLE I: Comparison of proof-carrying data schemes

BCTV14 [2] COS20 [16] BCLMS21 [9] This work

Constraint
system R1CS R1CS R1CS CCS

Recursion
overhead

3r P O(r log2 |C|) F
O(r log2 |C|) H

6 (2r − 1)-MSM
1 (6r − 3)-MSM

5r G

1 (2r − 1)-MSM
O(r log |C|) F
O(log |C|) H

Prover cost
(each step)

O(|C|)-FFT
O(|C|)-MSM

O(|C|)-FFT
O(|C|)-MHT

4r + 6

O(|C|)-MSM
1

O(|C|)-MSM

Proof size
2 G1

1 G2
O(log2 |C|) F O(|C|) F

15 G
O(log |C|) F
O(log |C|) G

Verifier cost 3 P O(log2 |C|) F
O(log2 |C|) H

10
O(|C|)-MSM

1
O(|C|)-MSM

Notes: BCTV14 [2] is instantiated with [24]. R1CS denotes rank-1 constraint
system. CCS denotes customizable constraint system. r denotes the PCD
arity. |C| denotes the proving computation size. G denotes group scalar
multiplications when measuring overhead or group elements when measuring
proof size. Similarly, F denotes field operations or field elements. G1,G2

denote pairing-friendly group elements. H denotes hash operations. P denotes
pairing operations. 1 O(|C|)-MSM denotes one multi-scalar multiplication of
size O(|C|). O(|C|)-FFT denotes FFT over an O(|C|)-sized vector. O(|C|)-
MHT denotes constructing Merkle tree over an O(|C|)-sized vector.

2For field elements a1, . . . .ar and elliptic curve group elements
G1, . . . , Gr , the multi-scalar multiplication denotes the operation a1G1 +
· · ·+ arGr . The group scalar multiplication denotes the operation a1G1.

3The group operations are much more expensive than field or hash opera-
tions in the circuit.

An efficient implementation of a PCD scheme from
the multi-folding scheme. We implement our multi-folding
scheme and PCD scheme by adapting CycleFold [27], a
conceptually simple approach to implement folding-scheme-
based recursive arguments. We report experimental results
for the concrete recursion overhead and PCD’s efficiency
before and after compression across different arities r and
proving computation sizes |C|. With r = 2 and |C| of 220

R1CS constraints, the concrete recursion overhead of our PCD
scheme is 110, 213 R1CS constraints, significantly smaller
than the 274, 856 constraints in BCLMS21. Furthermore, with
r = 2 and the proving computation size (excluding recursion
overhead) of 220 R1CS constraints, it takes 3.3 seconds to
generate a PCD proof at each step. Using SuperSpartan to
compress the proof reduces the proof size from 70MB to
12KB, with a tradeoff in the verifier time, increasing from
0.8 seconds to 1.6 seconds.

B. Related Work

Valiant [41] introduced incrementally verifiable compu-
tation (IVC), which allows a computation defined on path
graphs to be verified incrementally. Chiesa and Tromer [17]
generalized IVC to proof-carrying data (PCD) by enabling
computations to be defined on arbitrary directed acyclic graphs.
Subsequently, numerous works have advanced the theoretical
foundations of IVC and PCD and studied their practical
constructions.

IVC/PCD from SNARKs. Bitansky et al. [3] demonstrated
that any SNARK for machine computation can be efficiently
transformed into a PCD scheme via recursive composition.
Ben-Sasson et al. [2] achieved the first implementation of PCD
using pairing-based SNARKs instantiated with pairing-friendly
cycles of elliptic curves. However, these curves require large
fields due to their low embedding degrees, leading to poor
concrete efficiency. Chiesa et al. [16] realized the first efficient
post-quantum PCD, but its concrete efficiency is limited by the
heavy use of hash functions in the circuit.

IVC/PCD from accumulation/folding schemes. Bünz et
al. [10] developed and formalized a novel approach from
Bowe et al. [7] to construct PCD, known as PCD from
atomic accumulation schemes. Bünz et al. [9] further improved
this approach by introducing split accumulation schemes to
enhance PCD construction. Meanwhile, Boneh et al. [5] for-
malized a method for constructing PCD using additive polyno-
mial commitment schemes with an aggregation scheme. Their
method is closely related to PCD from atomic/split accumula-
tion schemes. Kothapalli et al. [29] introduced a conceptually
simpler notion of folding schemes and used them to construct
an IVC scheme. Compared to the SNARK-based method,
the accumulation/folding-based method achieves significantly
better prove efficiency and lower recursion overhead.

To enhance IVC’s support for expressive high-degree and
lookup gates, Kothapalli and Setty [28] introduced the notion
of multi-folding schemes designed for the customizable con-
straint system [37]. They also integrated SuperNova [26] to
support non-uniform circuits and CycleFold [27] for efficient
implementation. Bünz and Chen [12] introduced an approach
for constructing accumulation and IVC schemes from any
interactive public-coin protocol with an algebraic verifier,
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resulting in an IVC scheme that supports multiple non-uniform
circuits and enables high-degree and lookup gates. However,
their accumulation scheme only handles two instances at once.
Trivially extending it to accumulate multiple instances at once
causes an exponential increase in the polynomial degree with
the number of instances, which is undesirable for a PCD
construction. Eagen and Gabizon [21] reduced this exponential
growth to linear by leveraging the Lagrange base and sum-
check protocol. However, they did not provide explicit PCD
constructions, which may face efficiency limitations due to the
worse constants in their accumulation scheme.

Some recent works adapted accumulation/folding schemes
to introduce new features and applications. Bünz and Chen [13]
constructed an efficient memory-proving IVC scheme from ac-
cumulation schemes, which is particularly useful for machine
computations with large memories and deterministic steps.
Boneh and Chen [4] presented a lattice-based folding scheme
based on the module short integer solution problem. Bünz
et al. [14] constructed a bounded-depth accumulation scheme
from non-homomorphic vector commitments and linear code,
which implies a bounded-depth PCD and polynomial-depth
IVC. However, their work is more focused on the theoretical
aspect. Nguyen et al. [33] presented a framework for building
efficient folding-based SNARKs. When estimating the perfor-
mance of their SNARKs, they instantiated the generic PCD
construction of [9] with their folding schemes for polynomial
relations. The involved polynomial map has degree d, and
thus the instantiated PCD supports degree-d gates. However,
in their folding scheme, the number of group operations for
the prover and verifier scales linearly with d, offering no
significant benefits over using degree-2 gates. In contrast, the
number of group operations for the prover and verifier in our
PCD scheme is independent of d, making it more efficient
when d is large.

II. PRELIMINARIES

For t ∈ N, let [t] denote the set {1, 2, . . . , t}. We use F to
denote a finite field, Ft to denote a vector space of dimension
t over F, and F[ℓ] to denote the family of ℓ-variate multilinear
polynomials over F. For x ∈ Ft, let xi denote the i-th element.
We use y $←− S to denote the assignment of a uniformly random
element in set S to y. We use y := c to denote the assignment
of the variable c to y. When A is an algorithm, we use y ←
A(x) to denote the assignment of the output of A on input x
to y. We use λ to denote the security parameter and will drop
it from the notation when it is implicit. We use negl(λ) to
denote a negligible function in λ. Let PPT denote probabilistic
polynomial time. A multiset is an extension of the concept
of a set where every element has a positive multiplicity. All
logarithms in this paper are to base 2. For a tuple containing
a semicolon, those variables listed before the semicolon are
public (known to both the prover and the verifier), and those
listed after it are secret (known only to the prover).

Lemma 1 (Multilinear Extension [20]). For every function
f : {0, 1}ℓ → F, there exists a unique ℓ-variate multilinear
polynomial f̃ : Fℓ → F such that f̃(x) = f(x) for all x ∈
{0, 1}ℓ. We call f̃ the multilinear extension (MLE) of function

f , and f̃ can be expressed as

f̃(X) =
∑

x∈{0,1}ℓ

f(x) · ẽq(X,x),

where ẽq(X,x) =
∏ℓ

i=1

(
xiXi + (1− xi)(1−Xi)

)
.

Lemma 2 (Schwartz-Zippel Lemma [36]). Let f̃ : Fℓ → F be
a non-zero ℓ-variate polynomial of total degree d. Let S be
any finite subset of F. Then for r

$←− Sℓ, Pr[f̃(r) = 0] ≤ d
|S| .

A. The Sum-Check Protocol

We adapt the description from Kothapalli and Setty [28].
The sum-check protocol [30] is an interactive protocol allow-
ing a prover P to convince a verier V of the validity of the
statement

T =
∑

x1∈{0,1}

· · ·
∑

xℓ∈{0,1}

f̃(x1, . . . , xℓ),

where f̃ : Fℓ → F is an ℓ-variate polynomial over some finite
field F, and the degree of each variable is at most d. While
V could directly compute T using O(2ℓ) evaluation of f̃ , the
sum-check protocol reduces V’s complexity to be polynomial
in ℓ. In the protocol, V takes as input randomness r ∈ Fℓ and
interacts with P over a sequence of ℓ rounds. At the end of this
interaction, V outputs a claim about the evaluation f̃(r). Let
⟨P,V(r)⟩ denote the interaction between P and V with V’s
randomness r. We treat ⟨P,V(r)⟩ as a function that on input
(f̃ , ℓ, d, T ) outputs the claimed evaluation to be checked, i.e.,
c← ⟨P,V(r)⟩ (f̃ , ℓ, d, T ). It satisfies the following properties.

• Completeness. If T =
∑

x∈{0,1}ℓ f̃(x), then for an honest
P and for all r ∈ Fℓ, Pr

[
c← ⟨P,V(r)⟩ (f̃ , ℓ, d, T )∧f̃(r) =

c
]
= 1.

• Soundness. If T ̸=
∑

x∈{0,1}ℓ f̃(x), then for any adversary
P∗ and for all r ∈ Fℓ, Pr

[
c ← ⟨P∗,V(r)⟩ (f̃ , ℓ, d, T ) ∧

f̃(r) = c
]
≤ ℓd/|F|.

• Succinctness. The communication is O(ℓd) F elements.

B. Polynomial Commitment Schemes

Definition 1 (Polynomial Commitment Schemes [11]). A
polynomial commitment scheme for multilinear polynomials is
a tuple PCS = (Setup,Com,Open,Eval) where

− pppcs ← Setup(1λ, ℓ): on input the security parameter λ
with the unary form and the number of variables ℓ in a
multilinear polynomial, outputs public parameters pppcs.

− C ← Com(pppcs, f̃): on input pppcs and an ℓ-variate
multilinear polynomial f̃ , outputs a commitment C.

− 1/0← Open(pppcs, C, f̃): on input pppcs, C, f̃ , outputs 1/0
to denote that C is indeed a commitment to f̃ or not.

− 1/0 ← Eval(pppcs, ℓ, C, r, v; f̃): an interactive protocol
between a PPT prover P and a verifier V . Both input
pppcs, ℓ, C, r ∈ Fℓ, v ∈ F. P additionally inputs f̃ and
attempts to convince V that f̃(r) = v. The outputs 1/0
denote that V accepts or not.
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PCS is an extractable polynomial commitment scheme for
multilinear polynomials if the following conditions hold.

• Completeness. PCS has completeness if for any ℓ-variate
multilinear polynomial f̃ ∈ F[ℓ],

Pr

[
Eval(pppcs, ℓ, C, r, v; f̃) = 1

∧ f̃(r) = v

pppcs ← Setup(1λ, ℓ);

C ← Com(pppcs, f̃)

]
≥ 1− negl(λ).

• Binding. PCS has binding if for any PPT adversary A, size
parameter ℓ ≥ 1,

Pr

 b0 = b1 ̸= 0

∧ f̃0 ̸= f̃1

pppcs ← Setup(1λ, ℓ);

(C, f̃0, f̃1)← A(pppcs);
b0 ← Open(pppcs, C, f̃0);

b1 ← Open(pppcs, C, f̃1)

 ≤ negl(λ).

• Knowledge soundness. PCS has knowledge soundness if
given pppcs ← Setup(1λ, ℓ), Eval is an argument of knowl-
edge for NP relation REval(pppcs) defined as{
(C, r, v; f̃) : f̃ ∈ F[ℓ]∧f̃(r) = v∧Open(pppcs, C, f̃) = 1

}
.

PCS is additively homomorphic if for all ℓ, pppcs ←
Setup(1λ, ℓ) and any f̃1, f̃2 ∈ F[ℓ], Com(pppcs, f̃1) +

Com(pppcs, f̃2) = Com(pppcs, f̃1 + f̃2).

C. Multi-folding Schemes

Definition 2 (Multi-folding Schemes [28]). Consider relations
R1 and R2 over public parameters, structure, instance, and
witness tuples, a predicate compat that structures for instances
in R1 and R2 must satisfy, and size parameters µ, ν ∈ N. A
multi-folding scheme for (R1,R2, compat, µ, ν) is a tuple of
algorithms MFS = (G,K,P,V) where

− fpp ← G
(
1λ, N

)
is a PPT generator algorithm. On input

the security parameter λ with the unary form and size
bounds N , it outputs public parameters fpp.

− (fpk, fvk) ← K(fpp, (s1, s2)) is a deterministic encoder
algorithm. On input fpp and structures s1, s2, it outputs a
prover key fpk and a verifier key fvk.

− (u,w) ←
〈
P(fpk, # ”w1,

# ”w2),V(fvk)
〉(

#”u1,
#”u2
)

denotes the in-
teraction between a PPT prover P and a PPT verifier V .
P inputs fpk, a vector of instances #”u1 in R1 of size µ with
structure s1, a vector of instances #”u2 in R2 of size ν with
structure s2, and corresponding witnesses # ”w1,

# ”w2. V inputs
fvk, #”u1,

#”u2. At the end of the interaction, P outputs a folded
instance-witness pair (u,w) in R1 with structure s1, and V
outputs a folded instance u in R1 with structure s1.

Let R(n) be the relation so that
(
fpp, s, #”u , #”w

)
∈ R(n) if

and only if
(
fpp, s, #”u i,

#”wi

)
∈ R for all i ∈ [n]. A multi-

folding scheme MFS should sastisfy perfect completeness and
knowledge soundness defined below.

• Perfect completeness. MFS has perfect completeness if for
all PPT adversaries A, the following probability is 1.

Pr



(fpp, s1, u,w) ∈ R1

fpp← G
(
1λ, N

)
;(

(s1, s2), (
#”u1,

# ”w1), (
#”u2,

# ”w2)
)

← A(fpp);
compat(s1, s2) = true;(
fpp, s1,

#”u1,
# ”w1

)
∈ R(µ)

1 ;(
fpp, s2,

#”u2,
# ”w2

)
∈ R(ν)

2 ;

(fpk, fvk)← K(fpp, (s1, s2));
(u,w)

←
〈
P(fpk, # ”w1,

# ”w2),V(fvk)
〉(

#”u1,
#”u2
)



.

• Knowledge soundness. MFS has knowledge soundness if
for any expected polynomial time adversary A and P∗, there
exists an expected polynomial-time extractor E such that
over all randomness ρ,

Pr


(
fpp, s1,

#”u1,
# ”w1

)
∈ R(µ)

1
∧(

fpp, s2,
#”u2,

# ”w2

)
∈ R(ν)

2

fpp← G
(
1λ, N

)
;(

(s1, s2), (
#”u1,

#”u2), st
)

← A(fpp, ρ);
compat(s1, s2) = true;
( # ”w1,

# ”w2)← E(fpp, ρ)

 ≥

Pr


(fpp, s1, u,w) ∈ R1

fpp← G
(
1λ, N

)
;(

(s1, s2), (
#”u1,

#”u2), st
)

← A(fpp, ρ);
compat(s1, s2) = true;
(fpk, fvk)← K(fpp, (s1, s2));
(u,w)
←

〈
P∗(fpk, st),V(fvk)

〉(
#”u1,

#”u2
)


− negl(λ).

D. (Linearized) Committed Customizable Constraint System

Setty et al. [37] introduced customizable constraint systems
(CCS), a new constraint system that generalizes arithmetic
circuits. Later, Kothapalli and Setty [28] described two vari-
ants of CCS, i.e., committed customizable constraint systems
(CCCS) and linearized committed customizable constraint
systems (LCCCS), that are amenable to construct their multi-
folding schemes. In particular, they let R1 be the LCCCS
relation RLCCCS and R2 be the CCCS relation RCCCS, an
NP-complete relation. We follow their work and adopt their
definition of CCCS and LCCCS.

For a matrice M ∈ Fm×n where m,n ∈ N and let s =
logm, s′ = log n, interpret it as a function {0, 1}s×{0, 1}s′ →
F. That is, an input in {0, 1}s × {0, 1}s′ is interpreted as the
binary representation of an index (i, j) ∈ {0, . . . ,m − 1} ×
{0, . . . , n− 1}, and the function outputs the (i, j)’th entry of
the matrix M . Then we could define its unique multilinear
extension M̃ as a multilinear polynomial in s + s′ variables.
Similarly, for a vector w ∈ Fm, interpret it as a function
{0, 1}s → F. Then we let w̃ denote its unique multilinear
extension.
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Definition 3 (Committed Customizable Constraint Sys-
tem [28]). A CCCS relation RCCCS consists of tuples contain-
ing public parameters, structure, instance and witness where

− public parameters consist of size bounds m,n,N, ℓ, t, q, d ∈
N and pppcs, where assume that n = 2·(ℓ+1) for simplicity,
pppcs ← Setup(1λ, log n− 1);

− the structure consists of:

• a sequence of sparse multilinear polynomials in s + s′

variables M̃1, . . . , M̃t such that they evaluate to a non-
zero value in at most N = Ω(max(m,n)) locations over
the boolean hypercube {0, 1}s × {0, 1}s′ , where assume
that s = logm, s′ = log n;

• a sequence of q multisets (S1, . . . , Sq), where an element
in each multiset is from the set [t] and the cardinality of
each multiset is at most d;

• a sequence of q constants (c1, . . . , cq), where each con-
stant is from F;

− the instance is (C, x), where C is a commitment to a
multilinear polynomial in s′ − 1 variables and x ∈ Fℓ;

− the witness is a multilinear polynomial w̃ in s′−1 variables.

Given public parameters, aRCCCS structure-instance tuple
is satisfied by a RCCCS witness if C = Com

(
pppcs, w̃

)
and

for all x ∈ {0, 1}s,
q∑

i=1

ci ·
(∏

j∈Si

( ∑
y∈{0,1}s′

M̃j(x,y) · z̃(y)
))

= 0,

where z̃ is an s′-variate multilinear polynomial such that
z̃(y) = ˜(w, u, x)(y) for all y ∈ {0, 1}s′ .
Definition 4 (Linearized Committed Customizable Constraint
System [28]). A LCCCS relation RLCCCS consists of tuples
containing public parameters, structure, instance and witness
where the public parameters and structure are the same as
those in a CCCS relation. The instance and witness are as
follows:

− the instance is (C, u, x, r, v1, . . . , vt), where u ∈ F, x ∈
Fℓ, r ∈ Fs, vi ∈ F for all i ∈ [t], and C is a commitment to
a multilinear polynomial in s′ − 1 variables;

− the witness is a multilinear polynomial w̃ in s′−1 variables.

Given public parameters, a RLCCCS structure-instance
tuple is satisfied by a RLCCCS witness if C = Com

(
pppcs, w̃

)
and for all i ∈ [t],

vi =
∑

y∈{0,1}s′

M̃i(r,y) · z̃(y),

where z̃ is an s′-variate multilinear polynomial such that
z̃(y) = ˜(w, u, x)(y) for all y ∈ {0, 1}s′ .

E. Proof-Carrying Data

Define a transcript T as a directed acyclic graph where each
vertex v ∈ V (T) is labeled by local data z(v)loc and each edge
e ∈ E(T) is labeled by a message z(e) ̸=⊥. The output o(T) of

a transcript T is z(e) where e = (v, v′) is the lexicographically-
first edge such that v′ is a sink. For a class of compliance
predicates F, define that a vertex v ∈ V (T) is φ-compliant for
φ ∈ F if for all outgoing edges e = (v, v′) ∈ E(T):

• (base case) if v has no incoming edges, φ
(
z(e), z

(v)
loc ,⊥

, . . . ,⊥
)

accepts;
• (recursive case) if v has incoming edges e1, . . . , er,
φ
(
z(e), z

(v)
loc , z

(e1), . . . , z(er)
)

accepts.

We say that T is φ-compliant if all of its vertices are φ-
compliant.

Definition 5 (Proof-Carrying Data [9]). A proof-carrying data
scheme for a class of compliance predicates F is a tuple of
algorithms PCD = (G,K,P,V) where

− pp ← G
(
1λ

)
on input the security parameter λ with the

unary form, outputs public parameters pp.

− (pk, vk) ← K(pp, φ) on input pp and a compliance predi-
cate φ ∈ F, outputs a prover key pk and verifier key vk.

− Π ← P
(
pk, z, zloc, {zi,Πi}ri=1

)
on input pk, message z of

the outgoing edge, local data zloc, messages {zi}ri=1 of
incoming edges and their corresponding proofs {Πi}ri=1,
outputs a new proof Π that attests to the correctness of z.

− 1/0← V
(
vk, z,Π

)
on input vk, z,Π, outputs 1/0 to accept

or reject.

A proof-carrying data scheme PCD should sastify perfect
completeness and knowledge soundness defined below.

• Perfect completeness. PCD has perfect completeness if
for every adversary A, the following probability is 1.

Pr




φ ∈ F∧

φ(z, zloc, (zi)
r
i=1) = 1

∧
(∀i ∈ [r], zi =⊥ or

V
(
vk, zi,Πi

)
= 1

)


⇓
V
(
vk, z,Π

)
= 1

pp← G
(
1λ

)
;(

φ, z, zloc, {zi,Πi}ri=1

)
← A(pp);
(pk, vk)← K(pp, φ);

Π← P
(
pk, z,

zloc, {zi,Πi}ri=1

)


.

• Knowledge soundness. PCD has knowledge soundness
(w.r.t. an auxiliary input distribution D) if for every
expected polynomial time adversary P∗, there exists an
expected polynomial time extractor EP∗ such that for
every set Z,

Pr

 φ ∈ F ∧
(pp, ai, φ, o(T), ao) ∈ Z
∧ T is φ-compliant

pp← G
(
1λ

)
;

ai← D(pp);
(φ,T, ao)
← EP∗(pp, ai)

 ≥

Pr

 φ ∈ F ∧
(pp, ai, φ, o, ao) ∈ Z
∧ V

(
vk, o,Π

)
= 1

pp← G
(
1λ

)
;

ai← D(pp);
(φ, o,Π, ao)← P∗(pp, ai);
(pk, vk)← K(pp, φ)


− negl(λ).
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III. A MULTI-FOLDING SCHEME FOR AN ARBITRARY
NUMBER OF INSTANCES

Recall a multi-folding scheme for (R1,R2, compat, µ, ν)
allows a prover and a verifier to reduce the task of checking
µ instances in R1 with structure s1 and ν instances in R2

with structure s2 into the task of checking a single instance
in R1 with structure s1. In our case, we let R1 = RLCCCS,
R2 = RCCCS, and compat(s1, s2) require s1 = s2. Kotha-
palli and Setty [28] constructed a multi-folding scheme for
(RLCCCS,RCCCS, compat, 1, 1). We continue their work and
construct a multi-folding scheme for arbitrary values of µ, ν,
which is the basis of our proof-carrying data scheme.

A. Overview

Supposing that there are µ RLCCCS instance-witness pairs
{ϕk}k∈[µ], ν RCCCS instance-witness pairs {ψk′}k′∈[ν], where
ϕk := (C1, u, x1, rx, v1, . . . , vt; w̃1), ψk′ := (C2, x2; w̃2). Let
ϕk.z̃1 := ˜(ϕk.w1, ϕk.u, ϕk.x1), ψk′ .z̃2 := ˜(ψk′ .w2, 1, ψk′ .x2).
The prover P and the verifier V both input µ RLCCCS

instances {ϕk.(C1, u, x1, rx, v1, . . . , vt)}k∈[µ] and ν RCCCS

instances {ψk′ .(C2, x2)}k′∈[ν]. P additionally inputs the cor-
responding witnesses {ϕk.w̃1}k∈[µ], {ψk′ .w̃2}k′∈[ν]. To obtain
the folded instance and witness, we rely on the random linear
combination technique.

For k ∈ [µ], according to RLCCCS, for i ∈ [t], we have

ϕk.vi =
∑

y∈{0,1}s′

M̃i(ϕk.rx,y) · ϕk.z̃1(y)

=
∑

x∈{0,1}s

ẽq(ϕk.rx,x) ·
( ∑
y∈{0,1}s′

M̃i(x,y) · ϕk.z̃1(y)
)

We first perform a random linear combination of these values
{ϕk.vi}k∈[µ],i∈[t], i.e., for γ $←− F,

µ∑
k=1

t∑
i=1

γ(k−1)t+iϕk.vi =

µ∑
k=1

t∑
i=1

γ(k−1)t+i ·
∑

x∈{0,1}s

Lk,i(x),

(1)

where Lk,i(X) := ẽq(ϕk.rx,X) ·
(∑

y∈{0,1}s′ M̃i(X,y) ·

ϕk.z̃1(y)
)

.

For k′ ∈ [ν], according to RCCCS, we have for all x ∈
{0, 1}s,

q∑
i=1

ci ·
∏
j∈Si

( ∑
y∈{0,1}s′

M̃j(x,y) · ψk′ .z̃2(y)
)
= 0.

Denoting the left-hand side of the above equation as a poly-
nomial qk′(X), we have for x ∈ {0, 1}s, qk′(x) = 0. Then
the polynomial

Gk′(X) :=
∑

x∈{0,1}s

ẽq(X,x) · qk′(x)

is multilinear and vanishes on all x ∈ {0, 1}s. Hence, we
have Gk′(X) is a zero polynomial. For β $←− Fs, Gk′(β) = 0.
Let Qk′(X) := ẽq(β,X) · qk′(X). We have for k′ ∈ [ν],

∑
x∈{0,1}s Qk′(x) = Gk′(β) = 0. Then based on Equa-

tion (1), we further perform a random linear combination that
µ∑

k=1

t∑
i=1

γ(k−1)t+iϕk.vi =

µ∑
k=1

t∑
i=1

γ(k−1)t+i ·
∑

x∈{0,1}s

Lk,i(x)

+

ν∑
k′=1

γµt+k′
·

∑
x∈{0,1}s

Qk′(x).

Let

g(X) :=

µ∑
k=1

t∑
i=1

γ(k−1)t+i ·Lk,i(X) +

ν∑
k′=1

γµt+k′
·Qk′(X).

We have ∑
x∈{0,1}s

g(x) =

µ∑
k=1

t∑
i=1

γ(k−1)t+iϕk.vi,

which is exactly a statement that a sum-check protocol could
prove. Therefore, the task of checking µ RLCCCS instances
and ν RCCCS instances is reduced into the task of per-
forming a sum-check protocol. With r′x

$←− Fs, P and V
run c← ⟨P,V(r′x)⟩

(
g, s, d+1,

∑µ
k=1

∑t
i=1 γ

(k−1)t+iϕk.vi
)
.

Now, V has to check the equation g(r′x) = c. We let P
first compute some intermediate values and then V compute
g(r′x) using these values. Specifically, P computes and sends
{σk,i, θk′,i}k∈[µ],k′∈[ν],i∈[t] to V , where

σk,i :=
∑

y∈{0,1}s′

M̃i(r
′
x,y) · ϕk.z̃1(y),

θk′,i :=
∑

y∈{0,1}s′

M̃i(r
′
x,y) · ψk′ .z̃2(y).

(2)

Then V computes

g(r′x) :=

µ∑
k=1

t∑
i=1

γ(k−1)t+i · ẽq(ϕk.rx, r′x) · σk,i

+

ν∑
k′=1

γµt+k′
· ẽq(β, r′x) ·

( q∑
i=1

ci ·
∏
j∈Si

θk′,j

)
and compares it with c. Nevertheless, V still has to check
the correctness of {σk,i, θk′,i}k∈[µ],k′∈[ν],i∈[t]. Observe that
equations in (2) are exactly LCCCS relations. Thus, for
i ∈ [t], we could first perform a random linear combination
of {σk,i, θk′,i}k∈[µ],k′∈[ν] and then prove the correctness of the
foldedRLCCCS instance. Now, the task of checking µRLCCCS

instances and ν RCCCS instances is reduced into the task of
checking a single RLCCCS instance.

B. Formal Description

Construction 1 (A Multi-folding Scheme for an Arbitrary
Number of Instances). We formally present our multi-folding
scheme as follows.

fpp← G
(
1λ, (m,n,N, ℓ, t, q, d ∈ N)

)
:

1. Let n = 2 · (ℓ+ 1).

2. Compute pppcs ← Setup(1λ, log n−1), and output fpp :=
(m,n,N, ℓ, t, q, d, pppcs).
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(fpk, fvk)← K(fpp, (s1, s2)):

1. Parse s1 = s2 as
(
(M̃1, . . . , M̃t), (S1, . . . , Sq), (c1, . . . , cq)

)
.

2. Output fpk := (fpp, s1), fvk := (fpp, s1).

(u,w)←
〈
P(fpk, # ”w1,

# ”w2),V(fvk)
〉(

#”u1,
#”u2
)

1. Parse ( #”u1,
# ”w1) as {ϕk}k∈[µ], ( #”u2,

# ”w2) as {ψk′}k′∈[ν].

2. V samples γ $←− F,β $←− Fs and sends them to P . V then
samples r′x

$←− Fs.

3. P and V run the sum-check protocol

c← ⟨P,V(r′x)⟩
(
g, s, d+ 1,

µ∑
k=1

t∑
i=1

γ(k−1)t+iϕk.vi
)
.

V aborts once he outputs “reject” in the sum-check.

4. P computes and sends {σk,i, θk′,i}k∈[µ],k′∈[ν],i∈[t] to V .

5. V computes {ek,1 := ẽq(ϕk.rx, r
′
x)}k∈[µ], e2 :=

ẽq(β, r′x), and aborts if

c ̸=
µ∑

k=1

t∑
i=1

γ(k−1)t+i · ek,1 · σk,i

+

ν∑
k′=1

γµt+k′
· e2 ·

( q∑
i=1

ci ·
∏
j∈Si

θk′,j

)
.

6. V samples ρ $←− F and sends it to P .

7. P and V output the folded RLCCCS instance u :=
(C ′, u′, x′, r′x, v

′
1, . . . , v

′
t), where for all i ∈ [t],

C ′ :=

µ∑
k=1

ρk−1 · ϕk.C1 +

ν∑
k′=1

ρµ−1+k′
· ψk′ .C2,

u′ :=

µ∑
k=1

ρk−1 · ϕk.u+

ν∑
k′=1

ρµ−1+k′
· 1,

x′ :=

µ∑
k=1

ρk−1 · ϕk.x1 +
ν∑

k′=1

ρµ−1+k′
· ψk′ .x2,

v′i :=

µ∑
k=1

ρk−1 · σk,i +
ν∑

k′=1

ρµ−1+k′
· θk′,i.

8. P outputs the folded RLCCCS witness w := w̃′, where

w̃′ :=

µ∑
k=1

ρk−1 · ϕk.w̃1 +

ν∑
k′=1

ρµ−1+k′
· ψk′ .w̃2.

Theorem 1. Construction 1 is a public-coin multi-folding
scheme for (RLCCCS,RCCCS, compat, µ, ν) with perfect com-
pleteness and knowledge soundness.

Proof sketch: For perfect completeness, supposing that
the inputs are satisfied instance-witness pairs, then by the
completeness of the sum-check protocol, V will not abort.
By construction and the additive homomorphism property of
the polynomial commitment scheme, we have that the output
is a satisfied RLCCCS instance-witness pair. For knowledge
soundness, we construct an expected polynomial time extractor
that rewinds the interaction between a malicious prover and a

verifier with fresh challenges to interpolate witnesses. By the
soundness of the sum-check protocol and the Schwartz-Zippel
lemma, we demonstrate that the extractor succeeds in obtaining
satisfied witnesses for the input instances with a non-negligible
probability. The formal proof is deferred to Appendix A.

A non-interactive multi-folding scheme. Since our multi-
folding scheme is public-coin, we could transform it into a
non-interactive multi-folding scheme NIMFS = (G,K,P,V)
for the tuple (RLCCCS,RCCCS, compat, µ, ν) using the Fiat-
Shamir transformation, according to the Lemma 1 of Hyper-
Nova [28].

Efficiency. Fot the prover’s cost, the sum-check protocol
requires the prover to generate some proof, which could be
completed with O

(
µ(N+tm)+ν(N+tm+qmd log2 d)

)
field

operations according to [37]. For {σk,i, θk′,i}k∈[µ],k′∈[ν],i∈[t],
we have that

σk,i :=
∑

y∈{0,1}s′

M̃i(r
′
x,y) · ϕk.z̃1(y)

=
∑

y∈{0,1}s′

( ∑
a∈{0,1}s

∑
b∈{0,1}s′

M̃i(a, b) · ẽq
(
(r′x,y), (a, b)

))
· ϕk.z̃1(y)

=
∑

y∈{0,1}s′

( ∑
a∈{0,1}s

ẽq(r′x,a)
∑

b∈{0,1}s′

M̃i(a, b) · ẽq(y, b)
)

· ϕk.z̃1(y)
=

∑
a∈{0,1}s

ẽq(r′x,a) ·
∑

b∈{0,1}s′

M̃i(a, b) · ϕk.z̃1(b)

According to [42],
{
ẽq(r′x,a)

}
a∈{0,1}s could be computed

with O(m) field operations. Based on these values, the com-
putation of {σk,i, θk′,i}k∈[µ],k′∈[ν],i∈[t] could be accomplished
with O

(
m+ (µ+ ν) ·N

)
field operations. When instantiating

the polynomial commitment scheme with Bulletproofs [8], the
computation of C ′ and w̃′ requires one MSM of size µ+ν−1
and O

(
(µ+ν)·n

)
field operations, respectively. Thus, the total

cost is dominated by O
(
µ(N + tm + n) + ν(N + tm + n +

qmd log2 d)
)

field operations and one MSM of size µ+ν−1.

For the verifier’s cost, verification in the sum-check proto-
col requires O(d logm) field operations [39]. The computation
of {ek,1}k∈[µ], e2 and checking c require O(µ logm+µt+νdq)
field operations. The computation of C ′ requires one MSM
of size µ + ν − 1. Thus, the total cost is dominated by
O(d logm + µ logm + µt + νdq) field operations and one
MSM of size µ+ ν − 1.

The communication consists of elements sent from P to
V in the sum-check protocol and {σk,i, θk′,i}k∈[µ],k′∈[ν],i∈[t],
which sums up to O(d logm) + t · (µ+ ν) field elements.

IV. PCD FROM NON-INTERACTIVE MULTI-FOLDING
SCHEMES

Recall that PCD enables a set of parties to carry out
an indefinitely long distributed computation where every step
along the way is accompanied by a proof of correctness. We
rely on our non-interactive multi-folding scheme to construct
a PCD scheme.
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A. Overview

At each step of the long distributed computation, the prover
P will receive r previous outputs {zi}i∈[r], each accompanied
by a proof Πi that attests to its correctness. We define Πi to
contain a satisfied RLCCCS instance-witness pair (Ui,Wi) and
a satisfiedRCCCS instance-witness pair (ui,wi). In addition, P
has some local input zloc. With zloc, z1, . . . , zr, P computes z
such that φ(z, zloc, z1, . . . , zr) accepts. Then P should provide
a proof to the next party that attests not only to the correctness
of his local computation, but also to the correctness of all his
inputs {zi}i∈[r]. To this end, P first invokes the non-interactive
multi-folding scheme to fold {(Ui,Wi), (ui,wi)}i∈[r] into a
single RLCCCS instance-witness pair (U,W). To prove the
correctness of the folding process, we define a circuit Rφ

that represents the compliance predicate φ as well as the
verifier of the non-interactive multi-folding scheme, which
could be expressed as a RCCCS structure. Then P generates a
satisfiedRCCCS instance-witness pair (u,w) by computing Rφ

using the appropriate input values from his prior computations.
Finally, P outputs a proof Π consisting of (U,W), (u,w).

By checking (u,w), we have that φ(z, zloc, z1, . . . , zr)
accepts and {Ui, ui}i∈[r] is correctly folded into U. By further
checking (U,W) and the knowledge soundness of the multi-
folding scheme, we have that there exists satisfied witnesses
{Wi,wi}i∈[r] for instances {Ui, ui}i∈[r], which attests to the
correctness of {zi}i∈[r]. Therefore, we maintain the invariant
that if (U,W) is a satisfied RLCCCS instance-witness pair and
(u,w) is a satisfied RCCCS instance-witness pair, then the
distributed computation is correct up to this step.

However, the above description elides some subtlety. Since
the proof Π passed to the next party includes U, the public
IO of the circuit Rφ, i.e., u.x should include U. The next
party will fold u,U into a new RLCCCS instance as described
above. But now U is part of u, they can not be folded. To
address this issue, inspired by Nova [29], we modify Rφ to
additionally hash z,U and let the output be the circuit’s public
IO, which ensures that u.x does not contain U but still binds
with it. To achieve recursion, we further modify Rφ to include
the verifier’s work of checking that the inputs satisfy the hash
relation, i.e., ui.x is the hash of zi,Ui for i ∈ [r].

Note that since the PCD proof includes the entire witnesses
W,w, its size is linear in the size of the circuit. However, as
in HyperNova [28], we could use a general SNARK such as
SuperSpartan [37] to prove the knowledge of a valid PCD
proof, which could reduce the proof size exponentially.

B. Formal Description

Construction 2 (A PCD Scheme from Non-interactive
Multi-folding Schemes). We formally present our PCD
scheme as follows. Let (u⊥,w⊥) be a default trivially satisfied
RLCCCS instance-witness pair. Let NIMFS = (G,K,P,V)
denote the non-interactive multi-folding scheme transformed
from our multi-folding scheme. Let hash be a collision-
resistant hash function. Given a compliance predicate φ, the
circuit Rφ that realizes the recursion is as follows.

0/1← Rφ

(
h; (z, zloc, {zi,Ui, ui}ri=1, fvk,U, π)

)
:

1. Check that the compliance predicate φ(z, zloc, z1, . . . , zr)
accepts.

2. If zi =⊥ for all i ∈ [r], then check that h =
hash(fvk, z, u⊥).

Else, check that

a) for i ∈ [r], ui.x = hash(fvk, zi,Ui), where ui.x is the
public IO of ui.

b) U = NIMFS.V
(
fvk, {Ui}i∈[r], {ui}i∈[r], π

)
.

c) h = hash(fvk, z,U).

3. If the above checks hold, output 1; otherwise, output 0.

Since Rφ can be computed in polynomial time, it can be
represented as a RCCCS structure. Let

(u,w)← trace
(
Rφ,

(
h, (z, zloc, {zi,Ui, ui}ri=1, fvk,U, π)

))
denote the satisfied RCCCS instance-witness pair for the exe-
cution of Rφ on input

(
h, (z, zloc, {zi,Ui, ui}ri=1, fvk,U, π)

)
.

We construct our PCD scheme (G,K,P,V) as follows.

pp← G
(
1λ

)
:

1. Sample size bounds m,n,N, ℓ, t, q, d ∈ N.

2. Compute fpp ← NIMFS.G
(
1λ, (m,n,N, ℓ, t, q, d)

)
, and

output pp := fpp.

(pk, vk)← K(pp, φ):

1. Compute (fpk, fvk) ← NIMFS.K(fpp, Rφ), and output
(pk, vk) :=

(
fpk, fvk

)
.

Π← P
(
pk, z, zloc, {zi,Πi}ri=1

)
:

1. For i ∈ [r], parse Πi as
(
(Ui,Wi), (ui,wi)

)
, where

(Ui,Wi) is a satisfied RLCCCS instance-witness pair and
(ui,wi) is a satisfied RCCCS instance-witness pair.

2. If zi =⊥ for all i ∈ [r], then set (U,W, π) := (u⊥,w⊥,⊥).
Else, compute
(U,W, π)← NIMFS.P

(
fpk, {(Ui,Wi)}i∈[r], {(ui,wi)}i∈[r]

)
.

3. Compute h← hash(fvk, z,U).

4. (u,w)← trace
(
Rφ,

(
h, (z, zloc, {zi,Ui, ui}ri=1, fvk,U, π)

))
.

5. Output Π :=
(
(U,W), (u,w)

)
.

1/0← V
(
vk, z,Π

)
:

1. Parse Π as
(
(U,W), (u,w)

)
.

2. Check that u.x = hash(fvk, z,U).

3. Check that W is a satisfied RLCCCS witness to U and w
is a satisfied RCCCS witness to u.

4. If the above checks hold, output 1; otherwise, output 0.

Theorem 2. Construction 2 is a PCD scheme with perfect
completeness and knowledge soundness.

Proof sketch: The perfect completeness follows from the
perfect completeness of the multi-folding scheme and the con-
struction of circuit Rφ. For knowledge soundness, considering
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an expected polynomial time adversary P∗, we construct an
expected polynomial time extractor EP∗ to extract the transcript
T of depth d via an iterative process. In the base case, we use
P∗ to construct an extractor E0 that extracts T0, which consists
of a single node. Then supposing the existence of Ei−1 that
extracts Ti−1, we construct an adversary P∗

i−1 for the non-
interactive multi-folding scheme. By the knowledge soundness
of the multi-folding scheme, this implies the existence of an
extractor EP∗

i−1
corresponding to P∗

i−1. We then construct an
extractor Ei that extracts Ti using P∗

i−1, EP∗
i−1

. By repeating
this iterative process, we construct an extractor Ed that extracts
Td, which is exactly equal to EP∗ . Finally, we demonstrate
inductively the correctness of these extractors. The formal
proof is deferred to Appendix B.

Efficiency. The recursion overhead, i.e., the computations that
the prover must prove at each step in addition to proving
the compliance predicate, involves r + 1 calls to hash and
one call to NIMFS.V . The cost of NIMFS.V is dominated by
O
(
d logm+r ·(logm+t+dq)

)
field operations, one MSM of

size 2r − 1 and 2 logm+ 2 calls to the random oracle RO to
achieve non-interactivity, where RO could be instantiated with
an appropriate cryptographic hash function.

The prover’s work at each step is dominated by invok-
ing NIMFS.P , and computing the satisfied RCCCS instance-
witness pair (u,w) for the execution of Rφ. The cost of
NIMFS.P is dominated by O

(
r · (N + tm+n+ qmd log2 d)

)
field operations, one MSM of size 2r − 1, and 2 logm + 2
calls to RO to achieve non-interactivity. The cost of computing
(u,w) is dominated by computing the commitment C which
requires one MSM of size O(n) when instantiating the poly-
nomial commitment scheme with Bulletproofs [8].

The size of proof Π =
(
(U,W), (u,w)

)
is linear in the size

of Rφ. However, as in HyperNova [28], we could use a general
SNARK to compress the proof. Specifically, the prover invokes
(U′,W′, π′) ← NIMFS.P

(
fpk, (U,W), (u,w)

)
, and then uses

a general SNARK to generate a proof πU′ that proves the
knowledge of W′. Now Π consists of (U, u, π′, πU′). When
instantiating the SNARK with SuperSpartan [37] excluding
the first sum-check invocation and using the polynomial com-
mitment scheme based on Bulletproofs [8], the proof size is
then dominated by O(d logm+ t+ log n) field elements and
O(log n) group elements.

The verifier’s work is dominated by checking
(U,W), (u,w) according to the CCCS and LCCCS relations. If
the proof is compressed, then the verifier’s work is dominated
by performing U′ ← NIMFS.V

(
fvk,U, u, π′) and verifying

πU′ , whose cost is dominated by O(d logm+t+dq+log n+N)
field operations, O(logm+ log n) calls to RO, and one MSM
of size O(n).

V. IMPLEMENTATION AND EVALUATION

We have implemented our multi-folding scheme and PCD
scheme to evaluate their practical efficiency. We present the
implementation details and evaluation results in this section.

A. Implementation Methodology

Given an elliptic curve group G, denote the scalar field of
G as the field F1 whose order is |G|, and the base field of G

as the field F2 over which the elliptic curve group is defined.
Typically, F1 and F2 are distinct; otherwise, the discrete
logarithm assumption would not hold [38]. To implement our
PCD scheme, we need to implement the circuit Rφ defined
over the scalar field F1. However, since NIMFS.V ′ involves
group operations over F2, directly encoding them within the
circuit Rφ would require emulating F2 operations via F1

operations, which would significantly increase the circuit size.

To avoid a blowup in the circuit size, existing implementa-
tions of recursive arguments based on groups [2], [9], [29], [32]
utilize a 2-cycle of elliptic curves (E1, E2). This cycle induces
a pair of elliptic curve groups (G1,G2), where G1 has scalar
field F1 and base field F2 while G2 has scalar field F2 and
base field F1. Kothapalli and Setty [27] introduced CycleFold,
a conceptually simple approach to instantiate folding-scheme-
based recursive arguments over a cycle of elliptic curves for
realizing IVC schemes. Instead of emulating non-native field
operations within a primary circuit defined over E1, CycleFold
outsources these operations to a secondary circuit defined over
E2, generates an instance-witness pair to represent the correct
execution of the secondary circuit, and then folds this instance
along with some running instances within the primary circuit.
Due to the properties of the 2-cycle of elliptic curves, the
emulation overhead is significantly reduced.

We adapt CycleFold to implement our PCD scheme and
provide an overview of the circuit implementation in Fig. 1,
where superscripts (1) and (2) denote the elements defined over
the elliptic curve E1 and E2, respectively.

( )

( )

( )

u( )

Hash

U
( )
. , u

( )
.

U
( )
. , u

( )
.

NIMFS

Partial Verifier

U
( )
, u
( )

U
( )
, u
( ) U( )

( )

u ,

( )

Multiple

NIFS.V

U ,

( )
, … , U ,

( )

u ,

( )
U
( )

primary circuit

secondary circuit

Fig. 1: PCD circuit implementation overview

We use a primary circuit defined over the scalar field F1

of E1 to encode all parts of Rφ except for the group operation
C ′(1) :=

∑r
k=1 ρ

k−1 · U(1)
k .C1 +

∑r
k′=1 ρ

r−1+k′ · u(1)k′ .C2 in
NIMFS.V ′. This operation is defined over F2 and is thus non-
native to the primary circuit. Instead, we use a secondary
circuit CEC defined over the scalar field F2 of E2 to encode this
group operation, which eliminates the need for field emulation.
To complete NIMFS.V ′ in the primary circuit, we represent
the secondary circuit as a R1CS structure and generate a
satisfied instance-witness pair

(
u
(2)
EC,r+1,w

(2)
EC,r+1

)
with the

public IO
{
U
(1)
i .C1, u

(1)
i .C2

}r

i=1
, ρ, C ′(1). The primary circuit

reads u(2)EC,r+1 and, after checking that the public IO in u
(2)
EC,r+1
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matches the desired inputs, adds C ′(1) to U(1).

Then different from Construction 2, the verifier now should
additionally check the satisfiability of

(
u
(2)
EC,r+1,w

(2)
EC,r+1

)
,

making the PCD proof Π
(1)
i for z

(1)
i now consist of(

U
(1)
i ,W

(1)
i

)
,
(
u
(1)
i ,w

(1)
i

)
,
(
U
(2)
EC,i,W

(2)
EC,i

)
. The prover should

additionally fold the inputs
(
U
(2)
EC,i,W

(2)
EC,i

)
and newly gen-

erated
(
u
(2)
EC,r+1,w

(2)
EC,r+1

)
into a single instance-witness pair(

U
(2)
EC ,W

(2)
EC

)
. Intuitively, this scenario aligns well with our

multi-folding scheme. However, in this case, encoding the
multi-folding scheme’s verification in a circuit inevitably
requires emulating the logarithmic field operations or the
constant group operations within the verification algorithm,
both of which are unacceptable. Instead, we turn our attention
to the folding scheme in Nova [29]. While it is designed
to fold two instances, it can be invoked multiple times to
fold multiple instances. More importantly, since the folding
scheme is invoked to fold instances from the secondary circuit,
its verification is native to the primary circuit except for
a few field operations. Thus, we could encode the folding
scheme’s verification within the primary circuit. Furthermore,
the number of field operations in the verification that are non-
native to the primary circuit is roughly linear to the number
of public IO of the secondary circuit. Notably, the public IO
mainly consists of elliptic curve group elements. To reduce the
emulation overhead, we adopt a compressed format to store
these elements and decompress them when used in the circuit.
This approach roughly halves the emulation overhead.

B. Benchmark Configuration

We implement our proposed schemes in Rust based on the
Nova library [34]. While our multi-folding scheme and PCD
scheme support CCS, we limit our attention to R1CS, a specific
instantiation of CCS, for a fair comparison with existing works.
The experiments are conducted on Ubuntu 22.04 with an X86
architecture, equipped with a 12-core AMD Ryzen 9 5900X
CPU running at 3.70GHz and 128GB of memory. We evaluate
the following typical performance metrics of our PCD scheme.

1. The concrete recursion overhead. We measure the recur-
sion overhead with the number of R1CS constraints over
the scalar field of both primary curve (E1) and secondary
curve (E2) across various arity parameters and proving
circuit sizes 4. We compare the results with existing works
to demonstrate the advantages.

2. The prover time at each step, as well as the proof size
and verifier time without compression. We measure these
performance metrics across various arity parameters and
predicate sizes to illustrate the trends.

3. The proof size and verifier time after compression. We
apply a specific SNARK to compress the PCD proof and
compare the proof size and verifier time before and after
compression.

Similar to the Nova library, our implementation supports
three typical cycles of elliptic curves: 1) Pallas/Vesta, 2)
BN254/Grumpkin, and 3) secp/secq. We choose the Pal-
las/Vesta cycle of curves [35] as used in BCLMS21 [9] when
reporting our evaluation results.

4The proving circuit is actually the primary circuit in our benchmark.

C. Evaluation Results

Concrete recursion overhead. In Table II, we compare our
recursion overhead with COS20 [16] and BCLMS21 [9] in
detail for different r and a fixed proving circuit size of 220.
Note that COS20 and BCLMS21 both only report their recur-
sion overheads for r = 1. For comparison, we estimate their
recursion overheads for larger r based on the theoretical com-
plexity analysis in Table I. Additionally, COS20 relies solely
on symmetric primitives and thereby its recursion overhead is
evaluated in a field independent of elliptic curves. Table II
shows that our PCD scheme achieves the lowest recursion
overhead. Although COS20 does not require cycles of elliptic
curves, its recursion overhead is still approximately 20 times
greater than ours summed on both the primary and secondary
curves. BCLMS21 has slightly lower recursion overhead on
the primary curve for r = 1, but the total overhead from both
curves is still higher than ours. In other cases, our recursion
overhead is approximately 1.5 times smaller on the primary
curve and 9.8 times smaller on the secondary curve.

TABLE II: Comparison of concrete recursion overhead
with proving circuit size of 220

Schemes
Arity
(r)

Primary curve/field
(# constraints)

Secondary curve
(# constraints)

COS20 [16]

1 1,132,666 N/A

2 2,265,332 N/A

3 3,397,998 N/A

4 4,530,664 N/A

BCLMS21 [9]

1 52,000 52,000

2 137,428 137,428

3 222,857 222,857

4 308,285 308,285

This work

1 68,017 5,429

2 96,202 14,011

3 139,573 22,593

4 191,916 31,175

In Fig. 2, we depict the variations in recursion overhead on
the primary curve/field5 across proving circuit sizes reported
in COS20 and different arity r. The figure shows that the
recursion overhead for COS20 is significantly higher than
those for BCLMS21 and ours. The recursion overheads for
COS20 and ours increase slowly as the proving circuit size
increases, while that for BCLMS21 remains constant. How-
ever, BCLMS21’s recursion overhead remains higher than ours
except when r = 1, and as r continues to increase, this gap
gradually widens.

Efficiency without compression. In Fig. 3, we report the
efficiency of our PCD scheme for different arity r and pred-

5The recursion overheads for BCLMS21 and our scheme on the secondary
curve are independent of the proving circuit size.
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Fig. 2: Comparison of recursion overhead on the primary
curve for different arities and proving circuit sizes

icate sizes6. According to our benchmark, when the pred-
icate size is below a certain threshold, the recursion over-
head on the primary curve will exceed the predicate size7.
Specifically, for r = 1, 2, 3, 4, the thresholds are roughly
61474, 91836, 137388, 189729, respectively. The prover time,
proof size, and verifier time all depend on both the predicate
size and the recursion overhead. Therefore, when the predicate
size is near the threshold, these metrics scale sublinearly
with the predicate size. When the predicate size significantly
exceeds the threshold, they scale almost linearly.

Fig. 3a shows that the prover time increases with arity r
when the predicate is fixed. For example, fixing the predicate
size as 224, the prover time is 28s, 49s, 71s, and 94s for r =
1, 2, 3, 4, respectively. This is because higher r requires the
prover to fold more instance-witness pairs. Additionally, the
folding cost is almost linear in the predicate size when the
size is much larger than the corresponding threshold. Thus, as
shown in Fig. 3a, the gap between different r nearly doubles
as the predicate size doubles.

The proof size and verifier time depend on the sizes of
the primary and secondary circuits. They also increase with r
because a larger r leads to higher recursion overhead which in
turn implies larger primary and secondary circuits. However,
the increase in recursion overhead is minor compared to a large
predicate size. As shown in Fig. 3b and Fig. 3c, when the

6We select the predicate as the X-axis since it represents the computations
that the prover truly intends to prove. Moreover, since COS20 does not have
open-source code and BCLMS21’s library cannot be compiled due to lack of
maintenance, we do not include a comparison with them.

7The recursion overhead on the primary curve increases with the predicate
size, though in a sublinear manner. This threshold is also called recursion
threshold in [16], [9], [5].

predicate size is doubled, the gap between different r remains
almost the same, and the curves for different r gradually
tend to overlap. We conclude that as the predicate circuit size
increases, the impact of increasing r on proof size and verifier
time diminishes.

Efficiency with compression. When instantiating our PCD
scheme over a cycle of elliptic curves, the PCD proof
consists of a LCCCS instance-witness pair (U(1),W(1)), a
CCCS instance-witness pair (u(1),w(1)) and a committed
relaxed R1CS instance-witness pair (U(2)

EC ,W
(2)
EC ). To compress

this proof, we first invoke the multi-folding scheme to fold
(U(1),W(1)), (u(1),w(1)) into a new LCCCS instance-witness
pair (U′(1),W′(1)). We then invoke SuperSpartan [37] exclud-
ing the first sum-check invocation to prove the satisfiability of
(U′(1),W′(1)). Next, we invoke the SNARK in Nova [29] to
prove the satisfiability of (U(2)

EC ,W
(2)
EC ). In Fig. 4, we fix r = 2

and compare the proof size and verifier time before and after
compression.

Fig. 4a shows that the proof size is significantly reduced
after compression. For a predicate size of 217, the proof size is
reduced from 14MB to 11KB, and for a predicate size of 224,
it is reduced from 1031MB to 13KB. However, this reduction
comes at the cost of increased verifier time, as shown in
Fig. 4b. For a predicate size of 217, the verifier time increases
from 211ms to 508ms, and for a predicate size of 224, it
increases from 11s to 22s.

VI. TYPICAL APPLICATIONS

Our PCD scheme can be naturally used in several scenarios.

Enforcing language semantics in distributed computations.
Sound reasoning about the behavior of programs relies on pro-
gram execution adhering to the language semantics. However,
in a distributed computation, verifying that a value from an
untrusted source was computed according to language seman-
tics can be difficult. Chong et al. [19] proposed a mechanism
to enforce language semantics in distributed computations
by leveraging PCD schemes. They first extended the COCO
programming language to COCOCOMM by adding commu-
nication primitives and then developed a PCD compliance
predicate that enforces COCOCOMM semantics. However,
due to the lack of efficient PCD implementations at the time,
Chong et al. did not report their approach’s performance. In
this case, our PCD scheme can be directly applied by instan-
tiating our PCD compliance predicate φ with their predicate.

Privacy pools. A privacy pool enables users to deposit
funds into a shared pool, anonymously transfer funds within
the pool, and later withdraw funds without linkage to their
previous transactions. In August 2022, Tornado Cash, the
largest Ethereum privacy pool, was sanctioned for purportedly
laundering over $9 billion worth of cryptocurrency since 2019,
making it illegal for entities to use its funds and sparking
a global privacy rights debate. Beal and Fisch [1] presented
a system that institutions could use to request cryptographic
attestations of fund origins rather than naively rejecting all
privacy pool funds. They utilized PCD to propagate allowlist
membership proofs through a privacy pool’s transaction graph
and instantiated their system with the PCD construction of
BCLMS21 [9], which incurs high overhead. In contrast, our
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Fig. 3: PCD efficiency for different arities and predicate sizes
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Fig. 4: Comparison of the proof size and verifier time before
and after compression

PCD scheme has better efficiency and can be applied directly
in this scenario.

Scalable folding-based SNARKs. SNARKs allow a prover
to generate short and efficiently verifiable proofs attesting to
computation correctness. Most SNARK constructions require
the prover to record the entire computation trace, resulting
in high memory overhead and limited scalability. Nguyen
et al. [33] proposed a framework for building folding-based
SNARKs that achieves constant-size prover memory efficiency
while maintaining linear prover computation efficiency. Their
framework largely relies on PCD schemes. To estimate their
SNARK’s performance, they used a PCD scheme that com-
bines the PCD compiler of BCLMS21 [9] with their folding
scheme for polynomial relations. This PCD scheme supports
degree-d gates, enabling succinct representation of high-degree
computations. However, the number of group operations re-
quired by the prover and verifier scales linearly with d, nearly
eliminating the benefits of high-degree gates. In contrast, our
PCD scheme’s group operations for the prover and verifier are
independent of d, making it ideal for handling high-degree
computations within their framework.

VII. CONCLUSION

PCD enables mutually distrustful parties to perform dis-
tributed computations on directed acyclic graphs in an effi-
ciently verifiable manner. In this paper, we first construct a
multi-folding scheme for an arbitrary number of instances,

which could reduce the task of checking multiple instances into
the task of checking one. We then construct and implement
a new PCD scheme based on our multi-folding scheme.
Theoretical analysis and experimental results demonstrate that
our PCD scheme achieves significantly lower recursion over-
head and better practical efficiency. Additionally, our PCD
scheme supports the customizable constraint system with high
expressivity and can be naturally applied in various scenarios,
including enforcing language semantics, privacy pools, and
scalable folding-based SNARKs.

However, our PCD scheme does not currently achieve zero-
knowledge. A recent update of HyperNova [28] introduced
a new approach for randomizing IVC proofs with folding
schemes to achieve zero-knowledge. We believe this approach
can be applied to our PCD scheme and leave integrating it in
future work.
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APPENDIX A
PROOF OF THEOREM 1

Theorem 1. Construction 1 is a public-coin multi-folding
scheme for (RLCCCS,RCCCS, compat, µ, ν) with perfect com-
pleteness and knowledge soundness.

Proof: We now describe the proof of Theorem 1.
Perfect completeness. For public parameters fpp =
(m,n,N, ℓ, t, q, d, pppcs) and s = logm, s′ = log n,
consider arbitrary adversarially chosen structure s1 =
s2 =

(
(M̃1, . . . , M̃t), (S1, . . . , Sq), (c1, . . . , cq)

)
, µ sat-

isfied RLCCCS instance-witness pairs {ϕk}k∈[µ] and ν
satisfied RCCCS instance-witness pairs {ψk′}k′∈[ν]. We
show V will not abort and the folded RLCCCS instance
(C ′, u′, x′, r′x, v

′
1, . . . , v

′
t) is satisfied by the folded RLCCCS

witness w̃′.

Firstly, since {ϕk}k∈[µ] are satisfied RLCCCS instance-
witness pairs, we have for k ∈ [µ], i ∈ [t] and ϕk.z̃1 =

˜(ϕk.w1, ϕk.u, ϕk.x1),

ϕk.vi =
∑

y∈{0,1}s′

M̃i(ϕk.rx,y) · ϕk.z̃1(y)

=
∑

x∈{0,1}s

ẽq(ϕk.rx,x) ·
( ∑
y∈{0,1}s′

M̃i(x,y) · ϕk.z̃1(y)
)

=
∑

x∈{0,1}s

Lk,i(x).

Furthermore, since {ψk′}k′∈[ν] are satisfied RCCCS instance-
witness pairs, we have for k′ ∈ [ν], ψk′ .z̃2 =

˜(ψk′ .w2, 1, ψk′ .x2) and x ∈ {0, 1}s,

q∑
i=1

ci ·
∏
j∈Si

( ∑
y∈{0,1}s′

M̃j(x,y) · ψk′ .z̃2(y)
)
= 0.
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Denoting the left-hand side of the above equation as a poly-
nomial qk′(X), we have for x ∈ {0, 1}s, qk′(x) = 0. Then
the polynomial Gk′(X) :=

∑
x∈{0,1}s ẽq(X,x) · qk′(x) is

multilinear and vanishes on all x ∈ {0, 1}s. Hence, we have
Gk′(X) is a zero polynomial. For β

$←− Fs, Gk′(β) = 0.
By construction, we have for k′ ∈ [ν],

∑
x∈{0,1}s Qk′(x) =

Gk′(β) = 0.

Therefore, for γ $←− F, we have
µ∑

k=1

t∑
i=1

γ(k−1)t+iϕk.vi =

µ∑
k=1

t∑
i=1

γ(k−1)t+i
( ∑
x∈{0,1}s

Lk,i(x)
)

+

ν∑
k′=1

γµt+k′ ∑
x∈{0,1}s

Qk′(x)

=
∑

x∈{0,1}s

( µ∑
k=1

t∑
i=1

γ(k−1)t+iLk,i(x) +

ν∑
k′=1

γµt+k′
Qk′(x)

)
=

∑
x∈{0,1}s

g(x).

Thus, by the completeness of the sum-check protocol, V will
not output “reject” inside it. Moreover, we have

c = g(r′x) =

µ∑
k=1

t∑
i=1

γ(k−1)t+iLk,i(r
′
x) +

ν∑
k′=1

γµt+k′
Qk′(r′x)

=

µ∑
k=1

t∑
i=1

γ(k−1)t+iek,1σk,i +

ν∑
k′=1

γµt+k′
e2

( q∑
i=1

ci
∏
j∈Si

θk′,j

)
.

We finally have that V will not abort.

Secondly, by construction, we have for k ∈ [µ], k′ ∈ [ν],(
ϕk.C1, ϕk.u, ϕk.x1, r

′
x, σk,1, . . . , σk,t;ϕk.w̃1

)
,(

ψk′ .C2, 1, ψk′ .x2, r
′
x, θk′,1, . . . , θk′,t;ψk′ .w̃2

)
are all satisfied RLCCCS instance-witness pairs. Therefore, for
z̃′ = ˜(w′, u′, x′) and i ∈ [t], we have that

v′i =

µ∑
k=1

ρk−1 · σk,i +
ν∑

k′=1

ρµ−1+k′
· θk′,i

=

µ∑
k=1

ρk−1 ·
( ∑
y∈{0,1}s′

M̃i(r
′
x,y) · ϕk.z̃1(y)

)
+

ν∑
k′=1

ρµ−1+k′
·
( ∑
y∈{0,1}s′

M̃i(r
′
x,y) · ψk′ .z̃2(y)

)

=
∑

y∈{0,1}s′

M̃i(r
′
x,y) ·

( µ∑
k=1

ρk−1 · ϕk.z̃1(y)

+

ν∑
k′=1

ρµ−1+k′
· ψk′ .z̃2(y)

)
=

∑
y∈{0,1}s′

M̃i(r
′
x,y) · z̃′(y).

By the additive homomorphism property of the polynomial
commitment scheme, we have that C ′ = Com

(
pppcs, w̃′

)
.

Therefore, (C ′, u′, x′, r′x, v
′
1, . . . , v

′
t) is a satisfied RLCCCS

instance and w̃′ is the corresponding witness.

We conclude that Construction 1 has perfect completeness.

Knowledge soundness. Consider a malicious prover P∗

that succeeds with probability ϵ. For public parameters
fpp = (m,n,N, ℓ, t, q, d, pppcs) and s = logm, s′ = log n.
Consider an adversary A that adaptively picks structures
s1 = s2 =

(
(M̃1, . . . , M̃t), (S1, . . . , Sq), (c1, . . . , cq)

)
that satisfy compat, µ RLCCCS instances {ϕk.u1 :=
ϕk.(C1, u, x1, rx, v1, . . . , vt)}k∈[µ], ν RCCCS instances
{ψk′ .u2 := ψk′ .(C2, x2)}k′∈[ν] and some auxiliary state st.
We construct an expected polynomial time extractor E that
succeeds with probability ϵ − negl(λ) in obtaining satisfied
witnesses for the original instances as follows.

(
{ϕk.w̃1}k∈[µ], {ψk′ .w̃2}k′∈[ν]

)
← E (fpp, ρ):

1. Invoke A to obtain the output tuple:(
(s1, s2), {ϕk.u1}k∈[µ], {ψk′ .u2}k′∈[ν], st

)
← A (fpp, ρ) .

2. Compute (fpk, fvk)← K(fpp, (s1, s2)).

3. Run the interaction
(
u(1), w̃(1)

)
←〈

P∗(fpk, st),V(fvk)
〉(
{ϕk.u1}k∈[µ], {ψk′ .u2}k′∈[ν]

)
once with the final verifier challenge ρ(1) $←− F.

4. Abort if
(
fpp, s1, u

(1), w̃(1)
)
/∈ RLCCCS.

5. Rerun the interaction
(
u(1), w̃(1)

)
←〈

P∗(fpk, st),V(fvk)
〉(
{ϕk.u1}k∈[µ], {ψk′ .u2}k′∈[ν]

)
with different verifier’s final challenges while
maintaining the same prior randomness. Keep doing
so until it obtains µ + ν − 1 folded RLCCCS

instance-witness pairs
{(

u(k
′′), w̃(k′′)

)}
k′′∈[2,...,µ+ν]

such that
(
fpp, s1, u

(k′′), w̃(k′′)
)
∈ RLCCCS for all

k′′ ∈ [2, . . . , µ+ν]. Let
{
ρ(k

′′)
}

denote the corresponding
verifier’s final challenges.

6. Abort if there exists a collision in the verifier’s final
challenges.

7. Interpolate points
{(
ρ(k

′′), w̃(k′′)
)}

k′′∈[µ+ν]
to retrieve

witnesses
(
{ϕk.w̃1}k∈[µ], {ψk′ .w̃2}k′∈[ν]

)
such that for

k′′ ∈ [µ+ ν],

µ∑
k=1

ρ(k
′′)k−1 ·ϕk.w̃1+

ν∑
k′=1

ρ(k
′′)µ−1+k′

·ψk′ .w̃2 = w̃(k′′).

(3)

8. Output
(
{ϕk.w̃1}k∈[µ], {ψk′ .w̃2}k′∈[ν]

)
.

We now demonstrate that the extractor E runs in expected
polynomial time and succeeds with probability ϵ− negl(λ).

Firstly, the extractor E runs the interaction ⟨P∗,V⟩ once,
and if it does not abort, keeps rerunning the interaction
until it obtains µ + ν − 1 satisfied folded RLCCCS instance-
witness pairs. Thus, the expected number of times E runs the
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interaction is

Pr[First call to ⟨P∗,V⟩ fails] · 1+

Pr[First call to ⟨P∗,V⟩ succeeds] ·
(
1 +

µ+ ν − 1

Pr[⟨P∗,V⟩ succeeds]

)
= (1− ϵ) · 1 + ϵ ·

(
1 +

µ+ ν − 1

ϵ

)
= µ+ ν.

Assuming that µ, ν are polynomial in the security parameter,
we have that E runs in expected polynomial time.

Secondly, let E1 denote the event that E successfully
produces some outputs in less than T times of running
the interaction ⟨P∗,V⟩. Given E1, let E2 denote the event
that the outputs of E are satisfied witnesses. We have that
Pr[E succeeds] = Pr[E1] · Pr[E2].

We now analyze Pr[E1] and Pr[E2]. By the success
probability of P∗, we have that E does not abort in step (4)
with probability ϵ. Given that E does not abort in step (4),
by Markov’s inequality, we have that E runs the interaction
⟨P∗,V⟩ more than T times with probability µ+ν

T . Given that
E runs the interaction less than T times, which has probability
1 − µ+ν

T , we have E tests at most T values for ρ. Thus, the
probability that E does not abort in step (6) is 1− T 2

|F| . Thus,
we have

Pr[E1] =
(
1− µ+ ν

T

)
· ϵ ·

(
1− T 2

|F|

)
.

Setting T = 3
√
|F| and assuming T ≥ µ + ν, we have that

Pr[E1] = ϵ− negl(λ).

To analyze Pr[E2], we first show that the retrieved
witnesses are valid openings to the corresponding poly-
nomial commitments in the instance, and then show
that they satisfy the remaining algebraic relations with
some probability. For k′′ ∈ [µ + ν], let u(k

′′) =(
C(k′′), u(k

′′), x(k
′′), r′x, v

(k′′)
1 , . . . , v

(k′′)
t

)
. Since w̃(k′′) is a

satisfied RLCCCS witness, we have that
µ∑

k=1

ρ(k
′′)k−1 · Com

(
pppcs, ϕk.w̃1

)
+

ν∑
k′=1

ρ(k
′′)µ−1+k′

· Com
(
pppcs, ψk′ .w̃2

)
=Com

(
pppcs,

µ∑
k=1

ρ(k
′′)k−1ϕk.w̃1 +

ν∑
k′=1

ρ(k
′′)µ−1+k′

ψk′ .w̃2

)
=Com

(
pppcs, w̃

(k′′)
)

=C(k′′)

=

µ∑
k=1

ρ(k
′′)k−1 · ϕk.C1 +

ν∑
k′=1

ρ(k
′′)µ−1+k′

· ψk′ .C2

Treat the above equation as a univariate polynomial equation
in ρ(k

′′). Since it holds for all k′′ ∈ [µ+ν], we must have that
for k ∈ [µ], k′ ∈ [ν],

ϕk.C1 = Com
(
pppcs, ϕk.w̃1

)
, ψk′ .C2 = Com

(
pppcs, ψk′ .w̃2

)
,

which means that
(
{ϕk.w̃1}k∈[µ], {ψk′ .w̃2}k′∈[ν]

)
are valid

openings.

Next, by the extractor’s construction we have that
{σk,i, θk′,i}k∈[µ],k′∈[ν],i∈[t] sent by the prover are identical
across all executions of the interaction ⟨P∗,V⟩. By the ver-
ifier’s computation, we have that for k′′ ∈ [µ+ ν], i ∈ [t],

v
(k′′)
i =

µ∑
k=1

ρ(k
′′)k−1 · σk,i +

ν∑
k′=1

ρ(k
′′)µ−1+k′

· θk′,i. (4)

Since
{
w̃(k′′)

}
k′′∈[µ+ν]

are satisfied RLCCCS witnesses, we
have that for k′′ ∈ [µ+ ν], i ∈ [t],

v
(k′′)
i =

∑
y∈{0,1}s′

M̃i(r
′
x,y) · z̃(k

′′)(y), (5)

where z̃(k
′′) = ˜(

w(k′′), u(k′′), x(k′′)
)
. By Equations (3), (4),

(5) and the verifier’s computation, we have that for k′′ ∈ [µ+
ν], i ∈ [t],

µ∑
k=1

ρ(k
′′)k−1 · σk,i +

ν∑
k′=1

ρ(k
′′)µ−1+k′

· θk′,i

=
∑

y∈{0,1}s′

M̃i(r
′
x,y) · z̃(k

′′)(y)

=
∑

y∈{0,1}s′

M̃i(r
′
x,y) ·

( µ∑
k=1

ρ(k
′′)k−1 · ϕk.z̃1(y)

+

ν∑
k′=1

ρ(k
′′)µ−1+k′

· ψk′ .z̃2(y)
)

=

µ∑
k=1

ρ(k
′′)k−1 ·

∑
y∈{0,1}s′

M̃i(r
′
x,y) · ϕk.z̃1(y)

+

ν∑
k′=1

ρ(k
′′)µ−1+k′

·
∑

y∈{0,1}s′

M̃i(r
′
x,y) · ψk′ .z̃2(y),

where ϕk.z̃1 = ˜(ϕk.w1, ϕk.u, ϕk.x1) and ψk′ .z̃2 =
˜(ψk′ .w2, 1, ψk′ .x2). Treat the above equation as a univariate

polynomial equation in ρ(k
′′). Since it holds for all k′′ ∈

[µ+ ν], we must have that for k ∈ [µ], k′ ∈ [ν], i ∈ [t],

σk,i =
∑

y∈{0,1}s′

M̃i(r
′
x,y) · ϕk.z̃1(y),

θk′,i =
∑

y∈{0,1}s′

M̃i(r
′
x,y) · ψk′ .z̃2(y).
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Then since the verifier does not abort, we have that

c =

µ∑
k=1

t∑
i=1

γ(k−1)t+i · ek,1 · σk,i

+

ν∑
k′=1

γµt+k′
· e2 ·

( q∑
i=1

ci ·
∏
j∈Si

θk′,j

)
=

µ∑
k=1

t∑
i=1

γ(k−1)t+i · ẽq(ϕk.rx, r′x) · σk,i

+

ν∑
k′=1

γµt+k′
· ẽq(β, r′x) ·

( q∑
i=1

ci ·
∏
j∈Si

θk′,j

)
=

µ∑
k=1

t∑
i=1

γ(k−1)t+i · Lk,i(r
′
x) +

ν∑
k′=1

γµt+k′
·Qk′(r′x)

=g(r′x),

which by the soundness of the sum-check protocol, implies
that with probability 1− O(s · d)/|F| = 1− negl(λ) over the
choice of r′x,

µ∑
k=1

t∑
i=1

γ(k−1)t+iϕk.vi =
∑

x∈{0,1}s

g(x)

=
∑

x∈{0,1}s

( µ∑
k=1

t∑
i=1

γ(k−1)t+iLk,i(x) +

ν∑
k′=1

γµt+k′
Qk′(x)

)

=

µ∑
k=1

t∑
i=1

γ(k−1)t+i
∑

x∈{0,1}s

Lk,i(x)

+

ν∑
k′=1

γµt+k′ ∑
x∈{0,1}s

Qk′(x).

By the Schwartz-Zippel lemma [36], this implies that with
probability 1−O(µ · t+ ν)/|F| = 1− negl(λ) over the choice
of γ, we have for k ∈ [µ], i ∈ [t],

ϕk.vi =
∑

x∈{0,1}s

Lk,i(x), (6)

and for k′ ∈ [ν],

0 =
∑

x∈{0,1}s

Qk′(x). (7)

Expanding Equation (6), we have that

ϕk.vi =
∑

x∈{0,1}s

Lk,i(x)

=
∑

x∈{0,1}s

ẽq(ϕk.rx,x) ·
( ∑
y∈{0,1}s′

M̃i(x,y) · ϕk.z̃1(y)
)

=
∑

y∈{0,1}s′

M̃i(ϕk.rx,y) · ϕk.z̃1(y).

Since we have argued that {ϕk.w̃1}k∈[µ] are valid openings, we
have that they are satisfied RLCCCS witnesses with probability
1− negl(λ).

Expanding Equation (7), we have that

0 =
∑

x∈{0,1}s

Qk′(x) =
∑

x∈{0,1}s

ẽq(β,x)

·
( q∑

i=1

ci ·
∏
j∈Si

( ∑
y∈{0,1}s′

M̃j(x,y) · ψk′ .z̃2(y)
))

=

q∑
i=1

ci ·
∏
j∈Si

( ∑
y∈{0,1}s′

M̃j(β,y) · ψk′ .z̃2y)
)
.

By the Schwartz-Zippel lemma, this implies that with proba-
bility 1−O(s · d)/|F| = 1− negl(λ) over the choice of β, we
have that for all x ∈ {0, 1}s,

q∑
i=1

ci ·
∏
j∈Si

( ∑
y∈{0,1}s′

M̃j(x,y) · ψk′ .z̃2(y)
)
= 0.

Since we have argued that {ψk′ .w̃2}k′∈[ν] are valid openings,
we have that they are satisfied RCCCS witnesses with proba-
bility 1− negl(λ). Hence, we have that Pr[E2] = 1− negl(λ).

Therefore, we have that

Pr[E succeeds] = Pr[E1] · Pr[E2]

=
(
ϵ− negl(λ)

)
·
(
1− negl(λ)

)
= ϵ− negl(λ).

We conclude that Construction 1 has knowledge soundness.

APPENDIX B
PROOF OF THEOREM 2

Theorem 2. Construction 2 is a PCD scheme with perfect
completeness and knowledge soundness.

Proof: We now describe the proof of Theorem 2.

Perfect completeness. For public parameter pp, consider ar-
bitrary adversarially chosen

(
φ, z, zloc, {zi,Πi}ri=1

)
such that

the perfect completeness precondition is satisfied. We show
that given Π ← P

(
pk, z, zloc, {zi,Πi}ri=1

)
, V

(
vk, z,Π

)
= 1

with probability 1.

If zi =⊥ for all i ∈ [r], by the construction of P,
we have that (U,W) = (u⊥,w⊥) is a trivially satisfied
RLCCCS instance-witness pair, and h = hash(fvk, z,U).
By the perfect completeness precondition, we have that
φ(z, zloc, z1, . . . , zr) = 1. Therefore, P could construct a
satisfied RCCCS instance-witness pair (u,w) that represents
the correct computation of Rφ. Moreover, by the construction
of Rφ, we have u.x = hash(fvk, z,U). Thus, V

(
vk, z,Π

)
= 1

with probability 1.

If ∃i ∈ [r] such that zi ̸=⊥, by the perfect completeness
precondition, {(Ui,Wi)}i∈[r] included in {Πi}i∈[r] are satis-
fied RLCCCS instance-witness pairs, {(ui,wi)}i∈[r] included
in {Πi}i∈[r] are satisfied RCCCS instance-witness pairs, and
ui.x = hash(fvk, zi,Ui). Then by the perfect completeness of
the multi-folding scheme, we have that (U,W) is a satisfied
RLCCCS intance-witness pair. Therefore, P could construct a
satisfied RCCCS instance-witness pair (u,w) that represents
the correct computation of Rφ. Additionally, by the construc-
tion of Rφ, we have that u.x = hash(fvk, z,U). Therefore,
V
(
vk, z,Π

)
= 1 with probability 1.
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We conclude that Construction 2 has perfect completeness.

Knowledge soundness. We mainly refer to the proof of the
PCD scheme of Bünz et al [9]. Fix a set Z, and for pp ←
G
(
1λ

)
, ai ← D(pp), consider an expected polynomial time

adversary P∗ that succeeds with probability ϵ. We construct an
expected polynomial time extractor EP∗ that with input (pp, ai),
outputs (φ,T, ao) such that φ ∈ F, (pp, ai, φ, o(T), ao) ∈ Z
and T is φ-compliant with probability ϵ− negl(λ).

Referring to existing works [10], [9], we assume that every
node has a unique outgoing edge. Thus, the extracted transcript
T will be a tree. Let every node v be labeled with a local data
z
(v)
loc , the label z(v) of its unique outgoing edge and a proof
Π(v) that proves the correctness of z(v). We first present the
construction of EP∗ that extracts the labels of all the nodes in
T, and then explain its correctness.

We construct EP∗ via an iterative process that constructs
a sequence of extractors E0, E1, . . . , Ed, where d is the depth
of T and for i ∈ {0, 1, . . . , d}, Ei outputs a tree Ti of depth
i+1. In particular, the nodes of Td at depth d+1 are all empty
nodes. We argue later that the extractor Ed is then equal to EP∗ .

In the base case, we define E0(pp, ai) to compute
(φ, o,Π, ao) ← P∗(pp, ai) and output (φ,T0, ao), where T0

is a single node labeled with (o,Π).

Next, we construct the extractor Ei inductively for each i ∈
[d], given that we have already constructed Ei−1. We denote
ST(i) as the set of nodes of T at depth i. We first construct
an adversary P∗

i−1 for the non-interactive multi-folding scheme
using Ei−1, which implies an extractor EP∗

i−1
corresponding to

P∗
i−1 by the knowledge soundness of the multi-folding scheme,

and then construct Ei using P∗
i−1, EP∗

i−1
.

P∗
i−1(pp, ai, ρ):

1. Compute (φ,Ti−1, ao) ← Ei−1(pp, ai). If Ti−1 is not a
tree of depth i, abort.

2. For each node v ∈ STi−1
(i), denote its label as

(z(v),Π(v)).

3. Parse Π(v) as
(
(U(v),W(v)), (u(v),w(v))

)
.

4. Obtain
{
U
(v)
j , u

(v)
j , z

(v)
j

}
j∈[r]

, π(v) from w(v).

5. Let Si−1 :=
{
v ∈ STi−1

(i) | ∃j ∈ [r], z
(v)
j ̸=⊥

}
.

6. Output
({{

U
(v)
j , u

(v)
j

}
j∈[r]

,U(v),W(v), π(v)
}
v∈Si−1

,

(φ,Ti−1, ao)
)

.

By the knowledge soundness of the multi-folding scheme,
there exists an extractor EP∗

i−1
that for v ∈ Si−1, outputs{

W
(v)
j ,w

(v)
j

}
j∈[r]

such that
{(

U
(v)
j ,W

(v)
j

)}
j∈[r]

are satisfied

RLCCCS instance-witness pairs and
{(

u
(v)
j ,w

(v)
j

)}
j∈[r]

are
satisfied RCCCS instance-witness pairs.

Given P∗
i−1, EP∗

i−1
, we construct Ei as follows.

(φ,Ti, ao)← Ei(pp, ai):

1. Compute
({(

U
(v)
j ,W

(v)
j

)
,
(
u
(v)
j ,w

(v)
j

)}
j∈[r],v∈Si−1

,

(φ,Ti−1, ao)
)
← EP∗

i−1
(pp, ai, ρ). If Ti−1 is not a tree of

depth i, abort.

2. Retrieve {w(v)}v∈STi−1
(i) from the internal state of P∗

i−1,

and obtain z(v)loc ,
{
z
(v)
j

}
j∈[r]

from w(v).

3. Append z(v)loc to the label of v ∈ STi−1(i).

4. For each node v ∈ Si−1, let Sv :=
{
j ∈ [r] | z(v)j ̸=⊥

}
.

Construct Ti of depth i + 1 from Ti−1 by adding, for
each node v ∈ Si−1,

(
z
(v)
j ,Π

(v)
j

)
to the label of its child

j ∈ Sv , where Π
(v)
j =

((
U
(v)
j ,W

(v)
j

)
,
(
u
(v)
j ,w

(v)
j

))
.

5. Output (φ,Ti, ao).

We now show inductively that the extractors are cor-
rect. We define the inductive hypothesis as that for i ∈
{0, 1, . . . , d}, Ei(pp, ai) outputs (φ,Ti, ao) in expected poly-
nomial time such that with probability ϵ − negl(λ), 1) φ ∈
F, (pp, ai, φ, o(Ti), ao) ∈ Z, 2) Ti is φ-compliant up to depth
i, and 3) for all v ∈ STi

(i+ 1), V
(
vk, z(v),Π(v)

)
= 1.

In the base case, by the premise of P∗, E0 satisfies the
inductive hypothesis.

Next, supposing that Ei−1 satisfies the inductive hypoth-
esis, we show that Ei also satisfies the inductive hypoth-
esis. By the premise of Ei−1, we have that with proba-
bility ϵ − negl(λ), φ ∈ F, (pp, ai, φ, o(Ti−1), ao) ∈ Z,
Ti−1 is φ-compliant up to depth i − 1, and for all
v ∈ STi−1

(i), V
(
vk, z(v),Π(v)

)
= 1. By the check of

V, we have that (1)
{
(U(v),W(v)), (u(v),w(v))

}
v∈STi−1

(i)

are satisfied instance-witness pairs. Additionally by the
construction of Rφ and the collision-resistant property of
the hash function, we have that (2) for v ∈ STi−1(i),
φ
(
z(v), z

(v)
loc , z

(v)
1 , . . . , z

(v)
r

)
accepts, (3) for v ∈ Si−1, U(v) =

NIMFS.V
(
fvk, {U(v)

j }j∈[r], {u
(v)
j }j∈[r], π

(v)
)
, and (4) for v ∈

Si−1, j ∈ [r], u
(v)
j .x = hash

(
fvk, z

(v)
j ,U

(v)
j

)
. Condition (2)

implies that Ti is φ-compliant up to depth i, and φ ∈
F, (pp, ai, φ, o(Ti), ao) ∈ Z with probability ϵ − negl(λ).
Conditions (1)(3) imply that P∗

i−1 succeeds in producing
satisfied folded instance-witness pairs

{
U(v),W(v)

}
v∈Si−1

for

instances
{
U
(v)
j , u

(v)
j

}
j∈[r],v∈Si−1

with probability ϵ−negl(λ).
Then by the knowledge soundness of the multi-folding scheme,
we have that EP∗

i−1
succeeds in outputing satisfied witnesses{

W
(v)
j ,w

(v)
j

}
j∈[r],v∈Si−1

with probability ϵ − negl(λ). Addi-
tionally by Condition (4), we have that V

(
vk, z(v),Π(v)

)
= 1

for all v ∈ STi
(i+1) with probability ϵ−negl(λ). Since Ei−1

runs in expected polynomial time, EP∗
i−1

also runs in expected
polynomial time, and thereby so does Ei. Therefore, we have
that Ei satisfies the inductive hypothesis.

We conclude that Construction 2 has knowledge soundness.
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