
Whipping the Multivariate-based MAYO Signature Scheme
using Hardware Platforms

Florian Hirner, Michael Streibl, Florian Krieger, Ahmet Can Mert, Sujoy Sinha Roy

{florian.hirner,florian.krieger,ahmet.mert,sujoy.sinharoy}@iaik.tugraz.at

michael.streibl@student.tugraz.at

Institute of Applied Information Processing and Communications

Graz University of Technology, Austria

ABSTRACT

NIST issued a new call in 2023 to diversify the portfolio of quantum-

resistant digital signature schemes since the current portfolio relies

on lattice problems. The MAYO scheme, which builds on the Un-

balanced Oil and Vinegar (UOV) problem, is a promising candidate

for this new call. MAYO introduces emulsifier maps and a novel

‘whipping’ technique to significantly reduce the key sizes compared

to previous UOV schemes. This paper provides a comprehensive

analysis of the implementation aspects of MAYO and proposes sev-

eral optimization techniques that we use to implement a high-speed

hardware accelerator. The first optimization technique is the partial

unrolling of the emulsification process to increase parallelization.

The second proposed optimization is a novel memory structure

enabling the parallelization of significant bottlenecks in the MAYO

scheme. In addition to this, we present a flexible transposing tech-

nique for the data format used in MAYO that can be expanded

to other UOV-based schemes. We use these techniques to design

the first high-speed ASIC and FPGA accelerator that supports all

operations of the MAYO scheme for different NIST security levels.

Compared with state-of-the-art, like HaMAYO [23] and UOV [7],

our FPGA design shows a performance benefit of up to three orders

of magnitude in both latency and area-time-product. Furthermore,

we lower the BRAM consumption by up to 2.8× compared to these

FPGA implementations. Compared to high-end CPU implementa-

tions, our ASIC design allows between 2.81× and 60.14× higher

throughputs. This increases the number of signing operations per

second from 483 to 13424, thereby fostering performant deployment

of the MAYO scheme in time-critical applications.

CCS CONCEPTS

• Hardware→ VLSI design; • Security and privacy→ Cryp-

tography; •Computer systems organization→Architectures.

KEYWORDS

Post-Quantum, Digital Signature, MAYO, FPGA, ASIC

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference’24, October 2024, State, Country
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:

Florian Hirner, Michael Streibl, Florian Krieger, Ahmet Can Mert, Sujoy

Sinha Roy . 2024. Whipping theMultivariate-basedMAYO Signature Scheme

using Hardware Platforms . In . ACM, New York, NY, USA, 16 pages. https:

//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Public-key cryptography encompasses essential cryptographic prim-

itives for key exchange, public-key encryption, key encapsulation,

and digital signatures. Widely used public-key cryptographic algo-

rithms are based on integer factorization or discrete logarithm prob-

lems, which are presumed to be computationally infeasible to solve

using present-day computers. However, the emergence of a large-

scale quantum computer poses a tangible threat to cryptographic

primitives based on the above-mentioned mathematical problems

as Shor’s quantum algorithm [25] can solve them in polynomial

time. Over the last few years, quantum computer designs have seen

accelerated advancements. Prominent developments in this field

include IBM’s 5-qubit Tenerife in 2016, Google’s 53-qubit-effective

Sycamore in 2019, USTC’s 76-qubit Jiuzhang in 2020, Xanadu’s

216-qubit Borealis and IBM’s 433-qubit Osprey in 2022, among oth-

ers. Considering such rapid advancements, agencies, industries,

and research institutions strive to facilitate a smooth transition to

quantum-resistant public-key cryptography, commonly known as

Post-Quantum Cryptography (PQC).

Existing PQC algorithms are grouped into five main categories

based on their foundational mathematical problems: code-based,

hash-based, isogeny-based, lattice-based, and multivariate-based

problems. Each category has unique mathematical and practical

characteristics, strengths, and constraints. To standardize PQC al-

gorithms, the US standardization organization NIST initiated the

project “Post Quantum Cryptography Standardization” in 2016

and called for proposals. In July 2022, NIST selected one key en-

capsulation mechanism, namely Crystals-Kyber [24], and three

signature algorithms, namely Crystals-Dilithium [2], Falcon [22],

and SPHINCS+ [12] for standardization. The first three of them use

lattice-based constructions, which leads to a need for more diversity

in the PQC portfolio. Hence, in 2022, NIST issued a new call [16]

specifically for additional post-quantum signature schemes. The list

of submissions to this call has various signature algorithms relying

on code-based, multivariate-based, MPC-based, and isogeny-based

constructions. MAYO [4, 5] is a new post-quantum digital signature

scheme based on the Unbalanced Oil and Vinegar (UOV) construc-

tion [15], a multivariate quadratic signature scheme. MAYO has

also been submitted to NIST’s new diversification call for quantum-

resistant digital signatures, and it is one of eleven signature schemes

based on multivariate cryptography. MAYO reduces the key size

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference’24, October 2024, State, Country Hirner, Streibl, Krieger, Mert, Roy

significantly by using a minimal oil space and employs a special

whipping up technique to avoid falling out of the oil and vinegar

map. This technique makes MAYO more compact than state-of-the-

art lattice-based signature schemes such as Falcon and Dilithium.

A new cryptographic signature scheme must be efficiently com-

putable on diverse software and hardware platforms for broad

adoption in real-world applications. Several implementation meth-

ods must be researched to examine the schemes’ speed, memory,

and energy efficiency while considering specific application and

platform requirements. This was also the case in the first three

rounds of the NIST standardization project. There, we have seen

numerous papers investigating the secure and efficient implementa-

tion [3, 8, 13, 14, 18] of novel PQC algorithms on high-end software,

resource-constrained microcontroller, FPGA and ASIC hardware,

and other platforms. Just few works are available in literature that

consider implementations of UOV-based schemes, like MAYO.

The MAYO team provides a reference software implementation

and an optimized version. The optimized version boosts the perfor-

mance by utilizing AES-NI and AVX2 instructions during computa-

tions [21]. Another work [10] focuses on porting and optimizing the

MAYO scheme for ARM microcontrollers and proposes new param-

eters to improve the signing and verification processes. Recently,

an FPGA implementation of the MAYO scheme is proposed [23]

that implements the MAYO scheme but does not support signature

verification. Apart from MAYO works, some publications target the

closely related UOV scheme [7] which the MAYO scheme is based

on. Many operations performed in the MAYO scheme are similar to

the UOV scheme. Hence we consider UOV works for comparison.

At the time of writing this paper, there is one UOV work [7] that

fully implements the UOV scheme. This work analyses techniques

to port UOV to microcontrollers and FPGAs.

Application-area: Integrating multivariate signature schemes

such asMAYO in high-performance real-time systems is constrained

by the computationally intensive UOV mathematics. On the re-

source constrained Arm M4 microcontroller [5] running at 24MHz,

a single signature generation at the lowest security level takes ap-

proximately 0.38 seconds. Furthermore, a highly optimized AVX2

software implementation [5] on an Intel Xeon Gold 6338 CPU at

2.0 GHz achieves only 4348, 1205, and 483 signature generations

per second at security level 1, 3, and 5, respectively. This level of

performance is insufficient for real-time applications (e.g., servers),

particularly when compared to Hardware Security Modules (HSMs)

like the Thales HSM [11], which can perform up to 10, 000 RSA

and 20, 000 ECC operations per second. Our proposed hardware

accelerator at 1.5 GHz achieves 48188, 22840, and 13424 signature

generations per second for each security level.

Contributions: This paper investigates the potential of hard-

ware acceleration to significantly improve the throughput and ef-

ficiency of the MAYO algorithm. We deploy several techniques

dedicated to hardware platforms to enhance the performance of

the MAYO scheme. In addition, our techniques also apply generally

to the base UOV scheme [7]. Our contributions are as follows:

• First, we propose partial loop unrolling to reduce the la-

tency of the emulsification process in the MAYO scheme.

Our highly parallelized architecture allows the reconfigura-

tion of the arithmetical block to perform the emulsification of

different iterations simultaneously. This accelerates the emul-

sification in both signing and verification from (𝑘 · 𝑘 + 1)/2
to 𝑘 iterations.

• Second, we present a novel memory structure that is both

performant and memory-saving simultaneously. The mem-

ory structure allows a high degree of parallelization of ma-

trix multiplications, which enables us to increase the per-

formance. The performance benefits especially affect matrix

multiplications involving oil space and vinegar maps. These

are the major computation bottlenecks. Additionally, the

memory structure allows us to perform the loop unrolling of

nested loops during signature generation and verification.

• Third, we propose a novel flexible matrix transpose module

design that operates on our optimized memory structure.

The transpose unit is flexible regarding throughput, meaning

that a trade-off between latency and resource utilization is

possible at design time. Hence, a higher throughput leads to

a lower latency and higher area consumption and vice versa.

• Fourth, we optimize the efficiency of our design by reducing

the amount of memory to reach a low area-time product

(ATP). Contrasting to other works, we do not store pseudo-

randomly generated data in memory but immediately con-

sume it for computations. This allows us to halve the re-

quired on-chip memory consumption on FPGAs. The impact

on memory savings on ASIC platforms is even higher.

We combine all these techniques to design a hardware accelera-

tor that supports all operations of theMAYO scheme. The supported

operations include key generation, signing, and verification for dif-

ferent NIST security levels.We tested our optimized design on FPGA

and verified its functionality via the reference implementation of

the MAYO team. In addition to this, we also give implementation

results for ASIC using 28nm technology.

Outline: In Section 2, we provide the background, such as fi-

nite field arithmetic, multivariate quadratic maps, and the Oil and

Vinegar signature scheme [15]. It also contains a description of the

MAYO signature scheme, which gives a detailed explanation of its

specifications, like their whipping technique, emulsifier maps, and

more. Section 3 gives an in-depth explanation of our optimization

strategies and Section 4 shows how they are Incorporated. Section 5

we discuss the scheduling of the key generation, signing and verify

operation. Section 6 gives an in-depth ablation study of our opti-

mization strategies. Section 7 presents the evaluation and results

compared to related works and in Section 8, we discuss the security

aspects and implications of our work.

2 BACKGROUND

This section covers the background necessary to understand arith-

metic used in the UOV [7] and MAYO [4] scheme.

2.1 Finite field arithmetic over GF(24)
The arithmetic in the MAYO digital signature algorithm is mainly

based on vector andmatrix operation in the finite field F16 = GF(24).
Elements in this field can be represented as a polynomial of degree

3, e.g., 𝑎 = 𝑎3𝑥
3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0, where 𝑎3, 𝑎2, 𝑎1, 𝑎0 are elements

of GF(2). For the rest of the paper, we use the following encoding,
an element 𝑎 ∈ GF(24) is encoded as an unsigned 4-bit integer,

Whipping the Multivariate-based MAYO Signature Scheme using Hardware Platforms Conference’24, October 2024, State, Country

whose 4 bits are the coefficients of the polynomial, e.g., Encode(𝑎 =

𝑎3𝑥
3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0) = (𝑎3𝑎2𝑎1𝑎0)2. For example, Encode(1𝑥3 +

0𝑥2 + 1𝑥 + 0) is equal to (1010)2, which is 10 in decimal.

2.2 Multivariate Quadratic Maps

The core of the Oil and Vinegar [15] and the MAYO scheme are

multivariate quadratic maps. We follow the definition and notation

presented in [4]. Such a map 𝑃 (x) = (𝑝1, . . . , 𝑝𝑚) : F𝑛𝑞 → F𝑚𝑞 con-

sists of𝑚 multivariate quadratic polynomials in 𝑛 variables and the

coefficients of the polynomials are in F𝑞 , the finite field with 𝑞 ele-

ments. This map is evaluated by simply evaluating each polynomial

𝑝𝑖 . Both, UOV and MAYO use homogeneous multivariate maps in

the sense that every polynomial is in homogeneous form. In the

quadratic case this results in polynomials where every nonzero

term is quadratic. Let 𝑐𝑖 𝑗 be the coefficient of the quadratic term

𝑥𝑖𝑥 𝑗 . Then, a polynomial can be expressed as

𝑝 (x) = 𝑝 (𝑥1 . . . 𝑥𝑛) =
∑

1≤𝑖≤ 𝑗≤𝑛
𝑐𝑖 𝑗𝑥𝑖𝑥 𝑗 . (1)

Eq. 1 can be rewritten into

𝑝 (x) = x⊤
©­­­­«
𝑐11 𝑐12 . . . 𝑐1𝑛
0 𝑐22 . . . 𝑐2𝑛
.
.
.

. . .
. . .

.

.

.

0 . . . 0 𝑐𝑛𝑛

ª®®®®¬
x. (2)

MAYO uses this upper triangular matrix form of Eq. 2 and defines

polynomial evaluation as

𝑝𝑖 (x) = x⊤P𝑖x = x⊤
(
P(1)
𝑖

P(2)
𝑖

0 P(3)
𝑖

)
x. (3)

Since there are𝑚 different multivariate quadratic polynomials, we

end up with𝑚 different P𝑖 matrices, which need to be evaluated.

Therefore, the result of the multivariate quadratic map is defined

as 𝑃 (a) = b with b = (𝑝1 (a), . . . , 𝑝𝑚 (a)).

2.3 Oil and Vinegar

The original Oil andVinegar algorithmwas presented by Patarin [19]

in 1997. The motivation was to create a cryptographic scheme based

on a set of multivariate quadratic equations, since solving such equa-

tions is NP-hard [15]. The main idea behind these schemes is to

introduce a trapdoor into the set of equations to allow efficient

sampling of preimages. While the original scheme was broken,

its modified version Unbalanced Oil and Vinegar still seems to

be secure at the current state and, therefore, was chosen as the

foundation of the MAYO scheme.

The description and notation of the Oil and Vinegar signature

scheme is adapted from [4]. The central object of this scheme is the

multivariate quadratic map, which acts as a public key in the scheme.

To sign a message𝑀 , it first obtains its digest using a cryptographic

hash function 𝐻 and a random 𝑠𝑎𝑙𝑡 . Then, the signature s is the
preimage under the multivariate quadratic map 𝑃 of the specific

digest value such that 𝑃 (s) = 𝐻 (𝑀 | |𝑠𝑎𝑙𝑡). However, since sampling

preimages for multivariate quadratic maps, known as MQ problem,

is considered hard, we need a trapdoor to obtain them efficiently.

The trapdoor information in the Oil and Vinegar scheme is the

so-called Oil space, a𝑚 dimensional linear subspace𝑂 ⊂ F𝑛𝑞 where

𝑃 vanishes, meaning that

𝑃 (o) = 0 for all o ∈ 𝑂. (4)

Knowledge of the oil space allows to efficiently sample preimages

of 𝑃 and, thus, a basis of the oil space acts as the secret key. Specific

attacks against Oil and Vinegar schemes try to recover the oil space

from the public key, which led to the break of the original Oil and

Vinegar version. Since 𝑂 is hidden in F𝑛𝑞 , increasing 𝑛 for a fixed

𝑚 renders these attacks more difficult. The Unbalanced Oil and

Vinegar scheme follows this principle and uses 𝑛 = 3𝑚 to prevent

the recovery of the oil space.

To understand how this information helps to generate the sig-

nature, the polar form of quadratic polynomials is needed. Every

homogeneous multivariate quadratic polynomial has an associated

symmetric and bilinear form 𝑝 ′(x, y) = 𝑝 (x + y) − 𝑝 (x) − 𝑝 (y).
Similarly, the polar form of a multivariate quadratic polynomial

map consisting of𝑚 polynomials is defined as

𝑃 ′(x, y) = 𝑃 (x + y) − 𝑃 (x) − 𝑃 (y) . (5)

Given a target t ∈ F𝑚𝑞 , one selects a vector v ∈ F𝑛𝑞 and solves

𝑃 (v + o) = t for o ∈ 𝑂 . From Eq. 5, it follows that

𝑃 (v + o) = 𝑃 (v) + 𝑃 (o) + 𝑃 ′(v, o) = t. (6)

Since 𝑃 (v) is fixed and due to Eq. 4, only the linear system 𝑃 ′(v, o) =
t − 𝑃 (v) remains to be solved for o and the signature is computed

via s = v + o. The security of the signature algorithm is based

on the MQ problem, which is considered NP-hard if 𝑛 ∼ 𝑚, even

for quantum computers [4]. However, the Oil and Vinegar scheme

suffers from large public key sizes in the order of 50 kB, which

limits the use case as a practical signing algorithm.

2.4 MAYO Signature Algorithm

In this section, we give a short description of the MAYO scheme.

The description and notation is adapted from [4] according to the

latest specifications described in [5]. Readers may refer to [4, 5] for

more details. MAYO modifies the original Oil and Vinegar scheme

to tackle the problem of large key sizes. The design philosophy is

closely related to UOV and follows the same principles. Its security

is also based on the MQ problem, and signatures are preimages of

the hashed message under a multivariate quadratic map. The key

generation, signing, and signature verification are similar to those

of Oil and Vinegar. The main difference lies in the choice of the

oil space dimension. MAYO uses an oil space that is too small for

the original scheme. Since the oil space is hidden in F𝑛𝑞 , the smaller

its size, the harder a search for it. Thus, the other parameter can

be reduced without compromising the scheme’s security. However,

this change renders the signature sampling impossible in most

cases using the Oil and Vinegar algorithm. As a solution to the

problem, MAYO uses a whipping mechanism, which transforms

the multivariate quadratic map 𝑃 : F𝑛𝑞 → F𝑚𝑞 into a larger map

𝑃∗ : F𝑘𝑛𝑞 → F𝑚𝑞 . This construction allows for a smaller oil space and

significantly reduces the key size. Before we explain the whipping

construction in detail, we need to examine why the dimension of

the oil space is the determining factor in the size of the public key.

Conference’24, October 2024, State, Country Hirner, Streibl, Krieger, Mert, Roy

2.4.1 Public Key Size. The public key in theOil andVinegar scheme

is the multivariate quadratic map 𝑃 consisting of𝑚 multivariate

quadratic polynomials in 𝑛 variables. Thus, the memory require-

ment for storing 𝑃 is𝑚𝑛2 log𝑞 due to the upper triangular matrix

form of a polynomial defined in Eq. 3. Petzoldt et al. [20] showed
that P(1)

𝑖
∈ F(𝑛−𝑜)×(𝑛−𝑜)𝑞 and P(2)

𝑖
∈ F(𝑛−𝑜)×𝑜𝑞 can be generated

pseudo randomly and, as a result, only P(3)
𝑖
∈ F𝑜×𝑜𝑞 needs to be

stored as public key. This method reduces the key size to𝑚𝑜2 log𝑞.

However, the original Oil and Vinegar scheme requires 𝑜 to be at

least as large as𝑚, otherwise the linear system obtained from Eq. 6

is unsolvable with high probability. The MAYO scheme proposes a

novel whipping technique to allow a further reduction of the public

key by reducing the dimension of the oil space.

2.4.2 Whipping Technique. As mentioned in Section 2.4, MAYO

transforms 𝑃 up into a larger map 𝑃∗. This whipping transformation

must have the property that if 𝑃 vanishes on a subspace 𝑂 ⊂ F𝑛𝑞
then 𝑃∗ needs to vanish on 𝑂𝑘 ⊂ F𝑘𝑛𝑞 , where 𝑘 is the whipping

parameter which controls the size of the oil space with 𝑜 = ⌈𝑚/𝑘⌉.
The concrete whipping operation is defined as

𝑃∗ (x1, . . . , x𝑘) =
𝑘∑
𝑖=1

E𝑖𝑖𝑃 (x𝑖) +
𝑘∑
𝑖=1

𝑘∑
𝑗=𝑖+1

E𝑖 𝑗𝑃 ′(x𝑖 , x𝑗) . (7)

The matrices E𝑖 𝑗 ∈ F𝑚×𝑚𝑞 are the so-called emulsifier maps and

fundamental for the security of the whipping technique. These

emulsifier maps are described in-detail in Sec.2.5. Further, the sig-

nature of MAYO can be sampled similar to Eq. 6 of UOV by solving

the linear system of Eq. 8

𝑃∗ (v1 + o1, . . . , v𝑘 + o𝑘) = t, (8)

which has𝑚 equations in 𝑘𝑜 variables.

2.4.3 Scheme Description. In this section, we briefly describe the

key generation, signature generation and signature verification

algorithms of MAYO.

Key Generation: To generate a key-pair, a randomly-generated

seed is expanded and its output is used as matrix O ∈ F(𝑛−𝑜)×𝑜𝑞 . O
is the secret key and the according oil space 𝑂 is the rowspace of

(O⊤I𝑜), where I𝑜 denotes the identity matrix of size 𝑜 . As described

in Eq. 4, the multivariate quadratic map 𝑃 must vanish on 𝑂 . Thus,

a polynomial 𝑝𝑖 (x) of 𝑃 has to fulfill

(O⊤I𝑜)
(
P(1)
𝑖

P(2)
𝑖

0 P(3)
𝑖

)
(O⊤I𝑜)⊤ = 0. (9)

Therefore, it is possible to generate P(1)
𝑖

and P(2)
𝑖

pseudo-randomly

from a seed and set P(3)
𝑖

to Upper(O⊤P(1)
𝑖

O + O⊤P(2)
𝑖
), where

Upper(·) is defined as Upper(M𝑖𝑖) = M𝑖𝑖 and Upper(M𝑖 𝑗) = M𝑖 𝑗 +
M𝑗𝑖 for 𝑖 < 𝑗 . Generating large parts of the matrices pseudo-

randomly enables the significant key size reduction since we do

not need to store the whole key information. Instead we generate

parts of the public and private key based on the respective seed.

In case of private key we now only need to store the private seed

while the public key consists of public seed and P(3)
𝑖

. Additionally,

the whipping transformation described in Section 2.4.2 reduced the

size of P(3)
𝑖

from𝑚 ×𝑚 to 𝑜 × 𝑜 .

Signature Generation: To compute a signature of a message

𝑀 , a random salt is generated and the digest t = 𝐻 (𝑀 | |𝑠𝑎𝑙𝑡) is
computed. Afterwards, one chooses vectors (v1, . . . v𝑘) randomly

and solves the linear system for (o1, . . . o𝑘) as shown in Eq. 8. As

described by Beullens et al. [5], the last 𝑜 entries of v𝑖 can be set to

0 without affecting the distribution of the signing output. Thus, one

generates ṽ𝑖 ∈ F(𝑛−𝑜)𝑞 randomly and sets v𝑖 to (ṽ𝑖 , 0). As a result
of this choice, only P(1)

𝑖
is needed for the signature computation.

Similar to Eq. 6, the oil space trapdoor information enables the

partition of Eq. 8 into a constant and a linear part, which leads to

𝑃∗ (v1 + o1, . . . , v𝑘 + o𝑘) =
𝑘∑
𝑖=1

E𝑖𝑖𝑃 (v𝑖 + o𝑖) (constant)

+
𝑘∑
𝑖=1

𝑘∑
𝑗=𝑖+1

E𝑖 𝑗𝑃 ′(v𝑖 + o𝑖 , v𝑗 + o𝑗) (linear) = t.

(10)

The constant part can be calculated using

𝑝𝑖 (v𝑘) = ṽ𝑘
⊤P(1)

𝑖
ṽ𝑘 ,

𝑝 ′𝑖 (v𝑘 , v𝑙) = ṽ𝑘
⊤P(1)

𝑖
ṽ𝑙 + ṽ𝑙⊤P

(1)
𝑖

ṽ𝑘 .
(11)

For the computation of the linear part, the evaluation of the linear

transformation 𝑃 ′(v𝑘 , ·) has to be carried out. To achieve that, the

matrix representation of the linear transformation can be used,

which is defined as

L𝑖 = (P(1)𝑖
+ P(1)

𝑖

⊤
)O + P(2)

𝑖
. (12)

Then, each component 𝑝 ′
𝑖
(v𝑘 , ·) of 𝑃 ′ is defined as ṽ𝑘⊤L𝑖 . Applying

Eq. 11 and Eq. 12 to Eq. 10 results in the augmented matrix which

needs to be solved for o𝑖 to compute the signature. The linear

system can be solved using one of the many available algorithms,

e.g., Gaussian elimination.

Signature Verification: Given a message 𝑀 and a signature

(𝑠𝑎𝑙𝑡 | |s1, . . . , s𝑘), only the digest t̃ = 𝐻 (𝑀 | |salt) is obtained and

the whipped up map 𝑃∗ (s1, . . . , s𝑘) = t is evaluated. If t = t̃, the
signature is accepted, otherwise rejected.

2.5 Emulsifier maps

One vital component of the MAYO signature scheme is the so-called

emulsifier maps E ∈ F𝑚×𝑚𝑞 . Their usage is the main difference to

the original Oil and Vinegar algorithm and the reason for the com-

pact public key size. E corresponds to a multiplication by 𝑧 in a

finite field F𝑞 [𝑧]/𝑓 (𝑧) and they are used in computations of the

form E𝑙u, where u denotes a vector of length𝑚 and 𝑙 takes values

from 0 to
𝑘 (𝑘+1)

2
− 1. However, instead of computing the matrix

multiplications explicitly, it is more efficient, especially regarding

memory access limits in hardware, to interpret u as single polyno-

mial and perform the reduction mod 𝑓 (𝑧) once, which resembles

a multiplication in the finite field GF((24)𝑚). Similar to the finite

field described in Section 2.1, elements of GF((24)𝑚) can be repre-

sented as a polynomial, however, this time of degree𝑚−1 and with
coefficients in GF(24). Therefore, 𝑎 ∈ GF((24)𝑚) is of the form

𝑎 = 𝑎𝑚−1𝑧𝑚−1 + 𝑎𝑚−2𝑧𝑚−2 + · · · + 𝑎1𝑧 + 𝑎0 . (13)

The emulsifier map E now represents a multiplication by 𝑧. Ana-

log to field multiplication in GF((24)𝑚), we need to reduce the

Whipping the Multivariate-based MAYO Signature Scheme using Hardware Platforms Conference’24, October 2024, State, Country

Table 1: P𝑖 matrix sizes for different NIST security levels

Matrix MAYO1 MAYO3 MAYO5

P(1)
𝑖

58 × 58 89 × 89 121 × 121
P(2)
𝑖

58 × 8 89 × 10 121 × 12
P(3)
𝑖

8 × 8 10 × 10 12 × 12
P𝑖 66 × 66 99 × 99 133 × 133

resulting polynomial, to receive a valid GF((24)𝑚) element again.

In this case, the reduction polynomial is 𝑧64 +8𝑧3 +2𝑧2 +8. To apply
E to a vector a, we interpret a as polynomial of the form seen in

Eq. 13, and perform the following computations:

𝑏 = E𝑎, with 𝑏𝑖 = 𝑎𝑖−1 for 𝑖 ∉ {0, 2, 3}.
𝑏0 = 8𝑎𝑚−1, 𝑏2 = 2𝑎𝑚−1 + 𝑎1 𝑏3 = 8𝑎𝑚−1 + 𝑎2

(14)

It is important to note that the additions and multiplications in

Eq. 14 are GF(24) operations. This approach blends well with our

packed format described in Section 4.3, as we are able to load𝑚

values and, therefore, a whole GF((24)𝑚) element in one cycle in

hardware. To evaluate E𝑙u, we perform this computation 𝑙 times.

3 OPTIMIZATION STRATEGIES

This section presents several high-level optimizations to improve

MAYO’s performance and memory consumption on hardware.

3.1 On-the-fly Coefficient Generation

The P𝑖∈𝑚 matrices are the fundamental building block of the MAYO

scheme. MAYO splits each P𝑖 matrix into three sub-matrices P(1)
𝑖

,

P(2)
𝑖

, and P(3)
𝑖

as shown in Eq. 3. Table 1 shows the dimension of

the P𝑖 and its sub-matrices for NIST security levels 1 (MAYO1), 3

(MAYO3), and 5 (MAYO5). The table indicates the large size of the

P𝑖 matrices which lead to a high memory consumption making

it an important aspect in the designing stage. Let us consider the

smallest level MAYO1 with parameters (𝑛 = 66;𝑚 = 64;𝑜 = 8;𝑘 =

9;𝑞 = 16) as an example to give an impression of the total memory

consumption. There are𝑚 P𝑖 matrices each with size 𝑛 × 𝑛 leading

to a total of (𝑛 × 𝑛) ×𝑚 = 278, 784 elements. Each matrix element

is in GF(24) and we need 4 bit to represent each element, leading

to 136 kB that would need to be stored in memory. We optimize the

efficiency of our design by reducing the memory consumption of

each P𝑖 from 𝑛 × 𝑛 elements to just 𝑜 × 𝑜 elements. This is possible

since the coefficients of the P(1)
𝑖

and P(2)
𝑖

matrices can be generated

pseudo-randomly based on the public seed. To be precise, every time

some P(1)
𝑖

or P(2)
𝑖

matrix is needed in an operation, it is possible

to generate the matrix element instead of retrieving their elements

from on-chip storage. Thus, it is only required to store the P(3)
𝑖

matrices. This measure reduces the overall memory demand while

not affecting the performance.

3.2 Parallel Matrix Column Multiplication

Generating the coefficient of P(1)
𝑖

and P(2)
𝑖

on the fly significantly

reduces the memory usage. However, it still allows us to carry out

the matrix multiplications efficiently. Matrix multiplication can be

broken down into several vector-vector multiplications, as shown

in Eq. 15. Each row vector of matrix A is multiplied with each

column vector of matrix B in a multiply-and-accumulate (MAC)

fashion. Every vector-vector multiplication obtains one element of

the result matrix C.(
𝑎0 𝑎1 𝑎2
𝑎3 𝑎4 𝑎5

)
︸ ︷︷ ︸

A

× ©­«
𝑏0 𝑏1
𝑏2 𝑏3
𝑏4 𝑏5

ª®¬︸ ︷︷ ︸
B

=

(
𝑐0 𝑐1
𝑐2 𝑐3

)
︸ ︷︷ ︸

C

(15)

The elements sharing the same color can be multiplied in parallel.

Therefore, we can parallelize the multiplication of one left-hand

coefficient (f.e. 𝑎0) with the according row coefficients (𝑏0 and 𝑏1)

of the right-hand side. To take advantage of this observation, we

instantiate as manyMAC units as there are columns in B. In the case
of MAYO, the number of columns is fixed to 𝑘 , meaning that either

9, 11, or 12 units are needed depending on the security level. This

optimization reduces the latency of these operations by a factor of

𝑘 .

3.3 Parallelizing Computation of L𝑖
The on-the-fly generation of the P(1)

𝑖
matrices demands proper

treatment in various locations of MAYO. One such location is the

Mayo.ExpandSK() operation, shown in Eq. 16. The shown addition

of P(1)
𝑖

and P(1)
𝑖

⊤
is not easily possible since we generate the P(1)

𝑖
matrix in a row-wise manner to simplify on-demand seed expan-

sion. The row-wise generation affects the computation of L𝑖 in
Mayo.ExpandSK() (Step 17 of Algorithm 6 of [5]). Hence, we adapt

the computation of L𝑖 as shown in Eq. 16.

L𝑖 = (P(1)𝑖
+ P(1)

𝑖

⊤
)O + P(2)

𝑖
= P(1)

𝑖
O︸︷︷︸

MAC

+ P(1)
𝑖

⊤
O︸ ︷︷ ︸

BMAC

+P(2)
𝑖

. (16)

We can see that two matrix multiplications are involved in our

adapted computation. The left operands of each multiplication P(1)
𝑖

and P(1)
𝑖

⊤
are generated pseudo-randomly. The row-wise gener-

ation is exactly the required order for a straightforward matrix-

matrix multiplication as discussed in Sec. 3.2. Thus, we use a simple

multiply and accumulate (MAC) unit for this computation. Yet, the

row-wise generation order of P(1)
𝑖

corresponds to a column-wise

generation of P(1)
𝑖

⊤
, which hinders a straightforward matrix-matrix

multiplication in the second multiplication. The following examples

in Eq. 17 and Eq. 18 give an impression of this limitation and present

our adapted algorithm to solve this challenge. We consider a simple

matrix-vector multiplication of P and o where P is generated in a

row-wise manner.

u = Po =
©­«
𝑝1,1 𝑝1,2
𝑝2,1 𝑝2,2
𝑝3,1 𝑝3,2

ª®¬ ©­«
𝑜1
𝑜2
𝑜3

ª®¬ =
©­«
𝑝1,1𝑜1 + 𝑝1,2𝑜1
𝑝2,1𝑜2 + 𝑝2,2𝑜2
𝑝3,1𝑜3 + 𝑝3,2𝑜3

ª®¬ . (17)

Eq. 17 shows a standard matrix multiplication of Po. We obtain

one element of the resulting vector u after consuming one full row

of P and the column of o, as shown in Eq. 17. Hence, we accumulate

the computations colored in red inside aMAC unit until all elements

of the respective row of P are consumed. This procedure is repeated

Conference’24, October 2024, State, Country Hirner, Streibl, Krieger, Mert, Roy

Figure 1: Overview of our high-speed architecture and its sub-modules

for each row in P (colored blue and orange).

v = P⊤o =
©­«
𝑝1,1 𝑝2,1
𝑝1,2 𝑝2,2
𝑝1,3 𝑝2,3

ª®¬ ©­«
𝑜1
𝑜2
𝑜3

ª®¬ =
©­«
𝑝1,1𝑜1 + 𝑝2,1𝑜2
𝑝1,2𝑜1 + 𝑝2,2𝑜2
𝑝1,3𝑜1 + 𝑝2,3𝑜2

ª®¬ . (18)

Eq. 18 shows a similar matrix multiplication just with transposed

P⊤ as the first operand. Yet, we cannot simply use the same MAC

unit as in the previous case since the required elements for com-

puting one element of v are no longer generated directly after each

other. Therefore, we have to store the intermediate MAC results for

each element of v in memory and retrieve them again for MAC-ing

the following generated coefficients to carry out the accumulation.

This approach referred to as BMAC enables us to compute the

transposed matrix multiplication while maintaining the row-wise

generation order of P(1)
𝑖

through the computations.

Our presented BMAC approach is extendable to matrix-matrix

multiplications. Each column vector of the right-hand side operand

is processed in parallel by one dedicated BMAC unit, as discussed

in Sec. 3.2. We apply this optimization to the computation of P(1)
𝑖

O

and P(1)
𝑖

⊤
O within the Mayo.ExpandSK() function. Additionally, it

is possible to parallelize the calculation of P(1)
𝑖

O and P(1)
𝑖

⊤
O. Both

MAC and BMAC operations take the same elements of P(1)
𝑖

and O
as input during the matrix multiplications.

3.4 Block Matrix Multiplication during

Signature Verification

In the signature verification, we need to compute line 7 in Alg. 5

Mayo.Verify(). Due to the optimization described in Section 3.1,

it is not possible to perform the matrix multiplication using the

standard approach as the elements of P(2)
𝑖

are generated after P(1)
𝑖

,

when Aes128 is used as pseudo-random function. Therefore, we

apply a block matrix multiplication to line 7 in Alg. 5 Mayo.Verify()

to calculate the results of P(1)
𝑖

, P(2)
𝑖

, and P(3)
𝑖

individually. After-

ward, we combine the intermediate results accordingly using vector

addition. Thus, only the intermediate results of the multiplication

P𝑖s𝑖 need to be stored, which are much smaller than the Pmatrices.

4 THE PROPOSED HARDWARE

This section explains the proposed hardware architecture and the

main arithmetic blocks in a bottom-up fashion. We start with the

overall design of our architecture to give an overview. Then, we

present our pseudo-random data sampling, arithmetical units, mem-

ory management, and transpose units.

4.1 Overall Design of Processor

This section shows how we combine all the components into one

core. The overall architecture of the core is shown in Fig. 1. The

right side of Fig. 1 shows the arithmetical block unit discussed in

Sec. 4.4. It instantiates 𝑘 many GF(16) ALUs, to allow a parallel

computation of O, v, and s. This parallel processing requires a total
of 𝑘 many memory banks, one for each GF(16) ALU. These memory

banks are part of the Memory Wrapper discussed in Sec. 4.3, as

shown in the bottom of Fig. 1. The Memory Access Controller is

responsible for the data transfer between ALU, Memory Wrapper,

and all other units. All of the other supplementary units required

for MAYO are shown on the left. All of the units within the core are

controlled via the Control Logic. The control logic uses a Finite-

State-Machine (FSM) approach to run the subroutines of MAYO,

namely key generation, secret key expansion, signature generation,

public key expansion, and signature generation by reusing the same

compute units, as shown in Fig.1. The FSM is already designed to

be easily replaceable with an instruction-set architecture (ISA) to

allow fast adaption to possible changes in the scheme.

4.2 Hashing and Pseudo-Random Data

In the latest specifications of MAYO [5], Shake256 is used for hash-

ing and Aes128 in counter mode to generate data from a public

seed. An analysis of the MAYO software implementation shows

that only a small time-share of the execution is spent on hashing

via Shake256. However, the major time-share is spent on pseudo-

random data sampling via Aes128. The sampling based on Aes128

in software benefits from the Aes-NI instruction-set extension [1].

The Aes-NI instructions invoke a built-in hardware accelerator

for Aes on high-end CPUs. This accelerates the major share of

pseudo-random data sampling in MAYO.

There are two approaches to implement Aes128 in counter mode.

One can use either an iterative or a fully pipelined unrolled ap-

proach [26]. We will refer to the iterative approach as Aes128-R

and to the fully pipelined unrolled one as Aes128-P through the

rest of the paper. The iterative approach (Aes128-R) instantiates

one full Aes round function that is iterated multiple times to per-

form one whole encryption. The advantage of this approach is the

low area utilization since modules, like SubBytes(), ShiftRows(),

MixColumns(), and AddRoundKey(), are reused multiple times.

Whipping the Multivariate-based MAYO Signature Scheme using Hardware Platforms Conference’24, October 2024, State, Country

Table 2: Latency of pseudo-random sampling of P(1)
𝑖

and P(2)
𝑖

via iterative and fully unrolled Aes128

Sec. Level Matrix Elements Aes128-R (cc) Aes128-P (cc)

MAYO1 P(1)
𝑖

/ P(2)
𝑖

1,711 / 464 22,243 / 6,043 1,722 / 475

MAYO3 P(1)
𝑖

/ P(2)
𝑖

4,005 / 890 52,065 / 11,581 4,016 / 902

MAYO5 P(1)
𝑖

/ P(2)
𝑖

7,381 / 1,452 95,953 / 18,786 7,392 / 1,464

The main disadvantage of Aes128-R is the lower throughput as

each encryption occupies the hardware instance completely. In our

architecture, the Aes128-R requires around 1.2k LUTs, 600 FFs, and

outputs 128 encrypted bits after 12 cycles.In contrast to the itera-

tive approach, the pipelined and fully unrolled approach (Aes128-P)

gives high throughput but causes high resource consumption. Com-

pared to the Aes128-R, Aes128-P consumes around 10k LUTs, 6k

FFs, and delivers 128 bits in each cycle after filling the pipeline.

In MAYO, Aes128 is mainly responsible for generating the two

matrices P(1)
𝑖

and P(2)
𝑖

. The size of these two matrices depends on

the selected NIST security level, which is either 1, 3, or 5. In case

of the P(1)
𝑖

matrix, its size is either 1711, 4005, or 7381 elements

while the size of P(2)
𝑖

is either 464, 890, or 1452 for each respective

security level. It is possible to calculate the amount of time it takes

to generate these matrices by using the equation ⌈𝑠𝑚 ·𝑠𝑒/𝑟⌉ ·𝑙 , where
𝑠𝑚 , 𝑠𝑒 , 𝑟 , and 𝑙 represents the size of the matrix, size of each element,

the bit-rate, and the latency of the bit-rate of each generation cycle.

Note that the bit-rate for Aes128 is 128 bit per 12 cycles in Aes128-R

and 128 bit per cycle in Aes128-P once the pipeline is filled. Table 2

shows the total latency that both approaches require for sampling.

Comparing the latency shows that Aes128-P is around 12× to 13×
faster than Aes128-R while requiring around 9× more resources.

Note, that we use 𝑛 = 𝑤𝑜𝑟𝑑𝑠𝑖𝑧𝑒/128b many Aes cores for each

security level, where the𝑤𝑜𝑟𝑑𝑠𝑖𝑧𝑒 is either 256b, 384b, or 512b.

4.3 Organization of On-Chip Memory

One key factor of an efficient hardware implementation is a well-

designed memory layout. A major factor of our memory layout

is that it needs to support fast loading of relevant elements since

the MAYO scheme mainly consists of matrix and vector operations.

These operations are either performed on packed or unpacked data,

explained as follows:

(1) Unpacked: One memory location of a BRAM stores a whole

vector v or a row of the matrixA, marked in orange in Fig. 2a.

This format is used when computing the matrix A that is

used in Mayo.Sign() as well as in SampleSolution() and

EF(). This allows us to load a whole row within a single load

cycle.

(2) Packed: One memory location of a BRAM stores𝑚 elements

(𝑝𝑖,(𝑥,𝑦)) for 𝑖 = 1...𝑚, marked in orange in Fig. 2b. The

elements (𝑝𝑖,(𝑥,𝑦)) is the (𝑥,𝑦)-th coefficient of the matrix

P𝑖∈𝑚 . The packed memory format is used each time a matrix

in the form P𝑖 is involved. This means that loading one

BRAM location gives us𝑚 elements with the same indices

from𝑚 different matrices.

The𝑚 multivariate quadratic polynomials operate on input val-

ues with the same indices, as shown in Fig. 2b. Therefore, we simply

Figure 2: Overview of packed and unpackedmemory format

Figure 3: Memory grid layout of our MAYO1 core

pack all the𝑚 different matrix elements with the same index into

one BRAM entry as they share the same input value. Thus, the

packed format allows us to efficiently load and evaluate the 𝑚

different polynomials in parallel. Consequently, all vectors and ma-

trices to the multivariate quadratic map are stored in the packed

format, while the remaining are stored as unpacked.

Our parametric Memory Wrapper design is shown in Fig. 3, for

its configuration in security level 1. The architecture of our core

consists of an I/O Buffer and the actual Memory Wrapper. The

memory wrapper contains a total of 𝑘 + 1 many memory banks

(𝑀𝐸𝑀𝑖∈(𝑘+1)), which are responsible for storing our packed and

unpacked data during the operations in MAYO. One memory loca-

tion of each memory bank is spread over the vertically arranged

BRAMS, as marked in red. This memory location stores either data

in packed or unpacked form as described in the listing above. We

split the memory bank into two regions marked in yellow and or-

ange, as shown in Fig. 3. The two memory banks𝑀𝐸𝑀1 and𝑀𝐸𝑀2

in the yellow region have a different word size. This is caused by

the fact that it can store both packed and unpacked data. The word

size of the packed data is 256b, which results from the size of an

element in the GF(24) field and the number of𝑚 elements used in

P𝑖∈𝑚 . Yet, the unpacked data requires a word size of 292b instead of

256b, which is used to store a whole row of a matrix A ∈ F𝑚×𝑘𝑜+1𝑞 .

The orange region on the right size of Fig. 3 supports a word size

of 256b to store only packed data. In addition to that, the number

of memory banks within this region depends on the parameter 𝑘

of the chosen security level.

4.3.1 Parallel Computation using our Memory Layout. The de-

scribed memory structure allows for the full parallel computation

of various operations. These operations include matrix-vector and

vector-vector multiplication, which are parallelized over the pa-

rameters 𝑘 and 𝑜 respectively, as explained in Sec 3.2. To give an

example of the parallelization, we consider the computation of u
during Mayo.Sign() (Line 14 in Alg. 3). We can simultaneously per-

form the 𝑘 computations of P(1)𝑎 v0, P
(1)
𝑎 v1, . . ., P

(1)
𝑎 v𝑘−1 through

our dedicated memory structure. Here, each𝑀𝐸𝑀
3...𝑘+1 memory

stores the data of a single v𝑖 vector to allow parallel computation

Conference’24, October 2024, State, Country Hirner, Streibl, Krieger, Mert, Roy

of all v𝑖 . Note that the operands involved in such parallel compu-

tations are either O, s𝑖 , v𝑖 , L𝑖 , P
(1)
𝑎 v𝑖 , P𝑎s𝑖 , etc. The sizes of these

operands are between 𝑛 − 𝑜 and 𝑛 elements. Therefore, the mem-

ory banks𝑀𝐸𝑀
3...𝑘+1 need a depth of𝑚𝑎𝑥 (𝑛, 𝑛 − 𝑜) = 𝑛 elements

to store the required data. This leads to a depth of 𝑛 = 66 when

considering MAYO1 security level.

4.3.2 Memory Consumption. Table 1 shows the memory consump-

tion of P𝑖 , P
(1)
𝑖

, P(2)
𝑖

, P(3)
𝑖

, and L𝑖 for MAYO1. Not taking advantage

of the upper triangular form of the P𝑖 matrix would require a total

of 136.125 kB. Under consideration of the upper triangular form, the

memory demand for P𝑖 reduces to 69.094 kB. However, our archi-

tecture only stores P(3)
𝑖

and L𝑖 in memory. The other components

P(1)
𝑖

and P(2)
𝑖

are generated on-the-fly, as discussed in Sec. 3.1.

The optimizations mentioned above, combined with the cus-

tomized memory layout discussed in Sec.4.3, result in reduced

BRAM consumption. Specifically, for MAYO1, the required number

of BRAM36K units can be calculated as 1+2·4.5+(𝑘−1)·4+3.5 = 45.5.

As illustrated in Fig.3, one BRAM36K unit is designated as an IO

Buffer, while 2 ·4.5+ (𝑘−1) ·4 = 41 BRAM36K units are allocated for

parallel computation to supply the ALU, as elaborated in Sec. 4.3.1.

Additionally, 3.5 BRAM36K units are utilized to cache the oil space

and vinegar maps. Thus, the total on-chip memory requirement for

MAYO1 amounts to 45.5 BRAM36K units.

The memory blocks 𝑀𝐸𝑀
3...𝑘+1 marked orange in Fig. 3 use a

depth of𝑚𝑎𝑥 (𝑛, 𝑛 − 𝑜) = 𝑛 elements. This is due to the utilization

of these BRAMs for temporal values like P(1)𝑎 v𝑖 and P𝑎s𝑖 . As, the
FPGA platform provides BRAMs with a fixed depth of 512 words

only, 512−𝑛 memory locations remain unused. In contrast, on ASIC

we reduce the memory requirement to a depth of 𝑛 by utilizing

memories with a finer granularity. This allows us to save memory

in the 𝑘 − 1 memory units in ASIC compared to FPGA.

4.3.3 Transpose of Packed and Unpacked Matrix. Our architecture
needs to support two different types of transpose operation due to

the packed and unpacked data format. Transposing data in packed

format is trivial since it only requires swapping the data at certain

indexes inside a BRAM. Meaning that we need to load an element

𝑎 from index 𝑖𝑎 and another element 𝑏 from index 𝑖𝑏 and store 𝑎 on

index 𝑖𝑏 and 𝑏 on index 𝑖𝑎 . This indicates that a transpose operation

on packed data is relatively simple.

A transpose operation on an unpacked data format is more com-

plex since the data of a matrix is stored differently. Compared to

the packed format that stores each element in a separate BRAM

slot the unpacked format stores all elements of a row in one slot.

This allows us to load and store a whole row of an unpacked matrix

in one cycle. However, a transposing operation on unpacked data is

much more complex, since we need to split a row into its elements

and store these elements at different addresses of the BRAM. This

spreading of data to different memory slots leads to a longer latency

during the store operation. The logic for the store operation needs

to compensate that each element of the matrix is a small chunk of

4 bit data. This 4 bit chunk needs to be written into a specific part

of a memory slot of our memory bank, while the remaining data of

the memory slot needs to be preserved. In the case of security level

1, each memory element has a size of 292 bit which means that 4

Figure 4: Example of the transpose operation with 𝜏 = 2

bits at a certain location need to be updated as the remaining 288

bits stay the same.

We developed a scaleable method to transpose an unpacked

matrix in a pipelined fashion. This method uses three modules

to load, transpose, and store data of a given unpacked matrix A.
The parametric transpose module instantiates 𝜏 many parallel shift

registers which allows tuning the throughput of the transpose unit

depending on 𝜏 . The following will explain the transpose operation

on a matrixAwith the dimensions 73×64 as used in security level 1.
The number of parallel shift registers in this example is 𝜏 = 2. Fig. 4

shows the data flow during the transpose operation. The matrix A
is stored in a row-wise manner in 𝑀𝐸𝑀1 (green) and the goal is to

get the transpose A⊤ into𝑀𝐸𝑀2 (orange). The load logic iterates

through𝑀𝐸𝑀1 to load each row of matrix A. It then selects 𝜏 = 2

elements of the loaded row depending on the currently targeted

row of A⊤. This means that in the first iteration, 𝑎0,0 and 𝑎0,1 are

selected from the first row of A and forwarded to the shift register.

This is repeated for all rows in A which fully fills the shift registers.

Hence, after the first iteration over all rows of A, Shift Register 0

will store (𝑎0,0, 𝑎1,0, 𝑎2,0, ..., 𝑎72,0) while Shift Register 1 will store

(𝑎0,1, 𝑎1,1, 𝑎2,1, ..., 𝑎72,1), as shown on top of Fig. 4. This behavior

mimics a transpose of the first 𝜏 = 2 columns of A and gives us the

first 𝜏 = 2 rows of A⊤ which are stored to𝑀𝐸𝑀2. This procedure

is repeated until all columns of A are handled which yields the

transposed matrix A⊤ in𝑀𝐸𝑀2.

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = ⌈#𝑟𝑜𝑤𝑠/𝜏⌉ × #𝑐𝑜𝑙𝑢𝑚𝑛𝑠 (19)

Note, that the number of parallel running shift registers 𝜏 can be

changed freely by adapting a parameter within our design. This

number directly influences the latency of the operation as well as

the resource utilization, as shown in Eq. 19 This means that a lower

𝜏 will result in a high latency and low flip-flop utilization while a

higher 𝜏 will decrease the latency and increase the total number of

required flip-flops. This allows us to flexibly adapt the transpose

unit depending on the available resources in hardware.

Whipping the Multivariate-based MAYO Signature Scheme using Hardware Platforms Conference’24, October 2024, State, Country

Figure 5: Scheduling overview of computation loop to compute y of MAYO.Sign()

4.4 Arithmetic Units

The MAYO scheme operates on the finite field GF(24). The field
GF(24) defines the addition and multiplication operations, as de-

scribed in Sec. 2.1. Our design needs to support these operations

in hardware and uses them for more advanced operations like

multiply-accumulate. In addition to this, we also need to support

reduction in GF((24)𝑚) as described in Sec. 2.5. We first explain

addition, subtraction, and multiplication operations on the finite

field of GF(24). These can be done via a combination of bitwise

AND and XOR operations. Second, we show how all functionalities

of the MAYO scheme can be implemented by using the basic build-

ing blocks of field addition and multiplication. As an example, the

MAYO schemes requires a accumulation operation during vector

or matrix multiplications. This accumulation can be done by com-

bining a multiplication and addition with a accumulator register.

The architecture of our ALU-Block is shown in the center of Fig. 1.

It consists of 𝑘 many instances of our arithmetical units (GF(16)

ALU𝑖). The internal architecture of one GF(16) ALU is shown on the

right side in Fig. 1. The ALU contains the control logic and three

arithmetical units marked in grey. These three units are responsible

for addition, accumulation (MAC), and emulsification. Each of these

arithmetical units does not only process one GF(16) element but𝑚

elements concurrently. This allows us to compute on𝑚 elements

with the same indices from all𝑚 matrices P𝑖∈𝑚 in parallel.

5 SCHEDULING OF OPERATION

This section gives an overview of howwe schedule the computation

of each operation of Mayo within our architecture. The purpose

of this section is to show how the Mayo scheme benefits from our

optimizations when it comes to key generation, signature gener-

ation, and signature verification. Note that we include expansion

operations of secret and public key within sign and verification

respectively.

Key Generation: An algorithmic representation of the original

key generation operation is shown in Alg. 1. The main computation

happens in lines 2 and 3. First, both P(1)
𝑖

and P(2)
𝑖

are sampled via

the public seed 𝑠𝑒𝑒𝑑𝑝𝑘 . In the next step each sub-matrix of P(3)
𝑖

is

computed by line 4 : Upper(−(O𝑇 P(1)
𝑖

O + O𝑇 P(2)
𝑖
)). This compu-

tation consists of six sub-operations in total; three matrix-matrix

multiplications, one matrix-matrix addition, one negation, and one

upper triangulation operation. We can see that a multiplication

with O𝑇
happens twice, therefore, it can be reduced to just one

multiplication by pulling out the multiplication of O𝑇
. Hence the

computation of P(3)
𝑖

in line 4 changes to Upper(−O𝑇 (P(1)
𝑖

O+P(2)
𝑖
)).

This change from two to one matrix-matrix multiplication saves

a total of (𝑛 − 𝑜) (𝑜 · 𝑜 − 1) (𝑜 · 𝑜) operations. In addition to this,

we apply our parallel matrix column multiplication strategy that

operates on the whole O concurrently, as described in Sec. 3.2.

Expansion of Secret Key: TheMAYO scheme splits the compu-

tation of the signature into two operations, calledMayo.ExpandSK()

and Mayo.Sign(), shown in line 4 in Alg. 3. First, the expand func-

tion takes both public and private seeds and computes the matrix

representation of the linear part L𝑖 , defined as L𝑖 = (P(1)𝑖
+P(1)

𝑖

⊤
)O+

P(2)
𝑖

. Whereas L𝑖 is needed during evaluation of the linear transfor-

mation 𝑃 ′(v𝑘 , ·). Our on-the-fly data sampling via Aes128 makes it

challenging to compute L𝑖 since P
(1)
𝑖

and P(1)
𝑖

⊤
needs to be added.

This challenge is discussed in detail in Sec. 3.3. We use the described

adaption for computing L𝑖 by utilizing a combination of Mac and

Bmac. The Mac and Bmac operations allow us to perform both

computations in a pipelined manner without any transpose of P(1)
𝑖

.

The respective execution flow is as follows: (1) we generate one

row of P(1)
𝑖

via on-the-fly data sampling, (2) we perform a Mac

operation on this row of P(1)
𝑖

, which is followed by (3) a Bmac oper-

ation. This procedure (1-3) is repeated for all rows of P(1)
𝑖

. Finally,

all partial computation results are accumulated to yield L𝑖 .
SignatureComputation: TheMayo.Sign() function is used for

signature generation and follows Mayo.ExpandSK(). The function

follows Alg. 3. The MAYO.Sign() function needs to find a preimage

for a given hash t of the digestedmessage and a given salt. Obtaining

a preimage of t requires solving a linear system (Ax = y), which
is quite hard. The preimage is then used to generate the signature

according to Eq. 10. We split this process into five parts, namely

(1) deriving v and r, (2) calculating y, (3) calculating A, (4) check
if the resulting system of Ax = y is solvable, and (5) computing

the signature. These four steps are repeated as long as no solvable

equation system is found. In the first step, we derive v and r by
hashing a combination of𝑀𝑑𝑖𝑔𝑒𝑠𝑡 , salt 𝑠𝑎𝑙𝑡 , secret key 𝑠𝑒𝑒𝑑𝑠𝑘 , and a

Conference’24, October 2024, State, Country Hirner, Streibl, Krieger, Mert, Roy

baseline OPT1 OPT2 OPT3 (n.a) OPT4 (n.a)
0

10

20

30

40

50

60

70

La
te

nc
y

in
 k

 c
yc

le
s

A = P1
i O

B = A + P2
i

C = BTO
P3

i = C + CT

(a) Mayo1.KeyGen

baseline OPT1 OPT2 OPT3 OPT4
0

100

200

300

400

500

La
te

nc
y

in
 k

 c
yc

le
s

ExpandSK()

u =
i = 0

k

j = k 1

i
E l vT

i P1
i vi

y =
i = 0

k

j = k 1

i
E l uij

SampleSolution()

sig =
i = 0

k
(vi * O||xi)

(b) Mayo1.Sign + Mayo1.ExpandSK

baseline OPT1 OPT2 OPT3 (n.a) OPT4
0

20
40
60
80

100
120
140
160

La
te

nc
y

in
 k

 c
yc

le
s

Pi + = P1
i vi

Pi + = P2
i vi

Pi + = P3
i vi

y =
i = 0

k

j = k 1

i
E l vT

i Pivi

(c) Mayo1.Verify + Mayo1.ExpandPK

Figure 6: Performance impact of our techniques in terms of overall latency (n.a. means not affected by this optimization).

counter 𝑐𝑡𝑟 via Shake256. This step corresponds to line 8 in Alg. 3.

The counter 𝑐𝑡𝑟 keeps track of the number of unsuccessful attempts

to find a preimage for t. The resulting v and r are stored in the

on-chip data cache to allow parallel computation, as explained in

Sec. 3.2. Second, we calculate y that is used as the right side of

the linear equation system Ax = y. The computation of y is done

in a nested loop, as in lines 13 to 16 in Alg. 3. We first perform a

precomputation of s𝑖 = P(1)
𝑖

v𝑖 which result is used in the following

nested loop computation. The main purpose of the precomputation

is to avoid repeating identical operations within the loop. After the

precomputation, we perform the computations within the nested

loop by fully unrolling the inner loop. Therefore, our Alu Block

uses up to 𝑘 many GF(16) ALUs. Each GF(16) ALU is responsible

for computing one of the 𝑖 − (𝑘 − 1) loop iterations in the inner

loop. Fig. 5 shows the unrolled data flow during the computation

of the innermost loop. It shows how u is computed in two phases

depending on values of the loop variables 𝑖 and 𝑗 , marked in green.

The following emulsification of E𝑙u and the accumulation of y
are marked orange and red respectively. The operation (3) of the

Mayo.Sign() is the computation of A. This step is very similar as

described above for computing y in step (2). The only difference is

that the procedure for computing y is repeated several times since

A is a matrix. After finishing both computations A and y, we move

on to step (4). This step uses SampleSolution() (Alg. 2) to check

whether the linear system is solvable. If the system is solvable, we

start computing the signature. Otherwise, we need to repeat all

steps (1-4) with an incremented counter Ctr. The probability that

the sampling of a solution fails is increasingly low, however, if it

happens the loop has to run again (step 1-4). In case the sampling

of a solution is successful, the computations can move to step (5) to

compute the signature by using the solution x that was calculated

in step (4).

Signature Verification: The Mayo.Verify() function is used

to verify whether a given signature in combination with a message

is valid. The steps in Mayo.Verify() is relatively similar to the

computation of y in Mayo.Sign(), as in Alg. 5 shows. Hence, we use

the same loop unrolling technique as in the signature generation

to accelerate the verification process. The main difference between

signing and verifying is in the pre-computation step. In contrast

to signing, which computes s𝑖 = P(1)
𝑖

v𝑖 , the verification needs to

compute w𝑖 = P𝑖s𝑖 . The P𝑖 matrix is a collection of P(1)
𝑖

, P(2)
𝑖

, and

P(3)
𝑖

. We split the computation of P𝑖s𝑖 into three blocks for each of

the sub-matrices as described in Sec. 3.4.

6 DETAILED ABLATION STUDY

This section analyses the effect of each of our optimization tech-

niques presented in Sec. 4 and discusses the impact on the overall

performance and memory usage. The analysis includes on-the-fly

coefficient generation, parallel multiplication, and other critical

methods for security level MAYO1 and Aes128-P. The impact of

these optimizations on the latency of Mayo.KeyGen, Mayo.Verify,

and Mayo.Sign is visually represented in Fig. 6a, Fig. 6b, and Fig. 6c,

respectively. The first bar of each diagram represents the baseline

implementation without any of our optimization techniques. The

following bars add one optimization per bar to illustrate the impact

of each optimization.

We first consider the on-the-fly coefficient generation method

(OPT1) as discussed in Sec. 4.2. This optimization reduces total

memory consumption and lowers latency. Without this technique,

memory consumption increases from 2KB to 130KB at the MAYO1

security level, with even higher demands at increased security

levels. Furthermore, state-of-the-art works [23] first generate data

like 𝑃 (1) , and store it in memory. Once all data is generated the

actual computation is started. In contrast to that, our approach

directly consumes the generated data which reduces the latency.

This latency reduction affects step 4 in key generation (Alg. 1), step

4 and 14 in sign (Alg. 3), and step 7 in verify (Alg. 5), as shown in

the OPT1 bars in Fig. 6.

The design of our memory structure (OPT2), explained in Sec. 4.3,

enables parallel read and write operations during computation.

Without this optimization, the low memory bandwidth would lead

to an under-utilization of our parallel GF16 ALU cores. All com-

putation steps of Alg. 1-5 are affected by this memory structure

that allows high parallelization. The impact of OPT2 is illustrated

in Fig. 6. The large difference between OPT1 and OPT2 in all three

operations shows the significant latency reduction enabled by this

optimized memory structure.

The signature generation requires a transpose operation of the A
matrix in line 4 and 8 of Alg. 4. Compared to state of the art works [7,

23] that use index based transposition, we choose a pipelined multi-

pass approach that operates on multiple columns simultaneous

due to the unpacked data format that is used to store the matrix

A in Alg. 2. Transpositing A is particularly challenging due to the

Whipping the Multivariate-based MAYO Signature Scheme using Hardware Platforms Conference’24, October 2024, State, Country

sub-byte granularity of the unpacked data, as explained in Sec. 4.3.3.

Our scalable and pipelined approach of the transpose operation

improves the efficiency and area utilization. The pipelined loading,

transposing, and storing of data minimize the latency of transpose

operations, as explained in detailed in Sec. 4.3.3. Fig. 6b shows the

impact of OPT3 on the performance of signature generation.

The partial-unrolling technique (OPT4) enhances the perfor-

mance of the emulsification process in line 15, 18 and 20 of Alg. 3

and line 8 of Alg. 5 by allowing existing arithmetic blocks to exe-

cute multiple iterations simultaneously (as described in Sec. 5). This

optimization reduces the required number of iterations from
𝑘 (𝑘+1)

2

to just 𝑘 for both signing and verification processes as illustrated

in Fig. 6b and 6c. Additionally, it conserves memory resources, as

data is processed immediately in subsequent operations, avoiding

unnecessary interaction with memory.

In conclusion, this detailed study in addition with Fig. 6a, Fig. 6b,

and Fig. 6c clearly demonstrate the substantial benefits of our opti-

mization techniques. These include drastic reductions in memory

usage, computational latency, and overall system overhead, under-

lining the importance of each method in achieving a highly efficient

hardware implementation.

7 EVALUATION AND RESULTS

In this section, we present the area and performance results of

our hardware architectures with round-based Aes128-R and fully-

unrolled Aes128-P seed expansions for different security levels

of MAYO. We implemented our design in SystemVerilog and syn-

thesized the ASIC design for 28nm technology. Furthermore, we

verified our MAYO accelerator by synthesizing, implementing, and

running it on FPGAs. For that, we used the Vivado 2022.2 tool and

targeted Artix7 (xc7a200t) and Kintex7 (xc7k410t) FPGAs. We chose

these FPGA platforms to allow a fair comparison to related works.

Related works [7, 23] present results for different Artix7 platforms.

However, our high-speed design forMAYO3 andMAYO5 does not fit

on the Artix7 FPGAs. Hence, we implemented MAYO3 and MAYO5

on the larger Kintex7 FPGA. Kintex7 and Artix7 FPGAs use the

same AMD 28nm [28] High-Performance, LowPower (HPL) tech-

nology [27, 29], but Kintex7 has a higher resource budget. Still, the

performance figures are the same, which allows a fair comparison

between these two architectures.

7.1 Area and Performance Results

In the first part of this section, we present the performance results

of our hardware architectures with both round-based (Aes128-R)

and fully-unrolled (Aes128-P) seed expansions. In the second part,

we provide an in-detail analysis of the area utilization of all the

sub-modules used to build our high-speed architecture.

Performance results: The performance results of our high-

speed hardware architectures with Aes128-R and Aes128-P are

shown in Table 5. The table shows the latency of each operation

in cycles and ms for different security levels. The architecture

with Aes128-P achieves up to 6.0×, 8.3× and 3.5× better latency

compared to the architecture with Aes128-R for Mayo.KeyGen(),

Mayo.Verify() and Mayo.Sign(), respectively, across different secu-

rity levels. These speedups are less than the sole PRNG performance

Table 3: Resource utilization of sub-modules on FPGA.

Share in % Count

D
e
s
i
g
n

R
e
s
o
u
r
c
e
s

M
e
m
o
r
y

C
a
c
h
e
s

A
E
S
1
2
8

K
e
c
c
a
k

A
L
U
-
B
l
o
c
k

K
e
y
G
e
n

E
x
p
a
n
d
S
K

S
i
g
n

E
x
p
a
n
d
P
K

V
e
r
i
f
y

T
o
t
a
l

MAYO with seed expansion using Aes128-R

MAYO1

LUTs 15.4 0.1 3.2 12.3 18.9 2.9 7.4 34.5 0.0 5.5 91,146

(2×Aes128-R) FFs 0.1 24.1 2.2 9.8 37.2 1.0 1.3 22.4 0.0 1.9 33,060

BRs 98.9 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 45.5

MAYO3

LUTs 25.1 0.1 2.6 6.0 22.2 3.3 5.6 27.7 0.0 7.4 158,537

(3×Aes128-R) FFs 0.1 12.6 1.8 6.0 41.6 6.3 9.2 20.5 0.0 1.9 55,388

BRs 99.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96

MAYO5

LUTs 31.2 0.9 4.7 2.5 21.5 8.6 4.9 25.0 0.0 5.8 218,607

(4×Aes128-R) FFs 0.1 12.6 1.8 6.0 41.6 6.3 9.2 20.5 0.0 1.9 77,336

BRs 99.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 194.5

MAYO with seed expansion using Aes128-P

MAYO1

LUTs 16.4 0.1 19.1 10.3 15.5 1.1 6.3 26.6 0.0 4.6 109,503

(2×Aes128-P) FFs 0.6 19.9 15.4 8.1 30.8 0.8 1.2 18.6 0.0 4.5 38,473

BRs 98.9 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 45.5

MAYO3

LUTs 17.5 0.1 17.3 5.1 18.6 2.9 4.9 27.8 0.0 5.9 181,632

(3×Aes128-P) FFs 0.4 22.0 14.2 5.1 34.8 0.6 0.8 17.4 0.0 4.8 62,247

BRs 99.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96

MAYO5

LUTs 20.4 0.0 16.1 4.0 19.1 3.4 5.8 20.4 0.0 10.7 256,450

(4×Aes128-P) FFs 0.1 24.6 14.0 3.8 37.3 0.4 0.6 16.6 0.0 2.7 85,360

BRs 99.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 194.5

difference of 13× between Aes128-R and Aes128-P primitives. How-

ever, this is expected since not all operations depend on the perfor-

mance of the PRNG that generates data on-demand through seed

expansion. It is noteworthy that the architecture with Aes128-P

requires between 10% and 20% more LUTs and FFs compared to

the architecture with Aes128-R. However, this area overhead is

negligible compared to the increase in performance between 3.0×
and 8.3× across all operations and security levels of the MAYO

scheme.

Area utilization: Our architecture has a rather high LUT uti-

lization on FPGA, as Table 3 shows. This is due to the extensive

parallelization of computations. The Memory-Unit incorporates

a complex data bus, which allows reading and writing data from

multiple memories to feed 𝑘 parallel Alu-Blocks. Although this

enables our design to perform most computations in parallel and

avoid loading the same data from memory multiple times, it in-

creases implementation complexity. The inputs and outputs of all

Alu-Blocks are buffered to improve the frequency of the design.

This also increases the FF utilization since about one-third of the

overall FF utilization is used for the Alu-Blocks. The following ex-

ample gives an impression of the FF consumption of the Alu-Block.

Every Alu-Block has 𝑘 Alu-Units and each Alu-Unit has three

inputs, one accumulation buffer, and one output. Each input, accu-

mulation buffer, and output has a size of (𝑘 ·𝑜+1) · log
2
(16) ∈ {292b,

444b, 580b}, depending on the chosen security level. This leads to

an FF consumption of 𝑘 · (3+ 1+ 1) · (𝑘 ·𝑜 + 1) · log
2
(16) ∈ {13140b,

24420b, 34800b} just for buffering in the Alu-Block. Note that the

implementation results in Table 3 are slightly lower due to the opti-

mization strategy of Vivado. The rest of the FF in our architecture

is mainly used within modules like Caches, Keccak, and Sign.

In our architecture, BRAM utilization is relatively low thanks

to on-demand seed expansion and optimized memory structure

with careful computation scheduling. Combining these techniques

allows us to lower the required BRAMs compared to related works

in the literature, as we will show later in this section. This is because

Conference’24, October 2024, State, Country Hirner, Streibl, Krieger, Mert, Roy

our architecture only needs to store interim results and not the

large P(1)
𝑖

and P(2)
𝑖

matrices that require up to a few thousand

kB of memory, as Table 5 shows. For ASIC implementations of

our design, on-chip SRAMs use the most area, namely between

59% and 76% of the total area. For the architecture with Aes128-R

for MAYO1, MAYO3 and MAYO5, 71%, 68%, and 76% of the total

area are consumed by on-chip SRAMs, respectively. Similarly, for

MAYO1, MAYO3 and MAYO5, 59%, 59%, and 69% of the total area of

the architecture with Aes128-P are consumed by on-chip SRAMs,

respectively. On ASIC, the on-chip SRAM consumption takes up the

majority of the area, which shows that our memory optimization

strategy has a much higher impact on ASIC compared to FPGA

platforms.

Area utilization of sub-modules: Our high-speed hardware

architecture includes multiple sub-modules as shown in Fig. 1. In

addition to this, Table 3 shows the detailed resource distribution

over all sub-modules, like Memory, Caches, Aes128-Prng, Kec-

cak, Alu-Block, and more for the architectures with Aes128-R

and Aes128-P. The largest share of LUT consumption, around 21%

to 34%, is dedicated to the module that performs the signature

generation. This is due to the sampling of the solution which in-

cludes units to perform transpose, echelon, and back substation.

The Alu-Block and Memory-Unit are the second and third largest

modules in terms of LUT. These two modules are required to feed

and compute data in a parallel manner. The remaining modules

only cause a minor share of LUT consumption.

7.2 Comparisons of Optimization Techniques

Our proposed optimization techniques target a high-performance

hardware architecture. Hence, we enhance the parallelism in our

system which is a core feature in hardware designs. The inherent

operations in the MAYO scheme suit this design paradigm well

as they rely on multiple independent matrix multiplications. Our

design parallelizes these computations over the parameters𝑚 and

𝑘 , as discussed in Sec. 4.3.1 and 3.2, leading to a two-dimensional

parallelization. This allows a performant overall computation of

the MAYO operations. In addition, we solved arising issues caused

by this parallelism, as explained in detail in Sec. 3.3 and 4.3.3.

Although the superior performance, this type of 2-dimensional

parallelization has not been used in prior work. HaMAYO [23] does

not report parallel computation on a set of matrix-vector multipli-

cations or during the evaluation of the quadratic maps, which was

explained in Sec. 2.2. On the other hand, the UOV scheme does

not use multiple parallel matrices or the emulsification technique.

Therefore, the work [7] cannot benefit from the same parallelization

level. However, the Gaussian elimination operation in UOV and

MAYO is similar. The work of [23] uses a serial computation while

[7] uses a systolic array to perform the Gaussian elimination. In

contrast to that, we reuse our parallelization technique over𝑚 to

concurrently compute over a whole row of the matrix A to bring it

to Echelon form. Thereby we reuse our GF16 ALUs to lower area

consumption compared to the systolic array.

In addition to this, we feed our unrolled architecture with on-the-

fly generated data during the expansion of the seed. This technique

has not been used in HaMAYO and UOV works which reduces

their performance and increases memory consumption. Moreover,

Table 4: Throughput comparison with related works

Works Platform

Throughput per second

Speedup

KeyGen Sign Verify

M
A
Y
O
1

[5]
𝑏

IXG 6338 @ 2GHz 18,182 4,348 11,429 -/-/-

Our
𝑒

A-28nm @ 1.5GHz 51,142 15,757 49,751 2.81/3.62/4.35

Our
𝑓

A-28nm @ 1.5GHz 258,665 48,188 327,011 14.22/11.08/28.61

M
A
Y
O
3

[5]
𝑏

IXG 6338 @ 2GHz 3,973 1,205 3,279 -/-/-

Our
𝑒

A-28nm @ 1.5GHz 22,844 6,984 22,401 5.74/5.79/6.83

Our
𝑓

A-28nm @ 1.5GHz 127,877 22,840 166,021 32.18/18.95/50.63

M
A
Y
O
5

[5]
𝑏

IXG 6338 @ 2GHz 1,653 483 1,695 -/-/-

Our
𝑒

A-28nm @ 1.5GHz 12,708 3,901 12,541 7.68/8.07/7.39

Our
𝑓

A-28nm @ 1.5GHz 75,388 13,424 101,950 45.60/27.79/60.14

A-28nm: ASIC with 28nm library. IXG 6338: Intel Xeon Gold 6338.
𝑏
: Uses AVX2 with Aes-NI.

𝑒
: Uses 2×/3×/4× (Aes128-R) for MAYO

1/3/5 .
𝑓
: Uses 2×/3×/4× (Aes128-P) for MAYO

1/3/5 .

we show how to partial loop unrolling the emulsification process

which reduces the latency of signature generation and verification.

7.3 Comparisons with Related Works

There are only a few works in literature implementing the MAYO

digital signature scheme. Table 5 provides area and performance

comparisons of FPGA [7, 23], microcontroller [5, 7, 10] and high-

end CPU [5] implementations of MAYO with our implementations

on FPGA and ASIC. Further, we also included FPGA and microcon-

troller implementations of the UOV scheme [7] which uses similar

construction and computations as the MAYO, e.g., using emulsifier

maps to reduce the size of the signature. These similarities make it

possible to present a comparison between [7] and our work. To the

best of our knowledge, there are no ASIC implementation results

for the MAYO schemes and we present the first according results.

Comparisons with high-end server CPU: The MAYO team

provides a reference implementation as well as an optimized C

version using Avx2 and Aes-Ni [21]. For comparison, we use this

most optimized implementation on the high-end Intel Xeon Gold

6338 CPU (Ice Lake) with 2GHz [5], as shown in Table 4 and 5. We

will first elaborate on the technology difference between the CPU

and ASIC then we will analyze the throughput per second of both,

CPU and ASIC platforms. The CPU used to collect the reference

values runs on 2GHz and uses 10nm technology, whereas our ASIC

implementation runs on 1.5GHz and uses 28nm technology from

TSMC. Hence, the high-end CPU uses superior fabrication technolo-

gies. Nevertheless, our MAYO ASIC clearly outperforms the CPU,

as discussed in the remainder of this section. In addition to that, our

ASIC design includes all required SRAM memory (which consumes

between 58% and 76% of die area) and can readily be integrated into

larger products. This is another difference to the CPU requiring a

significant amount of peripheral components such as DRAM. These

components cause higher energy consumption and cost effort. An

important aspect of high-speed architecture is the comparison of

throughput per second. Table 4 shows the throughput per second
of different security levels. We use the reference values of the opti-

mized version from the MAYO team [5] that uses both Avx2 and

Aes-Ni as a basis to illustrate our speedup. The reference imple-

mentation performs best in the case of security level 1, where it can

perform either 18, 182 key generations, 4, 348 signature generations,

or 11, 429 signature verifications per second. Yet, the throughput
per second decreases by a factor of around 4 with each increase in

Whipping the Multivariate-based MAYO Signature Scheme using Hardware Platforms Conference’24, October 2024, State, Country

Table 5: Comparison of Impl. results with related works

Works Platform

Latency (cc/𝑚𝑠) Area (𝑚𝑚2
or

KeyGen Sign Verify LUT/FF/DSP/BR)

U
O
V
1

[7]
𝑎

Artix7 @ 90.8MHz
𝑐

11.0M/121.94 843k/9.29 284k/3.13 28k/24k/2/66

Artix7 @ 90.3MHz
𝑑

11.0M/121.91 779k/8.63 115k/1.27 34k/27k/2/66

AC-A72 @ 1.8GHz 28.3M/15.73 13.3M/7.40 2.20M/1.25 -

M
A
Y
O
1

[5]

AC-M4 @ 24MHz 5.24M/21.84 9.18M/38.25 4.88M/20.33 -

IXG 6338 @ 2GHz
𝑏

110k/0.05 460k/0.23 175k/0.08 -

[10] AC-M7 @ 480MHz - 42.9M/89.43 5.70M/11.88 -

[23] Artix7
∗
@ 100MHz 996k/9.96 2.867M/28.67 - 21k/13k/11/129

Our
𝑒

Artix7 @ 75MHz 29,330/0.40 95,191/1.28 30,150/0.40 92k/33k/2/45.5

Kintex7 @ 100MHz 29,330/0.30 95,191/0.96 30,150/0.30 94k/32k/2/45.5

A-28nm @ 1.5GHz 29,330/0.02 95,191/0.06 30,150/0.02 1.02𝑚𝑚2

Our
𝑓

Artix7 @ 75MHz 5,799/0.08 31,128/0.43 4,587/0.05 106k/38k/2/45.5

Kintex7 @ 100MHz 5,799/0.06 31,128/0.32 4,587/0.04 112k/38k/2/45.5

A-28nm @ 1.5GHz 5,799/0.004 31,128/0.02 4,587/0.003 1.24𝑚𝑚2

U
O
V
3

[7]
𝑎

Artix7 @ 96MHz
𝑐

16.7M/174.24 1.46M/15.26 823k/8.57 38k/29k/2/184.5

Artix7 @ 94.1MHz
𝑑

16.4M/174.94 1.19M/12.75 195k/2.07 43k/35k/2/184.5

AC-A72 @ 1.8GHz 56.8M/31.56 34.5M/19.18 8.31M/4.62 -

M
A
Y
O
3

[5] IXG 6338 @ 2GHz
𝑏

508k/0.25 1.66M/0.83 610k/0.30 -

Our
𝑒 Kintex7 @ 100MHz 65,660/0.65 214,751/2.15 66,959/0.67 147k/52k/2/96

A-28nm @ 1.5GHz 65,660/0.04 214,751/0.14 66,959/0.04 1.71𝑚𝑚2

Our
𝑓 Kintex7 @ 100MHz 11,730/0.11 65,673/0.65 9,035/0.10 169k/60k/2/96

A-28nm @ 1.5GHz 11,730/0.008 65,673/0.04 9,035/0.006 1.97𝑚𝑚2

U
O
V
5

[7]
𝑎

Artix7 @ 82.5MHz
𝑐

39.0M/437.53 3.30M/40.09 1.9M/23.29 77k/38k/2/356

Artix7 @ 92.6MHz
𝑑

38.4M/414.73 2.64M/28.56 364k/3.93 83k/41k/2/359

AC-A72 @ 1.8GHz 291M/161.91 86.7M/48.18 18.6M/10.33 -

M
A
Y
O
5

[5] IXG 6338 @ 2GHz
𝑏

1.21M/0.60 4.14M/2.07 1.18M/0.59 -

Our
𝑒 Kintex7 @ 100MHz 118,027/1.19 384,488/3.89 119,603/1.19 215k/73k/2/194.5

A-28nm @ 1.5GHz 118,027/0.08 384,488/0.26 119,603/0.08 3.09𝑚𝑚2

Our
𝑓 Kintex7 @ 100MHz 19,897/0.20 111,736/1.12 14,713/0.14 246k/83k/2/194.5

A-28nm @ 1.5GHz 19,897/0.01 111,736/0.07 14,713/0.01 3.45𝑚𝑚2

A-28nm: ASIC with 28nm library. IXG 6338: Intel Xeon Gold 6338. AC-M4/M7/A72: ARM

Cortex-M4/M7/A72. k and M are used as an abbreviation for ×103 and ×106 , respectively.
∗
: Xilinx Zynq-7020 with Artix7 PL.

𝑎
: Targets UOV scheme.

𝑏
: Uses AVX2 with Aes-NI.

𝑐
: ov-(I/III/V)s-pkc-skc (round-based Aes128).

𝑑
: ov-(I/III/V)s-pkc-skc (pipelined Aes128).

𝑒
: Uses 2×/3×/4× (Aes128-R) for MAYO

1/3/5 .
𝑓
: Uses 2×/3×/4× (Aes128-P) for MAYO

1/3/5 .

the security level. Compared to that, we present two architectures

with either Aes128-R (round-based) or Aes128-P (fully unrolled)

seed expansion, as explained in Section 4.2. In comparison to [5],

we achieve a speedup of 2.81×, 3.62×, and 4, 35× for Aes128-R and

14.22×, 11.08×, and 28.61× for Aes128-P in security level 1. Fur-

thermore, our throughput per second decreases only by a factor of 2

with each increase in the security level. This is a clear improvement

compared to the factor of 4 in [5]. In the highest security level 5,

our ASIC with Aes128-P can perform 75388, 13424, and 101950

key generations, signature generations, and signature verifications

per second, respectively. Compared to [5], which achieves 1653,

483, and 1695 operations per seconds, we reach a speedup of 45.60,

27.79, and 60.14, respectively. These results show that our proposed

optimization techniques support the performant deployment of

multi-multivariate signature schemes in time-critical applications

like HSMs.

Comparisons with FPGA implementations for MAYO: To

the best of our knowledge, there is only one FPGA implementation

of the MAYO in the literature, HaMAYO [23], which is a reconfig-

urable and fault-tolerant hardware implementation of the MAYO

scheme that uses the outdated parameters of the MAYO scheme.

Note, that HaMAYO is only capable of performing key generation

and signature generation operations for security level 1. In contrast

to HaMAYO, we support all operations and security levels 1, 3,

and 5 of the MAYO scheme. Compared to HaMAYO, our architec-

ture with Aes128-R requires 4.4×/2.5×more LUT/FF, but 5.5×/2.8×
less DSP/BRAM. We achieve a speedup of 25× and 22× for key

generation and signature generation compared to HaMAYO for se-

curity level 1 on Artix7 FPGA. In the case of our architecture with

Figure 7: ATP comparison for FPGA implementations of

MAYO/UOV security level 1. Signature verification is not

supported in HaMAYO (n.s.).

Aes128-P, the speedup is even higher, namely 125× and 67× for key
generation and signature generation. It is noteworthy to mention

that the target of our architecture is high speed, while HaMAYO

seems to be more targeted towards low consumption. To that end,

we also provide a comparison for Area-Time-Product (ATP) using

the formula (𝐴𝑇𝑃 = (𝐿𝑈𝑇 + 100 · 𝐷𝑆𝑃 + 300 · 𝐵𝑅𝐴𝑀) · 𝐿𝑎𝑡𝑒𝑛𝑐𝑦)
presented in [30]. Fig. 7 shows the ATP of our work, HaMAYO [23],

and UOV [7], for each operation of the security level 1. Our archi-

tectures with Aes128-R and Aes128-P show 14×/61× and 13×/33×
lower ATP, respectively, compared to the HaMAYO for key genera-

tion/signature generation operations of MAYO1. One would argue

that our speedup of one order of magnitude solely comes from the

high area utilization of our architecture; however, the ATP compar-

ison shows that this is not the case. Consuming a similar number

of resources, other implementations will not match our speed, e.g.,

doubling the resources of HaMAYOmay double its speed but cannot

bridge the present speed gap. Note that the MAYO team updated the

field operations of the scheme from GF(256) (8-bit) to GF(16) (4-bit)

to enable faster computation as well as smaller keys. We already

adopted this change within our design while HaMAYO operates

on the previous GF(256) field. In addition, one major contribution

of HaMAYO is their focus on low memory consumption, however,

our high-speed architecture still consumes 3× less memory.

Comparisons with FPGA implementations for UOV: The

work in [7] presents an implementation of the UOV scheme and

provides area/performance results for all operations and security

levels on Artix7 FPGA. [7] presents implementation results for dif-

ferent configurations such as arithmetic with GF(256) and GF(16)

as well as implementations using either a full-round or reduced-

round based Aes128 for pseudo-random data sampling. We use

two of their implementations with GF(16) arithmetic that uses seed

expansion with Aes128-R and Aes128-P since they best resemble

our parameters and design methodology. We will use the results

of Artix7 FPGA for security level 1 and Kintex7 FPGA for secu-

rity levels 3 and 5. Our architectures with Aes128-R outperform

their comparable architecture for key generation/signature genera-

tion/signature verification by up to 305×/7×/8×, 270×/7×/13×, and
368×/10×/20× for security levels 1, 3, and 5, respectively. Our archi-
tectures with Aes128-P outperform their comparable architecture

by up to 1524×/20×/24×, 1535×/20×/22×, and 2095×/26×/27× for
security levels 1, 3, and 5, respectively. This shows that we outper-

form them by up to three orders of magnitude for the key generation

Conference’24, October 2024, State, Country Hirner, Streibl, Krieger, Mert, Roy

Table 6: Power consumption on different Platforms

Platform PRNG Type MAYO1 MAYO3 MAYO5

A-28nm @ 1.5GHz Aes128-R 2.94 W 3.95 W 6.99 W

A-28nm @ 1.5GHz Aes128-P 3.21 W 4.39 W 7.61 W

Kintex7 @ 100MHz Aes128-R 0.37 W 0.55 W 0.98 W

Kintex7 @ 100MHz Aes128-P 0.69 W 0.81 W 1,20 W

operation due to our massive parallelization of the matrix-matrix

multiplications. However, our high parallelism comes at a price of

resource utilization leading to 3.2×/4.1×/2.8× and 1.3×/1.9×/2.0×
higher LUTs and FFs usages, respectively, for security levels 1/3/5

with the architecture using Aes128-R. Similar results can be seen in

the architecture that uses Aes128-P. For signature generation and

verification operations, our designs still outperform theirs by one

order of magnitude. The decrease in speedup is because they utilize

more memory to buffer temporary data in the key generation that

can be reused during signing and verification. Yet, their design uses

1.6×/1.9×/1.8×more BRAMs for security levels 1/3/5. These results

clearly show that despite the increase in the utilization of LUTs and

FFs, our design still outperforms HaMAYO [23] and UOV [7] by up

to three orders of magnitude in both speed and ATP comparison.

In addition to performance improvement, our optimized memory

management shows how to reduce the consumption of BRAMs for

multivariate schemes on hardware.

ComparisonswithARM-based implementations:There are

two ARM-based microcontroller implementations of MAYO scheme

[5, 10] and both works target only security level 1 of the MAYO

scheme. Compared to [5], our FPGA architecture on Kintex7 us-

ing Aes128-R outperforms the key generation, signing, and veri-

fication operation by 55×, 30×, and 51×, respectively. In the case

of Aes128-P, our architecture outperforms [5] by 273×, 90×, and
381×, respectively. The implementation in [10] presents results only

for signature generation and verification. Our FPGA design with

Aes128-R/Aes128-P outperforms their performance by 93×/279×
and 40×/297×, for signing and verifying, respectively.

7.4 Power consumption

Power consumption is a critical parameter in the design and op-

timization of hardware platforms. Table 6 shows our power con-

sumption on both FPGA and ASIC for all configurations. The power

consumption falls in the range of 0.37 W and 1.20 W on FPGA and

between 2.94 W and 7.61 W on ASIC depending on the security

level. The higher power consumption on ASIC is mainly due to

the high frequency (15× higher) compared to FPGA, whereas the

energy consumption per operation is lower in the ASIC case. Con-

sidering the energy consumption for Mayo1 with Aes128-R, our

design requires 1.74mJ and 0.17mJ per signature computation for

FPGA and ASIC respectively. A comparison of power consumption

to related hardware accelerators is not possible since [7, 23] do not

provide power results.

8 DISCUSSION OF SECURITY ASPECTS

The MAYO team provides an in-depth mathematical security anal-

ysis of their cryptographic construction [5]. After presenting and

evaluating our optimizations for a high-performance MAYO imple-

mentation, we now examine its physical security aspects that are

particularly relevant to hardware platforms.

Secret-independent control flow: Secret-dependent branch-

ing can introduce variations in execution time that are exploitable

through timing attacks. These attacks allow an attacker to deduce

secret information based on the duration of specific operations.

By default, all other operations within MAYO’s signing, except

solving a linear equation, are constant-time. Therefore, our hard-

ware design executes them with secret-independent timing. The

signing operation involves solving a linear equation Ax = y using

Gaussian elimination as shown in line 3 of Alg. 2. A straightforward

implementation of Gaussian elimination is not constant-time due

to the conditional swapping of rows during the pivot search. The

authors of [6] address this issue by proposing a constant-time im-

plementation of Gaussian elimination. Our work includes a similar

approach for constant-time Gaussian elimination. The overhead

introduced by the constant-time implementation is at most 3% of

the signing latency.

On-the-Fly Data Generation: The baseline MAYO scheme

uses AES-128-CTR with a public seed to expand the P𝑖 matrices, as

shown in line 3 of Alg. 1. Prior works follow this approach and store

the expanded P𝑖 matrices in memory before further computations.

In contrast, our proposed on-the-fly generation does not store the

expansion result in memory, but directly feeds the output of the

AES-128-CTR to the GF16 ALUs. Therefore, we omit storing the

data in memory, which does not open additional attack surfaces

compared to non-optimized architectures. However, we acknowl-

edge the possibility of fault injections to the seed expansion. Yet,

fault attacks cannot gain additional advantages from our on-the-fly

seed expansion optimization. Fault attacks would also be possible

in all implementations unless countermeasures are incorporated.

Parallel Computation and Hardware Noise: One of the sig-

nificant advantages of hardware implementations over software is

the ability to perform parallel computations in a greater context.

This shift from sequential or multi-threaded computation to par-

allel processing not only enhances performance but also makes

certain advanced side-channel attacks, such as DPA, harder. In a

parallel computation environment, the power profiles become more

complex and less predictable, making it difficult for attackers to cor-

relate power consumption with secret data. Therefore, it becomes

more challenging to extract useful information related to secret

data from the noisy observed data.

However, using parallelization as an argument for security is

not always valid, as shown in surveys like [9, 17]. Furthermore,

attackers can mitigate the higher noise level in parallel computing

by collecting more power traces. Resistance against differential

power analysis-based attacks is achievable by applying masking

techniques. We leave the design and analysis of masking schemes

for MAYO as a topic for future work.

9 CONCLUSION

In this paper, we proposed and implemented several optimization

techniques for the MAYO post-quantum signature scheme for each

NIST security level. On FPGA platforms we achieve a general speed-

up of up to three orders of magnitude compared to similar works

Whipping the Multivariate-based MAYO Signature Scheme using Hardware Platforms Conference’24, October 2024, State, Country

while reducing the memory consumption by up to 2.8×. In the con-

text of throughput per second, our ASIC shows a speed-up of up

to one order of magnitude compared to the most optimized C im-

plementation on CPUs with instruction set extensions like Aes-NI

and Avx2. These results show that our proposed optimization tech-

niques support the performant deployment of multi-multivariate

signature schemes in a post-quantum world.

ACKNOWLEDGMENTS

This workwas supported by the State Government of Styria, Austria

– Department Zukunftsfonds Steiermark and the FWF ISOCrystals

project. This work has benefitted from the fourth and fifth author’s

participation in Dagstuhl Seminar 23152 "Secure and Efficient Post-

Quantum Cryptography in Hardware and Software".

Finally, we want to thank the reviewers for their feedback, as

well as Daniel Gruss from Graz University of Technology for his

encouragement and feedback.

REFERENCES

[1] Kahraman Akdemir, Martin Dixon, Wajdi Feghali, Patrick Fay, Vinodh

Gopal, Jim Guilford, Erdinc Ozturk, Gil Wolrich, and Ronen Zohar.

2012. Intel® Advanced Encryption Standard (Intel® AES) Instructions

Set. https://www.intel.com/content/www/us/en/developer/articles/tool/intel-

advanced-encryption-standard-aes-instructions-set.html

[2] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter

Schwabe, Gregor Seiler, and Damien Stehlé. 2022. CRYSTALS-Dilithium. Selected

Algorithms 2022. https://csrc.nist.gov/Projects/post-quantum-cryptography/

selected-algorithms-2022.

[3] Utsav Banerjee, Tenzin S. Ukyab, and Anantha P. Chandrakasan. 2019. Sapphire:

A Configurable Crypto-Processor for Post-Quantum Lattice-based Protocols.

IACR Transactions on Cryptographic Hardware and Embedded Systems 2019, 4
(Aug. 2019), 17–61. https://doi.org/10.13154/tches.v2019.i4.17-61

[4] Ward Beullens. 2022. MAYO: Practical Post-quantum Signatures from Oil-and-

Vinegar Maps. In Selected Areas in Cryptography. Springer, 355–376.
[5] Ward Beullens, Fabio Campos, Sofía Celi, Basil Hess, and Matthias Kannwischer.

2023. MAYO. MAYO Website. https://pqmayo.org/assets/specs/mayo.pdf.

Accessed on August 3rd 2023.

[6] Ward Beullens, Fabio Campos, Sofía Celi, Basil Hess, and Matthias J. Kannwischer.

2023. Nibbling MAYO: Optimized Implementations for AVX2 and Cortex-M4.

Cryptology ePrint Archive, Paper 2023/1683. https://eprint.iacr.org/2023/1683

https://eprint.iacr.org/2023/1683.

[7] Ward Beullens, Ming-Shing Chen, Shih-Hao Hung, Matthias J. Kannwischer,

Bo-Yuan Peng, Cheng-Jhih Shih, and Bo-Yin Yang. 2023. Oil and Vinegar: Modern

Parameters and Implementations. Cryptology ePrint Archive, Paper 2023/059.

https://eprint.iacr.org/2023/059.

[8] Sanjay Deshpande, Chuanqi Xu, Mamuri Nawan, Kashif Nawaz, and Jakub Szefer.

2022. Fast and Efficient Hardware Implementation of HQC. Cryptology ePrint

Archive, Paper 2022/1183. https://eprint.iacr.org/2022/1183.

[9] Yiwen Gao, Yongbin Zhou, and Wei Cheng. 2018. How Does Strict Parallelism

Affect Security? A Case Study on the Side-Channel Attacks against GPU-based

Bitsliced AES Implementation. Cryptology ePrint Archive, Paper 2018/1080.

https://eprint.iacr.org/2018/1080 https://eprint.iacr.org/2018/1080.

[10] Arianna Gringiani, Alessio Meneghetti, Edoardo Signorini, and Ruggero Susella.

2023. MAYO: Optimized Implementation with Revised Parameters for ARMv7-M.

Cryptology ePrint Archive, Paper 2023/540. https://eprint.iacr.org/2023/540.

[11] Thales Group. 2024. Luna PCIe HSM. Thales Group documentation Web-

site. https://cpl.thalesgroup.com/sites/default/files/content/product_briefs/field_

document/2024-04/Thales-Luna-PCIe-HSM-pb.pdf - Accessed: 2024-04-29.

[12] Andreas Hulsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder,

Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kolbl, Tanja Lange,

Martin M Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger,

Joost Rijneveld, Peter Schwabe, Jean-Philippe Aumasson, Bas Westerbaan, and

Ward Beullens. 2022. SPHINCS+. Selected Algorithms 2022. https://csrc.nist.

gov/Projects/post-quantum-cryptography/selected-algorithms-2022.

[13] Tendayi Kamucheka, Alexander Nelson, David Andrews, and Miaoqing Huang.

2022. A Masked Pure-Hardware Implementation of Kyber Cryptographic Algo-

rithm. Cryptology ePrint Archive, Paper 2022/1547. https://eprint.iacr.org/2022/

1547.

[14] Patrick Karl, Jonas Schupp, Tim Fritzmann, and Georg Sigl. 2024. Post-Quantum

Signatures on RISC-V with Hardware Acceleration. ACM Trans. Embed. Comput.

Syst. 23, 2 (2024). https://doi.org/10.1145/3579092

[15] Aviad Kipnis, Jacques Patarin, and Louis Goubin. 1999. Unbalanced oil and vinegar

signature schemes. In International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 206–222.

[16] Kris Gaj. 2020. Implementation and Benchmarking of Round 2 Candidates in

the NIST Post-Quantum Cryptography Standardization Process Using FPGAs.

Research seminar for the NIST Post-Quantum Cryptography Standardization

project. https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/

documents/round-3/seminars/oct-2020-gaj-kris-presentation.pdf.

[17] Hoda Naghibijouybari, Esmaeil Mohammadian Koruyeh, and Nael Abu-Ghazaleh.

2022. Microarchitectural Attacks in Heterogeneous Systems: A Survey. ACM
Comput. Surv. 55, 7, Article 142 (dec 2022). https://doi.org/10.1145/3544102

[18] Pietro Nannipieri, Stefano Di Matteo, Luca Zulberti, Francesco Albicocchi, Ser-

gio Saponara, and Luca Fanucci. 2021. A RISC-V Post Quantum Cryptog-

raphy Instruction Set Extension for Number Theoretic Transform to Speed-

Up CRYSTALS Algorithms. IEEE Access 9 (2021), 150798–150808. https:

//doi.org/10.1109/ACCESS.2021.3126208

[19] Jacques Patarin. 1997. The Oil and Vinegar signature scheme. In Dagstuhl Work-
shop on Cryptography.

[20] Albrecht Petzoldt, Enrico Thomae, Stanislav Bulygin, and Christopher Wolf.

2011. Small Public Keys and Fast Verification for Multivariate Quadratic Public

Key Systems. In Cryptographic Hardware and Embedded Systems – CHES 2011.
Springer, 475–490.

[21] PQCMayo. 2023. MAYO-C. Github. https://github.com/PQCMayo/MAYO-C.

Accessed August 3rd 2023.

[22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-

shevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and

Zhenfei Zhang. 2022. FALCON. Selected Algorithms 2022.

[23] Oussama Sayari, Soundes Marzougui, Thomas Aulbach, Juliane Krämer, and

Jean-Pierre Seifert. 2023. HaMAYO: A Reconfigurable Hardware Implementation

of the Post-Quantum Signature Scheme MAYO. Cryptology ePrint Archive, Paper

2023/1135. https://eprint.iacr.org/2023/1135.

[24] Peter Schwabe, Roberto Avanzi, Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede

Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien

Stehle. 2022. CRYSTALS-KYBER. Selected Algorithms 2022. https://csrc.nist.

gov/Projects/post-quantum-cryptography/selected-algorithms-2022.

[25] P. W. Shor. 1994. Algorithms for Quantum Computation: Discrete Logarithms

and Factoring. In Proceedings of the 35th Annual Symposium on Foundations of
Computer Science (SFCS ’94). IEEE Computer Society, Washington, DC, USA,

124–134. https://doi.org/10.1109/SFCS.1994.365700

[26] Abolfazl Soltani and Saeed Sharifian. 2015. An ultra-high throughput and fully

pipelined implementation of AES algorithm on FPGA. Microprocessors and Mi-
crosystems 39, 7 (2015), 480–493. https://doi.org/10.1016/j.micpro.2015.07.005

[27] AMD Xilinx. 2012. FPGA Leadership Across Multiple Process Nodes.

https://www.xilinx.com/content/dam/xilinx/support/documents/product-

briefs/kintex7-product-brief.pdf. Accessed: 2024-04-29.

[28] AMD Xilinx. 2021. AMD Xilinx 7 Series Product Selection Guid. https://docs.

amd.com/v/u/en-US/7-series-product-selection-guide. Accessed: 2024-04-29.

[29] AMD Xilinx. 2021. FPGA Leadership Across Multiple Process Nodes.

https://www.xilinx.com/content/dam/xilinx/support/documents/product-

briefs/artix7-product-brief.pdf. Accessed: 2024-04-29.

[30] Zewen Ye, Ray C. C. Cheung, and Kejie Huang. 2022. PipeNTT: A Pipelined

Number Theoretic Transform Architecture. IEEE Transactions on Circuits and
Systems II: Express Briefs 69, 10 (2022), 4068–4072. https://doi.org/10.1109/TCSII.

2022.3184703

A APPENDIX

Algorithm 1 Mayo.Keygen() of MAYO signature scheme [5]

Mayo.KeyGen():

Output: Compact representation of a secret key 𝑐𝑠𝑘 ∈ 𝐵𝑐𝑠𝑘_𝑏𝑦𝑡𝑒𝑠
and public key 𝑐𝑝𝑘 ∈ 𝐵𝑐𝑝𝑘_𝑏𝑦𝑡𝑒𝑠

1: seed
sk
← RANDOM(sk_seed_bytes)

2: seed
pk
,O← Shake256(seed

sk
)

3: {P(1)
𝑖

, P(2)
𝑖
}
𝑖∈[𝑚] ← Aes128(seed

pk
)

4: {P(3)
𝑖
}𝑖∈[𝑚] ← Upper(−O⊤P(1)

𝑖
O − O⊤P(2)

𝑖
)𝑖∈[𝑚]

5: cpk = (seed
pk
| | {P(3)

𝑖
}𝑖∈[𝑚])

6: csk = seed
sk

7: return (cpk, csk)

https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.13154/tches.v2019.i4.17-61
https://pqmayo.org/assets/specs/mayo.pdf
https://eprint.iacr.org/2023/1683
https://eprint.iacr.org/2023/1683
https://eprint.iacr.org/2023/059
https://eprint.iacr.org/2022/1183
https://eprint.iacr.org/2018/1080
https://eprint.iacr.org/2018/1080
https://eprint.iacr.org/2023/540
https://cpl.thalesgroup.com/sites/default/files/content/product_briefs/field_document/2024-04/Thales-Luna-PCIe-HSM-pb.pdf
https://cpl.thalesgroup.com/sites/default/files/content/product_briefs/field_document/2024-04/Thales-Luna-PCIe-HSM-pb.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2022/1547
https://eprint.iacr.org/2022/1547
https://doi.org/10.1145/3579092
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/seminars/oct-2020-gaj-kris-presentation.pdf
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/seminars/oct-2020-gaj-kris-presentation.pdf
https://doi.org/10.1145/3544102
https://doi.org/10.1109/ACCESS.2021.3126208
https://doi.org/10.1109/ACCESS.2021.3126208
https://github.com/PQCMayo/MAYO-C
https://eprint.iacr.org/2023/1135
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1016/j.micpro.2015.07.005
https://www.xilinx.com/content/dam/xilinx/support/documents/product-briefs/kintex7-product-brief.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/product-briefs/kintex7-product-brief.pdf
https://docs.amd.com/v/u/en-US/7-series-product-selection-guide
https://docs.amd.com/v/u/en-US/7-series-product-selection-guide
https://www.xilinx.com/content/dam/xilinx/support/documents/product-briefs/artix7-product-brief.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/product-briefs/artix7-product-brief.pdf
https://doi.org/10.1109/TCSII.2022.3184703
https://doi.org/10.1109/TCSII.2022.3184703

Conference’24, October 2024, State, Country Hirner, Streibl, Krieger, Mert, Roy

Algorithm 2 Sampling Solutions [5]

SampleSolution(A, y, r):
Input: Linear system in matrix form A ∈ F𝑚×𝑘𝑜𝑞 , Target vector

y ∈ F𝑚𝑞 , Randomization vector r ∈ F𝑘𝑜𝑞
Output: Solution x ∈ F𝑘𝑜𝑞 or ⊥ if system is unsolvable

1: x← r ⊲ Randomize system

2: y← y − Ar
3: (A| |y) ← GaussianElimination((A| |y)) ⊲ Compute Echelon

Form of (A| |y)
4: if A[𝑚 − 1, :] = 0 then ⊲ Check if A has rank𝑚

5: return ⊥
6: for 𝑟 from𝑚 − 1 to 0 do ⊲ Back substitution

7: 𝑐 ← 0

8: while A[𝑟, 𝑐] = 0 do ⊲ Get index of first non-zero element

9: 𝑐 ← 𝑐 + 1
10: x𝑐 ← x𝑐 + y𝑟
11: y← y − y𝑟A[:, 𝑐]
12: return x

Algorithm 3Mayo.Sign() of MAYO signature scheme [5]

Mayo.Sign(csk, M) that incorporatesMayo.ExpandSK(csk):

Input: Expanded secret key 𝑒𝑠𝑘 ∈ 𝐵𝑒𝑠𝑘𝑏𝑦𝑡𝑒𝑠 , Message𝑀 ∈ 𝐵∗
Output: Signature 𝑠𝑖𝑔 ∈ 𝐵𝑠𝑖𝑔𝑏𝑦𝑡𝑒𝑠

1: seed
sk
← csk

2: seed
pk
,O← Shake256(seed

sk
)

3: {P(1)
𝑖

, P(2)
𝑖
}
𝑖∈[𝑚] ← Aes128(seed

pk
)

4: {L𝑖 }𝑖∈[𝑚] ← {(P
(1)
𝑖
+ P(1)

𝑖

⊤
)O + P(2)

𝑖
}𝑖∈[𝑚] ⊲ ExapandSK

5: salt← Shake256(M | | seed
sk
)

6: t← Shake256(M | | salt)
7: for ctr from 0 to 255 do ⊲ Attempt to find preimage of t

8: {v𝑖 }𝑖∈[𝑘] , r← Shake256(M | | salt | | seed
sk
| | ctr)

9: y← t, 𝑙𝑦 ← 0, 𝑙𝐴 ← 0

10: for 𝑖 from 0 to 𝑘 − 1 do
11: for 𝑗 from 0 to𝑚 − 1 do
12: {M𝑖 [𝑗, :]}𝑗 ∈[𝑚] ← {v⊤𝑖 L𝑗 }𝑗 ∈[𝑚]
13: for 𝑗 from 𝑘 − 1 to 𝑖 do ⊲ Compute y

14: u←

{v⊤

𝑖
P(1)𝑎 v𝑖 }𝑎∈[𝑚] if 𝑖 = 𝑗

{v⊤
𝑖
P(1)𝑎 v𝑗 + v⊤𝑗 P

(1)
𝑎 v𝑖 }

𝑎∈[𝑚] if 𝑖 ≠ 𝑗

15: y← y − E𝑙𝑦u
16: 𝑙𝑦 ← 𝑙𝑦 + 1
17: for 𝑗 from 𝑘 − 1 to 𝑖 do ⊲ Compute A

18: A[:, 𝑖𝑜 : (𝑖 + 1)𝑜] ← A[:, 𝑖𝑜 : (𝑖 + 1)𝑜] + E𝑙𝐴M𝑗

19: if 𝑖 ≠ 𝑗 then

20: A[:, 𝑗𝑜 : (𝑗 + 1)𝑜] ← A[:, 𝑗𝑜 : (𝑗 + 1)𝑜] + E𝑙𝐴M𝑖

21: 𝑙𝐴 ← 𝑙𝐴 + 1
22: x← SampleSolution(A, y, r)
23: if 𝑖 ≠ ⊥ then

24: break

25: for 𝑖 from 0 to 𝑘 − 1 do ⊲ Compute signature

26: s[𝑖𝑛 : (𝑖 + 1)𝑛] ← (v𝑖 +Ox[𝑖𝑜 : (𝑖 + 1)𝑜]) | | x[𝑖𝑜 : (𝑖 + 1)𝑜]
27: return sig = s | | 𝑠𝑎𝑙𝑡

Algorithm 4 Adapted Sampling Solutions [5]

SampleSolution(A⊤, y, r):
Input: Linear system in matrix form A ∈ F𝑚×𝑘𝑜𝑞 , Target vector

y ∈ F𝑚𝑞 , Randomization vector r ∈ F𝑘𝑜𝑞
Output: Solution x ∈ F𝑘𝑜𝑞 or ⊥ if system is unsolvable

1: x← r
2: y← y − r⊤A⊤

3: B⊤ ←
©­«
A⊤
==

y

ª®¬ ⊲ Append y to A⊤ as row

4: B← (B⊤)⊤ ⊲ Transpose augmented matrix B⊤ to enable fast

computation of GaussianElimination

5: (A| |y) ← GaussianElimination(B)
6: if A[𝑚 − 1, :] = 0 then
7: return ⊥
8: A⊤ ← A⊤ ⊲ Transpose echelon form of A to enable fast

column access

9: for 𝑟 from𝑚 − 1 to 0 do

10: 𝑐 ← 0

11: while A[𝑟, 𝑐] = 0 do

12: 𝑐 ← 𝑐 + 1
13: x𝑐 ← x𝑐 + y𝑟
14: y← y − y𝑟A⊤ [𝑐, :]
15: return x

Algorithm 5 Mayo.Verify() of MAYO signature scheme [5]

Mayo.Verify(cpk, M, sig) incorporatingMayo.ExpandPK(cpk):

Input: Expanded public key 𝑒𝑝𝑘 ∈ 𝐵𝑒𝑝𝑘𝑏𝑦𝑡𝑒𝑠
Input:Message𝑀 ∈ 𝐵∗
Input: Signature 𝑠𝑖𝑔 ∈ 𝐵𝑠𝑖𝑔𝑏𝑦𝑡𝑒𝑠
Output: An integer result to indicate if 𝑠𝑖𝑔 is valid (result = 0) or

invalid (result < 0)

1: seed
pk
, {P(3)

𝑖
}
𝑖∈[𝑚] ← cpk

2: {P(1)
𝑖

, P(2)
𝑖
}
𝑖∈[𝑚] ← Aes128(seed

pk
) ⊲ ExpandPK

3: salt, {s𝑖 }𝑖∈[𝑘] ← sig

4: t← Shake256(M | | salt), 𝑙 ← 0

5: for 𝑖 from 0 to 𝑘 − 1 do ⊲ Compute y
6: for 𝑗 from 𝑘 − 1 to 𝑖 do

7: u←
{
{s⊤
𝑖
P𝑎s𝑖 }𝑎∈[𝑚] if 𝑖 = 𝑗

{s⊤
𝑖
P𝑎s𝑗 + s⊤𝑗 P𝑎s𝑖 }𝑎∈[𝑚] if 𝑖 ≠ 𝑗

8: y← y + E𝑙u
9: 𝑙 ← 𝑙 + 1
10: return y == t ? 0 : −1

Received 29 April 2024; revised 30 July 2024; accepted 16 August 2024

	Abstract
	1 Introduction
	2 Background
	2.1 Finite field arithmetic over GF(24)
	2.2 Multivariate Quadratic Maps
	2.3 Oil and Vinegar
	2.4 MAYO Signature Algorithm
	2.5 Emulsifier maps

	3 Optimization Strategies
	3.1 On-the-fly Coefficient Generation
	3.2 Parallel Matrix Column Multiplication
	3.3 Parallelizing Computation of Li
	3.4 Block Matrix Multiplication during Signature Verification

	4 The Proposed Hardware
	4.1 Overall Design of Processor
	4.2 Hashing and Pseudo-Random Data
	4.3 Organization of On-Chip Memory
	4.4 Arithmetic Units

	5 Scheduling of Operation
	6 Detailed Ablation Study
	7 Evaluation and Results
	7.1 Area and Performance Results
	7.2 Comparisons of Optimization Techniques
	7.3 Comparisons with Related Works
	7.4 Power consumption

	8 Discussion of Security Aspects
	9 Conclusion
	Acknowledgments
	References
	A Appendix

