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Abstract. ASCON is the final winner of the lightweight cryptography standardization
competition (2018 — 2023). In this paper, we focus on preimage attacks against
round-reduced ASCON. The preimage attack framework, utilizing the linear structure
with the allocating model, was initially proposed by Guo et al. at ASIACRYPT
2016 and subsequently improved by Li et al. at EUROCRYPT 2019, demonstrating
high effectiveness in breaking the preimage resistance of KECcCAK. In this paper,
we extend this preimage attack framework to ASCON from two aspects. Firstly, we
propose a linearize-and-guess approach by analyzing the algebraic properties of the
ASCON permutation. As a result, the complexity of finding a preimage for 2-round
AscoN-XOF with a 64-bit hash value can be significantly reduced from 23° guesses
to 227%% guesses. To support the effectiveness of our approach, we find an actual
preimage of all ‘0’ hash in practical time. Secondly, we develop a SAT-based automatic
preimage attack framework using the linearize-and-guess approach, which is efficient
to search for the optimal structures exhaustively. Consequently, we present the best
theoretical preimage attacks on 3-round and 4-round ASCON-XOF so far.
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1 Introduction

AscoN [DEMS21] was selected as the final winner of the lightweight cryptography stan-
dardization competition in February 2023, including AEAD and Hash schemes. The hash
function uses the sponge construction to map arbitrarily long inputs into fixed length
(AscoN-HaAsH), or extendable (ASCON-XOF) outputs. The underlying permutation of
AscoN hash functions consists of 12 iterations of a quadratic round function executed on
a 320-bit state. In this paper, we mainly focus on the preimage attacks on round-reduced
ASCON-XOF.

Currently, there are very few results that find preimages on the round-reduced ASCON.
Dobraunig et al. [DEMS19] first found a preimage on ASCON-XOF (the length of the
hash value is truncated to 64 bits) up to 2 rounds with 239 guesses. In [QHD*23], Qin
et al. presented a generic framework of Meet-in-the-Middle (MitM) preimage attack on
sponge-based hashing with the help of bit-level Mixed Integer Linear Programming (MILP)
model, which extends up to 4 rounds of AscoN. However, their model does not guarantee
optimal solutions with respect to attack complexities. More recently, Qin et al. [QZH™23]
extended the MitM attack framework into collision attacks and also developed a set of
techniques, such as weak-diffusion structure and a heuristic searching strategy, to improve
previous preimage attacks [QHD 23], but required a huge amount of memory.
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In this paper, we aim at improving preimage attacks on the round-reduced ASCON-XOF.
Our attacks inherit many ideas from existing researches, but apply them in new ways.

Linear Structure. Generally, in preimage attacks based on the linearization technique,
the objective is to construct algebraic systems with high degrees of freedom. Within this
approach, a larger number of remaining degrees of freedom indicates a more effective preim-
age attack, as it significantly decreases the complexity associated with solving the entire
algebraic system. Especially, at ASTACRYPT 2016, an important linearization technique —
linear structure, for improving preimage attacks on round-reduced KECCAK, was introduced
by Guo et al. [GLS16]. Building upon the 1.5-round linear structures of KECCAK-224/256,
they presented the first practical preimage attacks on 2-round KECCAK-224/256. Later,
at EUROCRYPT 2019, Li and Sun [LS19] proposed a 2-block model named allocating
model to further improve the linear structure. With the allocating model, more degrees
of freedom can be left in their structure after 2-round entire linearization. Subsequently,
several preimage attacks on round-reduced KECCAK based on linear structures with the
allocating model were presented [Raj19, LIMY20, LHY21, HLY?21, HLY22, LHY23].
Inspired by their thoughts, we propose a linearize-and-guess approach by exploiting
structural properties of ASCON’s internal permutation, namely, the limited diffusion of
its internal mappings and statistical properties of its substitution layer, such as the
probabilistic equation by = as +as +ag * of substitution layer that holds with a probability
of % Consequently, we find an actual preimage in 2 rounds of ASCON-XOF with a 64-bit
hash value. In comparison to the linear structure technique [GLS16], our approach is also
based on linearization thought, but allows the presence of non-linear bits 2 (quadratic,
even quartic bits) within the structure rather than linearizing the entire structure. Our
approach is similar to the previous methods [Rajl19, LIMY20, HLY22, LHY23] used on
the KECCAK’s preimage attack that allows non-linear parts to exist in the structure and
just generate output linear equations on linear parts. However, their methods are only
applicable to the cases that the algebraic degrees of non-linear parts are at most 2.

Automated Tools. Previous attacks based on linear structures were manually constructed
[GLS16, LSLW17, 1LS19, Raj19, LIMY20, LHY?21, HLY21, HLY22, LHY23], typically
imposing constraints on the input variables to ensure they belong to the so-called column-
parity-like (CP-like) kernel. However, for ASCON, its linear layer is highly flexible (inde-
pendently rotate each 64-bit word by different offsets) and its non-linear layer is more
complex, which gives larger challenges in manually designing a longer structure. The most
popular automated tools are the Boolean satisfiability problem (SAT) [MP13] and Mixed
Integer Linear Programming (MILP) [MWGP11]. The main difference between them is
the forms of describing constraints and objective functions, such as clause normal forms
(CNF) in SAT tools and linear inequality forms in MILP tools.

In recent years, a series of automatic tools based methods have been introduced to
boost the preimage attacks. In [MS13], Morawiecki et al. proposed a practical preimage
attack based on SAT tools on a simplified KECCAK using different parameters rather
than the recommended ones. In [BDG'21, BGST22], Bao et al. introduced the MILP-
based automatic search framework for MitM preimage attacks on AES-like hashing. At
EUROCRYPY 2023, Qin et al. [QHDT23] applied the MitM preimage attacks on sponge-
based hashing and introduced a generic bit-level MILP-based MitM preimage attack
framework on KECCAK, ASCON, and XOODYAK. However, it is not clear whether Qin et
al.’s model is efficient for exhaustively searching the optimal attacks on ASCON. Different
from Qin et al.’s MILP-based preimage attack frameworks, we establish a SAT-based
automatic preimage attacks framework using the linearize-and-guess approach on ASCON-

1The substitution layer of ASCON permutation can be regarded as 64 S-boxes with 5 inputs
(ao,a1,a2,a3,a4) and 5 outputs (bo, b1, b2, b3, bs).

2Non-linear bit, corresponds to a bit whose polynomial expression contains product terms of unknown
variables (the algebraic degree is at least 2).
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XOoF, as SAT is well-suited for bitwise descriptions of behavior. Leveraging SAT models
and the off-the-shelf CaDiCaL solver, it becomes efficient to exhaustively search for optimal
preimage attacks. Both Qin et al.’s attack and our attack are structure-based preimage
attacks, but exhibit notable distinctions. Qin et al.’s attack strategy involves dividing the
variables of the initial state into two distinct classes. While variables within each class
can be multiplied together, the multiplication of variables from different classes is not
permitted. From this aspect, their MILP model becomes quite complex as they have to
describe the relationships between different classes, which potentially affects the efficiency
of finding solutions. In contrast, our attack employs a single class where all variables can
be multiplied together. However, to establish more linear equations leaked by the hash
value, we need to cost extra degrees of freedom to linearize non-linear bits within the
structures, particularly in the case of 4 rounds. Furthermore, our tool does not require
any memory usage.

Our Contributions. Through comprehensive analysis of the structural properties
of AscoN, we find that by applying special linear or quadratic conditions to different
substitution layers, the number of degrees of freedom left can be effectively controlled
and increased. Additionally, we observe a crucial statistical property of the substitution
layer, namely, the probabilistic equation by = a3 + a2 + a¢ holding with a probability of %
Leveraging this observation, we can establish linear equations based on some fixed hash
bits, as long as the algebraic degrees of ag, as,and ag are at most 1. This releases the
restrictions in constructing linear equations leaked by the hash value. In this paper, we
formalize these ideas and present a linearize-and-guess approach for searching (n — 1)-round
structures used in n-round preimage attacks. This approach leads to preimage attacks
on 2-round ASCON-XOF with reduced complexities from 239 guesses [DEMS19] to 227-56
guesses.

Besides, we extend our approach to develop an automatic preimage attack frame-
work for searching the optimal preimage attacks with SAT model. Our framework
considers various model parameters, such as the remaining degrees of freedom, the
number of linear equations leaked by the hash value, and the search complexity of
finding a restricted inner part, as well as the size of random space. To further speed
up the search, we also incorporate the rotational symmetry property of ASCON per-
mutation into our model. Consequently, improved preimage attacks on 3-round and
4-round AScoON-XOF with 128-bit hash outputs are achieved. The previous attacks and
our new results are summarized in Table 1. The source codes are available at https:
//github.com/Huinali/Automatic-Preimage-Attack-Framework-on-Ascon-Xof.

Organization. This paper is organized as follows. In Section 2, we give some preliminaries
and notations of ASCON, and briefly describe the related techniques used in previous
preimage attacks. In Section 3, we present our linearize-and-guess approach. In Section
4, we introduce our SAT-based preimage attack framework. Its application to 3-round
and 4-round ASCON-XOF are provided in Section 5 and in Section 6, respectively. Our
conclusions are drawn in Section 7.

2 Preliminaries

2.1 Description of Ascon

AscoN [DEMS21] was announced by NIST as the final winner in the lightweight cryptog-
raphy standardization competition on February 7**, 2023. The AScON family consists of
AEAD and Hash schemes. Both schemes operate on a 320-bit state which updates with
permutations p® (12 rounds) and p® (6 rounds). Each bit is represented as A[y][z], where
0<y<5,0<x<64. The state A is arranged into 5 rows or 64 columns. Each row is a
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Table 1: Summary of preimage attacks on ASCON-XOF. Hash: the length of the digest in
bits. Size: the number of linear equations leaked by the hash value. Guesses: the number
of required solutions. Solving Time: the average complexity of obtaining a single solution.

Round Hash Size Guesses Solving Timef Final Time Memory Reference

| o5 239 9—0.04 939 - [DEMS19)
2 6 64  227-56 94 231.56 - Section 3
N B _ 2120.58 239 [QHD+23]
3 198 - ) } 911453 930 [QZH*23]
o7 9112.205 9—0.29 9112.205  _ Section 5
N B _ 2126.4 245 [QHD+23]
4 198 - ) } 9124.67 950 [QZH*23]
6  9124.49 9—1.01 9l124.49  _ Section 6

tHere ‘Solving Time’ is determined by the ratio of the number of bit operations required
for one Gaussian Elimination turn to the number of bit operations in round-reduced
ASCON.

64-bit register word, denoted by A[y][*] (as shown in Figure 1). Each column can be seen

as a 5-bit S-box, for example, (ag, a1, az, as, as) where ag indicates the most significant bit
(MSB).

The round function consists of three steps pc, ps, and py,, denoted by p = pr, o ps o pc-

Figure 1: Illustration of the ASCON state.

Addition of Constants (pc). pc adds a round constant ¢; to register word A[2][*] in
round ¢. We ignore the details of ¢; here since it does not affect our attacks to be presented.

Substitution Layer (ps). ps operates on the state A with 64 parallel applications of
the 5-bit S-box to each bit-slice of the five register words, which is affine equivalent to the
non-linear operation, i.e., Y mapping of KECCAK. We suppose the inputs of one S-box are
Alx][z] = (ap, a1, az,as,a4), and the outputs are (bg, by, be, b3, bs). The algebraic normal
form (ANF) of the S-box is as follows:

bo = agaq + as + asaq + as + arag + a1 + ag

b1 = a4 + asas + azar + asz + aza; +az + a1 +ag

by = asaz +as+az+a; +1 (1)
bs = agag + a4 + azag + az + as + a1 + ag

b4 = aqaq + ay +CL3 +a1a0 + aq

Linear Diffusion Layer (p1). pr provides diffusion within each 64-bit register word
Aly][#] as follows, where the first offset is denoted by rg € {19,61,1,10, 7}, and the second
one is denoted by r € {28,39,6,17,41}.
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A0)[x] = BIOJ[4] + (BI0][+] 3> 19) + (B[0][+] 3> 28)

AN = B[R + (B[] 3> 61) + (B[1][+] 3> 39)

A2)[x] = BRIM + (BRIl 3> 1) + (B2 3> 6) (2)
AB)[x] = B3I + (B3I 3> 10) + (B[3][] 3> 17)

Al = BUIW + (BU)] 3> 7) + (B[4 3> 41)

Ascon Hash Scheme. The ASCcON hash scheme including ASCON-HASH and ASCON-XOF,
is built upon the p® permutation using the sponge construction to map arbitrarily long
inputs into fixed length outputs and extendable outputs, respectively.

The sponge construction illustrated in Figure 2 works on a 320-bit state, which is split
into two parts: the first part called the outer part contains the r bits rate of the state
(r = 64) and the second part named the inner part contains the ¢ = 320 — r bits capacity
of the state. Firstly, ASCON-HASH and ASCON-XOF initialize a 320-bit initial state using
the 12-round permutation p®. Then, the sponge construction processes the message M
in two phases. In the absorbing phase, the message M firstly appends a single 1 and a
smallest number of 0s such that the length of the padded message is a multiple of r. After
padding, M is split into n blocks of r-bit i.e., My||...||M,. These message blocks are
processed iteratively by XORing each block into the first r bits of the current state, and
then applying the p® permutation on the value of the 320-bit state. After processing all
the blocks, the sponge construction switches to the squeezing phase. In the squeezing
phase, the d output bits are produced iteratively. In each iteration the first r bits are
extracted from the state and the permutation p® is applied.

In this paper, we focus on ASCON-XOF with a 128-bit hash value and a 128-bit security
claim against preimage attack.
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Figure 2: The illustration of the ASCON hash scheme.

2.2 Using Linear Structure to Construct Linear System

The linear structure technique was first formalized and developed by Guo et al. [GLS16] in
2016. Based on this novel technique, a series of cryptanalysis records of preimage attacks
against KECCAK and zero-sum distinguishers of the underlying permutation KECCAK- f
were broken. The main idea is to linearize the whole state after several rounds with sufficient
degrees of freedom left. Figure 3 gives a 1.5-round linear structure of KECCAK-f[1600]
with 256 degrees of freedom left.

Let A be a starting state, and each bit is defined as A°[z][y][z] (0 < z < 5,0 <
y < 5,0 <z < 64). A%z][y][2] is either a linear bit that includes the linear polynomial
of variables (the algebraic degree is 1) or a constant bit. Suppose six lanes indexed by
A%[z][y][*] where 2 = 0,2 and y = 0, 1,2 are linear bits (i.e., each specified lane has 64
linear bits). To limit these linear bits not be diffused by # mapping, 128 linear conditions
are set up such as A°[x][2][z] = Z;:O A%z][y][2] + ¢x,» holds where ¢, , =0 or ¢, ., = 1,
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such that these linear bits in each column sum to a constant. Note that each linear
condition can be ensured by spending 1 degree of freedom. Thus, the remaining degrees of
freedom are given by 384 — 128 = 256.

In Figure 3, we can observe how the propagations of the linear bits pass through the
round function R =t 0 x omo po @ of KECCAK-f[1600]. Each bit of the lanes with yellow
represents a linear bit. The other lanes are all constants where gray and white bits stand
for values 0 and arbitrary constants, respectively. Note that p and 7 linear mappings
only re-arrange the location of the linear bits, and ¢ mappings add one round constant, so
the linear bits remain undiffused by these linear mappings. The algebraic degree of the
non-linear mapping x is 2, and only when all linear bits before y are not adjacent to each
other, the algebraic degree of each output bit keeps at most 1. Thus, it makes sure that
the algebraic degree of the entire state remains at most 1 after 1.5 rounds.

ALa]fy) Ba]ly) C°la]fy]
ts 4. Ton ﬁ
384-bit hash
[TT]
0 mop y oL
o < (do,dy,....dss3)
Alle]ly) Bl(ally] Cally]

[ [0 [ comon [ v

Figure 3: 1.5-round linear structure with 256 degrees of freedom left used in preimage
attack on 2-round KECCAK-384.

According to [GLS16], each row with 5-bit output (hash) is corresponding to 5 linear
equations. In this case, we could construct a linear system with 256 equations and 256
degrees of freedom (each system has on average one solution). Counting the padding
rule, thus the final search complexity of preimage attack on 2-round KECCAK-384 is
2384=256+1 — 9129 For a complete specification of KECCAK and linear structures, we refer
the interested reader to the original specification [BDPA13, GLS16].

2.3 Linear Structure with the Allocating Model

Since in sponge constructions of KECCAK a large portion of the initial state is fixed and
cannot be chosen by the cryptanalyst, such restrictions (the inner part of the initial state
must be all ‘0’) become the bottleneck of 1-block preimage attacks with the linear structure.
To break this bottleneck, at EUROCRYPT 2019, Li et al. [L.S19] introduced the allocation
approach to multi-block preimage attacks on round-reduced KECCAK-224/256, which
releases the constraints on the initial state of the linear structure and leaves more degrees
of freedom. In their model, a 2-round linear structure with 194 degrees of freedom left is
utilized, resulting in a significant improvement in the theoretical complexity of preimage
attacks on 3-round and 4-round KECCAK-224/256. The whole complexity of preimage
attacks is divided into two stages:

1. Precomputation Stage: Find an inner part that satisfies certain conditions for the
initial state of the linear structure. Let 291 be the search complexity of finding this
restricted inner part.

2. Online Stage: Construct the algebraic systems according to the linear structure that
includes linear equations and nonlinear equations leaked by the given hash value,
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and then solve these systems for finding a multi-block preimage.

Random Space of a Single Structure®. The maximum number of different algebraic
systems that a single structure can generate is determined by the random space of this
structure. We denote the size of random space as 2%" in our preimage attacks on ASCON.
Since any 1-bit difference in the initial state will significantly affect the final hash value,
this number can be well borrowed to evaluate the size of random space, i.e., the number of
all possible cases of the initial state. Suppose the capacity part is fixed and dy out of r bits
are set as variables. Then, merely » — d; — 1 constant bits (excluding one padding bit for
ASCON) can assign as 0 or 1, thus the size of random space is calculated as 2% = 27=4s 1,

The Final Gain. Given an algebraic systems according to the structure that includes d,
linear equations and d — d. non-linear equations leaked by the given hash value with dy
degrees of freedom left (d; > d.), where d is the length of the hash value and d. is the
number of linear equations leaked by the hash value. Then, the final gain is calculated as
24c . That means the final search complexity of finding a preimage is 2¢~%.

The Final Complexity. The final time complexity is determined by the complexity of
the following two parts.

1. The final search complexity of finding a preimage*, denoted by 292.
If we ignore the padding bits, 292 = 2979 Since one known structure can only
generate 2% linear systems, we need to re-start 272~ structures. In other words,
2d2=dr pestricted inner parts from previous message blocks need to be generated.
And the search complexity of finding such an inner part is 2¢1. Thus, the final search
complexity is calculated as:

max {29 x 2d2=dr  9d2}

A special case should be noted: in the allocating model, it is required that 2% > 21,
When implementing the allocation approach, it is crucial to ensure that the size of
the random space satisfies 297 > 291 to guarantee a final search complexity of 292,
Otherwise, the final search complexity becomes 2% x 2%2~4r greater than 242,

2. The average complexity of obtaining a single solution, denoted by T%.
T, is computed by the ratio of the number of bit operations required for one Gaussian
Elimination turn to the number of bit operations in round-reduced ASCON. Besides,
there is still a verification time, denoted by T,. For each solution to examine whether
it can match the given hash value, where T, is always 2° (once target primitive call).

Thus, the final complexity of preimage attack is summarized in Equation 3. When T is
less than 2°, the final complexity is 2%2.

2%2 (T, +T,) (3)

2.4 SAT-based Cryptanalysis

Given a Boolean formula f(x1,x2,...,x,), the Boolean satisfiability (SAT) problem is
to determine whether there is any assignment of values to these Boolean variables which
makes the formula true. The Boolean formula is satisfiable if a valid assignment exists,
otherwise it is unsatisfiable. A formula in CNF consists of one or more clauses joined by
conjunctions (A), where each clause is a disjunction (V) of literals, each literal represents a

3In [HLY?22], they gave a more formal definition of the random space of a single structure with the
allocating model on KECCAK.

4The final search complexity is also called the total of guesses, which is equal to the number of required
solutions of the preimage attack.
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positive or negative variable, e.g., x; or —z;. Most of the previously introduced SAT-based
cryptanalysis methods [SWW18, SWW21, GLST22] encode directly the cryptanalysis
problem in CNF as a SAT instance under the Markov assumption and then invoke the
off-the-shelf SAT solver to solve it. There are many off-the-shelf SAT solvers available
which have been introduced into cryptanalysis, such as CryptoMiniSat [SNC09] and
CaDiCaL [Arm19]. These solvers based on conflict-driven clause learning (CDCL) [MLM21]
support CNF (in DIMAC format) as their input. In this paper, we choose CaDiCaL as the
SAT solver due to its simple installation process and user-friendly interface.

3 The Linearize-and-Guess Approach

In this section, we present a linearize-and-guess approach. This approach allows partial
linearization of the underlying permutation of ASCON for up to three rounds with high
degrees of freedom. Our main idea is to search for (n — 1) round optimal structures used
in the preimage attack on n-round ASCON-XOF, where n < 4. With these structures,
more linear equations are set up and lower final search complexity can be obtained. More
impressively, we observe that specific conditions within different substitution layers can
efficiently control the diffusion of linear bits. Besides, we observe an important statistical
properties of substitution layer pg, which significantly releases the restrictions in setting
up linear equations leaked by the hash value. These key observations make it possible to
find longer optimal structures, such as 3-round structures.

Next, more details of the linearize-and-guess approach are presented. To show the
effectiveness of our approach, we give an improved preimage attack on 2-round ASCON-XOF
in this section.

3.1 Diffusion of Linear Bits through the Substitution Layer pg

We start by studying the algebraic properties of the substitution layer pg of each forward
permutation, which consists of 64 parallel S-boxes. Consider a single S-box with 5 input bits
denoted by (ao, a1, as, as, aq), and corresponding 5 output bits denoted by (bg, by, ba, bs, bs).
Both the input and output bits are represented as polynomials of unknown message
variables and constants according to Equation 1. For each input or output bit, we classify
it into one of three categories based on its polynomial expression. This classification
method allows us to analyze the diffusion of linear bits during the pg operation more
conveniently, providing clearer insights into the process.

e Constant bit, refers to a bit that does not contain any unknown variables, denoted
by ‘c.

e Linear bit, corresponds to a bit whose polynomial expression only contains XOR
combinations of constants and unknown variables, denoted by ‘v’.

o Unknown bit, corresponds to a bit whose polynomial expression contains product
terms of unknown variables, denoted by ‘q’.

Our objective is to find some specific conditions imposed on the inputs of i-th pg
(1 < i < 4) that can significantly control the diffusion of linear bits, i.e., leading to the
outputs containing as many as possible constant bits and linear bits.

ps in the 1-st Round. According to sponge construction, one message block is processed
by XORing the first » = 64 bits of the current state, such that in the first pg, only ao may
be a linear bit.

Thus, 5 diffusion patterns in the first pg are concluded in Table 2. Those patterns
are distinguished by different linear conditions. For instance, when the last four bits of



8 Automatic Preimage Attack Framework on ASCON

the inputs are all constant bits, if two linear conditions are satisfied, such as a; = 0 and
as + a4 = 1, then the first two bits of 5-bit outputs are linear bits.

Table 2: Diffusion patterns in the first pg. # C: represents the number of required
conditions for each diffusion pattern.

Inputs Outputs Condition #C'Inputs Outputs Condition #C
cceeec - ceece - 0 |vcecee vveee ay =0j;a3+ag =1 2

veeee vveve a; =0ja3+a4 =0 2 |veeee cveev a; = ljaz+ag =1 2

veeee cvevv ap = ljaz +ag =0 2

Property 1. Given a S-box with 5-bit inputs (ag,a1,a2,a3,a4) and 5-bit outputs (b,
b1,ba,bs,bs ), if ag is a linear bit and other four bits are all constant bits, then by must be a
constant bit.

Proof. According to the ANF of the S-box: by = agas + a4 + as + ay + 1, by is irrelevant
to ag. Hence, b, must be a constant bit.

ps in the 2-nd Round. Due to Property 1 and the independent calculation of py,
within each row, the third input bit as of the second pg must be a constant bit. We
summarize all possible 16 diffusion patterns that are used in the second pg of 2-round
structures in Table 3. However, if we employ these 16 diffusion patterns in the second pg
of 3-round structures, this would result in linear bits hardly existing within the outputs of
the third pg. Therefore, to overcome this problem, some specific conditions have to be
introduced to obtain the expected outputs with more constant bits, since these constant
bits can inhibit the generation of unknown bits to some extent. We observe that there
are 6 diffusion patterns in the second pg of 3-round structures that can effectively prevent
the generation of unknown bits, as shown in Table 3. The last two candidate diffusion
patterns (vvcce, quvvg) and (cvcev, quvvg) are based on the settings that we only allow
unknown bits (‘q’) to exist in the first bit by or the last bit b4 in the outputs of the second
ps (also holds in the inputs of the third pg). Next, we will elucidate the reasons behind
our choice of this particular settings.

Table 3: Diffusion patterns in the second pg. # C': represents the number of required
conditions for each diffusion pattern. Used in: the diffusion patterns are used in the second
ps operation of n-round structure, n = 2, 3.

Used in{Inputs Outputs Condition #C'(Inputs Outputs Condition #C
CCCCC  VVVVV - 0 [vcecee vvvvy - 0
cvecee  VVVVV - 0 [cceve vvvvy - 0
cCcecevV VVVVV - 0 |vveee qvvvq - 0
cveev  qvvvq - 0 |vceve vvvqv - 0

2-round
cveve  vqvvy - 0 |vveve qqvqq - 0
vceev  vvvqv - 0 |vvcev qvvqq - 0
ccevv  vvqvv - 0 |veevv vvqqv - 0
cvevy  qqqvq - 0 |vvevv qqqqq - 0
cceece  ceccee - 0 |vceee  vveee a; =0;a3+as =1 2
vceeee cveev  ap =0j;a3+ags =1 2 |cveee ccvve a2 =05a3 =1;a0+as =1 3

3-round
cccev cveev ag = 1;a1 =0;a3 =1 3 |ceceev  vveee ap=1;a1 = l;a3 =1 3
vveee qvvvq - 0 |cveev qvvvq - 0

Property 2. Given a S-box with 5-bit inputs (ag,a1,a2,a3,a4) and 5-bit outputs (bg,
b1,b2,b3,b4 ), if any single unknown bit is among a1, as, or as, then one of bs, ba, by must
be an unknown bit.
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Proof. Let us analyze again the ANF of S-box. We can re-write b, as follows:
by = agas +ag+as+a; +1

If a1 or as is an unknown bit and other four bits are all linear or constant bits, it is
obvious that b, must be an unknown bit. Similarly, since by = aqa; + a3 + aza; + as +
ai1ag + ay + ag, if ag is an unknown bit and other four bits are all linear or constant bits,
it is obvious that by must be an unknown bit.

ps in the 3-rd Round. Before introducing this part, we recommend that the readers first
understand how to generate guess linear equations leaked by the hash value in Subsection
3.2. In the third pg operation, our objective is to maximize the presence of linear bits in
bs, by, and by (these bits are the outputs of the third pg operation), so that more guess
linear equations leaked by the hash value from the outputs of the fourth pg can be set
up. Specially, we find that the position of a single unknown bit in the inputs determines
whether b3, ba, by can be linear bits according to Property 2.

Based on above analysis and observations, we only allow unknown bits (‘q’) exist in
the first bit ag or the last bit a4 in the inputs of the third pg (in other words, a;, as and
a3 must be constant or linear bits). The diffusion patterns in the third pg are summarized
in Table 14 (Due to page limits, this table is provided in Section A.1).

3.2 Generate Guess Linear Equations from the Output of pg

According to the sponge construction, the 128-bit hash of ASCON-XOF is generated
iteratively, and each iteration involves the extraction of the first r = 64 bits of the state.
In addition, since the linear diffusion layer p; operates on five 64-bit words in parallel,
the input of the last pr, namely, the output of the last ps can be recovered from each
extraction. Therefore, for each S-box (ag, a1, as, as,as), only the output bit by is known,
where a; (0 < i < 5) may be constant bits, linear bits, or unknown bits. In this subsection,
we introduce three linearization ways to establish linear equations leaked by the hash
value.

Observation 1. If the algebraic degrees of all 5 input bits are at most 1, namely either
linear bits or constant bits, and a1 is a constant bit, then (ag+azs+ag+1)a;+az+az+ag = by
must be a linear equation.

Observation 2. If the algebraic degrees of all 5 input bits are at most 1, and ay, as as
well as ag are all constant bits, then (ag + az + ag + 1)ay + a3z + as + ag = by must be a
linear equation.

Observation 3. If the algebraic degrees of asz, as, ag are at most 1, then the guess linear
equation as + as + ag = by holds with a probability of% when 5 input bits are uniformly
distributed.

For a better understanding, we slightly give an explanation for Observation 3. Let us
consider equation by = (a4 + a2 + ag + 1)a1 + ag + a2 + ap. Suppose all five input bits are
linear bits. There are two ways to linearize this equation:

e By assigning either a; = 0 or a4 + as + ag + 1 = 0, the equation can be linearized.
Together with equations from the assigned, we obtain two linear equations in total,
and each equation can bring a gain of 20-°.

» Note that the quadratic term (aq + a2 +ag+ 1)a; = 0 holds in fact with a probability
of %. Thus, one linear equation a3 + a2 + ag = by can be obtained by excluding the
quadratic term, which can still bring a gain of /1 ~ 20585,

In summary, one guess linear equation with a probability of % can bring a larger gain.
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3.3 1-round Linear Structure

In this section, we introduce a 1-round linear structure via the linearize-and-guess approach
in Figure 4. The inner part of the initial state A° consists of 256 fixed constant bits
generated from the previous absorbing phase. For the current message block M,,,n = 2, it
only undergoes XOR operations with the first » = 64 bits of the initial state A°, resulting
in the variables confined solely to the first row A°[0][x].

M, nl

L@_ﬁ [ |

Ps o P 1 64-bit hash
'S © Pc H,

Ps °pc <£ H
Figure 4: 1-round linear structure using the linearize-and-guess approach. Green stands
for hash bits, yellow stands for linear bits, white stands for constant bits, and orange
stands for either linear bits or unknown bits.

c

A(\ BO Al Bl

Improved 2-round Preimage Attack on Ascon-Xof. Our preimage attack is built
upon a l-round structure as shown in Figure 4, which can leave 64 degrees of freedom.
By exploiting Observation 3, we construct a linear system that includes 64 guess linear
equations with 64 degrees of freedom. The total gain is calculated as 264%0-585 = 23744 T
summary, we improve the search complexity of preimage attack on 2-round ASCON-XOF
with a 64-bit hash output from 239 to 264374441 — 927.56 gyegses after dealing with
paddings.

Practical Preimage Attack Experiment. The preimage attack on the 2-round ASCON-
XOF is parameterized by d; = 0, d, = 0, and dy = 22755, With these parameters, we can
proceed to mount a practical preimage attack. The attack follows a step-by-step procedure,
iterating through 292~ -+ (different values of M;. Firstly, an inner part of the initial
state is randomly generated (from the outputs of M;). Then, we construct an algebraic
system with 64 guess linear equations (derived from 64 quadratic equations) leaked by
the hash value, and solve them through Gaussian Emilination. If no solution is obtained,
or the solution fails to pass the verification, the process continues by regenerating a new
inner part. Finally, we present an actual preimage with a 64-bit hash of all ‘0’ hash value
in Table 4 to support our preimage attack on 2-round ASCON-XOF.

Table 4: An actual preimage of 2-round ASCON-XOF with a 64-bit hash value.

Initial inputs Initial outputs Absorb M,
00400c0000000000 bb7e273b814cd416 481bdfc24b87d0bb
0000000000000000 2b51042562ae2420 2b51042562ae2420
0000000000000000 66a3a7768ddf2218 66a3a7768ddf2218
0000000000000000 b5aad0a7a8153650c 5aad0a7a8153650c
0000000000000000 4£3e0e32539493b6 4£f3e0e32539493b6

M, outputs Absorb M, (A?) My outputs
930ed7e04024b01e 5d97d527a376a0bd 0000000000000000
71ed707bb8746da5 71ed707bb8746da5 0ad74802b2878fda
eeb6d8257ccc2dd9 eeb6d8257ccc2dd9 0ae07279817d7633
17faddf5e3f1251d 17faddf5e3f1251d 6725£32ba9ef07f3
214ad63d63b69ael 214ad63d63b69ael 555a0af07423954a
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4 Automatic Preimage Attacks Framework

In this section, an automated preimage attack framework for ASCON that utilizes the
linearize-and-guess approach is presented. This framework allows us to automatically trace
and control the propagation of linear bits, as well as exhaustively search for the optimal
structures. We successfully apply this framework to preimage attacks on 3-round ASCON
in Section 5 and on 4-round ASCON in Section 6, respectively. As a result, we achieve the
most advanced preimage attacks on 3-round and 4-round ASCON.

4.1 Overview

There are three stages in our attack framework, namely the optimal structures search stage,
the validity of optimal structures verification stage, and the final complexity computation
stage. Before overviewing the three stages, we introduce some key model parameters used
in our attack framework.

The n-round preimage attack on ASCON-XOF with a 128-bit hash output is based
on (n — 1)-round optimal structure. Since the largest algebraic degree of bits within the
(n — 1)-round structure is 2”2, we refer to these 2-round (3-round) structures as quadratic
(quartic) structures in our paper. The number of guess linear equations leaked by the hash
value is defined as d., and the number of degrees of freedom left is defined as dy, where
dy > d. is required in our attack framework. The size of random space corresponds to the
number of constant bits (excluding one padding bit) in the outer part of the initial state,
denoted by 297. Next, we overview the three stages.

Optimal Structures Search Stage. In this stage we search optimal (n — 1)-round
structure used in the n-round preimage attack by building a bit-level SAT search model.
An optimal structure refers to a structure that can construct the largest linear equations
leaked by the hash value while maintaining sufficient degrees of freedom, which could
significantly reduce the final complexity. The details of SAT model are given in Section
4.2.

Validity of Optimal Structures Verification Stage. In Section 2.3, we have discussed
a special case in the allocation model where 2% > 2% must hold; otherwise, the final
search complexity of preimage attack will be greater than 292. Therefore, after the SAT
solver returns an optimal structure, we should verify whether the model parameters of
this optimal structure satisfy 2% > 29, The basic verification procedure goes as follows.

1. Calculate dy, where dy equals to the total number of restricted conditions in the
inner part of the initial state.

2. Calculate d,, where d,. equals to the number of constant bits in the outer part
(excluding the padding bit) and d, = — 1 — d; in our attack.

3. Check whether the optimal structure satisfies 2¢r > 291,

— If 2% > 2% g0 to next stage.

— If 29 < 2% go back to the optimal structures search stage and re-search
suboptimal structures and then repeat step 1 — 3.

Final Complexity Computation Stage. After getting the best valid structure, in
this stage, we aim to compute the final search complexity 2% according to the model
parameters d.,dy. We first calculate the final gain in preimage search, denoted by 20-585de
Thus, the final search complexity is calculated as 2% = 2128-0.585dc
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4.2 SAT Model for Searching Optimal Structure

With the key model parameters in mind, the main goal of the optimal structures search
stage becomes clear. In our structure search, we aim to search for (n — 1)-round optimal
structures (see Figure 5). Initially, we construct a bit-level SAT model to depict the
propagation of linear bits through the round function, which is represented as py, o ps (we
omit pc as it does not affect our model). Our objective function is defined as maximizing
d. under the constraint dy > d.. Specially, we leverage the rotational symmetry of ASCON
to accelerate the solving of our SAT model. Afterwards, we input such SAT model and
objective function into the CaDiCaL solver to determine the existence of the (n — 1)-round
structure with d. not less than T'. If this prediction is satisfiable, we return all feasible
solutions; otherwise we update the value of T with T'— 1 and ask the SAT solver to verify
the satisfiability. This procedure is terminated until we get the optimal structures.

—1
_ _ P
AY PS, gO PLy gl BS, gl PL, o pn—1 PSS, pn-l L

Figure 5: An (n — 1)-round structure used in the n-round preimage attack framework of
ASCON-XOF.

Modeling the Initialization. We prepare an initial state A with 320 model variables,
denoted by Aj .. If A°[y][x] is a linear bit, A) , = 1; otherwise A) , =0, i.e., a constant
bit. Since the last ¢ bits of the initial state and the last bit of the outer part (padding bit)
are all fixed constants, we initialize their corresponding model variables as 0.

We replace ‘¢’ with ‘0’ and ‘v’ with ‘1’ in Table 2 and then get a new Table 5. Thanks
to the logic module—POSform for SymPy® allows us conveniently to translate this table
in CNF. By extracting 5 rows (minterms) from this table as arguments to the POSform()
function, 11 clauses can be obtained. The POSform() function employs simplified pairs
and a redundant group elimination algorithm to convert the list of all input combinations
that generate the minterms into the smallest Product-Of-Sums (POS) form. For more
details please refer to https://docs.sympy.org/latest/modules/logic.html.

Table 5: Diffusion patterns in the first pg. B%: the output state of the first pg.
Ao Ao A3 A5, AY L By, BY . BY . BS . BY,
o 0 0o o O O O o0 o0 O

1 0
0 0
1 1
0 1

o O ©O O

1 1
1 1
0 1
0 1

[ = S =
o O O O
o O O O
o O O O
o O O O

Modeling the Substitution Layer pg. For the substitution layers in subsequent rounds,
we introduce 2-bit encoding method. Each bit is represented by two 0-1 variables (wq, w1),
where (0,1) stands for constant bit, (1,1) stands for linear bit, and (0,0) stands for
unknown bit. Table 3 and Table 14 conclude the diffusion patterns in the second and third
ps, respectively. Then, we can build the SAT model for the corresponding substitution
layer by translating these tables into clauses.

In order to provide a comprehensive illustration of the process of modeling the sub-
stitution layer, let’s consider a SAT model for searching quadratic structures. In the
first pg operation, we select 5 rows from Table 5 and generate 11 clauses by invoking the

5Logic Friday, a freeware tool for Boolean logic analysis, allows us to get the same clauses but only
supports Windows.
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POSform() function. Moving to the second pg, due to the independent diffusion of linear
bits within each row of B° by the subsequent linear diffusion layer pr, the constant row
remains unchanged within the output state of pr,. This signifies that all 64 bits of A'[2][x]
are constant bits. As indicated in Table 3, there are 16 possible patterns for the quadratic
structure. By using (0, 1), (1,1), and (0,0) to replace ‘c’, ‘v’, and ‘q’, respectively, we can
obtain 16 clauses from the output of the POSform() function.

Modeling the Linear Layer p;. Let B*,0 < i < n — 1 be the output state of the i-th
ps. For the first pr, A} , =1 if any of B°[y][z], B°[y][z — ro], B[y][x — r1] is a linear bit;
otherwise Azlm = 0. For the linear diffusion layer p; in subsequent rounds, A;Tml = (0,0) if
any of B[y][z], B'[y][x — ro], B'[y][x — 71] is an unknown bit; else ALL! = (1,1), if any of
them is a linear bit; otherwise A%F! = (0,1).

Modeling the Matching Hash Bit. At the model finalization, we introduce 320 model
variables A7 to represent the last state A"~' of structure. If A"~![y][z] is not an
unknown bit, AZ;I = 1; otherwise AZ;l = 0. We exploit the Observation 3 to count
the number of matching hash bits. For each column, if A"~1[0][4], A"~ 1[2][i], A"~ 1[3][i]
(0 < i < 64), are linear bits or constant bits, we say there is a 1-bit hash matching, and
one guess linear equation is constructed with a probability of % as listed in Equation
4. Additionally, we introduce 64 variables, denoted by E;,0 < i < 64 for A" 1[x][i] to
indicate which column matches successfully, if F; = 1 means there is a 1-bit hash matching;
otherwise, E; = 0.

APH0][d] + A" 2]l + A ][] = B O] ] (4)

All possible cases of matching can be enumerated in Table 6, and if we put all of them
into POSform() function, 4 clauses are generated.

Table 6: Possible cases of matching at the model finalization.
—1 —1 —1 —1 —1 —1 —1 —1 —1 —1
Ag,x A?,:c Ag,x Ag,x AZ,(B Ey Ag,:c A?,x Ag,x Ag,a: Az,x Ex

0 0 0 0 0 0 0 0 0

—F O OFRFOFROKORORO M
H P OOFRHROOKRHOOHKRKO
H R R 2P O0OO0O0O0OHRRFEELEOOO
e i e e N R i e i e i e B e i en i e B an )
O O O OO OO O OO oo o oo
—H O OO0 O0OO0O0OO0OOoOoOoOoOo
—H OFR ORFROFROHORORO R
H R, OORMFHFOORHOOHRRO
e e e e e el e e
_H O OO0 O0OO0OODOO0OOoOoOoOOoOo

— = = 2 000 O0OKF LR EFOOO
e = = el e N e R el )

Objective Function. The objective function is to maximize d. under the constraint

df > d.. That is:
dy =Y AQ,

(5)
Mazximize: d., = ZEQC

Generally, encoding a limit on the maximum number of active variables in a given set
is commonly referred to as a cardinality constraint encoding. The modulo totalizer for
k-cardinality encoding (kmtotalizer for short) [MIM14] shows well with the least number
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of clauses and variables. We employ the kmtotalizer encoding method to describe above
cardinality constraint.

Rotational Symmetry. We find that the searched structures for ASCON exhibit rotation
invariance, which means rotating each word of a specific structure by a fixed offset will
result in another valid structure with equivalent properties. This rotational symmetry
provides a significant advantage by reducing the number of structures that need to be
considered in our SAT model. Therefore, during the search phase for all feasible solutions,
once we obtain a solution, we will incorporate the concept of rotational symmetry by
adding 64 additional clauses to the original SAT problem, which can effectively restrict
the acquired solutions from the solution space. By doing so, the solver will exclude
rotationally-equivalent solutions and continue searching for new ones that are distinct.

5 Improved Preimage Attacks on 3-round Ascon-Xof

In this section, we present a 3-round preimage attack on ASCON-XOF with a 128-bit hash
output. Specially, our attack framework utilizes multiple structures rather than relying on
a single 2-round structure (quadratic structure). Initially, an optimal quadratic structure
is identified with the model parameters dy = d. = 27, d, = 36, d; = 45. However, the
condition 2% > 291 ig not satisfied within this structure. To overcome this limitation,
the strategy of combining multiple structures is proposed. We exhaustively search for all
quadratic structures with the same model parameters dy = 27,d. = 27,d, = 36, effectively
reducing the restricted conditions from d; = 45 to d; < 36. Consequently, the final

complexity of the preimage attack on 3-round ASCON-XOF is significantly reduced to
dy = 2112:205,

5.1 Quadratic Structures

We apply our SAT model to search for all quadratic structures with d, greater than 26.
Throughout the search, we identify the optimal quadratic structure leaves 27 degrees of
freedom and 27 guess linear equations leaked by the hash value hold with a probability
of (3/4)%" ~ 2711205 The SAT solver CaDiCaL successfully returned all 149 solutions in
approximately 17 hours (see Table 7). Finally, we obtain 149 x 37 = 5513 ¢ quadratic
structures under the same model parameters dy = 27, d. = 27, d,, = 36.

Table 7: Summary of quadratic structures. N: the number of searched solutions (consider-
ing rotational symmetry). UNSAT: no such structure exists. y/: these structures are used
in our 3-round attack framework.
df de d» mn9g D1 N
>28 >28 - - - 0 UNSAT
0
2

27 27 36 >10 -
27 2r 36 9 45
27 2T 36 8 46 147 v

Calculating the Number of Conditions for Each Single Quadratic Structure.
Let Dy be the number of conditions determined by the inner part of current structure,
which is correlated to the number of ‘1’s in Af .. In each column of the initial state, if
Agyz = 1, two conditions determined by the inner part must be satisfied (see Table 2), and
if the third output bit B°[3][x] is a linear bit, denoted as BY , = 1, it implies that only one

6Each solution actually corresponds to 64 structures due to the symmetry property. However, only
64 — 27 = 37 of 64 structures are valid as the last bit is a padding bit (cannot be a linear bit).
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condition determined by the inner part must be satisfied — the structure still holds when
Bgm = 0. For example, as shown in Table 2, if one column belongs to case (2), then only
one linear condition a; = 0 is imposed on this column. One of 5513 quadratic structures
with 46 conditions are presented in Figure 6.

We summarize these relationships as follows:

D1 = 2df — N (6)
ng = Z ng

5.2 The Union of Multiple Subspaces

In Section 3.1, we discuss our attack framework for ASCON-XOF. In each single 2-round
quadratic structure, the initial state contains 36 free constant bits (excluding the padding
bit) and Dy = 45 or Dy = 46 linear conditions determined by the inner part (capacity).
Thus d, = 36 and d; > 45, dissatisfying 241 < 2. To satisfy the restriction, we raise
a strategy that makes use of multiple (similar) quadratic structures — as long as the
conditions of any single one among multiple quadratic structures are satisfied, then attackers
can conduct the preimage attack through the specific structure. Under this strategy, d;
can be effectively decreased and in the following, we will prove 291 < 2¢r = 236

Let S denote the entire capacity space (|S| = 22°6), and S; denote the subspace of S
that satisfies d; conditions of the i-th structure (i = 1,2,...,5513). Then the probability
of a random capacity belonging to any subspace (satisfying corresponding d; conditions)
is:

dy S|

Thus we need to estimate the union of multiple subspaces. According to the inclusion-

exclusion counting principle, it holds that:

= Z |S7,‘— Z |SZOSJ\—|— Z |SiﬂSjﬂSk|

i=1 1<i<n I<i<j<n 1<i<j<k<n
Z |SiﬁSjﬂSkﬂSl‘+... (8)
1<i<j<k<I<n
> Y 1S= Y 1sins]
1<i<n 1<i<j<n

Since the first two terms are both easy to calculate, we can use this formula to estimate
the union and our target is > [S;| — >_[S; N S;| > 273¢ x |S|. For convenience, we always
regard |S;| = 276 x | S| even though the number of conditions may be 45. As for |S; NS}/,
this can be derived by the number of common conditions between the i-th and j-th
2-round quadratic structures — more specifically, ¢ (out of 46) common conditions infers
|S;NS;| = 21792 x|S|. A special case should be noticed that two quadratic structures may
contain contrary conditions (e.g. AY , =0 and AY , =1). Under this case, 5; N S; = ) no
matter what other conditions are.

According to the principles above, we can obtain a basic estimation about the union of
5513 subspaces. The results are given in Table 8.

However, if we directly use above results to calculate ) [S;| — > [S; N S;|, we can even
obtain a negative value (5513 x 2746 — 3330 x 245792 — 6732 x 244792 _ 21285 x 243792 < ().
That’s because two quadratic structures may be quite similar and thus contain a large
number of common conditions. For example, suppose (S7,.52) and (S1,.53) both contain 45
common conditions, which results in [S1]| — > |S1 N S;| < [Si| —[S1 N S2| —[S1NS3|=0.
Then under this case, removing S; will increase the calculated result of estimation formula
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Table 8: Statistics of common conditions ((55213) = 15193828 combinations of S; N S in
total). Com.Cons: the number of common conditions. Sub.Comb: the number of subspace
combinations.

Com.Cons Sub.Comb|Com.Cons Sub.Comb|Com.Cons Sub.Comb
-1t 11091422 34 175468 40 60438
. ... 35 191705 41 44213
30 104925 36 174250 42 15924
31 122350 37 149620 43 21285
32 141769 38 126097 44 6732
33 167165 39 80648 45 3330

-1 indicates contrary conditions exist.

Algorithm 1 Greedy Subspace Filter

Require: n = 5513.
Ensure: The leaving subspaces.
1: n = H513;

2: Calculate the n x n array of |S; N.S;| (fill the diagonal by 0);
3: Initialize filtertag = true;

4: while filtertag do

5.  Initialize mazcolumn and maxcolumnsum;

6: fori=1:ndo

7: Calculate the i-th column sum of the array;

8: Update maxcolumn and mazxcolumnsum;

9: end for
10:  if mazcolumnsum > |Spmazcolumn| then
11: Remove subspace Siazcolumn;
12: Update the array entries related to Syazcoiumn by filling 0;
13: else
14: filtertag = false;
15:  end if

16: end while

> 1Sil = >215: N S;|. This example inspires us to design a filter to select proper subspaces.
After filtering, the leaving subspaces can keep a certain “distance” from each other, so
that > |S;| — >°15: N'S;| would not be increased by removing any of them.

A subspace filter based on greedy algorithm is given in Algorithm 1. Finally, the filter
leaves 2426 subspaces. And the statistics of common conditions are given in Table 9.

According to above results, we have:

SIS = >0 18inS| ] /18]

1<i<2426 1<i<j<2426 9)
= 2426 x 2790 — 502 x 2M79% — 2173 x 283792 — 12367 x 2272 — |
~ 1529 x 2710 > 2796

Thus, 24 < 24 = 236 is proved.



Huina Li, Le He=, Shiyao Chenx, Jian Guo and Weidong Qiux 17

Table 9: Statistics of common conditions ((24226) = 2941525 combinations of S; N S; in

total). Com.Cons: the number of common conditions. Sub.Comb: the number of subspace
combinations.

Com.Cons Sub.Comb|Com.Cons Sub.Comb|Com.Cons Sub.Comb
-1t 2281258 34 23995 40 5906
. ... 35 21878 41 3844
30 17405 36 18571 42 1842
31 20866 37 14209 43 2173
32 21923 38 10703 44 502
33 25730 39 7955 45 0

-1 indicates contrary conditions exist.

5.3 Final Complexity

To support our theoretical analysis, we perform an experiment to verify whether we can
find such initial states that satisfy 46 conditions determined by one of the 2426 quadratic
structures within a data complexity of 236, It turns out that we successfully find one,
which is presented in Table 10.

Table 10: The initial state that satisfies the 46 conditions of the 708-th quadratic structure.

Initial inputs

Initial outputs

00400c0000000000 b57e273b814cd416
0000000000000000 2b51042562ae2420
0000000000000000 66a3a7768ddf2218
0000000000000000 5aad0a7a8153650c
0000000000000000 4£3e0e32539493b6
Absorb M; M outputs
1£d8c82f71985a%9a 6b6946££f0830a067
2b51042562ae2420 787c140a83c303d0
66a3a7768ddf2218 1323ea74c00d171c
5aad0a7a8153650c aedleeeflced7aece
413e0e32539493b6 a794219fa35585f5

In summary, the final search complexity of preimage attack on 3-round ASCON-XOF is
2128-0.585X2T — 9112.205 (gatisfying the padding rule), which is the best known preimage
attack so far.

6 Improved Preimage Attacks on 4-round Ascon-Xof

Different from the quadratic structures that only include linear conditions in the initial
state, the quartic structures also include linear conditions in the intermediate state A' and
quadratic conditions in the intermediate state A2. These conditions are determined by the
controllable constant bits of the outer part of the initial state. To handle these quadratic
conditions, we leverage the degrees of freedom associated with the controllable constant
bits to linearize them. This ensures that each turn we set a qualified constant of the
outer part to restart this quartic structure (satisfying all linear and quadratic conditions)
with a probability of 1. Furthermore, the restriction dy < d,, < 57 in our 4-round attack
framework must be satisfied.

Our preimage attack framework on 4-round ASCON-XOF is based on a single quartic
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structure with the model parameters d¢y = d. = 6, d,, = 24, d; = 14, as shown in Figure 7.
As a result, we present the best known preimage attack on 4-round ASCON-XOF.

6.1 Quartic Structures

Quadratic Conditions Exist in the Quartic Structures. By translating all input-
output patterns presented in Table 2, Table 3 and Table 14 into CNFs, we establish a
crucial substitution layer model within our quartic structure search model. However, some
quadratic conditions in the intermediate state are necessarily introduced for linearizing
those bits belonging to A3[0][x], A3[2][x], or A3[3][x] and further getting as many as possible
guess equations. Such as the following quadratic condition A2[1][27] = 0 (see Figure 7) in
the third substitution layer can linearize the unknown bit B2[0][27] as follows.

B2[0][27] = (A?[4][27] + A%[2][27] + A%[0][27] + 1) A?[1][27]
+ A?[3][27] + A?[2][27] + A%[0][27]
= A%[3][27] + A%[2][27] + AZ[0][27]

As B?[0][46], B2[0][18] as well as linearized B2[0][27] are already indeed linear bits, in
this way, we successfully transform A3[0][46] into a linear bit as below.

A3]0][46] = B2[0][46] 4+ B2[0][27] + B2[0][18]

According to our summary in Table 14, there are 4 classes of quadratic conditions. Each
quadratic condition involves at least 3 quadratic terms (see Equation 10).

A%[0][z] = B[0][z] + B*[0][x — 19] + B'[0][x — 28]

A%[1][x] = B*[1][z] + B'[1][x — 61] + B*[0][x — 39]

A?[3][z] = B*[3][z] + B'[3][x — 10] + B*[3][x — 17] (10)
A?[3][x] + A?[4][z] = B'[3][x] + B*[3][x — 10] + B'[3][x — 17]

+ BY[4][z] + B'[4][z — 7] + B'[4][z — 41]

Optimal Quartic Structures. Based on our SAT model, we find the optimal quartic
structures with the model parameters dy = 8, d. = 8, d; = 21. However, none of these
structures can be used in our 4-round attack framework due to the inability to satisfy the
extra 28 linear and 18 quadratic conditions simultaneously by insufficient 64 — 1 — 8 = 55
free constant bits. Then, we attempt to search for suboptimal structures with the model
parameters d¢ = 7, d. = 7, dy = 18. Unfortunately, those structures are still not applicable
to our attack framework for the same reason. Thus, we exhaustively search for all quartic
structures with the model parameters dy = 6, d. = 6, d; = 14. Table 11 provides a
summary of quartic structures.

Table 11: Summary of quartic structures. n;: the number of linear conditions in state A'.
no: the number of quadratic condition in state A%. N: the number of searched solutions
(considering rotational symmetry). UNSAT: no such structure exists. x: the structures
under such parameters cannot be used in our 4-round attack framework.

df de di m1 ng N Note

>9 >9 - - - - TUNSAT
8§ 8 21 28 18 - x
7 7 18 24 15 - x
6 6 14 20 13 1024
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In these quartic structures with the model parameters d; = 6, d. = 6, di = 14,
the initial state includes 57 free constant bits (excluding the padding bit) and 14 linear
conditions determined by the inner part of A, i.e., d; = 14. Within each structure, there
are 20 linear conditions and 13 quadratic conditions in the intermediate states.

To satisfy all conditions imposed on the intermediate states, as well as the restrictions
d; < d, < b7, we propose a specific linearization strategy. With this strategy, 13 quadratic
conditions are linearized by introducing 22 extra linear conditions”. This allows us to
prove that d, can reach 24, satisfying 2% > 2% = 214,

6.2 Linearization Strategy

We show how to linearize quadrtic conditions using our linearization strategy by one
example of a quartic structure with the model parameters dy = 6,d. = 6,d; = 14.

Duplicate Quadratic Terms. 13 quadratic conditions are listed in Figure 7. Since
all quadratic conditions are intensively located on the O-th and 1-st rows, 13 quadratic
conditions may not correspond to 39 different quadratic terms. To facilitate observation,
we extract all quadratic terms from 13 conditions listed in Table 12. It is found that 10 out
of 39 quadratic terms overlap. Thus, we only need to linearize 29 quadratic terms.

Table 12: Statistics of quadratic terms of 13 quadratic conditions.

Quadratic conditionsjno.1 Quadratic term|no.2 Quadratic term[no.3 Quadratic term
A2[0][30] = 1 BI{0][30] BI0][11] BI0][2)
42[0][32) = 1 B(0][32] B0][13) B0]j4]
A2[0][57] = 1 BY0][57] B0][38] B0][29]
A2[1)[13] =1 B1][13] B[1][16]

A2[1][27] =0 B1][27] B1][30] B![1][52]
A?[1][30] =0 B[1][30] B1][33] B [1][55]
A2[1][32] = 1 B1][32]

A?[1][35] =0 B1][60]
A%[1][38) =1 B[1][41] B'[1][63]
A%[1][54] =0 B[1][54] B1][15]
A%1)[57] =1 B1[1][60] B1][18]
A?[1][60] = 0 B[1][60] B[1][63] B[1][21]
A2[1][63] = 1 B'[1][63] B'[1][2] B'[1][24]

Linearization of Quadratic Terms. According to Equation 1, quadratic terms in
the 0-th and 1-st rows are generated through the formulas below (see Equation 11). As
previously noted, A'[2][z] is a constant bit determined by the inner part (see Section 4.2).

B'0][x] « (A'[0][2] + A'[2][2] + A'[4][z] + 1) A" [1][x]

1 1 1 1 1 1 (11)
B [1][z] (A" [1][z] + A"[3][]) A" [2][x] + A" [1][z] A" [3][«]

Both B![0][z] and B'[1][z] can be linearized by introducing an extra linear condition,
namely, Al[1][x] = const. If B1[0][x] and B![1][z] belong to the same column, these two
terms can be linearized by a single linear condition. The linearization details are provided
in Table 13. A total of 29 quadratic terms are distributed across 23 columns, with 6
columns containing 2 quadratic terms each. Moreover, one of the quadratic terms has

7According to our linearization strategy, we check all 1024 structures, and we find that the least number
of extra conditions introduced is 22.
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already been linearized through linear conditions. Thus, to linearize the remaining 29
quadratic terms, only 29 — 6 — 1 = 22 extra linear conditions are needed. We introduce 22
variables, denoted by ¢; (1 <4 < 22), to represent the value of extra linear conditions.

Table 13: Statistics of extra linear conditions introduced to linearize all quadratic terms.

Num Qua.terms Linear.cons [Num Qua.terms Linear.cons
1 B2, B'2] A'U[2l=c | 12 BY[0][32], B'[1][32] Al[ 1[32] = e12
2 B0][4] A4 =c, [ 13 B33 AY1)[33] = cas
f BL0][11] AM1)11) =11 14 B![1][35] AM1][35] = c14
3 BY0][13], B[1][13] AY[1][13] = c3| 15 B[0][38], B[1][38] A*[1][38] = c15
4 B![1][15] AM1)[15] = ¢4 | 16 Bl[1][41] AM1][41] =
5 Bl[1][16] AYM1)[16] = ¢5 | 17 B1[1][52] AY1][52] = c17
6 B1][18] A'1][18] =g | 18 B1[1][54] AY1][54] = 15
7 B11][21] A'1][21] = ¢7 | 19 B1[1][55] AY1][55] = 19
8 B']j24]  AYL)24] = cs | 20 BY[0][57), B'[1][57] A'[1][57] = cao
9 B'1][27] A1][27] = ¢o | 21 B'[1][60] AM1][60] = coy
10 B![0][29] AM1][29] = c10| 22 B![1][63] AM1][63] = ca2
11 B'0][30], B*[1][30] A'[1][30] = c11

TA1][11] = 1 coincides with an existing linear condition.

Calculating the Random Space 2% . With this specific linearization strategy, we obtain
55 linear equations in total, which consist of 20 original linear conditions, 22 extra linear
conditions, and 13 quadratic conditions that have been linearized. It is important to note
that the linearization strategy does not compress the size of the random space, as each extra
equation can be assigned a value of either 0 or 1. Consequently, 2¢r = 257-20-13 — 924
satisfying the condition 2% > 291,

)

The Complexity of Solving Time. According to the number of bit operations in
Gaussian Emilination, where n is the total number of variables (i.e., free constant bits
here), the calculated result is

m—1)xn+(n—-2)x(n—-1)+...+1x2

:%[n‘g—(n—1)371]+§[(n71)3—(n—2)371]+...+%[23713—1] (12)
1
Zg(ng—n)

Moreover, we can reduce the number of bit operations by precalculating 44 rows and
updating only 13 rows in each turn®. After precalculating, the calculation becomes:

(57 + 56+ ...+ 14) + (574564 -+ 13) + ... + (5T + 56 + ... + 2)] = 21304

In comparison, the total of bit operations? for a 4-round ASCON is 4 x 2688 = 10752.
Regarding the linear system, it is composed of 55 equations in 57 variables. During each
turn of Gaussian Elimination, it is expected to obtain 4 solutions. For each solution, we
utilize the quartic structure and generate 6 guess linear equations leaked by the hash.
The complexity of solving time can be calculated by taking the ratio of the number of
bit operations required for one Gaussian Elimination turn to the total number of bit

8Fach turn those c; values from Table 11 are updated, with no impacts on 20 original linear conditions
and 22 extra conditions. However, it does modify 13 quadratic conditions.

9These 2688 bit operations for each round includes 64 x 22 = 1408 XOR operations of the substitution
layer, 2 x 320 = 640 XOR operations of linear diffusion layer, and 2 x 320 = 640 rotation operations.
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operations in 4 ASCON turns, d.e., 21394 /10752 ~ 27191, As for the complexity of solving
6 guess linear equations, this part can be neglected since the number of bit operations is

only £ x (6% —6) = 70.

Final Complexity. In summary, by using a single quartic structure and applying a
specific linearization strategy, we improve the preimage attack on 4-round ASCON-XOF
with the final complexity of 2128-6x0-585 — 9124.49,

7 Conclusion

In this paper, we develop a SAT-based automatic preimage attack framework via a linearize-
and-guess approach on ASCON. The main idea is to divide the preimage attack procedure
into three main stages:

e Optimal Structures Search Stage. Based on in-depth analysis of the structural
and algebraic properties of ASCON permutation, we construct a SAT model via
linearize-and-guess approach to search for optimal structures that partially linearize
the internal state of ASCON, resulting in most probabilistic hash-matching equations
with sufficient degrees of freedom left.

e Validity of Optimal Structures Verification Stage. In this procedure, we propose a
series of techniques as auxiliary tools, such as using the union of multiple structures,
a generic greedy filter algorithm, and a specific linearization strategy for linearizing
quadratic conditions, to verify the validity of the current preimage attack under the
optimal structures, namely whether it satisfies the restriction 2% > 2%,

e Final Complexity Computation Stage. In this stage, we aim to compute the final
search complexity 242 according to the model parameters d., i.e., 242 = 2128-0.585de

Under this SAT-based automatic preimage attack framework, we improved the preimage
attacks on ASCON-XOF that are reduced to 3 and 4 rounds. It is noted that our attack is
still far from threatening the security of full-round ASCON.
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A Appendix

A.1 Valid Inputs/Outputs Pattern through the Substitution Layer pg

We summarize the diffusion patterns in the third pg in Table 14 (only the first and last
bits of the input can be ‘q’).

Table 14: Diffusion patterns in the third pg. # C: represents the number of required
conditions for each diffusion pattern.

Inputs Outputs Condition #C |[Inputs Outputs Condition

3
Q

cceee VVVVV - veeee  vvvvyv -

cveee  vvvvy - cceve  vvvvy -
cceev vvvvy - vvcee  qvvvg -
cveev  qvvvq - veeve  vvvqv -
cveve  vqvvy - vveve  qqvaq -
veeev  vvvqv - vveev  qvvaq -
vvqvv -

qaqqva -

veevy  vvaqv -
vvevv  qqqqq -

cecvee  VVvvv - cecvev  vvvvy -

cevve  vquvy - cevvv  vaqvv -
cvvee  qquvy - cvvev  qqvvg -
cvvve  qqvvv - cvvvy  qqavq -
vevee  vvvvy - vevevy  vvvagv -
vevve  vqvqv - vevvVVv  vqqqv -
vvvee  qqvvg - vvvev  qqvaq -
VVVVV  qqqqq -
qvcev  qqvaq -
qvevy  qqqqq -
qvvev  qqvaq -

avvvv  qqqqq -

vvvve  qqvqq -
qvcee  qqvqq -
qveve  qqvaq -
qvvee  qqvaq -
qvvve qqvqq -

Nfm R RrRrONRRRONOOOCOCc0O0O0CO0OO0COO|c00O0O O OO

0

0

0

0

0

0

0

0

0

0

0

0

]

0

[¢]

0

0

0

0

0
qccee qavav a1 =0 1 [qccce aqvvv  aj] = 0;a3 +agq =1
qeccce  vaqvaq ap =1 1 |qecce vavvg  ayp = liag +ay =1
qccev  qqvav a1 =0 1 |qccev  vavaq ap =1
qceve  qqvav a1 =0 1 |qeceve vavaq ap =1
qcevy  qqaqv a1 =0 1 |qcevv  vqaqaq ap =1
qcvee  qqvqv a; =0 1 |qcvee qqvvv  aj] =0;a3 +ag =1
qcvee  vavaq a; =1 1 |qevee vavva  ay = l;az +ag =1
gcvev  qqvgv a1 =0 1 qgcvev  vgvqq ap =1
qevve  qqvqv a1 =0 1 |qevve vqvaq ap =1
qcvvv  vqqqq ap =1 1 [gvvcc qqvvqg ag +ag =1
qcvvyv  qqqqv a1 =0 1 |[gvcce qqvvqg agz +ag =1
ccceq  qqaqv ap =1 1 |cecceq aqaqvv a] = lyag = 1
ccceq qqvqv ay] = l;az =1 2 [ccceq qqvvv aj =1ljapg = 1l;a3 =1 3
cceceq  vqqqq a; =0 1 ccceq  vqqvqg a1 = 0;apg =1 2
ccceq  vqvqq ap = 0;ag3 =1 2 |ccceq vqvvg ap = 05a3 = l;a9g =1 3
ccecvq  qqqgv ap =1 1 | ccevg qqqvv a1 = l;apg =1 2
ccevq  vqqqq a1 =0 1 |cccvqg vqqvqg a1 = 0;apg =1 2
ccveq  qqgqv ap =1 1 |ccveq qqqvv a1 = l;apg =1 2
ceveq qqvqv al = l;agz =1 2 |ceveq qqvvv aj = l;ag = ;a3 =1 3
ccveq  vqqqq a1 =0 1 |ccveq vqqvqg a1 = 0;apg =1 2
ceveq vqvqq ap = 0;a3 =1 2 |ceveq vqvvg aj = 05a3 = l;a9g =1 3
cevvg  qqaqqv ap =1 1 |cevvag qqavv ay =liag =1 2
cevvg  vqqaq a1 =0 1 |cevvg vaavq ap =0;ag =1 2
cveeq  qqaqvq ag =1 1 | cveeq qqvaq ag =1 1
cveeq qqvvq ag = l;ag =1 2 |cvevqg qaqva ag =1 1
cvveq  qaqva ag =1 1 |evveq aqqvaq az =1 1
cvveq qavvg a3z = liag =1 2 |cvvvg qagavq ag =1 1
veeeq  qaqqv ap =1 1 | veceq aqqvaq az =1 1
veceeq qqvqv ayl = l;az =1 2 [vcevg qqqqv a; =1 1
veveq  qqaqv a;p =1 1 |vevea qavaq ag =1 1
veveq qavav aj = l;az =1 2 |vevva qaqqv ap =1 1
vveceq qqvqq ag =1 1 |[vvvecq qqvqq ag =1 1
cveeq  qqqaq - 0 [cvevg gqqaqaq - 0
cvveq  qqqqq - 0 |cvvvg gqqaq - 0
veeeq  qqqqq - 0 |veevg qqqqq - 0
veveq  qqqqq - 0 |vevvg qqqqq - 0
vvceq  qqqq - 0 |vvevg qqqqq - 0
vvvvq  qqqqq - 0 | qceceq  qqqqq - 0
qcevq qqqqq - 0 |qeveq qqqqq - 0
qcvvag qqqqq - 0 | qveeq qqqqq - 0
qvevg qqqqq - 0 |gvveq qqqqq - 0
qvvvq  qqqqq - 0 |vvveq qqqqq - 0
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A.2 3-round Preimage Attack with Quadratic Structures

We finally obtain 149 x 37 = 5513 quadratic structures under the same model parameters
dy =27, d. = 27, d, = 36 based on our SAT model. One of these structures with 46
conditions are shown in Figure 6.

[] constant [ ] tinear [ unknown [l matched digest
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[4112)=1

[4113)=1

9: AO[3I[11]+A0[4]

10: AMO[1][12]=0

11: ARO[3][121+AN[4][12]=

12: AN[1][14]=0
13: ANO[1][20]=0
14: AM[3][20HARO[4][20]=1
15: ANO[1]121]=0
16: A[3][21 HARO[4II21 =1

[11)=1

17: AN[1][23]=0
18: AM[3][23+AR0[41[23]=1
19: ANO[1][29]=0
20: ANO[3][291+AN0[4]129]=1
21: AN[1][30}=0
22: AMO[3][301+ANOI4][30]=1
23: ANO[1][32]=0

24: ANO[3[321+AN0[4][32)=1

25:
26:
7:
28

3

32

: AN[1][33]=1
: ANO[1][38]=0

: AMO[3][38]+AR0[4](38])=1

: ARO[1][39]=0

2 ANO[3][39]+ARO[4][:

: AO[1][40]=0

+ AN[3]I40J+AN[4][40]=1
: ANO[1][411=0

33: ANO[3][411+AN[4][41]=1

34 A0 1][42]=1
35: ARO[ 1][48]=0

36: AMO[3][48]+AN0[4][48]=1

37: ARO[ 1][49]=0

38: AMO[3][49]+AN0[4][49]=1

39: ARO[ 1][50]=0
40: ArO[1][51]=1

Figure 6: One example of quadratic

41: ANO[1][57]=0

42: ANO[3][5T]+AN[4]

43: AN0[1][58]=0

44: ANO[3][58J+ANO[4]

45: AN[1][59]=0
46: ANO[1]1601=0

[57)=

[581=

structures.

1
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A.3 4-round Preimage Attack with Quartic Structures

We list one of quartic structures under the model parameters d. = 27, dy = 27, d; = 14,
and d, = 24 based on our SAT model in Figure 7. Note that the following conditions
A'2][3] = 0, A*[2][45] = 0 in red are in fact determined by the inner part of A%, so we put
them uniformly in the conditions of AY.
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| conditions in AAQ: | conditions in AA1: conditions in AA2:

itions determined by the inner part of AAQ:

112 ANO[1][61=0 11: ARO[1][56]=0 I 1AMl 11 AM[1[14]=1 11: AR[1[57) = 1]
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Figure 7: One example of quartic structures.
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