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Abstract

We slightly generalize Plonk’s ([GWC19]) permutation argument by replacing permutations with
arbitrary self-maps. We then use this succinct argument to obtain a protocol for weighted sums on
committed vectors, which, in turn, allows us to eliminate the intermediate gates arising from high
fan-in additions in Plonkish arithmetic circuits.

We use the KZG polynomial commitment scheme ([KZG10]), which allows for a universal updateable
CRS linear in the circuit size. In keeping with our recent work ([Th23]), we have used the monomial
basis since it is compatible with any sufficiently large prime scalar field. In settings where the scalar
field has a suitable smooth order subgroup, the techniques can be efficiently ported to a Lagrange
basis.

The proof size is constant, as is the verification time, which is dominated by a single pairing check
(i.e. two pairings). For committed vectors of length n, the proof generation is O(n · log(n)) and is
dominated by the G1 multi-scalar multiplications and a single sum of a few polynomial products over
the prime scalar field via multimodular FFTs.1

When this weighted sum protocol is merged with the monomial basis Snark described in [Th23], it
entails four additional G1-elements in the proof and thus, adds four G1-MSMs to the proof generation.
It adds a few G1 scalar multiplications but no additional pairings to the verification. When the
analogous protocol in the Lagrange basis is merged with Plonk ([GWC19]), the added costs are
similar.

1 Introduction

We generalize the permutation argument in Plonkish arithmetization to arbitrary (possibly
non-injective) self-maps of an interval [0, N−1]. More precisely, for index sets I, J ⊆ [0, N−1]
and a committed map2 ρ : I −→ J with domain I and image J , we describe a protocol to
succinctly show that two committed vectors V, Ṽ in FN

p are linked by the map ρ as follows:

(1.1) Ṽ[ρ(i)] = V[i] ∀ i ∈ I.

The protocol does not assume ρ to be injective and in this sense, is a minor generalization of the
permutation argument that is pivotal to Plonkish arithmetization.

As an application of this succinct argument, we then describe a protocol to show that for
committed vectors V, Ṽ ∈ FN

p and another committed vector W ∈ FN
p (which will function as

the vector of weights), all of the following equations hold:

(1.2) Ṽ[j] =
∑

i∈ρ−1(j)

W[i] · V[i] ∀ j ∈ J ,

1The Prover uses ordinary FFTs in settings where the scalar field has high 2-adicity
2see subsection 1.7 for the (straightforward) definition of this commitment
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where ρ−1(j) denotes the pre-image set {i ∈ I : ρ(i) = j}. An inherent limitation of this protocol
is that each index i ∈ [0, N − 1] appears in at most one linear relation and hence, the protocol
does not quite make addition gates “free” as in [Groth16]. But it allows for the elimination of
intermediate gates arising from high fan-in linear relations in the circuit.

We use the KZG polynomial commitment scheme instantiated with a pairing friendly elliptic
curve. Furthermore, we have opted for the monomial basis since it happens to be better suited
to our use cases3 and is compatible with arbitrary prime scalar fields of a suitable size. However,
these techniques can be easily ported to a setting with a Lagrange basis, assuming the scalar field
of the elliptic curve has a large enough subgroup of smooth order. In fact, when the field has a
large smooth order subgroup, the monomial basis can be succinctly linked to the Lagrange basis
as described in the blogpost [Bl22] by Remco Bloemen.

The proof is constant-sized and can be efficiently merged with the the Snark described in
[Th23]. When merged with this scheme, this protocol for weighted sums entails five additional
G1-elements in the proof and thus, five additional G1 MSMs in the proof generation. The Verifier
requires no pairings in addition to the two pairings in the Snark, but does require a few more
scalar multiplications in G1. When the analogous protocol in the Lagrange basis with a smooth
order subgroup of F∗

p is merged with Plonk ([GWC19]), the added costs are similar.

The recent scheme cqLin ([EG23]) achieves the goal of making addition gates effectively
free and has a linear Prover time. But it requires a quadratic sized CRS and O(n2 · log(n))
preprocessing time, which makes it expensive for larger circuits. Furthermore, this scheme hinges
on the elegant Feist-Khovratovich trick ([FK]) for computing all KZG opening proofs over a
subgroup H of F∗

p in runtime O(|H| · log(|H|)). As far as we know, this trick is not easily
adaptable to settings where F∗

p lacks large smooth order subgroups.

1.1 Brief overview of the trick used

Equation 1.1 boils down to showing that for a randomly and uniformly generated challenge
δ ∈ Fp, the vectors [

V[i] + δ · ρ(i) : i ∈ I
]

and
[
Ṽ[j] + δ · j : j ∈ J

]
have the same underlying set and each Ṽ[j] + δ · j occurs in the first vector with multiplicity∣∣ρ−1(j)

∣∣, where ρ−1(j) is the pre-image {i ∈ I : ρ(i) = j}.
The Schwartz-Zippel lemma implies that Equation 1.2 reduces to proving that the equation

(1.3)
∑
j∈J

Ṽ[j] · ζj =
∑

i∈ρ−1(j)

W[i] · V[i] · ζρ(i)

holds for some randomly generated challenge ζ ∈ Fp. The left hand side of equation 1.3 is the

dot product Ṽ ◦ χJ ,ζ
, where χJ ,ζ

∈ Fmax(J )+1
p is the twist by ζ of the “indicator vector” of J 4,

i.e. the vector given by

χJ ,ζ
[k] =

{
ζk if k ∈ J
0 if k /∈ J

The right hand side of equation of 1.3 is [W ⊙ V] ◦ Sρ,ζ , where ⊙, ◦ denote the Hadamard (aka

3In particular, outer curves to Ed25519 and BN254
4In the monomial basis, the corresponding polynomials are given by χJ (X) :=

∑
j∈J Xj , χJ ,ζ (X) := χJ (ζ ·X)
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entrywise) and dot products respectively and Sρ,ζ denotes the vector given by

Sρ,ζ [k] =

{
ζρ(k) if k ∈ I
0 if k /∈ I

Thus, aside from the protocols for the Hadamard and dot products, equation 1.3 boils down to
verifiably sending a commitment to the vector Sρ,ζ . This is the unique vector of length ≤ N that
satisfies the relation

(1.4) Sρ,ζ [i] = χJ ,ζ
[ρ(i)] ∀ i ∈ I

with the vector χJ ,ζ
and has entries 0 at all positions outside the index set I. Thus, equation 1.3

(and hence, equation 1.2) boils down to succinctly proving an upper bound on the length of the
committed vector Sρ,ζ and showing that the map ρ links Sρ,ζ to χJ ,ζ

in the sense of equation
1.1.

1.2 The setup

Let G1, G2, GT be cyclic groups of order p for some prime p such that there exists a
pairing e : G1 ×G2 −→ GT which is bilinear, non-degenerate and efficiently computable. We fix
generators g1, g2 in G1, G2 respectively. For a trapdoor s ∈ F∗

p, the common reference string
(CRS) generated via a multi-party computation is given by

[g1, g
s
1, · · · , gsM

1 ] , [g2, g
s
2]

for an appropriate upper bound M . The verification key is [g1, g
s
1], [g2, g

s
2].

We define a simple vector commitment using the KZG polynomial commitment scheme. A
vector v = (v0, · · · , vn−1) ∈ Fn

p is identified with the polynomial
∑n−1

i=0 vi · Xi, which is then
committed as in [KZG10]. Thus, for a vector v = (v0, · · · , vn) ∈ Fn+1

p , we define the commitment

Com(v) := g

n∑
i=0

vi·si

1 =

n∏
i=0

(gsi

1 )
vi ∈ G1.

1.3 Notations and terminology

As usual, Fq denotes the finite field with q elements for a prime power q and Fq denotes
its algebraic closure. F∗

q denotes the cyclic multiplicative group of the non-zero elements of Fq.
Fq[X] denotes the ring of univariate polynomials over Fq, which is a principal ideal domain.
Fq(X) denotes the field Frac(Fq[X]), the fraction field of Fq[X].

For a polynomial f(X), deg(f) denotes its degree and Coef(f , i) denotes the coefficient at
the position Xi. f ′(X) denotes the derivative of f(X).

We fix a hashing algorithm HashFS that generates random and uniform challenges in Fp to
make the protocols non-interactive.

We denote by λsec ∈ Z+ a security parameter. We denote by negl(λsec) an unspecified
function that is negligible in λsec (namely, a function that vanishes faster than the inverse of any
polynomial in λsec). When a function can be expressed in the form 1− negl(λsec), we say that
it is overwhelming in λsec. We say some events are equivalent with overwhelming probability, if
the probability of any proper subset of this set of events being true and the other events false is
negligible in λsec.
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Definition 1.1. An argument system is complete if an honest Prover can efficiently output an
accepting transcript.

Definition 1.2. An argument system is sound if the probability of a cheating Prover successfully
convincing a Verifier is negligible.

Definition 1.3. An argument system is knowledge sound if for any probabilistic polynomial time
algorithm APPT that outputs an accepting transcript, there exists an extractor EPPT that, with
overwhelming probability, succeeds in extracting a valid witness.

1.4 Hardness assumptions

We state the computationally infeasible problems that the security of our constructions hinges
on.

Assumption 1.1. n-strong Diffie Hellman assumption: Let G be a cyclic group of prime
order p generated by an element g, and let s ∈ F∗

p. Any probabilistic polynomial-time algorithm

that is given the set {gsi : 1 ≤ i ≤ n} can output a pair (α, g1/(s+α)) ∈ F∗
p × G with at most

negligible probability.

Assumption 1.2. Knowledge of exponent assumption (KEA): Let G be a cyclic group of
prime order p generated by an element g, and let s ∈ F∗

p. Suppose there exists a PPT algorithm A1

that given pairs (h1, h
s
1), · · · , (hn, hsn) in G2, outputs a pair (C1,C2) ∈ G2 such that C2 = Cs

1.
Then there exists a PPT algorithm A2 that, with overwhelming probability, outputs a vector
(x1, · · · , xn) ∈ Fn

p such that

C1 =
n∏

i=1

hxi
i , C2 =

n∏
i=1

(hsi )
xi

A special case of the KEA assumption is that given the elements {gsi : 0 ≤ i ≤ n}, if a PPT
algorithm A1 is able to output a triplet (C1,C2, f(X)) ∈ G×G×Fp[X] with deg(f(X) ≥ 1 such

that C2 = C
f(s)
1 , then there is a PPT algorithm A2 that with overwhelming probability, outputs

a polynomial e(X) such that
C1 = ge(s) , C2 = ge(s)·f(s).

1.5 The AGM model

In order to achieve additional efficiency, we also construct polynomial commitment schemes
in the Algebraic Group Model (AGM) [FKL18], which replaces specific knowledge assumptions
(such as Power Knowledge of Exponent assumptions). In our protocols, by an algebraic adversary
APPT in a CRS-based protocol, we mean a PPT algorithm which satisfies the following:

WheneverAPPT outputs an elementA ∈ Gi (i = 1, 2), it also outputs a vector v = (v0, · · · , vn−1) ∈
Fn
p such that

A =
〈
v , CRS

〉
=

n−1∏
i=0

(gsn

1 )vi = g

n−1∑
i=0

vi·si

1 .

The AGM allows a Prover to commit to multiple polynomials fi(X) ∈ Fp[X] of a bounded
degree and open these polynomials at some point α ∈ Fp. To show that fi(α) = βi for each index
i , it suffices for the Prover to show that for a randomly and uniformly generated challenge λ,
the polynomial

fλ(X) :=
∑
i

λi−1 · fi(X)
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is valued β :=
∑

i λ
i−1 · βi at X = α. If the Prover were dishonest about one or more of the

elements f(αi), the pairing check would fail with overwhelming probability.

The algebraic group model implies that there is an efficient extractor Emulti−PC that - given
access to the multi-commitment opening proof - can extract the polynomials in expected polynomial
time. We refer the reader to [GWC19], [CHHMVW20] and [FKL18] for a more detailed exposition
of the AGM.

1.6 Commitments to index sets

For an index set I ⊆ [0, length(CRS)], we commit to the set I by committing to the polynomial

χI (X) :=
∑
i∈I

Xi,

which we refer to as the indicator polynomial of I. Thus, the commitment is given by

Com(I) := Com(χI (X)) = g
χI (s)
1 = g

∑
i∈I

si

1

The polynomial χI (X) is binary in the sense that every coefficient lies in {0, 1} ⊆ Fp. Conversely,
every binary polynomial of degree ≤ n is of the form χI (X) for some subset I ⊆ [0, n].

1.7 Commitments to permutations and self-maps of [0, N − 1]

For a permutation σ : [0, N−1] −→ [0, N−1], we commit to σ by committing to the polynomial

Sσ(X) :=
N−1∑
i=0

σ(i) ·Xi.

In particular, we commit to the identity permutation of [0, N−1] by committing to the polynomial
Pid,N (X) :=

∑N−1
i=0 k ·Xk.

Similarly, for a (possibly non-injective) map ρ : I −→ J of index sets ⊆ [0, N − 1] with
domain I and image J , we commit to ρ by committing to the polynomial

Sρ(X) :=

N−1∑
i=0

ρ(i) ·Xi

and to the indicator polynomial χI (X) of I. Thus, this commitment consists of two G1 elements.

1.8 The Hadamard product

For polynomials f1(X), f2(X), the Hadamard product f1 ⊙ f2(X) (or f1(X)⊙ f2(X)) is given by

f1 ⊙ f2(X) :=

min(deg(f1) , deg(f2))∑
i=0

Coef(f1 , i) · Coef(f2 , i) ·Xi.

For instance, for an index set I with indicator polynomial χI (X), we have

f(X)⊙ χI (X) =
∑
i∈I

Coef(f , i) ·Xi.

The dot product f1 ◦ f2(X) is the evaluation of the Hadamard product f1 ⊙ f2(X) at X = 1.

For a fixed integer N ≥ deg(f2) and a randomly generated challenge γ, the product
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fγ(X) := f1(γ ·X) ·XN · f2(X−1)

is a polynomial of degree

deg(fγ) = deg(f1) +N − val(X)(f2(X)) ≤ deg(f1) +N.

Its coefficient Coef(fγ , N) at XN is given by the sum

min(deg(f1) , deg(f2))∑
i=0

Coef(f1 , i) · Coef(f2 , i) · γi ,

which happens to coincide with the evaluation of the Hadamard product f1 ⊙ f2(X) at γ. We
exploit this simple fact in conjunction with the protocol for the degree upper bound to obtain a
protocol for the Hadamard product.

Showing that a committed polynomial is divisible by the monomial XN+1 is straightforward.
To show that a committed polynomial f(X) is of degree ≤ n for a public integer n, the Prover
verifiably sends a commitment to the polynomial f̂(X) := Xn · f(X−1). This implies that with
overwhelming probability, the rational function Xn · f(X−1) is a polynomial, whence it follows
that deg(f) ≤ n.

1.9 The degree upper bound

We describe the subprotocol that shows that for a committed polynomial f(X) and a public
integer n, we have the degree upper bound deg(f) ≤ n. It hinges on the simple observation that

deg(f) ≤ n ⇐⇒ Xn · f(X−1) ∈ Fp[X].

Thus, a Prover can demonstrate this upper bound on the degree by verifiably sending the KZG
commitment to the polynomial f̂(X) := Xn · f(X−1). This can be accomplished by showing that
for a random challenge α, the equality f̂(α−1) = α−n · f(α) holds.

We note that the protocol is batchable. For committed polynomials fi(X) and integers ni,
we have deg(fi) ≤ ni for each index i if and only if, for a randomly generated challenge λ, the
rational function

fλ(X) :=
k∑

i=1

λi−1 ·Xni · fi(X−1)

is a polynomial (lemma 1.1). Thus, a Prover can demonstrate all of these degree upper bounds
by verifiably sending the KZG commitment to fλ(X).

1.10 Preliminary lemmas

We will need the following elementary lemmas.

Lemma 1.1. For rational functions hi(X) ∈ Fp(X) := Frac(Fp[X]), if the sum
∑k

i=1 λ
i−1 ·hi(X)

is a polynomial for a randomly generated λ ∈ Fp, then with overwhelming probability, each rational
function hi(X) is a polynomial.

Proof. Suppose there exists at least one index j such that hj(X) is not a polynomial. Let q(X) ∈
Fp[X] be an irreducible polynomial such that valq(X)(hj(X)) ≤ −1, i.e. hi(X) = hi,1(X)/hi,2(X)
with hi,1(X), hi,2(X) ∈ Fp[X] co-prime and hi,2(X) divisible by q(X).

Set fi(X) = q(X) · hi(X) for i = 1, · · · , k. Then
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k∑
i=1

λi−1 · hi(X) = q(X)−1 ·
[ k∑

i=1

λi−1 · fi(X)
]

∈ Fp[X]

and hence,
∑k

i=1 λ
i−1 · fi(X) is divisible by q(X). Applying the Schwartz-Zippel lemma to the

quotient field Fp[X]/(q(X)) implies that with overwhelming probability, q(X) divides each fi(X),
a contradiction.

The permutation argument from [GWC19] exploits the fact that for a permutation σ of
[0, N − 1] and vectors V, Ṽ, the following are equivalent with overwhelming probability:

1. σ(V) = Ṽ

2. For a randomly generated element δ1 ∈ Fp, the vectors
[
V[i] + δ1 · σ(i) : i ∈ [0, N − 1]

]
and[

Ṽ[j] + δ1 · j : j ∈ [0, N − 1]
]
have the same multiset.

3. the equation
N−1∏
i=0

(X + V[i] + δ1 · σ(i)) =
N−1∏
j=0

(X + Ṽ[j] + δ1 · j) ∈ Fp[X]

holds for a randomly generated challenge δ1.

4. the equation
N−1∏
i=0

(V[i] + δ1 · σ(i) + δ2) =

N−1∏
j=0

(Ṽ[j] + δ1 · j + δ2) ∈ Fp

holds for randomly generated challenges δ1, δ2.

The next lemma yields a generalization of the permutation argument to non-injective maps
ρ : I −→ J of subsets of an interval [0, N − 1]. The basic idea is to fixate on the underlying
sets of these vectors rather than the multisets.

Lemma 1.2. Let I, J be subsets of the interval [0, N − 1] and let ρ : I −→ J be a map with
domain I and image J . For vectors V, Ṽ of Fp-elements, the following statements are equivalent
with overwhelming probability:

(1). Ṽ[ρ(i)] = V[i] ∀ i ∈ I.
(2). For a randomly generated element δ ∈ Fp, the vectors[

V[i] + δ · ρ(i) : i ∈ I
]

and
[
Ṽ[j] + δ · j : j ∈ J

]
have the same underlying set.

(3). There exists a sequence mj ∈ Fp (j ∈ J ) such that for a randomly generated element δ ∈ Fp,
the equation ∑

i∈I

(
X + V[i] + δ · ρ(i)

)−1
=

∑
j∈J

mj ·
(
X + Ṽ[j] + δ · j

)−1

of rational functions holds.

(4). There exists a sequence mj ∈ Fp (j ∈ J ) such that for randomly generated elements δ, α ∈
Fp, the equation∑

i∈I

(
α+ V[i] + δ · ρ(i)

)−1
=

∑
j∈J

mj ·
(
α+ Ṽ[j] + δ · j

)−1 ∈ Fp
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holds.

Proof. (1) ⇐⇒ (2) is straightforward. (3) ⇐⇒ (4) is an immediate implication of the
Schwartz-Zippel lemma.

(2) ⇐⇒ (3) is well-known and has been used in [Hab22], [EFG22] etc. It hinges on the
observation that defining the polynomials

fΠ,V,ρ,I(X) :=
∏
i∈I

X + V[i] + λ · ρ(i) , f
Π,Ṽ,ρ,J (X) :=

∏
j∈J

(
X + Ṽ[j] + λ · j

)mul(j,ρ)

yields∑
i∈I

(
X + V[i] + λ · ρ(i)

)−1
=

f ′
Π,V1,ρ,I(X)

fΠ,V,ρ,I(X)
,

∑
j∈J

mul(j,ρ) ·
(
X + Ṽ[j] + λ · j

)−1
=

f ′
Π,Ṽ,J

(X)

f
Π,Ṽ,ρ,J (X)

,

where the polynomials f ′
Π,V,ρ,I(X), f ′

Π,Ṽ,ρ,J
(X) are the derivatives of the polynomials fΠ,V,ρ,I(X),

f
Π,Ṽ,ρ,J (X) respectively and mul(j,ρ) denotes the multiplicity of j with respect to ρ, i.e. the

cardinality of the pre-image set ρ−1(j) := {i ∈ I : ρ(i) = j}.
For monic polynomials h1(X), h2(X), we have

h′1(X)

h1(X)
=

h′2(X)

h2(X)
=⇒

(
h1(X)

h2(X)

)′
= h1(X) · h′2(X)− h′1(X) · h2(X) = 0 =⇒ h1(X) = h2(X),

which completes the proof of (2), (3) being equivalent with overwhelming probability.

2 Preliminary subprotocols

In this section, we describe the subprotocols underpinning the main protocols of the paper.
We start out with the simple protocol for the twist, which will be necessary for some of the
subsequent protocols.

RTwist[g1, (a, γ), aγ ] = {(a,aγ ∈ G1, γ ∈ Fp), f(X) ∈ Fp[X]) : g
f(s)
1 = a , g

f(γ·s)
1 = aγ}

Protocol 2.1. Proof of twist (PoTwist):

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

The CRS [g1, g
s
1, · · · , gsM

1 ] , [g2, g
s
2]

Common Inputs: Elements a, aγ ∈ G1; element γ ∈ Fp.

Claim: The Prover knows a polynomial f(X) ∈ Fp[X] such that

a = g
f(s)
1 , aγ = g

f(γ·s)
1 .

1. The hashing algorithm HashFS generates a challenge α ∈ F∗
p.

2. The Prover sends the Fp-element β := f(α) and the G1-elements

Q := g
[f(s)−β]

/
[s−α]

1 , Qγ := g
[f(γ·s)−β]

/
[γ·s−α]

1 .
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3. The Verifier V verifies the (batchable) equations

e(Q , gs−α
2 )

?
= e(a · g−β

1 , g2) , e(Qγ , gγ·s−α
2 )

?
= e(a1 · g−β

1 , g2).

2.1 Protocol for the degree upper bound

RDegUp[g1, (a, n)] = {(a ∈ G1, n ∈ Z), f(X) ∈ Fp[X]) : g
f(s)
1 = a , deg(f) ≤ n}

Protocol 2.2. Proof of degree upper bound (PoDegUp):

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

The CRS [g1, g
s
1, · · · , gsM

1 ] , [g2, g
s
2]

Common Inputs: Elements a ∈ G1, n ∈ Z.

Claim: The Prover knows a polynomial f(X) ∈ Fp[X] such that

a = g
f(s)
1 , deg(f) ≤ n.

1. The Prover P computes f̂(X) := Xn · f(X−1) and sends the G1-element â := g
f̂(s)
1 .

2. The hashing algorithm HashFS generates a challenge α ∈ F∗
p.

3. The Prover computes the polynomials q(X) , q̂(X) such that

f(X) = q(X) · (X − α) + f(α) , f̂(X) = q̂(X) · (X − α−1) + α−n · f(α)

and sends the G1-elements
Q := g

q(s)
1 , Q̂ := g

q̂(s)
1

and the Fp-element β := f(α).

4. The Verifier V computes β̂ := α−n · β and verifies the equations

Qs−α ?
= a · g−β

1 , Q̂s−α−1 ?
= â · g−β̂

1

via the (batchable) pairing checks

e(Q , gs−α
2 )

?
= e(a · g−β

1 , g2) , e(Q̂ , gs−α−1

2 )
?
= e(â · g−β̂

1 , g2).

Proposition 2.3. The protocol PoDegUp is secure in the algebraic group model.

Proof. Appendix of [Th23].

2.2 Batched proof of divisibility

For committed polynomials hi(X) (i = 1, · · · , k) and publicly known sparse polynomials
ei(X), we describe a protocol to show that ei(X) divides hi(X) for each index i. The proof
consists of 2 G1 elements and k Fp elements. The goal is to keep the proof size low and to keep
the number of MSMs to a bare minimum.
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The protocol hinges on the simple observation (lemma 1.1) that for a set of rational functions
in Fp(X) := Frac(Fp[X]), if a randomized sum of these rational functions is a polynomial, then
with overwhelming probability, all of the rational functions are polynomials. The assumption
that the ei(X) are sparse implies that the Verifier can evaluate them at a challenge α.

In particular, for committed polynomials fi(X) and Fp elements αi (i = 1, · · · , k), setting
hi(X) := fi(X) − fi(αi), ei(X) := X − αi allows us to send a proof of size 2 G1, k Fp to open
the polynomials fi(X) at αi.

Protocol 2.4. Batched proof of divisibility (BatchDiv)

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

The CRS [g1, g
s
1, · · · , gsM

1 ] , [g2, g
s
2]

Common Inputs: Elements bi ∈ G1; sparse public polynomials ei(X) ∈ Fp for indices
i = 1, · · · , k

Claim: The Prover knows polynomials hi(X) such that

bi = g
hi(s)
1 , hi(X) ≡ 0 (mod ei(X)).

1. The hashing algorithm HashFS generates a challenge λ̃.

2. The Prover P computes the polynomial

h
λ̃
(X) :=

k∑
i=1

λ̃i−1 · ei(X)−1 · hi(X)

and sends the G1-element
B

λ̃
:= g

h
λ̃
(s)

1

3. The hashing algorithm HashFS generates a challenge α̃.

4. P sends the Fp-elements βi := hi(α̃) (i = 1, · · · , k).

5. The hashing algorithm HashFS generates a challenge ξ̃.

6. P computes

q(X) := (X − α̃)−1 ·
[
[h

λ̃
(X)− h

λ̃
(α̃)] +

k∑
i=1

ξ̃i · [hi(X)− βi]
]

and sends the G1-element
Q̃ := g

q(s)
1 .

7. The Verifier V computes the Fp-element

β̃ :=
[ k∑
j=1

λ̃j−1 · βj · ej(α̃)−1
]
+

k∑
i=1

ξ̃i · βi

10



8. V verifies the equation

Q̃s−α̃ ?
= B

λ̃
·
[ k∏
i=1

(bi)
ξ̃i
]
· g−β̃

1

via the pairing check e
(
Q̃ , gs−α̃

2

) ?
= e

(
B

λ̃
·
[ k∏
i=1

(ai)
ξ̃i
]
· g−β̃

1 , g2
)
.

Proposition 2.5. The protocol PoBatchDiv is secure in the algebraic group model.

Proof. Appendix of [Th23].

2.3 The batched Hadamard product protocol

As mentioned in the introduction, we exploit the fact that the product f1(γ ·X) ·XN ·f2(X−1)
has coefficient f1⊙ f2(γ) at the position XN . We note that the protocol is batchable in the sense
that to show that:

Lj ⊙Rj(X) = Oj(X) for j = 1, · · · , k ,

it suffices to show that for randomly generated challenges γ, λ, the sum

fλ(X) :=
k∑

j=1

λj−1 · Lj(γ ·X) ·XN ·Rj(X
−1)

has coefficient
k∑

j=1
λj−1 ·Oj(γ) at the position XN . This boils down to expressing the difference

fλ(X) −
[ k∑
j=1

λj−1 ·Oj(γ)
]
·XN

as a sum of a polynomial fλ,−(X) of degree ≤ N − 1 and a polynomial fλ,+(X) divisible by
XN+1.

We compute this sum of polynomial products over the prime scalar field using the multimodular
FFT algorithm. This entails one FFT per product and per prime modulus used. Retrieving
fλ(X) in the coefficient form requires a single inverse FFT per prime modulus followed by the
Chinese remainder theorem. We note that for polynomial products over prime finite fields, the
multimodular FFT outperforms Schönhage-Strassen ([SS71]) and the ECFFT ([BCKL21]).

RHadProd

[
g1,

(
aL,j ,aR,j

)k
j=1

,
(
aO,j

)k
j=1

]
=

{ (
(aL,j , aR,j , aO,j ∈ G1) , Lj(X), Rj(X) ∈ Fp[X]

)
:

g
Lj(s)
1 = aL,j , g

Rj(s)
1 = aR,j , g

Lj⊙Rj(s)
1 = aO,j

}

Protocol 2.6. Batched proof of Hadamard Products (PoHadProd)

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

The CRS [g1, g
s
1, · · · , gsM

1 ] , [g2, g
s
2]

A public integer N ≤ M

Verifier’s preprocessed inputs: The elements g1, g
s
1, g

sN
1 ∈ G1, g2, g

s
2 ∈ G2

Common Inputs: Elements aL,j , aR,j , aO,j ∈ G1 (j = 1, · · · , k)

11



Claim: The Prover knows polynomials Lj(X), Rj(X) such that:

g
Lj(s)
1 = aL,j , g

Rj(s)
1 = aR,j , g

Lj⊙Rj(s)
1 = aO,j

(Lj ⊙Rj denotes the Hadamard product)

Proof generation

1. The hashing algorithm HashFS generates challenges γ, λ.

2. P sends the Fp-element

γλ :=

k∑
j=1

λj−1 · Lj ⊙Rj(γ).

Randomized sum of twisted products

3. P computes the polynomial

fγ,λ(X) :=
[ k∑
j=1

Lj(γ ·X) ·XN ·Rj(X
−1)

]
− γλ ·XN

The low degree part

4. P computes the residue

fγ,λ,−(X) := fγ,λ(X) (mod XN )

and sends the G1-element a− := g
fγ,λ,−(s)
1 .

Degree upper bound on the low degree part

5. P computes the polynomial

f̂γ,λ,−(X) := XN−1 · fγ,λ,−(X−1)

and sends the G1-element â− := g
f̂γ,λ,−(s)
1 .

The high degree part

6. P computes the polynomial

fγ,λ,+(X) :=

deg(fγ,λ)∑
i=N+1

Coef(fγ,λ , i) ·Xi−N−1

and sends the G1-element a+ := g
fγ,λ,+(s)
1 .

The evaluation challenge
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7. The hashing algorithm HashFS generates a challenge α.

8. P sends the Fp-elements

βγ,j := Lj(γ · α) , β̂j := Rj(α
−1). (j = 1, · · · , k)

9. P sends the Fp-elements

βγ,λ,− := fγ,λ,−(α) , βγ,λ,+ := fγ,λ,+(α).

10. The hashing algorithm HashFS generates a challenge δ.

The batched divisibility subprotocol

11. P computes the following polynomials:

(i). h1(X) :=
k∑

j=1
δj−1 ·

[
Lj(X)− βγ,j

]
, e1(X) := X − γ−1 · α.

(ii). h2(X) :=
k∑

j=1
δj−1 ·

[
Rj(X)− β̂j

]
+δk ·

[
f̂γ,λ,−(X)−α1−N ·βγ,λ,−

]
, e2(X) := X−α−1.

(iii). h3(X) :=
[
fγ,λ,−(X)− βγ,λ,−

]
+ δ ·

[
fγ,λ,+(X)− βγ,λ,+

]
, e3(X) := X − α

(iv). h4(X) :=
[ k∑
j=1

λj−1 · Lj ⊙Rj(X)
]
− γλ , e4(X) := X − γ

12. P computes the G1-elements bi := g
hi(s)
1 (i = 1, · · · , 4) as follows:

(i) b1 :=
k∏

j=1
(aL,j)

δj−1 · g
−

k∑
j=1

δj−1·βγ,j

1

(ii) b2 :=
k∏

j=1
(aR,j)

δj−1 · (âγ,λ,−)δ
k · g

−
[
[

k∑
j=1

δj−1·β̂j ] + δk·α1−N ·βγ,λ,−

]
1

(iii) b3 :=
[
aγ,λ,− · aδγ,λ,+

]
· g−[βγ,λ,−+δ·βγ,λ,+]

1

(iv) b4 :=
[ k∏
j=1

aλ
j−1

O,j

]
· g−γλ

1 .

13. P sends a proof for the protocol BatchDiv on the tuple [g1, (bi)
4
i=1, (ei(X))4i=1]

The verification

14. The Verifier V computes the G1 elements bi (i = 1, · · · , 4) as in Step 12.

15. V verifies the BatchDiv subprotocol.

13



16. V verifies the equation

k∑
j=1

λj−1 · (βγ,j · αN · β̂j)
?
= βγ,λ,− + αN · γλ + αN+1 · βγ,λ,+ ∈ Fp.

The proof consists of 5 G1 elements and 2k + 5 Fp elements. The Prover work is dominated by
the 5 G1 MSMs and the sum of k polynomial products (Step 3) via multimodular FFTs.

Proposition 2.7. The protocol PoHadProd is secure in the algebraic group model.

Proof. Appendix of [Th23].

3 Generalizing the permutation argument

For a permutation σ : [0, N − 1] −→ [0, N − 1], we commit to σ by committing to the
polynomial

Sσ(X) :=
N−1∑
i=0

σ(i) ·Xi.

In particular, we commit to the identity permutation of [0, N−1] by committing to the polynomial
Pid,N (X) :=

∑N−1
i=0 k ·Xk.

Similarly, for a (possibly non-injective) map ρ : I −→ J of index sets ⊆ [0, N − 1], we
commit to ρ by committing to the polynomials

Sρ(X) :=
N−1∑
i=0

ρ(i) ·Xi , χI (X) :=
∑
i∈I

Xi.

We say polynomials f(X), h(X) ∈ Fp[X] are linked by ρ if the coefficients satisfy the equations:

(3.1) Coef(h , ρ(i)) = Coef(f , i) ∀ i ∈ I.

We describe a protocol that allows a Prover to succinctly show that two committed polynomials
bear this relation. We assume the Verifier stores KZG commitments to the index sets I, J (i.e.
commitments to their indicator polynomials) and to the polynomials

Sρ(X) =
∑
i∈I

ρ(i) ·Xi , Mρ(X) =
∑
j∈J

mul(j,ρ) ·Xj ,

where mul(j,ρ) is the cardinality of the pre-image {i ∈ I : ρ(i) = j}.
In response to two randomly generated challenges δ, α ∈ Fp, the Prover shows that the

equation

(3.2)
∑
i∈I

[
α+ Coef(f , i) + δ · ρ(i)

]−1
=

∑
j∈J

mul(j,ρ) ·
[
α+ Coef(h , j) + δ · j

]−1

holds. By lemma 1.2, this implies equation 3.1. We now describe the process whereby the Prover
shows that equation 3.2 holds.
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The Prover verifiably sends commitments to the polynomials

fI,α,inv(X) :=
∑
i∈I

[Coef(f , i) + α + δ · ρ(i)]−1 ·Xi

hJ ,α,inv(X) :=
∑
j∈J

[
Coef(h , j) + α+

∑
j∈J

j ·Xj
]−1 ·Xj .

It is straightforward to do so, since they are the unique polynomials of degree ≤ N − 1 that
satisfy the Hadamard product equations

(3.3) fI,α,inv(X) ⊙
[
f(X) + α · [

N−1∑
k=0

Xi] + δ · Sρ(X)
]
= χI (X)

(3.4) hJ ,α,inv(X) ⊙
[
h(X) + α · [

N−1∑
k=0

Xk] + δ ·
∑
j∈J

j ·Xj
]
= χJ (X).

By construction, the left hand side of equation 3.2 is the evaluation fI,α,inv(1). The right
hand side of equation 3.2 is the dot product hJ ,α,inv(X) ◦Mρ(X). To that end, the Prover uses
the dot product protocol to show that these Fp-elements coincide, i.e.

fI,α,inv(1) = hJ ,α,inv(X) ◦ Mρ(X) = hJ ,α,inv ⊙Mρ(1).

This is an argument of knowledge for the following relation:

RSelfMap[g1, (a, Cρ, CI), b] =


(a,b ∈ G1), f(X), h(X) ∈ Fp[X]) :

g
f(s)
1 = a , g

h(s)
1 = b

Coef
(
h , ρ(i)

)
= Coef

(
f , i

)
∀ i ∈ I


Here, ρ is a map I −→ J of index sets I, J ⊆ [0, N − 1]. Cρ, CI are the KZG commitment
to the polynomials Sρ(X) :=

∑
i∈I ρ(i) ·Xi, χI (X) :=

∑
i∈I X

i respectively.

Protocol 3.1. Proof of self-map (PoSelfMap)

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively

The CRS [g1, g
s
1, · · · , gsM

1 ] , [g2, g
s
2]

A public integer N ≤ M

Common preprocessed input: The polynomials

Pid(X) :=
N−1∑
i=0

i ·Xi , Sρ(X) :=
N−1∑
i=0

ρ(i) ·Xi , Mρ(X) :=
∑
j∈J

mul(j,ρ) ·Xj

for index sets I, J ⊆ [0, N − 1] and a map ρ : I −→ J with domain I and image J .

Verifier’s preprocessed input: The elements g1, g
s
1, g

sN
1 ∈ G1, g2, g

s
2 ∈ G2

The [KZG10] commitments

gsN

1 , Cρ := g
Sρ(s)
1 , C1 := g

∑N−1
i−0 si

1 , Mρ := g
Mρ(s)
1
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Cid := g
Pid(s)
1 , Cid,J := g

Pid⊙χJ (s)

1 = g

∑
j∈J

j·sj

1 .

Common Inputs: Elements a, b ∈ G1

Claim: The Prover knows polynomials f(X), h(X) of degree ≤ N − 1 such that

a = g
f(s)
1 , b = g

h(s)
1 , Coef(h , ρ(i)) = Coef(f , i) ∀ i ∈ I

Proof generation

1. The hashing algorithm HashFS generates challenges δ, α.

2. P computes the polynomials

fI,α,inv(X) :=
∑
i∈I

[
Coef(f , i) + α + δ · ρ(i)

]−1 ·Xi

hJ ,δ,α,inv(X) :=
∑
j∈J

[
Coef(h , j) + α+ δ · j

]−1 ·Xj .

3. P sends the G1-elements

aI,δ,α,inv
:= g

fI,δ,α,inv(s)
1 , bJ ,δ,α,inv

: = g
hJ ,δ,α,inv(s)
1 .

4. P sends the element
βI,δ,α,inv

:= fI,δ,α,inv(1) ∈ Fp.

5. P sends (batched) proofs of the following Hadamard and dot product protocols:

- PoHadProd
[
g1,

(
aI,δ,α,inv

, a ·Cα
1 ·Cδ

ρ

)
, CI

]
- PoHadProd

[
g1,

(
bJ ,δ,α,inv

, b ·Cα
1 ·Cδ

id,J
)
, CJ

]
- PoDotProd[g1, (Mρ, bJ ,δ,α,inv

), βI,δ,α,inv
].

6. P sends (batched) proofs of the following degree upper bound protocols:

- PoDegUp[g1, a, N − 1]

- PoDegUp[g1, b, N − 1]

- PoDegUp[g1, aI,δ,α,inv
, N − 1]

- PoDegUp[g1, bJ ,δ,α,inv
, N − 1].

7. P sends the G1-element

QI,δ,α,inv
:= g

[fI,δ,α,inv(s)−βI,δ,α,inv]
/
[s−1]

1 ∈ G1.

The verification
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8. The Verifier V verifies the proofs of the degree upper bounds (PoDegUp), the Hadamard
product protocols (PoHadProds) and the dot product protocol (PoDotProd).

9. V verifies the equation

(QI,δ,α,inv
)s−1 ?

= aI,δ,α,inv
· g

−βI,δ,α,inv

1 ∈ G1

via the pairing check e(QI,δ,α,inv
, gs−1

2 )
?
= e(aI,δ,α,inv

· g
−βI,δ,α,inv

1 , g2).

In practice, the Hadamard and dot products should be batched so as to minimize the number of
G1-elements in the proof. Likewise, the degree upper bounds - including those arising from the
Hadamard and dot products - should be batched.

4 A protocol for weighted sums

As before, let I, J be index sets ⊆ [0, N − 1] and let ρ : I −→ J be a map with domain I
and image J . For every index j ∈ J , we denote by ρ−1(j) the pre-image:

ρ−1(j) := {i ∈ I : ρ(i) = j}.

We denote the cardinality of ρ−1(j) by mul(j,ρ). We commit to the map ρ by committing to the
polynomial

Sρ(X) :=
∑
i∈I

ρ(i) ·Xi

and to the indicator polynomial χI (X) of I via the KZG commitment scheme.

Let W (X) be a committed polynomial of “weights”. For committed polynomials f(X), h(X),
we describe a protocol that allows a Prover to succinctly show that the following equations hold:

(4.1) Coef(h , j) =
∑

i∈ρ−1(j)

Coef(W , i) · Coef(f , i) ∀ j ∈ J .

We assume that the Verifier stores the KZG commitments

gsN

1 , Cρ := g
Sρ(s)
1 , C1 := g

∑N−1
i−0 si

1 , Mρ := g
Mρ(s)
1 , W := g

W (s)
1

Cid := g
Pid(s)
1 , Cid,J := g

Pid⊙χJ (s)

1 = g

∑
j∈J

j·sj

1 .

Note that because of the Schwartz-Zippel lemma, equation 4.1 reduces to showing that for a
randomly generated challenge ζ ∈ Fp, the following equation holds:

(4.2)
∑
j∈J

Coef(h , j) · ζj =
∑
i∈I

Coef(W , i) · Coef(f , i) · ζρ(i) .

The left hand side of Equation 4.2 is merely the dot product h(X) ◦ χJ (ζ · X), which can be
verifiably sent to the Verifier using the dot product protocol. The right hand side of Equation
4.2 is the dot product [

f(X)⊙W (X)] ◦
[∑
i∈I

ζρ(i) ·Xi
]
,
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where ⊙ denotes the Hadamard product and ◦ denotes the dot product. This part is marginally
more subtle, but it boils down to verifiably sending a commitment to the polynomial

Sρ,ζ(X) :=
∑
i∈I

ζρ(i) ·Xi,

followed by invoking the Hadamard product and dot product protocols. The polynomial Sρ,ζ(X)
is the unique polynomial of degree ≤ N − 1 with the following properties:

- Sρ,ζ(X)⊙ χI (X) = Sρ,ζ(X)

- χJ (ζ ·X) is obtained by the action of the map ρ on the polynomial Sρ,ζ(X), i.e.

Coef
(
Sρ,ζ , i

)
= Coef

(
χJ (ζ ·X) , ρ(i)

)
∀ i ∈ I.

Thus, the task of succinctly proving equation 4.2 reduces to the the proof of twist (PoTwist) and
the self-map protocol (PoSelfMap) from the preceding section.

Protocol 4.1. Proof of weighted sums (PoWeightedSums)

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively

The CRS [g1, g
s
1, · · · , gsM

1 ] , [g2, g
s
2]

A public integer N ≤ M

Common preprocessed input: A public integer N ; the polynomials

N−1∑
i=0

Xi , Pid(X) :=
N−1∑
i=0

i ·Xi , Sρ(X) :=
N−1∑
i=0

ρ(i) ·Xi , Mρ(X) :=
∑
j∈J

mul(j,ρ) ·Xj

for index sets I, J ⊆ [0, N − 1] and a map ρ : I −→ J with domain I and image J .

The polynomial W (X) of weights such that W (X)⊙ χI (X) = W (X).

Verifier’s preprocessed input: The elements g1, g
s
1, g

sN
1 ∈ G1, g2, g

s
2 ∈ G2

The KZG commitments

gsN

1 , Cρ := g
Sρ(s)
1 , C1 := g

∑N−1
i−0 si

1 , Mρ := g
Mρ(s)
1 , W := g

W (s)
1

Cid := g
Pid(s)
1 , Cid,J := g

Pid⊙χJ (s)

1 = g

∑
j∈J

j·sj

1 .

Common Inputs: Elements a, b ∈ G1

Claim: The Prover knows polynomials f(X), h(X) such that

a = g
f(s)
1 , b = g

h(s)
1

Coef(h , j) =
∑

i∈ρ−1(j)

Coef(W , i) · Coef(f , i) ∀ j ∈ J

where ρ−1(j) denotes the pre-image set {i ∈ I : ρ(i) = j}.

Proof generation
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1. The Prover P sends the G1-element

aW := g
f⊙W (s)
1 .

2. The hashing algorithm HashFS generates a challenge ζ.

3. P computes the polynomial χJ (ζ ·X) :=
∑

j∈J ζj ·Xj and sends the G1-element

CJ ,ζ := g
χJ (ζ·s)
1 = g

∑
j∈J

ζj ·sj

1 .

4. P computes the polynomial

Sρ,ζ(X) :=
∑
i∈I

ζρ(i) ·Xi

and sends the G1-element
Cρ,ζ := g

Sρ,ζ(s)
1 .

5. P sends the Fp-element

β :=
∑
j∈J

Coef(h , j) · ζj = h⊙ χJ (ζ)

6. P sends a proof of PoTwist[g1, (CJ , ζ), CJ ,ζ ]. (proof of twist)

7. P sends (batched) proofs of the following Hadamard and dot products:

- PoHadProd[g1, (a, W), aW ].

- PoDotProd[g1, (b, CJ ,ζ), β]

- PoDotProd[g1, (aW , Cρ,ζ), β].

8. P sends a proof of PoSelfMap[g1, (Cρ,ζ , Cρ, CI), CJ ,ζ ] (self-map protocol).

9. P sends a proof of PoDegUp[g1, (Cρ,ζ , N − 1)]. (degree upper bound protocol).

The verification

10. The Verifier V verifies the subprotocols PoHadProd[g1, (a, W), aW ],

PoDotProd[g1, (b, CJ ,ζ), β], PoDotProd[g1, (aW , Cρ,ζ), β],

PoSelfMap[g1, (Cρ,ζ , Cρ), CJ ,ζ ], PoDegUp[g1, (Cρ,ζ , N − 1)].

In practice, the Hadamard and dot products - including those arising from the self-map
subprotocol - should be batched so as to have fewer G1-elements in the proof (and hence, fewer
MSMs in the proof generation). The proof of twist boils down to a polynomial commitment
opening and can be batched with the other openings using the protocol BatchDiv. The protocol
PoWeightedSums can be merged with the Snark described in [Th23], in which case the only
G1-elements needed in the proof are the [KZG10] commitments to the polynomials f ⊙W (X),
χJ (ζ ·X), and∑

i∈I

[
ζρ(i) + δ · ρ(i) + α

]−1 ·Xi ,
∑
j∈J

[
ζj + δ · ρ(j) + α

]−1 ·Xj ,
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where δ, α ∈ Fp are challenges generated after the commitment to Sρ,ζ(X) has been sent (as in
the preceding protocol PoSelfMap).
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A Deferred proofs

A.1 Self-map protocol

Proposition A.1. The protocol PoSelfMap is secure in the algebraic group model.

Proof. (Sketch) Since completeness is straightforward, it suffices to demonstrate soundness.
Suppose a PPT algorithm APPT outputs an accepting transcript.

Thus, in particular, the following subprotocols are validated by the Verifier:

- PoHadProd
[
g1,

(
aI,δ,α,inv

, a ·Cα
1 ·Cδ

ρ

)
, CI

]
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- PoHadProd
[
g1,

(
bJ ,δ,α,inv

, b ·Cα
1 ·Cδ

id,J
)
, CJ

]
These Hadamard product subprotocols - in conjunction with the degree upper bound protocols

- imply that with overwhelming probability, an extractor EPPT can simulate the extractors of
the Hadamard and dot product protocols to extract polynomials f∗(X), h∗(X), f∗

I,δ,α,inv
(X),

h∗J ,δ,α,inv(X) of degree ≤ N − 1 such that:

a = g
f∗(s)
1 , b = g

h∗(s)
1 , aI,δ,α,inv

= g
f∗
I,δ,α,inv

(s)

1 , bJ ,δ,α,inv
= g

h∗
I,δ,α,inv

(s)

1

and such that these extracted polynomials satisfy the following equations:

1. f∗
I,δ,α,inv

(X) ⊙
[
f(X) + δ · [

∑
i∈I

ρ(i) ·Xi] + α ·
∑N−1

k=0 Xk
]
= χI (X) or equivalently,

f∗
I,δ,α,inv

(X) =
∑
i∈I

[
Coef(f∗ , i) + α + δ · ρ(i)

]−1 ·Xi.

2. h∗
J ,δ,α,inv

(X) ⊙
[
[h∗(X) +

∑
j∈J

j ·Xj ] + α ·
∑N−1

k=0 Xk
]
= χJ (X) or equivalently,

h∗
J ,δ,α,inv

(X) =
∑
j∈J

[
Coef(h∗ , j) + α + δ · ρ(i)

]−1 ·Xj .

Furthermore, the dot product subprotocol PoDotProd[g1, (Mρ, bJ ,δ,α,inv
), βI,δ,α,inv

] implies that
with overwhelming probability, the extracted polynomials f∗

I,δ,α,inv
(X), h∗

J ,δ,α,inv
(X) satisfy the

equation

βI,δ,α,inv
= Mρ(X) ◦ h∗

J ,δ,α,inv
(X) =

∑
j∈J

mul(j,ρ) ·
[
Coef(fρ , j) + α + δ · ρ(i)

]−1
.

The pairing check

e(QI,δ,α,inv
, gs−1

2 )
?
= e(aI,δ,α,inv

· g
−βI,δ,α,inv

1 , g2)

implies that with overwhelming probability, the extracted polynomial f∗
I,δ,α,inv

(X) satisfies the
equation

βI,δ,α,inv
= f∗

I,δ,α,inv
(1).

Thus, with overwhelming probability, the coefficients of the extracted polynomials f∗(X), h∗(X)
satisfy the equation∑

j∈J
mul(j,ρ) ·

[
Coef(h∗ , j) + α + δ · j

]−1
=

∑
i∈I

[
Coef(f∗ , i) + α + δ · ρ(i)

]−1
.

Since the challenges α, δ were randomly and uniformly generated after the elements aI,δ,α,inv
,

bJ ,δ,α,inv
were sent, lemma 1.2 implies that with op, the extracted polynomials f∗(X), h∗(X)

bear the relation
Coef(f∗ , i) = Coef(h∗ , ρ(i)) ∀ i ∈ I,

which completes the proof of soundness.
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A.2 Protocol for weighted sums

Proposition A.2. The protocol PoWeightedSums is secure in the algebraic group model.

Proof. (Sketch) Since completeness is straightforward, it suffices to demonstrate soundness.
Suppose a PPT algorithm APPT outputs an accepting transcript.

The subprotocol PoTwist[g1, (CJ , ζ), CJ ,ζ ] (proof of twist) implies that with overwhelming
probability,

CJ ,ζ = g
χI (ζ·s)
1 = g

∑
j∈J

ζj ·sj

1 .

Furthermore, the subprotocol PoSelfMap[g1, (Cρ,ζ , Cρ), CJ ,ζ ] (self-map protocol) implies that
with overwhelming probability, an extractor EPPT can simulate the extractor of PoSelfMap to
extract a polynomial S∗

ρ,ζ(X) such that

Cρ,ζ = g
S∗
ρ,ζ(s)

1 , Coef(S∗
ρ,ζ , i) = ζρ(i) ∀ i ∈ I.

The Hadamard and dot product subprotocols

- PoHadProd[g1, (a, W), aW ],

- PoDotProd[g1, (aW , Cρ,ζ), β]

- PoDotProd[g1, (b, CJ ,ζ), β]

imply that with overwhelming probability, EPPT can simulate the extractors of the Hadamard and
dot product protocols to extract polynomials f∗(X), h∗(X) such that

a = g
f∗(s)
1 , b = g

h∗(s)
1 , aW = g

f∗⊙W (s)
1

and

(A.1) f∗(X) ◦ χJ (ζ ·X) = β = [f∗(X)⊙W (X)] ◦ S∗
ρ,ζ(X).

The left hand side of equation A.1 is
∑

j∈J Coef(h∗ , j) · ζj , while the right hand side is∑
i∈I Coef(f

∗ , i) · Coef(W , i) · ζρ(i). Since the challenge ζ was randomly and uniformly
generated, the Schwartz-Zippel lemma implies that with overwhelming probability, the coefficients
of the extracted polynomials satisfy the equations

Coef(h∗ , j) =
∑

i∈ρ−1(j)

Coef(W , i) · Coef(f∗ , i) ∀ j ∈ J ,

which completes the proof of soundness.

B Multimodular FFTs

A consequence of using the monomial basis is that the only superlinear computations the
Prover performs are products of polynomials in Fp[X]. The simplest and the most efficient way
to do so is to use multimodular FFTs (terminology as in the NTL library).

We fix highly 2-adic primes p1, p2 such that p < min(p1, p2) and the product p1 · p2 is larger
than p2 · M where M is an upper bound on the degrees of any polynomials to be multiplied.
Given polynomials f1(X), f2(X) ∈ Fp[X], a the Prover computes the product f1(X) · f2(X) as
follows.
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1. Lift the polynomials f1(X), f2(X) to characteristic zero. Denote these polynomials by
f̃1(X), f̃2(X) ∈ Z[X]

2. Compute the polynomials f̃1(X) · f̃2(X) (mod pi · Z[X]) using FFTs in Fpi for i = 1, 2.

3. Use the Chinese remainder theorem on the coefficients of these polynomials to recover the
polynomial f̃1,2(X) := f̃1(X) · f̃2(X) ∈ Z[X].

4. Reduce the coefficients of f̃1,2(X) modulo p to retrieve the Fp-polynomial f1(X) · f2(X).

Computing a sum
∑k

j=1 fj,1(X) · fj,2(X) entails k FFTs and a single inverse FFT per prime
modulus used in addition to the Chinese remainder theorem and reduction of the coefficients
modulo p.

Steve Thakur
Panther Protocol Cryptography Team
Email: steve@pantherprotocol.io,
stevethakur01@gmail.com
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