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Abstract. Side-channel analysis certification is a process designed to certify the
resilience of cryptographic hardware and software implementations against side-
channel attacks. In certain cases, third-party evaluations by external companies
or departments are necessary due to limited budget, time, or even expertise with
the penalty of a significant exchange of sensitive information during the evaluation
process. In this work, we investigate the potential of Homomorphic Encryption
(HE) in performing side-channel analysis on HE-encrypted measurements. With HE
applied to side-channel analysis (SCA), a third party can perform SCA on encrypted
measurement data and provide the outcome of the analysis without gaining insights
about the actual cryptographic implementation under test. To this end, we evaluate its
feasibility by analyzing the impact of AI-based side-channel analysis using HE (private
SCA) on accuracy and execution time and compare the results with an ordinary
AI-based side-channel analysis (plain SCA). Our work suggests that both unprotected
and protected cryptographic implementations can be successfully attacked already
today with standard server equipment and modern HE protocols/libraries, while the
traces are HE-encrypted.
Keywords: Side-channel Analysis · Deep Learning · Neural Networks · Homomor-
phic Encryption · Private AI

1 Introduction
Cloud services have become increasingly popular in recent years, as they provide organi-
zations and individuals with the ability to store, process, and analyze a large amount of
data without investing in expensive hardware and infrastructure. One prominent example
of technologies used in the cloud is artificial intelligence and machine learning, which
enable organizations to extract valuable insights from large datasets, leading to improved
decision-making in many fields of technology and business. However, using cloud services
also raises concerns about privacy violations such as data breaches, unauthorized access,
data misuse, lack of transparency, and compliance issues, e.g., GDPR. In general, these
kinds of privacy issues arise if any third party (not necessarily a cloud service) is required
to operate on data that contains sensitive information that is supposed not to be leaked or
exposed. Generally, there are different reasons for outsourcing data and computation to a
third party like a cloud service like lack of computational power (e.g., computationally
expensive tasks have to be performed), lack of expertise (e.g., a third-party service is used
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to perform ad-hoc computational tasks for which specific expertise is needed), or costs
effectiveness (e.g., it may be more convenient to perform some tasks in the cloud due to
associated maintenance expenses).

Side-channel analysis dates back to the seminal work of Kocher [KJJ99] and represents
today one of the pillars for security evaluations of information security products. In
particular, profiling side-channel attacks represent a de-facto standard evaluation technique
for evaluation, and deep learning is particularly powerful in this task [PPM+23].

In the context of side-channel analysis, the reasons for outsourcing side-channel analysis
to a third-party (e.g., cloud provider) can be traced back to a lack of infrastructure to
perform side-channel evaluation in-house due to an availability issue, or the lack of time
or resources to stay up-to-date with the theory and implementation of state-of-the-art
side-channel attacks (e.g., it may be more convenient to outsource the analysis of side
channels to a specialized third party to reduce the time and effort required to perform
the analysis internally and train the staff.) In particular, an independent third-party
assessment of side-channel analysis is an important step in the certification process, which
aims to certify the resilience of cryptographic hardware and software implementations
against side-channel attacks. This process typically involves long cycles of evaluations,
sometimes including third parties, to reach a level of confidence that an implementation
will pass security certification. For this reason, evaluations are often carried out in advance
by independent third parties (internal or external) to reduce the costly evaluation cycles
during the certification process. To date, the interaction with a third party happens with
a noticeable exchange of proprietary information between the parties – in the form of a
”prepared” device under test and/or a set of traces collected under precise assumptions.

Homomorphic encryption (HE) is a cryptographic primitive that enables computation
on encrypted data without the need to decrypt it first. A third-party evaluator can privately
interact with a customer desiring a side-channel security evaluation for a device under
test using HE. The evaluator receives the HE traces from the customer, analyses them in
encrypted form homomorphically, and reports for any possible leakage to the customer
without learning anything about the traces or the final results. Once the customer is
confident about the security of its device, it can send it to the certifying authority for final
security certification.

With HE, a third-party provider can analyze the traces and provide the outcome of
the analysis without gaining insights into the underlying cryptographic implementation
and its leakage profile. At the same time, the process of pre-certification and its costs can
be amortized across more trials executed through a cloud service where homomorphically
encrypted traces can be uploaded to the cloud for preliminary testing.

Related work
Artificial intelligence techniques have recently gained significant attention from the side-
channel community, owing to their success in various domains where data analysis is
used. In particular, the applicability of deep learning to side-channel analysis has spurred
numerous investigations into its performance and effectiveness, showing excellent results.
For instance, deep neural networks (DNNs) outperformed traditional profiling attacks such
as template attacks in practice [CRR03, RO04] and were proven highly successful even on
devices protected with various countermeasures. Machine learning has been used in SCA
for more than two decades already. In the first few years, the focus was on simpler machine
learning techniques like naive Bayes [PHG17], random forest [LMBM13], and support
vector machines [HZ12]. Besides evaluating the attack performance (i.e., how many traces
is required to break the target), an important direction was to conduct efficient feature
engineering [PHJB19]. In 2016, Maghrebi et al. showcased how deep learning (deep neural
networks) can break various targets [MPP16]. This work started a series of research on
deep learning-based SCA (DLSCA), where most of the works explored how to conduct as
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efficient as possible attacks. For instance, Cagli et al. demonstrated how data augmentation
improves the performance of attacks on desynchronized datasets [CDP17]. Kim et al.
showed how convolutional neural networks (CNNs) can break various targets and that
regularization reduces overfitting, further improving the attack performances [KPH+19].
Perin et al. demonstrated how ensembles of neural networks can outperform a single
neural network [PCP20]. Zaid et al. provided the first methodology to build convolutional
neural networks for SCA [ZBHV19]. Rijsdijk et al. [RWPP21] and Wu et al. [WPP22]
discussed how to improve the hyperparameter tuning phase with reinforcement learning
and Bayesian optimization, respectively. Finally, more recent results by Lu et al. [LZC+21],
and Perin et al. [PWP22] demonstrated that deep neural networks work better if no prior
feature selection is done. These works showcase that it is possible to break protected
targets even with a single attack measurement.

HE has already been successfully tested in various real-world applications, including
energy forecasting predictions [BCIV17], healthcare [WJT+17, BLN14, BBH+22], and
financial services [MHS+19], showing that it is a viable solution for safeguarding privacy
of AI computations. Regarding classification based on homomorphic encryption, there are
many works in the literature [GDL+16, DSC+19, DKS+19, CGL+20, CBL+18, CJP21,
JVC18, VJH21]. These works brought many improvements and dedicated optimizations.
However, they all face the trade-off between limited neural network depth and computa-
tional overhead. While this limitation limits the use cases for private ML, these works
show the practicability of applying privacy-preserving methods to less complex neural
networks.

Contributions

The main goal of this work is to investigate the technical feasibility of HE-assisted side-
channel analysis using convolutional neural networks to highlight strengths and understand
limitations in terms of performance and accuracy. This work shows how to perform
private neural network-based side-channel analysis using fully homomorphic encryption
techniques. First, we evaluate two datasets, including both unprotected and protected
software implementations of AES-128, showing that both HE-encrypted datasets can be
successfully attacked with standard server equipment and modern HE protocols/libraries.
Then, we discuss the strengths and limitations of HE-assisted DLSCA: on the positive side,
we show the technical feasibility of HE-assisted DLSCA both in terms of accuracy and
execution time. On the negative side, our system works in the semi-honest trust model
where all the parties shall never actively deviate from the HE protocol in order to ensure
the validity of the results.

Please note that this is the first attempt in the open literature to evaluate the feasibility
of HE-assisted side-channel analysis using deep learning neural networks with the goal
of establishing the basis and paving the way for future studies and advancements in this
emerging area of HE in regard to side-channel analysis.

The corresponding implementation is available on request and will be made public with
the paper.

Organization

The rest of this paper is organized as follows. In Section 2, background information on
HE and DL-based SCA is provided. In Section 3, a description of how to perform HE-
assisted DL-based SCA is given. Section 4 overviews the setup and conducted experiments.
Section 5 provides a comprehensive discussion about the obtained results. Conclusions
and directions for future work are provided in Section 6.
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2 Background
First, we provide basics related to homomorphic encryption to enable the reader to
understand the fundamental operations done there. Then, we provide information related
to side-channel analysis with neural networks.

2.1 Homomorphic Encryption (HE)
Cryptographic algorithms aim at protecting our data regarding confidentiality, integrity,
and authenticity. Existing solutions shield our communication (data in transit) and data
storage (data at rest). However, the emergence of cloud computing has faced cryptographic
research with fundamentally new challenges and led to new research areas to secure data
during computations. Before, there were only two options when storing data in the cloud
was necessary. First, download and decrypt the data, perform computations, encrypt,
and upload again. Second, leave the data unprotected in the cloud to use its services.
These options are a trade-off between runtime and security. However, one often uses
cloud services due to the need for more computational resources, such as fast hardware or
significant storage capabilities. Furthermore, given use cases like machine learning as a
Service (MlaaS), where pre-trained models are proprietary information, users are forced to
entrust the companies with their data. This raises the need for a new privacy-preserving
primitive.

Operations on Encrypted Data With homomorphic encryption (HE) we [RAD78, Gen09]
refer to encryption schemes that allow operations on encrypted data that directly carry
over to the underlying plaintext domain. Without decryption, a server can execute some
algorithm on encrypted data without learning anything about the input or the result of
the computation. Privacy-preserving solutions like HE have many applications, such as
statistical evaluations [AEH15, LKS17], medical domain [LYS15, WZD+16], or financial
domain [Bag19, SA21, SBBV22].

The idea of performing operations on encrypted data seems to have been mentioned in
a paper for the first time in 1978 by Rivest, Adleman, and Dertouzous [RAD78] in terms of
privacy homomorphism. Some (early) encryption schemes already support homomorphic
encryption, but only partially, i.e., in a single operation. For example, ElGamal [Gam84] is
multiplicatively homomorphic, while Pallier [Pai99] is additively homomorphic. Encryption
schemes with both additive and multiplicative homomorphisms rely on noise to secure the
secret. This inherent noise increases with the number of homomorphic operations and
thus limits the maximum number of operations. We refer to such schemes as Somewhat
HE (SHE) schemes. Allowing unlimited operations was an open problem until 2009 when
Gentry introduced the first Fully HE (FHE) scheme [Gen09]. The key step to FHE is the
bootstrapping procedure, allowing to reset the noise of a ciphertext for unbounded depth
in the evaluation circuit.

Today, FHE schemes can be divided into binary [DM15, CGGI20] and arithmetic [Bra12,
BGV12, FV12, CKKS17], depending on the types of operations supported. Binary FHE
schemes have a bootstrapping step after each computation, naturally giving them an
unbounded number of operations. However, encrypting binary values gives a massive
ciphertext expansion and runtime penalty when working with integers. Arithmetic FHE
schemes, on the other hand, provide several optimizations for computations on integers
(in the case of BGV and BFV) or fixed precision numbers (in the case of CKKS). In
contrast to binary schemes, bootstrapping is expensive. In general, one can boost the
number of operations one can perform before the noise grows too large by increasing the
parameters of HE. Multiplication is the primary driver of noise growth. In practice, one
counts the required multiplications and tunes the parameters to fit the specific use case.
We refer to such an instantiation as Levelled HE (LHE), as we can perform exactly “L”
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levels of multiplications. Next to the noise problem, these LHE schemes only allow for
homomorphic addition and multiplication in all settings, and vector rotations when using
special encoding. For every non-linear function, such as typical activation functions in
neural networks, it is most efficient to work with polynomial approximations like Taylor
approximation or Chebyshev approximation.

When considering the HE scheme as a black box for secure computation, one could
instantiate our use case with any of the described methods above. However, we do want
to motivate our use of the CKKS scheme. The main driving factor of multiplicative depth
in neural network inference tasks is the number of layers and degree of the approximation
polynomials. Since our task can be achieved with only a few layers (see, e.g., [PWP22] where
the authors required neural networks with only a few layers to break the targets protected
even with masking and hiding countermeasures) and a low degree of the approximation
polynomial gives us good results, the multiplicative depth is not an issue. Thus, we can
select an arithmetic LHE scheme. Contrary to other LHE schemes, CKKS is built to
work directly with approximate numbers. This property makes it a natural fit for neural
network tasks. Finally, CKKS allows for batching of ciphertexts. This optimization allows
encrypting multiple data points into a single ciphertext and performing operations in a
single instruction multiple data (SIMD) fashion.

In summary, HE is a very active research domain with many developments lately. While
the malleability of ciphertexts was initially an unwanted side effect, the homomorphic
properties have become a hope for privacy-preserving algorithms. Given our use case,
we evaluated the state-of-the-art HE schemes and weighed their trade-offs. At first, we
compared the binary versus the arithmetic HE schemes. When dealing with approximate
numbers (or integers) and the multiplicative depth of the encrypted computation is known
a priori, the optimizations of LHE schemes outweigh their noise limitation. Finally, within
the arithmetic schemes, only the CKKS scheme naturally supports approximate numbers,
making it a perfect fit for our use case.

Homomorphic Encryption applied to Machine Learning In the domain of privacy-
preserving machine learning, research focuses on applying privacy-preserving protocols
to the training and classification of machine learning models. While HE generally allows
encrypted computations, it is necessary to weigh the drawbacks and benefits of the
different schemes carefully. The general properties of different HE schemes translate to
their application in machine learning. Binary schemes have the advantage of unlimited
circuit depth and can be applied to deep neural networks without adaptation [CGGI18].
However, working only on single-bit encryptions is a substantial performance penalty.
Several works opt for the approximate arithmetic CKKS scheme [CKKS17]. The main
issue there is the limited evaluation circuit. In CKKS, the multiplicative depth of the
evaluation circuit depends on the scheme’s parameters. More significant parameters incur
runtime and memory costs while allowing for more operations. We will go further into the
details of parameter choices in Section 2.1.1 and Section 3.2. In [BHM+19], the authors
propose using more significant HE parameters to tackle the multiplicative depth of training
a neural network on encrypted data. Given the multiplicative depth in deep neural network
inference, Lee et al. [LKL+22] implement bootstrapping with significant HE parameters.
Both approaches manage to solve their computation tasks but with high computational
complexity. The first takes about five days to train a network for text classification, while
the former takes around three hours for one classification in a 20-layer neural network.
In [JVC18], the authors use additive HE combined with Secure multi-party Computation
(MPC). They implement convolutional and dense neural network layers with an additive
HE scheme while they evaluate the non-linear functions with MPC. This strategy allows
them to compute complex neural networks while imposing high network and runtime costs
on the client.
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2.1.1 CKKS: Approximate Homomorphic Encryption

In this section, we will describe the specifics of the CKKS [CKKS17, CHK+18] cryptosystem.
Fundamentally, CKKS provides an encoding strategy allowing us to encrypt complex
vectors in integer-polynomial-based encryption schemes. While this approach can be
instantiated with different methods, our discussion revolves around the BFV [Bra12, FV12]
cryptosystem with CKKS encoding.

Encoding In BFV-like HE schemes, we operate on polynomial ringsRq = Zq [X] / (Xn + 1),
for some large q and a power of two n. More precisely, public and private keys and cipher-
texts are represented as integer polynomials with fixed degree n and coefficient modulus
q. The individual polynomial coefficients are centered around zero. They lie within
(−q/2, q/2]. It is important to note that CKKS provides a homomorphic encoding strategy
to pack a vector of Cn

2 complex numbers into a plaintext polynomial Rq. Additions
and multiplications of an encoded plaintext polynomial lead to element-wise operations
on the underlying vector of complex numbers. Next, to element-wise operations, this
encoding strategy preserves the Galois automorphisms enabling vector rotations in the
encrypted domain. Finally, the encoding procedure contains a rounding step since we map
complex vectors to integer polynomials. CKKS multiplies the input numbers with the scale
parameter ∆ to avoid substantial accuracy loss in the encoding function. Typically, this
scale is in a limited range ∆ ∈ {220, . . . , 260}. The inherent noise required for the security
of the encryption is then added in the least significant bits of the encoded numbers. Thus,
increasing the ∆ parameter decreases the noise impact. Ultimately, choosing the correct
value for ∆ is use-case specific and can be done empirically.

Encryption Scheme The CKKS encryption scheme is based on the (Ring) Learning With
Errors Problem [Reg05, LPR10]. The fundamental assumption, a tuple of polynomials
a, a · s+ e ∈ R2

q is indistinguishable from a random tuple a, b ∈ R2
q . Here, a ∈ Rq, s ∈ Rq

are polynomials in our ring, and e ∈ χ is a noise term where χ is the bounded discrete
Gaussian distribution. In BFV-like HE systems, reducing the norm of the secret polynomial
s is necessary. Usually, without impact on the security assumptions, a ternary polynomial
R3 is sampled with coefficients in {−1, 0, 1}. In such HE systems, we set our secret key
as sk = s and our public key as pk = (−a · s + e, a) ∈ R2

q . The negation of the first
public key polynomial simplifies notation. Given an encoded plaintext polynomial m ∈ Rq

and a public key pk = (p0, p1), we can encrypt the underlying message by sampling
u ← R3, e0, e1 ← χ and setting ct = (c0, c1) = (m + up0 + e0, up1 + e1). To decrypt,
perform m = [c0 + c1s]q, where [·]q indicates a modular reduction of the polynomial
coefficients.

Homomorphic Operations In CKKS, homomorphic addition comes out of the box since
Enc(∆m1)+Enc(∆m2) = (c00+c01, c10+c11) = Enc(∆(m1+m2)). Plaintext multiplication,
on the other hand, is equivalent to the tensor of the ciphertext Enc(∆m1 · ∆m2) =
(c00 · c01, c00 · c11 + c10 · c01, c10 · c11) ∈ R3

q . After performing a multiplication, we need to
reduce the size of the ciphertext and adjust the scaling. To reduce the ciphertext back to
two polynomials, we need a procedure called key switching, which we will discuss later.
Next to the size expansion, the internal scaling, introduced by the encoding, is squared.
It is necessary to rescale the ciphertext back to the old scaling factor, as keeping track
of the scales of different ciphertexts is challenging. Further, after several multiplications,
decryption would fail when the scale grows larger than the coefficient modulus. The
rescaling procedure, thus, divides the ciphertext by the scale ∆.

Next to addition and multiplication, another vital operation is the homomorphic vector
rotation. Applying Galois automorphisms on the ciphertexts leads to an underlying vector
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rotation in the plaintext space. Again, such a transformation on the ciphertext requires a
key-switching procedure with dedicated public keys.

In summary, we have the capabilities of SIMD addition, multiplication, and vector
rotation. Before implementing an algorithm, we can make slight changes to make it more
“HE-friendly”. In practice, we often approximate non-linear functions with polynomials.
Further, there are many adaptations to optimize numerical algorithms for batched compu-
tations [HS14, HS15, HS18]. When discussing our experiments, we will highlight the steps
taken to make the algorithms more “HE-friendly”.

Key Switching Both in the multiplication and rotation procedures, we arrive at cipher-
texts that cannot be decrypted with the secret key s. A ciphertext product requires a
squared secret key s2, while after the homomorphic rotation ψt(m), we require a trans-
formed key ψt(s), where t indicates the steps (left or right depending on the sign). While
we could take that into account during decryption, we need to reset the ciphertext to
the original key to allow for subsequent homomorphic operations. We can only add or
multiply ciphertexts when tied to the same secret key. Enabling the server to perform
this transformation requires a key switching key. This key-switching key ksks′→s can be
considered an encryption of s′ under s. Conceptually, in the case of relinearization after
multiplication, the key has the form rlk =

(
[−(a · s+ e) + s2]q, a

)
, where a← Rq, e← χ.

One can then relinearize the ciphertext (c0, c1, c2) by computing c′
0 = [c0 + rlk0 · c2]q and

c′
1 = [c1 + rlk1 · c2]q and set the ciphertext as (c′

0, c
′
1). In actual instantiations of this

algorithm, there is a decomposition step for the key switching key to limit the noise growth
of the operation.

RNS Decomposition The CKKS cryptosystem has a residue number system (RNS)
variant [CHK+18]. As mentioned above, the main tuning parameters for the CKKS scheme
are the polynomial degree n, the coefficient modulus q, and the scaling factor ∆. Increasing
n boosts the security of the underlying lattice problem with a runtime penalty. The SIMD
encoding of CKKS compensates for this penalty, as we can encode n/2 complex numbers.
A large q gives us a higher precision and allows us to evaluate more levels of multiplications,
while the operation on multi-precision integer coefficients is dramatically inefficient. The
solution is to use the RNS decomposition to represent polynomials ∈ Rq as multiple
polynomials ∈ Rq1 × · · · × RqL

. All qi are distinct primes that fit into single machine
words and comprise the modulus q =

∏L
i=1 qi. The L primes are roughly equivalent to the

scale qi ≈ ∆, i ∈ {1, . . . , L}, such that q ≈ ∆L. During the rescale operation applied after
homomorphic multiplication, we divide both ciphertext polynomials by one modulus ql

and remove the RNS component. Moving from one level to the next L→ L′ we compute
qL′ ← qL

ql
and ct′ ← [ 1

ql
· ct]qL′ . This step introduces noise caused by the approximate

relation ql ≈ ∆, but it allows us to perform the complex rescaling operation with RNS
decomposition. Since the modulus is divided by each rescaling operation, we are limited
to L multiplications. Further, when faced with ciphertexts of different modulus sizes, one
has to reduce the larger modulus before addition or multiplication is possible.

In our use case, we rely on the CKKS implementation SEAL [SEA23]. There, the total
coefficient modulus is composed of two additional so-called special primes. These primes
are set to size γ + log2 ∆, where γ is the integer precision of the encrypted values in bits.
We refer the reader to the literature [CKKS17, CHK+18, SEA23] for a comprehensive
overview of the impact of RNS decomposition on the algorithms of CKKS.

2.2 Neural Network-based Side-channel Analysis
Side-channel analysis represents an attack method that targets the implementation rather
than the cryptographic algorithm. Among SCA techniques, profiling side-channel at-
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tacks are considered the most powerful because they make worst-case security assump-
tions [SKS09, PHPG21]. In these attacks, the attacker has access to a copy of a device
that is used to build a profile, which can be then used to obtain the secret information
from the target device [CRR03, MOP07].

Recently, the SCA community has focused its attention on deep learning techniques due
to their success in various domains. The potential applicability of deep learning to SCA
has triggered investigations into its performance. The results are promising: deep learning
outperforms traditional profiling attacks attacks [CRR03, RO04, KSS10]. Remarkably,
CNNs were successful even on devices protected with various countermeasures, as discussed
previously.

Profiling side-channel analysis happens in two phases: profiling and attack. Let
X tr ∈ XN×P be a 2D array (training input dataset) with N rows (side-channel traces) and
P columns (point-of-interest (PoI)), where X represents the set of available side-channel
traces. Let Ytr ∈ YN be an array of N rows (training labels), where Y contains the set
of all possible classification labels, such that there exists a function f : X tr 7→ Ytr. The
goal of the profiling phase is to find the parameters θ gθ(X tr) that maximize the chance
of outputting the expected value Ytr. In the attack phase, the goal is to predict the
labels Ypr ∈ YN based on the attack traces Ppr ∈ PQ×C and the trained model gθ, where
P ∈ [0, 1] (probability), Q is the number of attack traces and C is the number of labels
(that depend on the cryptographic algorithm and the leakage model). Here, each value
pi ∈ Ppr, denotes the probability of obtaining yi ∈ Ypr for a specific key k and some input
a ∈M, where M is the message space.

Finally, the cumulative sum S(k) for any key byte candidate k is a side-channel
distinguisher with a common maximum log-likelihood principle: S(k) =

∑Q
i=1 log(pi,y).

The cumulative sums for each possible key value from a key guessing vector are ordered
per the probability of the key being correct (the first position in the vector is the most
likely key, and the last position is the least likely key). The position of the correct key is
called the key rank, and it denotes the remaining effort required by the attacker to break
the target. To reduce the effects of a random choice of test measurements, it is common
to assess the average behavior over many randomly selected traces, called guessing entropy
(i.e., average key rank) [SMY09]. Besides considering the attack performance, one often
also considers the complexity of the obtained models by assessing the number of trainable
parameters [PCP20].

Commonly used neural networks in the profiling SCA are multilayer perceptron and
convolutional neural networks [LBBH98]. Both neural networks are feed-forward neural
networks, but CNNs consist of more types of layers - convolutional layer, pooling layer,
and fully connected layer - while MLP consists of fully connected layers only. While both
neural network types work well when considering SCA, CNNs have the potential advantage
of being shift invariant, giving them more advantage when dealing with desynchronization
countermeasure [CDP17].

3 HE-assisted DL-based Side-channel Analysis
This work applies the HE neural network classification of encrypted queries approaches
from [JVC18, BHM+19, WSH+22] to SCA. We base our implementation on the homomor-
phic encryption library SEAL [SEA23] and the neural network inference implementation
of CryptoTL [WSH+22]. While the latter primarily targets transfer learning, we adapted
their implementations of the neural network layers and approximated non-linear functions
to our use case. We extended the implementation to a more flexible setup that allows us
to combine neural network layers more freely for different setups. In the following section,
we give insights into the general setup of our HE-assisted DL-based SCA and highlight the
challenges of making models “HE-friendly”.
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On a high level, our design is divided into two sections: plain training and HE
classification. First, we perform the profiling phase of the device under test (DUT) with
access to corresponding key and plaintext data with measured traces. Given this data,
the server trains a network state-of-the-art machine learning libraries. We will elaborate
on the implementation specifics in Section 4.1. In the HE classification phase, we have a
client with access to only a few traces. This client encrypts the relevant traces and sends
them to the server. Given the encrypted traces and the pre-trained model, the server
homomorphically classifies the query and returns the encrypted result. At no point does
the server have access to the query or intermediate results. Ultimately, the client decrypts
the classification result and updates its key prediction. Based on the results, the client
analyses and improves the required protection of its cryptographic implementation on
the target device. The same machine learning model has to be used during profiling and
classification based on the neural network. Considering the limited operations we can
perform on CKKS ciphertexts, designing these models in a “HE-friendly” way is essential.
When discussing both phases of our setup, we will discuss relevant steps taken to adopt
“HE-friendliness”.

3.1 Profiling Phase
In the profiling phase (or training phase), the server has physical access to the DUT. First,
the server measures traces X tr ∈ XN×P of the device and stores the corresponding key
and input data. Before using the traces for profiling or classifying, as a preprocessing
phase, we need to select points of interest, i.e., reduce the columns of the traces matrix
to contain relevant data (PoIs). These points are the measurements that correlate most
strongly with the key or a derived value. In case no statistical analysis is feasible, we work
with the PoIs of the underlying dataset. The following sections will refer to the number of
selected PoIs as P .

Given a dataset with statistical leakage, we select the most relevant PoIs by choosing
the top K features using the Chi-Square test as the score function. The Chi-Square test is
a statistical hypothesis test used to measure how well a model compares to the observed
data. It is expressed as:

χ2 =
C∑

i=1

(xi −mi)2

mi
, (1)

where xi is the observed value, mi is the expected value, and C is the number of mutually
exclusive classes. If there are N observations in the full dataset, then the expected value
mi = N × pi, where pi is the hypothesized probability that an observation falls into the
ith class. A larger χ2 value affirms that certain PoI might not provide valuable training
information and thus can be discarded. Since this analysis is performed on plain data, the
server has to inform the client about the selected PoIs. In our setting, we apply this method
to test the impact of the feature count on the performance of our implementation. As a
case study, we attack the first round of AES. We use either an unprotected implementation
or measurements recorded with the masking countermeasure enabled. Thus, we aim to
detect correlations between our traces and the targeted intermediate values. Generally,
our attacks only target individual key bytes. Given the key k and the plaintext p as an
array of 16 bytes, we attack the ith byte by targeting the output of the AES S-box. More
specifically, we target the intermediate result of S-box in the first round of AES. Given
the traces with reduced columns and the labels from the associated data, we train a deep
learning classifier. Depending on the computational capabilities of the server, we need to
fine-tune the network parameters with particular regard to the HE restrictions. While we
have observed that evaluating deep neural networks with CKKS is possible [LKL+22], we
focus on smaller networks with a minor runtime penalty. However, deeper networks could
be more suitable when attacking devices with stronger countermeasures [ZBHV19].
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In our implementation, we present the feasibility of such a setting with both convolu-
tional neural networks and multilayer perceptron. The details about the architectures are
given later, but here, we note that we train with the ReLU activation function for hidden
layers and the Softmax activation function for the output layer. As mentioned, we only
have element-wise addition, multiplication, and rotation in the ciphertext domain. Thus,
we must adapt our activation functions to be more “HE-friendly”. The ReLU function can
be approximated with polynomial approximation, while the softmax function is evaluated
in plain.

First, we applied the Chebychev approximation to approach the ReLU function, which
provided fast convergence. More precisely, we had satisfying results with a degree three
approximation defined as:

ReLUapprox(x) = −0.0061728x3 + 0.092593x2 + 0.59259x+ 0.49383. (2)

The softmax activation function is evaluated in plain during training and classification.
We will elaborate further on this in the respective section.

Softmax(xi) = exi∑K
j=1 e

xj

, i ∈ {1, . . . ,K}. (3)

Softmax applies the standard exponentiation on each element xi and normalizes these
values into a probability distribution that sums up to 1. Finally, the output is passed
through a categorical cross-entropy loss function to convert the probabilities to one-hot
encoded classifications. We use the Adam optimization algorithm from the standard Keras
package for training. Once the model is trained, the relevant model parameters are saved
for later use by the server for SCA classification with HE.

3.2 Private Classification Phase
The classification procedure has the general setup of MlaaS. Initially, the client and the
server agree on CKKS parameters that support the trained network. For our implemen-
tation, we give the following considerations on the choice of parameters. We need to
dimension the parameters {n, q,∆, γ}. See Section 2.1.1 for an overview of CKKS and
its parameters. For ∆, γ, the fixed-point scale, and the integer scale, it is sufficient to
evaluate the correct setting empirically. In practice, depending on the multiplicative depth
of the evaluation circuit (depending on the network), we scale our coefficient modulus
to log2 q = L · log2 ∆ + 2(log2 ∆ + γ). In other words, we have L primes qi ≈ ∆, and
two distinct special primes log2 qs = log2 ∆ + γ. Next, we set n according to either
the recommendations of the homomorphic encryption standard [ACC+19] or the lattice
hardness estimator [APS15]. For different levels of security, they provide the limit of q
for a given n. Remember that a larger q has a negative impact on security and must be
compensated with a larger n. Depending on the respective multiplicative depth and the
resulting bit size in q, we set our n to the minimum required value with 128-bit security.
Given our models, we work with n = 16 384. Increasing security to 256-bit is achieved by
doubling n, which roughly translates to doubling the runtime of HE computations. This
level lies well in the NIST recommendation with a minimum of 80-bit security [Bar16].

Once the CKKS parameters are initialized, the server loads the model parameters
and encodes them into the appropriate CKKS plaintext format. At the same time, the
client prepares its query. The preprocessing must be the same in the attack and profiling
phases. The server can let the client know the selected PoI or extract the relevant indices
homomorphically. Since preprocessing, as described above, only works on unprotected
data, we consider a server that shares this information with the client. Given protected
datasets, the client sends the entire data to the server, and the feature extraction layers
cover that part. When starting the classification phase, the server has an encrypted trace
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and a plain model. The client sends multiple ciphertexts if the number of PoIs exceeds
the encoding slots P > n/2. See Section 2.1.1 for more details on encoding and its limits.
Given the encrypted trace, the server homomorphically evaluates the neural network. In
the following, we discuss the challenges for the different neural network layers during
classification.

Dense layer In all our networks, we employ fully connected layers, also called dense layers.
These layers are performed as a matrix-vector multiplication. Halevi and Shoup [HS14,
HS15, HS18] present the diagonal method and an optimized version with the baby-step-
giant-step (BSGS) method. This strategy allows for the efficient implementation of
plain-matrix, encrypted-vector multiplication. A square matrix is a precondition. Thus,
we pad asymmetric matrices with zeroes in the shorter dimension. Given the square
weight-matrix W with size t and the encrypted trace vector x, the diagonal method
calculates

Wx =
t−1∑
i=0

diagi(W ) ◦ roti(x),

where diagi is the i-th diagonal of the matrix represented as a vector, roti is the ciphertext
rotations by i slots to the left, and ◦ represents the Hadamard product of the vectors.
Given a negative value i, the ciphertext is rotated to the right. For the BSGS optimization,
we find the closest two factors t = t1 · t2, and perform:

W · x =
t1−1∑
i=0

rot(i·t2)

t2−1∑
j=0

rot(k)

(
diag(k+j)(W )

)
◦ rot(i)(x)

 ,

where k = (−⌊(i · t2 + j)/t2⌋ · t2). This optimization requires a total number of t1 + t2 − 2
rotations, t multiplications, and t− 1 additions in the encrypted domain. Thus, the closer
the factors t1, t2 are, the higher the performance improvement.

Convolutional layer We adapt the 1-dimensional convolution implementation from Cryp-
toTL [WSH+22]. They provide a one-dimensional CKKS implementation of the packed
convolutional layer presented by Gazelle [JVC18]. This algorithm enables using a stride
parameter to determine the level of granularity in filter applications and allows multiple
filters to be applied sequentially. The output is flattened into the ciphertext vector by
default when using multiple filters. In other words, a multi-dimensional tensor is mapped
into a single vector within the ciphertext. This flattening requires one rotation per filter
dimension. Given each filter with size f , we further require f −1 rotations. These numbers
match the two-dimensional case in Table 3 from Gazelle [JVC18]. We will discuss the
specific numbers in Section 4.

Pooling Layer We apply average pooling layers as they are particularly “HE-friendly”.
Given a stride of s = 1, where the average is applied to all elements within the filter
size f , we compute xp = 1

f

∑f
i=0 rot−i(x). This procedure computes the average filter

for all elements in the SIMD-encoded ciphertext. Typically pooling layers are used after
convolutional layers. When applying multi-dimensional convolution filters, we already
described that the output is a flattened matrix. Given a flattened matrix, we must not
average elements of different channels. We accommodate our procedure and apply the
factor 1/f to the elements of a channel and 0 to the remaining elements. Then we compute
the average pooling for this channel only and shift it to the new position, as each channel
shrinks by f − 1 elements, we need to shift the j − th channel by j · (f − 1) to the left to
uphold the flattened encoding. Ultimately, the required operations increase linearly in the
number of channels. Thus, the pooling layer’s complexity relies on the number of input
elements and the number of channels.
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Classification result The networks we employed end with the Softmax activation function.
As this step does not contain trainable parameters, the client can execute it after decrypting
the result. This setup saves us a costly approximation with minimal cost for the client
side.

3.3 Encoding
As described in Section 2.1.1, we can encode n/2 elements into a single ciphertext where n
is the polynomial degree of the ciphertext domain Rq. In the literature, we refer to this as
the number of slots of the ciphertext. In the BSGS algorithm, we have intermediate values
that take up twice the slots of the matrix dimension (recall that we use padded square
matrices to compute the dense layers). Next to the dense layers, the convolutional layers
also increase the used slots. However, while the dense layers use the additional slots only
during computation, the convolutional layer increases the output dimension depending
on the number of filters. Generally, looking at the maximum blowup of used slots after a
convolutional layer or during a dense layer is essential. Let max = m · P be the maximum
with the expansion factor m and the number of PoIs P . We can encode as many PoI into
our ciphertext such that the maximum does not exceed the available slots. If we have more
PoI per trace than that, we can encode the traces into multiple ciphertexts or increase
n. However, the latter approach will also increase key sizes, encryption, and decryption
runtimes.

Given the above recommendations on parameter selection [ACC+19, APS15, Bar16],
we work with n = 16 384 for most settings. Given the expansion factor, we can support

n
2·m PoI in one ciphertext. If the number of PoIs is much lower, we can execute multiple
classifications simultaneously. Let us consider the maximum used slots max in a given
network and let s = n/2 be the total ciphertext slots. It is possible to execute

⌊
s

max

⌋
classifications at once. Given a trace with 256 PoI, a factor m = 8, we could execute 4
trace classifications simultaneously.

3.4 Analysis Strategy
Following the generic introduction in Section 2.2, we now specify how we analyze our
homomorphic predictions to reconstruct a key. We train our model to specific target labels
in one-hot encoded form depending on the scenario. For an unmasked implementation, it
is sufficient to set the label of an input trace to the Hamming weight of the S-box output
yi,j = HW (S-box(pj ⊕kj)), where i is the trace index and j is the attacked byte of the key.
Given a masked implementation, we do not apply the Hamming weight as this would make
our model dependent on the specific mask in the unknown mask scenario. Thus, our labels
are the byte values of the S-box output yi,j = S-box(pj ⊕ kj), and the classification results
of the model are 256 probabilities, one for each potential S-box output value. We obtain
a prediction matrix with 9 (in the unmasked scenario with the Hamming weight model)
or 256 probabilities (in the masked scenario with the Identity model) for each attacked
trace and compute the element-wise natural logarithm.1 Then, we calculate the S-box
output for each key hypothesis with the plaintext corresponding to the attacked trace. We
create a hypothesis vector, storing the probability of the S-box output to the index of the
corresponding key hypothesis. We sum up the log-likelihoods in this hypothesis vector for
multiple attacked traces. Finally, we compute the rank, i.e., the index of the correct key
in the hypothesis list sorted by its prediction probabilities. The key rank indicates the
difficulty of recovering the key byte after classifying a specific number of traces. When the
key rank converges to zero, an attacker can read of the key byte directly.

1The number of probabilities is decided based on the leakage model and the cryptographic function.
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4 Experiments and Evaluation
Given the general description of our approach, we apply it to different models and
datasets to evaluate the performance. Our experiments focus on two settings: first, we
assess models designed explicitly with HE in mind, with power traces of an unprotected
AES implementation obtained with the aid of a ChipWhisperer device2. Second, we
apply our setup to a state-of-the-art approach using CNNs to attack protected AES
implementations [ZBHV19]. The second experiment gives us insights into performance
in real-world applications and the adaptation strategies to make neural networks “HE-
friendly”. We elaborate on “HE-friendliness” further in Section 2.1.1. Finally, we evaluate
our experiments regarding runtime, memory usage, accuracy, and key recovery speed. The
latter is the required number of traces to recover the attacked key byte reliably.

4.1 Experiment Setup
Environment We run our experiments on a system with AMD Ryzen 9 7900X 12-core Pro-
cessor, 4.7GHz clock speed, 128 GB Memory running Ubuntu. Regarding implementation,
we use TensorFlow v2.13 [Dev23] and scikit-learn v1.3 [PVG+11] for the plain deep learning
Python implementations to train and test our networks. We use SEAL v4.1 [SEA23]
for their CKKS homomorphic encryption implementation and CryptoTL [WSH+22] as a
baseline for our encrypted layer implementation. We demonstrate our attacks using two
different datasets containing the side-channel traces of AES-128 implementations.

Datasets The Chipwhisperer dataset gives a standard comparison base for the evaluation
of different algorithms [OC14]. The dataset is obtained from running an unprotected
AES-128 implementation on the Chipwhisperer CW308 Target. This dataset targets the
first byte in the first round of the AES S-box with a fixed key. The dataset contains 3 000
traces, each consisting of up to 5 000 PoIs for the same key. As discussed in Section 3, the
pre-processing phase selects the 20-2 500 best-fitting PoIs for the training dataset for each
trace. Additionally, we also use the full dataset with 5 000 PoIs (without pre-processing) to
train our classification model. When the training dataset consists of between 20 and 2 500
PoIs, the CKKS modulo degree is set to 16 384. However, due to the BSGS algorithm,
when using 5 000 PoIs, the CKKS modulo degree is set to 32 768.

The ASCAD dataset is generated by taking measurements from an ATMega8515
running masked AES-128 and is proposed as a benchmark dataset for SCA [PSB+18]. The
dataset consists of 50 000 profiling traces and 10 000 attack traces, each trace consisting
of 700 features. In this paper, we use 45 000 profiling traces as training data and 5 000
as test data. The profiling and attacking sets both use the same fixed key.3 We follow
common naming convention for this dataset and denote it as ASCADf. We attack the third
key byte as that is the first masked byte, and we consider the Identity (ID) leakage model.
The dataset is provided on the ASCAD GitHub repository.4

Training When training a network for the ChipWhisperer dataset, we used an MLP and
a CNN. After evaluating different hyperparameters for performance and “HE-friendliness”,
we display the selected network in Figure 1 with two dense layers and the approximated
ReLU function described above. In our benchmarks, we tune the PoIs and the output size
of the first fully connected layer. We depict our results in Table 1. Regarding training, we
use the Adam optimizer and categorical cross entropy as the multi-class classification loss

2https://www.newae.com/chipwhisperer
3Current state-of-the-art results indicate that the ASCAD version with random keys is not significantly

more complex than the fixed key version [PWP22].
4https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key.

https://www.newae.com/chipwhisperer
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
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Figure 1: Multilayer perceptron architecture used in our ChipWhisperer experiments.
This model is built with homomorphic classification in mind (HE-friendly).

Figure 2: Shallow convolutional neural network designed for our ChipWhisperer ex-
periments. In this model, layer parameters and activation functions are chosen with
homomorphic classification in mind.

function. We train our MLP model with 300 epochs.

The CNN contains convolutional, dense, and average pooling layers. As activation
functions, it builds on the approximate ReLU in the hidden layers and Softmax in the
output layer. An overview is shown in Figure 2. The kernel size of the convolutional layer
is set to 9, the average pooling layer has a pool size of 3, and the last dense layer has nine
outputs for each output label. To remain “HE-friendly”, we set the stride parameter in
the convolutional and the average pooling layers to zero. Further, we use only one filter
for the ChipWhisperer dataset in the convolutional layer. We use the Adam optimizer and
categorical cross entropy as the multi-class classification loss function. We train our CNN
model with 50 epochs.

As described above, we also follow the model architecture of [ZBHV19]. We have
depicted the original structure in Figure 3. While their model is optimized for training
and classification runtime, it naturally does not take “HE-friendliness” into account. After
the ChipWhisperer dataset, where we designed a model directly, we now need to adapt
an existing model to HE needs. Step by step, we replaced problematic parameters to
evaluate the trade-off between accuracy loss and complexity in the encrypted domain.

Table 1: Training

Model PoIs Memory Usage Time Accuracy Model Size Weight Size Dense Out

MLP

20 511 MB 16 s 0.5 16 KB 7.1 KB 20
250 970 MB 11 s 0.8 34 KB 61 KB 20
500 1.1 GB 10 s 0.8 53 KB 120 KB 20
1000 1.1 GB 9 s 0.89 92 KB 240 KB 20
2500 1.2 GB 9 s 1 502 KB 1.5 MB 50
5000 1.4 GB 8 s 1 2 MB 6 MB 100

CCN

20 950 MB 15 s 0.3 23 KB 7.1 KB –
250 1 GB 15 s 0.9 274 KB 753 KB –
500 1.1 GB 19 s 1 1 MB 3 MB –
1000 1.2 GB 29 s 0.89 3.9 MB 12 MB –
2500 2 GB 172 s 0.89 24 MB 75 MB –
5000 3.8 GB 482 s 0.69 96 MB 302 MB –
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Figure 3: Optimized convolutional neural network used to attack the ASCAD
dataset [ZBHV19]. We adapted the layers, activation functions, and layer parameters to
accommodate homomorphic classification.

We applied all changes to the model architecture to the training and classification phase.
We use the approximate ReLU function from Eq. (2) for the activation functions in the
hidden layers. We removed the batch normalization layer, which boosts learning speed
and prevents overfitting next to other aspects. Our experiments found that a dropout
layer was sufficient to compensate for the overfitting control. Further, the stride parameter
of the pooling layer led to some issues. One could calculate the average pooling as usual
and then shift the relevant elements to their new position. However, this approach would
take cout − 1 homomorphic rotations, where cout is the flattened output size of the average
pooling layer. Ultimately, we set the stride parameter to one, as this did not impact the
classification performance. In more complex layers, where the stride is more relevant, it is
possible to implement the average pooling as a matrix-vector multiplication and enjoy the
optimizations of the BSGS algorithm. In summary, all our experiments with the ASCAD
dataset run with the network consisting of a convolutional layer, an average pooling layer,
and three dense layers. The convolutional layer has four filters with a size of 1. The average
pool has a stride of one and a kernel size of two. The three dense layers start with an
input dimension of d = 4 · P − 4, have ten neurons each, and output 256 key probabilities.

4.2 Evaluation
When training our model using MLP (Table 1), we witness a somewhat linear growth
in the training time. Interestingly, we observe a decrease in the training time as we use
more PoIs. We believe as the training data gets larger, more information is available to
the network, leading to a faster saturation while training and thus stopping earlier before
reaching the highest epoch. We do not witness similar behavior when training with CNN.
For CNN training, we achieve a somewhat quadratic growth both in terms of memory
and time with respect to the number of PoIs. However, in the CNN model section of
Table 1, we can see that despite the exponential growth, our base memory consumption
for a server is very low, especially if we consider that training the model is part of the
one-time pre-processing.

For the CNN training, we conclude that the optimal number of PoIs for training the
model is 500, as datasets with more PoIs lead to less accurate models due to unfit input,
which otherwise gets filtered out during the pre-processing step. We also provide the
model and the weight sizes that need to be stored on the server side and is used for private
classification. Naturally, smaller models lead to more efficient homomorphic classification.
The last column in Table 1 describes the output size of the first dense layer of the MLP
network that is adjusted according to the increasing PoI sizes for better accuracy.

Table 2 shows the results for our MLP and CNN classification, respectively. The total
private memory usage states the memory required by the server to perform a single client
query containing 10 traces. For both MLP and CNN, we achieve a somewhat quadratic
memory and time complexity regarding the number of PoIs that were used during the
model training. Interestingly, for CNN classification, when using 5 000 PoIs, we observe a
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Table 2: Classification

Model PoIs Accuracy Memory Usage
(Private SCA)

Avg. Query Time
(Private SCA)

Avg. Query Time
(Plain SCA)

Avg. Query Time
Overhead

MLP

20 0.3 721 MB 310 ms 0.001 ms 31 ·104

250 0.9 1.2 GB 1.3 s 0.084 ms 9 ·104

500 1.0 2.7 GB 2.4 s 0.237 ms 1.0 ·104

1000 0.9 9.1 GB 5.1 s 1.4 ms 0.4 ·104

2500 0.9 20.1 GB 12 s 13 ms 0.09 ·104

5000 0.7 16.3 GB 39 s 72 ms 0.05 ·104

CNN

20 0.5 210 MB 141 ms 0.001 ms 14 ·104

250 0.8 540 MB 681 ms 0.009 ms 75 ·104

500 0.8 790 MB 1 s 0.019 ms 53 ·104

1000 0.9 1.1 GB 2 s 0.04 ms 50 ·104

2500 1.0 2.4 GB 4.7 s 0.1 ms 4.7 ·104

5000 0.2 12.3 GB 25 s 0.2 ms 12.5 ·104

drop in memory consumption. This is due to the matrix-vector product in the dense layer
using the BSGS optimization as discussed in Section 3 leading to non-optimal matrix size
when using 2 500 PoIs. Furthermore, we also compare the time difference between the plain
and the private classification, giving us a better overview of the efficiency aspect of our
private SCA when compared to a plain SCA. We observe that the private implementation
is slower up to an order of magnitude of 4 in comparison to the plain evaluation of the
network. However, we argue that since the base time requirement for the private SCA is
reasonably low and practical for most servers, especially when using PoIs until 2 500, our
design provides significantly better privacy benefits at a relatively minor cost. The last
column of the classification table denotes the accuracy of predicting the correct Hamming
weight when finding the key byte.

Notably, our privacy-preserving homomorphic SCA approach enables the classification
of a key byte reliably with at most 10 traces and recovers the full key in linear time w.r.t.
the security parameter of AES.

ASCAD evaluation After testing our implementation on the ChipWhisperer dataset,
we focused on attacking the masked implementation. For comparability, we set up the
optimized model [ZBHV19] to have a baseline for our implementation. Then we applied
our adaptations to make the model “HE-friendly” as described in Sections 3.2 and 4.1. We
evaluated our model in plain to have a baseline for the impact of our changes. Finally, we
ran the encrypted classifications with 128-bit and 256-bit security. For more information
on the security level or the classification procedure, we refer the reader to section 3.2. A
comprehensive description of the key recovery process can be found in Section 3.4.

In Figure 4, we show the development of the key rank, averaged over 100 runs. Most
notably, the private and plain classifications yielded reasonably similar results. This fact
shows the feasibility of our approach in terms of accuracy. When comparing our model to
the unadapted version, we see faster convergence. However, this difference is caused by a
slight change in the setup. Usually, for each attack run, a different subset of 300 traces is
selected from the 10 000 classifications. Due to the relatively high cost of HE classification,
we fixed the 300 attack traces for all parties and only shuffled them with a pre-fixed seed.
Although this approach ensures consistent results, the slight difference shown in the figure
could be a random occurrence rather than a significant factor.

Nevertheless, we can see in Table 3 that the accuracy of our model is very close to the
original one. The higher accuracy with 256-bit security is best understood with Table 4.
This table shows the different CKKS parameters we used for our models. First, there are
the two settings used in the ChipWhisperer attacks. Then, the settings that are used for
our ASCAD model. The choice of n = 32 768, as seen in the 4th row, gave us a little more
budget for our q, so we could increase the integer precision γ. Recall that the maximum
size of q depends on the security level and the polynomial degree n. It seems reasonable
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Figure 4: Comparison of key recovery attack on the ASCAD dataset with different
approaches. Unadapted Plain uses the optimized model from [ZBHV19] and performs clas-
sification in plain. HE-friendly Plain use the adapted model but executes the classification
in plain, while HE applies private classification with different polynomial degrees n and
different security levels. All attacks use the same training data and classification data.

that doubling the security level leads to roughly twice the runtime and memory costs.

5 Discussion

5.1 Performance and Accuracy
The results of Section 4.2 demonstrate that private SCA and state-of-the-art DL-based
SCA exhibit similar performance in terms of accuracy and convergence speed. As shown in
Figure 4, HE does not limit the convergence speed. More precisely, given an “HE-friendly”
neural network, we can select parameters that incur no accuracy penalty compared to
plain evaluations. Of course, the adaptation to “HE-friendliness” might cost precision.

Contrary to accuracy, the primary distinction lies in the computational runtime needed
to obtain these results. The private SCA requires a significantly longer computation time
than the simple SCA, with a difference of four to five orders of magnitude, depending
on the network architecture. It has been demonstrated in [BHM+20] that GPUs can be
employed to expedite HE-related computations by one or two orders of magnitude, thereby

Table 3: Benchmark data for the ASCAD dataset. We test the state-of-the-art model
against our adapted HE-friendly version. All runs evaluated the same attack traces. We
ran the adapted model in plain and in HE with 128 and 256 bit security levels.

Model Security
Level

Accuracy Memory Usage
(Private SCA)

Avg. Query Time Avg. Query Time
Overhead

[ZBHV19] None 0.013 - 0.03 ms -

Our Model
None 0.010 - 0.03 ms -

128 bit 0.003 14GB 13.3 s 4.5 · 105

256 bit 0.010 27GB 27.4 s 9.4 · 105
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Table 4: CKKS parameters for our HE classifications. We see the results for both datasets
we tested and both security levels evaluated. Next to the security level, we have the
polynomial degree n, the bit size of the coefficient modulus q, the required multiplicative
depth L, the fixed-point precision ∆ and the integer precision γ

Dataset Security
Level

n log2 q L ∆ γ

CW dataset 128 bit 16 384 360 6 40 20
256 bit 32 768 360 6 40 20

ASCAD 128 bit 16 384 430 11 30 20
256 bit 32 768 450 11 30 30

substantially mitigating the additional overhead. Similarly, there have been dedicated
hardware optimizations for HE computation. In [MAK+23], the authors presented a
successful port of CKKS to the FPGA platform. They achieve similar speedups with
a single FPGA running at 2.3 GHz. Consequently, future research will prioritize the
acceleration of computationally intensive operations. Next to hardware acceleration, we
discussed potential speedups with parallelization. The deeper the network gets, the larger
the CKKS parameters have to be. This property makes the execution of several queries in
parallel more feasible the more complex the network gets.

HE can better adapt to wider networks than deep ones. We have seen that shallow
networks allow for the classification of traces with 5 000 PoIs in 40 seconds. Exploring SCA
applications that test these boundaries with private classifications is an open challenge.
Considering the boundaries in neural network depth, we have seen several studies that either
tackle this issue with colossal parameter settings [BHM+19] or the costly bootstrapping
operation [LKL+22]. Another option is to integrate interactive procedures, where the
client has an increased network cost to reduce complexity on the server side, as in [JVC18].
Given all these costly approaches, the first goal should always be the reduction of the
network depth.

5.2 Trust Model

Homomorphic encryption paves the way for data protection during computation. However,
discussing the trust assumptions more precisely is necessary to understand its security
guarantees. Our system works in the semi-honest trust model. We assume parties that
want to obtain input from the other parties but will never actively deviate from the
protocol. In other words, given the correct use of the CKKS algorithms for key generation,
encryption, decryption, and encrypted operations, input privacy is guaranteed up to the
specified security parameter.

If one party deviates from the protocol, several potential problems arise. A malicious
client can send random traces, so the final result will never identify any key leakage. Further,
a client might send specifically crafted input traces to leak the private model parameters of
the server [ACG+16]. Targeting the former issue requires verification of the measured traces,
which is a challenging problem when combined with privacy. The privacy of the model can
be boosted with differential privacy (DP) [DMNS06], a method to add fine-tuned noise to
a dataset to limit the privacy loss caused by publishing (output-) data. Given a malicious
server, a client cannot verify whether the correct model was executed. However, verifiable
computations are a very active line of research [GGP10, FKL16, CKPH22, VKH23].

It is important to acknowledge that although these issues play a significant role in
ensuring the practicability of HE-assisted DLSCA, they are outside the scope of this work.
Consequently, addressing them would necessitate further research and analysis beyond the
scope of this feasibility work.
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5.3 Limitations and Conditions
Our work shows the general feasibility of HE-assisted DL-based SCA. Evaluating state-
of-the-art models for side-channel leakage in the encrypted domain is possible. However,
our approach requires a server with access to training data. Without this precondition,
multiple problems arise. First, we require encrypted learning when preventing the server
from learning the model. Then, the model is encrypted under the key of the data provider.
In case just the training data but not the model is private, the model parameters can
be decrypted. If the model should remain private as well, we need to employ multi-key
HE [CCS19, CDKS19, MTBH21] settings that allow operations of ciphertexts encrypted
by different parties. Such an approach would make it necessary for the data provider
to play an active role in the classification part, which might be unrealistic depending
on the setting. Finally, HE classification would get much more expensive if the model
weights and biases were encrypted. Encrypted weight matrices cannot be used in the
same BSGS-fashion. A matrix-vector multiplication with an n× n matrix in column-wise
ciphertext encoding would need n ciphertext-ciphertext multiplications, n · log2 n rotations
and n · log2 n ciphertext-ciphertext additions. However, different encoding strategies might
improve performance.

6 Conclusions and Future Work
This work delved into the practicability question of employing homomorphic encryption
in conjunction with neural networks to conduct private side-channel analysis. The main
goal of this work was to identify the strengths and limitations of this approach with
respect to the performance and accuracy of deep learning-based side-channel analysis
results using HE-encrypted data. This study represents the first documented attempt
to appraise the potential of AI-enabled HE-assisted side-channel analysis and points out
the limitations of such an approach, including the need to trust the data sources. Our
feasibility analysis using modern HE protocols and libraries suggests that already now,
both unprotected and protected implementations can be attacked while traces remain
encrypted. For further scaling towards larger use cases, we also identify high-level strategies
to remain “HE-friendly”: avoiding the increase in the depth of the neural network too
much while allowing for “wider” neural networks is an approach that will work well with
the current most suitable CKKS homomorphic encryption scheme.

In future work, it would be interesting to further consider the impact of hiding
countermeasures (e.g., desynchronization) or noisy datasets (e.g., hardware implementations
and/or software implementation with increased noise levels) on HE-encrypted data analysis
to assess how well HE handles various noise sources. These problems are conventionally
tackled with deeper neural networks. Such networks might be tackled by larger HE
parameters or the client’s involvement in the HE computation. It is possible to refresh
intermediate CKKS ciphertexts by masking them and sending them to the client, who
decrypts and re-encrypts before sending them back. With an interactive setup, it is also
possible to directly evaluate non-linear functions with other secure multi-party computation
approaches [JVC18]. Since the DLSCA community is not constrained by conditions on
whether the neural network architecture is wider or deeper, the HE preference towards
wider architectures is an interesting direction to investigate in the future.

Next to more complex models, the flexibility of our setting would be significantly
improved by private learning. The server would then become agnostic to the hardware
specifics as it cannot access the training and classification data. However, we already
highlighted that next to computational overhead, it seems impossible to find a solution
that does not require the data owners’ participation during classification. Otherwise, a
colluding client and server might leak the learned model. Thus, exploring options to limit



20 Towards Private DLSCA using HE

the data owners’ involvement is relevant. Finally, it would be interesting to evaluate our
setting where we use GPU/FPGA to speed up the computationally intensive operations
for the specific case of side-channel analysis.
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