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Abstract

Cryptographic group actions provide a flexible framework that allows
the instantiation of several primitives, ranging from key exchange protocols
to PRFs and digital signatures. The security of such constructions is based
on the intractability of some computational problems. For example, given
the group action (G,X, ⋆), the weak unpredictability assumption (Alamati
et al., Asiacrypt 2020) requires that, given random xi’s in X, no probabilis-
tic polynomial time algorithm can compute, on input {(xi, g ⋆ xi)}i=1,...,Q

and y, the set element g ⋆ y.
In this work, we study such assumptions, aided by the definition of group
action representations and a new metric, the q-linear dimension, that es-
timates the “linearity” of a group action, or in other words, how much
it is far from being linear. We show that under some hypotheses on the
group action representation, and if the q-linear dimension is polynomial in
the security parameter, then the weak unpredictability and other related
assumptions cannot hold. This technique is applied to some actions from
cryptography, like the ones arising from the equivalence of linear codes, as
a result, we obtain the impossibility of using such actions for the instanti-
ation of certain primitives.
As an additional result, some bounds on the q-linear dimension are given
for classical groups, such as Sn, GL(Fn) and the cyclic group Zn acting on
itself.

Keywords— One-way group actions, weakly pseudorandom, weakly unpredictable,
representations.

1 Introduction

Group actions in cryptography. In recent years, the topic of cryptographic
group actions has received a lot of attention. One of the main motivations of its study
is the fact that this framework provides post-quantum assumptions. The topic was in-
troduced by the seminal articles of Brassard and Yung [BY91] and Couveignes [Cou06].
Moreover, the work of Couveignes had a focus on elliptic curves isogenies, on which
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more recent works rely [CLM+18; ADMP20]. In the last years, many other crypto-
graphic group actions have been proposed, concerning the general linear group [JQSY19;
RST24; TDJ+22], multivariate polynomials [Pat96], lattices [DvW22] and linear codes
[BBPS23]. This framework enables the design of a lot of primitives; the most famous
ones are key exchanges [RS06; Cou06; CLM+18] and digital signatures [Cou06; Sto12;
DG19]. Notably, the 2023 NIST’s call for digital signatures [NIS23] lists three can-
didates based on group actions in round 1 (MEDS [CNP+23], LESS [BBPS21] and
ALTEQ [TDJ+22]). The design space provided by these objects is huge, and it de-
pends on the features of the employed action: for general actions in literature, we can
find PRFs [ADMP20], ring signatures [BKP20], updatable encryption schemes [LR24]
and commitments [BY91]; with the additional requirement of having a commutative ac-
tion, we can also build oblivious transfers [ADMP20], oblivious PRFs [HHM+24], group
signatures [BDK+23] and verifiable random functions [Lai23].

Our contribution. Given a group action (G,X, ⋆), it is called one-way if the map ⋆
is non-invertible: given y and x = g ⋆y, it is hard to find g. This is the main assumption
at the core of the majority of the cryptographic constructions. However, many primitives
require stronger assumptions than the previous one to prove their security. For example,
the weak unpredictability and the weak pseudorandomness properties are introduced
in [ADMP20]. The former can be seen as the impossibility, for a probabilistic and
polynomial time (PPT) adversary, to compute a set element x such that g ⋆y is equal to
x for a given y, whenever he sees a polynomial number of pairs (xi, g⋆xi), for random xi.
On the other hand, an action is weakly pseudorandom if an adversary cannot distinguish
whether its input contains a polynomial number of pairs (xi, g⋆xi) or (xi, yi), for random
xi and yi.

In this work, we analyze when the above properties hold introducing a more general
assumption called multiple one-wayness, and we give some tools to estimate their valid-
ity. This assumption is a relaxation of the one-way one, where a polynomial number of
pairs of the form (x, g ⋆ x) are given to the adversary, whose goal is to find g. In this
setting, particular attention must be given to whether the action is Abelian or not. For
actions that are commutative and transitive, seeing a single sample of the form (x, g ⋆x)
is equivalent to seeing a polynomial number of them. In fact, one can produce other ran-
dom samples picking h1, . . . , hl from G and computing (hi ⋆ x, hi ⋆ (g ⋆ x)) = (yi, g ⋆ yi),
setting yi = hi ⋆ x for every i. This means that breaking multiple one-wayness di-
rectly implies breaking one-wayness of the action. Since we want to investigate the case
whether the latter holds, we set ourselves in the non-Abelian scenario.

To study this new assumption, the main idea is that, if we linearize the group action,
with non-negligible probability the set {xi}i forms a basis of a certain linear space.
Using the knowledge of elements {g ⋆xi}i, we can retrieve the secret g. With tools from
representation theory, we introduce the concept of group action representation, which
is given by a classical representation ρ : G → GL(Fn

q ) endowed with an injective map
ι : X → Fn

q such that they are compatible with the group action, i.e. it must hold that
ρ(g)(ι(x)) = ι(g ⋆x). The integer n is called the dimension of the representation. Then,
we report some theoretical results on representations of group actions and we introduce
the q-linear dimension of a group action, denoted with LinDimFq

, given by the minimal
integer such that there exists a representation of such dimension

LinDimFq
(G,X, ⋆) = min

{
dimFq

(ρ, ι) | (ρ, ι) is a representation of (G,X, ⋆)
}
.

We show that, under some hypothesis on the representation and if the q-linear dimen-
sion of the group action is polynomial in the security parameter, multiple one-wayness,
and hence the weak unpredictability and the weak pseudorandomness assumptions, do
not hold. In the Abelian case, this implies that, if this attack is doable, an action that
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has small linear dimension is not even one-way.
One can see that the requirements of our attack are satisfied by a group action where
X is a vector space and ⋆ acts linearly. This implies that a large class of well-known
cryptographic group actions are not weakly unpredictable nor weakly pseudorandom. In
particular, we present some attacks to the above assumptions for the group actions on
linear codes related to the ones underlying the LESS and the MEDS signature schemes,
even if this does not impact their security since they rely only on the (non-multiple)
one-wayness of the actions. In particular, the actions used in those schemes involve a
systematic form SF. These variants are equivalent to the ones without SF in the case of
just one oracle call, while, for more calls, they are not. More generally, since we show
that the action on d-tensors does not satisfy the above assumptions, all the actions
linked to isomorphism problems in the class TI introduced in [GQ23] are not weakly
unpredictable nor weakly pseudorandom. As a practical result, such non-commutative
group actions cannot be used in the design of Naor-Reingold PRFs [ADMP20], updat-
able key encryption schemes [LR24] and primitives that expose an oracle that returns
samples of the form (x, g ⋆ x), with a secret g.

As a strictly mathematical result, we provide some bounds on the action of classical
groups like the permutation group, the general linear group acting on a vector space,
and the cyclic group Zn acting on itself. The latter leads to an interesting closed formula
that can be of independent interest.

This work is organized as follows. Section 2 recaps preliminaries like cryptographic
assumptions on group actions and introduces the concept of multiple one-wayness. Sec-
tion 3 defines the fundamental tools to analyze some assumptions, i.e. the representation
and the q-linear dimension of a group action. Section 4 describes the hypotheses needed
to attack the weak unpredictability and weak pseudorandomness assumptions and ap-
plies them to some cryptographic group actions from the literature. In Section 5 we
study the q-linear dimension of actions derived by classic groups.

Concurrent works. In [BBCK24], the authors model the lattice isomorphism prob-
lem as a group action and study its properties. Their approach is similar to ours, even if
it is less general and they focus on a particular action. For instance, they define that a
distribution on the set X induces linear independence whenever the sampled elements,
under a certain function, are linearly independent with high probability. We generalize
this property in the setting of group actions representations in Definition 12. Moreover,
it is shown that the lattice isomorphism action is not weakly unpredictable nor weakly
pseudorandom like we do with the code equivalence and other actions.

2 Preliminaries

2.1 Notation

In the course of this paper, with Pr[A] we denote the probability of the event A. A
function µ(x) is negligible in x if for every positive integer c there exists a x0 such that
for each x > x0 we get µ(x) < 1

xc . With SX we denote the group of permutation of the
set X. Given a group G and an element x from the set X on which X acts, the set Gx

contains elements of G that fix x.

2.2 Cryptographic group actions

Definition 1. A group G is said to act on a set X if there is a map ⋆ : G × X → X
that satisfies the following properties:
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• if e is the identity element of the group G, then e ⋆ x = x for every x in X.

• given g and h in G and x in X, we have that (gh) ⋆ x = g ⋆ (h ⋆ x).

In this case, we say that the triple (G,X, ⋆) is a group action.

Observe that the action of G over X induces a group homomorphism from G to SX

g 7→ (fg : X → X, x 7→ g ⋆ x) .

If the kernel of the above homomorphism is trivial, the action is said faithful. If, given
any two elements x, y in X there exists g in G such that y = g ⋆ x, then the action is
said transitive.

Alamati, De Feo, Montgomery, and Patranabis [ADMP20] define the concept of
effective group action. Here we report the key points, but a formal definition can be
found in their work.

Definition 2. A group action (G,X, ⋆) is effective if the group G is finite and there
exists a probabilistic polynomial time (PPT) algorithm for executing membership and
equality testing, sampling, and for computing the group operation and the inverse of an
element; the set X is finite and there exist PPT algorithms for computing membership
testing and the unique string representation of any element in X; there exists an efficient
algorithm to compute g ⋆ x, for each g in G and x in X.

Informally, a group action is said effective if it can be manipulated easily and it
can be computed in practical time. In the rest of this work, even when not explicitly
written, we will consider effective group actions where both the set X and the group G
are finite, even if some theoretical definitions work for generic group actions.

We report two assumptions from [ADMP20].
In the following, λ will be the security parameter and (G,X, ⋆) will be a group action
such that log(|G|) = O(poly(λ)) and log(|X|) = O(poly(λ)). With DG and DX we
denote two distributions over G and X respectively. Let Πg be a randomized oracle
that, when queried, samples x from DX and returns (x, g ⋆ x).

Definition 3. The group action (G,X, ⋆) is (DG, DX)-weakly unpredictable if, for all
PPT adversaries A having access to the oracle Πg, where g is sampled according to DG,
there exists a negligible function µ such that

Pr
[
AΠg (1λ, y) = g ⋆ y

]
≤ µ(λ).

In other words, an action is weakly unpredictable if it is hard to compute g ⋆y given
y and a polynomial number of pairs of the form (xi, g ⋆ xi).

Another assumption from [ADMP20] makes use of the oracle Πg.

Definition 4. The group action (G,X, ⋆) is (DG, DX)-weakly pseudorandom if, given
the randomized oracle U such that, when queried samples x from DX , σ uniformly
at random from SX and returns (x, σ(x)), for all PPT adversaries A, there exists a
negligible function µ such that∣∣Pr[AΠg (1λ) = 1

]
− Pr

[
AU (1λ) = 1

]∣∣ ≤ µ(λ),

where g is sampled according to DG.

In the above definition, the adversary should distinguish whether he has access to
the oracle that uses the group element g or not.

Now, we introduce a slightly more general assumption that uses the oracle Πg. It is
a variant of the one-wayness where the adversary has access to Πg and he must retrieve
g.
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Definition 5. The group action (G,X, ⋆) is (DG, DX)-multiple one-way if, for all PPT
adversaries A having access to the oracle Πg, where g is sampled according to DG, there
exists a negligible function µ such that

Pr
[
AΠg (1λ) ∈ gN

]
≤ µ(λ),

where N = {h ∈ G | ∀x ∈ X,h ⋆ x = x} is the kernel of the induced homomorphism
from G to SX .

The request on the coset of the kernel gN in the above definition allows the adversary
to find a different group element g′ acting like g. This is needed in case the action is
not faithful.

Observe that breaking the multiple one-wayness implies breaking both the weak
unpredictability and the weak pseudorandomness. We will use this fact to attack such
assumptions.

When we omit the distributions DG and DX from definitions 3, 4 and 5, we use the
uniform ones.

Remark 6. A similar but stronger treatment of multiple one-way group actions is given
in [Rei23], under the name of transparent security. The adversary A has access to a more
malleable oracle, called the transparent oracle: it acts as Πg, but, instead of sampling
the set element x from DX , it is queried by A. It can be seen that an adversary with
access to a transparent oracle can trivially simulate Πg sampling x from DX and then
querying it. Therefore, an attack regarding the oracle Πg can be carried in the context
of transparent security while the converse, in general, is not true.

As noted in the introduction, if we assume the one-wayness of the group action,
studying the multiple one-wayness is meaningful only in the non-commutative and non-
transitive case. In fact, in the Abelian and transitive scenario, an attacker can simulate
the oracle Πg from a single sample (x, g ⋆ x), and hence, the multiple one-wayness and
the one-wayness are equivalent. For this reason, we place ourselves in the more general
setting.

3 Representations and the Linear Dimension of a group
action

In this section, we explore the concept of representations of finite groups when we
endow them with an injection of the set X into a vector space. Such injection must be
“compatible” with the map ⋆, as we see in the following definition.

Definition 7. The pair (ρ, ι) is a representation of the group action (G,X, ⋆) over
F if ρ : G → GL(Fn) is a homomorphism of groups, ι : X → Fn is injective and
ρ(g)(ι(x)) = ι(g ⋆ x) for every g in G and x in X. The integer n is said dimension of
the representation and is denoted with dimF(ρ, ι).

Given a group action (G,X, ⋆) and a representation of G, it is natural to ask whether
a compatible injection ι is admitted. In the following, we look for necessary and sufficient
conditions for the existence of an injection ι given a representation ρ of G.

Proposition 8. Let (G,X, ⋆) be a group action, let N be the kernel of the homomor-
phism G→ SX and let O = X/G be the space of orbits of the action of G on X i.e. the
quotient of X by the action of G. Let ρ : G → GL(Fn

q ) be a linear representation. The
following are equivalent
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(i) there is an injection ι : X → Fn
q such that ρ(g)(ι(x)) = ι(g ⋆ x) for every g in G

and x in X,

(ii) there is a ρ-invariant subspace V ⊂ Fn
q such that

{g ∈ G : ρ(g)|V= Id} = N

and maps τ : O → X, υ : O → V such that for all o ∈ O:
τ(o) ∈ o,

ρ(G)υ(o) = ρ(Gτ(o)),

if o ̸= o′ ∈ O then ρ(G)υ(o)
⋂
ρ(G)υ(o′) = ∅.

Proof. (i) =⇒ (ii). Let V = spanFq
(ι(X)) be the linear subspace generated by the

image of ι. If g ∈ N then ρ(g)(ι(x)) = ι(x) for all x ∈ X. So N ⊂ {g ∈ G : ρ(g)|V= Id}
hence N = {g ∈ G : ρ(g)|V= Id} because ι is injective.

For each o ∈ O choose any element τ(o) ∈ o and define υ as follows:

υ(o) = ι(τ(o)) .

By construction, we have that τ(o) is in o. The second condition is as follows:

ρ(G)υ(o) = {ρ(g) : ρ(g)(υ(o)) = υ(o)} =
= {ρ(g) : ι(g ⋆ τ(o)) = ι(τ(o))} =
= {ρ(g) : g ⋆ τ(o) = τ(o)} =
= ρ(Gτ(o))

The third condition follows from the injectivity of ι since

ρ(G)υ(o)
⋂

ρ(G)υ(o′) = ι(G ⋆ τ(o))
⋂

ι(G ⋆ τ(o′)) .

(ii) =⇒ (i). Here we show how to define the injection ι : X → Fn
q . Let π : X →

X/G = O be the projection to the space of orbits. Let x ∈ X be any point and let
o = π(x) its projection. Let g ∈ G such that g ⋆ τ(o) = x and define

ι(x) = ρ(g)(υ(o)) .

First of all, notice that ι(x) is well defined. Indeed, if for another g′ ∈ G we have
g′ ⋆ τ(o) = x, then g′ = g · h with h ∈ Gτ(o). So

ρ(g′)(υ(o)) = ρ(g · h)(υ(o)) =
= ρ(g)(ρ(h)(υ(o))) =

= ρ(g)(υ(o)),

since ρ(h) ∈ ρ(G)υ(o). Notice that ι is injective by the third condition. Indeed, assume
ι(x) = ι(y), where

x = gx ⋆ τ(o) and y = gy ⋆ τ(o
′) .

Then, ι(x) = ι(y) means
ρ(gx)(υ(o)) = ρ(gy)(υ(o

′)) ,

and then, by the third condition, we get o = o′. Moreover, ρ(g−1
y gx) is in ρ(G)υ(o)

and hence ρ(g−1
y gx) is in ρ(Gτ(o)). This implies that there is h ∈ Gτ(o) such that

ρ(g−1
y gx) = ρ(h), and so ρ(h−1g−1

y gx) = Id. Thus, h−1g−1
y gx is in N , which gives

gx ⋆ τ(o) = gy ⋆ τ(o); hence, x = y and our ι is indeed injective. Finally, we check that
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ρ(g)(ι(x)) = ι(g ⋆ x) holds for every g in G and x in X. Let x = gx ⋆ τ(o) and let g be
arbitrary in G, then

ρ(g)(ι(x)) = ρ(g)(ρ(gx)(υ(o)))

= ρ(ggx)(υ(o))

= ι(ggx ⋆ τ(o))

= ι(g ⋆ (gx ⋆ τ(o)))

= ι(g ⋆ x).

This completes the proof of the proposition.

For our analysis, the following metric gives a useful tool in the study of cryptographic
assumptions based on group actions.

Definition 9. Let (G,X, ⋆) be a group action. For every finite field Fq, the q-linear
dimension of (G,X, ⋆) is the integer

LinDimFq (G,X, ⋆) = min
{
dimFq (ρ, ι) | (ρ, ι) is a representation of (G,X, ⋆)

}
.

Remark 10. Observe that the q-linear dimension is well-defined since the set

SFq,(G,X,⋆) =
{
dimFq

(ρ, ι) | (ρ, ι) is a representation of (G,X, ⋆)
}

is non-empty for every finite field Fq and every group action (G,X, ⋆).
Indeed, let X = {x1, . . . , x|X|} and define Fq[X] as the vector space of linear combina-
tions of the elements of X

Fq[X] =

∑
j

cjxj : cj ∈ Fq

 .

It can be shown that the dimension of Fq[X] over Fq is |X|. Let ι be the map that sends
xj ∈ X to xj ∈ Fq[X]. Moreover, let ρ be the map from G to GL(Fq[X]) such that ρ(g)
is the permutation matrix associated to the invertible map

x 7→ g ⋆ x.

Hence, ρ(g)(ι(x)) = ρ(g ⋆ x) and since Fq[X] ∼= F|X|
q , we have that |X| is in SFq,(G,X,⋆).

The above remark tells us that the cardinality of |X| is an upper bound for the q-
linear dimension of a group action. Moreover, we can prove the following lower bound.

Proposition 11. Let (G,X, ⋆) be a group action and N be the kernel of the homomor-
phism G→ SX . For every finite field Fq it holds that

LinDimFq
(G,X, ⋆) ≥

√
logq

(
|G|
|N |

)
.

In particular, when the action is faithful, LinDimFq
(G,X, ⋆) ≥

√
logq (|G|).

Proof. Consider the action of the quotient G/N on X

⋆/N : (gN, x) 7→ g ⋆ x.

It can be shown that it is indeed a group action and it is faithful. Moreover, if ρ is a
representation of G to Fn

q and ι an injection of X to Fn
q , then ρ can be extended to

ρ̃ : G/N → GL(Fn
q ), gN 7→ ρ̃(gN) = ρ(g).
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Observe that ρ̃(gN)(ι(x)) = ι(gN ⋆/N x) holds for every gN in G/N and x in X. Since
the action of G/N is faithful, ρ̃ is injective. Now, we have that |G/N | = |ρ̃(G/N)| ≤∣∣GL(Fn

q )
∣∣. The cardinality of GL(Fn

q ) is given by
∏n−1

j=0 qn−qj and it is upper bounded by

qn
2

. This implies |G/N | ≤ qn
2

and hence n ≥
√

logq(|G/N |), leading to the thesis.

Moreover, whenever the set X is a vector space of dimension n on the field Fq and
the action of G is linear, i.e. g ⋆ (λ1x1 + λ2x2) = λ1(g ⋆ x1) + λ2(g ⋆ x2), we have that

LinDimFq (G,X, ⋆) ≤ n.

As we will see in the next sections, many group actions used in cryptography follow the
above structure, and hence, a practical upper bound of the linear dimension is known.

4 On multiple one-way group actions

Here we propose an attack on the assumptions presented in Subsection 2.2, and a
relation to the linear dimension. In particular, we will attack the multiple one-wayness,
and, as a direct consequence, this leads to an attack to both the weak unpredictability
and the weak pseudorandomness.

We need the following known combinatorial fact. Given v1, . . . , vk uniformly sampled
from Fk

q , it is known that they form a basis with probability

k∏
i=1

(1− q−i) = O(1− q−1).

This means that, for the uniform distribution on Fk
q , we have that the sampled elements

are linearly independent with non-negligible probability (with respect to k). We need
to generalize this fact for a group action (G,X, ⋆) and a representation (ρ, ι).

Definition 12. Given a group action (G,X, ⋆), a distribution DX on X and a repre-
sentation (ρ, ι) of dimension n over Fq, we say that (ρ, ι) induces linear independence
with respect to DX if, given {x1, . . . , xQ} sampled according to DX , with Q = poly(n),
then there exists a negligible function µ(n) such that

Pr
[
⟨ι(x1), . . . , ι(xQ)⟩ ≠ Fn

q

]
≤ µ(n).

In particular, if X is a vector space, the uniform distribution over X induces a linear
independence. Due to the above definition, we can analyze whenever an attacker can
retrieve the secret g from a tuple of the form {(xi, g ⋆ xi)}i.

Definition 13. Given the group action (G,X, ⋆), the representation (ρ, ι) is admissible
if the following hold

1. ι is polynomial time computable;

2. a preimage of ρ(g) can be found in polynomial time for every g in G.

Now we can state our attack.

Proposition 14. Let λ be the security parameter. Given the group action (G,X, ⋆) and
two distributions DG and DX over G and X respectively, if there exists a field Fq and
an admissible representation (ρ, ι) which induces linear independence with respect to DX

with dimFq
(ρ, ι) = poly(λ), then the group action is not (DG, DX)-multiple one-way.
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Proof. Let A be the adversary having access to the oracle Πg. If n = LinDimF(G,X, ⋆),
then there exist ρ : G → GL(Fn) and ι : X → Fn such that (ρ, ι) is admissible by
hypothesis. The strategy of the adversary is the following.

1. A performs a number of queries Q to the oracle Πg until he obtains the set
Y = {(xi, g ⋆ xi)}i=1,...,n such that {ι(x1), . . . , ι(xn)} is a basis of Fn.

2. A evaluates ι on the set Y

{(ι(xi), ι(g ⋆ xi))}i = {(ι(xi), ρ(g)(ι(xi)))}i.

3. Since {ι(x1), . . . , ι(xn)} is a basis of Fn, A can find the invertible matrix ρ(g) and
then inverting ρ, obtaining an element h in G such that ρ(h) = ρ(g).

Let us analyze this strategy. Since n = poly(λ) and the representation induces linear
independence, A requires a polynomial number of queries to retrieve a set Y with non-
negligible probability in step 1. Step 2 is polynomial time since the representation is
admissible and ι is evaluated at most 2Q times. Moreover, since finding a preimage
of ρ(g) is a polynomial time task, the adversary A finds an element h of G such that
ρ(g) = ρ(h). This implies that the action of h on all the elements of X coincides with the
one of g and h is in the coset gN . Therefore, the action cannot be multiple one-way.

As a corollary, we easily get the following result.

Corollary 15. Let λ be the security parameter. Given the group action (G,X, ⋆) and
two distributions DG and DX over G and X respectively, if there exists a field Fq and
an admissible representation (ρ, ι) which induces linear independence with respect to DX

with dimFq (ρ, ι) = poly(λ), then the group action is not (DG, DX)-weakly unpredictable
nor (DG, DX)-weakly pseudorandom.

Even if the requirements of the previous propositions are non-trivial, in the next
section we show how a large class of group action used in cryptography satisfies them.

4.1 Analysis of some group actions from cryptography

Here, we propose some representations of known cryptographic group actions, start-
ing from the one concerning linear codes.

The hardness of the code equivalence problem has been used to build different prim-
itives [BBPS21; CNP+23]. However, in practice, a slightly different action from the one
we define in the following is used, involving the systematic form of matrices. In the
rest of the section, we will always refer to the non-systematic form variant. We refer to
(Linear) Code Equivalence Problem as the following one: given two linearly equivalent
linear codes C and C′, find an isometry between them. This problem can be rephrased
in the setting of group actions.

Definition 16. Let G = GL(Fk
q ) × Mon(Fn

q ), where Mon is the group of monomial

matrices, and let X = Fk×m
q be the set of k ×m matrices with coefficients in Fq. The

(Linear) Code Equivalence Problem asks, on inputs M,M ′ in X, to find (S,R) in G
such that M ′ = SMR.
The action underlying this problem is given by (G,X, ⋆), where

⋆ : G×X → X, ((S,R),M) 7→ SMR.

The map ⋆ for the above definition is given by the left-right multiplication of the
two matrices S and R.
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Remark 17. Observe that, even if for one sample (M,SMR) the code equivalence
problems with and without the systematic form are equivalent, the scenario changes
when more samples are involved and it is not known if this equivalence still holds.
In practice, the version with the systematic form is adopted for efficiency reasons: the
group that acts on the set is Mon(Fn

q ), and hence, it has a shorter bit representation

than the whole GL(Fk
q )×Mon(Fn

q ).

Corollary 18. The group action of the Code Equivalence Problem is not weak unpre-
dictable nor weak pseudorandom.

Proof. We will show that this action is not multiple one-way and consequently, we get
the thesis.
Since the space of k × n generator matrices is a vector space of dimension kn, we can
see it as Fkn and ι is the natural bijection. Since G is the product GL(Fk)×Mon(Fn),
we define the representation ρ as follows

ρ : G→ GL(Fkn), (S,R) 7→ S ⊗RT ,

where ⊗ denotes the Kronecker product. It can be seen that ρ(g)(ι(x)) = ι(g ⋆ x) for
every g in G and x in X. Moreover, the computation of ι is polynomial time and such
is finding a preimage of ρ(S,R). Indeed, let A = S ⊗RT and divide A in n× n blocks.
Let (i, j) be such that the block A(i,j) is non-zero and set R′ = AT

(i,j). Now compute

the matrix S′ as follows. Let u and v be two indexes such that R′
uv is non-zero. Then,

for every i, j = 1, . . . , k, set

S′
ij =

A(i,j)uv

R′
uv

.

In this way, we found a pair (S′, R′) such that the image through ρ is the same as
ρ ((S,R)) and, observing that computing S′ and R′ is a polynomial time task, we can
apply Proposition 14 and Corollary 15 to get the thesis.

Another problem having a linked group action that raised interest is the Tensor
Isomorphism Problem. It received a lot of attention both from a theoretical point of
view [GQ23] and from a cryptographic point of view [JQSY19; DFG23].

Definition 19. Let d be a positive integer. Let G = Πd
i=1 GL(Fni

q ) and let X =⊗d
i=1 Fni

q be the set of d-tensors with coefficients in Fq. The map ⋆ : G × X → X is
defined as

⋆ :

(A1, . . . , Ad),
∑

i1,...,id

Ti1,...,ide1 ⊗ . . .⊗ ed

 7→ ∑
i1,...,id

Ti1,...,idA1e1 ⊗ . . .⊗Aded.

The d-Tensor Isomorphism Problem asks, on inputs T, T ′ in X, to find (A1, . . . , Ad) in
G such that T ′ = (A1, . . . , Ad) ⋆ T .

Corollary 20. The action of the d-Tensor Isomorphism is not weak unpredictable nor
weak pseudorandom.

Proof. The set of d-tensors in Fn1⊗. . .⊗Fnd is a vector space of dimensionN = n1 · · ·nd.
Therefore, ι is the natural bijection. The representation ρ is the Kronecker product of
matrices

ρ : G→ GL(FN ), (A1, . . . , Ad) 7→ A1 ⊗ . . .⊗Ad
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and it can be inverted iteratively with the computation from the proof of Corollary 18;
consider A1⊗ (A2⊗ . . .⊗Ad) and find matrices A′

1 in GL(Fn1) and B1 GL(FN/n1) such
that

A′
1 ⊗B1 = A1 ⊗ . . .⊗Ad.

Then, we find A′
2 in GL (Fn2) and B2 GL

(
F

N
n1n2

)
for which the following holds

A′
2 ⊗B2 = B1.

Proceeding in this way, we find A′
1, . . . , A

′
d such that

A′
1 ⊗ . . .⊗A′

d = A1 ⊗ . . .⊗Ad.

Hence, we have the thesis using Proposition 14 and Corollary 15.

Due to the TI-completeness of d-Tensors Isomorphism [GQ23], most group actions
derived from problems in TI cannot be multiple one-way. In particular, the action on
matrix codes from [CNP+23] and the one on trilinear forms from [TDJ+22]. This is
intuitive to see, and we analyze the reductions between equivalence problems arising
from group actions.

Suppose we have two group actions (G,X, ⋆) and (G′, X ′, ⋆′) and a polynomial time
reduction Φ : X → X ′ such that, for every x, y in X

∃g ∈ G such that g ⋆ x = y ⇐⇒ ∃g′ ∈ G′ such that g′ ⋆′ Φ(x) = Φ(y). (1)

Even if these kinds of reductions concern decision problems, most of the time they can
be viewed as reductions between search problems, for instance like the ones in [GQ23;
FGS19]. If so, we define

RΦ = {(g, g′) ∈ G×G′ | g ⋆ x = y ⇐⇒ g′ ⋆′ Φ(x) = Φ(y) , ∀x, y ∈ X}

and we denote with G′
Φ the projection of RΦ to the second coordinate. Then, there is

a pair of maps
fΦ : G→ G′

Φ, g 7→ fΦ(g)

and
f ′
Φ : G′

Φ → G, g′ 7→ f ′
Φ(g

′)

such that both (g, fΦ(g)) and (fΦ(g
′), g′) are inRΦ. With this notation, we can conclude

that the reduction Φ induces the following equation

Φ(g ⋆ x) = fΦ(g) ⋆
′ Φ(x).

Let us go back to group actions representations. Given a polynomial reduction Φ
between (G,X, ⋆) and (G′, X ′, ⋆′) as in Eq. (1) and given a representation (ρ′, ι′) for
(G′, X ′, ⋆′), we have that the tuple {xi, g ⋆ xi} is sent to {Φ(xi), fΦ(g) ⋆

′ Φ(x)}. Using
Proposition 14, we retrieve fΦ(g) in G′, and this implies the following result.

Theorem 21. Let (G,X, ⋆) and (G′, X ′, ⋆′) be two group actions. Suppose that there
exist two polynomial time computable maps Φ : X → X ′ and f ′

Φ : G′
Φ → G, with

G′
Φ ⊆ G′, such that g′ ⋆ Φ(x) = Φ(y) if and only if f ′

Φ(g
′) ⋆ x = y. Then, if (G′, X ′, ⋆′)

is not multiple one-way, then neither (G,X, ⋆) is multiple one-way. As an application,
group actions derived from equivalence problems in the class TI, for which there exists
a polynomial reduction Φ to the d-Tensors Isomorphism Problem having a polynomial
time f ′

Φ, cannot be weakly unpredictable nor weakly pseudorandom.
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Proof. Assuming that (G′, X ′, ⋆′) is not multiple one-way, we show that the action
(G,X, ⋆) is not multiple one-way. Calling the oracle Πg for (G,X, ⋆) multiple times,
we can apply the map Φ to the samples {xi, g ⋆ xi} to obtain {Φ(xi), g

′ ⋆′ Φ(x)}, for a
certain g′ in G′. In this way, we can retrieve g′ and, after applying f ′

Φ, we can recover
h = f ′

Φ(g
′) the coset gN of the kernel N . This breaks the multiple one-way assumption

for (G,X, ⋆).
Since the d-Tensor Isomorphism problem is TI-complete, Corollary 20 implies that

any group actions derived from equivalence problems in the class TI for which there
exists a reduction Φ to the d-Tensors Isomorphism Problem having a polynomial time
f ′
Φ cannot be weakly unpredictable nor weakly pseudorandom.

Observe that many reductions from [GQ23; FGS19] satisfy the hypotheses of The-
orem 21, hence, it is safe to avoid any of these group actions in the design of primitives
requiring weak unpredictability or weak pseudorandomness.

5 On the Linear Dimension of some classic groups

5.1 The symmetric group Sn
Let Sn be the symmetric group in n letters x1, · · · , xn, i.e. it is the group of all

bijections of the set Xn = {x1, · · · , xn}. The action is the trivial one, let τ be in Sn and
xj be in Xn. We define τ ⋆ xj = xτ(j).

Surprisingly, the n − 2 dimensional representation ρ : Sn → GL(Fn−2
p ) of the sym-

metric group Sn, when p divides n, stated by L.E. Dickson in [Dic08, Theorem, page 123]
does not admit a compatible injection ι. We show that, in general, the linear dimension
of the symmetric group is n− 1.

Proposition 22. For n > 2 we have

LinDimFq
(Sn,Xn) = n− 1 .

For n = 2:

LinDimFq
(S2,X2) =

{
2 if 2 | q,
1 otherwise.

Proof. First we show that LinDimFq
(Sn,Xn) ≥ n − 1. Indeed, assume that d =

LinDimFq
(Sn,Xn) ≤ n − 2. Let ρ be a representation ρ : Sn → GL(Fd

q) and let

ι : Xn → Fd
q be an injective map such that

ρ(τ)(ι(xj)) = ι(τ ⋆ xj)

for all τ ∈ Sn, xj ∈ Xn.
We have that the vectors of the set B = {ι(x1), · · · , ι(xd)} are either linearly inde-

pendent or one of them is a linear combination of the others. Assume that ι(xj) is a
linear combination of the other vectors of B. Namely,

ι(xj) =
∑

s̸=j,1≤s≤d

csι(xs),

where the coefficients cs are in Fq.
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Let τ from Sn be the transposition between xj and xn. Then

ρ(τ)(ι(xj)) = ρ(τ)

 ∑
s ̸=j,1≤s≤d

csι(xs)


=

∑
s̸=j,1≤s≤d

csρ(τ)ι(xs)

=
∑

s̸=j,1≤s≤d

csι(τ ⋆ xs)

=
∑

s̸=j,1≤s≤d

csι(xs)

= ι(xj).

So ρ(τ)(ι(xj)) = ι(τ ⋆ xj) = ι(xn) = ι(xj) which is a contradiction. Then, the vectors
of B are linearly independent and they form a basis of Fd

q . But then ι(xn−1) is a linear
combination of vectors of B and we can use a transposition between xn−1 and xn to get
a contradiction as above. So LinDimFq

(Sn,Xn) ≥ n− 1.
Now let ρn : Sn → GL(Fn

q ) be the standard representation. Namely,

ρn(σ)(ei) = eσ(i)

where {e1, . . . , en} is the canonical basis of Fn
q . Observe that the vector u =

∑n
j=1 ej is

invariant by ρn, so we get a representation

ρ̃n : Sn → GL(Fn
q /Fqu)

on the quotient linear space Fn
q /Fqu ∼= Fn−1

q :

ρ̃n(σ)(π(v)) := π(ρn(σ)(v)),

where π : Fn
q → Fn

q /Fqu is the projection to the quotient. Let us define ι : Xn → Fn
q /Fqu

as
ι(xj) := π(ej) .

Then ι(xj) = ι(xs) if and only if ej = es + λu, with λ in Fq. Thus, for n ≥ 3 the map ι
is injective. Let us check that

ρ̃n(τ)(ι(xj)) = ι(τ ⋆ xj)

for all τ in Sn and xj in Xn. We have

ρ̃n(τ)(ι(xj)) = π(ρn(τ)(ι(xj)))

= π(ρn(τ)(ej))

= π(eτ(j))

= ι(xτ(j))

= ι(τ ⋆ xj).

Finally, for n = 2 the map ι is still injective for p ̸= 2. For p = 2 our map ι fails to
be injective. Actually, any 1-dimensional representation of S2 is trivial in characteristic
p = 2. So LinDimF

2k
(S2,X2) = 2 since the standard representation and the inclusion

ι(x1) = e1, ι(x2) = e2 satisfies

ρ2(τ)(ι(xj)) = ι(τ ⋆ xj)

for all τ in S2 and xj in X2.
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An application to n-bit permutations. It is well-known that any 2-bit per-
mutation is given by an affine map. Namely, that the boolean functions components of
any bijection f : F2

2 → F2
2 are affine:

f(x, y) = (ax+ by + c, a′x+ b′y + c′)

where a, b, c, a′, b′, c′ ∈ F2.
Here we give a proof of this fact together with a generalization to permutations of

n-bit.
Let P(Fn

2 ) be the group of bijections of Fn
2 and let aff(Fn

2 ) be the subgroup of affine
maps i.e. g ∈ aff(Fn

2 ) if and only if g(x) = ax+ b where b ∈ Fn
2 , a ∈ GL(Fn

2 ).

Proposition 23. There is a group monomorphism α : P(Fn
2 ) → aff(F2n−2

2 ) and an

injection ι : Fn
2 → F2n−2

2 such that

ρ(g)(ι(x)) = ι(g(x))

for all g ∈ P(Fn
2 ), x ∈ Fn

2 .

Proof. This is a consequence of Proposition 22. To see why, notice that we can identify
the symmetric group S2n with the group of permutations P(Fn

2 ) of Fn
2 . That is to say,

S2n ∼= P(Fn
2 ) .

Such identification can be done by using the binary representation of the subindex j of
the letter xj ∈ X2n . Namely,

xj ←→ (dn−1, dn−2, . . . , d1, d0) ∈ Fn
2

where j =
∑n−1

i=0 dj2
j .

Now by Proposition 22 there is a representation ρ : S2n → GL(F2n−1
2 ) and map

ι : X2n → F2n−1
2 such that

ρ(g)(ι(x)) = ι(g(x))

for all x ∈ X2n , g ∈ S2n .
Now let H ⊂ F2n−1

2 be the affine hyperplane generated as follows

H = {c0 · ι(x0) + · · ·+ c2n−1 · ι(x2n−2) :

2n−2∑
i=0

ci = 1} .

It is clear that ι(xj) is in H for j = 0, · · · , 2n−2. Notice that, for j = 2n−1, ι(x2n−1) =

ι(x0) + · · · + ι(x2n−2) and
∑2n−2

i=0 1 = 1; hence, also ι(x2n−1) is in H. So ι(X2n) ⊂ H.
Now, since the linear maps of ρ(S2n) permute ι(X2n), they preserve the affine hyperplane
H and hence, they act on H as affine maps. Keeping in mind the above identification of
S2n ∼= P(Fn

2 ), we get a monomorphism α : P(Fn
2 )→ aff(H) such that

α(g)(ι(x)) = ι(g(x))

for all g in P(Fn
2 ) and x in Fn

2 . Finally, being H an affine hyperplane of F2n−1
2 , it has

dimension 2n − 2, hence H ∼= F2n−2
2 and we are done.

This shows that 2-bit permutations are affine 2-bit maps. The 3-bit permutations
can be regarded as 6-bit affine maps and so on.
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5.2 The General Linear Group GL(Fn
q )

For g in GL(Fn
q ) and v in Fn

q , let us define ⋆ as g ⋆ v = g(v). Set Yn := Fn
q .

Proposition 24. We have that LinDimF
pk
(GL(Fn

q ),Yn) ≥ n.

Proof. Since the action of the symmetric group Sn on Xn is equal to the action of
ρn(Sn) ⊂ GL(Fn

q ) on ι(Xn) ⊂ Fn
q we have

LinDimF
pk
(GL(Fn

q ),Yn) ≥ n− 1 .

Assume that there is a representation ρ : GL(Fn
q ) → GL(Fn−1

pk ) and an injective map

ι : Fn
q → Fn−1

pk such that

ρ(g)(ι(v)) = ι(g ⋆ v)

for all g in GL(Fn
q ) and v in Yn. Then, one of the vectors ι(ej), for j = 1, . . . , n, must

be a linear combination of the others. Namely, there is a j such that

ι(ej) =
∑

s̸=j,1≤s≤n

csι(es),

where the coefficients cs are in Fpk . From the action of the permutations, it follows that
all coefficients cs are equal. Then, swapping ej with any of the other vectors implies
cs = −1. Hence, we get

n∑
j=1

ι(ej) = 0.

Now, let g be an element of GL(Fn
q ) such that g(e1) = λe1, λ ̸= 1, and g(ej) = ej for

1 < j ≤ n. Then

0 = ρ(g)

 n∑
j=1

ι(ej)


=

n∑
j=1

ρ(g)ι(ej)

=

n∑
j=1

ι(g ⋆ ej) = ι(λe1) +

n∑
j=2

ι(ej).

So ι(λe1) = ι(e1), which contradicts the fact that ι is injective.

5.3 The cyclic group (Zn,+) acting on itself

In this subsection, we compute the linear dimension for the action of the additive
group Zn acting on itself. For instance, let G = Zn, X = Zn and ⋆ = +.

To state our main theorem we need the following definitions.
Let q be a prime power and n a positive integer such that gcd(q, n) = 1, the order of q
modulo n is denoted by ordn(q). For n = 1 we set ord1(q) = 0.
Let LD(n, q) be defined as

LD(n, q) = min


 ℓ∑

j=1

ordnj (q)

 : n =

ℓ∏
j=1

nj , gcd(ni, nj) = 1 , i ̸= j


For example LD(15, 2) = 4 = ord15(2) and LD(21, 2) = 5 < ord21(2) = 6. Notice that
LD(1, q) = 0 for every q.
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Theorem 25. Fix a prime power pk and let n = pmr, with gcd(p, r) = 1. Then

LinDimF
pk
(Zn,Zn) =

{
LD(r, pk) if m = 0,

LD(r, pk) + (pm−1 + 1) if m > 0 .

For the proof of the theorem, we need the following facts from linear algebra.
Let w = LinDimF

pk
(Zn,Zn) and let A be a matrix in GL(Fw

pk). Denote with n the

order of A, i.e. the order of the cyclic subgroup of GL(Fw
pk) generated by A, and write

n = pmr with gcd(p, r) = 1.
Set q = pk and let f(X) ∈ Fq[X] be the minimal polynomial of Apm

and let f(X) =∏l
i=1 fi(X) be its factorization in irreducibles fi(X)’s. Since P (X) = Xr−1 has simple

roots and P (Apm

) = 0, we get that fi(X) ̸= fj(X) for i ̸= j. Then Apm

decomposes in
s blocks A1, . . . , As as follows

Apm

=


A1 0 0 0
0 A2 0 0

0 0
. . . 0

0 0 0 As

 , (2)

where the minimal polynomial of the block Aj is fj(X). Let ri be the order of the block
Ai. Then, r = LCM(r1, r2, . . . , rs), i.e. r is the least common multiple of the ri’s.

The characteristic polynomial χi of each block Ai is the di-th power of fi, i.e.
χi(X) = fdi

i (X). Moreover, each block Ai is itself a matrix block of size di associated

to the multiplication for α in the vector space Fq(α)
di . In particular, α has order ri in

the multiplicative group Fq(α)
∗.

Now, let N = Ar − Id. Since

(N + Id)p
m

= Npm

+ Id = (Ar)p
m

= Id,

we have that Npm

= 0 and hence, N is nilpotent. Observe that N commutes with Apm

,
so also N decomposes in nilpotent blocks as

N =


N1 0 0 0
0 N2 0 0

0 0
. . . 0

0 0 0 Ns

 .

The following lemma is a direct consequence of the above decompositions.

Lemma 26. Let w = LinDimFq
(Zn,Zn) and let n = pmr. Let ρ : (Zn,+) → GL(Fw

q )
and ι : (Zn,+)→ Fw

q such that

ρ(g)(ι(x)) = ι(g ⋆ x)

for all g, x in Zn. Then the matrix A = ρ(1) has order n and w.r.t the above decompo-
sition (2):

• fi ̸= X − 1 =⇒ di = 1,

• fi ̸= X − 1 =⇒ Ni = 0,

• for fj = X − 1, the block Aj = Id.
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Proof. (of Theorem 25) By the above Lemma 26, we see that just one block of Nj is
different from zero. Assume that it is N1, and so A1 = Id. Then, the minimum size for
N1 to be nilpotent of order pm but not of order pm−1 is pm−1 + 1.

For i > 1, let ni be the order of each block Ai. To obtain the minimum size for Ai,
we have to minimize over deg(fi), where fi ∈ Fq[X] is irreducible such that

ni = ord(α)|qdeg(fi) − 1

and ord(α) is the order of α in the multiplicative group Fq(α)
∗. Thus

deg(fi) = ordni
(q) ,

since there is an irreducible fi ∈ Fq[X] with deg(fi) = ordni
(q). By the Chinese Re-

mainder Theorem, we can assume gcd(ni, nj) = 1 and so

r = lcm(n2, · · · , ns) =

s∏
j=2

nj .

We have shown the inequality

LinDegFq
(Zn, (Zn,+)) ≥

{
LD(r, q) if m = 0,

LD(r, q) + (pm−1 + 1) if m > 0 .
.

To show the equality, we need to construct the injective function

ι : (Zn,+)→ Fw
q

and the representation
ρ : (Zn,+)→ GL(Fw

q ),

where

w =

{
LD(r, q) if m = 0,

LD(r, q) + (pm−1 + 1) if m > 0 .
.

We will assume m > 0 since for the case m = 0 it is enough to avoid the nilpotent block.
The previous proof shows us how to construct a matrix A in GL(Fw

q ) of order n by
using blocks. Let A be in GL(Fw

q ) defined as

A =


N + Id 0 0 0

0 A2 0 0

0 0
. . . 0

0 0 0 As

 ,

where Id is the (pm−1 + 1)× (pm−1 + 1) identity and N is the well-known (pm−1 +
1)× (pm−1 + 1) lower diagonal nilpotent matrix. Then

(N + Id)p
m

= Id,

but (N + Id)p
m−1 ̸= Id.

For each j > 1, let Fq(αj) be the extension of degree ordnj (q) such that αj has
order nj . The existence of such αj is well-known, see e.g. [LN97, Theorem 2.46, page

65]. The extension Fq(αj) is a vector space over Fq isomorphic to F
ordnj

(q)
q . So let

Aj be the ordnj (q) × ordnj (q) matrix corresponding to the multiplication by αj in
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Fq(αj). Moreover, let vj ∈ F
ordnj

(q)
q be a vector corresponding to 1 ∈ Fq(αj) w.r.t.

the isomorphism Fq(αj) ∼=Fq F
ordnj
q . Finally, let v1 = [1, 0, · · · , 0] ∈ F(pm−1+1)

q and let
v = v1 + v2 + · · ·+ vs ∈ Fw

q .
Define ρ : (Zn,+)→ GL(Fw

q ) as

ρ(j) := Aj

and ι : Zn → Fw
q as

ι(j) = Aj · v .

We have that ρ(g)(ι(j)) = ι(g ⋆ j) holds for all g, j in Zn and so, to complete the proof,
we need to check that ι is injective.
Assume that, for 0 ≤ a < b ≤ n − 1, we have i(a) = i(b). Then, Ah · v = v for
0 < h = b− a < n. Then 

(N + Id)h · v1 = v1

Ah
2 · v2 = v2

...

Ah
s · vs = vs

,

and the equalities Ah
j · vj = vj for j = 2, · · · , s imply that r|h. Moreover, the first

equality implies that (N + Id)h = Id since the vectors {N0 · v1, N1 · v1, . . . , Npm−1 · v1}
form a basis of F(pm−1+1)

q , and

(N + Id)h ·N j · v1 = N j · v1

for all j = 0, . . . , pm−1. So pm |h and n = pmr |h. This is a contradiction with 0 < h =
b− a < n. This completes the proof.
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