
PMNS revisited for consistent redundancy and equality test

Fangan Yssouf Dosso1*, Alexandre Berzati2, Nadia El Mrabet1, Julien Proy2

1SAS laboratory, École des Mines de Saint-Étienne, Gardanne, France.
2Thales DIS, Meyreuil, France.

*Corresponding author. E-mail: fanganyssouf.dosso@emse.fr;
Contributing authors: alexandre.berzati@thalesgroup.com; nadia.el-mrabet@emse.fr;

julien.proy@thalesgroup.com;

Abstract
The Polynomial Modular Number System (PMNS) is a non-positional number system for modular
arithmetic. A PMNS is defined by a tuple (p, n, γ, ρ, E), where p, n, γ and ρ are positive non-
zero integers and E ∈ Zn[X] is a monic polynomial such that E(γ) ≡ 0 (mod p). The PMNS
is a redundant number system. In [1], Didier et al. used this redundancy property to randomise the
data during the Elliptic Curve Scalar Multiplication (ECSM). In this paper, we refine the results on
redundancy and propose several new results on PMNS. More precisely, we study a generalisation of
the Montgomery-like internal reduction method proposed in [2], along with some improvements on
parameter bounds for smaller memory cost to represent elements in this system. We also show how
to perform equality test in the PMNS.

Keywords: Modular arithmetic, Polynomial modular number system, Internal reduction, Euclidean lattices,
Redundancy, Equality test

1 Introduction
Modular arithmetic is one of the key points for
efficient and secure cryptographic applications,
such as Elliptic Curve Cryptography (ECC) [3, 4],
RSA [5] and some post-quantum schemes such as
Crystal-Dilithium [6]. Many approaches have been
proposed to perform it both efficiently and safely.
When the modulus can be chosen freely, special
numbers such as Mersenne and pseudo-Mersenne
numbers [7, 8] can be used. They are very effi-
cient for modular reduction. In many applications,
such as pairing-based cryptography [9], the mod-
ulus cannot be chosen arbitrarily and does not
have a shape that would allow speeding up modu-
lar arithmetic. For such moduli, there are general

modular reduction methods, such as those pro-
posed by Barrett [10] and Montgomery [11]. These
methods are based on the classical binary num-
ber system. To further improve this modular
arithmetic, alternative number systems have been
proposed. A famous one is the Residue Number
System (RNS) [12], which has been widely studied
and implemented. It is an efficient number system
which has a very high parallelisation capability.
In 2004, Bajard et al. proposed the Polynomial
Modular Number System (PMNS) [13] for mod-
ular arithmetic modulo a prime integer p. In this
system, elements are polynomials. More precisely,
we have the following definition.
Definition 1.1. A polynomial modular num-
ber system (PMNS) is defined by a tuple B =
(p, n, γ, ρ, E), such that for each integer y ∈
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Z/pZ there exists a polynomial V (X) = v0 +
v1.X + · · ·+ vn−1.X

n−1 such that:

y = V (γ) (mod p) ,

where |vi| < ρ and 2 ⩽ ρ, γ < p. In this case,
we say that V (X) (or equivalently the vector V =
(v0, . . . , vn−1)) is a representation of y in B.
The parameter E is a monic polynomial in Z[X] of
degree n, having γ as a root modulo p, i.e. E(γ) ≡
0 (mod p).

In the PMNS, polynomial multiplications are
performed modulo E. The reduction modulo E
is called external reduction and E is called
external reduction polynomial.

After an addition or multiplication (modulo
E), the result might not be in the PMNS, since
its coefficients are likely to be greater than ρ,
especially after a multiplication. To keep the coef-
ficients of the result bounded by ρ, an operation
called internal reduction is performed. It is
somehow equivalent to the modular reduction in
classical binary representation. In Section 2.5,
we describe in detail the Montgomery-like inter-
nal reduction method proposed by Negre and
Plantard [2].

Like the RNS, the PMNS offers a very high
parallelisation capability, due to the polynomial
structure of its elements. In [14–16], it is shown
that the PMNS can be an efficient alternative to
the classical representation, for integer sizes used
in ECC. It is also shown that operations in PMNS
can be vectorised very efficiently. In [17], sequen-
tial and vectorised implementations of PMNS and
RNS are compared, for small to large moduli.

The PMNS is a redundant number system.
Indeed, an element a ∈ Z/pZ can have more than
one representation. For example, in the PMNS
B = (19, 3, 7, 2, X3−1), the polynomials (−X−1)
and X2 are representations of 11.
In [1], Didier et al. use this redundancy property to
randomise arithmetic and conversion operations
in order to randomise the data during the Elliptic
Curve Scalar Multiplication (ECSM). This redun-
dancy property of PMNS has however a drawback.
It makes the equality check non-trivial. Indeed,
since elements can have more than one represen-
tation, a simple comparison of two polynomials
is not sufficient to conclude that they represent
two different elements in Z/pZ. Until now, the
best way to determine if two polynomials A,B ∈

Zn−1[X] represent the same element a ∈ Z/pZ
is to first compute C = A − B, then evaluate C
modulo p to check if C(γ) ≡ 0 (mod p). So, a con-
version out of the PMNS (the evaluation of C) is
required, which is not appropriate for some cryp-
tographic use cases where equality testing is for
instance done during the process, to detect fault
attacks [18, 19] or for signature verification [20].

Contributions
This paper is a comprehensive study of how ele-
ments are represented in the PMNS and how they
behave with respect to arithmetic and conversion
operations. We aim to provide a complete under-
standing of this system. To do so, we introduce
a generalised Montgomery-like internal reduction
method, with a number of properties. This is the
first major (and rather theoretical) contribution of
this paper. It is a toolkit of results that will serve
as the basis for our three major (and practical)
contributions, which are:

• Improved bounds to represent PMNS ele-
ments, for smaller memory cost.

• Precise study of redundancy in PMNS,
explaining the relation between representa-
tions.

• Equality test within the PMNS.
These contributions make the PMNS a more com-
plete system and allows to compute comparison
of PMNS element and remove the burden of
conversion to original system.

Paper organisation
This paper is structured as follows. Section 2
gives some background on PMNS. Section 3 intro-
duces GMont-like, a generalised Montgomery-
like internal reduction method with a number of
properties. In Section 4, we present a set of prop-
erties for coefficient reductions in some special
domains, which are interesting for both memory
requirement and redundancy in the PMNS. These
two theoretical sections constitute the toolkit for
the next three sections, which respectively focus
on memory improvement, redundancy and equal-
ity test in the PMNS. Before concluding, Section
8 addresses the related computational operation
costs.
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2 Background on PMNS
For consistency, we assume that p ⩾ 3 and n ⩾ 2.
Let us start with the notations we will be using
throughout this paper.

2.1 Some notations and
conventions

• Let A be a set, #A denotes the number of
elements of A.

• Zn−1[X] is the set of polynomials in Z[X]
with degrees lower than or equal to n− 1:
Zn−1[X] = {C ∈ Z[X] | deg(C) ⩽ n− 1}.

• If A ∈ Zn−1[X], we assume that A(X) =
a0 + a1X + · · · + an−1X

n−1 can equiva-
lently be represented as the vector A =
(a0, . . . , an−1) ∈ Zn.

• Let a ∈ Z/pZ. If a polynomial A ∈ Zn−1[X]
is such that A(γ) ≡ a (mod p), then we say
that A is a representation of a in B.

• If α = (α0, . . . , αn−1), then α (mod ϕ) = (α0

(mod ϕ), . . . , αn−1 (mod ϕ)).
• Let C ∈ Z[X]. C mod (E, ϕ) is the polyno-

mial reduction C mod E, with the coefficients
of the result are computed modulo ϕ.

• Unless otherwise specified, the symbol B will
always designate a PMNS (p, n, γ, ρ, E).

• Let A ∈ Zn be a vector. We have:
∥A∥∞ = max

0⩽i⩽n−1
|ai|.

• Let W ∈ Zn×n be a matrix. We have:
∥W∥1 = max

0⩽j⩽n−1

∑n−1
i=0 |wij |.

2.2 PMNS and euclidean lattices
Given a tuple B = (p, n, γ, ρ, E), one can build
the n-dimensional full-rank Euclidean lattice LB
defined as follows:

LB = {A ∈ Zn−1[X] A(γ) ≡ 0 (mod p)}. (1)

It is the set of polynomials with degrees strictly
less than n and having γ as a root modulo p. A
basis of LB is the n × n matrix B, defined as
follows:

B =



p 0 0 . . . 0 0
t1 1 0 . . . 0 0
t2 0 1 . . . 0 0
...

. . .
...

tn−2 0 0 . . . 1 0
tn−1 0 0 . . . 0 1



← p
← X + t1
← X2 + t2

← Xn−2 + tn−2

← Xn−1 + tn−1

, (2)

where ti = (−γi) mod p.

The following result, from [21], gives a condi-
tion on ρ for B to be a PMNS.
Theorem 2.1. Let p ⩾ 3, n ⩾ 1 be two integers,
γ ∈ Z/pZ \ {0} and E ∈ Zn[X] a monic polyno-
mial such that E(γ) ≡ 0 (mod p). Let W be any
basis of the lattice LB. A tuple B = (p, n, γ, ρ, E)
defines a PMNS if:

ρ >
1

2
∥W∥1 .

Remark 2.1. Theorem 2.1 works with any basis
of LB regardless of its quality, defined here as
its 1-norm. In practice however, we want ρ to
be as small as possible for small memory cost.
So, one should take W as a reduced basis of
LB (the smaller the better). Such a basis can be
obtained with algorithms like LLL [22], BKZ[23]
or HKZ[24], applied to the basis B (Equation 2).
This results in a parameter ρ such that ρ ≈ n

√
p.

2.3 A property on LB sublattices
Let L be a sublattice of LB, having G as a basis.
Assuming that Gi is the ith row of G, let us con-
sider the fundamental regions H and H′ defined
as follows:

H = {t ∈ Rn | t =
n−1∑
i=0

µiGi and 0 ⩽ µi < 1} , (3)

H′ = {t ∈ Rn | t =
n−1∑
i=0

µiGi and − 1

2
⩽ µi <

1

2
} .

(4)
Lemma 2.1. Let a ∈ Z/pZ. There exists A ∈
H ∩ Zn (resp. A ∈ H′ ∩ Zn), such that: a = A(γ)
(mod p).

Proof. Let V = (a, 0, . . . , 0). From lattice theory,
we know that there exists a vector T ∈ L such
that V + T ∈ H (resp. V + T ∈ H′). Let A =
V + T . Since L ⊆ LB ⊂ Zn, T ∈ Zn. So, A ∈ Zn.
Additionally, T (γ) ≡ 0 (mod p), since T ∈ L.
Thus, A(γ) ≡ V (γ) (mod p).

This lemma says that every element a ∈ Z/pZ
has at least one representation in H ∩ Zn (resp.
H′ ∩ Zn).
Remark 2.2. Let A ∈ Zn.

• If A ∈ H, then ∥A∥∞ < ∥G∥1.
• If A ∈ H′, then ∥A∥∞ ⩽ 1

2∥G∥1.
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2.4 External reduction
Let B = (p, n, γ, ρ, E) be a PMNS, where E ∈
Zn[X] is a monic polynomial. As explained in the
introduction, polynomial multiplications in PMNS
are done modulo E. The reduction modulo E is
called external reduction.

When E(X) = Xn−λ, with λ ∈ Z\{0} and |λ|
small, this operation can be done very efficiently,
as explained in [13].

Let us assume that E(X) = Xn+en−1X
n−1+

· · · + e1X + e0. To optimise the general case for
E, the authors in [16] introduce the external
reduction matrix E , which is defined as follows:

E =


−e0 −e1 . . . −en−1

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .


← Xn mod E
← Xn+1 mod E

← X2n−2 mod E

.

(5)

It is a (n− 1)×n matrix where each row contains
the coefficients of the polynomial Xn+i (mod E),
for i = 0, . . . , n− 2.

Let A,B ∈ Zn−1[X] be two polynomials. Let
C = A × B = c0 + c1X + · · · + c2n−2X

2n−2 and
R = C mod E. In [16], it is shown that:

R = (c0, . . . , cn−1) + (cn, . . . , c2n−2)E . (6)

Moreover, with E ′ being the (n − 1) × n matrix
such that E ′ij = |Eij |, it is also shown that:

∥R∥∞ ⩽ w∥A∥∞∥B∥∞ , (7)

with:

w = ∥(1, 2, . . . , n)+(n−1, n−2, . . . , 1)E ′∥∞ . (8)

In [16] (Table 1), a set of polynomials E min-
imising w, and building very sparse and friendly
matrices E are given.

2.5 Internal reduction
Many approaches have been proposed to perform
the internal reduction [2, 13, 15, 25]. In this paper,
we focus on the Montgomery-like method pro-
posed in [2]. It introduces three parameters: an
integer ϕ ⩾ 2 and two polynomials M,M ′ ∈
Zn−1[X] such that: M(γ) ≡ 0 (mod p) and

M ′ = −M−1 mod (E, ϕ). Algorithm 1 describes
this method. Notice that this method introduces
a factor ϕ−1 on the output. So, a conversion in
Montgomery domain should be done, as explained
in [14](Section 4.4).

Algorithm 1 Coefficients reduction [2]

Require: V ∈ Zn−1[X], M ∈ Zn−1[X] such that
M(γ) ≡ 0 (mod p), ϕ ∈ N \ {0, 1} and M ′ =
−M−1 mod(E, ϕ).

Ensure: S(γ) = V (γ)ϕ−1 (mod p), with S ∈
Zn−1[X]

1: Q← V ×M ′ mod (E, ϕ)
2: T ← Q×M mod E
3: S ← (V + T )/ϕ
4: return S

In [14], focusing on the case E(X) = Xn − λ,
the authors show that this approach is at least
as efficient as the classical Montgomery modular
reduction method. In [16], the authors extend that
work to any monic polynomial E ∈ Zn[X]. To do
that efficiently, regardless E shape, they introduce
the matricesM andM′ defined below. With these
matrices, Algorithm 1 is rewritten as Algorithm 2.

M =


m0 m1 . . . mn−1

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .


←M
← X.M mod E

← Xn−1.M mod E

,

(9)

M′ =


m′

0 m′
1 . . . m′

n−1

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .


←M ′

← X.M ′ mod (E, ϕ)

← Xn−1.M ′ mod (E, ϕ)

.

2.6 Arithmetic and conversion
operations

In this section, we briefly remind the main arith-
metic and conversion operations in the PMNS.
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Algorithm 2 Coefficients reduction for PMNS
(RedCoeff)

Require: V ∈ Zn−1[X], the matricesM,M′ and
ϕ ∈ N \ {0, 1}.

Ensure: S(γ) = V (γ)ϕ−1 (mod p), with S ∈
Zn−1[X]

1: Q = (v0, . . . , vn−1)M′ (mod ϕ)
2: T = (q0, . . . , qn−1)M
3: S ← (V + T )/ϕ
4: return S

2.6.1 Addition and subtraction

Let A,B ∈ B be two polynomials. The addition
(resp. subtraction) is a simple polynomial addi-
tion (resp. subtraction); i.e. the operation C =
A + B (resp. C = A − B). Although deg(C) <
n, C might not be in B, since we only have
∥C∥∞ < 2ρ. So, an internal reduction should be
done on C to guarantee the result in the PMNS.
However, this reduction (see Algorithm 2) is too
expensive compared to the polynomial addition or
subtraction.

To avoid this need for coefficient reductions,
a parameter δ has been introduced in [14]. It is
the maximum number of consecutive additions of
elements in B that we want to compute before
doing a modular multiplication.

If C is the result of such successive additions,
then ∥C∥∞ < (δ + 1)ρ. In Section 2.6.4, we
remind the bounds proposed in [16] to ensure com-
plete coefficient reductions of the product of such
polynomials.

2.6.2 Modular multiplication

Multiplication is a simple polynomial multiplica-
tion, followed by the external reduction and then
the internal reduction, see Algorithm 3.

Algorithm 3 Modular multiplication for PMNS

Require: A,B ∈ Zn−1[X], the matrices M, M′,
E and ϕ ∈ N \ {0, 1}.

Ensure: S(γ) = A · B(γ)ϕ−1 (mod p), with S ∈
Zn−1[X]

1: C = A×B
2: V = (c0, . . . , cn−1) + (cn, . . . , c2n−2)E
3: S ← RedCoeff(V )
4: return S

2.6.3 Conversion operations

The use of PMNS requires conversions from and
to the classical binary representation. These oper-
ations are described in detail in [13](Section 4.4)
and [16](Section 6.1). The conversion from PMNS
is a polynomial evaluation modulo p. Here, we
briefly present the conversion process to PMNS.

Algorithms 4 and 5 describe two ways to con-
vert an element from Z/pZ to B. Algorithm 5
is fast (slightly faster than a modular multipli-
cation), but requires precomputed polynomials
Pi, such that Pi(γ) ≡ (ρiϕ2) (mod p), for i =
0 . . . n − 1. Algorithm 4 is relatively slower (it
makes n calls to RedCoeff, whereas Algorithm 5
makes only one), but only requires to precom-
pute τ = ϕn mod p. In practice, Algorithm 4 is
used to precompute the polynomials Pi and then
Algorithm 5 is used for fast conversion.

Algorithm 4 Exact conversion from binary to
PMNS
Require: a ∈ Z/pZ, B = (p, n, γ, ρ, E) and τ =

ϕn mod p
Ensure: A ∈ B, such that A ≡ aB

1: α = a× τ (mod p)
2: A = (α, 0, . . . , 0) # a polynomial of degree 0
3: for i = 0 . . . n− 1 do
4: A← RedCoeff(A)
5: end for
6: return A

Algorithm 5 Fast conversion from classical rep-
resentation to PMNS
Require: a ∈ Z/pZ and Pi such that Pi(γ) ≡

(ρiϕ2) (mod p)
Ensure: A ∈ B, such that A ≡ (aϕ)B

1: t = (tn−1, ..., t0)ρ # radix-ρ decomposition of a

2: U ←
n−1∑
i=0

tiPi(X)

3: A← RedCoeff(U)
4: return A

In Algorithm 5 (line 1), a radix-ρ decomposi-
tion is done. For this operation to be fast, ρ must
be a power of two, which is always possible (see
Section 2.6.4).
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2.6.4 Bounds for consistency

In [16], the authors give these bounds on ρ and
ϕ to ensure that the arithmetic and conversion
operations in the PMNS are consistent:

ρ ⩾ 2∥M∥1 and ϕ ⩾ 2wρ(δ + 1)2 .
Consistent here means that the conversion algo-
rithms to PMNS outputs are in PMNS and also
that Algorithm 3 applied to inputs A,B such
that ∥A∥∞, ∥B∥∞ < (δ + 1)ρ, returns a result
in the PMNS. In [16], the authors suggest using
ρ = 2⌈log2(2∥M∥1)⌉, since we want it to be a power
of two for fast radix-ρ decomposition.

2.7 PMNS generation
Given a modulo p, one chooses the parameter n.
Since ρ ≈ n

√
p, this gives the approximate size

of element coefficients in the PMNS that will
be generated. We do not deal with PMNS gen-
eration in this paper, this is detailed in [14] for
E(X) = Xn−λ, where λ ∈ Z \ {0}, and extended
in [16] to any monic polynomial E ∈ Zn[X].

In the next two sections, we introduce
GMont-like, with a set of properties based on it.
We will then use these results in Section 5 and sub-
sequent sections, to reduce memory requirement
and perform equality test in the PMNS.

3 Montgomery-like internal
reduction generalised

The matrix M (Equation 9) generates the sub-
lattice L = {ZM mod E | Z ∈ Zn−1[X]}. As a
consequence, Algorithm 2 performs the internal
reduction using the points of this sublattice. In
this section, we extend this algorithm to any sub-
lattice L of LB. This generalised method (we call
GMont-like) has many properties. We discuss
them in this section. Before presenting GMont-
like, we need to introduce a number of results.

Let G be a basis of a sublattice L of LB. Let
us start with the following remark.
Remark 3.1. Since L is a sublattice of LB, there
exists a matrix T ∈ Zn×n such that G = T×B.
We have det(B) = p (see Equation 2), so:

det(G) = tp, with t = det(T) ∈ Z \ {0}.

It is known that L = LB if and only if T is an
unimodular matrix. As a consequence,

L = LB ⇐⇒ det(G) = ±p. (10)

For instance, to know if the matrix M generates
LB, that is LB = {ZM mod E | Z ∈ Zn−1[X]}, it
is sufficient to check if det(M) = ±p.

In the PMNS, computations are performed on
polynomials in Zn−1[X] (or equivalently on vec-
tors in Zn). As a first step to introduce GMont-
like, we need to characterise Zn elements with
respect to G.

3.1 Characterising Zn elements
Let V ∈ Rn. The matrix G is a basis of
Rn (seen as a vector space over R). So, there
exists (α0, α1, . . . , αn−1) ∈ Rn, such that V =
(α0, α1, . . . , αn−1)G. If V ∈ Zn, the coefficients αi

have a special shape, which is given in the propo-
sition below. This shape will be a core element to
prove the correctness of GMont-like and many
other properties.
Proposition 3.1. Let V ∈ Zn. There exists
(k0, k1, . . . , kn−1) ∈ Zn such that:

V = (
k0
d
,
k1
d
, . . . ,

kn−1

d
).G ,

where d = |det(G)|.

Proof. The matrix G is also a basis of Rn (seen as a
vector space over R). So, there exists β ∈ Rn, such
that V = β.G, as Zn ⊂ Rn. Thus, β = V.G−1. On
the other hand, G−1 = 1

det(G)G, where G ∈ Zn×n

is the adjugate matrix of G. So, G−1 = 1
dJ, where

J = ±G according to the sign of det(G). Then,
β = V.( 1dJ) = 1

dK, where K = V.J. We have
K ∈ Zn, because V ∈ Zn and J ∈ Zn×n.

From this proposition, we derive the following
result.
Corollary 3.1. Let V ∈ Zn. There exist
(η0, η1, . . . , ηn−1) ∈ Zn and (β0, β1, . . . , βn−1) ∈
Nn such that:

V = (η0 +
β0

d
, η1 +

β1

d
, . . . , ηn−1 +

βn−1

d
)G ,

= J + S .
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where
{
J = (η0, η1, . . . , ηn−1)G ∈ L ,
S = (β0

d , β1

d , . . . , βn−1

d )G ∈ H .

Proof. ηi and βi are respectively the quotient and
the remainder of the Euclidean division of ki by
d. Since ηi ∈ Z, we have J ∈ L. That is, J(γ) ≡
0 (mod p); i.e. V (γ) ≡ S(γ) (mod p). βi is the
remainder of the Euclidean division of ki by d, so
0 ⩽ βi < d. Thus, 0 ⩽ βi

d < 1. Hence, S ∈ H.

Remark 3.2. From such a polynomial S, one can
easily compute S′ ∈ H′, such that S′(γ) ≡ S(γ)
(mod p). In fact, it is sufficient to take S′ =
(α0, α1, . . . , αn−1)G,

with αi =

{
βi

d if βi < d/2 ,
βi

d − 1 if not.
The inverse transformation from H′ to H is also
obvious. Thus, #(H ∩ Zn) = #(H′ ∩ Zn).

3.2 Montgomery-like internal
reduction generalised

This section presents GMont-like. As explained
in Remark 3.1, every basis G of L is such that
det(G) = tp, where t ̸= 0 an integer. Lemma 3.1
guarantees the existence of an essential parameter
for GMont-like.
Lemma 3.1. Let ϕ ⩾ 2 be an integer.
If gcd(tp, ϕ) = 1, then G′ = −G−1 (mod ϕ) exists.

Proof. We have G−1 = 1
det(G)G = 1

tpG, where
G ∈ Zn×n is the adjugate matrix of G. So, G−1

(mod ϕ) exists. Since gcd(tp, ϕ) = 1, 1
tp (mod ϕ)

exists as well.

Algorithm 6 describes GMont-like. We
assume the parameter ϕ such that gcd(tp, ϕ) = 1.

Algorithm 6 Coefficients reduction for PMNS
(GMont-like)

Require: C ∈ Zn, ϕ ∈ N\{0, 1}, and the matrices
G and G′.

Ensure: S(γ) = C(γ)ϕ−1 (mod p), with S ∈ Zn

1: Q = (c0, . . . , cn−1)G′ (mod ϕ)
2: T = (q0, . . . , qn−1)G
3: S ← (C + T )/ϕ
4: return S

According to Proposition 3.1, the input C of
Algorithm 6 is such that C = αG, with αi =

ki

|tp|
where ki ∈ Z. We have gcd(tp, ϕ) = 1, so αi

(mod ϕ) exists. Thus, the vector (−α) mod ϕ =
((−α0) mod ϕ, . . . , (−αn−1) mod ϕ) exists.
Additionally, at line 1 of this algorithm, we have:

Q = CG′ (mod ϕ) ,

= (αG)(−G−1) (mod ϕ) ,

= (−α)(G × G−1) (mod ϕ) ,

= (−α) mod ϕ .

As a consequence, the output S is such that:

S =
α+ ((−α) mod ϕ)

ϕ
G . (11)

The divisions at line 3 in GMont-like are thus
exact. For these divisions to be fast, one must take
ϕ as a power of 2. So, from Lemma 3.1, we need
det(G) ≡ 1 (mod 2); that is, tp should be odd.

A consequence of Equation 11 is the following
property. It tells us that if an element is in the
fundamental domain H (see Equation 3), then it
remains in H when GMont-like is applied to it.
Property 3.1. Let C ∈ Zn.

If C ∈ H, then GMont-like(C) ∈ H.

Proof. Assume C = αG. Then, according to
Equation 11, GMont-like(C) = βG, with βi =
αi+((−αi) mod ϕ)

ϕ .
Remember that 0 ⩽ (−αi) mod ϕ < ϕ. Since
C ∈ H, 0 ⩽ αi < 1. Thus, 0 ⩽ βi < 1. Hence, the
result.

Remark 3.3. Using the idea in [16], with Algo-
rithm 6, the bounds given in Section 2.6.4 become:

ρ ⩾ 2∥G∥1 and ϕ ⩾ 2wρ(δ + 1)2 .
However, these bounds can be improved. We will
see in Section 5 how this can be done.

3.3 GMont-like and PMNS
generation

This generalised Montgomery-like internal reduc-
tion greatly simplifies the PMNS generation pro-
cess. Indeed, the process proposed in [16] to find a
suitable polynomial M (which is used to compute
M) requires a search in a space of size 2n. This
search is very efficient when n is small, which is
most of the time the case for modulo sizes in ellip-
tic curve cryptography. However, as shown in [17],
n grows very fast as p becomes large. This makes
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the search for a suitable polynomial M very expen-
sive. As seen above, GMont-like works with any
basis G of any sublattice of LB. In particular, it
works with any (reduced) basis G of LB.
As mentioned in Remark 2.1, such a basis can be
obtained with algorithms like LLL [22], BKZ[23]
or HKZ[24], applied to the basis B (Equation 2).
Remember that det(B) = p, so det(G) = ±p.
Thus, in this case, ϕ can be taken as a power of 2,
assuming p is odd. With this choice, it is no longer
necessary to search for a suitable polynomial M .

More generally, being able to choose G as a
basis of any sublattice L gives the freedom to
decide which subset of the polynomials represent-
ing zero we want to use to perform coefficient
reductions. This might be used to have a ’spe-
cialised’ (and more efficient) internal reduction
method, which would be used after addition and
subtraction for instance. It remains an open prob-
lem.

A possible disadvantage of not using M for
internal reduction could be the memory required
to store PMNS parameters. Indeed, the polyno-
mial M is sufficient to compute the parametersM
and M′ since E is known, whereas in the general
case the matrix G is needed for both G′ computa-
tion and GMont-like. We have M ∈ Zn, whereas
G ∈ Zn×n.

3.4 GMont-like and lattice points
Remember that if J ∈ L, then J = αG, with
α ∈ Zn. GMont-like behaviour on lattice points
is quite interesting. It has many properties we
discuss in this section.

Let us begin with the invariants. Some ele-
ments of L are invariant for GMont-like. That is,
applying GMont-like on them returns the input.
The following property highlights them.
Property 3.2. Let J ∈ L, with J = αG.

GMont-like(J) = J ⇐⇒ ∀i, αi ∈ {0, 1} .

Proof. According to Equation 11, GMont-
like(J) = (β0, . . . , βn−1)G, where βi =
αi+((−αi) mod ϕ)

ϕ . So,

GMont-like(J) = J ⇐⇒ βi = αi ,

⇐⇒ αi + ((−αi) mod ϕ)

ϕ
= αi ,

⇐⇒ (ϕ− 1)αi = ((−αi) mod ϕ) ,

⇐⇒ αi ∈ {0, 1} ,

since 0 ⩽ (−αi mod ϕ) < ϕ. This allows to
conclude.

Notice that a non-lattice point cannot be
invariant for GMont-like. In fact, such a point
represents a non-zero element of Z/pZ, whereas
GMont-like induces a factor ϕ−1 on the output.
In other words: J /∈ L ⇒ GMont-like(J) ̸= J .
Property 3.2 leads us to define the canonical set
of zeros.
Definition 3.1. Given a basis G of L, the canon-
ical set of zeros O is defined as follows:

O = {(α0, . . . , αn−1)G | αi ∈ {0, 1}} . (12)

O elements correspond to the points on the
edges of the fundamental parallelepiped H. For
instance, if n = 2, its elements are the points with
coordinates (0, 0), (1, 0), (0, 1) and (1, 1) as shown
in Figure 1.

Fig. 1: O = H edges

Properties 3.1 and 3.2 complement each other
quite elegantly. Indeed, one tells us that points on
the edges of H do not change when GMont-like
is applied to them, while the other tells us that
points inside H remain inside H when GMont-
like is called on them.
Example 3.1. Let p = 291791, a 19-bit
prime integer. Let B = (p, n, γ, ρ, E) =
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(p, 2, 11810, 841, X2 − 2) be a PMNS, with:

G =

(
247 420
−593 173

)
.

Then, O = {(0, 0), (247, 420), (−593, 173), (−346, 593)}.
Note: To avoid constant reminding of parameters,
this PMNS will be used in all examples in this
paper. In addition, we will avoid showing unneces-
sary intermediate computations in the examples.
Section 8.2 provides a GitHub link where one can
find implementations to check all the examples,
as well as the intermediate computations.

Let us now study the effect of GMont-like on
the output.
Proposition 3.2. Let J ∈ L, with J =
(α0, . . . , αn−1)G. If S = GMont-like(J), then
S = (β0, . . . , βn−1)G, with:

βi = ⌈
αi

ϕ
⌉ .

Proof. Remember that αi ∈ Z. According to
Equation 11, GMont-like(J) = (β0, . . . , βn−1)G,
with:

βi =
αi + ((−αi) mod ϕ)

ϕ
.

The Euclidean division of αi by ϕ computes qi and
ri, such that αi = qiϕ + ri, with 0 ⩽ ri < ϕ and
qi = ⌊αi

ϕ ⌋.
Thus, βi = qi +

ri+((−ri) mod ϕ)
ϕ .

As a consequence,
• If αi ≡ 0 mod ϕ, then ri = 0. So, βi = qi =

αi

ϕ = ⌈αi

ϕ ⌉.
• If αi ̸≡ 0 mod ϕ, then ri+((−ri) mod ϕ)

ϕ = 1.
Thus, βi = qi + 1 = ⌈αi

ϕ ⌉.

A direct consequence of this proposition is a
condition for a reduction to O.
Corollary 3.2. Let J ∈ L, with J =
(α0, . . . , αn−1)G. If ∀i ∈ {0, ..., n−1}, −ϕ < αi ⩽
ϕ, then:

GMont-like(J) ∈ O .

Proof. According to Proposition 3.2, we have two
cases:

• If −ϕ < αi ⩽ 0, then βi = 0.
• If 0 < αi ⩽ ϕ, then βi = 1.

So, we always have βi ∈ {0, 1}.

Another consequence of Proposition 3.2 is the
following result, which gives a condition for the
internal reduction to return the null polynomial.
The equality test we present in Section 7 is based
on this result.
Corollary 3.3. Let J ∈ L, with J =
(α0, . . . , αn−1)G. If ∀i ∈ {0, ..., n−1}, −ϕ < αi ⩽
0, then:

GMont-like(J) = 0 .

Proof. Let us assume that (β0, . . . , βn−1)G =
GMont-like(J). According to Proposition 3.2,
we have βi = 0, ∀i ∈ {0, ..., n − 1}. So,
GMont-like(J) = (0, . . . , 0)G = 0.

Proposition 3.2 tells us how GMont-like
reduces input coefficients. This reduction is such
that a number of successive calls to GMont-like
on an input will result in an element of O. The
following result highlights this number.
Proposition 3.3. Let J ∈ L, with J =
(α0, . . . , αn−1)G. Let k ⩾ 0 be the smaller integer
such that ϕk > max

i
|αi|.

If J̇ = GMont-likek(J), then J̇ ∈ O.
Additionally, J̇ = (β0, . . . , βn−1)G, with:

βi =

{
0 if αi ⩽ 0 ,
1 if αi ⩾ 1 .

(13)

Proof. Let us assume that S = (t0, . . . , tn−1)G =
GMont-likek−1(J).
Let f be the application defined as follows:

f : Z → Z ,
u 7→ ⌈uϕ⌉ .

Thus, ti = fk−1(αi), according to Proposition 3.2.
This application is the composition of the applica-
tions ⌈·⌉ and ·

ϕ , which are increasing. In particu-
lar, if u > rϕ, with r ∈ Z, then f(u) > f(rϕ) = r.
Thus, since ϕk > max

i
|αi|, we have fk−1(−ϕk) <

ti ⩽ fk−1(ϕk). That is:

−ϕ < ti ⩽ ϕ .

Additionally,
• if αi ⩽ 0, then ti ⩽ 0, because fk−1(αi) ⩽
fk−1(0) = 0.

• if αi ⩾ 1, then ti ⩾ 1, because fk−1(αi) ⩾
fk−1(1) = 1.
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We have J̇ = (β0, . . . , βn−1)G = GMont-like(S).
So, βi = f(ti) = ⌈ tiϕ ⌉. As a consequence,

• if αi ⩽ 0, then −ϕ < ti ⩽ 0, so βi = 0,
• if αi ⩾ 1, then 1 ⩽ ti ⩽ ϕ, so βi = 1.

Hence, J̇ ∈ O and Equation 13.

According to Property 3.2, the vector J̇ com-
puted in Proposition 3.3 is invariant for GMont-
like. We define this vector as the canonical
representation of J .

This proposition provides two ways to compute
the canonical representation J̇ of a lattice point
J = αG. Indeed, if α is known, Equation 13 gives a
very simple way to compute J̇ . However, if only a
bound on ∥α∥∞ (equals to max

i
|αi|) is known, i.e.

smaller than an integer w, this proposition tells us
that:

J̇ = GMont-likek(J) ,
with k = ⌈logϕ(w)⌉.

With GMont-like and some of the properties
presented in this section, it is possible to further
reduce the coefficients of elements in the PMNS.
The next section introduces additional properties
that we will use in Section 5 to perform internal
reduction to some special domains that allow to
control the redundancy and the reduce memory
requirement in the PMNS.

4 Reductions to some special
domains

As seen in Lemma 2.1, each element a ∈ Z/pZ has
at least one representation in the domains H and
H′ (see Equations 3 and 4). With Remarks 2.2 and
3.3, it can be observed that reducing PMNS ele-
ments to these domains would further reduce the
bound on the parameter ρ. Additionally, we will
need the reduction to H to study the redundancy.

In this section, based on GMont-like, we
present required properties for coefficient reduc-
tions in H and H′. Before that, we need to
introduce the domain Dj , a set that will help us
both to improve coefficients bound and to control
the redundancy in the PMNS.

4.1 The domain Dj

It is a subset of Rn that can be seen as an
extension of the fundamental region H′.

Definition 4.1. Let j ⩾ 1 be an integer. Given a
basis G, the domain Dj is defined as follows:

Dj = {
n−1∑
i=0

µiGi | −j ⩽ µi < j , with µi ∈ R} .

(14)
Two direct consequences of this definition are

the following properties.
Property 4.1.

• If i < j, then Di ⊂ Dj.
• If A ∈ Di and B ∈ Dj, then A+B ∈ Di+j.

Example 4.1. Let us take n = 2. Figure 2 shows
the domain D1 inside the domain D2.

Fig. 2: Domain D1 inside D2

Notice that if A ∈ Dj , then ∥A∥∞ ⩽ j∥G∥1. In
particular, if A ∈ D1, then ∥A∥∞ ⩽ ∥G∥1. With
the bounds given in Remark 3.3, GMont-like
performs reductions to a domain Dj with j ⩾ 2,
since ρ ⩾ 2∥G∥1. If we could do the reduction to
D1, it would allow to take ρ = ∥G∥1 + 1, thus
reducing the memory required to represent PMNS
elements. This section explains how to do this.

Let us first see Lemma 4.1 which ensures that
this value for ρ allows to define a PMNS. Then,
we explain how to perform the reduction to D1.

This straightforward result extends Theorem
2.1 to any sublattice of LB.
Lemma 4.1. Let L be a sublattice of LB, having
G as a basis. A tuple B = (p, n, γ, ρ) defines a
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PMNS if:

ρ >
1

2
∥G∥1 .

Proof. According to Lemma 2.1, each element a ∈
Z/pZ has at least one representation A ∈ H′.
Additionally, A ∈ H′ implies that ∥A∥∞ ⩽ 1

2∥G∥1
(see Remark 2.2).

According to this lemma, taking ρ = 1
2∥G∥1+1

allows to build a PMNS. Since coefficients in
this system can be negative, it contains at most
(∥G∥1 + 1)n polynomials. Each element a ∈ Z/pZ
has at least one representation in the PMNS,
thus one must have p ⩽ (∥G∥1 + 1)n. The fol-
lowing property, which is a direct consequence of
Hadamard’s inequality, shows that this is the case.
Property 4.2.

det(G) ⩽ (∥G∥1)n .

Proof. Let c0, c1, . . . , cn−1 be the columns of G.
According to Hadamard’s inequality, we have:

|det(G)| ⩽
n−1∏
i=0

∥∥ci∥∥2 .
Moreover, we have ∥ci∥2 ⩽ ∥ci∥1 ⩽ ∥G∥1.

As mentioned in Remark 3.1, det(G) = tp, with
t ∈ Z \ {0}, since it is a basis of the sublattice L.
So, p ⩽ |det(G)|. Thus,

p ⩽ |det(G)| ⩽ (∥G∥1)n < (∥G∥1 + 1)n .

Now, let us consider the following result which
gives a condition for a reduction to D1.
Proposition 4.1. Let A ∈ Zn, with A =
(α0, . . . , αn−1)G. If ∀i ∈ {0, ..., n−1}, −ϕ ⩽ αi ⩽
0, then:

GMont-like(A) ∈ D1 .

Proof. Assume S = (β0, . . . , βn−1)G =
GMont-like(J). According to Equation 11, we
have:

βi =
αi + ((−αi) mod ϕ)

ϕ
.

Since 0 ⩽ (−αi) mod ϕ < ϕ and −ϕ ⩽ αi ⩽ 0,

−ϕ ⩽ αi + ((−αi) mod ϕ) < ϕ .

Thus, −1 ⩽ βi < 1. Hence, the result.

Note that Proposition 4.1 requires that the
vector α be such that −ϕ ⩽ αi ⩽ 0, ∀i ∈ {0, ..., n−
1}. To satisfy this requirement, we introduce the
translation vector.

4.2 The translation vector
Let B = (p, n, γ, ρ, E) be a PMNS. This section
first introduces the translation vector T along
with some of its properties.

As mentioned above, the goal is to satisfy
the requirement (given in Proposition 4.1) on the
input for an internal reduction in D1, in order to
have PMNS elements in D1. To do this, we will
use T to translate some Zn elements to a region
in Rn where they have negative coordinates with
respect to the basis G, without changing the values
which are represented. This translation is meant
to be done in the conversions (to PMNS) and the
modular multiplication for outputs in D1. So, we
define the translation vector T with respect to
these operations.

Let us first consider the modular multiplica-
tion. Let A,B ∈ Zn be the results of adding at
most δ elements of B; so, we have ∥A∥∞, ∥B∥∞ ⩽
(δ + 1)(ρ− 1).
Property 4.3. Let C = A×B mod E.
Then, C = αG, with α ∈ Rn such that:

∥α∥∞ ⩽ w(δ + 1)2(ρ− 1)2∥G−1∥1 .

Proof. The matrix G is also a basis of Rn (seen as
a vector space over R). So, there exists α ∈ Rn

such that C = αG. On the one hand, according to
Equation 7, we have:

∥C∥∞ ⩽ w(δ + 1)2(ρ− 1)2 .

On the other hand, we have α = CG−1. So,

∥α∥∞ = ∥CG−1∥∞ ,

⩽ ∥C∥∞∥G−1∥1 ,
⩽ w(δ + 1)2(ρ− 1)2∥G−1∥1 .

Let us now focus on the conversion process,
more precisely the fast conversion to PMNS (Algo-
rithm 5). This algorithm requires the polynomials
Pi, where each Pi represents ρiϕ2. It performs a
radix-ρ decomposition, where ρ is assumed to be a
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power of two for efficiency. Since we want PMNS
elements in D1, we take ρ = ∥G∥1 + 1. Such ρ is
unlikely to be a power of two. So, to keep the con-
version fast, we need to redefine the polynomials
Pi.

Remember that p is the modulo for which the
PMNS is built. Let k and β be two integers such
that:

k =
⌈ log2(p)

n

⌉
and β = 2k. (15)

Then, p ⩽ βn. As a consequence, a radix-β
decomposition on n coefficients of any a ∈ Z/pZ
is always possible. The polynomials Pi are now
computed as representations of βiϕ2, i.e.:

Pi(γ) ≡ (βiϕ2) (mod p). (16)

As a consequence, the polynomial U computed at
line 2 of Algorithm 5 is such that:

∥U∥∞ ⩽ n(β − 1)(ρ− 1) .

As with Property 4.3 for modular multiplication,
it implies that:

U = αG with ∥α∥∞ ⩽ n(β − 1)(ρ− 1)∥G−1∥1 .
(17)

We can now define the translation vector T .
Definition 4.2. Let m and u be two integers such
that:

m = max(n(β − 1) , w(δ + 1)2(ρ− 1)) ,

and
u = ⌈m(ρ− 1)∥G−1∥1⌉ . (18)

The translation vector T is defined as follows:

T = (−u, . . . ,−u)G . (19)

Example 4.2. In our example of PMNS, ρ = 841.
The parameter E(X) = X2 − 2. So, w = 3.

G−1 =
1

291791

(
173 −420
593 247

)
.

With δ = 0, we have u = 5557.
So, T = (−u, −u)G = (1922722, −3295301).

A consequence of Definition 4.2 is the following
result.

Property 4.4. Let V ∈ Zn be a vector. If V is
such that:

∥V ∥∞ ⩽ (ρ− 1)max(n(β − 1) , w(δ+1)2(ρ− 1)) .

Then,

V + T = (β0, β1, . . . , βn−1)G ,

with −2u ⩽ βi ⩽ 0.

Proof. This directly comes from how T is com-
puted. Indeed, as seen with Property 4.3 and
Equation 17, we have V = αG, where ∥α∥∞ ⩽
m(ρ− 1)∥G−1∥1 ⩽ u. That is, −u ⩽ αi ⩽ u. Since
βi = αi − u, one can conclude.

Notice that T ∈ L, since u ∈ N. So, T (γ) ≡
0 mod p. Thus, V and V + T represent the same
element. That is, the translation with T does not
change the value which is represented.
Example 4.3. Let us take n = 2 and u = 2. Figure
3 shows T effect on elements in D2.

Fig. 3: Domain translation with T

With the translation vector T , we can now
discuss the reductions in D1, H and then in H′.

4.3 Reduction to D1

Proposition 4.1 requires that the input A coor-
dinates be negative, with respect to the base G.
Thanks to the translation vector and the right
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bound on ϕ, we can relax this constraint to allow
positive coordinates.
Proposition 4.2. Let A ∈ Zn, with A =
(α0, . . . , αn−1)G. Let us assume that ϕ ⩾ 2u. If
∀i ∈ {0, ..., n− 1}, −u ⩽ αi ⩽ u, then:

GMont-like(A+ T ) ∈ D1 .

Proof. We have A + T = βG, with ϕ ⩽ −2u ⩽
βi ⩽ 0, since ϕ ⩾ 2u. Proposition 4.1 allows to
conclude.

This proposition has the following conse-
quence.
Corollary 4.1. Let us assume that ϕ ⩾ 2u. If
V ∈ Zn is a vector such that:

∥V ∥∞ ⩽ (ρ− 1)max(n(β − 1) , w(δ+1)2(ρ− 1)) .

Then,
GMont-like(V + T ) ∈ D1 .

Proof. From Equation 18, V = (α0, . . . , αn−1)G,
with −u ⩽ αi ⩽ u. Proposition 4.2 allows to
conclude.

This corollary gives a condition on the input
in order the conversion and multiplication outputs
in D1. In Section 5.1, we will see how to modify
the corresponding algorithms to take advantage
of this result. Let us now see how to perform the
reduction to the fundamental regions H and H′.

4.4 Reduction to H
Let us remind that:

H = {t ∈ Rn | t =
n−1∑
i=0

µiGi and 0 ⩽ µi < 1} .

The reduction to H is done on an element
already in D1. So, we assume in this section that:

ϕ ⩾ 2u .

The reduction in H is based on the following
result.
Proposition 4.3. Let A ∈ D1 ∩ Zn.
If k is the smallest integer such that ϕk > det(G),
then:

GMont-likek(A) ∈ H .

Proof. Let d = |det(G)|. Let us assume that A =
αG and consider the following notation:

A(j+1) = GMont-like(A(j)) .

So, A(j) = GMont-like(j)(A), with A = A(0).
As already mentioned, we have A(j+1) = α(j+1)G,
with:

α
(j+1)
i =

α
(j)
i + ((−α(j)

i ) mod ϕ)

ϕ
. (20)

Notice that if α(j)
i ∈ [0, 1[, then α

(j+1)
i ∈ [0, 1[.

Since A ∈ D1, we have −1 ⩽ α
(j)
i < 1. Thus, if

α
(j)
i ̸≡ 0 (mod ϕ), then α

(j+1)
i ∈ [0, 1[, according

to Equation 20.

We have A(0) = A ∈ Zn, so α
(0)
i =

k
(0)
i

d , with
k
(0)
i ∈ Z, according to Proposition 3.1. Remember

that gcd(d, ϕ) = 1 for GMont-like (see Section
3.2). Thus, if α

(j)
i ≡ 0 (mod ϕ), then k

(j)
i ≡ 0

(mod ϕ) and α
(j+1)
i =

α
(j)
i

ϕ . Since ϕk > d, it

implies that −ϕk < k
(0)
i < ϕk. As a consequence

∀i ∈ {0, . . . , n − 1}, there exists a positive inte-
ger ti < k, such that α

(ti)
i ̸≡ 0 (mod ϕ). With

Equation 20, it leads to α
(ti+1)
i ∈ [0, 1[. So, αk

i ∈
[0, 1[, since k ⩾ ti + 1.

A consequence of this proposition is the follow-
ing result, which is due to u expression.
Corollary 4.2. Let A ∈ D1 ∩ Zn. Then,

GMont-liken(A) ∈ H .

Proof. According to Property 4.2, det(G) ⩽
(∥G∥1)n. Since ϕ > ρ > ∥G∥1, we have
ϕn > det(G). Additionally, if A ∈ H, then
GMont-like(A) ∈ H. So, one can conclude using
Proposition 4.3.

4.5 Reduction to H′

Remember that:

H′ = {t ∈ Rn | t =
n−1∑
i=0

µiGi and − 1

2
⩽ µi <

1

2
} .

The main interest of this reduction is to further
reduce the memory required to represent PMNS
elements, since A ∈ H′ implies that ∥A∥∞ ⩽
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1
2∥G∥1. This means that the theoretical optimal
bound is obtained (see Lemma 4.1).

The reduction to H′ is done on an element
already in H. So, we also assume in this section
that:

ϕ ⩾ 2u .

The main idea of this reduction is the following.
Let A ∈ H, with A = (α0, . . . , αn−1)G. The poly-
nomial A′ ∈ H′ representing the same element is
such that: A′ = (α′

0, . . . , α
′
n−1)G, where

α′
i =

{
αi if αi < 1/2 ,
αi − 1 else .

GMont-like can be slightly modified to
directly apply this idea during the internal reduc-
tion. As mentioned before, even if it is not nec-
essary, the parameter ϕ should be taken as a
power of two for efficiency. Below, we present an
algorithm that needs to check whether an integer
q ∈ Z/ϕZ is greater than ϕ/2 or not. To per-
form this operation efficiently without conditional
branching, we assume that ϕ = 2h, with h ⩾ 1. In
this case, q < ϕ/2 ⇐⇒ (q >> (h− 1)) = 0.

Algorithm 7 Conditional coeff. reduction
(CMont-like)

Require: A ∈ Zn, ϕ = 2h and the matrices G, G′.
Ensure: S(γ) = A(γ)ϕ−1 (mod p), with S ∈ Zn

1: Q = (a0, . . . , an−1)G′ (mod ϕ)
2: U ← Q >> (h− 1) # so ui ∈ {0, 1}

3: T ← (q0, . . . , qn−1)G
4: V ← (u0, . . . , un−1)G
5: R← (A+ T )/ϕ
6: S ← R− V
7: return S

Notice that the vector U (line 2, Algorithm 7)
is such that ui ∈ {0, 1}. So, the computation of V
(line 4) does not involve any multiplication, but
only the addition of some rows of G.

Property 4.5. If A ∈ H ∩ Zn, then
CMont-like(A) ∈ H′.

Proof. Remember that we take ϕ = 2h. Let us
assume that A = αG. As seen in Section 3.2, the
vector Q at line 1 is such that qi = (−αi) mod ϕ.

So, the output S is such that S = βG, with:

βi =
αi + ((−αi) mod ϕ)

ϕ
−((−αi) mod ϕ >> (h−1)) .

Since A ∈ H, we have αi ∈ [0, 1[. As a conse-
quence:

• If (−αi) mod ϕ < ϕ
2 , then (−αi) mod ϕ >>

(h − 1) = 0. So, 0 ⩽ βi < 1+((−αi) mod ϕ)
ϕ .

Thus, 0 ⩽ βi <
1
2 .

• If (−αi) mod ϕ ⩾ ϕ
2 , then (−αi) mod ϕ >>

(h − 1) = 1. So, βi = αi+((−αi) mod ϕ)
ϕ − 1.

Thus, − 1
2 < βi < 0.

Hence, S ∈ H′, with ∥S∥∞ < 1
2∥G∥1.

In the previous section, we saw how to compute
a representation H. With Property 4.5, this gives
the following result.
Proposition 4.4. Let A ∈ D1 ∩ Zn. Then,

CMont-like(GMont-liken(A)) ∈ H′ .

Proof. Let R = GMont-liken(A). According to
Corollary 4.2, R ∈ H. Hence, from Property 4.5,
CMont-like(R) ∈ H′.

With Sections 3 and 4, we introduced a num-
ber of theoretical tools to better understand the
behaviour of elements in the PMNS. In the fol-
lowing sections, we explain how to use these
tools:

• for smaller coefficients size (Section 5),
• to control the redundancy (Section 6),
• to perform the equality test in the PMNS

(Section 7).

5 Internal reduction in D1, H
and H′

In the previous section, we introduced the domain
Dj . We explained that the reduction to D1 would
allow the bound on ρ to be reduced from 2∥G∥1
to ∥G∥1, thus allowing to take ρ = ∥G∥1 + 1. We
also presented results to do so. In addition, we
introduced properties for reduction in the domains
H and H′. The main interest of these domains is
to study redundancy in the PMNS, as we will see
in Section 6.

To have PMNS elements in D1, we need the
conversion (to PMNS) and the multiplication
algorithms to output the results in D1. In this
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section, we first see how to do this. Then, given
A ∈ B, we show how to compute an equivalent
representation of A in H and H′.

5.1 Internal reduction to D1

In order to have PMNS elements in D1, the inter-
nal reduction to D1 must to be done during the
modular multiplication (Algorithm 3) and the
conversions in the PMNS (Algorithms 4 and 5).
Bellow, we present a slight modification of these
algorithms, using the translation vector T .

Algorithm 9 requires the polynomials Pi ∈ D1

which are representations of βiϕ2 (see Equation
15 for β). These polynomials are computed using
Algorithm 8. Proposition 5.1 ensures an output
in D1 for Algorithms 8 and 9. Notice that Algo-
rithm 8 is also faster than Algorithm 4, since it
makes one less call to GMont-like. Remark that
the precomputed data τ is ϕn−1 mod p, instead
of ϕn mod p. We remind that GMont-like is
Algorithm 6, described in Section 3.2.

Algorithm 8 Exact conversion to PMNS with
translation
Require: a ∈ Z/pZ, B = (p, n, γ, ρ, E), τ =

ϕn−1 mod p, the matrices G, G′ and the trans-
lation vector T .

Ensure: A ∈ D1, such that A ≡ aB
1: α = a× τ (mod p)
2: U = (α, 0, . . . , 0) # a polynomial of degree 0
3: for i = 0 . . . n− 3 do
4: U ← GMont-like(U)
5: end for
6: V ← U + T
7: A← GMont-like(V )
8: return A

Proposition 5.1. If ρ and ϕ are such that:
ρ > ∥G∥1 and ϕ ⩾ 2u,

then, with a ∈ Z/pZ as input, Algorithms 8 and 9
output a polynomial A ∈ D1.

Proof. Let us start with Algorithm 8. Let β ∈ Rn

be the vector such that U = βG (line 2). We
have β = UG−1, so ∥β∥∞ ⩽ ∥U∥∞∥G−1∥1 <
p∥G−1∥1 ⩽ (∥G∥1)n∥G−1∥1, since α < p (line 1)
and p ⩽ (∥G∥1)n according to Property 4.2.
Also, since δ ⩾ 0, ρ > ∥G∥1 and w ⩾ n ⩾ 2, we
have ϕ ⩾ 4(∥G∥1)2∥G−1∥1. So, the vector U after

Algorithm 9 Fast conversion to PMNS with
translation
Require: a ∈ Z/pZ, Pi ∈ D1 such that Pi(γ) ≡

(βiϕ2) (mod p) and the translation vector T .
Ensure: A ∈ D1, such that A ≡ (aϕ)B

1: t = (tn−1, ..., t0)β # radix-β decomposition of a

2: U ←
n−1∑
i=0

tiPi(X)

3: W ← U + T
4: A← GMont-like(W )
5: return A

the first round of the loop at line 3 is such that
U = βG, with ∥β∥∞ < (∥G∥1)n−2; notice that this
loop is executed only if n ⩾ 3.
Remember that ∥G∥1∥G−1∥1 ⩾ 1, so ϕ ⩾ 4∥G∥1.
Thus, after the next n − 3 rounds of this loop, U
will be such that ∥β∥∞ < ∥G∥1 < u. So, according
to Property 4.4, the vector V (at line 6) is such
that V = (ν0, ν1, . . . , νn−1)G, with −2u ⩽ νi ⩽ 0.
Since ϕ ⩾ 2u, we have −ϕ ⩽ νi ⩽ 0. Thus, Propo-
sition 4.1 ensures that the output A ∈ D1.
Let us now consider Algorithm 9. According to
Equation 17, the polynomial U (line 2) is such that
∥U∥∞ ⩽ n(β−1)(ρ−1). Since ϕ ⩾ 2u, the output
A ∈ D1, according to Corollary 4.1.

Algorithm 10 Modular multiplication with
translation (TransMult)

Require: A,B ∈ Zn−1[X], the matrices G, G′, E ,
ϕ ∈ N \ {0, 1} and the translation vector T .

Ensure: S(γ) = A · B(γ)ϕ−1 (mod p), with S ∈
Zn−1[X]

1: C = A×B
2: V = (c0, . . . , cn−1) + (cn, . . . , c2n−2)E
3: R = V + T
4: S ← GMont-like(R)
5: return S

Modular multiplication is applied to inputs
that are the result of adding at most δ elements
of B. The following proposition gives the bounds
for the output to be in D1.
Proposition 5.2. Let A,B ∈ Zn−1[X] be two
polynomials, such that: ∥A∥∞, ∥B∥∞ ⩽ (δ+1)(ρ−
1). If ϕ is such that:

ϕ ⩾ 2u (see Equation 18) ,
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then, with A and B as inputs, Algorithm 10
outputs a polynomial S ∈ D1.

Proof. The vector V computed at line 2 of this
algorithm is such that V = A × B mod E. So,
∥V ∥∞ ⩽ w(δ+1)2(ρ−1)2. Since ϕ ⩾ 2u, Corollary
4.1 ensures that S ∈ D1.

Remark 5.1. Some observations about these
reductions to D1.

• Since the conversions only require that ρ >
∥G∥1, we will take:

ρ = ∥G∥1 + 1 and ϕ ⩾ 2u, (21)

• The additional cost of reducing in D1 is
the addition of the translation vector T .
This cost is very small compared to that of
GMont-like; see Section 8, where operation
costs are discussed.

With these algorithms and bounds, B elements
will be in D1. Thus, to study the redundancy in
B, we will study the redundancy in D1. Before
studying this redundancy, let us see how to com-
pute a representation of a given element in the
fundamental regions H and H′.

5.2 Internal reduction to H
Let us remind that:

H = {t ∈ Rn | t =
n−1∑
i=0

µiGi and 0 ⩽ µi < 1} ,

We consider the bound on ρ and ϕ, given in
Remark 5.1. Corollary 4.2 requires a polynomial
A ∈ D1. Also, remember that GMont-like intro-
duces a factor ϕ−1 on the output. So, to compute
a representation in H of an element A ∈ B, we
use a polynomial ν ∈ D1 which represents ϕn+1,
i.e. ν(γ) ≡ ϕn+1 (mod p). It can be precomputed
using Algorithm 8 or 9. With such a polynomial,
a representation in H can be computed using
Algorithm 11.

According to Proposition 5.2, the vector S (line
1, Algorithm 11) is such that S ∈ D1. Thus, at the
end of the loop (line 4), we have S ∈ H, according
to Corollary 4.2. We have T ∈ L, i.e. T (γ) ≡ 0
(mod p). Since GMont-like induces a factor ϕ−1

on the output and ν(γ) ≡ ϕn+1 (mod p), it is clear
that A(γ) ≡ S(γ) (mod p).

Algorithm 11 Representation computation in H
Require: A ∈ D1, the polynomial ν ∈ D1, such

that ν(γ) ≡ ϕn+1 (mod p).
Ensure: S ∈ H and A(γ) ≡ S(γ) (mod p)

1: S ← TransMult(A, ν) # Algorithm 10

2: for i = 0 . . . n− 1 do
3: S ← GMont-like(S)
4: end for
5: return S

Finally, to compute a representation of an
element a ∈ Z/pZ in H, one first computes a rep-
resentation A ∈ D1 (using Algorithm 8 or 9) and
then apply Algorithm 11 on A.

5.3 Internal reduction to H′

Let us remind that:

H′ = {t ∈ Rn | t =
n−1∑
i=0

µiGi and − 1

2
⩽ µi <

1

2
} .

As mentioned in Section 4.5, the main interest
of this reduction is to further reduce the mem-
ory required to represent PMNS elements, since
A ∈ H′ implies that ∥A∥∞ ⩽ 1

2∥G∥1. That is, the
theoretical optimal bound (given in Lemma 4.1)
is obtained. Here also, we consider the bound on ρ
and ϕ, given in Remark 5.1. Additionally, remem-
ber that for CMont-like (Algorithm 7, Section
4.5), we assume that ϕ is a power of two such that
ϕ = 2h, which is the best case for efficiency.

Proposition 4.4 requires a polynomial A ∈ D1.
Like GMont-like, CMont-like induces a factor
ϕ−1 on the output. To compute a representation
in H′ of an element A ∈ B, we first precompute
the polynomial ξ ∈ B representing ϕn+2. Then,
Algorithm 12 can be applied.

Algorithm 12 Representation computation inH′

Require: A ∈ D1, the polynomial ξ ∈ D1, such
that ξ(γ) ≡ ϕn+2 (mod p).

Ensure: S ∈ H′ and A(γ) ≡ S(γ) (mod p)
1: R← TransMult(A, ν) # Algorithm 10

2: for i = 0 . . . n− 1 do
3: R← GMont-like(R)
4: end for
5: S ← CMont-like(R)
6: return S
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According to Proposition 5.2, the vector R
(line 1, Algorithm 11) is such that R ∈ D1.
Hence, S ∈ H′, according to Proposition 4.4.
We have T (γ) ≡ 0 (mod p). Since GMont-like
and GMont-like induce a factor ϕ−1 on the out-
put and ξ(γ) ≡ ϕn+2 (mod p), it is clear that
A(γ) ≡ S(γ) (mod p).

Finally, to compute a representation of an
element a ∈ Z/pZ in H′, one first computes a
representation A ∈ D1 (using Algorithm 8 or 9)
and then apply Algorithm 12 on A.

To summarise this section, we have explained
how to compute a representation in D1, H or H′

of an element a ∈ Z/pZ. We also saw how to do
modular multiplication for an output in D1. Let
us now study the redundancy in these sets.

6 Redundancy in the PMNS
This section is about the redundancy in H, H′

and Dj (which includes D1). We first discuss the
number of representations in these sets. Then, we
explain how to compute these representations.

6.1 Number of representations
Some elements in Z/pZ can have more than one
representation in H ∩ Zn (or H′ ∩ Zn). Indeed,
according to Lemma 2.1, every element a ∈ Z/pZ
has at least one representation in these sets. This
is not precise enough for an exact study of redun-
dancy. The following result gives the condition for
representation uniqueness in these sets.
Property 6.1. If L = LB, then each a ∈ Z/pZ
has exactly one representation in H ∩ Zn, and
#(H ∩ Zn) = p.

Proof. From Lemma 2.1, we know that a has at
least one representation in H ∩ Zn. Let A,A′ ∈
H ∩ Zn such that: a = A(γ) (mod p) = A′(γ)
(mod p). So, (A − A′)(γ) ≡ 0 (mod p). That is,
A− A′ ∈ LB. Since A,A′ ∈ H, we have A− A′ =
(ν0, . . . , νn−1)G, with −1 < νi < 1 and νi ∈ N as
A−A′ ∈ LB. Thus, ∀i, νi = 0. As a consequence,
A − A′ = 0, i.e. A = A′. So, each a ∈ Z/pZ has
exactly one representation in H ∩ Zn. We have
#(H ∩ Zn) ⩾ p. If #(H ∩ Zn) > p, then at least
one element a ∈ Z/pZ would necessarily have
more than one representation, which is impossible.
Hence, #(H ∩ Zn) = p.

A consequence of this property is also the
uniqueness of representation H′ ∩ Zn, with
#(H′ ∩ Zn) = p, if L = LB. This comes from
Remark 3.2.

Remark 6.1. L = LB means that G is a basis of
LB. As mentioned in Remark 3.1, this is equivalent
to have det(G) = ±p. For example, for the clas-
sical Montgomery-like internal reduction method
(Algorithm 2), one has to check if det(M) = ±p
(see Equation 9 forM).

Let us now discuss the redundancy in the
domain Dj . This set has an interesting connection
with the fundamental regionH. This is highlighted
in the following result.
Property 6.2. Let j ⩾ 1 be an integer.
The set Dj contains exactly (2j)n times the set H.

Proof. Let Gi be the i-th row of G. We respectively
defineH(i) and D(i)

j as the fundamental region and
the domain j with respect to the i-th coordinate,
that is:

D(i)
j = {µGi | −j ⩽ µ < j , with µ ∈ R} ,

and

H(i) = {µGi | 0 ⩽ µ < 1 , with µ ∈ R} .

Thus, we have:

D(i)
j =

⋃
t∈Z∩ [−j,j[

{tGi +H(i)} .

That is, D(i)
j is the union of H(i) translations by

the vectors tGi, where t ∈ Z ∩ [−j, j[.
If t1 ̸= t2, with t1, t2 ∈ Z, then {t1Gi + H(i)} ∩
{t2Gi +H(i)} = ∅. So, each domain D(i)

j contains
exactly 2j times H(i).
Dj is a Cartesian product of D(i)

j ; more precisely,
we have:

Dj = D(0)
j ×D

(1)
j × · · · × D

(n−1)
j ,

Also,

H = H(0) ×H(1) × · · · × H(n−1) .

Thus, Dj contains exactly (2j) ∗ (2j) ∗ · · · ∗ (2j)︸ ︷︷ ︸
n times

times the fundamental domain H.

17



Given a ∈ Z/pZ, we define Rj(a) as the set of
polynomials that represent a in Dj :

Rj(a) = {A ∈ Dj ∩ Zn | a = A(γ) (mod p)}.
(22)

The set Rj(0) is quite easy to compute. Indeed,
Rj(0) ⊂ LB. Since Rj(0) ⊂ Dj , we have:

Rj(0) = {(α0, . . . , αn−1)G, with αi ∈ Z∩ [−j, j[ } .
(23)

The following result gives Rj(a) cardinality and
defines it with respect to Rj(0).
Proposition 6.1. Let us assume that L = LB.
Let a ∈ Z/pZ. If A is its unique representation in
H ∩ Zn, then:

Rj(a) = {A+ J | J ∈ Rj(0)} , (24)

and
#Rj(a) = (2j)n. (25)

Proof. According to Property 6.1, a has exactly
one representation in H. Since Dj contains exactly
(2j)n times the set H (according to Property 6.2),
we deduce that #Rj(a) = (2j)n. In particular,
#Rj(0) = (2j)n. So, the set K = {A + J | J ∈
Rj(0)} is such that #K = (2j)n. We have K ⊂ Dj .
Since B ∈ K ⇒ a = B(γ) (mod p), it implies
that K ⊂ Rj(a). As a consequence, Rj(a) = K,
because #K = #Rj(a) = (2j)n.

According to this proposition, if L = LB,
then each element a ∈ Z/pZ has exactly
(2j)n representations in Dj .
So, each element a ∈ Z/pZ has exactly 2n

representations in the PMNS, with the internal
reduction in D1 (discussed in Section 5.1). In com-
parison, using the approach presented in [14, 16]
where the internal is done in Dj with j ⩾ 2 (see
Section 4.1), each element a ∈ Z/pZ has at least
4n representations in the PMNS.

6.2 Representation computations
Let us now see how to computeRj(a), the set of all
the representations in Dj of an element a ∈ Z/pZ.

We assume that L = LB. With Equation 23,
it is easy to pre-compute Rj(0). To compute the
representations of a in Dj , one first computes its
unique representation in H, using Algorithm 11.
Then, Rj(a) can be computed using Equation 24.

The following example shows how to compute
all the representations of an element in D1.
Example 6.1. Let us go back to our example of
PMNS. We have p = 291791 = det(G), so L = LB.

R1(0) = {−593X+346,−173X+593,−420X−247, 0}

The unique representation of a = 122706 in H is
A(X) = 381X − 39, with:

(−39, 381) = (
219186

291791
,
110487

291791
)G .

So, R1(a) = {−212X+307, 208X+554, −39X−
286, 381X − 39}. Its unique representation in H′

is −39X − 286, with:

(−286,−39) = (
−72605
291791

,
110487

291791
)G .

We have now studied redundancy in the
PMNS, with a process to compute the representa-
tions in Dj of a given element in Z/pZ. The next
section discusses equality test in the PMNS.

7 Equality test in the PMNS
Many cryptographic applications [18–20, 26]
require to perform arithmetic equality test. This
operation is however non-trivial in the PMNS, due
to its redundancy property. Indeed, since elements
can have more than one representation, a simple
comparison of two polynomials is not sufficient
to conclude that they represent two different ele-
ments in Z/pZ. Until now, the best way to know
if two polynomials A,B ∈ Zn−1[X] represent the
same element, i.e. A(γ) ≡ B(γ) (mod p), is to
first compute C = A−B, then evaluate C modulo
p to check if C(γ) ≡ 0 (mod p). So, a conver-
sion out of the PMNS (the evaluation of C) is
required. Such a conversion is not appropriate for
some cryptographic implementation, for instance
when comparison are used to protect against fault
attacks [18]. In this section, we present a method
to perform equality test on elements in the PMNS.
This method does not require any evaluation. Its
cost is discussed in Section 8.1.

The equality test is based on Corollary 3.3.
This corollary requires the coordinates of J , with
respect to the basis G, to be negative. To fulfil this
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requirement, we use the translation vector T . Note
that having A and B represent the same element
is equivalent to having A−B ∈ L.

Let l ∈ N be an integer, such that:

l =
1

2
w(δ + 1)2(ρ− 1)2 . (26)

Algorithm 13 performs the equality test between
two polynomials A,B ∈ Zn−1[X] such that
∥A∥∞, ∥B∥∞ < l. The bounds on ρ and ϕ remain
the same as those given in Remark 5.1.

Algorithm 13 Equality test in the PMNS

Require: A,B ∈ Zn−1[X] with ∥A∥∞, ∥B∥∞ <
l, and the translation vector T .

Ensure: S = 0 if and only if A(γ) ≡ B(γ)
(mod p)

1: C = (A−B) + T
2: S ← GMont-like(C)
3: return S

Proposition 7.1. Let A,B ∈ Zn−1[X] be two
polynomials, such that ∥A∥∞, ∥B∥∞ < l.
Then, Algorithm 13 outputs the null polynomial if
and only if A−B ∈ L.

Proof. Notice that the output S is such that S =
GMont-like(A−B + T ).
Let us first assume that S = 0. Since T ∈ L,
we thus have GMont-like(A − B) ≡ 0. That is,
A−B
ϕ ∈ L. Hence, A−B ∈ L.

Let us now assume that A−B ∈ L. So, A−B +
T ∈ L. Since ∥A∥∞, ∥B∥∞ < 1

2w(δ + 1)2(ρ− 1)2,
we have ∥A − B∥∞ < w(δ + 1)2(ρ − 1)2. So, as
seen in Property 4.3 proof, A − B = αG, with
∥α∥∞ < w(δ + 1)2(ρ− 1)2∥G−1∥1 ⩽ u. Thus, A−
B + T = βG, with −2u < βi < 2u. Since ϕ ⩾ 2u,
one can conclude that GMont-like(A−B+T ) =
0, according to Corollary 3.3.

The bound l on the infinity norms of the inputs
is quite large. Indeed, since w ⩾ 2 and δ ⩾ 0, we
have l ⩾ (ρ − 1)2. Remember that if A ∈ B, then
∥A∥∞ ⩽ (ρ − 1). Thus, Algorithm 13 applies to
elements in the PMNS.
Example 7.1. As seen in the previous example,
u = 5557 and T = (1922722, −3295301). Let us

take ϕ = 216, thus:

G′ =
(
59709 63772
61473 7591

)
.

Let A(X) = 50X+623 and B(X) = −197X−217,
be two representations of 7541. Let C(X) = 55X−
3, be a representation of 65965.
One can check that GMont-like(A−B+T ) = 0,
whereas GMont-like(A−C + T ) = 372X − 178.
The code provided in Section 8.2 can be used to
check these results.

8 Operation costs
In this section, we discuss the theoretical cost of
the main algorithms presented in this paper. We
also provide a link to a SageMath implementation
to generate PMNS, to study the redundancy and
to check the equality test.

8.1 Theoretical costs
This section is about the costs of the main algo-
rithms presented in this paper. We use the nota-
tions and conventions adopted in [16]. We assume
a k-bit processor architecture. So, the basic arith-
metic computations are performed on k-bit words.
We also assume that the algorithms inputs belong
to a PMNS B, such that ϕ = 2h, where h ∈ N and
1 ⩽ h ⩽ k. Thus, an element in B requires nk bits
to be represented.

The symbols M and A respectively denote the
multiplication and the addition of two k-bit inte-
gers. Also, Sil and Sir respectively denote a left shift
and a right shift of i bits.

We have ∥T ∥∞ ⩽ u∥G∥1 < ϕ2 ⩽ 22k. So,
adding T to an element costs 2nA.

Table 1 gives the costs of the main algorithms.
It is based on the costs given in [16] (Section
8.1). The modular multiplication method costs are
based on the efficient polynomials E presented in
Table 1 of that paper. For the fast conversion algo-
rithms, we do not take into account the radix-β
decomposition of the input. Assuming that β is a
power of two (as we suggested, see Equation 15),
this decomposition can be done very efficiently.

It can be observed in this table that the mod-
ular multiplication costs are similar to the one
of the classical Montgomery modular multipli-
cation. In [14] (Section 6.4) and [16] (Section
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Algorithm Cost

Mont-like (Alg. 2) [16] 2n2M + (3n2 − n)A + nSh
r

MulMod (Alg. 3) [16] 3n2M + (5n2 − n − 2)A + nSh
r

FastConv (Alg. 5) [16] 3n2M + (5n2 − 3n)A + nSh
r

GMont-like (Alg. 6) 2n2M + (3n2 − n)A + nSh
r

CMont-like (Alg. 7) 2n2M + (4n2 − n)A + nSh
r + nSh−1

r

Mult to D1 (Alg. 10) 3n2M + (5n2 + n − 2)A + nSh
r

Conv to D1 (Alg. 9) 3n2M + (5n2 − n)A + nSh
r

Equ. test (Alg. 13) 2n2M + (3n2 + 3n)A + nSh
r

Table 1: Main algorithm costs

8.2), C implementations of PMNS are com-
pared with implementations of the classical Mont-
gomery modular multiplication in GMP [27] and
OpenSSL [28] libraries, for both performance and
memory requirement. They appear to perform
similarly. These PMNS implementations did not
take advantage of the high parallelisation capabil-
ity of this system. Finally, it can be seen that an
equality test in the PMNS costs almost an internal
reduction.

8.2 Some codes for testing
Using SageMath library [29], we have implemented
the methods and algorithms presented in this
paper. These implementations are available on
GitHub:

https://github.com/arithPMNS/PMNS-and-redundancy

Given a prime p, one can generate PMNS, with
the choice of parameters such as n, δ and z. Given
a PMNS, this code allows to compute the repre-
sentation we want for any a ∈ Z/pZ. It also allows
to perform equality check. This code can be used
to check the examples presented in this paper.

9 Conclusion
In this paper, we have presented GMont-like,
a generalised Montgomery-like internal reduc-
tion method. We discussed a number of proper-
ties of this method. With GMont-like, we also
improved the memory requirement to represent
PMNS elements. In addition, we explained how
to compute element representations in some spe-
cial domains. This allowed us to make a precise
study of redundancy in the PMNS, with a pro-
cess to compute the desired representation of any
element a ∈ Z/pZ. Based on some properties
of GMont-like, we explained how to perform
equality test within the PMNS. This for instance

removes the need for conversion to the original
system in order to apply cryptographic counter-
measures that require an arithmetic equality test.
Finally, we provided implementations to gener-
ate PMNS and to check the work presented in
this paper. This work makes the PMNS a more
complete system.
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