
Securing Lattice-Based KEMs with Code-Based Masking:
A Theoretical Approach⋆

Pierre-Augustin Berthet1,2[0009−0005−5065−2730] (�), Yoan Rougeolle2[0009−0004−7088−6203],
Cédric Tavernier2[0009−0007−5224−492X], Jean-Luc Danger1[0000−0001−5063−7964], and Laurent

Sauvage1[0000−0002−6940−6856]

1 Télécom Paris, 19 Place Marguerite Perey, F-91123 Palaiseau Cedex, France
{(�)berthet,jean-luc.danger,laurent.sauvage}@telecom-paris.fr

2 Hensoldt SAS France, 115 Avenue de Dreux, 78370 Plaisir, France
{pierre-augustin.berthet,yoan.rougeolle,cedric.tavernier}@hensoldt.net

Abstract. The recent technological advances in Post-Quantum Cryptography (PQC)
raise the questions of robust implementations of new asymmetric cryptographic primi-
tives in today’s technology. This is the case for the lattice-based Module Lattice-Key En-
capsulation Mechanism (ML-KEM) algorithm which is proposed by the NIST as the first
standard for Key Encapsulation Mechanism (KEM), taking inspiration from CRYSTALS-
Kyber. We have notably to make sure the ML-KEM implementation is resilient against
physical attacks like Side-Channel Analysis (SCA) and Fault Injection Attacks (FIA). To
reach this goal, we propose to adapt a masking countermeasure, more precisely the generic
Direct Sum Masking method (DSM). By taking inspiration of a previous paper on AES,
we extend the method to finite fields of characteristic prime other than 2 and even-length
codes. We also investigate its application to Keccak, which is the hash-based function
used in ML-KEM. We propose masked conversions and use cost-amortization to perform
this hash. We provide the first masked implementation of ML-KEM with both SCA and
FIA resilience able of correcting errors. Our FIA resilience allows for fault correction even
within the multiplicative gadget. Finally, we adapt a polynomial evaluation method to
compute masked polynomials with public coefficients over finite fields of characteristic
different from 2.

Keywords: Post-Quantum Cryptography · ML-KEM · Side-Channel Analysis · Fault
Injection Attack · Code-Based Masking · Conversion

1 Introduction

Since the dawn of cryptology, cryptanalysis has focused on the theoretical background used to
perform cryptography. However, since the late 1990s and the publication of Kocher on Side-
Channel Analysis [22], physical attacks try to take advantage of leakages or faults within the
implementation rather than breaking the algorithm in itself. For this reason, the software and
hardware designers of cryptographic primitives have to take into account this threat. The recent
Post-Quantum Cryptographic algorithms are particularly targeted as their implementation still
requires secure architectures and analysis to make them robust against physical attacks.
Quantum computing is an active research field which progresses monthly and the likelihood of
⋆ Supported by Agence de l’Innovation de Défense, Ministère des Armées

2 P-A. Berthet et al.

an efficient quantum computer in the coming 30 years is almost certain [24]. Such a computer
would be able to break current asymmetric cryptography primitives by taking advantage of the
Shor quantum algorithm [34]. In order to assure a continuity in asymmetric cryptography, the
NIST has launched a standardization process of PQC in 2016 [12] resulting in an international
competition to create the future digital signature and KEM protocols which must be secure
against quantum and classical computer. The end of the third and final round was announced
the 5th of July 2022 [1] and 3 signatures and one KEM were selected while 4 other KEMs are
heading for a final round to serve as alternatives in case of a cryptanalysis breakthrough 3.
The selection process focused first on quantum resilience, cost and performance, and then on
the algorithm and its implementation. Most of the candidates claimed to be secure against
time-based SCA as they provide constant time implementation and no conditional branching
depending on sensitive data. But they do not make them secure against power-based SCA, like
like Correlation Power Analysis (CPA), and Fault Injection Attacks (FIA). Even more, some
of the candidates contain functions that can not be easily secured using generic defenses and
require specific mechanisms to ensure their Side-Channel resilience.

1.1 Background on Masking

One of the most efficient and proven countermeasure against power-based SCA is masking [11].
The core idea is to avoid manipulating the sensitive data but instead shares of it that are
reassembled once the computations are done. The shares being a combination of the sensitive
data and a number of random variables called masks. Thus, an attacker can only observe leakages
from the shares and might not be able to recover the secret data. The order of masking is
determined by the number of independent shares used. A high-order masking means a better
security against differential attacks but it generally comes at the cost of performances and space.
Classical masking involves either arithmetical masking, where the random shares are subtracted
or added to the secret, and boolean masking where the random shares are XORed with the
secret. Conversions from one type of masking to the other do exist but have to be performed
carefully. Here we use a variant of the Direct Sum Masking (DSM) introduced by Bringer et al.
[8], namely a Code-Based Masking.
In this paper we focus on ML-KEM [27], inspired by CRYSTALS-Kyber [6], a post-quantum
PKE/KEM. There have been already several publications on how to mask it on several platforms.
Most noticeably, the work from Heinz et al. [19] proposed the first open-source implementation
of a masked Kyber on microprocessor while relying on the work of Oder et al. [28] on previous
lattice-based primitives. Bos et al. [7] proposed a masked software implementation of Kyber
while Bronchain and Cassiers [9] proposed new gadgets for Arithmetic to Boolean (A2B) and
B2A conversions and tested them in an open-source masked implementation of CRYSTALS-
Kyber for microprocessors. When it comes to other platforms, Fritzmann et al. [15] worked on
masking HW/SW codesign. Beckwith et al. [4] worked on a shared FPGA implementation of
CRYSTALS-Kyber and CRYSTALS-Dilithium while masking the CRYSTALS-Kyber.

Remark 1. It is important to note that masking at the first order alone is not a sufficient defense.
The PhD thesis work of Kalle Ngo [25] and master’s thesis of Linus Backlund [3] proved that
novel methods relying on deep-learning were able to thwart attempts of protecting Kyber with
3 One of the KEMs of the 4th round fell victim to such a breakthrough in August 2022, stressing the

need for alternative standards and hybridization

Securing Lattice-Based KEMs with Code-Based Masking: A Theoretical Approach 3

first order masking and/or shuffling. Hence, it is important to either mix defense mechanism
(shuffling, blinding, hiding...) or use higher order masking. Also note that these attack methods
have not been tested yet against Code-Based Masking.

When it comes to SCA and FIA resilient implementations, Pöppelmann and Heinz [20] proposed
a combined fault and DPA protection for lattice-based cryptography. However, they only secured
the arithmetic parts of the algorithm and were not able to correct faults, only detecting a few.
Fault attacks against masked implementations of ML-KEM are a real concern, with work from
Delvaux [13] and Kundu et al. [23] successfully using FIA to break masked implementations of
ML-KEM on microcontroller. Thus, there is a clear need for solutions with better resilience to
combined attacks using SCA and FIA. Our work aims not only to provide such a solution with
better error detection, but also to add an error correcting capability that does not yet exist to
this day in the state-of-the-art literature.

1.2 Our Contributions

The first contribution of this paper is related to the use of Code-Based Masking in a finite field
of characteristic other than 2, which is more common in asymmetric cryptography compared to
symmetric cryptography. In this work, we extend the masking method from [10] and prove it
can also be applied to finite fields of characteristic other than 2. We also prove that we are able
to correct several faults within the multiplicative gadget.

A second contribution of this work is the application of Code-Based Masking on a post-quantum
cryptography primitive, namely ML-KEM. Not only do we propose a new any-order masking
method for this algorithm, but we also propose one that has a built-in solution against FIA.
There is currently no other solution in the State-of-the-Art capable of providing resilience against
both SCA and FIA for the entirety of the algorithm. The only existing solution from Pöppelmann
and Heinz [20] only covers the Number Theoretic Transform (NTT) and cannot correct errors.

A third contribution of this paper is the study of conversions between different Code-Based
Maskings. While conversions between arithmetic and boolean maskings has been widely stud-
ied, there is currently no literature on conversions between Code-Based Maskings. We use this
conversion alongside cost-amortization methods first introduced in [35] to improve the perfor-
mances of our design.

The final contribution is the adaptation of the Paterson and Stockmeyer method of evaluating
polynomials [29] to the evaluation of masked polynomials in a finite field of characterisitc differ-
ent from 2. This method aims at reducing the amount of multiplication between two sensitive
data when evaluating a polynomial, as such multiplications are noticeably more costly to per-
form than additions and scalar multiplications. We provide details on the exact complexity of
performing such an evaluation in a secure manner.

The paper is structured as follows: in Section 2, we introduce notations and ML-KEM. In Section
3, we present our Code-Based Masking and our adaptation of the Horner method in Section 3.9.
In Section 4, we explain how to adapt our masking method to ML-KEM. Finally, in Section 5,
we discuss performances. Section 6 concludes our paper.

4 P-A. Berthet et al.

2 Preliminaries

2.1 Notations

Let n ∈ N∗ the length of a code and d its dimension. We denote odm the masking order. We
consider the finite field Fq with q a prime integer. Let ν a primitive element of Fq. We assume
that n ̸= 0 mod q divides q − 1, then we have

ω = ν
q−1

n ⇒ ωn = 1.

We must distinguish the case n odd and n even, then we set d = ⌊n/2⌋. For any vector
(u0, ..., un−1) ∈ Fn

q , we can associate the polynomial U(X) = u0 + u1X + . . . + un−1Xn−1

and the discrete Fourier transform is defined by

DFTω(u0, ..., un−1) =
(

n−1∑
i=0

uiω
ij

)
j∈[0...n−1]

=
(
U(ωj)

)
j∈[0···n−1] .

Then the DFTω inverse is defined by:

IDFTω(U(1), . . . , U(ωn−1)) = n−1

(
n−1∑
i=0

U(ωi)ω−ij

)
j∈[0···n−1]

= (u0, ..., un−1).

Remark 2. We have clearly made the hypothesis “n divides q − 1” to find the condition of
application of the Fast Fourier Transform but the procedure that we are going to develop
obviously works by considering respectively DFTω and IDFTω as a Vandermonde multiplication
and its inverse. The impact is just in term of complexity which cost n2 multiplications over Fq

against O(n log n) for a DFTω in the most favourable cases.

For the ML-KEM algorithm, the considered DFTω is coming from methods described in [10,36]. It
consists in building a tree (see section 4) of polynomials and to compute input vector interpreted
as a polynomial modulo these polynomials. In particular cases, for example over finite fields of
even characteristic and n + 1 a power of two, the tree is composed of linearized polynomials (up
to constant) which are sparse by nature [36]. For example in the figure below, the tree is defined
over the finite field F24 with n = 3 and ω satisfying ω3 = 1:

q2,0 = X4 + X

q1,0 = X2 + X q1,1 = X2 + X + 1

q0,0 = X q0,1 = X + 1 q0,2 = X + ω q0,3 = X + ω + 1

Then, to calculate DFTω(C) with C = (c0, c1, c2, c3) and C(X) = c0 + c1X + c2X2 + c3X3, we
first compute C1,0 = C(X) mod q1,0 and C1,1 = C(X) mod q1,1, finally we get the result by
performing C1,0 mod q0,0, C1,0 mod q0,1, C1,1 mod q0,2 and C1,1 mod q0,3. We show in the
section 4 that we have the same principles with the ML-KEM parameters.

Securing Lattice-Based KEMs with Code-Based Masking: A Theoretical Approach 5

We have seen that the DFTω operation is equivalent to a Vandermonde matrix multiplication
V (ω) with V (ω) = (ωij)i,j∈J0,2d−1K and

DFTω(u0, ..., un−1) = (u0, ..., un−1)× V (ω).

For length n vectors of the form (u0, ..., ud−1, 0, . . . , 0), the DFTω operation corresponds to an
encoding procedure by the Reed-Solomon code denoted: RS[n, d, n− d + 1]. A generator matrix
of this code is given by the shortened matrix (ωij)i∈J0,d−1K,j∈J0,2d−1K. We recall some results
that can be found in [30]: This error correcting code is classic, it is a MDS (maximum distance
separable) code, which means that its minimal distance is optimal and equals n − d + 1 where
n is code length and d is its dimension. Among the good properties of these codes, we have, if
R is a generator matrix of MDS code RS of length n and dimension d that:

– If RS is MDS, then RS⊥ is MDS where RS⊥ is the code defined by kernel(R);
– If RS is MDS, then all set of d columns are free.

We recall that any [n, d, n− d + 1]-linear code can detect until n− d errors.

2.2 ML-KEM

ML-KEM or FIPS 203 [27] is the first post-quantum KEM standard by the NIST. It is a slight
modification of CRYSTALS-Kyber [2,6], a Module-Lattice-Based KEM which has been selected
at the end of the 3rd round of the NIST Standards Post-Quantum Competition in July 2022
[1]. It relies on several instances of the Module-LWE/LWR problems for its key generation,
encapsulation and decapsulation procedures.
At its core, ML-KEM is a CPA-Secure PKE. To ensure CCA-level of security and a KEM status,
a modified version of the Fujisaki-Okamoto Transform [16] is used.
ML-KEM has three levels of security, with different parameter sets (see [27] Table 2 page 33
or Table 5 in Appendix B). All sets use the same modulo, namely q = 3329. We also denote
Zq[X]/(X256 + 1) by Rq and Sη := {P ∈ Rq, ∥P∥∞ ≤ η} a subset of Rq.
Amongst other notations defined by ML-KEM, we have ⌈⌋, the nearest integer with ties rounded
up used in the compression functions, defined as follow:

Compressq(α, di) =
⌈

2di

q
· α
⌋

mod 2di , α ∈ Zq (1)

Decompressq(β, di) =
⌈ q

2di
· β
⌋
, β ∈ F2di (2)

When applied to a vector of polynomials, those two functions are applied to each coefficient of
each polynomial separately.

Remark 3. It is interesting to note that, for di = 1, the Decompressq function can be seen as
a simple multiplication by a scalar, as the value β in the equation 2 can be extracted from the
rounding as it can only be 0 or 1. Thus, we have ⌈ q

2 · β⌋ = 1665 · β. This does not apply to
Compressq (Equation 1) however.

Remark 4. It is also important to note that the compression functions are lossy:

If m′ = Decompressq(Compressq(m, di), di), then |m−m′| ≤ ⌈q/2di+1⌋ (3)

6 P-A. Berthet et al.

In ML-KEM, the distribution used for random sampling of sensitive values is the Center Binomial
Distribution:

CBDη(β) =
255∑
i=0

(
η∑

j=0
β2iη+j −

η∑
j=0

β2iη+η+j)Xi with β ∈ {0, 1}512η (4)

This function is fed with a pseudo-random input β, generated by

PRF (seed, N) = SHAKE256(seed∥N). (5)

SHAKE256 is a hash function described in the FIPS 202 standard [14]. The counter here allows
seed reuse for the multiple values sampled during the PKE algorithms of ML-KEM. We use the
←↩ notation for sensitive value sampling. Keep in mind this is a call to Equation 4 where the
input is PRF (seed, N). The N counter is incremented after each call to CBD.
Non sensitive values are sampled a bit differently but this is out of the scope of this paper and
we simply denote this sampling by ↼.

We only present the KEM Decapsulation of ML-KEM here. For more details, we invite you
to consult Appendix B where are described the PKE and KEM algorithms as well as figures
showing the sensitiveness of the different operations within ML-KEM. You can also consult the
reference paper of ML-KEM [27] for the algorithms and [31] (slide 76), [33] (slide 32-35) for the
sensitiveness.

Algorithm 1 KEM Decapsulation
1: Input: Ciphertext c = (cu, cv)
2: Input: Secret Key sk = (s⃗, pk, h = H(pk), z)
3: Output: Shared key K
4: u⃗, v = Decompressq(cu, du), Decompressq(cv, dv)
5: m′ := P KE.Decrypt(s⃗, u⃗, v) ▷ (see Appendix B, Figure 4 or [27])
6: (K′, seed′) := G(m′∥h)
7: K̃ = J(z∥c, 32)
8: u⃗′, v′ := P KE.Encrypt(pk, m′, seed′) ▷ (see Appendix B, Figure 3 or [27])
9: c′ = (Compressq(u⃗′, du), Compressq(v′, dv))

10: if c ̸= c′ then
11: K′ = K̃
12: end if
13: return K′

Remark 5. H, G and J are all different Keccak [14] instances.

Remark 6. Keep in mind that PKE.Encrypt always results in the same outputs for a given
set of inputs, as the seed for the sampling is one of the inputs. Thus, tampering with the
ciphertexts results in tampering with the seed and leads to a completely different result out of
the re-encapsulation.

If you are interested in knowing more about ML-KEM, we invite you to read the FIPS 203
(draft) standard from the NIST [27] and the CRYSTALS-Kyber specification papers [2,6].

Securing Lattice-Based KEMs with Code-Based Masking: A Theoretical Approach 7

3 Code-Based Masking, a DSM Example

The DSM encoding [8] consists in mapping the information x in a masked information (x, r)
where r is a random mask such that:

x 7→ (x, r) 7→ xG + rH, (6)

where G and H are two generator matrices of the two complementary codes C and D with
C ∩ D = {0}.
We propose to describe a masking method based on Reed Solomon encoding. This method is
described in [10] for the characteristic 2 and odd length. We show in this section that it works
for the characteristic prime q. We want to mask an information of size t and we assume that
ω ∈ Fq is a n-square root of unity and we consider a free family u0, u1, u2, ..., ud−1 of Fd−1

q

with ui ̸= ωj for any 0 < i ≤ t − 1 and 0 < j ≤ n − 1. We want now to mask the vector
x⃗ = (x0, . . . , xt−1) ∈ Ft

q with t < d and d = ⌊n/2⌋.

3.1 Encoding Procedure

First we pick randomly r⃗ = (rt, rt+1, . . . , rd−1) in Fd−t
q . It is well known that there exist a

vector a⃗ = (a0, a1, . . . , ad−1) and the associate polynomial Px⃗(X) = a0 + a1X + · · ·+ ad−1Xd−1

of degree at most d − 1 that satisfies Px⃗(ui) = xi for i ∈ {0, . . . , t − 1} and Pr⃗(ui) = ri for
i ∈ {t, . . . , d− 1}.
Let us denote the matrix A ∈ F(d)×(d)

q , where Ai,j = ui
j for any i, j in {0, . . . , d− 1}. We have:

a⃗ = (x⃗ | r⃗)×A−1

The second step of our masking procedure consists in evaluating the Pr⃗ over the set 1, ω, ω2, . . . , ωn−1.
By construction, the second step of encoding consists in computing DFTω(a0, . . . , ad−1, 0, . . . , 0).
Thus finally:

Mask(x⃗) = DFTω(a0, . . . , ad−1, 0, . . . , 0).

Algorithm 2 SeveralByteMasking Complexity : d2

1: Input: a sensitive vector x⃗ ∈ Ft
q

2: Output: Mask(x⃗) ∈ Fn
q

3: r⃗
$← Fd−t

q

4: a⃗← (x⃗ | r⃗)×A−1 ▷ A−1 is a precomputed value
5: return DFTω (⃗a | 0⃗)

We have presented a O(d2) complexity encoding procedure, but we can do better with the
following method: We can construct P (X) = Tt(X) + Rt(X) by first picking randomly the
polynomial Tt(X) = atX

t + · · ·+ ad−1Xd−1. Then we evaluate Tt over 1, u, . . . , ut−1 which cost
t(d − 1 − t) multiplications over Fd−1

q . We want now constructing Rt(X) = a0 + a1X + . . . +
at−1Xt−1 which leads to solve the linear system

8 P-A. Berthet et al.

1 u0 . . . ut−1
0

...
1 ui . . . ut−1

i
...

1 ut−1 . . . ut−1
(t−1)

︸ ︷︷ ︸

A⊤

×

a0
...

ai

...
at−1

︸ ︷︷ ︸

a⃗ ′

=

x0 + Tt(u0)
...

xi + Tt(ui)
...

xt−1 + Tt(ut−1)

︸ ︷︷ ︸

y⃗ ′

.

The matrix inversion of A is a precomputation, thus, the calculation of:

a⃗ ′ = (A−1)⊤y⃗ ′

costs (t+1)2 multiplications over Fq. Hence, the total cost of this encoding (including the Tt(ui)
calculation) does not exceed t(d−1−t)+t2 = t(d−1) multiplications over Fq. Again, the second
step of encoding consists in computing DFTω(a0, . . . , ad−1, 0, . . . , 0) which can be achieved with
not more than (2d− 1) log(2d− 1) multiplications over Fq.

Remark 7. All the aforementioned operations are obviously reversible and we denote by Unmask
the reverse operation. A tedious calculation gives a complexity in t(d− 1) + (2d− 1) log(2d− 1)
multiplications over Fq.

3.2 Error Correcting Code Interpretation

We note that by construction, there exists an invertible matrix R that satisfies:

a0
...
at−1
at

...
ad−1

= R×

x0
...
xt−1
P (ut)
...
P (ud−1)

We note that this DFT computation corresponds to the encoding in the Reed-Solomon code
defined by the evaluation of 1, X, . . . , Xd−1 over 1, ω, ω2, ..., ωn−1, and represented by a Vander-
monde matrix V (ω). Hence, we get that

Mask(x⃗) = (x⃗, r⃗)R⊤V (ω) (= x⃗G + r⃗H in the DSM model).

We deduce that our masking algorithm corresponds to encoding procedure with a generalized
Reed-Solomon code of minimal distance n− d + 1, dimension d and length n.

3.3 Masking Addition, Subtraction and Scaling

Let us denote: z⃗ = Mask(x) and z⃗ ′ = Mask(x′). The following properties are obviously satisfied:

– Mask(x + x′) = z⃗ + z⃗ ′,
– Mask(x− x′) = z⃗ − z⃗ ′,
– Mask(λx) = λ · z⃗ for any λ ∈ Fq.

Securing Lattice-Based KEMs with Code-Based Masking: A Theoretical Approach 9

3.4 Masking the Multiplication

Let’s denote: z⃗ = Mask(x⃗) and z⃗ ′ = Mask(x⃗′). Obviously,

z⃗ ⊙ z⃗ ′ = DFTω(a0, . . . , ad−1, 0, . . . , 0)⊙ DFTω(a′
0, . . . , a′

d−1, 0, . . . , 0).

The polynomial obtained by performing DFT−1
ω (DFTω(Px⃗) × DFTω(Px⃗′)) = Px⃗(X) × Px⃗′(X) =

C(X) is a 2d − 2 degree polynomial, which satisfies C(ui) = Px⃗(ui) × Px⃗′(ui) = xix
′
i for i in

{0, . . . , t− 1}.
Now we have to propose a method that associates a degree d − 1 polynomial D(X) to C(X).
This polynomial must satisfies the same properties: D(ui) = C(ui) for all 0 ≤ i ≤ t− 1.
The authors of [17] proposed the following construction for t = 1:

D(X) = c0 + c1X + . . . + cd−1Xd−1 + ud−1
0 (cdX + . . . + c2d−2Xd−1)

= c0 + (c1 + ud−1
0 cd)X + · · ·+ (cd−1 + ud−1

0 c2d−2)Xd−1 .

Obviously, in this case D(u0) = C(u0) = x0x′
0. This construction can be generalized and let:

Uj(X) = ud−1
j

(X − u0) · · · (X − uj−1)(X − uj+1) · · · (X − ut−1)
(uj − u0) · · · (uj − uj−1)(uj − uj+1) · · · (uj − ut−1) .

Hence, by construction, Uj(uj) = ud−1
j and Uj(ui) = 0 ∀ i ∈ {0, . . . , t−1}\{j} and deg(Uj(X)) =

t− 1.
Then we set:

D(X) = c0 + c1X + · · ·+ cd−1Xd−1 +
∑t

j=1 Uj(X)(cdX + · · ·+ c2d−t−1Xd−t)

+
∑t

j=1 Uj(X)
∑t−1

i=1 c2d−t−1+iu
d−t+i
j .

The degree d− 1 polynomial D(X) satisfies D(ui) = C(ui) = xix
′
i of i ∈ {0, . . . , t− 1}.

In order to build efficiently DFTω(D(X)), let’s write:

D(X) = c0 + c1X + · · ·+ cd−1Xd−1 + (cdX + · · ·+ c2d−t−1Xd−t)
∑t

j=1 Uj(X)

+
∑t−1

i=1 c2d−t−1+i

∑t
j=1 Uj(X)ud−t+i

j

Thus:
DFTω(D(X)) = DFTω(C(X))

− DFTω(cdXd + · · ·+ c2d−2X2d−2)

+ DFTω(cdX + · · ·+ c2d−t−1Xd−t)⊙ u⃗

+
∑t−1

i=1 c2d−t−1+i ·Gi.

= Mask(x⃗⊙ x⃗′) ,

where: Gi = DFTω(
∑t

j=1 Uj(X)ud−t+i
j) for i ∈ {1, . . . , t − 1} and u⃗ = DFTω(

∑t
j=1 Uj(X)) are

precomputed values, and cd, . . . , c2d−2 = extractLastCoefficients(z⃗ ⊙ z⃗ ′). We remind that
extractLastCoefficients has been defined in [10]:

10 P-A. Berthet et al.

We have seen that IDFTω(z⃗ ⊙ z⃗ ′) = (ci)i∈{0,...,n−1} = C(X), then if we denote y⃗ = z⃗ ⊙ z⃗ ′, by
definition cj+d =

∑n−1
i=0 yiω

−i(j+d) =
∑n−1

i=0 (yiω
−id)ω−ij ∀ 0 ≤ j ≤ d− 1 and (cj+d)j∈{0,...,d−1}

is obtained from IDFT
(
(yiω

−id)0≤i≤n−1
)
.

If we denote ϕ(C, ω) = −DFTω(cd+1Xd + · · ·+ c2d−2X2d−2) + DFTω(cdX + · · ·+ c2d−t−1Xd−t)⊙
u⃗+
∑t−1

i=1 c2d−t−1+i ·Gi where C represents the d−1 last coefficients of IDFT(Mask(x⃗)⊙Mask(x⃗′)),
then we get that

Mask(x⃗⊙ x⃗′) = Mask(x⃗)⊙ Mask(x⃗′) + ϕ(C, ω)

3.5 Security Proof

One way of proving the security of an implementation is through a theoretical approach using
formal security models. Such a model for SCA resilience is the d-probing security model, first
introduced by Ishai et al. [21]. To prove the security of our design in this model, we first introduce
some definitions.

Definition 1. [35] (Private circuit compiler [21]). A private circuit compiler for a circuit C
with input in Fϕ

q and output in Fϕ′

q is defined by a triple (I, T, O) where

– I : Fϕ
q → Fφ

q is an input encoder that randomly maps the input in Fϕ
q to the input sharing

in Fφ
q .

– T is a circuit transformation whose input is circuit C, and output is a randomized circuit
C ′, whose input is the input sharing Fφ

q , and the output in Fφ′

q is called outputsharing.
– O : Fφ′

q → Fϕ′

q is a decoder that maps the output sharing in Fφ′

q to the output of C in Fϕ′

q .

We say that (I, T, O) is a private circuit compiler and C ′ is a d−private circuit (or d−probing
secure, where d is called the security order) if the following requirements hold:

– Correctness: for any input a ∈ Fϕ
q , Pr[O(C ′(I(a)))] = C(a) = 1.

– Privacy: for any input a ∈ Fϕ
q and any set of probes P such that |P| ≤ d, C ′

P(I(a)) are
independent of the input a.

Definition 2. [35] (Encoder, Codeword, Sharing, Valid Sharing and Share). An encoder, Enc
: Fqk → Fqn is a probabilistic algorithm that maps a vector in Fqk to a vector in Fqn . The latter
vector in Fqn is called codeword or valid sharing. A sharing is a vector in Fqn , and the elements
of a codeword or sharing are called shares. Moreover, an encoder is called d−private encoder if
and only if the joint distribution of any d shares are independent of the input of the encoder,
where the probability is over the random coins from the encoder.

We propose to show in the following paragraphs that our method corresponds to (d− t)-probing
order for the security with a discussion around more sophisticate security models. For fault
injection resilience, we assume that we are in the random fault model with a reasonable number
of injected faults.

Securing Lattice-Based KEMs with Code-Based Masking: A Theoretical Approach 11

SCA Resilience We showed that this construction is identical to the original construction of
[10] up to the sign and up to the parity of n. The proof is coming from the property of this
masking that can be written as a DSM encoding [8]:

x 7→ (x, r) 7→ xG + rH.

For this model, the masking order is provided by the minimal distance of the code H⊥. It is
proven in [10] that the probing order depends of code H⊥ which can be MDS (i.e dmin = d+2−t)
or AMDS (i.e dmin = d + 1 − t). We show in the subsection 4 (with t = 1) that we are in the
MDS favourable case. It means that odm equals d + 1 − t, i.e dmin = d + 2 − t. The gadget
multiplication is also in this case (d+1− t)-probing secure due to the MDS property of H. Let’s
remind the main steps of the proof:
We can rewrite our encoding procedure as follows:

Mask(x⃗) =
(
(x⃗, 0⃗)×A−1 ×R

)
+
(
(⃗0, r⃗)×A−1 ×R

)
= x⃗G + r⃗H,

where G = (Idt, 0)A−1R and H = (0, Idd−t)A−1R.

Proposition 1. The masking operation Mask(x⃗) is a generic encoder.

Proof. We have seen that Mask(x⃗) = x⃗G+r⃗H. By construction, rank(G) = t and rank(H) = d−t.
If we denote CG, CH and CH⊥ the codes respectively generated by the generator matrix G, H

and the kernel of H, then CG ∩ CH = {0}. If we denote B =
(

G
H

)
, then we have:

Mask(x⃗) = (x⃗, r⃗)×B

and matrix B satisfies the definition of a generic encoder denoted encB .

If we denote by d′ the minimal distance of CH⊥ : d′ = dmin(CH⊥), then, as explained in [35], a
direct consequence is that the encoding procedure encB is d′-private. Our task consists now in
evaluating d′.

Theorem 1. Let an integer t, 1 ≤ t ≤ d−1, a Vandermonde matrix A of the form (ui
j)i,j∈J0,d−1K

with ui ̸= uj. Let R the generator matrix of the Reed-Solomon code RS[n, d, n − d + 1] of the
form (ωij)i∈J0,d−1K,j∈J0,n−1K. We denote

H = (0t, Idd−t)×A−1 ×R.

Let CH the code generated by H, then, dmin (CH⊥) the minimal distance of CH⊥ satisfies

d− t ≤ dmin (CH⊥) ≤ d + 1− t.

Proof. We denote by K the matrix which corresponds to the last d− t rows of A−1, then

H = (0t, Idd−t)A−1R = K ×R

where R is a generator matrix of RS[n, d, n − d + 1]. By construction, H is (d − t) × n matrix
since (0t, Idd−t)A−1 .is a full rank matrix.

12 P-A. Berthet et al.

By construction, the parity check matrix of R that we can denote T is a generator matrix of the
Reed-Solomon code RS[n, d, n− d + 1] and we have HtT = 0. Hence, HtT = K × .R × tT = 0
and the subspace generated by the rows of T are included in the kernel of H.

Study of K: We remind that K = (0t, Idd−t)A−1. First of all, A−1 is a Reed-Solomon generator
matrix as any invertible square matrix because it is equivalent (up to an invertible matrix) to a
Reed-Solomon code. Hence K is a generator matrix of a sub code of a RS[d, d] code. We would
like to determine now the dual code of K and we observe the equation A−1 × A = Idd. By
setting

A−1 =
(

K ′
t×(d)

K(d−t)×(d)

)
and A =

(
Bd×t, B′

(d)×(d−t)

)
,

we get that (
K ′

t×(d)
K(d−t)×(d)

)
×
(

B(d)×t, B′
(d)×(d−t)

)
=
(

Idt 0t×(d−t)
0(d−t)×t Idd−t

)
.

We deduce that K(d−t)×d ×Bd×t = 0(d−t)×t and we know that

K = K(d−t)×d and B = Kernel(K) = Bd×t = (uj
i)i∈J0..d−1K,j∈J0..t−1K.

By construction t(Bd×t) = tB is a generator matrix of a code generated by the polynomials
1, X, X2, . . . , Xt−1 defined over the set u0, . . . , ud−1: this is a Reed-Solomon code RS[d, t, d+1−t]
of minimal distance d+1−t. We deduce that the encoder (x, r) 7→ (x, r)A−1 is a generic encoder
of probing order d− t.

We want now to describe the kernel of K × R. We can repeat the same construction for R. If
we denote Vω the Vandermonde matrix associated to DFTω:

Vω × V −1
ω =

(
Rd×n

R′
(n−d)×n

)
×
(

Rin×d, Ri′
n×(n−d)

)
, and

Vω × V −1
ω =

(
Idd 0d×(n−d)

0(n−d)×d Idn−d

)
.

We deduce that Rd×n × Rin×d = Idd with R = Rd×n. The matrix V −1
ω is Vandermonde

matrix associated to IDFTω, then Ri = Rin×d = (ω−ij)i∈J0..n−1K,j∈J0..d−1K. We remark that
K × R × tT = 0 and K × R × Ri × B = K × Id ×H = 0. Hence we can build a vector space
included in the kernel of H = K × R with T which is the generator matrix of a RS[n, d] code
and D = tB × tRi.

We note that tRi = (ω(n−i−1)j)i∈J0..d−1K,j∈J0..n−1K is a generator matrix of a code generated by
d polynomials of degree more than n − d. Then tB = (uj

i)i∈J0..t−1K,j∈J0..d−1K. Hence the code
generated by D is an evaluation code generated by t independent polynomials of degree more
than d whereas T is a generator matrix of a code generated by d − 1 polynomials of degree
strictly less than d, then these two codes are linearly independent and we deduce that we have
built the kernel of H. We have now to evaluate the minimal distance of this code (T ∪D).

Securing Lattice-Based KEMs with Code-Based Masking: A Theoretical Approach 13

Hence, we have

D = tB × tRi =
(

d−1∑
k=0

uk
i ω(n−1−k)j

)
i∈J0..t−1K,j∈J0..n−1K

.

Let

Di,j =
d−1∑
k=0

uk
i ω(n−1−k)j = ω(n−d)j

d−1∑
k=0

uk
i ω(d−1−k)j

and

Di,j = ω(n−d)j
d−1∑
k=0

u
(d−1−k)
i ωkj .

Then

Di,j = ud−1
i ω(n−d)j

d−1∑
k=0

(
ωj

ui

)k

= ud−1
i ω(n−d)j

1−
(

ωj

ui

)d

1− ωj

ui

.

For i = 0 (i.e t = 1), it means that the vector D0 corresponds to the evaluation of the fraction

ud
0Xn−d −Xn−2d

u0 −X
(7)

over {1, ω, . . . , ωn−1} and we are looking for a degree d − 1 polynomial P (X) that cancels the
maximum of positions of D0, i.e. such that Q(X) = (X − u0)P (X)−Xn−2d + ud

0Xn−d admits
the maximum of zeros. We remark that degree(Q) ≤ d, then the number of zero is less than
n− d which is equivalent to a minimal distance greater than d. In the same time, the Singleton
bound states that dmin(T ∪D0) ≤ d + 1. We deduce that for D = D0,

d + 1− t ≤ dmin(T ∪D) ≤ d + 2− t.

For t = 2, the Singleton bound states that dmin(T ∪D0 ∪D1) ≤ d + 2− t. We want to evaluate
now the minimal distance of a codeword built from a linear combination of D0,j , D1,j and T . It
means that for a fixed element θ ∈ Fq we are looking for a degree d polynomial P (X) such that
for a maximum of input we have

P (X) = ud
0Xn−d −Xn−2d

u0 −X
+ θ

ud
1Xn−d −Xn−2d

u1 −X
.

This is equivalent of studying the number of zero of the function T (X) = (X−u0)(X−u1)P (X)+
(X−u1)(ud

0Xn−d−Xn−2d) + θ(X−u0)(ud
1Xn−d−Xn−2d). The degree of T (X) is less or equal

to n− d + 1 then T (X) has n− d + 1 roots maximum which is equivalent to a minimal distance
greater than n− (n− d + 1) = d− 1 and we deduce:

d + 1− t ≤ dmin(T ∪D) ≤ d + 2− t.

By induction we have that for any t, d + 1− t ≤ d′ ≤ d + 2− t and the probing security order
is between d− t and d + 1− t, thus we have demonstrated the theorem 1.

14 P-A. Berthet et al.

Gadget multiplication resilience The steps of the proof can be summarized by the hypoth-
esis that has been done in [18] and proven in [10]:

Theorem 2 (Hypothesis (FFT Probing Security)). The circuits processing

DFTω(x∥0) 7→ r and DFT −1
ω

are tDF T
n -probing secure with tDF T

n ≥ d− t.

Proof. In fact the application DFTω(x⃗∥0) 7→ r corresponds exactly to our masking operation
Mask(x⃗) = (x⃗, r⃗) × A−1 × R except that A is more general than simply a Matrix of the form
(αij)i,j . We deduce that tDF T

n ≥ d− t in this case since it corresponds to the theorem 1.
Regarding DFT−1

ω : u′ 7→ tt: in fact, u′ = refresh(Mask(x⃗) ∗ Mask(y⃗)) where ∗ represents here
the multiplication term by term and not the mask multiplication. In our masking, by definition,
we have u′ = Mask(⃗0) + Mask(x⃗) ∗ Mask(y⃗). Mask(⃗0) = r⃗H where r⃗ is a d + 1 − t dimension
vector which is random, then building r⃗ requires at least d + 1 − t positions from the vector
r⃗H. By construction, DFT−1

ω (Mask(⃗0)) = (a0(r), a1(r), . . . , ad(r), 0, . . . , 0) = (0, r)A−1. Then
DFT−1

ω (Mask(x⃗) ∗ Mask(y⃗)) = (c0, . . . , c2d). We deduce that:

tt = (c0 + a0(r), c1 + a1(r), . . . , cd + ad(r), cd+1, . . . , c2d).

We prove below this proof that we cannot construct a sensitive information from (cd+1, . . . , c2d).
The coefficients ai of the vector (c0 + a0(r), c1 + a1(r), . . . , cd + ad(r)) depends linearly of r.
We have already proven that the encoder (x, r)A−1 is d + 1 − t probing secured, thus getting
information from (c0 + a0(r), c1 + a1(r), . . . , cd + ad(r)) requires to capture at least d + 1 − t
positions. We deduce the final result, the hypothesis is correct with tDF T

n = d− t.

Then, due to the previous demonstrated hypothesis, the following lemma is deduced in [18]:

Lemma 1. [18] The circuit processing (Mask(x), Mask(y)) 7→ u = Mask(x) ∗ Mask(y) is at least
(d− t)-probing secure.

For simplicity, we denote dn =.To conclude about the security of the gadget multiplication, we
remind that the Mask multiplication (gadget) is obtained from the following computation:

DFTω(D(X)) = DFTω(C(X))
+ DFTω(cdXd + · · ·+ c2d−2X2d−2)
+ DFTω

(
(cdX + · · ·+ c2d−t−1Xd−t) ∗ U⃗

)
+
∑t−1

i=1 c2−t+i ·Gi

= Mask(x⃗ ∗ x⃗ ′)

where Gi = DFTω(
∑t−1

j=0 Uj(X)ud−t+i
j) for i ∈ {1, . . . , t − 1} and U⃗ =

∑t
j=1 Uj(X) are pre-

computed values. Then, it is clear that the computation of DFTω(cdXd + · · · + c2d−2X2d−2),
DFTω

(
(cdX + · · ·+ c2d−t−1Xd−t) ∗ U⃗

)
and

∑t−1
i=1 c2d−t−1+i·Gi involves only the variables cd, . . . , c2d−t−1

related to the sensitive information. Hence, the weakest side is obtained with the vector

(cd, . . . , c2d−2) = ExtractLastCoefficients(z⃗ ∗ z⃗′).

Securing Lattice-Based KEMs with Code-Based Masking: A Theoretical Approach 15

Then the question is: can we get information from d − t position of the vector (cd+1, . . . , c2d).
Our claim is that our gadget is at least d− t probing secure, then we must assume that in the
model of attack, maximum d− t values can be guessed from some measures. From d− t pieces
of knowledge from the vector (cd, . . . , c2d−2), x = unmask(z) and x′ = unmask(z′) cannot be
reconstructed: if an attacker has access to the following system of equations

c2d−2 = ad−1a′
d−1

c2d−3 = ad−2a′
d−1 + ad−1a′

d−2
c2d−4 = ad−3a′

d−1 + a′
d−3ad−1 + a′

d−2ad−2
...

c2d−2−k =
∑k

i=0 ad−i−1a′
d−(k−i)−1

...
cd =

∑d−1
i=0 ad−i−1a′

i+1.

We can evaluate the number of potential solutions for (ai)i∈J0..d−1K: by assuming that c2d ̸= 0,
then the equation c2d−2 = ad−1a′

d−1 admits q − 1 solutions. If c2d = 0, then ada′
d admits q

solutions. By setting ad ̸= 0 and a′
d ̸= 0 we get the equation c2d−3 = ad−2a′

d−1 + ad−1a′
d−2

admits q solutions. By induction, we get the same property at any step k ≤ d− 1. Thus totally
this system admits at least q × q1+2+...+d−2 > q1+ (d−2)2

2 solutions for the set of d variables ai.
Hence, this system of equation does not give information about the ai with i ∈ J0..d − 1K. By
symmetry, we get the same property for a′

i, but we know according to the proof of the theorem
1 that we must get at least d − t values of ai to expect reconstructing the encoded sensitive
information, thus we conclude that the gadget multiplication is at least d− t probing secured.

Remark 8. While d-probing security guarantees that a gadget is secure, it does not prove that
the composition of d-probing gadgets are secure. Thus, for more sophisticate security models
like IOS, SNI or t-region probing, we refer to [18,5] for a similar method involving the DFT or
Vandermonde computation and [35] which gives proves for a Code-Based Masking. According
to the proof of [10], the masking method of this paper satisfies the main properties of [18,35,5].
However proving rigorously that the presented masking method is (d− t)-SNI is out of the scope
of this paper. Note however that we believe that adding a refresh after each gadget call should
be sufficient. While not optimal, this strategy enables gadget composition security. A refresh is
performed by adding a mask of 0.

Faults Injection By construction, everywhere a codeword C is present, the integrity of C
can be checked by computing the syndrome of C, i.e by computing IDFT(C) = c and checking
that c corresponds to a degree d − 1 polynomial. If not, it means that some errors have been
introduced. According to our parameters, C belongs to the Reed-Solomon code RS[2d, d, d + 1]
and can detect d errors.

The difficult question concerns the gadget multiplication between two vectors Mask(x) and
Mask(y). For this computation we must perform Mask(x) ⊙ Mask(y) where “⊙” corresponds to
the multiplication term by term. We showed that Mask(x)⊙Mask(y) = DFTω(C(X)) where C(X)
is a degree 2d− 2 polynomial. However, our codewords have length n = 2d and DFTω(C(X)) ∈
RS[2d, 2d−1, 2]. Hence we can check with a syndrome calculation (i.e IDFT(Mask(x)⊙Mask(y)))

16 P-A. Berthet et al.

that C(X) is degree 2d−2 polynomial. If not, it means that at least one error has been injected.
Then an attacker may inject faults on the vector (cd, . . . , c2d−2), however in this case we remind
that

Mask(x⃗⊙ y⃗) = Mask(x⃗)⊙ Mask(y⃗) + ϕ((cd, . . . , c2d−2), ω),
with Mask(x⃗⊙ y⃗) and Mask(x⃗)⊙Mask(y⃗) that can be verified, then the injected fault is detected.
We showed here that our gadget supports one fault injection. As shown in [10], to support more
injections we could modify our encoder by reducing the dimension of r⃗. As a direct consequence,
the degree of the resulting polynomial C(X) from a multiplication has a degree strictly less
than 2d− 2 and more errors can be detected. In the same time this modification decreases the
security probing order, thus, it is a question of balance. However, a trick used in [5] to reduce the
degree of the polynomials which is compliant with our scheme while the number of information
symbols t < d/2: indeed, we can set Px(X) = IDFTω(Mask(x⃗)) = P0(X) + Xd/2P1(X) and
Px′(X) = IDFTω(Mask(x⃗′)) = P ′

0(X)+Xd/2P ′
1(X). The Pi and P ′

i can be computed because the
encoder x 7→ (x, r)A−1 is d + 1− t probing secure. We have:

Px′(X)Px(X) = P0(X)P ′
0(X) + Xd/2 (P ′

0(X)P1(X) + P0(X)P ′
1(X)) + XdP1(X)P ′

1(X),

with T (X) = P ′
0(X)P1(X) + P0(X)P ′

1(X) = T0(X) + xd/2T1(X). Then we observe that d

errors can be detected on the vectors C⃗0 = DFTω(P0(X)P ′
0(X)), C⃗1 = DFTω(Xd/2T0(X)), C⃗2 =

DFTω(XdT1(X)) and C⃗3 = DFTω(XdP1(X)P ′
1(X)), just by remarking that at least d identified

coefficients must be null for each corresponding polynomial. Finally our cost amortization trick
can be applied for each vectors C⃗i, i ∈ {0, 1, 2, 3} in order to get 4 degree d polynomials D0, D1,
D2 and D3 that satisfies D = D0 + D1 + D2 + D3. Hence we avoid the degree 2d polynomial in
C(X) and consequently, d errors can be detected by applying our detection method.
Remark 9. We assume that faults are random and do not directly affect the syndrome compu-
tations that detect them. We could also assume that a tamper-resistant component performs
the fault detection task.

3.6 Complexity
It is shown in [10] that the complexity of the multiplication is quasi-linear as it requires
O(4d log(2d)) multiplications in Fq. This is a standard complexity, but regarding real perfor-
mances and applicability a study must be performed over different platforms (hardware and
software) with different strategies: parallel computation, pipeline, bitslicing... From now on, we
set t = 1 as it seems us difficult to take benefit of several symbol encoding due to the design of
CRYSTALS-Kyber. Taking t > 1 may be interesting if we manage to compute simultaneously
several KEM computation but it affects the probing security order.
In terms of randomness, we require d − t random symbols to mask t sensitive ones. As the
multiplication includes a refresh done by adding the mask of 0⃗, it requires another batch of d− t
random symbols.

3.7 Masking a Polynomial Function
By induction, we can compute Mask(xn) for an arbitrary n value in Z. We can write Mask(xn) =
Mask(xn−1 ∗ x) = Mask(x)⊙ Mask(xn−1) + ϕ(C, ω) thus if we assume that Mask(xn−1) has been
computed, then the property is demonstrated. The same proof holds for Horner (polynomial
evaluation) algorithm.

Securing Lattice-Based KEMs with Code-Based Masking: A Theoretical Approach 17

3.8 Masking a Formal Polynomial

Let s(X), u(X) ∈ (F(deg)
q [X])2. We define

Mask(s(X)) =
deg∑
i=0

Mask(si)Xi (8)

Also, we have Mask(s(X))⊙ Mask(u(X)) = Mask(s(X) ∗ u(X)). We deduce that we can perform
Mask(s(X) ∗ u(X)) using the Fast Fourier Transform based on Cooley-Turkey algorithm with a
n-root of unity since the scalar multiplication is well defined over the linear codes.

3.9 Adapting the Horner method to masked polynomials

The Horner method evaluates a polynomial of degree deg in deg multiplications and deg addi-
tions. However, masked multiplications between two sensitive data, that we denote as sensitive
multiplications, are costly. On the other hand, masked multiplications between a sensible data
and a public one are cheap as they can be considered as scaling (see Section 3.3). We take
inspiration from the work of Paterson and Stockmeyer [29] where they perform a variation of
the Horner method. We adapt it to the specific case of masked evaluation of public polynomials
in characteristic other than 2.

Remark 10. Note that characteristic 2 has already been covered by Roy and Vivek in [32].

Theorem 3. Let P be a public polynomial and deg its degree. Let’s assume first that s =
√

deg
is an integer for simplicity. We notice that P (X), where X is the sensitive data we mask, can
be written as:

P (X) = P0(X) + XsP1(X) + . . . + Xdeg−sPs−1(X),
with ∀i ∈ J0, s− 2K, deg(Pi(X)) ≤ s− 1 and deg(Ps−1(X)) = s

(9)

The complexity of evaluating this polynomial in X is 2s − 2 sensitive multiplications, (s − 1)2

scalar multiplications and deg − s additions.

Proof. 1. Sensitive multiplications. First we evaluate all the Xj up to j = s. They are re-used
inside all the Pi. Thus, we have s − 1 sensitive multiplications to perform. Once it is done
for the Pi, we can consider the polynomial in Equation 9 as a polynomial of degree s − 1
in Y = Xs. Thus, by applying the normal Horner method, it requires only s − 1 sensitive
multiplications. For a total of (s− 1) + (s− 1) = 2s− 2.

2. Scalar multiplications. ∀i ∈ J0, s − 2K, deg(Pi(X)) ≤ s − 1. Thus, we have (s − 1) ∗ (s − 2)
scalar multiplications to perform. For Ps−1, we have a polynomial of degree s and thus s−1
scalar multiplications. For a total of (s− 1)(s− 2) + (s− 1) = (s− 1)2.

3. Additions Regarding the evaluation of the Pi, there is as much additions as scalar multipli-
cations, so (s − 1)2. However, we must add to that count the additions performed during
the final Horner on Y = Xs. For a total of (s− 1)2 + (s− 1) = deg − s.

Remark 11. If deg is not a square, let e be the greatest square lower than deg and r =
√

e. The
complexity of evaluating P becomes 2r−1 sensitive multiplications, r(r−2)+(deg−e) = deg−2r
scalar multiplications and (deg − 2r) + r = deg − r additions.

18 P-A. Berthet et al.

3.10 Conversion Between Code-Based Maskings

Current state of the art regarding masking ML-KEM [7,9] use conversions between different
masking methods before and after the use of Keccak in order to benefit from a fast boolean
masked implementation of Keccak. However, converting is costly and can create vulnerabilities.
For instance, the work from Bronchain and Cassiers [9] was a patch for leakage in the con-
version used in [7]. Kundu et al. [23] successfully targets the conversion with a fault attack to
recover sensitive data. Thus, using conversion between masking methods without proper FIA
countermeasures can be risky. We propose a conversion method for Code-Based Masking.

Converting from arithmetic to Boolean representation can be interpreted as a converting from
a field of characteristic different from 2 to another field of characteristic 2. Both representations
must be equipped of masking algorithm with a similar d probing order. We have previously seen
that Fq can be equipped of Reed-Solomon code based masking. According the parameters, we
can benefit of the Fast Fourier calculation or simply a Vandermonde matrix multiplication. The
results of [10] states that we have a such encoder over characteristic 2 fields. We consider now
the case F26 with a RS[7, 4, 4] code which leads to a 3-probing order encoder.

There is no common subfield between F26 and Fq, however it is possible to build (F2,⊗,⊕) as
a subset of (Fq,×, +) by using the interpolation of the following operators

∀(x, y) ∈ {0, 1}2 ∈ (Fq)2,

{
x⊗ y = x× y;
x⊕ y = x + y − 2× x× y.

We deduce that Maskq(a⊕ b) = Maskq(a) + Maskq(b)−2 ·Maskq(a) ⋆ Maskq(b) and Maskq(a⊗ b) =
Maskq(a) ⋆ Maskq(b).
In the ML-KEM context, the conversion from Zq to F26 is favourable since the input of the
Keccak function comes from a polynomial in Zq[X]/ < X256 + 1 > which coefficients are either
0 or 1.

Remark 12. In case the value masked is not certain to be either 0 or 1, it is necessary to obtain
its binary decomposition before performing the conversion. This can be performed in a secure
manner using Lagrange’s interpolations. This is however costly, with an estimated complexity
of ⌈log(q)⌉ × (2⌊√q⌋ − 1) masked multiplications in the worst case4. As a result we have ⌈q⌉
conversions to perform.

From Fq To F26 . Before the evaluation by Keccak, we have 256 masked bits bi ∈ Fq,
i ∈ [1..256]: Maskq(bi). Then we pick randomly 0 ≤ rj ≤ 63 ∈ Fq, j ∈ [1..3] and compute
Maskq(r1), Maskq(r2), Maskq(r3) in order to form the vector

v⃗ = (Maskq(bi), Maskq(r1), Maskq(r2), Maskq(r3)) = Maskq(bi, r1, r2, r3).

If we denote M2 the Reed-Solomon encoder over F26 , then we would like to evaluate

Maskq ((bi, r1, r2, r3)⊗M2) = Maskq ((0, r1, r2, r3)⊗M2 ⊕ (bi, 0, 0, 0)⊗M2) .

4 Some interpolations might have a structure and thus the possibility of reducing the degree of the
evaluated polynomial through variable changes.

Securing Lattice-Based KEMs with Code-Based Masking: A Theoretical Approach 19

(0, r1, r2, r3) ⊗ M2 can be calculated and then Maskq ((0, r1, r2, r3)⊗M2) = F⃗ is deduced.
Then we suggest to considere ((0, r1, r2, r3)⊗M2) in its binary form: F⃗2 ∈ F6×7

2 . The vec-
tor (bi, 0, 0, 0)⊗M2 = bi ⊗ (M2[0][0], . . . , M2[0][6]) admits a binary representation bi ⊗B2 with
B2 ∈ F6×7

2 . Finally, if we denote BM = (bi, r1, r2, r3)⊗M2 = Mask2(bi), then

C = Maskq (BM) = Maskq

(
bi ⊗B2 ⊕ F⃗2

)
where C[s][j] = Maskq(BM [s][j]) and

C[s][j] = (B2[s][j]× Maskq(bi)) + Maskq(F2[s][j])− 2× Maskq(F2[s][j])× (B2[s][j]× Maskq(bi))

for s ∈ [0..5] and j ∈ [0..6]. We can now unmask C, and get BM = Mask2(bi) = Unmaskq(C).

Algorithm 3 CBM Conversion from Fq to F26 in the case of ML-KEM
1: Input: in = Maskq(bi) a Fq−CBM of bi

2: Output: out = Mask26 (bi) = 6× Mask2(bi) a F26−CBM of bi

3: Internal vars: F [7], Rout[6][7][8]
4: Tabs used for optimization : Mul, V ecb2
5: r1, r2, r3 ← random 8bits words
6: for i from 1 to 7 do
7: F [i]←Mul[r1][V −1[1][i]]−Mul[r2][V −1[2][i]]−Mul[r3][V −1[3][i]]
8: end for
9: for i from 1 to 7 do

10: for j from 1 to 6 do
11: Rout[j][i]← (F [i] >> j)⊗ 1
12: end for
13: end for
14: for i from 1 to 6 do
15: for j from 1 to 7 do
16: if V ecb2[i][j] == 1 then
17: m← 2 · (Maskq(bi) ⋆ Rout[i][j])
18: a← Maskq(bi) + Rout[i][j]
19: Rout[i][j]← a−m
20: end if
21: end for
22: end for
23: out = {0}7

24: for i from 1 to 6 do
25: for j from 1 to 7 do
26: out[j]← out[j]⊕ (Unmaskq(Rout[i][j]) << i)
27: end for
28: end for
29: return out

From F26 To Fq. After the evaluation of Keccac, we have some masked bits Mask2(ci) and we
must convert it in Maskq(ci) without demasking ci. If we denote Mq the Reed-Solomon encoder
over Fq, We propose to compute Maskq(ci) = (ci, r1, r2, r3) ×Mq from Mask2(ci). Maskq(ci) =

20 P-A. Berthet et al.

(ci, 0, 0, 0) ×Mq + (0, r1, r2, r3) ×Mq = (ci, 0, 0, 0) ×Mq + Maskq(0). Maskq(0) admits a binary
representation F ∈ F12×8

2 . (ci, 0, 0, 0) × Mq = ci × (Mq[0][0], . . . , Mq[0][7]) admits a binary
representation ci × Bq with Bq ∈ F12×8

2 . We must compute now Mask2(ci × Bq + F). We have
seen above that x + y = (x ⊕ y, x ⊗ y), then Mask2(ci ⊗ Bq[s][j] + F [s][j]) = (Mask2(ci) ⊗
Mask2(Bq[s][j])⊕ Mask2(F [s][j]), Mask2(ci)⊗ Mask2(Bq[s][j])⊗ Mask2(F [s][j])). By propagating
the carry, we get finally Maskq(ci) written in a masked binary form (i.e. belonging to

(
F7

26

)13×8).

Algorithm 4 Carry(out,y,z)
1: Input: y, z two F26−CBM
2: Output: out a F26−CBM
3: u← y ⊕ z
4: v ← y ⊗ z
5: out← out⊗ u⊗ v

Securing Lattice-Based KEMs with Code-Based Masking: A Theoretical Approach 21

Algorithm 5 CBM Conversion from F26 to Fq in the case of ML-KEM
1: Input: in a F26−CBM of bi

2: Output: out a Fq−CBM of bi

3: Internal vars: F [8], Rout[13][8][7]
4: Tabs used for optimization : V ecbq

5: F ← Maskq(0)
6: for i from 1 to 8 do
7: for j from 1 to 12 do
8: Rout[i, j]← Mask2((F [i] >> j)⊗ 1)
9: end for

10: end for
11: for i from 1 to 8 do
12: ret← Mask2(0)
13: vet← Mask2(0)
14: for j from 1 to 12 do
15: if V ecbq[j][i] == 1 then
16: Carry(vet, in, Rout[j][i])
17: Rout[j][i]← Rout[j][i]⊕ in⊕ ret
18: ret← vet
19: else
20: vet← ret⊗Rout[j][i]
21: Rout[j][i]← Rout[j][i]⊕ ret
22: ret← vet
23: end if
24: end for
25: Rout[13][i]← ret
26: end for
27: out← {0}8

28: for i from 1 to 13 do
29: for j from 1 to 8 do
30: out[j]← out[j]⊕ (Unmask2(Rout[i][j]) << i)
31: end for
32: end for
33: for j from 1 to 8 do
34: out[j]← out[j]%q
35: end for

4 ML-KEM Example

4.1 Discussion on Parameters

We have several possibilities when it comes to which code we can use and for specific masking
orders. In this section, we propose several examples of parameters for different masking orders.

First Order of Masking We propose to consider the parameters n = 4 = 2d′, d = 2, ω = ν
q−1

4 =
1729 and α = ν

q−1
13 = 2970. We chose to these parameters,

A =
(

1 1
α α2

)
, V (ω) =

(
1 1 1 1
1 ω ω2 ω3

)

22 P-A. Berthet et al.

Then,
Mask(x) = (x, r)× (A−1)× V (ω),

with r ∈ Zq picked randomly.

Mask(x) = (x, r)
(

103 2590 1545 2387
3227 740 1785 943

)
= xG + rH,

It is possible to check (cf: MAGMA online) that the minimal distance of H⊥ is 2 as predicted
by the theory, then odm = 1. Furthermore V (ω) is a Reed Solomon code and 2 faults can be de-
tected. The complexity of the detection corresponds to complexity of the syndrome computation
that can be achieved with a DFT and for n = 4 we have the following tree decomposition:

X4 − 1

X2 − 1

X − 1

P (1)

X + 1

P (−1)

X2 + 1

X + 1600

P (−1600)

X + 1729

P (−1729)

It is shown in [36] that this representation is favourable to hardware implementation and com-
plexity does not exceed nlog(n) multiplications over Fq.

Remark 13. The current state-of-the-art [20] on combined SCA and FIA resilient implementa-
tions is able to mask at the first order5 and to detect at most 1 fault for the lowest parameter
and 3 for a higher parameter at the cost of performance. Our method masks at the first order
and detects 2 faults. We improve the state-of-the-art by being able to correct 1 fault. We also
propose higher orders of masking.

Third Order of Masking For higher order, we make the following choice: n = 8 = 2d′, d = 4,
ω = ν

q−1
8 = 749 and α = ν

q−1
13 = 2970. We chose to these parameters,

A =

1 1 1 1

2970 2379 1492 341
2379 341 2292 3095
1492 2292 781 1812

 =

1 1 1 1
α α2 α3 α4

α2 α4 α6 α8

α3 α8 α9 α12

 , V (ω) =

1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5

Then,

Mask(x) = (x, r1, r2, r3)×A−1 × V (ω),

and

Mask(x) = (x, r1, r2, r3)×

3212 747 3112 897 1801 1931 428 1649
1893 2178 3029 3078 1546 491 3239 631
2127 2027 2130 1062 1354 3312 3206 2416
2756 1707 1717 1622 1958 925 3115 1963

 ,

5 Their method is not masking per say but it offers the same level of protection than first order masking

Securing Lattice-Based KEMs with Code-Based Masking: A Theoretical Approach 23

with r⃗ = (r1, r2, r3) ∈ Zq picked randomly.

Mask(x) = xG + r⃗H, with H =

1893 2178 3029 3078 1546 491 3239 631
2127 2027 2130 1062 1354 3312 3206 2416
2756 1707 1717 1622 1958 925 3115 1963

 .

We have a minimal distance of H⊥ equal to 4 and consequently, odm = 3. We can detect 4
faults. These parameters lead also to a very fast DFT with the following tree decomposition:

X8 − 1

X4 − 1

X2 − 1

X − 1

P (1)

X + 1

P (−1)

X2 + 1

X + 1600

P (−1600)

X + 1729

P (−1729)

X4 + 1

X2 + 2620 ∗X + 1

X + 40

P (−40)

X + 2580

P (−2580)

X2 + 709 ∗X + 1

X + 749

P (−749)

X + 3289

P (−3289)

Remark 14. We present the first and third order of masking in this paper. While second order is
possible, the code chosen to do so does not have the same complexity when it comes to detecting
faults as we cannot use the DFT for the syndrome computation.

Higher Orders of Masking As stated in Section 2.2, ML-KEM operations are defined over Zq

with q = 3329 satisfying q − 1 = 28 × 13. If ν = 3 is a primitive element of Fq, we could set
n = 13 = 2d′ +1, d = 6, with ω = ν

q−1
13 and α = ν

q−1
16 . The masking method is working for these

parameters but we have not found a better way to compute the DFT than using a Vandermonde
matrix multiplication which costs O(n2). However, with these parameters, for t = 1, we get
odm = d + 1− 1 = 6 and 6 faults can be detected on codewords.

Code-Based Masking offers a high flexibility in terms of which code we can use. We can choose
either to improve the FIA resilience or the SCA resilience.

4.2 Masking Strategy

First we focus on securing the PKE.Decrypt part of ML-KEM (see [27] Algorithm 14 page 28
or Figure 4 in Appendix B). Then we discuss how we can extend our masking method to the
entirety of the KEM Decapsulation procedure (see Algorithm 1) and ML-KEM itself.

You can use the following map (Figure 1) of the KEM Decapsulation to navigate between the
different parts we had to mask.

Graph legend:

– : Non-sensitive operation
– : Non-sensitive input/output of the algorithm
– : Non-sensitive intermediate data
– : Sensitive operation
– : Sensitive input/output of the algorithm

24 P-A. Berthet et al.

Secret key
s⃗, z, A, t⃗, h

Ciphertext c Decode

M = v − ts⃗ · u⃗ Compression

Public key A, t⃗

PKE.Encrypt

Keccak

ComparisonKeccak

Keccak

MUX Shared secret ss

A, t⃗

M m

h
Seed

K′

v′, u⃗′

K̃

v, u⃗

s⃗

z

Fig. 1. Interactive map (links) of our masking strategy

– : Sensitive intermediate data

Remark 15. We choose to add a hash function to hash the ciphertext before using it with z
in K̃ = J(z∥c, 32). The reason is performances. By prehashing the ciphertext, we significantly
reduce the size of the input of a masked Keccak while the prehashing is done on a public
data and thus with a non-masked Keccak. This modification only affects the output of KEM
Decapsulation in the event of a FO Transform failure. This does not affect the theoretical security
of ML-KEM and we still are fully compatible with other implementations of ML-KEM.

We propose to mask the following operation: v− ts⃗ · u⃗ with v ∈ Rq public, u⃗ ∈ Rsec
q public, and

s⃗ ∈ Rsec
q secret. First, we have to discuss how to multiply a sensitive data and a public one.

Point-Wise Multiplication between a Sensitive and a Public Polynomials To multiply
two sensitive polynomials we choose to rely on the NTT algorithm as described in ML-KEM
but in a masked manner. However, most of the multiplications between two polynomials in ML-
KEM involve a sensitive and a public one. To avoid the cost of masking a public polynomial,
we instead consider its coefficients as scalars.
The NTT is computed with regular calls to "butterflies units". Those units perform an addition
a subtraction as well as a scalar multiplication. The inversed NTT uses the same operations but
in reverse. We use our gadgets for each operation for the sensitive polynomial and the reference
NTT for the public one.
Remark 16. While we proved our gadgets security, we recommend to use a refresh after each
call to a gadget. This ensure the composition of those gadgets remains secure.
Thanks to the homomorphic properties of the Mask procedure we have:

Mask(v − ts⃗ · u⃗) = Mask(v)− MaskNTT −1

(
sec∑
i=0

MaskNTT (Mask(si))⊙Mask NTT (ui)
)

,

Securing Lattice-Based KEMs with Code-Based Masking: A Theoretical Approach 25

where ts⃗ · u⃗ = NTT −1 (
∑sec

i=0(NTT (si)⊙NTT (ui))) with si ∈ Rq and ui ∈ Rq.

Compression The next step is to apply the Compressq function while staying masked. We
have the following theorem:

Theorem 4. Compressq can be computed using a polynomial function.

Proof. We can rewrite the Compressq function from Equation 1 as

∀α ∈ Zq, Compressq(α) =
{

1 if
⌈

q
4
⌋

< α <
⌈ 3q

4
⌋

0 otherwise
(10)

As Zq is a finite field, we can simply enumerate all the values of α resulting in 1 and those
resulting in 0 and thus we can rewrite Equation 10 as

∀α ∈ Zq, Compressq(α) =
{

1 if α ∈ {α0, α1, . . . , αh}
0 if α ∈ {β0, β1, . . . , βl}

with h + l = q (11)

A simple Lagrange interpolation of Equation 11 thus give us the following:

∀α ∈ Zq, Compressq(α)⇔ P (X = α) =
l∏

i=0
(X − βi)

h∑
j=0

h∏
k=0,k ̸=j

(X − αk)
(αj − αk) (12)

We proved Compressq can be seen as a polynomial function and we can further extend the
reach of our masking method within ML-KEM.

We deduce from this theorem that we can mask Compressq as a polynomial function. Evaluating
this polynomial has a complexity of 2⌊

√
3328⌋−1 = 113 masked multiplications using the method

from Section 3.9. However, this polynomial has a structure. All its exponents are odd. Thus, by
setting Y = X2 we can gain some complexity and evaluate this polynomial in 2⌊

√
1665⌋−1+1 =

80 masked multiplications.

Using the adaptation of the Paterson-Stockmeyer [29] method as in Section 3.9, we are able to
perform the masked message compression in just 80 sensitive multiplications instead of the 3328
required by a straight application of the Horner method.

From PKE to KEM PKE Decrypt is used in KEM Decapsulation as shown in Algorithm
1. In order to mask the rest of the KEM Decapsulation procedure of ML-KEM and the other
KEM procedures, we have to address a few points.

– How do we hash the message output of PKE Decrypt? The message is a polynomial
where each term is either 0 or 1 masked. As stated in Subsection 3.10, we need the input
to be masked bits, which is the case here. Thus, we can directly apply our DSM Keccak
implementation on the output of PKE Decrypt.

26 P-A. Berthet et al.

– How do we mask PKE Encrypt? The homomorphic properties of Mask can also be
applied to both the PKE encryption and key generation of ML-KEM. By taking into account
Remark 3 regarding the Decompressq function, we can secure most of the computations
using the sensitive data s⃗, m, r⃗, e⃗, e⃗1 and e2 in PKE Key Gen (see [27] page 26 Algorithm 12
) and PKE Encrypt (see [27] page 27 Algorithm 13 or Figure 4 Appendix B). For instance,
to compute v we do

Mask(v) =
(

sec∑
i=0

ti ∗ Mask(ri)
)

+ Mask(e2) + 1665 ∗ Mask(m) (13)

Note that the product of ti and Mask(ri) uses the NTT as described in 4.2. Here we use "∗"
for readibility.
The next step to mask PKE Encrypt is to secure the sampling of these sensitive data.

– How do we use our masking method to perform sensitive data sampling? To
sample sensitive values in the PKE Encrypt procedure, we use the CBD from Equation
4 fed by two chained Keccak instances. To chain those instances, we do not convert back
from F26 to Zq between each call to the hash function. Thus, we have as input for CBD a
Code-Based Mask in F26 . As conversions are costly, we perform the CBD before converting
back to Zq. Adding the masked bits is performed with a η-bit boolean addition, using the
following formula: c =

∑η−1
i=0 Gi + ¬Gi+η where G is the output of the hash function. The

result is a masked sample in J0; 2ηK and will be re-centered on 0 after the conversion to Zq.
We use boolean formulas to get each bits of c. For η = 2 we have:

α0 = a0 ⊕ ¬b0 α1 = a1 ⊕ ¬b1

β0 = a0 ⊗ ¬b0 β1 = a1 ⊗ ¬b1

c0 = α0 ⊕ α1 (14)
c1 = (α0 ⊗ α1)⊕ β0 ⊕ β1 (15)
c2 = β0 ⊗ β1 (16)

With similar notations, for η = 3 we have:

α2 =a2 ⊕ ¬b2

β2 =a2 ⊗ ¬b2

c0 =α0 ⊕ α1 ⊕ α2 (17)
c1 =(α0 ⊗ α1)⊕ (α0 ⊗ α2)⊕ (α1 ⊗ α2)⊕ β0 ⊕ β1 ⊕ β2 (18)
c2 =(β0 ⊗ β1)⊕ (β0 ⊗ β2)⊕ (β1 ⊗ β2)⊕ (β2 ⊗ α0 ⊗ α1)⊕

(β1 ⊗ α0 ⊗ α2)⊕ (β0 ⊗ α1 ⊗ α2) (19)

Instead of performing 4 conversions for η = 2 (resp. 6 for η = 3) per polynomial coefficient,
we only perform 3 (resp. 4).
An interesting property of DSM and thus our Code-Based Masking is the possibility of
masking several sensitive data within a single mask. This method was first introduced in
[35] by Wang et al. under the name of Cost-Amortization and is used in [10]. Applied to ML-
KEM, it helps to "parallelize" the different CBD instances and further reduce the amount

Securing Lattice-Based KEMs with Code-Based Masking: A Theoretical Approach 27

of conversions we are forced to perform.

– How do we compare ciphertexts in the Fujisaki-Okamoto Transform without
unmasking them? One of the biggest issue with masking ML-KEM is the lossy nature of
the Compressq function, as stated in Remark 4. As the ciphertext in the KEM Decapsula-
tion (Algorithm 1) is given as input in a compressed state, the NIST draft paper [27] simply
compresses the generated ciphertext into c′ and compares it with the input ciphertext c.
However, we have already seen that masking the Compressq function can be costly. Thus,
papers masking CRYSTALS-Kyber [7,9] use a different approach: They compare the gener-
ated ciphertexts u⃗′, v′ with the decompression of c. This can also be applied to ML-KEM.
We went a step further and relied on the property stated in Remark 4 Equation 3. A key
point here is we want a function that returns 0 when the ciphertexts are good and not 0
when the comparison fails. Which means that, instead of performing a Lagrange interpola-
tion6 like for the message compression, here we can just list the values of y = x− x′ such as
|y| ≤ ⌈q/2di+1⌋ mod q and consider them as the roots of the polynomial we are looking for.
Thus, for di = du = 10, we have ⌈q/2di+1⌋ = ⌈q/210+1⌋ = 2, thus y ∈ J−2, 2K, 5 roots and a
polynomial of degree 5:

P (X) = X5 + 3324X3 + 4X = X(Y − 4)(Y − 1) with Y = X2 (20)

This Equation 20 only requires 3 masked multiplications. For di = dv = 4, we have
⌈q/2di+1⌋ = ⌈q/24+1⌋ = 104, thus y ∈ J−104, 104K, 209 roots and a polynomial of degree
209. However, we know that X is a factor of this polynomial. We use the symmetric nature of
the set of roots to have (X−a)(X +a) = X2−a2, thus allowing us to have two polynomials,
X and one of degree 104 in Y = X2. By applying our adaption of the Paterson-Stockmeyer
method, we can evaluate this polynomial in just 20 masked multiplications.

We demonstrated that our masking method can be applied completely to ML-KEM7 to secure
computations on sensitive data, without requiring any conversion to a different masking method
and providing error detection and error correcting capabilities.

5 Implementation and Performances

5.1 Proof of Concept Implementation for ML-KEM

We made a Proof of Concept (PoC) implementation of our masking method in the C language
on a desktop. The intent of this PoC is to validate the feasibility of our masking method at
an algorithmical level. However, we think it is important to share some performances8 and
results to give an idea of the costs of our method and to highlight the effectiveness of some
of our rationales. Figure 2 gives the performances of our masked implementations of each of
the three key algorithms of ML-KEM, highlighting the efficiency of using conversions and cost-
amortization compared to arithmetizing the Keccak calls.

6 All the mathematical optimizations in this paper were computed using PARI GP.
7 Note that we mask ML-KEM-512 but our method works for other security levels as well.
8 Averages in milliseconds over 1000 iterations.

28 P-A. Berthet et al.

0 50 100 150 200 250 300

KEM Key Gen

KEM Encaps

KEM Decaps

49

68

80

153.9

137.7

160.9

218.2

195.6

230.1

Milliseconds

Order 3 with conversion and cost-amortization Order 1 Order 3

Fig. 2. Performances in milliseconds of our masked ML-KEM-512 at different masking orders

Table 1 shows the performances of our solutions to the several obstacles encountered while
masking ML-KEM.

Table 1. Performances in milliseconds of several important functions

Masking order 1 3 3 Conv + CA

Ciphertexts comparison 0.713 1.01 1.01
Message compression 4.88 8.01 8.01
Hash function 17.1 24.3 11.719

5.2 On the Impact of the Conversion and of the Use of Cost-Amortization on
Keccak

Table 2 shows the performances of different masking strategies for Keccak. Note that perfor-
mances involving Cost-Amortization implies two Keccak are performed into one. The results
highlight the effectiveness of using the conversion and the cost-amortization in the specific case
of CBM applied to ML-KEM.

Securing Lattice-Based KEMs with Code-Based Masking: A Theoretical Approach 29

Table 2. Performances of different masking strategies for Keccak in milliseconds at masking order 3

Keccak Strategy Performances

Reference (using the CPU Keccak) 0.0007
Reference (without the CPU Keccak) 0.27
F26 -CBM 3.16
F26 -CBM + Cost-Amortization 3.24/2
Fq-CBM 20.69
Fq-CBM + Cost-Amortization 21.07/2
Conversion 7.39
Conversion + Cost-Amortization 11.71/2

5.3 Fast Evaluation of Masked Polynomials

The next Table 3 highlights the efficiency of our adaptation of the Paterson-Stockmeyer method
[29] compared to a simple application of the Horner method or the use of the structure of the
message compression polynomial. Indeed, it can be factorized in several smaller polynomials.
As the biggest irreducible factor is of degree 599, this sets an evaluation complexity of slightly
more than 600 sensitive multiplications. Please note that all those evaluations use the variable
change Y = X2 and thus are evaluated in Y .

Table 3. Impact of several evaluation methods on the message compression in milliseconds

Masking order 1 3

Message compression using the Horner method 37.25 56.65
Message compression using factorisation 12.77 17.68
Message compression using the Paterson-Stockmeyer method 4.88 8.01

Those experimental results clearly validate the theoretical results we highlighted in Section 3.9.

5.4 Comparison with Reference Implementation

We intend to port our method on a FPGA platform for experimental validation in a future work.
This would allow us to compare our work with [20]. Keep in mind that the goal of this PoC
is to prove the algorithmical feasibility of our masking method. This paper aims at laying the
theoretical foundations on which future works and implementations on better targets (Micro-
controller, FPGA, ASIC...) will be able to rely on. We compare our results with the reference
C source code of CRYSTALS-Kyber in Table 4:

30 P-A. Berthet et al.

Table 4. Performances factors compared to CRYSTALS-Kyber reference implementation

Masking order 0 (reference time) 1 3 3 Conv + CA

KEM Key Gen 0.03 ms ×5130 ×7273 ×1634
KEM Encapsulation 0.03 ms ×4590 ×6520 ×2267
KEM Decapsulation 0.03 ms ×5363 ×7670 ×2667

The performances shown in this Section 5 were realized on a laptop computer equipped with a
11th Gen Intel(R) Core(TM) i7-11850H processor operating at 2.50 GHz with 16 GB of RAM.
The source code was compiled and executed using gcc version 11.3.0. A particularity of our setup
is the use of Ubuntu 22.04.1 through WSL2 (Windows Subsystems for Linux) on a computer
operating Windows 11.

Remark 17. Due to the intellectual property regulation in place in our working environment,
we are not able to share the source code of our PoC for the moment.

6 Conclusion and Future Work

In this paper we proved in Section 3 that Code-Based masking can be used with finite fields
of prime characteristic other than 2 and with codes of even length. We adapted an evaluation
method from Paterson and Stockmeyer [29] to evaluate a masked polynomial in characteristic
different from 2 in Section 3.9. We proposed a design rationale to mask a post-quantum KEM
using the Code-Based Masking method in Section 4. We also provided better security against
Fault Injection Attacks (FIA) on ML-KEM compared to the current state-of-the-art [20] by
being able to correct faults. The fault correction is enabled within the multiplicative gadget,
which is an improvement on the DSM method proposed in [35].

The next step of our work will be to implement this solution on a FPGA/Microcontroler hard-
ware platform and verify its robustness experimentally. This will also ease the comparison with
state-of-the-art and future implementations. As for other asymmetric cryptography primitives,
we expect our method to work on ML-DSA [26] with some minor tweaks, as ML-DSA and
ML-KEM have a lot in common. Our work on enabling this masking method for finite fields of
characteristic different from 2 should also allow us to further explore solutions with resilience
to both SCA and FIA for current pre-quantum cryptography primitives.

Acknowledgments This work was realized thanks to the grant 2022156 from the Appel à
projets 2022 thèses AID Cifre-Défense by the Agence de l’Innovation de Défense (AID), Ministère
des Armées (French Ministry of Defense). This paper is also part of the on-going work of Hensoldt
SAS France for the Appel à projets Cryptographie Post-Quantique launched by Bpifrance for the
Stratégie Nationale Cyber (France National Cyber Strategy) and Stratégie Nationale Quantique
(France National Quantum Strategy). In this, Hensoldt SAS France is a part of the X7-PQC
project in partnership with Secure-IC, Télécom Paris and Xlim.

Securing Lattice-Based KEMs with Code-Based Masking: A Theoretical Approach 31

References
1. Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J., Lichtinger, J., Miller,

C., Moody, D., Peralta, R., et al.: Status report on the third round of the nist post-
quantum cryptography standardization process. US Department of Commerce, NIST (2022).
https://doi.org/10.6028/NIST.IR.8413-upd1

2. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M., Schwabe,
P., Seiler, G., Stehlé, D.: Crystals-kyber algorithm specifications and supporting documentation.
pq-crystals (2021)

3. Backlund, L.: A side-channel attack on masked and shuffled implementations of m-lwe and m-lwr
cryptography: A case study of kyber and saber (2023)

4. Beckwith, L., Abdulgadir, A., Azarderakhsh, R.: A flexible shared hardware accelerator for nist-
recommended algorithms crystals-kyber and crystals-dilithium with sca protection. In: Cryptogra-
phers’ Track at the RSA Conference. pp. 469–490. Springer (2023). https://doi.org/10.1007/978-3-
031-30872-7_18

5. Berndt, S., Eisenbarth, T., Faust, S., Gourjon, M., Orlt, M., Seker, O.: Combined fault and leakage
resilience: Composability, constructions and compiler. Cryptology ePrint Archive, Paper 2023/1143
(2023), https://eprint.iacr.org/2023/1143

6. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M., Schwabe,
P., Seiler, G., Stehlé, D.: Crystals-kyber: a cca-secure module-lattice-based kem. In: 2018
IEEE European Symposium on Security and Privacy (EuroS&P). pp. 353–367. IEEE (2018).
https://doi.org/10.1109/EuroSP.2018.00032

7. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., Van Vredendaal, C.: Masking kyber: First-and
higher-order implementations. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems pp. 173–214 (2021). https://doi.org/10.46586/tches.v2021.i4.173-214

8. Bringer, J., Carlet, C., Chabanne, H., Guilley, S., Maghrebi, H.: Orthogonal direct sum masking:
A smartcard friendly computation paradigm in a code, with builtin protection against side-channel
and fault attacks. In: IFIP International Workshop on Information Security Theory and Practice.
pp. 40–56. Springer (2014). https://doi.org/10.1007/978-3-662-43826-8_4

9. Bronchain, O., Cassiers, G.: Bitslicing arithmetic/boolean masking conversions for fun and profit:
with application to lattice-based kems. IACR Transactions on Cryptographic Hardware and Em-
bedded Systems pp. 553–588 (2022). https://doi.org/10.46586/tches.v2022.i4.553-588

10. Carlet, C., Daif, A., Guilley, S., Tavernier, C.: Quasi-linear masking against sca and fia, with cost
amortization. IACR Transactions on Cryptographic Hardware and Embedded Systems 2024(1),
398–432 (2024). https://doi.org/10.46586/tches.v2024.i1.398-432

11. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-
analysis attacks. In: Advances in Cryptology—CRYPTO’99: 19th Annual International Cryptology
Conference Santa Barbara, California, USA, August 15–19, 1999 Proceedings 19. pp. 398–412.
Springer (1999). https://doi.org/10.1007/3-540-48405-1_26

12. Chen, L., Chen, L., Jordan, S., Liu, Y.K., Moody, D., Peralta, R., Perlner, R.A., Smith-Tone, D.:
Report on post-quantum cryptography, vol. 12. US Department of Commerce, National Institute
of Standards and Technology . . . (2016)

13. Delvaux, J.: Roulette: A diverse family of feasible fault attacks on masked kyber. Cryptology ePrint
Archive, Paper 2021/1622 (2021), https://eprint.iacr.org/2021/1622

14. Dworkin, M.J.: Sha-3 standard: Permutation-based hash and extendable-output functions. NIST
FIPS (2015). https://doi.org/10.6028/NIST.FIPS.202

15. Fritzmann, T., Van Beirendonck, M., Roy, D.B., Karl, P., Schamberger, T., Verbauwhede, I., Sigl,
G.: Masked accelerators and instruction set extensions for post-quantum cryptography. Cryptology
ePrint Archive (2021). https://doi.org/10.46586/tches.v2022.i1.414-460

16. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption
schemes. In: Annual international cryptology conference. pp. 537–554. Springer (1999).
https://doi.org/10.1007/3-540-48405-1_34

https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.1007/978-3-031-30872-7_18
https://doi.org/10.1007/978-3-031-30872-7_18
https://eprint.iacr.org/2023/1143
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.1007/978-3-662-43826-8_4
https://doi.org/10.46586/tches.v2022.i4.553-588
https://doi.org/10.46586/tches.v2024.i1.398-432
https://doi.org/10.1007/3-540-48405-1_26
https://eprint.iacr.org/2021/1622
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.46586/tches.v2022.i1.414-460
https://doi.org/10.1007/3-540-48405-1_34

32 P-A. Berthet et al.

17. Goudarzi, D., Joux, A., Rivain, M.: How to securely compute with noisy leakage in quasilinear com-
plexity. In: International Conference on the Theory and Application of Cryptology and Information
Security. pp. 547–574. Springer (2018). https://doi.org/10.1007/978-3-030-03329-3_19

18. Goudarzi, D., Prest, T., Rivain, M., Vergnaud, D.: Probing security through input-output separation
and revisited quasilinear masking. IACR Transactions on Cryptographic Hardware and Embedded
Systems pp. 599–640 (2021). https://doi.org/10.46586/tches.v2021.i3.599-640

19. Heinz, D., Kannwischer, M.J., Land, G., Pöppelmann, T., Schwabe, P., Sprenkels, D.: First-order
masked kyber on arm cortex-m4. Cryptology ePrint Archive, Paper 2022/058 (2022), https://eprint.
iacr.org/2022/058

20. Heinz, D., Pöppelmann, T.: Combined fault and dpa protection for lattice-based cryptography. IEEE
Transactions on Computers 72(4), 1055–1066 (2022). https://doi.org/10.1109/TC.2022.3197073

21. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against probing attacks.
In: Advances in Cryptology-CRYPTO 2003: 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003. Proceedings 23. pp. 463–481. Springer (2003).
https://doi.org/10.1007/978-3-540-45146-4_27

22. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems. In:
Advances in Cryptology—CRYPTO’96: 16th Annual International Cryptology Conference Santa
Barbara, California, USA August 18–22, 1996 Proceedings 16. pp. 104–113. Springer (1996).
https://doi.org/10.1007/3-540-68697-5_9

23. Kundu, S., Chowdhury, S., Saha, S., Karmakar, A., Mukhopadhyay, D., Verbauwhede, I.: Carry
your fault: A fault propagation attack on side-channel protected lwe-based kem. Cryptology ePrint
Archive, Paper 2023/1674 (2023), https://eprint.iacr.org/2023/1674

24. Mosca, M., Piani, M.: 2021 quantum threat timeline report global risk institute. Global Risk Insti-
tute (2022)

25. Ngo, K.: Side-Channel Analysis of Post-Quantum Cryptographic Algorithms. Ph.D. thesis, KTH
Royal Institute of Technology (2023)

26. NIST: Module-lattice-based digital signature standard. NIST FIPS (2023).
https://doi.org/10.6028/NIST.FIPS.204.ipd

27. NIST: Module-lattice-based key-encapsulation mechanism standard. NIST FIPS (2023).
https://doi.org/10.6028/NIST.FIPS.203.ipd

28. Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical cca2-secure and masked ring-lwe
implementation. Cryptology ePrint Archive (2016). https://doi.org/10.13154/tches.v2018.i1.142-
174

29. Paterson, M.S., Stockmeyer, L.J.: On the number of nonscalar multiplications necessary to evaluate
polynomials. SIAM Journal on Computing 2(1), 60–66 (1973). https://doi.org/10.1137/0202007

30. Rains, E.M., Sloane, N.J.: Self-dual codes. arXiv preprint math/0208001 (2002).
https://doi.org/10.48550/arXiv.math/0208001

31. Ravi, P., Roy, S.S.: Side-channel analysis of lattice-based pqc candidates. In: Round 3 Seminars,
NIST Post Quantum Cryptography (2021)

32. Roy, A., Vivek, S.: Analysis and improvement of the generic higher-order masking scheme of fse
2012. Cryptology ePrint Archive, Paper 2013/345 (2013), https://eprint.iacr.org/2013/345

33. Saarinen, M.J.: Intro to side-channel security of nist pqc standards. In: PQC Seminars, NIST (2023)
34. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Pro-

ceedings 35th annual symposium on foundations of computer science. pp. 124–134. Ieee (1994).
https://doi.org/10.1109/SFCS.1994.365700

35. Wang, W., Méaux, P., Cassiers, G., Standaert, F.X.: Efficient and private computations with code-
based masking. IACR Transactions on Cryptographic Hardware and Embedded Systems pp. 128–
171 (2020). https://doi.org/10.13154/tches.v2020.i2.128-171

36. Wang, Y., Zhu, X.: A fast algorithm for the fourier transform over finite fields and its vlsi
implementation. IEEE Journal on Selected Areas in Communications 6(3), 572–577 (1988).
https://doi.org/10.1109/49.1926

https://doi.org/10.1007/978-3-030-03329-3_19
https://doi.org/10.46586/tches.v2021.i3.599-640
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/058
https://doi.org/10.1109/TC.2022.3197073
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-68697-5_9
https://eprint.iacr.org/2023/1674
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.13154/tches.v2018.i1.142-174
https://doi.org/10.13154/tches.v2018.i1.142-174
https://doi.org/10.1137/0202007
https://doi.org/10.48550/arXiv.math/0208001
https://eprint.iacr.org/2013/345
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.13154/tches.v2020.i2.128-171
https://doi.org/10.1109/49.1926

Securing Lattice-Based KEMs with Code-Based Masking: A Theoretical Approach 33

A Graph legend

– : Non-sensitive operation
– : Non-sensitive input/output of the algorithm
– : Non-sensitive intermediate data
– : Sensitive operation
– : Sensitive input/output of the algorithm
– : Sensitive intermediate data

B ML-KEM

B.1 PKE

Public key A, t⃗

Seed

Message m

CBDη1

CBDη1

CBDη2

LWE
u⃗ = tA · r⃗ + e⃗1

LWE
V = tt⃗ · r⃗ + e2

LWR
v = V +M

Decompression

Ciphertext v, u⃗

m M

A

t⃗

e⃗1

r⃗

e2

v

u⃗

V

Fig. 3. Overview of the sensitive operations within PKE Encrypt

Secret key s⃗

Ciphertext v, u⃗

M = v − ts⃗ · u⃗ Compression Message m
s⃗

v, u⃗

Fig. 4. Overview of the sensitive operations within PKE Decrypt

34 P-A. Berthet et al.

B.2 KEM

Public key A, t⃗

Keccak

RNG PKE.Encrypt

Keccak

Encode

Ciphertext c

Shared secret ss

t⃗

A, t⃗

m

Seed

K

v, u⃗

h

Fig. 5. Overview of the sensitive operations within the KEM Encapsulation

Algorithm 6 KEM Encapsulation
1: Input: Public key pk = (A, t⃗)
2: Output: Ciphertext c
3: Output: Shared secret K ∈ {0, 1}256

4: m (256 random bits from system)
5: m = H(m)
6: (K, seed) := G(m∥H(pk))
7: u⃗, v := P KE.Encrypt(pk, m, seed)
8: c = Encode(u⃗, v, du, dv)
9: return (c, K)

Secret key
s⃗, z, A, t⃗, h

Ciphertext c Decode

PKE.Decrypt

Public key A, t⃗

PKE.Encrypt

Keccak

Ciphertext
ComparisonKeccak

Keccak

MUX Shared secret ss

A, t⃗

m

h
Seed

K

v′, u⃗′

K ′

v, u⃗

s⃗

z

Fig. 6. Overview of the sensitive operations within the KEM Decapsulation

Securing Lattice-Based KEMs with Code-Based Masking: A Theoretical Approach 35

Algorithm 7 KEM Decapsulation
1: Input: Ciphertext c
2: Input: Secret Key sk = (s⃗, pk, H(pk), z)
3: Output: Shared key K
4: u⃗, v = Decode(c, du, dv)
5: m′ := P KE.Decrypt(s⃗, u⃗, v)
6: (K′, seed′) := G(m′∥H(pk))
7: K̃ = J(z∥c, 32) ▷ Our variation: K̃ = J(z∥H(c), 32)
8: u⃗′, v′ := P KE.Encaps(pk, m′, seed′)
9: c′ = (Compressq(u⃗′, du), Compressq(v′, dv))

10: if Compare(u⃗′, u⃗, v′, v) then ▷ Compare = 0 if successful
11: K′ = K̃
12: end if
13: return K′

B.3 Parameters

Table 5. Parameter sets for ML-KEM

NIST security level n q sec η1 η2 du dv

ML-KEM-512 I 256 3329 2 3 2 10 4
ML-KEM-768 III 256 3329 3 2 2 10 4
ML-KEM-1024 V 256 3329 4 2 2 11 5

	Securing Lattice-Based KEMs with Code-Based Masking: A Theoretical Approach

