
On Fully-Secure Honest Majority MPC without
n2 Round Overhead

Daniel Escudero1 and Serge Fehr2

1 J.P. Morgan AI Research & J.P. Morgan AlgoCRYPT CoE, New York, U.S.A.
2 CWI Amsterdam, The Netherlands

Abstract. Fully secure multiparty computation (or guaranteed output
delivery) among n parties can be achieved with perfect security if the
number of corruptions t is less than n/3, or with statistical security with
the help of a broadcast channel if t < n/2. In the case of t < n/3, it is
known that it is possible to achieve linear communication complexity,
but at a cost of having a round count of Ω(depth(C) + n) in the worst
case. The number of rounds can be reduced to O(depth(C)) by either
increasing communication, or assuming some correlated randomness (a
setting also known as the preprocesing model). For t < n/2 it is also
known that linear communication complexity is achievable, but at the cost
of Ω(depth(C) + n2) rounds, due to the use of a technique called dispute
control. However, in contrast to the t < n/3 setting, it is not known how
to reduce this round count for t < n/2 to O(depth(C)), neither allowing
for larger communication, or by using correlated randomness.
In this work we make progress in this direction by taking the second
route above: we present a fully secure protocol for t < n/2 in the prepro-
cessing model, that achieves linear communication complexity, and whose
round complexity is only O(depth(C)), without the additive n2 term that
appears from the use of dispute control. While on the t < n/3 such result
requires circuits of width Ω(n), in our case circuits must be of width
Ω(n2), leaving it as an interesting future problem to reduce this gap.
Our O(depth(C)) round count is achieved by avoiding the use of dispute
control entirely, relying on a different tool for guaranteeing output. In
the t < n/3 setting when correlated randomness is available, this is done
by using error correction to reconstruct secret-shared values, but in the
t < n/2 case the equivalent is robust secret-sharing, which guarantees
the reconstruction of a secret in spite of errors. However, we note that a
direct use of such tool would lead to quadratic communication, stemming
from the fact that each party needs to authenticate their share towards
each other party. At the crux of our techniques lies a novel method for
reconstructing a batch of robustly secret-shared values while involving
only a linear amount of communication per secret, which may also be of
independent interest.

1 Introduction

Secure multiparty computation (MPC) is a set of techniques that enable a set
of parties P1, . . . , Pn, each Pi having a private input xi, to securely compute

a function z = f(x1, . . . , xn) while only involving communication among each
other, in such a way that they learn the output z, and not even an adversary
corrupting a subset of t parties can learn any information about the inputs xi

from non-corrupted/honest parties, besides from what is inherently leaked by
the result z.

Multiple MPC protocols exist depending on different factors like the power
of the adversary, or the level of security required. A first important distinction is
whether the adversary is passive, meaning that the behavior of corrupt parties
is not affected (i.e. they follow the protocol specification), or whether he is
active, meaning that the corrupt parties can deviate arbitrarily from the protocol
execution. In this work we only consider active security, so from now on we assume
the adversary under consideration is malicious, or active. Also, security can be
computational, meaning that it is based on the hardness of some computational
problem, or it can be information-theoretic, which means that security holds even
against computationally unbounded adversaries. In the information-theoretic
case there is a further distinction between perfect and statistical security, where
the latter allows for a negligible error probability while the former achieves zero
error probability.

Different techniques are used—and different results can be obtained—conditioning
on the amount of parties t that the adversary is assumed to corrupt. If t < n/3
then we can achieve very efficient MPC with perfect security and with guaranteed
output delivery (also abbreviated G.O.D., which means that the honest parties
are guaranteed to receive the correct output z in spite of arbitrary adversarial
behavior) [BTH08], and if t < n/2 then we can achieve the same but with
statistical security, assuming a broadcast channel, which can be shown to be
necessary [GSZ20]. Finally, if we do not assume any bound on t, then we must
rely on computational assumptions, and the G.O.D. property (or even fairness,
where the honest parties get the output if the adversary gets it) cannot be
obtained in general. The focus of this work is the setting t < n/2, also known
as honest majority. Furthermore, we assume the maximal case n = 2t+ 1. From
now on, whenever we refer to the setting t < n/2, we mean statistical security
with an assumed broadcast channel, while for t < n/3 we mean perfect security
without broadcast. In both cases we require full security, or G.O.D.

Several works have studied MPC in the honest majority setting. As we have
mentioned, it is known that in this case G.O.D. with statistical security is
attainable, with the help of a broadcast channel. Furthermore, this can be done
while maintaining a total communication complexity of O(n|C|), where |C| is
the size of the circuit to be computed (measured in the number of multiplication
gates) [GSZ20]. This means that the total communication scales linearly with
the number of parties, or put differently, the communication per party (i.e. after
dividing by n) is constant in n. This is crucial for scalability, since this ensures
each party does not communicate more as more parties join. Unfortunately,
there is a major drawback of these works: the round complexity is given by
Ω(depth(C) + n2). In contrast, weaker notions such as security with abort in the
honest majority setting allow for a round complexity of O(depth(C)), without

2

any dependency in n. This is good for cases where the underlying communication
has high latency, and the number of parties is large enough so that n2 extra
rounds become too much of an overhead.

Dispute control. To understand where this additive term of n2 originates
from, it is worth discussing at a high level the core ideas involved in existing
G.O.D. constructions like [GSZ20,BSFO12,BTH06]. In short, these works operate
by letting the parties compute the circuit in a gate-by-gate fashion, where the
parties maintain the invariant that for each wire they hold secret-shares of
the underlying value. Multiplication gates require interaction, and a malicious
party may cause an error by misbehaving. To ensure that the computation
can recover from this failure, a technique called dispute control, introduced in
[BTH06], is used. With this method, upon detecting a failure, the parties execute
a “localization” protocol whose purpose is to identify a pair of parties {Pi, Pj}
where at least one is guaranteed to be corrupt (we say that Pi and Pj are dispute
with each other). At this point, the computation is attempted once again, but
this time some machinery is put on top so that it is ensured that either (1) the
computation succeeds, or (2) a new dispute is identified, that is, the same pair
{Pi, Pj} will not fall in a dispute again.

The techniques used for securely computing multiplication gates require linear
communication complexity O(n) per gate, with interaction at each layer of the
circuit, so in particular if there are no failures, the total communication is O(n|C|)
distributed across O(depth(C)) rounds. Unfortunately, an active adversary can
cause all new attempts to fail, generating the maximal number of disputes, which
is Ω(n2). This would lead to a communication of n2 ·Ω(n|C|) = Ω(n3|C|) and
n2 ·Ω(depth(C)) rounds, but fortunately this can be addressed by partitioning
the circuit into segments and verifying the correctness of each of them, instead of
checking the whole circuit. This way, at most n2 segments are repeated, and by
choosing segments of size |C|/n2 we see that the overall communication remains
O(n|C|). In terms of round count, letting d be the depth of each segment, the
number of rounds is O(depth(C)) from the optimistic case, plus Ω(n2d) from
the possible n2 segments that are repeated in the worse case. Hence, the round
complexity in the worst case becomes Ω(depth(C) + n2). We note that this is
particularly prohibitive when n is moderately large, with the overhead being
more and more noticeable for not so large values of depth(C) (in particular when
depth(C) = o(n2)).

On the < n/3 setting. We recall that honest majority protocols that achieve
weaker notions such as security with abort achieve a round complexity of
O(depth(C)). Currently, it is not known whether G.O.D. protocols with O(depth(C))+
o(n2) rounds exist, which shows that, in the honest majority case, there is an
efficiency gap between security with abort and guaranteed output delivery. In
contrast, the landscape turns out to be different for the t < n/3 case. There it
is also possible to achieve linear communication complexity by making use of
a tool called player elimination. This is similar to dispute control (and in fact,

3

player elimination predates dispute control), with the difference that when a pair
{Pi, Pj} with at least one corrupt party is identified, both of these parties can
be removed from the computation, before a reattempt.3 This way, a segment is
repeated at most O(n) times (since for every iteration there is one less corrupt
party), so by taking segments of size |C|/n, linear communication is achieved
with a round count of Ω(depth(C) + n) in the worst case.

In stark contrast with the honest majority case, for t < n/3 it is actually
possible to remove the overhead in n in the round complexity to obtain a protocol
with O(depth(C)) rounds, and this can be done in two different ways:

1. Pay more in terms of communication, leading to works such as [AAPP22,AAY21]
that have superlinear communication.4

2. Maintain linear communication, but assume correlated randomness, or in
other words, consider a protocol in the preprocessing model.

The second approach above is based on the observation that, in player-
elimination-based protocols such as [BTH08], the adversary can only cause
the repetition of a segment in a preprocessing phase in which some correlated
randomness is established. Once this is completed, the online phase is guaranteed
to provide output “in one go”, without the need of repeating any segment (or
splitting the remaining of the computation into segments, for that matter). We
emphasize again that it is not known how to achieve O(depth(C)) round count for
the honest majority case, not even giving up on linear communication complexity,
or even assuming correlated randomness. Hence, this motivates the following
question:

Can we design fully secure honest majority MPC protocols with statistical
security that require O(depth(C)) rounds to securely compute a circuit
C, either by having superlinear communication or assuming correlated
randomness?

1.1 Our Contribution

As previously mentioned, for the t < n/3 setting with perfect security, such result
is only known to be achievable by either allowing for superlinear communication
complexity, or having linear communication but assuming correlated randomness.
In this work we take the second route in the question above, and we present a
statistically and fully secure MPC protocol for honest majority, that has a round
complexity O(depth(C)) that is independent of n, and has linear communication
3 This is not possible in the case of n = 2t+ 1 since one out of the t+ 1 honest parties

may end up being removed, and the t remaining honest parties cannot “keep the
state” of the computation (since otherwise the set of t corrupt parties should be able
to also determine such state).

4 In fact, the very recent work of [AAPP23] shows how to obtain expected O(depth(C))
rounds while still achieving linear communication complexity, for certain class of
circuits. We do not discuss this work further since our interest is on deterministic
O(depth(C)) rounds.

4

complexity. One drawback of our protocol is that the claimed linear communi-
cation holds for circuits of width Ω(n2), while in the t < n/3 case this width
requirement is a factor of n smaller. We leave it as interesting future work to
further extend our techniques to tolerate circuits of width Ω(n), hence narrowing
down the gap between results for t < n/2 and t < n/3.

In more detail, we present an MPC protocol to securely compute a circuit
|C| over a finite field F, that has the following features:

– The protocol is set in the preprocessing model where the parties have access
to some correlated randomness;

– The communication complexity is O(n|C|+ n3depth(C)), which is linear if
depth(C) = O(|C|/n2), that is, each layer should contain Ω(n2) multiplication
gates.

– The round complexity is O(depth(C)).

Our result is achieved by introducing novel ideas that remove the need of using
dispute control techniques, in the preprocessing model. Qualitatively speaking,
our approach offers several advantages with respect to protocols based on dispute
control: the protocol proceeds in a gate-by-gate fashion (batching multiplication
gates in the same layer), and handling each gate is guaranteed to be completed “in
one go”, without the need of checking its correctness or repeating its computation.
Furthermore, our protocol is also arguably simpler than dispute-control-based
protocols, as it does not need to localize and handle disputes, repeat segments,
or incur in any of the related complexities of using dispute control. In fact, one
important advantage of our protocol we only require a broadcast channel for
the input phase, while the rest of the computation can happen over point to
point channels; in contrast, dispute-control-based protocols like [BTH06] require
a broadcast channel throughout the whole computation.

At the heart of our techniques lies a new and non-trivial technique for
reconstructing a batch of n2 values that are secret-shared in a robust manner,
while involving a communication complexity of O(n3), which ultimately leads
to a communication of O(n) per reconstructed value. This may find several
other applications in contexts where robust secret-sharing is used, like secure
distributed storage.

1.2 Related Work

We already discussed some related work above, but here we present a more
thorough discussion on relevant literature. In [HMP00], which is set in the t < n/3
setting, the idea of splitting the circuit into segments, together with the tool of
player elimination, were introduced. This work makes use of verifiable secret-
sharing and re-sharing à la [BOGW88,GRR98] in order to securely compute a
given arithmetic circuit. This was later improved in [BTH08] by making use of
multiplication triples, which, on top of achieving linear communication complexity,
pushes the use of player elimination to the offline phase thanks to the use of
error-correction techniques for the online phase. Any work that uses player

5

elimination introduces an additive overhead of Ω(n) in terms of the number of
rounds, stemming from the need of re-running each segment every time a new
semi-corrupt pair (a pair of parties where at least one of them is guaranteed
to be corrupt) is identified. If one wishes to avoid this overhead, works such as
[AAPP22,AAY21] achieve a round count of O(depth(C)), albeit with superlinear
communication complexity. Substantial progress towards improving this trade-off
was made in [AAPP23], where a perfectly secure protocol for t < n/3 with linear
communication complexity (for certain class of circuits) and expected O(depth(C))
rounds was given.

In [BTH06] the dispute control framework, which is inspired by the player
elimination framework, is introduced for the setting of t < n/2. This time, instead
of removing an identified semi-corrupt pair, a mechanism is set in place so that
these parties can keep participating in the protocol, and subsequent cheating
leads to a new semi-corrupt pair being identified. To enable the identification of
semi-corrupt pairs whenever cheating takes place, the secret-sharing structure
must be enhanced by letting the parties hold shares of their shares, along with
extra additional information in the form of tags under a message authentication
code (MAC). Similarly to the player elimination technique, the use of dispute
control introduces an additive overhead in terms of the number of rounds, this
time of n2, which corresponds to the maximum number of disputes that can
occur.

The protocol in [BTH06] achieves a communication complexity of O(|C|n2κ)
(ignoring non-dominant terms and broadcast calls), where κ is the statistical
security parameter. This was later improved in [BSFO12] to O(|C|(n + κ)).5
Concrete constants (plus certain quadratic term that is affected by the depth of
the circuit) are further improved in [GSZ20]. We remark, however, that these two
works still make use of the core ideas introduced in [BTH06] regarding dispute
control, splitting the circuit into segments and repeating each of these in case of
cheating. As a result, they suffer from a n2 overhead in terms of the number of
rounds. This also holds for the work of [BGIN20], which is based on replicated
secret-sharing.

Another important work is [IKP+16], where a transformation that takes
a semi-honest honest majority protocol together with a fully-secure protocol
with a potentially smaller threshold, and produces a fully-secure honest majority
protocol, is presented. This achieved by adapting the IPS compiler [IKP+16] from
the computational to the information-theoretic setting. However, their approach
once again makes use of similar ideas as player elimination and dispute control,
and hence they incur in an additive overhead of poly(n) in terms of the number
of rounds.6

5 Here we count the number of field elements, although the only constructions known
in the literature require a field whose size grows linearly with the number of parties.

6 Interestingly, here the overhead if n instead of n2, since the authors do not use
dispute control but instead a technique that is closer to player elimination.

6

1.3 Overview of our Techniques

For aiding in terms of readability, we provide a high level overview of our
techniques.

A protocol for t < n/3 in the preprocessing model. In order to motivate
our protocol, we begin by presenting a G.O.D. protocol (with perfect security)
in the t < n/3 setting, that achieves linear communication complexity and
only requires O(depth(C)) number of rounds. This is a simplified version of the
protocol from [BTH08]. First, we introduce some notation: we consider a finite
field F, and use JxKd to denote Shamir secret-sharing with degree d. At a high
level, the protocol proceeds as the majority of secret-sharing-based protocols: the
parties start with degree-t sharings of the inputs of the computation, and then
they proceed in a gate-by-gate fashion by computing shares of the result of each
gate, until shares of the output are obtained, which can then be reconstructed.
Addition gates are processed locally with the help of the linearity properties
of Shamir secret-sharing. For multiplication gates, the parties make use of the
preprocessing model in the following way: given JxKt and JyKt to be multiplied,
and given correlated randomness of the form (JaKt, JbKt, Ja · bKt), where a, b ∈ F
are uniformly random, (1) the parties compute locally JdKt = JxKt − JaKt and
JeKt = JyKt − JbKt, (2) they reconstruct these values to obtain d and e, and (3)
the parties compute locally JxyKt = eJaKt + dJbKt + JabKt + de.

The protocol is private given that a (and b) entirely hides x (and y) when
reconstructing d (and e). Communication-wise, the complexity depends on how
d and e are reconstructed. One way of doing this is letting each party announce
their share of JdKt (and JeKt) to each other party, who then reconstruct d (and
e) from the received shares. A crucial property of Shamir secret-sharing with
degree t is that, if t < n/3, then the t potentially incorrect shares provided by the
corrupt parties can be error-corrected, and the receiving parties are guaranteed
to be able to reconstruct the right underlying secret. In particular, every gate is
guaranteed to succeed, so no repetitions are required and hence the number of
rounds is O(depth(C)).

Getting linear communication complexity. The approach sketched above, however,
suffers from one major issue: since each party sends a share to every other party,
communication is Ω(n2). We are interested in linear communication, so a different
approach is required. A common idea to achieve linearity when reconstructing
secret-shared values is to use a “relay”: all parties send their shares to a chosen
party, say P1, who reconstructs and forwards the result to the other parties.
Unfortunately nothing prevents a corrupt P1 from forwarding an incorrect value
of their choice to the other parties. To handle this, a clever solution is given in
[DN07], which consists of using multiple relays in such a way that, intuitively,
there is always at least one honest relay who is guaranteed to reconstruct the
right secret. However, special care is needed to really reduce communication to
linear.

7

To do this reconstruction efficiently—while also guaranteeing successful
reconstruction—the trick is to batch a collection of t + 1 values to be recon-
structed Js0Kt, . . . , JstKt, define the polynomial f(Z) =

∑t
`=0 s` · Z`, compute

(locally) Jf(j)Kt for j ∈ [n], and reconstruct each f(j) towards each party Pj ,
who then relays this reconstructed value to the other parties. The main obser-
vation is that the parties can again apply error correction to (f(1), . . . , f(n)) in
order to recover the polynomial f(Z) =

∑t
`=0 s` · Z`, from which they can recover

the secrets s0, s1, . . . , st. Notice that communication is still quadratic in n, but
crucially, t + 1 values have been reconstructed. Hence, if t + 1 = Θ(n) (e.g. if
n = 3t + 1), then this is O(n2/(t + 1)) = O(n) communication per secret, as
desired. One can interpret (f(1), . . . , f(n)) as “Shamir sharings”, except that we
are not interested in the zero point f(0), but rather in the polynomial f(Z) itself.

A first Ω(n2|C|) protocol for honest majority. With the ideas for G.O.D. with
t < n/3 in the preprocessing model, we are ready to tackle the t < n/2 case.
We begin by presenting a construction that achieves quadratic communication,
and then discuss how we improve this initial protocol to achieve linear commu-
nication complexity. First, we follow a similar template as the protocol above:
the parties start with Shamir sharings J·Kt of each input, proceed in a gate-
by-gate manner, handling addition gates locally and multiplication gates using
triples (JaKt, JbKt, JabKt), and finally reconstruct the output. Recall that, with
this paradigm, a major bottleneck is the reconstruction of a secret-shared value
JsKt, which in the t < n/3 setting is done while exploiting the error-correcting
properties of Shamir secret-sharing. Unfortunately, for t < n/2, degree-t Shamir
sharings do not satisfy error correction, and instead they only satisfy error detec-
tion, which ensures that either the correct secret is reconstructed by the receiver,
or possibly no secret is reconstructed at all. At this point, one can obtain a
protocol with abort, but it is not clear how to leverage this for G.O.D., besides
making use of dispute control techniques to identify disputes and re-run some
computation, which we want to avoid in order to only use O(depth(C)) rounds.

Our first observation towards solving this issue is that, even though in the
honest majority setting it is not possible to perform error correction, there is
a related notion that provides a similar functionality, and this is robust secret-
sharing. In a robust secret-sharing scheme there is a share algorithm that enables
the distribution of a secret into multiple shares, and there is a rec(onstruction)
algorithm that, on input n shares among which t of them are potentially ma-
liciously modified, outputs the correct underlying secret, with overwhelming
probability. There are multiple robust secret-sharing constructions in the liter-
ature (cf. [BPRW16,FY19]). Normally, these schemes operate by letting each
party obtain Shamir shares of the secret s, together with some authentication
tags that enable each share owner to prove to the intended receiver that the
share they send is correct. To check correctness of the received shares and tags,
each party also receives some keys. Let us abstract this notion and denote by 〈x〉
when a value x is robustly secret-shared. It is common that these constructions

8

satisfy some notion of linearity, meaning that the parties can locally compute
〈x+ y〉 from 〈x〉 and 〈y〉. We will make use of this in what follows.

We can use 〈·〉 as a building block instead of plain Shamir J·Kt in the template
above to obtain an honest majority G.O.D. protocol, where the preprocessing
produces correlations of the form (〈a〉, 〈b〉, 〈ab〉). In its basic form, reconstruction
would be done by letting the parties use the rec procedure towards every other
party, which enables each party to successfully reconstruct each value needed for
handling multiplication gates.7 However, this basic protocol is insufficient for our
goals here, simply due to the reason that the resulting communication complexity
is Ω(n2|C|). This stems from the fact that, whenever a shared value must be
learned by all parties (which again, happens for every single multiplication gate),
each single party must send their share and tags to each other single party.

Reducing to O(n|C|) for t < n/2. Our core contribution consists of improv-
ing the approach from above, that achieves G.O.D. in the preprocessing model
using quadratic communication via robust secret-sharing, to linear communication.
Ω(n2) communication stems from the need of reconstructing a robustly-shared
value towards all parties. Recall that a similar issue was faced when we sketched
the protocol for t < n/3, and in page 7 we discussed a solution to this problem
originating in the ideas from [DN07]. Hence, our first approach is to try and
adapt this idea from the secret-sharing scheme used there, namely plain Shamir
secret-sharing J·K, to the robust scheme 〈·〉 used here. Such adaptation would
look like this: to reconstruct t+ 1 robustly-shared values 〈s0〉, . . . , 〈st〉, (1) the
parties define the polynomial f(Z) =

∑t
`=0 s` · Z`, (2) they compute 〈f(j)〉 for

j ∈ [n] (which can be done using the homomorphic properties of 〈·〉), (3) they
reconstruct each f(j) towards each party Pj , who successfully reconstructs this
f(j) using the robustness properties of 〈·〉. At this point, Pj is supposed to
send f(j) to the other parties, who then recover f(Z) from these received values.
However, here we face a fundamental issue: while this works in the t < n/3
case due to error correction, in our t < n/2 case the polynomial f(Z) cannot
necessarily be recovered from the values (f(1), . . . , f(n))! This is precisely why
robust secret-sharing was introduced: in order to guarantee reconstruction.

Our idea is to ensure that the parties are able to get not only “Shamir shares
of f(X)”, as above, but actual “robust shares of f(X)”. In a bit more detail,
our approach is to ensure the parties can obtain authentication information on
the “Shamir shares” (f(1), . . . , f(n)), which guarantees that each receiver can
successfully filter out incorrect f(i)’s, and hence reconstruct the polynomial f(Z),
and with it the secrets s0, . . . , st. An important problem here, however, is that
we would need to devise a way to enable each Pj to obtain tags on f(j), one for
each receiver Pk. We now discuss at an intuitive level how this is addressed in
our work.

7 We note that this is the approach taken in, for example, Bedoza [BDOZ11], which is
set in the dishonest majority setting t < n.

9

Providing Pj with authentication information. Recall that Pj holds f(j),
which is a “Shamir share” of the polynomial f(Z), and Pj sends f(j) to every other
recipient Pk. We are missing a method by which Pk can check the correctness
of this f(j). To this end, imagine that (f(1), . . . , f(n)) were robust sharings of
f(Z), that is, in addition to the share f(j), each party Pj also holds a set of
authentication tags (τ1j , . . . , τnj) on f(j). To reconstruct, Pj provides Pk with
f(j) and τkj , and Pk uses τk to verify the correctness of f(j). Now, in our setting
f(j) is not a “sharing” per se, as it is not the result of a dealer distributing robust
shares, or linear combinations of these. Instead, Pj obtained f(j) via a robust
reconstruction of 〈f(j)〉.

Our idea is to enhance the robust secret-sharing scheme to allow for “nested”
reconstruction: we let the parties also hold shares of (〈τ1j〉, . . . , 〈τnj〉), which can
be reconstructed towards Pj so that this party can obtain the tags (τ1j , . . . , τnj)
on f(j), and hence prove correctness of f(j) to each other party Pk. The problem
with this approach is that communication grows to n3, given that each party
must reconstruct n values towards each other party.

To alleviate this issue, consider a larger number of shares to be reconstructed,
say n groups of t+1 sharings each (hence, there are O(n2) total shared values). If
we first apply the idea above to each of the n groups, we obtain a communication
of n4, or n4/n2 = n2 per reconstruction. However, here we make the crucial
observation that, among these n4 messages, the amount related to transmitting
shares not related to authentication is n3. Indeed, if authentication was not an
issue, for each group, each Pj would receive one share from each other party Pi,
and each Pj would send one share to each Pk, leading to n2 elements, which is
n3 when the number of groups is factored in. As a result, the n4 overhead is
only coming from the transmission of authentication-related information. In the
notation of the sketch above, this is originating from the reconstruction of the
authentication tags (〈τ1j〉, . . . , 〈τnj〉) towards Pj (one for each group), whose sole
purpose is to enable Pj to prove the correctness of f(j) towards Pk.

To achieve linear communication complexity, we note that all authentication
information can be compressed across the n groups using random linear combina-
tions, or in other words, the parties can distribute the authentication data of the
n groups at the same cost of one single group. This results in n3 communication
in total for the n2 reconstructions, or n3/n2 = n per reconstruction, as desired.
One must be careful when developing this idea in detail. First, a corrupt party
can easily overcome a check that uses random linear combinations if he/she knows
the random coefficients before adding the errors. To address this, in contrast
to vanilla robust secret-sharing where each party can send their Shamir share
at the same time as the authentication information, we require each party to
“commit” to their errors by first sending their Shamir shares before sampling the
random coefficients, and only then they distribute the associated authentication
data. However, this new approach introduces another complication, which is that
the random linear combination used to convince each Pj of the reconstruction
of f(j) cannot be the same as the one Pj will use to convince each Pk of the
correctness of f(j). To this end, after Pj has sent f(j) to each Pk, new random

10

coefficients are sampled, and the parties robustly reconstruct towards Pj the
necessary authentication data (using these coefficients) to convince Pk of the
correctness of f(j).

This high level idea is materialized in detail in Section 3, where we show
how to efficiently and robustly reconstruct secret-shared values. The robust
secret-sharing scheme we use is introduced in Section 2.

1.4 Notation

We let F be a finite field with |F| > poly(n) · 2κ, where κ is the statistical security
parameter. We use [k] to denote the set {1, . . . , k}. F≤d[X] denotes the vector
space of polynomials over F of degree at most d, on the variable X. For security
definitions in MPC we refer the reader to standard references such as [CDN15].

2 Robust Secret-Sharing

The main tool we make use of in our work is that of robust secret-sharing, which
enables the properties of error correction, a secret to be distributed into multiple
shares. Concretely, we introduce the following construction.

Definition 1. We define the sharing 〈x〉 for a secret x ∈ F to consist of

– a random sharing polynomial F0(X) ∈ F≤t[X] subject F0(0) = x,
– random randomizer polynomials F1(X), . . . , Ft(X) ∈ F≤t[X]

– random key polynomials A0(Y), . . . , At(Y) ∈ F≤t[Y], and
– the checking polynomial C(X, Y) ∈ F≤t,≤t[X, Y] given by

C(X, Y) = F0(X) ·A0(Y) + F1(X) ·A1(Y) + · · ·+ Ft(X) ·At(Y) . (1)

Every party Pi is given F0(i), F1(i), . . . , Ft(i) and A0(i), A1(i), . . . , At(i) as well
as the (coefficients of the) polynomial C(X, i).

With the definition above, we note that the view of party Pi is given by

viewi(〈x〉) =
(
A0(i), A1(i), . . . , At(i), F0(i), F1(i), . . . , Ft(i), C(X, i)

)
;

similarly, viewA(〈x〉) denotes the joint view of a set A of parties. For multiple
secrets, their sharings are defined as above, but with the same key polynomials
A0(Y), . . . , At(Y) yet random and independent sharing and randomizer polynomi-
als. In other words, the key polynomials A0(Y), . . . , At(Y) are sampled uniformly
at random once and for all, and the sharing and randomizer polynomials are
sampled freshly for each x uniformly at random subject to the given constraint,
i.e., F0(0) = x.

To have simpler notation and more concise expressions, we introduce the poly-
nomial vectors F (X) =

(
F0(X), . . . , Ft(X)

)
∈ F≤t[X]

t+1 and A(X) =
(
A0(Y), . . . , At(Y)

)
∈

F≤t[Y]
t+1, which allows us to re-write (1) very compactly as

C(X, Y) = F (X) ·A(Y) . (2)

11

A sharing 〈x〉 is then a random triple
(
A(Y),F (X), C(X, Y)

)
subject to F0(0) = x

and (2), and the view of Pi (and similar for a set of parties) becomes viewi(〈x〉) =(
A(i),F (i), C(X, i)

)
.

It follows immediately from (2) and the fact that A(Y) is reused for different
sharings, that linear functions can be computed on shared values by obvious local
computations. We will use the notation 〈x+ y〉 ← 〈x〉+ 〈y〉 for local additions,
and similarly for more general affine combinations.

Lemma 1 below ensures that a sharing 〈x〉 of a secret x leaks no information
on x to any t parties, except with negligible probability.

Lemma 1. For any set A of t (or fewer) parties, and for a random key polyno-
mial vector A(Y), the following holds except with probability 1/|F| over the choice
of A(Y): The distribution of viewA(〈x〉) conditioned on A(Y) does not depend on
the value of x.

Proof. Without loss of generality, we may assume A = {P1, . . . , Pt}. We consider
an arbitrary but fixed choice of A(Y), and we show the claimed independence to
hold unless the (t× t)-matrix with entries Ai(j) for i, j ∈ [t] is singular, which
happens with probability 1/|F| for a random A(Y).

Let K0(X) ∈ F≤t[X] be the (unique) polynomial with K0(0) = 1 yet K0(1) =
· · · = K0(t) = 0. Also, let K1(X), . . . ,Kt(X) be such that also here K`(1) = · · · =
K`(t) = 0 for ` ∈ [t], but now K1(0) ·A1(j) + · · ·+Kt(0) ·At(j) = −A0(j) for
j ∈ [t]. This exists due to the assumption on A(Y). The above conditions ensure
that K1(X)·A1(j)+· · ·+Kt(X)·At(j) = −K0(X)·A0(j) , and thus K(X)·A(j) = 0,
for j ∈ [t]. Then, for any δ ∈ F, the pair consisting of F ′(X) := F (X) + δ ·K(X)
and C ′(X, Y) := F ′(X) ·A(Y), together with A(Y), forms a sharing 〈x′〉 for the
secret x′ = x+ δ, for which the parties P1, . . . , Pt have the same view; namely
F ′(i) := F (i) and C ′(X, i) =

(
F (X)+δ·K(X)

)
·A(i) = F (X)·A(i) = C(X, i) for all

i ∈ [t]. Furthermore, the above mapping from
(
F (X), C(X, Y)

)
to

(
F ′(X), C ′(X, Y)

)
is bijective, which proves the claim of the statement. ut

Recall that Pi’s share vector si = F (i) satisfies si ·A(j) = C(i, j), and so
any incorrect share vector s′i 6= si satisfies s′i · A(j) = C(i, j) if and only if
(si − s′i) ·A(j) = 0 , which happens with probability 1/|F| only when A(j) is
random. Thus, Lemma 2 below implies that the set A of corrupt parties will find
an incorrect share vector that will be accepted by honest Pj with probability
1/|F| only, even if they get to see the entire sharing polynomial vector F (X).
Hence, any honest Pj can filter out all incorrect share vectors s′i 6= si, allowing
him to reconstruct the polynomial vector F (X), and thus F (0) and the actual
secret x = F0(0).

Lemma 2. For any set A of t (or fewer) parties, for any j 6∈ A, and for any
x ∈ F, the key vector A(j) is uniformly random and independent of the pair(
viewA(〈x〉),F (X)

)
.

Proof. Again, we may assume A = {P1, . . . , Pt}. Let K(Y) ∈ F≤t[Y] be such that
K(1) = · · · = K(t) = 0 and K(j) = 1. Then, for any vector δ ∈ Ft+1 the triple

12

consisting of A′(Y) = A(Y) +K(Y) · δ, F (X) and C ′(X, Y) = F (X) ·A′(Y) forms
a sharing 〈x〉 of x for which the parties P1, . . . , Pt have the same view, but now
with Pj having key vector A′(j) = A(j) + δ. Furthermore, the above mapping
from

(
A(Y),F (X), C(X, Y)

)
to

(
A′(Y),F (X), C ′(X, Y)

)
is bijective, which proves

the claim of the statement. ut

From the above, we see that a secret-shared value 〈x〉 can be reconstructed
towards a given receiver Pj , in such a way that Pj is guaranteed to obtain the
correct secret. More precisely, each party Pi sends their share vector si = F (i) to
the receiver Pj , who checks that si ·A(j) = C(i, j) for every i ∈ [n]. There are at
least t+ 1 honest shares si that will pass the check, and due to Lemma 2 above,
any incorrect share will fail the check with overwhelming probability. Hence, Pj

will have sufficient correct shares to reconstruct the right secret: from the ≥ t+1
shares si = (F0(i), . . . , Ft(i)) that pass the check, Pj uses the corresponding
F0(i)’s to reconstruct the secret x = F0(0). We call this procedure πQuadRec(〈x〉).

3 Efficient Reconstruction

It is possible to securely evaluate any arithmetic circuit over F with using our
robust secret-sharing solution and multiplication triples (〈a〉, 〈b〉, 〈ab〉) from the
preprocessing model: to add two robustly shared values the parties use the
linearity properties of 〈·〉, and to multiply they make use of the multiplication
triples by first opening d ← 〈x〉 − 〈a〉 and e ← 〈y〉 − 〈b〉, and then computing
locally 〈xy〉 ← e〈a〉+ d〈b〉+ 〈ab〉+ de. Reconstruction is guaranteed to result in
the correct d and e, which ensures correctness, which is also the same property
that guarantees the final output can be reconstructed correctly.

Since our goal is to achieve linear communication, we must design a way of
reconstructing a series of shared values robustly and with linear communication
per secret, which is precisely what we discuss in this section. Jumping ahead,
our protocol will reconstruct n2 secrets with O(n3) communication per secret,
which means O(n) per secret amortized. In the MPC protocol sketched above8

each multiplication gate requires two reconstructions, and all reconstructions
corresponding to multiplication gates in a single layer can be batched together.
This means we need n2/2 = O(n2) multiplication gates per layer (in average) to
get the linear communication benefits from our reconstruction procedure, which
is where the circuit width requirements of our results come from.

3.1 Towards Efficient Reconstruction

The naive approach of reconstructing a shared value by every party sending
their share to every other party has quadratic complexity even when ignoring
additional information, like tags etc., that are needed to filter out incorrect shares.
In other words, just communicating the actual Shamir shares produces a too
8 Even though this approach is quite standard in the literature, we provide a formal

description and a security proof in the full version.

13

large overhead. For passive security, one can reconstruct a Shamir-shared value
by sending the shares to a single party, who reconstructs and acts as a relay
by sending the result to the other parties. In the actively secure setting, the
work of [DN07] introduces a technique to achieve linear communication when
reconstructing a batch of Shamir-shared values, essentially by using a different
honest party to reconstruct each different value. However, for guaranteed output
delivery this trick requires error correction, which is possible when t < n/3, but
does not work in the t < n/2 regime, where only error detection is possible.

Here, we show how to reconcile the trick from [DN07] with the sharing 〈x〉
introduced above so that the (amortized) communication of the actual Shamir
shares si = F0(i) becomes linear. However, the resulting reconstruction approach
will still involve quadratic communication, but crucially, the super-linear overhead
will be “only” due to the tags, i.e., the remaining coordinates of F (i). We address
this in Section 3.2, where we show how this quadratic communication can be
taken care of. This is done, in essence, by batching together sufficiently many
openings and using a single set of tags to verify a random linear combination.

Consider t+ 1 sharings 〈x(0)〉, . . . , 〈x(t)〉 that need to be reconstructed. They
are given by t+1 triples

(
A(Y),F (`)(X), C(`)(X, Y)

)
with the same A(Y) and with

C(`)(X, Y) = F (`)(X) ·A(Y). Inspired by the basic idea from [DN07], we consider
F (X, Z) =

∑t
`=0 Z

` · F (`)(X) and C(X, Y, Z) =
∑t

`=0 Z
` · C(`)(X, Y) which satisfy

C(X, Y, Z) = F (X, Z) ·A(Y). The reconstruction then proceeds as follows:

1. Each Pi sends F (i, j) =
∑

` j
`F (`)(i) to Pj .

2. Each Pj checks that C(i, j, j) = F (i, j)·A(j) for i ∈ [n], and Pj reconstructs
F (0, j) from the values that pass the check.

3. Each Pj sends to each Pk the vector F (0, j).
4. Each Pk checks that C(0, k, j) = F (0, j) ·A(k) for each j ∈ [n], and then

Pk reconstructs F (0, Z) from the values F (0, j) that pass the check. From
F (0, Z) one can then read out F (0)(0), . . . ,F (t)(0) and thus x(0), . . . , x(t).

The key idea in our protocol above is the following. When Pj receives the
vectors F (1, j), . . . ,F (n, j) in step 1, Pj can filter out incorrect shares and hence
reconstruct F (0, j), so in particular Pj obtains the “secret” F0(0, j), which is
relayed to each other party Pk. However, the main observation is that Pj also
obtained as a “byproduct” the other points (F1(0, j), . . . , Ft(0, j)), and it turns
out these can be used for Pj to convince each receiver Pk of the correctness of
F0(0, j). In a bit more detail, we make the crucial observation that F (X, j) are the
share vectors corresponding to the sharing

(
A(Y),F (X, j), C(X, Y, j)

)
. So, from

the discussion before Lemma 2, an honest Pj will indeed be able to recover F (0, j).
Similarly the F (0, j)’s sent to Pk in step 3. are the share vectors corresponding
to the sharing

(
A(Y),F (0, Z), C(0, Y, Z)

)
, allowing each Pk to recover F (0, Z).

3.2 Batched Verification

Unfortunately, the above reconstruction still has quadratic amortized complexity.
This originates in the fact that, in the first (and third) step, each party sends

14

a length-(t+ 1) vector to each other party. However, the crucial observation is
that if we do not count the information that is “only” sent for checking purposes,
e.g., if in step 1. we only count the first coordinate F0(i, j) of F (i, j), then we
actually have linear amortized complexity.

Due to this observation, we can get the aspired amortized linear complexity
by doing the verification in batches, that is, compressing the checking information
of a number of reconstructions without increasing the associated communication
costs. Concretely, we consider the reconstruction of n groups of t+1 secrets each:
〈x(m,0)〉, . . . , 〈x(m,t)〉 for m ∈ {0, . . . , n− 1}. Intuitively, our protocol with linear
communication complexity is obtained by running, for each m ∈ {0, . . . , n− 1},
the solution from the previous section, but ignoring the checking information.
That is, step 1. from the previous section is modified by letting each Pi compute
F (m)(i, Z) =

∑t
`=0 Z

`F (m,`)(i), but Pi only sends the first coordinate F
(m)
0 (i, j)

to Pj . For each other coordinate h ∈ [t], Pi sends a compressed version Fh(i, j) =∑n−1
m=0 ξ

mF
(m)
h (i, j), where ξ ∈ F is a fresh uniformly random value known by

all parties.9This can still be used by Pj to filter out incorrect shares and hence
reconstruct F

(m)
0 (0, j) for m ∈ {0, . . . , n − 1}. Then, Pj relays these values to

each other party Pk.
The challenge now is that, to interpolate F

(m)
0 (0, Z) and hence learn the

reconstructed secrets, Pk requires certain checking information to verify the
validity of the values F

(m)
0 (0, j) sent by Pj . In step 3. from Section 3.1, such

information corresponds to (F
(m)
1 (0, j), . . . , F

(m)
t (0, j)), but Pj does not have the

means to send this to Pk as Pj only received (F1(0, j), . . . , Ft(0, j)), which is
a compressed version of these values (and moreover, even if Pj had this data,
sending it to each Pk would be too costly). The solution once again is to apply
compression. A first thought would be to let Pj send (F1(0, j), . . . , Ft(0, j)) to Pk,
who can use these values to check the correctness of F (0)

0 (0, j), . . . , F
(n−1)
0 (0, j)

by verifying the correctness F0(0, j) =
∑n−1

m=0 ξ
mF

(m)
0 (0, j) instead. However,

this does not work since Pj already knows ξ before sending each F
(m)
0 , so Pj can

correct any error present in these terms.
The solution here is to sample a new fresh random challenge ω, after Pj

has “committed” to the values F
(m)
0 by sending them to each Pk, and use the

compressed check as above but with this new term for the linear combination.
The problem now is that, for h ∈ [t], Pj holds Fh(0, j) =

∑n−1
m=0 ξ

mF
(m)
h (0, j), but

not the necessary F ′
h(0, j) =

∑n−1
m=0 ω

mF
(m)
h (0, j) to convince each receiver Pk.

To address this we simply let the parties run the “checking part” of the first part
of the protocol above but using the challenge ω instead of ξ. More precisely, each
Pi sends F ′

h(i, j) =
∑n−1

m=0 ω
mF

(m)
h (0, j) to Pj , who uses this values to interpolate

F ′
h(0, j), which Pj sends to Pk. The details of this protocol are provided below.

9 This is done by reconstructing, using the procedure πQuadRec from Sect. 3.1, a preshared
random 〈ξ〉 provided by the preprocessing functionality.

15

πLinRec: Reconstruction with linear communication

Input: (t+1)·n secrets (〈x(m,`)〉), for ` ∈ {0, . . . , t} and m ∈ {0, . . . , n−1},
each given by polynomials (A(Y),F (m,`)(X), C(m,`)(X, Y)).
Output: Each party Pk learns all (x(m,`))m,`.
Preprocessing: A functionality FPrep that distributes sharings 〈r〉,
where r ∈ F is uniformly random and unknown to the adversary.

For each j ∈ [n], each Pk obtains {F (m)
0 (0, j)}n−1

m=0:

1. For m ∈ {0, . . . , n − 1}, each Pi computes F (m)(i, Z) =∑t
`=0 Z

`F (m,`)(i), and Pi sends F
(m)
0 (i, j) to each Pj .

2. The parties call FPrep to obtain 〈ξ〉, where ξ ∈ F is uniformly random
and unknown to any party, and the parties execute the procedure
πQuadRec(〈ξ〉), so that all parties learn ξ.

3. For ` ∈ {0, . . . , t} and h ∈ [t], each Pi computes
Fh(i, Z) =

∑n−1
m=0 ξ

mF
(m)
h (i, Z), and sends to each Pj the vector

(F1(i, j), . . . , Ft(i, j)).
4. Each Pj computes, for i ∈ [n], F0(i, j) =

∑n−1
m=0 ξ

mF
(m)
0 (i, j), and

upon receiving (F1(i, j), . . . , Ft(i, j)) from Pi, Pj checks that

F (i, j) ·A(j) =
n−1∑
m=0

t∑
`=0

ξmj` · C(m,`)(i, j).

5. Let I ⊆ [n] be the set of indexes i’s for which the check above did not
fail. Pj interpolates F (X, j) from (F (i, j))i∈I .

6. Each Pj sends {F (m)
0 (0, j)}n−1

m=0 to each Pk

Each Pj receives checking information:

7. The parties call FPrep to obtain 〈ω〉, where ω ∈ F is uniformly random
and unknown to any party, and the parties execute the procedure
πQuadRec(〈ω〉), so that all parties learn ω.

8. Each Pi computes F ′
h(i, Z) =

∑n−1
m=0 ω

mF
(m)
h (i, Z) for h ∈ [t]. Then Pi

sends (F ′
1(i, j), . . . , F

′
t (i, j)) to each Pj .

9. Each Pj computes, for i ∈ [n], F ′
0(i, j) =

∑n−1
m=0 ω

mF
(m)
0 (i, j), and

upon receiving (F ′
1(i, j), . . . , F

′
t (i, j)) from Pi, Pj checks that

F ′(i, j) ·A(j) =

n−1∑
m=0

t∑
`=0

ωmj` · C(m,`)(i, j).

10. Let I ⊆ [n] be the set of indexes i’s for which the check above did not
fail. Pj interpolates F ′(X, j) from (F ′(i, j))i∈I .

Each Pj sends checking information to each Pk, who then reconstruct:

16

11. Each Pj sends (F ′
1(0, j), . . . , F

′
t (0, j)) to each Pk.

12. Upon receiving these values, each Pk computes F ′
0(0, j) =

∑n−1
m=0 ω

m ·
F (m)(0, j) and checks that

F ′(0, j) ·A(j) =

n−1∑
m=0

t∑
`=0

ωmj` · C(m,`)(0, j),

for each j ∈ [n]
13. Let J ⊆ [n] be the set of indexes j’s for which the check above did

not fail. For each m ∈ {0, . . . , n − 1}, Pk interpolates F
(m)
0 (0, Z) =∑t

`=0 x
(m,`)Z` from (F

(m)
0 (0, j))j∈J , and outputs (x(m,`))m,`.

Theorem 1. After executing procedure πLinRec on input (〈x(m,`)〉)`∈{0,...,t},m∈{0,...,n−1},
each party Pk outputs the correct secrets x(m,`), except with probability 3t(n +
1)/|F|. Moreover, the protocol requires linear communication complexity and
makes use of a constant number of rounds.

Proof. The claim on the number of rounds is verified by inspection. It is also
easy to check that the total communication is Θ(n3), and when we divide by
the (t + 1)n = Θ(n2) elements being reconstructed, we obtain an amortized
communication of Θ(n) per secret, as required.

Now, we prove the correctness and security of the protocol. To this end, we
begin with the following claim.

Claim. In step 5, each Pj interpolates the correct F (X, j), except with probability
t(n+ 1)/|F|.

Proof (of claim). Let us consider a malicious party Pi who sends incorrect
{F (m)

0 (i, j) + ε
(m)
0 }n−1

m=0, and (F1(i, j) + ε1, . . . , Ft(i, j) + εt), to Pj . Assume that
at least one ε

(m)
0 is not zero. The check that Pj performs is

t∑
h=0

(Fh(i, j) + εh) ·Ah(j) =

n−1∑
m=0

t∑
`=0

ξmj` · C(m,`)(i, j),

where ε0 =
∑n−1

m=0 ξ
mε

(m)
0 . Notice that the distribution of {ε(m)

0 }n−1
m=0 is indepen-

dent of ξ since Pi sent {F (m)
0 (i, j)+ε

(m)
0 }n−1

m=0 to Pj before the value ξ was opened.
Hence, since at least one ε

(m)
0 is not zero, Schwartz-Zippel lemma implies that ε0

is also not zero except with probability at most (n− 1)/|F|.
It can be checked that the right hand side is equal to

∑t
h=0 Fh(i, j) ·Ah(j), so

in particular the check passes if and only if
∑t

h=0 εh ·Ah(j) = 0. From the above,
except with probability at most |F|−1, the vector ε is not zero. Furthermore,
from Lemma 2 we have that, except with probability |F|−1, the vector A(j) looks
uniformly random to the adversary. Hence, we see that except with probability

17

(n− 1)/|F|+ 1/|F| = n/|F|, the adversary passes the check if and only if a dot
product between a random vector and a non-zero vector results in zero. This can
happen only with probability 1/|F|. Hence, except with probability 1−(n+1)/|F|,
the shares received by Pi are rejected.

From the above we see that the probability that Pj accepts an incorrect share
is at most (n+ 1)/|F|. Since there are at most t malicious parties, we have that
the probability that there is at least one incorrect share accepted by Pj is at
most t(n+1)/|F|. Since the check for every honest party passes, and there are at
least t+ 1 honest parties, Pj successfully reconstructs the correct F (X, j), except
with the probability above. This completes the proof of the claim.

With the claim at hand, we see that with overwhelming probability, every
honest party Pj sends the correct F (m)

0 (0, j) to each Pk in step 6. In a completely
similar way as the proof of the claim above, we can prove the following:
Claim. In step 10, each Pj interpolates the correct F ′(X, j), except with proba-
bility t(n+ 1)/|F|.

Proof (of claim). We proceed in the same way as in the claim above, but replacing
ξ by ω, and (F1(i, j) + ε1, . . . , Ft(i, j) + εt) by (F ′

1(i, j) + δ1, . . . , F
′
t (i, j) + δt),

where δh are the possible errors introduced by Pi in step 8. The same proof works
given that, as before, the error ε

(m)
0 on F

(m)
0 is chosen by the adversary before

sampling ω. We do not write down the rest of the details.

This claim shows then that, with overwhelming probability, each honest Pj will
send to each Pk the correct (F ′

1(0, j), . . . , F
′
t (0, j)) in Step 11, so in particular Pk

receives at least t+ 1 correct shares. This turns out to be enough for an honest
Pk to interpolate F

(m)
0 (0, Z) correctly since, as the following claim illustrates, Pk

can filter out incorrect shares with overwhelming probability.

Claim. In step 13, Pk interpolates the correct F (m)
0 (0, Z), except with probability

at most t(n+ 1)/|F|.

Proof (of claim). The proof is similar to that of the previous two lemmas 1 and 2.
Consider a malicious Pj who sends {F (m)

0 (0, j) + δ
(m)
0 }n−1

m=0 to Pk in step 6, and
also (F ′

1(0, j) + δ1, . . . , F
′
t (0, j) + δt) in step 11. The check that Pk carries out is

then
t∑

h=0

(F ′
h(0, j) + δh) ·Ah(j) =

n−1∑
m=0

t∑
`=0

ωmj` · C(m,`)(0, j),

where δ0 =
∑n−1

m=0 ω
mδ

(m)
0 . The right-hand side equals

∑t
h=0 F

′
h(0, j) ·Ah(j), so

the check passes if and only if
∑t

h=0 δh ·Ah(j) = 0. Here, we proceed as with the
proofs of the previous claims, noticing that {δ(m)

0 }n−1
m=0 is chosen by the adversary

before seeing the challenge ω, so δ0 6= 0 with probability at least 1− (n− 1)/|F|.
Following similar steps as the previous proofs, we obtain that Pk accepts an
incorrect share with probability at most (n+ 1)/|F|. Hence, the probability that
Pk reconstructs an incorrect F

(m)
0 (0, Z) is at most t(n+ 1)/|F|, as stated in the

claim.

18

Putting together what we have seen above, we obtain that, except with
probability 3t(n + 1)/|F|, each Pk reconstructs the correct secrets. Thus, the
theorem is proven. ut

Acknowledgments

This paper was prepared in part for information purposes by the Artificial
Intelligence Research Group and the AlgoCRYPT CoE of JPMorgan Chase
& Co and its affiliates (“JP Morgan”) and is not a product of the Research
Department of JP Morgan. JP Morgan makes no representation and warranty
whatsoever and disclaims all liability, for the completeness, accuracy, or reliability
of the information contained herein. This document is not intended as investment
research or investment advice, or a recommendation, offer, or solicitation for
the purchase or sale of any security, financial instrument, financial product, or
service, or to be used in any way for evaluating the merits of participating in any
transaction, and shall not constitute a solicitation under any jurisdiction or to
any person, if such solicitation under such jurisdiction or to such person would
be unlawful. 2023 JP Morgan Chase & Co. All rights reserved.

References

AAPP22. Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra. Asymp-
totically free broadcast in constant expected time via packed vss. In Theory
of Cryptography: 20th International Conference, TCC 2022, Chicago, IL,
USA, November 7–10, 2022, Proceedings, Part I, pages 384–414. Springer,
2022.

AAPP23. Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra. Detect,
pack and batch: Perfectly-secure mpc with linear communication and con-
stant expected time. In Advances in Cryptology–EUROCRYPT 2023: 42nd
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Lyon, France, April 23–27, 2023, Proceedings, Part II,
pages 251–281. Springer, 2023.

AAY21. Ittai Abraham, Gilad Asharov, and Avishay Yanai. Efficient perfectly secure
computation with optimal resilience. In Theory of Cryptography Conference,
pages 66–96. Springer, 2021.

BDOZ11. Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 169–188. Springer, 2011.

BGIN20. Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Efficient fully se-
cure computation via distributed zero-knowledge proofs. In International
Conference on the Theory and Application of Cryptology and Information
Security, pages 244–276. Springer, 2020.

BOGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation. In
Proceedings of the twentieth annual ACM symposium on Theory of comput-
ing, pages 1–10, 1988.

19

BPRW16. Allison Bishop, Valerio Pastro, Rajmohan Rajaraman, and Daniel Wichs. Es-
sentially optimal robust secret sharing with maximal corruptions. In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 58–86. Springer, 2016.

BSFO12. Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear
unconditionally-secure multiparty computation with a dishonest minor-
ity. In Annual Cryptology Conference, pages 663–680. Springer, 2012.

BTH06. Zuzana Beerliova-Trubiniova and Martin Hirt. Efficient multi-party compu-
tation with dispute control. In Theory of Cryptography Conference, pages
305–328. Springer, 2006.

BTH08. Zuzana Beerliova-Trubiniova and Martin Hirt. Perfectly-secure mpc with
linear communication complexity. In Theory of Cryptography Conference,
pages 213–230. Springer, 2008.

CDN15. Ronald Cramer, Ivan Bjerre Damgård, and Jesper Buus Nielsen. Secure
multiparty computation. Cambridge University Press, 2015.

DN07. Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure
multiparty computation. In Annual International Cryptology Conference,
pages 572–590. Springer, 2007.

FY19. Serge Fehr and Chen Yuan. Towards optimal robust secret sharing with secu-
rity against a rushing adversary. In Advances in Cryptology–EUROCRYPT
2019: 38th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Darmstadt, Germany, May 19–23, 2019,
Proceedings, Part III, pages 472–499. Springer, 2019.

GRR98. Rosario Gennaro, Michael O Rabin, and Tal Rabin. Simplified vss and fast-
track multiparty computations with applications to threshold cryptography.
In Proceedings of the seventeenth annual ACM symposium on Principles of
distributed computing, pages 101–111, 1998.

GSZ20. Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed output delivery
comes free in honest majority mpc. In Annual International Cryptology
Conference, pages 618–646. Springer, 2020.

HMP00. Martin Hirt, Ueli Maurer, and Bartosz Przydatek. Efficient secure multi-
party computation. In International conference on the theory and application
of cryptology and information security, pages 143–161. Springer, 2000.

IKP+16. Yuval Ishai, Eyal Kushilevitz, Manoj Prabhakaran, Amit Sahai, and Ching-
Hua Yu. Secure protocol transformations. In Annual International Cryptol-
ogy Conference, pages 430–458. Springer, 2016.

20

	On Fully-Secure Honest Majority MPC without n2 Round Overhead
	Daniel Escudero and Serge Fehr

