
Worst-Case Subexponential Attacks on PRGs of
Constant Degree or Constant Locality

Akın Ünal

Department of Computer Science
ETH Zurich

Zurich, Switzerland
akin.uenal@inf.ethz.ch

March 29, 2023

Abstract. In this work, we will give new attacks on the pseudorandom-
ness of algebraic pseudorandom number generators (PRGs) of polyno-
mial stretch. Our algorithms apply to a broad class of PRGs, while at
the same time, in contrast to most algebraic attacks, subexponential time
and space bounds will be proven for our attacks without making any as-
sumptions of the PRGs or assuming any further conjectures. Therefore,
we yield in this text the first subexponential distinguishing attacks on
PRGs from constant-degree polynomials and close current gaps in the
subexponential cryptoanalysis of lightweight PRGs.
Concretely, against PRGs F : Zn

q → Zm
q that are computed by polyno-

mials of degree d over a field Zq and have a stretch of m = n1+e we give

an attack with space and time complexities nO(n
1− e

d−1) and noticeable
advantage 1 − O(n1− e

d−1 /q), if q is large. If F is of constant locality d
and q is constant, we construct a second attack that has a space and

time complexity of nO(log(n)
1

(q−1)d−1 ·n
1− e

(q−1)d−1) and noticeable advan-
tage 1−O((log(n)/ne)

1
(q−1)d−1).

1 Introduction

A pseudorandom number generator (PRG) is a deterministic algorithm F :
{0, 1}n → {0, 1}m that stretches a given string of bits i.e. m > n. We expect
a PRG to expand a uniformly drawn string to a longer string of bits that suf-
ficiently simulates randomness. More formally, for a PRG F its output – when
evaluated on a short uniformly random string – should be for a certain class of
computational models indistinguishable from a longer uniformly random string,
even if the algorithm F is publicly known.

PRGs are an important tool in the toolbox of cryptography besides one-way
functions [1, 28], pseudorandom permutations and pseudorandom functions. Fur-
ther, in complexity theory, the existence of PRGs implies the derandomization
of certain complexity classes [39]. For example, it is known that the existence of
so-called high-end PRGs implies that P equals BPP [30]. Additionally, PRGs

https://orcid.org/0000-0002-8929-0221
mailto:akin.uenal@inf.ethz.ch

have the real world task of simulating cryptographic pseudorandomness in de-
terministic software applications.

Of particular interest are PRGs that can be efficiently evaluated. Very promi-
nent examples are local PRGs [27]. Each output bit of a local PRG depends on
only a constant number of input bits. Besides their simplicity, local PRGs are
an important building block in advanced cryptographic constructions, e.g. two-
party protocols for computing circuits with constant overhead [31] or indistin-
guishability obfuscation [32, 33]. Assuming additionally the pseudorandomness
of arithmetic PRGs F : Zn

q → Zm
q where each output value is computed by a

polynomial of constant degree over Zq leads to arithmetization of such primitives,
like e.g. arithmetic two-party protocols [4].

Since PRGs play such a crucial role in cryptography, cryptoanalysis of PRGs
is of general importance. In particular, local PRGs F : {0, 1}n → {0, 1}m of
poly-stretch, i.e. m ≥ n1+e for some constant e > 0, have been the subject of
various attacks, and it could be shown that such PRGs can be distinguished by
subexponential-size 1 circuits, or even poly-size circuits if e > 0.5 [3, 5, 6, 12,
18, 40, 42, 46].

PRGs of constant degree, i.e. PRGs that can be computed by polynomials
of constant degree over some finite field, can be seen as a generalization of lo-
cal PRGs. However, constant-degree PRGs have received much less attention
in cryptoanalytic literature than local PRGs. While there is a huge collection
of algebraic attacks on refuting and inverting constant-degree PRGs like F4/F5
and the XL-algorithms [16, 17, 20, 24, 25, 37, 45, 46], we do not know of any
attacks whose time-complexity for poly-stretch constant-degree PRGs is guar-
anteed to be subexponential even in the worst case. We intend to close this gap
by introducing a new algebraic attack that is provably subexponential against
poly-stretch PRGs of constant degree.

1.1 Contribution

In this text, we will introduce new algebraic attacks on PRGs and prove upper
bounds for their complexities and lower bounds for their advantages in the worst
case. Let F : Zn

q → Zm
q with m ≥ n1+e. Then, we give the following attacks on

the pseudorandomness of F :

– If F is of degree d over Zq, we have an attack with subexponential space

and time complexities nO(n
1− e

d−1). The advantage of this attack is 1 −
O(n1−

e
d−1 /q), which is noticeable if q is large enough.

– If q is constant and F is of locality d, we give a second attack with subex-

ponential space and time complexities nO(log(n)
1

(q−1)d−1 ·n
1− e

(q−1)d−1). For this
attack, we will prove a noticeable advantage of 1−O

(
(log(n)/ne)

1
(q−1)d−1

)
.

1 The notion of subexponentiality is ambiguous in literature. Here, we denote by subex-
ponential a function that is contained in

⋃
c<1 2

O(nc).

2

– Additionally, if q should be small (e.g. q ∈ O(n1−
e

d−1)), we give a third attack
for PRGs F of constant degree d with complexities nO(n

1− e
d−1) for which we

can guarantee a subexponentially small advantage of q−O(n
1− e

d−1). We give
the details of this attack in Appendix A.1.

To the best of our knowledge, we give the first distinguishing algorithms on
constant-degree PRGs that are provably subexponential in the worst case for
sufficiently large moduli. 2

Furthermore, we can draw important insights for Groebner basis-based algo-
rithms. In Section 6, we will compare the algorithms here with typical Groebner
basis-based attacks and prove an upper bound for the degree of regularity, a
popular heuristic for estimating the complexity of most Groebner basis-based
algorithms.

1.2 Technical Overview

We want to motivate and explain here the ideas behind our new attacks. Let q
be a prime, Zq be the finite field of size q and F : Zn

q → Zm
q be a PRG of degree

d. I.e., the i-th output value of F is computed by a polynomial fi ∈ Zq[X] :=
Zq[X1, . . . , Xn] of total degree ≤ d. Now, assume we would know a non-zero
polynomial h ∈ Zq[Y] := Zq[Y1, . . . , Ym] that vanishes on the image of F i.e.

h(F (x)) = 0 (1)

for all x ∈ kn. Let D be the total degree of h. Since h is not the zero polynomial,
we have according to the famous Schwartz-Zippel lemma [41]

Pr
y←Zm

q

[h(y) = 0] ≤ D

q
. (2)

I.e., while h will always be zero on the image of F , the probability that h vanishes
on a random point can be controlled by D/q. If D is sublinear and q is sufficiently
large, q ≥ n for example, h gives us a strong indicator for distinguishing image
points of F from random points of Zm

q . In fact, by using h we can distinguish
the distribution (F (x))x←Zn

q
from (y)y←Zm

q
with advantage at least 1− D

q .
However, the following two questions remain:

1. For which degreesD can we guarantee the existence of a non-zero polynomial
h of degree D that vanishes on the image of F?

2. Even if we know that a such a polynomial h must exist, how can we algo-
rithmically compute it?

2 In a prior version of this text, I claimed that the attacks of this work against local
random functions would be faster than current baseline algorithms for local PRGs.
This claim was wrong. In fact, there is a simple attack based on shrinking sets of
hypergraphs [5, 46] that has a provable runtime of 2O(n1−e/(d−1)) and a non-negligible
advantage at distinguishing uniform randomness from output values of binary PRGs
of stretch n1+e and locality d. I explain this algorithm in Section 1.3.

3

Finding Algebraic Relations. The set of polynomials h that vanish on each F (x)
has a specific algebraic structure. To explore this structure, we consider the
following morphism of Zq-algebras:

ϕ : Zq[Y1, . . . , Ym] −→ Zq[X1, . . . , Xn] (3)
g(Y1, . . . , Ym) 7−→ g(f1(X), . . . , fm(X)). (4)

ϕ maps polynomials in Zq[Y] to polynomials in Zq[X] by substituting each vari-
able Yi by the polynomial fi(X). Denote by kerϕ the kernel of ϕ, i.e.

kerϕ = {g ∈ Zq[Y] | ϕ(g) = 0} . (5)

If g lies in kerϕ, we have ϕ(g) = g(f1(X), . . . , fm(X)) = 0. In particular, we
have for each x ∈ Zn

q then

g(f1(x), . . . , fm(x)) = ϕ(g)(x1, . . . , xm) = 0. (6)

This means, the kernel of ϕ contains polynomials h that are of interest for us.
Therefore, we can restate our questions as follows:

1. For what D can we guarantee the existence of a non-zero element of kerϕ?
2. How can we compute all elements of kerϕ up to degree D?

To answer the first question, we define the following Zq-vector spaces for ℓ ∈ N:

Zq[X]≤ℓ := {g ∈ Zq[X] | deg g ≤ ℓ} , (7)

Zq[Y]≤ℓ := {g ∈ Zq[Y] | deg g ≤ ℓ} . (8)

The vector spaces Zq[X]≤ℓ and Zq[Y]≤ℓ contain all elements of Zq[X] resp.
Zq[Y] of total degree ≤ ℓ. They are spanned by all monomials in the X- resp.
Y -variables of degree ≤ ℓ. Therefore, we have

dimZq
Zq[X]≤ℓ =

(
n+ ℓ

ℓ

)
and dimZq

Zq[Y]≤ℓ =

(
m+ ℓ

ℓ

)
. (9)

Now, we want to restrict ϕ on Zq[Y]≤ℓ. Remember that F is a PRG of degree
d, i.e., each fi is a polynomial of degree d. It is easy to see that ϕ stretches
the degree of each polynomial by at most a factor of d. I.e., we have for each
g ∈ Zq[Y]

deg ϕ(g) = deg g(f1(X), . . . , fm(X)) ≤ d · deg g. (10)

So, by restricting ϕ on Zq[Y]≤ℓ, we get a linear map

ϕℓ : Zq[Y]≤ℓ −→ Zq[X]≤d·ℓ (11)

for each ℓ. For linear maps, it is quite easy to guarantee the existence of non-
trivial kernel elements. In fact, by dimension formulas, we have

dimZq
kerϕℓ ≥dimZq

(Zq[Y]≤ℓ)− dimZq
(Zq[X]≤d·ℓ) (12)

=

(
m+ ℓ

ℓ

)
−
(
n+ d · ℓ
d · ℓ

)
. (13)

4

Therefore, it suffices to find the smallest D s.t.(
m+D

D

)
>

(
n+ d ·D
d ·D

)
. (14)

As we already stated, we are interested here in PRGs of poly-stretch, so let
e > 0 be constant s.t. m ≥ n1+e. We claim that inequality Eq. (14) holds for
D ∈ Ω(n1−

e
d−1). To see this, note that we have(
m+D

D

)
>

(
n+ d ·D
d ·D

)
(15)

⇐⇒ (m+D) · · · (m+ 1)

D · · · 1
>

(n+ dD) · · · (n+ 1)

(dD) · · · 1
(16)

⇐⇒ (m+D) · · · (m+ 1) · (dD) · · · (D + 1) > (n+ dD) · · · (n+ 1). (17)

To show Eq. (17), we lower bound the LHS terms (dD) · · · (D + 1) > D(d−1)D

and (m+D) · · · (m+1) > mD. Further, for the simplicity of this exposition, we
approximate (n+ dD) · · · (n+ 1) by ndD. We then get roughly

(m+D) · · · (m+ 1) · (dD) · · · (D + 1) (18)

> mD ·D(d−1)D (19)

≥ n(1+e)D · n(1−
e

d−1)·(d−1)D (20)

= n(1+e)D+(d−1−e)D (21)

= ndD ≈ (n+ dD) · · · (n+ 1). (22)

This shows that the degree D ∈ Ω(n1−
e

d−1) is a plausible bound for non-trivial
elements in kerϕ. In Section 3, we will show that we can choose anyD ≥ c·n1−

e
d−1

for a constant c ∈ (2, 4] that depends on d.
The above considerations also give us a straight-forward algorithm for com-

puting a non-zero element h ∈ kerϕ: For each ℓ = 1, . . . , D, we compute a matrix
representation of the linear map

ϕℓ : Zq[Y]≤ℓ −→ Zq[X]≤d·ℓ. (23)

By using Gaussian elimination, we can then check if this matrix has a non-trivial
kernel vector. Such a non-trivial kernel vector corresponds to a non-trivial kernel
element h ∈ kerϕ of degree ℓ. By our observations above, we know that for
ℓ = D = c · n1−

e
d−1 , this algorithm must eventually find a non-zero polynomial.

The space and time complexities of this algorithm is in each step dominated
by computing the Gaussian elimination of a matrix of shape Mℓ × Nℓ where
Mℓ =

(
m+ℓ
ℓ

)
and Nℓ =

(
n+dℓ
dℓ

)
. Therefore, we need to store MD ·ND ∈ nO(n

1− e
d−1)

field elements and perform D ·MD ·N2
D ∈ nO(n

1− e
d−1) arithmetic operations in

Zq.

Evaluating h on a point y ∈ Zm
q costs D ·MD ∈ nO(n

1− e
d−1) field operations.

The advantage of using h in distinguishing a random point from an image point

5

of F is at least 1 − D/q. Hence, for q ∈ ω(n1−
e

d−1) and m ≥ n1+e, we have
an attack algorithm with noticeable advantage, which is subexponential in the
worst case.

We give a detailed description of the algorithms sketched here and formal
proofs for their correctness in Section 3 and Section 4.

Handling Small Moduli. Note, that we cannot guarantee any advantage of the
above algorithm if q ≤ D = cn1−

e
d−1 . In fact, it may be that the above algorithm

will retrieve a polynomial h ∈ Zq[Y] that vanishes on almost all points of Zm
q .

In the general case of constant-degree PRGs F , one can improve the above
algorithm s.t. the found polynomial h is reduced modulo the field equations
Y q
1 −Y1, . . . , Y q

m−Ym. I.e., each monomial term of h contains each variable Yi at
most q−1 times. For such reduced polynomials h of degree D = O(n1−

e
d−1), one

can show that their probability to vanish on a random point y ← Zm
q is upper-

bounded by 1 − q−D. This gives a distinguishing attack for the PRG F with
subexponentially small advantage q−D = q−O(n

1− e
d−1). We detail this attack in

Appendix A.1.

Local PRGs of Constant Moduli. While the advantage of the above attack may be
much higher in practice (since the probability that h vanishes on a random point
may be higher than q−D), from a theoretical point of the view the postulated
subexponential advantage is not satisfying.

Fortunately, in the case where the modulus q is constant and F is of constant
locality, we can use a little trick to noticeably boost the advantage of our attack.
For simplicity, we will assume here that q is 2, however the following approach
works for each constant modulus:

Let F : Zn
2 → Zm

2 be of locality d. This means, the i-th bit of the output of
F is computed by a function fi : Zn

2 → Z2 that only depends on d of its inputs.
Choose a prime number p ∈ [n, 2n] and note that – due to the locality of F – for
each fi we can find a polynomial f ′i ∈ Zp[X] of degree d that coincides with fi on
{0, 1}n, i.e., we have f ′i(x) = fi(x) for each x ∈ {0, 1}n. So, instead of attacking
the pseudorandomness of F , we can focus on the pseudorandomness of the map
F ′ : Zn

p → Zm
p of degree d that consists of the polynomials f ′1, . . . , f ′m. However,

distinguishing a random point y ← Zm
p from F ′(x) = F (x), for x ← {0, 1}n,

is obviously simple, since the latter will always lie in {0, 1}m. To come up for
that, we set m′ := m

3 log p and draw a uniformly random matrix A ← Zm′×m
p .

According to the Leftover Hash Lemma, the distributions

(A,Ay)y←{0,1}m and (A, y′)y′←Zm′
p

(24)

are statistically very close. Therefore, if F : Zn
2 → Zm

2 is pseudorandom, then
the map G : Zn

p → Zm′

p of degree d that maps x to A · F ′(x) must be, too.
However, we can apply our first attack against G. Since m ≥ n1+e, we have
m′ ≥ n1+e/(3 log p). We will show that this results in an attack of time and

space complexity nO(log(n)
1

d−1 ·n1− e
d−1) and noticeable advantage

1−O(log(n)
1

d−1 · n1−
e

d−1)/p ≥ 1−O((log(n)/ne)
1

d−1). (25)

6

Going back to F , we get an algorithm of subexponential complexity that has
a noticeable advantage in distinguishing images of F from random bit strings
y ← {0, 1}m. We detail this attack in Appendix A.1.

1.3 Related Work

We try to give here a short survey of the current cryptoanalytic literature on
PRGs.

Linear Tests and Low-Degree Correlation. A linear test for a PRG F : Zn
q → Zm

q

is a degree-1 polynomial L ∈ Zq[Y] that has a noticeable advantage∣∣∣∣ Pr
x←Zn

q

[L(F (x)) = 0]− Pr
y←Zm

q

[L(y) = 0]

∣∣∣∣ (26)

in distinguishing random points from image points of F . While linear tests form
a very simple class of attacks against PRGs, it can be shown that they are a good
sanity check in the case of local PRGs: a local random PRG that is secure against
linear tests also fools other classes of distinguishers like e.g. AC0, l-wise tests
and degree-2 threshold functions [2, Proposition 4.10]. Mossel et al. [38] shows
that there exist PRGs of constant locality s.t. each linear test only has negligible
advantage against those PRGs, even if the PRG is of polynomial stretch m =
n1+e. Their construction is based on the famous tri-sum-and predicate

X1X2 +X3 +X4 +X5 (27)

that gets applied on random subsets of the input to compute the output bits of
the PRG.

If we allow the degree of L to be greater than 1, we get a polynomial test
of higher degree. Viola [44] showed that for each constant d a PRG can be con-
structed that cannot be distinguished by degree-d tests with noticeable advan-
tage (his constructions allows non-constant values for d, however such d reduce
the stretch of the PRG substantially).

Groebner Basis-Based Attacks. A huge class of attacks against PRGs of constant
degree constitute of algebraic attacks [16, 17, 20, 24, 25, 37, 45]. These attacks
aim to invert the potential image of a PRG by computing a Groebner basis or
something similar in the case of XL-algorithms.

These algorithms work well in practice, and it has been suspected that they
give subexponential attack algorithms against PRGs of polynomial stretch [10].
However, computing a Groebner basis can be a task of double exponential com-
plexity in the worst case, and therefore those algorithms do not give us provable
subexponential attacks. In Section 6, we will give a deeper comparison of our
algorithms with Groebner basis-based algorithms.

7

Zichron’s Attack. The kernel elements h ∈ kerΦ, which are of interest for us
and which we call algebraic relations, are called annihilating polynomials in the
master thesis of Lior Zichron [46]. Zichron gives in his thesis an algorithm for
finding such annihilators resp. algebraic relations [46, Section 5], which is very
close to the algorithm that we present in Definition 7, and deduces a distinguish-
ing attack on polynomial PRGs. However, while the algorithm in this text treats
polynomials as coefficient vectors, the algorithm in Zichron’s thesis evaluates the
polynomials at random points to find relations. Subsequently, the algorithm in
Zichron’s thesis will only output a correct algebraic relation with some proba-
bility while the algorithms in this text will always output a correct relation.

While Zichron does not upper-bound the runtime of the algorithm in his
thesis in the worst case, he gives an example of a local degree-d PRG over Zq of
stretch n1+e, and proves that the minimum degree of an annihilating polynomial
resp. algebraic relation of this PRG must be Ω(n1−

e
d−2.1).

Random Local Functions. A random local function is a PRG F : {0, 1}n →
{0, 1}m where each output bit is computed by a fixed predicate P : {0, 1}d →
{0, 1} that is applied on a random subset of bits of the input string. The notion of
random local functions has been put forth by Goldreich [27] and was the subject
of a great body of cryptoanalytic literature. For exhaustive surveys and studies
on the security of random local functions, we refer the reader to the works of
Applebaum [2] and Couteau et al. [18]. We will only review here some attacks
on random local functions, which we think are the most relevant for the context
of this work:

1. It is known that F can be inverted in polynomial time and with high prob-
ability if m ∈ Ω(log(n) · n

⌊2d/3⌋
2) [2]. First note, that F can be efficiently

inverted by linearization of the corresponding polynomial equation system
if it is of stretch m ∈ ω(ndegP), where degP denotes the degree of P as a
polynomial over F2.
This means, the degree of P must be greater than d/3 if we want to avoid
the above attack for m ≥ n d

3 . However, if degP ≥ d/3, then P is correlated
with the sum of c ≤ d− d

3 of its variables [42]. I.e., P can be written as

P (Z1, . . . , Zd) = Z1 + . . .+ Zc +N(Z1, . . . , Zd) (28)

where N is a biased predicate i.e. Prz←{0,1}d [N(z) = 0] ̸= 1
2 . When solving

the system F (x) = y, one can see the N predicates as dependent noise
added to linear equations. This constrained noisy linear equation system
can be solved efficiently if m ∈ Ω(nc/2) [15, 26].

2. There is a subexponential inversion attack [2, 12] on F (x) that utilizes ap-
proximations of the correct inverse and has a runtime complexity of 2O(n1− e

2d)

(if m ≥ n1+e). The idea is to assign random bits to the first (1−2n−
e
2d) bits

of an approximate solution. By iterating over all possible x′ ∈ {0, 1}n with
the given prefix, one will find an approximation that coincides with x on at
least (12 +n−

e
2d)n of its bits with probability at least 1

2 . This approximation

8

can now be used to find efficiently and with high probability the correct
solution x.
Note, that the time complexity 2O(n1− e

2d) of this algorithm is worse than the

time complexity nO(log(n)
1

d−1 ·n1− e
d−1) of the algorithm we sketched against

d-local PRGs of stretch n1+e.
3. Couteau et al. [18] constructed a guess-and-determine-style attack on PRGs
F : {0, 1}n → {0, 1}n1+e

. Their attack guesses – in an intelligent way – a
portion of the bits of x and tries to extract a linear equation system from
the system F (x) = y for the unguessed input bits. If the predicate P for F
is of the form

P (X1, . . . , Xr) = X1X2 +X3 + . . .+Xr, (29)

they can prove that their attack will succeed in distinguishing random points
from images of F and has a time complexity of 2O(n1−e). Note, that r does
not need to be constant.
They even generalize their attack to work with general predicates

P (X1, . . . , Xr) =M(X1, . . . , Xd) +Xd+1 + . . .+Xr, (30)

for any predicate M : {0, 1}d → {0, 1} with d constant, and get an attack
algorithm of time complexity 2O(n

1− e
d−1). However, to prove a high success

probability of the generalization of their attack they need to assume a special
conjecture that depends on M .
The runtime of the attack of Couteau et al. [18] is independent of the locality
of the PRG and therefore gives a very fast attack against PRGs. Our third
attack in Appendix A.2 is in general faster than the guess-and-determine at-
tack of Couteau et al. [18], however it can only guarantee a subexponentially
small advantage in the worst case. While the advantage of the guess-and-
determine attack in the worst case is not clear yet, we think that the attack
of Couteau et al. [18] is more than noteworthy when estimating the securities
of local random functions.

4. The current baseline algorithm for distinguishing uniform randomness from
the output of binary local PRGs is based on shrinking sets [5, 46]. Given a
PRG F : {0, 1}n → {0, 1}m of degree d, a shrinking set is a subset T ⊂ [n]
of size t s.t. there are at least t+ 1 output values of F that depend only on
input bits whose indices lie in T .
If we have a shrinking set T of size t, we can restrict F to the t input bits
specified by T and t+1 output bits that only depend on the input bits whose
indices lie in T . I.e., we can “cut down” F : {0, 1}n → {0, 1}m to a smaller
PRG F|T : {0, 1}t → {0, 1}t+1. Now, the outputs of F|T can be distinguished
from random bitstrings in time O(2t) with advantage at least 1

2 (we simply
compute the image of F|T and check if the (pseudo-)random string y lies in
it).
Zichron proved in his master thesis [46] that each d-local PRG with stretch
n1+e has a shrinking set of size Ω(n1−

e
d−1). In fact, it is easy to see that

9

a uniformly random subset T ⊂ [n] of size Ω(n1−
e

d−1) is a shrinking set
with non-negligible probability. This yields an attack of time complexity
O(2n

1−e/(d−1)

). For local PRGs F : Zn
q → Zn1+e

q over a higher modulus q,
this yields an attack of time complexity O(2log(q)·n

1−e/(d−1)

).
If we compare the shrinking-set attack with attacks in this work, then we
see that the attack in Theorem 3 has for binary PRGs the slower runtime
complexity 2O(log(n)d/(d−1)·n1−e/(d−1)). For local PRGs F : Zn

q → Zn1+e

q with
q ≥ n we get with the attack in Theorem 2 a faster attack with runtime
complexity O(2log(n)·n

1−e/(ddeg−1)

) where ddeg denotes the algebraic degree of
F .
Since the attack in Appendix A.2 only depends on the algebraic degree ddeg,
which usually might be lower than F ’s locality d, this attack yields a faster
runtime (2O(log(n)·n1−e/(ddeg−1))) for binary PRGs than the shrinking-set at-
tack. However, we can only prove a subexponentially small advantage for
this attack in the worst case.

5. While there are a lot of efficient attacks against local PRGs of sufficient
stretch, it is known that algebraic attacks against d-local PRGs of stretch
n1+e will have a time complexity of at least 2O(n

1−32 e
d−2) in the worst case [2,

Theorem 5.5]. This means, up to some constants in the exponent, the time
complexities we achieve with our attacks are optimal for algebraic attacks.

Attacks Based on Sum-of-Squares. Sum-of-Squares attacks are a special class of
SDP-based attacks. These attacks were discovered recently and used to refute
several candidate light-weight PRGs of polynomial stretch for indistinguishabil-
ity obfuscation schemes [8, 9]. While these attacks are efficient, they need to
make special assumptions about the PRGs they attack, which limits the gener-
ality of those attacks. We will list below some PRGs for which a sum-of-squares
attack can successfully distinguish PRG images from random points:

1. Let F : {0, 1}nb → {0, 1}m be two block-local, i.e., the input is partitioned
into n blocks of size b and each output depends on two blocks. If m ∈
Ω(22b · log2(n) · n) is big enough, then there is an efficient attack on F [8].

2. Let c > 0 be a constant and let Y be a distribution over R s.t. we have
Pry←Y [y /∈ [a, a + c]] ≥ 1

10 for each a ∈ R. Let F : {0, 1}n → Rm be a
PRG of degree d over the reals s.t. the polynomials in F have at most s
monomials. If m ∈ Ω(log2(n) · s · n⌈d/2⌉) is big enough and if we assume a
special assumption for the polynomials f1, . . . , fm, there is an efficient attack
that can successfully distinguish images of F from points y ← Y m [8].

3. Let t ∈ poly(n) and let Q be a distribution of quadratic polynomials in R[X]
with some special properties. If m ∈ log(n)Ω(1) · n is big enough, there is an
efficient algorithm that can extract with high probability the input x from
(F, F (x)) where we sample x← [−t, t]n and F ← Qm [9].

10

1.4 Organization of this Text

In Section 2, we will introduce some algebraic and cryptographic preliminaries.
In Section 3, we will give an algorithm that finds non-trivial polynomials that
vanish on the images of PRGs F : Zn

q → Zm
q of constant degree d and prove

that one can find such polynomials of sublinear degree if F is of polynomial
stretch m = n1+e. In Section 4, we will give a distinguishing attack on F of time
and space complexity nO(n

1− e
d−1) and prove that it has an advantage of at least

1−O(n1−
e

d−1 /q).
In Section 5, we will use the attack of Section 4, to derive an attack on PRGs

F : Zn
q → Zm

q of constant locality d over a constant modulus q. This attack will

have complexities in nO(log(n)
1

(q−1)d−1 ·n
1− e

(q−1)d−1).
Finally, in Section 6, we will give an exhaustive comparison between our

algorithms and Groebner basis-based algorithms. In this section, we will prove
a lower bound for the degree of regularity.

In Appendix A.1, we will investigate the case of small constant moduli q. We
will show in this section, that one can find a polynomial of sublinear degree that
vanishes on the image of a degree-d PRG F : Zn

q → Zm
q of stretch m = n1+e, but

does not vanish everywhere on Zm
q . This leads to a second attack on degree-d

PRGs of complexity nO(n
1− e

d−1) and subexponential advantage q−O(n
1− e

d−1).
In Appendix A.3, we will give some algebraic background.

Acknowledgements. I want to thank my doctoral supervisor, Dennis Hofheinz,
for proofreading this text. Further, I would like to thank the reviewers for their
questions and suggestions.

2 Preliminaries

2.1 Notation

Denote by N = {1, 2, 3, . . .} the set of natural numbers and by N0 = N∪ {0} the
set of natural numbers plus zero.

For the rest of this text, by k we will always denote a field and by k[X1, . . . , Xn]
resp. k[Y1, . . . , Ym] the corresponding polynomial ring, for n,m ∈ N. Since the
numbers of X and Y variables will always be n resp. m, by abuse of notation,
we will write k[X] resp. k[Y] instead of k[X1, . . . , Xn] resp. k[Y1, . . . , Ym].

Let f ∈ k[X]. When we speak of f ’s degree we always mean its total de-
gree that is the minimum number d ∈ N0 s.t. f can be written as a k-linear
combination of monomials that are the product of ≤ d variables.

If S is a finite set, we denote by x← S the fact that the random variable x
is drawn uniformly and independently at random from S.

For a number q ∈ N, we define the finite ring Zq := Z/qZ.
We will denote by n the security parameter in this text. The parameter

m = m(n) will in most cases be dependent on n. For this to be consistent, we
assume in those cases that m is time-constructible.

11

We call a function ϵ : N→ [0, 1] negligible, if we have limn→∞ ϵ(n) · nd = for
each d ∈ N. By poly(n) :=

{
f : N→ N | ∃c, d ∈ N : f(n) ≤ nd + c

}
we denote

the set of polynomially bounded functions of the natural numbers.
Given two discrete distributions X and Y, we define their statistical distance

as ∆(X ,Y) := 1
2

∑
x |X (x)− Y(x)|.

Given two k-vector spaces V and W , we denote by V ⊕W their direct sum,
i.e. it must hold V ∩W = 0.

2.2 Mathematical Preliminaries

We will introduce now some basic facts and notions for the polynomial ring k[X]:

Remark 1. Let n ∈ N. Let k be any field and consider the polynomial ring
k[X] = k[X1, . . . , Xn]. The ring k[X] is graded and can be written as

k[X] =

∞⊕
ℓ=0

k[X]ℓ (31)

where k[X]ℓ is the finite-dimensional k-vector space generated by all monomials
of total degree = ℓ, i.e.

k[X]ℓ = spank {X
a1
1 · · ·Xan

n | a1, . . . , an ∈ N0, a1 + . . .+ an = ℓ} . (32)

By k[X]≤ℓ we denote the space generated by all monomials of degree ≤ ℓ, i.e.

k[X]≤ℓ :=

ℓ⊕
i=0

k[X]i. (33)

The dimensions of k[X]ℓ and k[X]≤ℓ are given by

dimk k[X]ℓ =

(
n+ ℓ− 1

ℓ

)
and dimk k[X]≤ℓ =

(
n+ ℓ

ℓ

)
. (34)

Sometimes, we will use the notion Xα1 , Xα2 , . . . to denote monomials

X
a1,1

1 · · ·Xa1,n
n , X

a2,1

1 · · ·Xa2,n
n , (35)

In those cases, the α1, α2, . . . ∈ Nn
0 are multi-indices given by

αi = (ai,1, . . . , ai,n). (36)

Definition 1 (Dual Morphisms). Let k be any field and k[X] = k[X1, . . . , Xn].
Let f1, . . . , fm ∈ k[X] and k[Y] = k[Y1, . . . , Ym]. The function

F : kn −→ km (37)
x −→ (f1(x), . . . , fm(x)) (38)

12

gives us a geometrical map that is continuous in the Zariski topology. It has a
dual morphism of k-algebras

ϕ : k[Y] −→ k[X] (39)
Yi −→ fi(X) (40)

that maps each polynomial h ∈ k[Y] to a polynomial h(f1(X), . . . , fm(X)) in
k[X] by substituting each appearance of Yi in h by fi for each i ∈ [m].

Definition 2 (Algebraic Independence). We call f1, . . . , fm algebraically
independent if the morphism ϕ from Definition 1 is injective.

If ϕ is not injective, we call an element h ∈ kerϕ of its kernel an algebraic
relation of the elements f1, . . . , fm.

When working with polynomials over k = Zq for q sufficiently large, the
Schwartz-Zippel Lemma is a helpful tool to lower bound the probability that a
fixed polynomial vanishes on a random point of Zm

q .

Lemma 1 (Schwartz-Zippel [41]). Let q ∈ N be a prime and let m, d ∈ N.
Let h ∈ k[Y] be a polynomial of degree d. Then, we can bound the probability of
h vanishing on a random point of Zm

q by

Pr
y←Zm

q

[h(y) = 0] ≤ d/q. (41)

2.3 Cryptographic Preliminaries

In this subsection, we will introduce the notion of pseudorandom number gen-
erators, and define a simple security game for them.

Definition 3 (Pseudorandom Number Generators). Let m : N → N be
a time-constructible function and let k be any field. A pseudorandom num-
ber generator (PRG) is a family of functions F = (Fn)n∈N s.t. each Fn is a
deterministic function

Fn : kn −→ km. (42)

We call m the stretch of the PRG. If there is a constant e > 0 s.t. m ≥ n1+e,
we say that (Fn)n∈N is a poly-stretch PRG.

Remark 2. If F = (Fn)n∈N is a PRG, we will, by abuse of notation, just write

F : kn → km. (43)

For a given n, we will further write F when we actually mean Fn.
The adversaries in this text are always given a description of Fn (which we

will simply denote by F) that allows the adversary to efficiently evaluate Fn

on points of kn. We assume that this description of Fn always contains binary
representations of the numbers n,m and a description of the field k that allows
the adversary to perform arithmetic operations over k. Additionally, if F is of
locality or degree d ∈ N (in the sense of Definition 4), we expect the description
of F to contain a binary representation of d.

13

Definition 4 (Locality and Degree of PRGs). Let F = (Fn)n be a PRG of
stretch m over k. Let d ∈ N. For n ∈ N and i ∈ [m], we denote by fn,i : kn → k
the function of the i-th output of Fn. I.e., fn,1, . . . fn,m are uniquely determined
by

F (x) = (fn,1(x), . . . , fn,m(x)) (44)

for all x ∈ kn.

1. We say that F is d-local if each of its output values depends on only d input
values. I.e. for each n ∈ N and i ∈ [m] there is a function g : kd → k and
indices l1, . . . , ld ∈ [n] s.t. we have for each x ∈ kn

fn,i(x1, . . . , xn) = g(xl1 , . . . , xld).

2. We say that F is of degree d if each fn,i can be computed by a polynomial
of degree d. I.e., for each n ∈ N and i ∈ [m] the function fn,i : kn → k
coincides with a polynomial in k[X] of degree ≤ d. In this case, by abuse of
notation, we will directly interpret fn,i as an element of k[X]≤d.

For a given n, we will simply write f1, . . . , fm instead of fn,1, . . . , fn,m to
denote the partial functions of F . We will usually say in those cases that F is
made up of or consists of f1, . . . , fm.

Definition 5 (Security Game for PRGs). Let k be finite now and let F :
kn → km be a PRG. We describe here a non-interactive security game between
a probabilistic challenger C and a (potentially probabilistic) adversary A. The
game is parametrized by n and proceeds in the following steps:

1. C draws a bit b← {0, 1}. If b = 0, it samples a preimage x← kn uniformly
at random, computes F (x) and sends (F, F (x)) to A. If b = 1, it samples
y ← km and sends (F, y) to A.

2. A receives (F, y∗) for some y∗ ∈ km and must decide which bit b has been
drawn by C. It makes some computations on its own without interacting with
C and finally sends a bit b′ to C.

A wins an instance of this game iff b = b′ holds at the end. We define A’s
advantage against F by

advF (A) := 2Pr[A wins]− 1 (45)
= Pr

x←kn
[A(F, F (x)) = 0] + Pr

y←km
[A(F, y) = 1]− 1 (46)

where we take the probability over the randomness of A and C.
We define A’s space complexity to be the number of bits and elements of k it

stores simultaneously in step 2, and we define its time complexity by the number
of bit-operations and arithmetical operations over k it performs in step 2.

Definition 6. We say that an algorithm is subexponential if there is a con-
stant e ∈ [0, 1) s.t. its time and space complexities lie in 2O(ne).

14

Lemma 2 (Leftover Hash Lemma (Matrix Version) [22]). Let p ∈ N be
a prime and let p,m,m′, q ∈ N be natural numbers, q ≥ 2.

If we draw A1, A2 ← Zm′×m
p , y1 ← {0, . . . , q − 1}m, y2 ← Zm′

p , we have

∆((A1, A1y1), (A2, y2)) ≤
1

2

√
2m′·log p−m. (47)

3 Finding Algebraic Relations

In this section, we introduce an algorithm B1 that – given a set of polynomials –
finds an algebraic relation among these polynomials. Further, we will prove upper
bounds for the degree of this relation and for the complexity of the algorithm.

Now, let n,m, d ∈ N and let k be any field in this section. Let F : kn → km be
a polynomial mapping of degree ≤ d that is given by polynomials f1, . . . , fm ∈
k[X] of degree ≤ d.

Denote by ϕ : k[Y] → k[X] the dual morphism to F . Note, that ϕ expands
the degrees of its inputs by a factor of at most d, i.e., we have for each ℓ ∈ N0

ϕ(k[Y]≤ℓ) ⊆ k[X]≤d·ℓ. (48)

Let kerϕ = {h ∈ k[Y] | ϕ(h) = 0} be the kernel of ϕ. Our aim is to compute a
non-trivial element of kerϕ.

We will propose a straight-forward approach for this task: For ℓ = 1, 2, . . .,
the algorithm B1 will compute a monomial basis for k[Y]≤ℓ and check – by linear
algebra – if the vector space k[Y]ℓ ∩ kerϕ is non-trivial. If k[Y]ℓ ∩ kerϕ contains
a non-trivial element eventually, B1 will output it and terminate. Formally, B1
is given by:

Definition 7. The algorithm B1 gets as input numbers n,m, d ∈ N, a descrip-
tion of k and a description of a polynomial map F : kn → km. It has to output
a non-zero element of kerϕ.
B1 sets an iteration variable ℓ := 1 and proceeds in the following steps:

1. B1 computes N :=
(
n+dℓ
dℓ

)
and M :=

(
m+ℓ
ℓ

)
2. B1 computes a finite list

(Y a1
1 · · ·Y am

m | a1, . . . , am ∈ N0, a1 + . . .+ am ≤ ℓ) (49)
= (Y α1 , . . . , Y αM) (50)

of all monomials in k[Y] of degree ≤ ℓ.
3. B1 applies ϕ to each Y αi and computes a second list (ϕ(Y α1), . . . , ϕ(Y αM))

of polynomials in k[X] of degree ≤ dℓ.
4. Let Xβ1 , . . . , XβN be the set of all monomials in k[X] of degree ≤ dℓ. Then,

Xβ1 , . . . , XβN is a basis of k[X]≤dℓ and for each ϕ(Y αi) there is a unique
column vector wi = (wi,1, . . . , wi,N) ∈ kN s.t.

ϕ(Y αi) =

N∑
j=1

wi,j ·Xβj . (51)

15

B1 computes for each Yαi
the corresponding vector wi and writes down the

matrix

Wℓ :=
(
w1| . . . |wM

)
∈ kN×M . (52)

5. B1 uses Gaussian elimination to compute a basis for the vector space

Kℓ :=
{
r ∈ kM | Wℓ · r = 0

}
. (53)

6. If Kℓ is the trivial null-space, B1 increases ℓ by one and goes back to step 2.
7. Otherwise, B1 chooses an arbitrary non-zero vector r ∈ Kℓ, computes the

polynomial

h := r1 · Y α1 + . . .+ rM · Y αM ∈ k[Y] (54)

of total degree ≤ ℓ and outputs it.

We will show the following properties for B1:

Lemma 3. Let n,m, d ∈ N s.t. m > n. Let F : kn → km be a polynomial map
of degree ≤ d. Let y ∈ km. We have the following:

1. On input n,m, d and F , B1 will always terminate after a finite number of
steps and output a polynomial h.

2. The polynomial h outputted by B1 will always lie in kerϕ and be non-zero.

Proof. 1. Note that m > n. The first claim of the lemma is equivalent to stating
that m elements of k[X] must be algebraically dependent and ϕ : k[Y] →
k[X] cannot be injective. This is a well-known fact in algebra and is easy to
prove, however writing down a formally correct proof will make the notions
of transcendency bases and function fields necessary. Therefore, we moved
the proof of this statement to Appendix A.3.

2. Assume that B1 stops after D iterations and outputs h. Then, h is a poly-
nomial in k[Y] of degree D and can be written as

h := r1 · Y α1 + . . .+ rM · Y αM ∈ k[Y] (55)

where M =
(
m+D
D

)
and r is a non-zero kernel element of RD. I.e., we have

M∑
i=1

ri · wi = 0. (56)

Since the entries of wi are exactly the coefficients of ϕ(Y αi), we have

ϕ(h) = ϕ

(
M∑
i=1

ri · Y αi

)
=

M∑
i=1

ri · ϕ (Y αi) = 0. (57)

Ergo, h ∈ kerϕ.

16

Lemma 4. Assume that B1 terminates after D iterations. Then, its space com-
plexity can be bounded by O(NM) and its time complexity can be bounded by
O(DN2M) for N =

(
n+d·D
d·D

)
and M =

(
m+D
D

)
.

Proof. In each iteration step, B1 computes a matrix of shape at most N ×
M over k. Therefore, the number of bits and elements of k it needs to store
simultaneously can be bounded by O(NM).

We can bound the time complexity of each iteration step from above by the
time complexity of the D-th iteration step. In this step, B1 performs Gaussian
elimination on an N ×M -matrix which needs O(N2M) arithmetical operations
over k. Therefore, the number of bit-operations and arithmetical operations B1
needs to do in each step can be bounded by O(N2M), and B1’s total time
complexity can be bounded by O(DN2M).

Note, that B1 starts at ℓ = 1 and increases ℓ by one subsequently. Since B1
terminates only if it finds a non-trivial element in k[Y]ℓ ∩ kerϕ, this means that
the number D of iterations B1 has to perform is exactly the lowest total degree
of non-zero elements of kerϕ.

Lemma 5. B1 terminates after D iterations iff D = min {deg h | h ∈ kerϕ, h ̸= 0}.

3.1 Bounding D

We have seen in the last subsection that the time and space complexity of B1
is substantially influenced by D. Since D is the minimal degree of a non-trivial
element of kerϕ, our aim in this subsection is to bound the degree of algebraic
relations for all sets of polynomials f1, . . . , fm of degree ≤ d.

Let ϕℓ be the restriction of ϕ on k[Y]≤ℓ. Then, each ϕℓ is a linear map of
type k[Y]≤ℓ → k[X]≤d·ℓ. We can guarantee that ϕℓ has a non-trivial kernel, if
the dimension of k[Y]≤ℓ exceeds the dimension of k[X]≤d·ℓ. Now, the dimensions
of k[Y]≤ℓ and k[X]≤d·ℓ are given by

dimk(k[Y]≤ℓ) =

(
m+ ℓ

ℓ

)
and dimk(k[X]≤d·ℓ) =

(
n+ d · ℓ
d · ℓ

)
. (58)

Therefore, we get for algorithm B1:

Lemma 6. Let D be the number of iterations of B1. Then, we have

D ≤ min

{
ℓ ∈ N |

(
m+ ℓ

ℓ

)
>

(
n+ d · ℓ
d · ℓ

)}
. (59)

Inequality Eq. (59) gives us a tool to compute a worst-case bound for B1’s
complexity for each possible case of polynomials f1, . . . , fm. In the next lemma,
we will show that we can bound D by O

((
nd/m

) 1
d−1

)
.

Lemma 7 (Main Inequality). Let d ∈ N, d ≥ 2. Let m : N→ N be a function
with m(n) ≥ 22d−1 · dd−1 · n.

17

Then, we have for all integers n ≥ 2d(
m(n) + L(n)

L(n)

)
>

(
n+ dL(n)

dL(n)

)
(60)

where L(n) =
⌈(

(2n)d

m

) 1
d−1

⌉
.

Proof. Let n ∈ N. In the proof, by abuse of notation, we write m = m(n) and
L = L(n).

Note, that we have 2n ≥ n+ dL, since

n ≥ dL ⇐⇒ n ≥ d ·

⌈(
(2n)d

m

) 1
d−1

⌉
(61)

⇐ n ≥ d ·

((
(2n)d

m

) 1
d−1

+ 1

)
(62)

⇐⇒ n− d ≥ d ·
(
(2n)d

m

) 1
d−1

(63)

⇐⇒ (n− d)d−1 ≥ dd−1 · (2n)
d

m
(64)

⇐⇒ m ≥ dd−1 · 2d ·
(

n

n− d

)d−1

· n (65)

n≥2d⇐ m ≥ dd−1 · 2d · 2d−1 · n (66)

where the last inequality is required in the premise of the lemma.
Now, for the claimed inequality of the lemma, we have the following chain of

equivalent inequalities(
m+ L

L

)
>

(
n+ dL

dL

)
(67)

⇐⇒ (m+ L) · · · (m+ 1)

L!
>

(n+ dL) · · · (n+ 1)

(dL)!
(68)

⇐⇒ (m+ L) · · · (m+ 1) · (dL) · · · (L+ 1) > (n+ dL) · · · (n+ 1) (69)

Note, that we have for all n the inequalities

(m+ L) · · · (m+ 1) > mL, (70)

(dL) · · · (L+ 1) > L(d−1)L. (71)

For the right-hand side, we have

(n+ dL) · · · (n+ 1) ≤ (n+ dL)dL ≤ (2n)dL = 2dL · ndL. (72)

18

By using the inequalities Eqs. (70) to (72), we see that Eq. (69) is implied by
the inequality

mL · L(d−1)L ≥ 2dL · ndL. (73)

By reducing Eq. (73) to the L-th root, we get the equivalent inequality

m · L(d−1) ≥ 2d · nd. (74)

Now, it is easy to show that this inequality holds:

m · L(d−1) ≥ m ·
(
(2n)d

m

)
= 2d · nd. (75)

This completes the proof.

In particular, for PRGs of poly-stretch m ≥ n1+e, for some constant e > 0,
we get by Lemma 7

D =

⌈(
(2n)d

m

) 1
d−1

⌉
≤

⌈(
(2n)d

n1+e

) 1
d−1

⌉
=
⌈
2

d
d−1 · n

d−1−e
d−1

⌉
∈ O(n1−

e
d−1). (76)

While n1−
e

d−1 is non-constant for e < d − 1, it implies that we can bound the
complexity of B1 subexponentially by nO(n

1− e
d−1).

The Lemmas 4 to 7 imply the following theorem:

Theorem 1. Let d ∈ N be constant and m ∈ ω(n). Let f1, . . . , fm ∈ k[X] be
polynomials of degree ≤ d.

Then, the algorithm B1 in Definition 7 outputs a non-trivial element of kerϕ

of degree O
((
nd/m

) 1
d−1

)
. Its space and time complexities lie in nO((nd/m)

1
d−1

).
If m ≥ n1+e for a constant e > 0, the degree of the output of B1 lies in

O
(
n1−

e
d−1
)

and B1 is of subexponential complexity nO(n
1− e

d−1).

4 Attacks on Constant-Degree PRGs over Large Moduli

In this section, we will focus on the case k = Zq for a prime q that is sufficiently
high (e.g. q ∈ Ω(n)). We claim that in this case the algorithm B1 from Defini-
tion 7 gives us a subexponential attack on each PRG of constant degree over Zq

and poly-stretch. In this section, we will prove:

Theorem 2. Let d ∈ N be constant and m ∈ ω(n). Let F : Zn
q → Zm

q be a PRG
of degree d over Zq.

Then, there is an attack algorithm A1 whose time and space complexities are

bounded from above by nO((nd/m)
1

d−1
). Further, there exists a constant c > 0 s.t.

A1’s advantage in the security game Definition 5 is lower bounded by

advF (A1) ≥ 1− c ·
(
nd/m

) 1
d−1 · 1

q
. (77)

19

If m ≥ n1+e for some constant e > 0, then A1’s complexities are in nO(n
1− e

d−1)

and its advantage is at least 1− c · n1−
e

d−1 /q.

The attack A1 on F is defined as follows:

Definition 8. A1 receives as input a description of F that includes the numbers
n,m, q, d ∈ N and an element y∗ ∈ Zm

q . The goal of A1 is to output 0, if y∗ lies
in the image of F , and 1, otherwise.
A1 proceeds in two simple steps:

1. A1 executes the algorithm B1 from Definition 7 on the input n,m, d, q, F
and receives a non-zero polynomial h ∈ Zq[Y] as output.

2. A1 outputs 0 if h(y∗) = 0. Otherwise, A1 outputs 1.

The bound on the time and space complexities of A1 follows now from Theo-
rem 1. The advantage of A1 can be bounded as follows:

If b = 0 in the security game of Definition 5, then the challenger C samples
x← Zn

q and gives the pseudorandom image y∗ = F (x) to A1. The polynomial h
outputted by B1(F) lies in the kernel of ϕ, i.e., we have the equality h(F (X)) = 0
of polynomials in Zq[X]. In particular, we have h(F (x)) = 0 for each x ∈ Zn

q .
Therefore, A1 always outputs 0 if b = 0.

If b = 1 in the security game in Definition 5, then the challenger C samples
a uniformly random y ← Zm

q and gives y∗ = y to A1. Since h is non-zero and of
degree O((nd/m)

1
d−1), the probability that h vanishes on y can be bounded by

Pr
y←Zn

q

[h(y) = 0] ≤ O((nd/m)
1

d−1)/q (78)

according to Lemma 1. Therefore, A1 will output 1 in this case with probability
at least 1−O((nd/m)

1
d−1)/q.

For the overall advantage of A1, we get

advF (A1) = Pr
x←Zn

q

[A1(F, Fn(x)) = 0] + Pr
y←Zm

q

[A1(F, y) = 0]− 1 (79)

≥1 + 1−O((nd/m)
1

d−1)/q − 1 = 1−O((nd/m)
1

d−1)/q. (80)

Remark 3. Algorithm A1 proceeds in two steps: in its first step, it uses B1 to
compute an algebraic relation h of F , and in its second step, it uses h to decide
if the given image y∗ ∈ Zm

q is truly random.
However, since the PRG F is fixed and publicly known, the attack A1 can

be interpreted as an attack with preprocessing: In a first phase, the so-called
preprocessing or offline phase, A1 uses B1 to compute an algebraic relation h of
F of degree D (without seeing the value y∗ ∈ Zm

q).
In a second phase, the so-called online phase, A1 receives y∗ ∈ Zm

q and only
needs to evaluate h on y∗.

If m ≥ n1+e, then the degree of h is bounded by D ≤ cn1−
e

d−1 for some
constant c. The evaluation of h requires (D + 1) ·

(
m+D
D

)
arithmetic operations

20

over Zq which will be much less than the time B1 needs (since B1 needs to reduce
a matrix of shape

(
m+D
D

)
×
(
n+d·D
d·D

)
).

Therefore, from a practical point of view, it makes more sense to interpret
A1 as an attack with preprocessing, where we invest a big one-time cost to
find a relation h of F in the preprocessing phase, and then a smaller, but still
subexponential, cost of (D + 1) ·

(
m+D
D

)
to decide challenges of F .

5 Attacks on Constant-Locality PRGs over Constant
Moduli

In this section, we will focus on the case where the modulus q is constant and
assume additionally that F : Zn

q → Zm
q is a PRG of constant locality d (the

case where F may be of arbitrary locality over small modulus is handled in
Appendix A.1).

Theorem 3. Let d, q ∈ N be constants where q is a prime. Let F : Zn
q → Zm

q be
a PRG of locality d with stretch m ∈ ω(n).

There is an attack A2 on F and a constant c > 0 s.t. A2’s space and time

complexities are bounded by nO((nd(q−1) log(n)/m)
1

d(q−1)−1) and whose advantage in
the security game of Definition 5 is at least

advF (A2) ≥ 1− c · (n log(n)/m)
1

d(q−1)−1 . (81)

If q = 2 and m ≥ n1+e for some constant e > 0, then the complexities of A2
lie in nO(n

1− e
d−1 ·log(n)

1
d−1) and its advantage is at least 1− c · (log(n)/ne)

1
d−1 .

The idea of A2 is to convert F to a PRG G : Zn
p → Zm′

p of degree d(q − 1)
over Zp with stretch m′ = ⌊m/(3 log(p))⌋ for a prime p ≥ n.

Let f1, . . . , fm ∈ Zq[X] be the polynomials that make up F . Since each fi
is d-local, there are polynomials f ′1, . . . , f ′m ∈ Zp[X] of degree ≤ d(q − 1) that
coincide with f1, . . . , fm on {0, . . . , q−1}n. In fact, for i ∈ [m], let j1, . . . , jd ∈ [n]
and ui : {0, . . . , q − 1}d → {0, . . . , q − 1} be s.t. for all x ∈ {0, 1}n

fi(x) = ui(xj1 , . . . , xjd). (82)

For z ∈ {0, . . . , q − 1}, let sz(Z) ∈ Zp[Z] be the univariate polynomial of degree
q−1 with sz(z) = 1 and sz(z′) = 0 for z′ ∈ {0, . . . , q−1}\{z} (for each z, there
is exactly one polynomial sz of degree q − 1 with these properties). Then, the
polynomial f ′i ∈ Zp[X] is given by

f ′i(X) :=
∑

z∈{0,...,q−1}d
ui(z) · sz1(Xj1) · · · szd(Xjd) (83)

and its degree is deg sz1 + . . .+ deg szd = d(q − 1).
However, the image of the f ′1, . . . , f ′m does not look random over Zq, since it

is contained in {0, . . . , q − 1}m (if the input is chosen from {0, . . . , q − 1}n). To

21

compensate for that, we use the Leftover Hash Lemma. Let F ′ = (f ′1, . . . , f
′
m) :

Zn
p → Zm

p be the collection of all f ′i . A2 samples now a random matrix A =

(ai,j)i,j ← Zm′×m
p and defines a PRG G : Zn

p → Zm′

p by

G(X) := A · F ′(X). (84)

I.e., if G consists of the polynomials g1, . . . , gm′ , each gi is given by

gi =

m∑
j=1

ai,j · f ′j . (85)

Now, G is a PRG over Zp of degree d(q − 1). According to Lemma 2, the image
of G will look random (relative to Zm′

p) if the image of F looks random (rela-
tive to {0, . . . , q − 1}m). Finally, A2 can use A1 from Theorem 2 to break the
pseudorandomness of G (and break therefore the pseudorandomness of F).

We will now formally define how A2 proceeds:

Definition 9. Let F : Zn
q → Zm

q be a PRG of locality d over constant modulus
q consisting of polynomials f1, . . . , fm ∈ Zq[X]. The algorithm A2 receives as
input a description of F , which includes the numbers n,m, d, q ∈ N, and an
element y∗ ∈ Zm

q . The goal of A2 is to output 0, if y∗ lies in the image of F ,
and 1, otherwise.
A2 proceeds in the following steps:

1. A2 searches for a prime number p ∈ {n, n+1, . . . , 2n}. Because of Bertrand’s
postulate we know that such a prime must exist.

2. A2 sets m′ := ⌊m/ (3 log p)⌋
3. A2 computes polynomials f ′1, . . . , f ′m ∈ Zp[X] of degree d(q−1) that coincide

with f1, . . . , fm on {0, . . . , q − 1}n.
4. A2 draws a random matrix A← Zm′×m

p and sets

G(X) := A · F ′(X). (86)

Now, G : Zn
p → Zm′

p is a polynomial map of degree d(q − 1).
5. A2 interprets y∗ ∈ Zm

q as a vector in {0, . . . , q − 1}m ⊆ Zm
p and computes

y′
∗
:= A · y∗ ∈ Zm

p . (87)

6. A2 runs algorithm A1 on (G, y′
∗
) and returns the output of A1.

It is easy to see that the time and space complexities of A2 are dominated by
the complexities of A1, which are upper-bounded by

nO((nd(q−1)/m′)
1

d(q−1)−1) = nO((nd(q−1) log(n)/m)
1

d(q−1)−1). (88)

To bound the advantage of A2, we first distinguish two cases:

22

1. If y∗ = F (x) for some x ∈ Zn
q , then y′∗ will be of the form

y′
∗
= Ay∗ = AF ′(x) = G(x). (89)

In those cases, A1 will always output zero.
2. If y∗ is a random element of Zm

q , then Lemma 2 states that the statistical
distance of the distributions

(A, y′
∗
) and (A, r) (90)

for r ← Zm′

p is less than 1
2

√
2m′ log(p)−m ≤ 1

2p
−m′

. Therefore, the probability
that A1 outputs 1 in this case can be lower bounded by

1− O((nd(q−1) log(n)/m)
1

d(q−1)−1)

q
− 1

2
p−m

′
(91)

≥1− O((nd(q−1) log(n)/m)
1

d(q−1)−1)

n
− 1

2
n−m

′
(92)

≥1−O((n log(n)/m)
1

d(q−1)−1). (93)

Now, we can bound the advantage of A2 in the security-game of Definition 5 as
follows:

advF (A2) ≥ Pr
y←{0,1}m

[A2(F, y) = 1] + Pr
x←{0,1}n

[A2(F, F (x)) = 0]− 1 (94)

≥1−O((n log(n)/m)
1

d(q−1)−1) + 1− 1 (95)

≥1−O((n log(n)/m)
1

d(q−1)−1). (96)

6 Comparison of our Algorithms with Groebner Basis
Algorithms

In this section, we will give an in-depth comparison between our algorithms
and Groebner basis-based algorithms. We will discuss parallels and differences,
talk about the degree of regularity (a popular heuristic for Groebner basis-based
algorithms) and compare the time and space complexities of Groebner basis-
based and our algorithms.

Groebner Basis-Based Algorithms. The literature contains a huge variety
of algebraic algorithms that solve polynomial equation systems by computing
Groebner bases. The most famous ones are F4 [25] and F5 [24] and the XL
algorithms [16, 17, 20, 37, 45]. All these algorithms try – when given a list of
polynomials as input – to compute a Groebner basis of the ideal generated by
the given polynomials (in case of the XL algorithms, it does not need to be a
Groebner basis but something equivalent [7, 43]).

We will first describe a prototype Groebner basis algorithm [35] that is based
on Macaulay matrices [36] and underlies all modern algorithms for computing
Groebner bases:

23

Definition 10. Let k be any field.
The algorithm G1 gets as input numbers n,m, d ∈ N, polynomials f1, . . . , fm ∈

k[X] = k[X1, . . . , Xn] and a description of an ordering ≤ of the monomials of
k[X] s.t. we have for all monomials Xα, Xβ , Xγ :

1 ≤ Xα, (97)

Xα ≤ Xβ =⇒ Xα ·Xγ ≤ Xβ ·Xγ . (98)

G1 proceeds as follows for ℓ = 1, 2, . . .:

1. G1 computes the set

Sℓ :=
m⋃
i=1

{Xa1
1 · · ·Xan

n · fi | a1, . . . , an ∈ N0,deg(fi) + a1 + . . .+ an ≤ ℓ} .

(99)

2. Set N :=
(
n+ℓ
ℓ

)
and M := #Sℓ. G1 writes down an M ×N matrix Wℓ where

each column represents a monomial of degree ≤ ℓ and each row represents
an element of Sℓ. The columns are ordered according to ≤ s.t. the biggest
monomial is on the left end of the matrix while 1 is on the right end.
The i, j-th entry of Wℓ is given by the coefficient of the i-th element of Sℓ

regarding the j-th monomial.
3. G1 applies Gaussian elimination to Wℓ and receives a new matrix W ′ℓ.
4. G1 checks if the rows of W ′ℓ form a Groebner basis. If so, G1 outputs the

polynomials corresponding to the rows of W ′ℓ. Otherwise, G1 increments ℓ
and goes back to step 1.

Usually, Groebner basis algorithms are used to compute solutions of polyno-
mial equation systems. Indeed, if the system f1(X) = 0, . . . , fm(X) = 0 only has
one solution x ∈ kn over the algebraic closure k ⊃ k, then any Groebner basis
of (f1, . . . , fm) must contain the equations X1 − x1, . . . , Xn − xn (up to scalar
multiples).

If we want to use G1 to decide if a point y ∈ km lies in the image of a map F :
kn → km made up of polynomials f1, . . . , fm, we invoke G1 on the polynomials
f1(X)−y1, . . . , fm(X)−ym. If the Groebner basis returned by G1 contains a unit
k×, then the polynomial equation system F (X) = y is unsatisfiable. Otherwise,
there exist a solution x s.t. F (x) = y, however x may lie in the algebraic closure
k
n

(this problem can be fixed by adding the field equations of k to the list of
polynomials given to G1).

We can now see that G1 and the algorithm B1 have similar strategies: both
compute elements of increasing degree of specific ideals. However, G1 computes
elements of the ideal generated by the f1, . . . , fm and stops only if it finds a
Groebner basis. On the other side, B1 computes the kernel of ϕ : k[Y] → k[X]
and stops if it finds any non-zero element of kerϕ.

24

Degree of Regularity. It is complicated to bound the space and time com-
plexities of G1 and its relatives. Ideally, we would like to know the maximum
iteration number Dsolv s.t. the span of SDsolv

contains a Groebner basis. This
number is known as the solving degree of the system f1, . . . , fm. It depends
heavily on the elements f1, . . . , fm and is hard to be computed exactly.

Therefore, there exists a variety of different degrees that are used to estimate
the solving degree: the degree of regularity [11], the first fall degree [21, 23], the
last fall degree [29] and the Castelnuvo-Mumford regularity [13]. We will only
focus on the degree of regularity here and refer the reader to [13, 14] for excellent
surveys on the different degrees.

The degree of regularity is the most popular heuristic to estimate the com-
plexities of Groebner basis algorithms. It is neither a lower nor an upper bound
for the solving degree, however in special cases where all f1, . . . , fm are semireg-
ular or generic [10, 19] the degree of regularity is indeed an upper bound.

To formally define the degree of regularity, we will introduce here the concept
of Hilbert series: Consider the polynomial ring k[X] = k[X1, . . . , Xn]. It is graded
where we assign to each Xi the degree 1. The dimension of the i-th grade of k[X]
is given by k[X]i =

(
n+i−1

i

)
. We define the Hilbert series hk[X](T) ∈ Z[[T]] of

k[X] as the formal power series in the variable T where the i-th coefficient is the
dimension of k[X]i. I.e.

hk[X](T) :=

∞∑
i=0

dimk(k[X]i) · T i =

∞∑
i=0

(
n+ i− 1

i

)
· T i. (100)

Note, that we have

hk[X](T) =

(∞∑
i=0

T i

)n

=
1

(1− T)n
. (101)

Now, consider the polynomial ring k[Y] = k[Y1, . . . , Ym] where each variable
Yi gets assigned the degree d. k[Y] is graded, and we have for dimk(k[Y]i)

dimk(k[Y]i) =


(
m+ i

d

m

)
, if i mod d = 0.

0, otherwise.
(102)

The Hilbert series of k[Y] is given by

hk[Y](T) :=

∞∑
i=0

dimk(k[Y]i) · T i =

∞∑
i=0

(
n+ i− 1

i

)
· T di. (103)

Similarly to hk[X], we have

hk[Y](T) =

(∞∑
i=0

T di

)m

=
1

(1− T d)m
. (104)

25

The degree of regularity for the parameters n,m, d is now defined as the
smallest number Dreg ∈ N0 s.t. the Dreg-th coefficient of the formal power series

h1(T) :=
hk[X](T)

hk[Y](T)
=

(1− T d)m

(1− T)n
= (1 + T + . . .+ T d−1)n · (1− T d)m−n (105)

is less or equal to zero.
Now, consider the following Hilbert series

h2(T) := hk[X](T)− hk[Y](T) (106)

=

∞∑
i=0

(
n− 1 + i

n− 1

)
T i −

∞∑
i=0

(
m− 1 + i

m− 1

)
· T di. (107)

If we are given polynomials f1, . . . , fm−1 in n− 1 variables X1, . . . , Xn−1 of de-
gree d, then the coefficients

(
n−1+di
n−1

)
are the dimensions of k[X1, . . . , Xn−1]

≤di,
the coefficients

(
m−1+i
m−1

)
are the dimensions of k[Y1, . . . , Yn−1]≤i and the dif-

ferences
(
m−1+i
m−1

)
−
(
n−1+di
n−1

)
lower bound the dimensions of (kerϕdi) for ϕ :

k[Y1, . . . , Ym−1]
≤i → k[X1, . . . , Xn−1]

≤di. This means kerϕ will contain an ele-
ment of degree i if the i-th coefficient of h2(T) is negative. Therefore, we define
the degree of kernel for the parameters n− 1,m− 1, d as the smallest number
Dker ∈ N0 s.t. the Dker-th coefficient of h2(T) is negative.

Note, that the degree of the smallest non-trivial element of kerϕ bounds
exponentially the complexities of the algorithms B1 from Definition 7 and sub-
sequently the complexities of the attacks A1 and A2. Therefore, the degree of
kernel tells us something about the complexity of the algebraic attacks in this
paper, while the degree of regularity gives us insight about the complexities
of Groebner basis-based approaches. Both numbers come from similar Hilbert
series, and we can relate them as follows:

Theorem 4. Let Dreg be the degree of regularity for the parameters n,m, d and
Dker be the degree of kernel for n− 1,m− 1, d. Then, we have

Dreg ≤ Dker. (108)

Proof. Note, that we have the relationship

h1(T) = (1− T d)m · h2(T) + 1 (109)

for the series h1 and h2. It therefore suffices to show that multiplication with
(1− T d)m do not increase the position of the first negative coefficient.

For this sake, we define in this proof for a Hilbert series h(T) =
∑∞

i=0 ci · T i

ind(h) := min({i ∈ N0 | ci < 0} ∪ {∞}). (110)

We claim that we have for each Hilbert series h

ind((1− T d) · h) ≤ ind(h). (111)

26

In fact, we can compute

(1− T d) · h(T) = (1− T d) · (
∞∑
i=0

ci · T i) (112)

=

∞∑
i=0

ci · T i − T d ·
∞∑
i=0

ci · T i (113)

=

∞∑
i=0

(ci − ci−d) · T i (114)

where we set ci = 0 for i < 0. Now, we have that cind(h) − cind(h)−d must
be negative, since cind(h) is negative and each coefficient before cind(h) must be
greater or equal to zero.

For the series h1, h2 it follows now

ind(h1(T)− 1) = ind((1− T d)m · h2(T)) ≤ ind(h2(T)) = Dker. (115)

Since the degree of regularity is the first coefficient of h1 that is non-positive, it
follows

Dreg ≤ ind(h1(T)− 1) ≤ Dker. (116)

Combined with Lemma 7, we get immediately the following corollary for the
degree of regularity:

Corollary 1. Let n,m, d ∈ N s.t. n− 1 ≥ 2d and m− 1 ≥ 22d−1 · dd−1 · (n− 1).
Then, we can bound the degree of regularity for the parameters n,m, d by

Dreg ≤

⌈(
(2n− 2)d

m− 1

) 1
d−1

⌉
. (117)

In particular, if m− 1 ≥ (n− 1)1+e, we have for sufficiently large n

Dreg ≤
⌈
2

d
d−1 · (n− 1)1−

e
d−1

⌉
. (118)

One can suspect that this upper bound is – on a very coarse asymptotic level
– tight. Applebaum showed [6] that each algebraic refutation attack on a PRG of
constant locality that stems from a predicate of high rational degree must have a
complexity of at least Ω(n1−32

e
d−2). This insinuates that the degree of regularity

is lower-bounded by Ω(n1−32
e

d−2) and the above upper bound is optimal up to
some constants in the exponent.

A Groebner Basis-Based Distinguishing Algorithm. Theorem 4 insinu-
ates that Groebner basis-based algorithms should not have a higher complexity
than the algorithms presented in this text. We want to investigate this further:

27

Let F : kn → km be a polynomial map of degree d and let ϕ : k[Y] → k[X] be
its dual morphism. Let h ∈ kerϕ be non-zero of degree D and let y ∈ km.

If we run the algorithm G1 with the input f1(X)−y1, . . . , fm(X)−ym, it will
in its d ·D-th step produce a set Sd·D whose linear span contains the polynomial

h(f1(X), . . . , fm(X))− h(y1, . . . , ym) = h(y1, . . . , ym). (119)

If y does not lie in the image of F , then – with high probability – h(y) will be
non-zero and G1 has found a contradiction (and will output a Groebner basis
that contains a unit of k). On the other side, if y does lie in the image of F , then
the ideal generated by f1(X)− y1, . . . , fm(X)− ym is proper and the set Sℓ will
never contain units of k in its span. This observation gives rise to the following
Macaulay matrix-based distinguishing attack on PRGs:

Definition 11. Let k be any field.
The algorithm G2 gets as input numbers n,m, d ∈ N, a polynomial map

F : kn → km and a point y ∈ km. Its aim is to output 0, if y ∈ F (kn), and 1
otherwise.

As a first step, G computes the smallest number D s.t.(
m+D

m

)
>

(
n+ d ·D

n

)
. (120)

Then, for ℓ = 1, . . . , d ·D, it proceeds as follows:

1. G2 computes the set

Sℓ :=

m⋃
i=1

{Xa1
1 · · ·Xan

n · fi | a1, . . . , an ∈ N0,deg(fi) + a1 + . . .+ an ≤ ℓ} .

(121)

2. G2 checks if spank (Sℓ) contains 1. If 1 ∈ spank (Sℓ), G2 outputs 1.
3. Otherwise, G2 increments ℓ by one and goes back to the first step of this list.

If at the end, G2 didn’t output 1 in all of its d ·D iterations, G2 outputs 0.

The following properties can be shown for G2:

Lemma 8. 1. If y lies in the image of F , then G2(F, y) will always output 0.
2. If A1(F, y) outputs 1, then G2(F, y) will output 1, too.

I.e., G2 is at least as correct as A1.

Which Algorithm is Faster? Finally, we want to compare the performance
of G2 and B1/A1 when distinguishing PRGs F : kn → km of polynomial degree
d and stretch m ≥ n1+e.

The complexity of G2 is dominated by checking 1 ∈ spank (Sℓ) in each itera-
tion. To do this, G2 must apply Gaussian reduction to a matrix with≤ m

(
n+ℓ
n

)
+1

28

rows and
(
n+ℓ
n

)
columns for ℓ = 1, . . . , dD. In comparison, B1 must apply Gaus-

sian reduction to a matrix of shape
(
m+ℓ
m

)
×
(
n+dℓ
n

)
for ℓ = 1, . . . , D. By ignoring

polynomial factors and assuming that
(
m+D
m

)
will be approximately as big as(

n+dD
n

)
, we see that both algorithms must apply Gaussian reduction to a matrix

of shape approximately N ×N in their last step where N =
(
n+dD
dD

)
. However,

in the case of G2, this matrix is sparse and has only
(
n+d
d

)
non-zero entries per

row. Since sparse matrices admit faster Gaussian reductions [16], the computa-
tional cost of G2 in each step can be upper-bounded by O(

(
n+d
d

)
N2), while the

computational cost of B1 lies in O(N3) per step.
However, note that B1 does not need to know y in advance. In fact, if the

PRG F : kn → km is fixed and publicly known, one can use B1 in a costly pre-
processing phase to compute a polynomial h ∈ k[Y] of degree D. The polynomial
h has at most

(
m+D
D

)
≈ N coefficients and can be evaluated in time D ·N .

We can now answer the question, which algorithm is faster, as follows:

1. In situations where F is not previously known, G2 gives the faster distin-
guishing attack and has a complexity of approximately

poly(n) ·
(
n+ dD

dD

)2

(122)

for D =
⌈
2

d
d−1 · n1−

e
d−1

⌉
.

2. In situations where F is previously known, it makes more sense to use B1 in
a preprocessing phase and invest a one-time cost of approximately

poly(n) ·
(
n+ dD

dD

)3

(123)

field operations to obtain a non-zero polynomial h ∈ kerϕ of degree ≤ D.
Evaluating h in the online phase takes approximately

D ·
(
n+ dD

dD

)
(124)

field operations.

References

1. Applebaum, B. Pseudorandom generators with long stretch and low locality
from random local one-way functions in 44th ACM STOC (eds Karloff,
H. J. & Pitassi, T.) (ACM Press, May 2012), 805–816.

2. Applebaum, B. Cryptographic Hardness of Random Local Functions-Survey
in TCC 2013 (ed Sahai, A.) 7785 (Springer, Heidelberg, Mar. 2013), 599.

3. Applebaum, B. The Cryptographic Hardness of Random Local Functions –
Survey Cryptology ePrint Archive, Report 2015/165. https://eprint.
iacr.org/2015/165. 2015.

29

https://eprint.iacr.org/2015/165
https://eprint.iacr.org/2015/165

4. Applebaum, B., Damgård, I., Ishai, Y., Nielsen, M. & Zichron, L. Se-
cure Arithmetic Computation with Constant Computational Overhead in
CRYPTO 2017, Part I (eds Katz, J. & Shacham, H.) 10401 (Springer,
Heidelberg, Aug. 2017), 223–254.

5. Applebaum, B., Ishai, Y. & Kushilevitz, E. On Pseudorandom Generators
with Linear Stretch in NC0 in Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques (eds Díaz, J., Jansen,
K., Rolim, J. D. P. & Zwick, U.) (Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2006), 260–271. isbn: 978-3-540-38045-0.

6. Applebaum, B. & Lovett, S. Algebraic attacks against random local func-
tions and their countermeasures in 48th ACM STOC (eds Wichs, D. &
Mansour, Y.) (ACM Press, June 2016), 1087–1100.

7. Ars, G., Faugère, J.-C., Imai, H., Kawazoe, M. & Sugita, M. Comparison
Between XL and Gröbner Basis Algorithms in Advances in Cryptology -
ASIACRYPT 2004 (ed Lee, P. J.) (Springer Berlin Heidelberg, Berlin,
Heidelberg, 2004), 338–353. isbn: 978-3-540-30539-2.

8. Barak, B., Brakerski, Z., Komargodski, I. & Kothari, P. K. Limits on Low-
Degree Pseudorandom Generators (Or: Sum-of-Squares Meets Program Ob-
fuscation) in EUROCRYPT 2018, Part II (eds Nielsen, J. B. & Rijmen,
V.) 10821 (Springer, Heidelberg, 2018), 649–679.

9. Barak, B., Hopkins, S. B., Jain, A., Kothari, P. & Sahai, A. Sum-of-Squares
Meets Program Obfuscation, Revisited in EUROCRYPT 2019, Part I (eds
Ishai, Y. & Rijmen, V.) 11476 (Springer, Heidelberg, May 2019), 226–250.

10. Bardet, M., Faugère, J.-C. & Salvy, B. Complexity of Gröbner basis compu-
tation for Semi-regular Overdetermined sequences over F_2 with solutions
in F_2 Research Report RR-5049 (INRIA, 2003). https://hal.inria.
fr/inria-00071534.

11. Bardet, M., Faugère, J.-C. & Salvy, B. On the complexity of Gröbner basis
computation of semi-regular overdetermined algebraic equations (2004).

12. Bogdanov, A. & Qiao, Y. On the Security of Goldreich’s One-Way Func-
tion in Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (eds Dinur, I., Jansen, K., Naor, J. & Rolim,
J.) (Springer Berlin Heidelberg, Berlin, Heidelberg, 2009), 392–405. isbn:
978-3-642-03685-9.

13. Caminata, A. & Gorla, E. Solving Multivariate Polynomial Systems and an
Invariant from Commutative Algebra in Arithmetic of Finite Fields (eds
Bajard, J. C. & Topuzoğlu, A.) (Springer International Publishing, Cham,
2021), 3–36. isbn: 978-3-030-68869-1.

14. Caminata, A. & Gorla, E. Solving Degree, Last Fall Degree, and Related
Invariants. J. Symb. Comput. 114, 322–335. issn: 0747-7171. https://
doi.org/10.1016/j.jsc.2022.05.001 (2023).

15. Charikar, M. & Wirth, A. Maximizing Quadratic Programs: Extending
Grothendieck’s Inequality in 45th FOCS (IEEE Computer Society Press,
Oct. 2004), 54–60.

30

https://hal.inria.fr/inria-00071534
https://hal.inria.fr/inria-00071534
https://doi.org/10.1016/j.jsc.2022.05.001
https://doi.org/10.1016/j.jsc.2022.05.001

16. Cheng, C.-M., Chou, T., Niederhagen, R. & Yang, B.-Y. Solving Quadratic
Equations with XL on Parallel Architectures in CHES 2012 (eds Prouff, E.
& Schaumont, P.) 7428 (Springer, Heidelberg, Sept. 2012), 356–373.

17. Courtois, N., Klimov, A., Patarin, J. & Shamir, A. Efficient Algorithms for
Solving Overdefined Systems of Multivariate Polynomial Equations in EU-
ROCRYPT 2000 (ed Preneel, B.) 1807 (Springer, Heidelberg, May 2000),
392–407.

18. Couteau, G., Dupin, A., Méaux, P., Rossi, M. & Rotella, Y. On the Concrete
Security of Goldreich’s Pseudorandom Generator in ASIACRYPT 2018,
Part II (eds Peyrin, T. & Galbraith, S.) 11273 (Springer, Heidelberg, Dec.
2018), 96–124.

19. Diem, C. The XL-Algorithm and a Conjecture from Commutative Algebra
in ASIACRYPT 2004 (ed Lee, P. J.) 3329 (Springer, Heidelberg, Dec.
2004), 323–337.

20. Ding, J., Buchmann, J., Mohamed, M., Moahmed, W. & Weinmann, R.
Mutantxl. SCC, 16–22 (Jan. 2008).

21. Ding, J. & Schmidt, D. in Number Theory and Cryptography: Papers in
Honor of Johannes Buchmann on the Occasion of His 60th Birthday (eds
Fischlin, M. & Katzenbeisser, S.) 34–49 (Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013). isbn: 978-3-642-42001-6. https://doi.org/10.1007/
978-3-642-42001-6_4.

22. Dodis, Y., Reyzin, L. & Smith, A. Fuzzy Extractors: How to Generate
Strong Keys from Biometrics and Other Noisy Data in EUROCRYPT 2004
(eds Cachin, C. & Camenisch, J.) 3027 (Springer, Heidelberg, May 2004),
523–540.

23. Dubois, V. & Gama, N. The Degree of Regularity of HFE Systems in ASI-
ACRYPT 2010 (ed Abe, M.) 6477 (Springer, Heidelberg, Dec. 2010), 557–
576.

24. Faugère, J. C. A New Efficient Algorithm for Computing Gröbner Bases
without Reduction to Zero (F5) in Proceedings of the 2002 International
Symposium on Symbolic and Algebraic Computation (Association for Com-
puting Machinery, Lille, France, 2002), 75–83. isbn: 1581134843. https:
//doi.org/10.1145/780506.780516.

25. Faugére, J.-C. A new efficient algorithm for computing Gröbner bases (F4).
Journal of Pure and Applied Algebra 139, 61–88. issn: 0022-4049. https:
//www.sciencedirect.com/science/article/pii/S0022404999000055
(1999).

26. Goemans, M. X. & Williamson, D. P. Improved Approximation Algorithms
for Maximum Cut and Satisfiability Problems Using Semidefinite Program-
ming. J. ACM 42, 1115–1145. issn: 0004-5411. https://doi.org/10.
1145/227683.227684 (1995).

27. Goldreich, O. in Studies in Complexity and Cryptography. Miscellanea on
the Interplay between Randomness and Computation: In Collaboration with
Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi,
Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca

31

https://doi.org/10.1007/978-3-642-42001-6_4
https://doi.org/10.1007/978-3-642-42001-6_4
https://doi.org/10.1145/780506.780516
https://doi.org/10.1145/780506.780516
https://www.sciencedirect.com/science/article/pii/S0022404999000055
https://www.sciencedirect.com/science/article/pii/S0022404999000055
https://doi.org/10.1145/227683.227684
https://doi.org/10.1145/227683.227684

Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman (ed Goldreich,
O.) 76–87 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2011). isbn: 978-
3-642-22670-0. https://doi.org/10.1007/978-3-642-22670-0_10.

28. Håstad, J., Impagliazzo, R., Levin, L. A. & Luby, M. A Pseudorandom
Generator from any One-way Function. SIAM Journal on Computing 28,
1364–1396 (1999).

29. Huang, M.-D. A., Kosters, M. & Yeo, S. L. Last Fall Degree, HFE, and Weil
Descent Attacks on ECDLP in CRYPTO 2015, Part I (eds Gennaro, R. &
Robshaw, M. J. B.) 9215 (Springer, Heidelberg, Aug. 2015), 581–600.

30. Impagliazzo, R. & Wigderson, A. P = BPP if E Requires Exponential Cir-
cuits: Derandomizing the XOR Lemma in 29th ACM STOC (ACM Press,
May 1997), 220–229.

31. Ishai, Y., Kushilevitz, E., Ostrovsky, R. & Sahai, A. Cryptography with
constant computational overhead in 40th ACM STOC (eds Ladner, R. E.
& Dwork, C.) (ACM Press, May 2008), 433–442.

32. Jain, A., Lin, H. & Sahai, A. Indistinguishability Obfuscation from Well-
Founded Assumptions in Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing (Association for Computing Machin-
ery, Virtual, Italy, 2021), 60–73. isbn: 9781450380539. https://doi.org/
10.1145/3406325.3451093.

33. Jain, A., Lin, H. & Sahai, A. Indistinguishability Obfuscation from LPN
over Fp, DLIN, and PRGs in NC0 in Advances in Cryptology – EURO-
CRYPT 2022 (eds Dunkelman, O. & Dziembowski, S.) (Springer Interna-
tional Publishing, Cham, 2022), 670–699. isbn: 978-3-031-06944-4.

34. Lang, S. Algebra isbn: 9781461300410 146130041X (Springer, New York,
NY, 2002).

35. Lazard, D. Gröbner bases, Gaussian elimination and resolution of sys-
tems of algebraic equations in Computer Algebra (ed van Hulzen, J. A.)
(Springer Berlin Heidelberg, Berlin, Heidelberg, 1983), 146–156. isbn: 978-
3-540-38756-5.

36. Macaulay, F. The algebraic theory of modular systems. Cambridge Mathe-
matical Library xxxi (1916).

37. Mohamed, M. S. E., Mohamed, W. S. A. E., Ding, J. & Buchmann, J. A.
MXL2: Solving Polynomial Equations over GF(2) Using an Improved Mu-
tant Strategy in Post-quantum cryptography, second international work-
shop, PQCRYPTO 2008 (eds Buchmann, J. & Ding, J.) (Springer, Hei-
delberg, Oct. 2008), 203–215.

38. Mossel, E., Shpilka, A. & Trevisan, L. On e-Biased Generators in NC0 in
44th FOCS (IEEE Computer Society Press, Oct. 2003), 136–145.

39. Nisan, N. & Wigderson, A. Hardness vs. Randomness (Extended Abstract)
in 29th FOCS (IEEE Computer Society Press, Oct. 1988), 2–11.

40. ODonnell, R. & Witmer, D. Goldreich’s PRG: Evidence for Near-Optimal
Polynomial Stretch in (June 2014), 1–12. isbn: 978-1-4799-3626-7.

32

https://doi.org/10.1007/978-3-642-22670-0_10
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1145/3406325.3451093

41. Schwartz, J. T. Fast Probabilistic Algorithms for Verification of Polynomial
Identities. J. ACM 27, 701–717. issn: 0004-5411. https://doi.org/10.
1145/322217.322225 (1980).

42. Siegenthaler, T. Correlation-immunity of nonlinear combining functions for
cryptographic applications (Corresp.) IEEE Transactions on Information
Theory 30, 776–780 (1984).

43. Sugita, M., Kawazoe, M. & Imai, H. Relation between the XL Algorithm
and Gröbner Basis Algorithms. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. E89-A, 11–18. issn: 0916-8508. https://doi.org/10.1093/
ietfec/e89-a.1.11 (2006).

44. Viola, E. The Sum of d Small-Bias Generators Fools Polynomials of Degree
d in 2008 23rd Annual IEEE Conference on Computational Complexity
(2008), 124–127.

45. Yang, B.-Y. & Chen, J.-M. All in the XL Family: Theory and Practice
in Information Security and Cryptology – ICISC 2004 (eds Park, C.-s. &
Chee, S.) (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005), 67–86.
isbn: 978-3-540-32083-8.

46. Zichron, L. Locally Computable Arithmetic Pseudorandom Generators.
https://www.bennyapplebaum.sites.tau.ac.il/_files/ugd/f706bf_
501515c9cd7744c498935684bd1648a2.pdf (2017).

33

https://doi.org/10.1145/322217.322225
https://doi.org/10.1145/322217.322225
https://doi.org/10.1093/ietfec/e89-a.1.11
https://doi.org/10.1093/ietfec/e89-a.1.11
https://www.bennyapplebaum.sites.tau.ac.il/_files/ugd/f706bf_501515c9cd7744c498935684bd1648a2.pdf
https://www.bennyapplebaum.sites.tau.ac.il/_files/ugd/f706bf_501515c9cd7744c498935684bd1648a2.pdf

Supplementary Material

A Appendix

A.1 Finding Reduced Algebraic Relations

In this subsection, we want to focus on the case where F : Zn
q → Zm

q is a PRG
of constant degree d and where q is small (2 or O(

√
n) for example). Note, that

Theorem 2 does not give us a meaningful attack for small values of q.
We will construct a subexponential attack algorithm A3 on F in those cases

that has a subexponentially small advantage in distinguishing outputs of F
from randomness. For this end, we will need to compute algebraic relations
h ∈ Zq[Y1, . . . , Ym] of sublinear degree, which are reduced modulo the field equa-
tions, i.e. each monomial Yi appears with degree at most Y q

i . First, we will talk
about the structure of reduced polynomials:

Remark 4. Denote by I ⊂ Zq[X] the ideal generated by the field equations of
Zq, i.e.

I := (Xq
1 −X1, . . . , X

q
n −Xn). (125)

The ring Zq[X]/I is not graded any more, since I is not a homogenous ideal.
However, it is still filtrated where the filtration steps are given by the vector
spaces

Zq[X]≤ℓ/(I ∩ Zq[X]≤ℓ). (126)

A basis for Zq[X]≤ℓ/(I ∩Zq[X]≤ℓ) is given by the set of all monomials of degree
≤ ℓ where each variable occurs at most q−1 times. Therefore, we have for ℓ ≤ n(

n

ℓ

)
≤ dimZq (Zq[X]≤ℓ/(I ∩ Zq[X]≤ℓ)) ≤

(
n+ ℓ

ℓ

)
= dimZq (Zq[X]≤ℓ). (127)

To avoid trivial relations over Zq, we will present here a modified version of
B1 – that we will call B2 – that will always find a reduced algebraic relation of
polynomials over Zq. For this sake, we set by abuse of notation

Rq[X] := Zq[X1, . . . , Xn]/(X
q
1 −X1, . . . , X

q
n −Xn), (128)

Rq[Y] := Zq[Y1, . . . , Ym]/(Y q
1 − Y1, . . . , Y q

m − Ym). (129)

As explained in Remark 4, the rings Rq[X] and Rq[Y] are filtrated.
Now let F be a PRG of degree d over Zq and let f1, . . . , fm ∈ Zq[X] be

the polynomials that make up F . Without loss of generality, we can assume that
f1, . . . , fm are reduced modulo the field equations Xq

1−X1, . . . , X
q
n−Xn. There-

fore, by abuse of notation, we interpret f1, . . . , fm as elements of Rq[X]. Now,

the dual map ϕ : Zq[Y]→ Zq[X] descends well-defined to a ring homomorphism

ϕq : Rq[Y] −→ Rq[X] (130)
Yi 7−→ fi(X). (131)

For the kernel of ϕq, we have

kerϕq = (kerϕ+ (Y q
1 − Y1, . . . , Y q

m − Ym))/(Y q
1 − Y1, . . . , Y q

m − Ym). (132)

I.e., kerϕq contains all algebraic relations of kerϕ modulo the trivial ones from
the field equations of Zq. In particular, a non-zero element of kerϕq is now
guaranteed to not vanish everywhere on Zm

q .
To find a non-zero element of kerϕq, the algorithm B2 will proceed similarly

as B1: For increasing ℓ = 1, . . . ,dimZq
Rq[Y], the algorithm B2 computes a basis

of the Zq-vector space kerϕq∩Rq[Y]≤ℓ. If kerϕq∩Rq[Y]≤ℓ is non-zero, B2 returns
a non-zero element of it and terminates. Otherwise, B2 increments ℓ and repeats
these computations. Formally, B2 is given by:

Definition 12. The algorithm B2 gets as input numbers n,m, d, q ∈ N, and a
description of a polynomial map F : Zn

q → Zm
q . It has to output a non-zero

element of kerϕq.
For ℓ = 1, . . . , (q − 1)m, B2 does the following:

1. B2 computes N := dimZq

(
Rq[X]≤dℓ

)
and M := dimZq

(
Rq[Y]≤ℓ

)
.

2. B2 computes a finite list

(Y a1
1 · · ·Y am

m | a1, . . . , am ∈ {0, . . . , q − 1}, a1 + . . .+ am ≤ ℓ) (133)
=(Y α1 , . . . , Y αM) (134)

of all monomials in Rq[Y] of degree ≤ ℓ.
3. B2 applies ϕq to each Y αi and computes a second list (ϕq(Y α1), . . . , ϕq(Y

αM))
of polynomials in Rq[X] of degree ≤ dℓ.

4. Let Xβ1 , . . . , XβN be the set of all monomials in Rq[X] of degree ≤ dℓ
where each variable appears at most q − 1 times. For each ϕq(Y

αi) let
wi = (wi,1, . . . , wi,N) ∈ ZN

q be the unique column vector s.t.

ϕq(Y
αi) =

N∑
j=1

wi,j ·Xβj . (135)

These vectors give us the matrix

Wℓ :=
(
w1| . . . |wM

)
∈ ZN×M

q . (136)

5. B2 uses Gaussian elimination over Zq to compute the kernel of Wℓ

Kℓ :=
{
r ∈ ZM

q | Wℓ · r = 0
}
. (137)

6. If Kℓ is the trivial null-space, B2 increases ℓ by one. If ℓ ≤ (q − 1)m, B2
goes back to step 1.

35

7. Otherwise, if ℓ > (q − 1)m, B2 exhausted the whole vector space Rq[Y]. In
this case, B2 knows that kerϕq is trivial and aborts.

8. If Kℓ is not the null-space, B2 chooses an arbitrary non-zero vector r ∈ Kℓ,
computes the polynomial

h := r1 · Y α1 + . . .+ rM · Y αM ∈ Rq[Y] (138)

of total degree ≤ ℓ and outputs it.

We have for B2 similar time and space bounds as for B1:

Lemma 9. Assume that B2 terminates after D iterations. Then, its space com-
plexity can be bounded by O(NM) and its time complexity can be bounded by
O(DN2M) for N ≤

(
n+dD
dD

)
and M =

(
m+D
D

)
.

Similarly, as in Section 3, one can show that B2 will return an algebraic relation
of minimal degree, if such a relation exists:

Lemma 10. Let n,m, d ∈ N, m > n. Let f1, . . . , fm ∈ Rq[X] be polynomials of
degree ≤ d and set D := min {deg h | h ∈ kerϕq, h ̸= 0}. Then, B2 terminates
after D iterations and outputs a non-zero element of kerϕq of degree D.

The inequality in Lemma 7 has a pendant that states that for almost all n
we have

dimZq
(Rq[Y]L) > dimZq

(Rq[X]dL) (139)

where L(n) =
⌈(
2dnd/m

) 1
d−1

⌉
.

Lemma 11 (Main Inequality for Small q). Let d ∈ N, d ≥ 2. Let q ∈ N
and let m : N → N be a function with m(n) ≥ dd−12dn. Further, set c = 2

d
d−1 .

Then, we have for almost all integers n

dimZq (Rq[Y]L) > dimZq (Rq[X]dL) (140)

where L(n) =
⌈(
2dnd/m

) 1
d−1

⌉
.

Proof. We can lower-bound the left-hand side of the equation by
(
m
L

)
and upper-

bound the left-hand side by
(
n+dL
dL

)
. Therefore, it suffices to show(

m

L

)
>

(
n+ dL

dL

)
. (141)

Rolling out both sides, we need to show

m · · · (m− L+ 1)

L · · · 2 · 1
>

(n+ dL) · · · (n+ 1)

(dL) · · · 2 · 1
. (142)

36

We can rewrite this as

m · · · (m− L+ 1) · (dL) · · · (L+ 1) > (n+ dL) · · · (n+ 1). (143)

For n large enough, n+ dL is smaller than 2n, since m ≥ dd−12dn. Therefore, it
suffices to show

m · · · (m− L+ 1) · (dL) · · · (L+ 1) ≥ 2dL · ndL. (144)

We claim that the right-hand side is bigger than mL · LL(d−1). In fact, we have
the equivalences

m · · · (m− L+ 1) · (dL) · · · (L+ 1) ≥ mL · LL(d−1) (145)

⇐⇒ (dL) · · · (L+ 1)

LL(d−1) ≥ mL

m · · · (m− L+ 1)
(146)

⇐⇒ dL

L
· dL− 1

L
· · · L+ 1

L
≥ m

m
· · · m

m− L+ 1
. (147)

(148)

The last inequality does hold if m > 2L, since in this case we have that the last
L factors L+L

L , . . . , L+1
L on the left-hand side are bigger than the corresponding

L factors m
m−L+1 , . . . ,

m
m on the right-hand side.

Therefore, for n large enough, the inequality Eq. (144) is implied by

mL · LL(d−1) ≥ 2dL · ndL. (149)

By computing L-th roots on both sides, we get the equivalent inequality

m · L(d−1) ≥ 2d · nd (150)

which does hold. This finishes the proof.

Now, let e > 0 and d ∈ N be constants and assume m ≥ n1+e. In this case,
the above lemma gives us L =

⌈
c · n1−

e
d−1
⌉
.

It follows that B2’s complexity is subexponential for m ≥ n1+e polynomials
f1, . . . , fm:

Theorem 5. Let d ∈ N be constant and m ∈ ω(n). Let f1, . . . , fm ∈ Rq[X] be
polynomials of degree ≤ d.

Then, the algorithm B2 in Definition 12 outputs a non-trivial element of

kerϕq of degree O
(
(nd/m)

1
d−1

)
. Its space and time complexities lie in nO((nd/m)

1
d−1).

If m ≥ n1+e for some constant e > 0, then the complexities of B2 are bounded
by nO(n

1− e
d−1) and the degree of its output lies in O(n1−

e
d−1)

37

A.2 Attacks on Constant-Degree PRGs over Small Moduli

B2 gives rise to the following attacker A3 on degree-d PRGs over Zq:

Definition 13. The algorithm A3 receives as input a description of a PRG
F : Zn

q → Zm
q of degree d, which includes the numbers n,m, d, q ∈ N, and an

element y∗ ∈ Zm
q . The goal of A3 is to output 0, if y∗ lies in the image of F ,

and 1, otherwise.
A3 proceeds in two simple steps:

1. A3 executes the algorithm B2 from Definition 12 on the input n,m, d, F and
receives a non-zero polynomial h ∈ Rq[Y] as output.

2. A3 outputs 0 if h(y∗) = 0. Otherwise, A3 outputs 1.

It is clear that A3’s space and time complexities are comparable to the space
and time complexities of B2. However, since the degree D of h will be much
higher than the cardinality of Zq, we cannot apply the Schwartz-Zippel Lemma
any more. Since h is not zero in Rq[Y], we can only guarantee that h vanishes
on at most qm − qm−D points of Zm

q :

Lemma 12. Let f ∈ Rq[Y1, . . . , Ym] be a non-zero polynomial of degree d. Then,
we have

#
{
y ∈ Zm

q | f(y) = 0
}
≤ qm − qm−d. (151)

Proof. Since f is non-zero modulo (Y q
1 − Y1, . . . , Y q

m − Ym), we can interpret it
as a non-zero polynomial in Zq[Y] that has degree at most q− 1 in each variable
Yi.

First assume that no linear polynomial of the form (Ym−c) for c ∈ Zq divides
f (over Zq[Y]). In that case, f can be written as

f(Y1, . . . , Ym) =

q−1∑
i=0

Y q
m − Ym
Ym − i

· gi(Y1, . . . , Ym−1) (152)

where each gi ∈ Zq[Y1, . . . , Ym] is reduced, non-zero and of degree ≤ d (in fact,
gi is a scalar multiple of f(Y1, . . . , Ym−1, i)). Then, we have

#
{
y ∈ Zm

q | f(y) = 0
}

(153)

=#
{
y ∈ Zm−1

q | g0(y) = 0
}
+ . . .+#

{
y ∈ {0, 1}m−1 | gq−1(y) = 0

}
. (154)

By an inductive argument, the claim now follows.
On the other side, assume that f is divisible by a linear term (Ym − c).

W.l.o.g. c = 0, ergo f decomposes as f = f ′ · Ym where deg f ′ ≤ d− 1. We have

#
{
y ∈ Zm

q | f(y) = 0
}

(155)

=#
{
y ∈ Zm

q | ym = 0
}

(156)

+#
{
y ∈ Zm−1

q | f ′(y1, . . . , ym−1, 1) = 0
}

(157)

+ . . .+#
{
y ∈ Zm−1

q | f ′(y1, . . . , ym−1, q − 1) = 0
}
. (158)

38

By an inductive argument, the right-hand side is smaller than

qm−1 + (q − 1)(qm−1 − qm−d) = qm − (q − 1)qm−d ≤ qm − qm−d. (159)

This finishes the proof of the lemma.

This gives us the following theorem:

Theorem 6. Let d ∈ N be constant and let F : Zn
q → Zm

q be a PRG of degree d
and m ∈ ω(n).

Then, there is an attack algorithm A3 whose time and space complexities are

bounded from above by nO((nd/m)
1

d−1). Further, there exists a constant c > 0 s.t.
A3’s advantage in the security game in Definition 5 against F is lower bounded
by

advF (A3) ≥ q−c·(n
d/m)

1
d−1

. (160)

If m ≥ n1+e, this gives us an attack algorithm of complexity nO(n
1− e

d−1) and
minimum advantage q−c·n

1− e
d−1 .

Theorem 6 is unsatisfying, since A3’s advantage can only be guaranteed to
be at least subexponential. One solution for this problem is to look at a multi-
challenge security game for the PRG F where the adversary receives Q challenges
y∗1 , . . . , y

∗
Q ∈ Zm

q and has to guess if all y∗1 , . . . , y∗Q have been drawn uniformly
and independently at random from Zm

q or if all y∗1 , . . . , y∗Q lie in the image of F .

If the number of challenges is Q ∈ qΩ(n
1− e

d−1), for m ≥ n1+e, then the
advantage of A3 can be amplified to a positive constant.

To prove this, we first give a formal definition of a security game for PRGs
in the multi-challenge setting.

Definition 14 (Multi-Challenge Security Game for Pseudrandom Num-
ber Generators). Let k be a finite field and let F : kn → km be a PRG. Let
Q = Q(n) be the number of challenges that are given to the adversary.

We describe here a non-interactive security game between a probabilistic chal-
lenger C and an adversary A. The game is parametrized by n and proceeds in
the following steps:

1. C draws a bit b← {0, 1}. If b = 0, it samples preimages x1, . . . , xQ ← kn uni-
formly at random, computes F (x1), . . . , F (xQ) and sends (F, F (x1), . . . , F (xQ))
to A. If b = 1, it samples y1, . . . , yQ ← km and sends (F, y1, . . . , yQ) to A.

2. A receives (F, y∗1 , . . . , y
∗
Q) for some y∗1 , . . . , y∗Q ∈ km and must decide which

bit b has been drawn by C. It makes some computations on its own without
interacting with C and finally sends a bit b′ to C.

39

A wins an instance of this game iff b = b′ holds at the end. We define A’s
advantage against F by

advQF (A) := 2Pr[A wins]− 1 (161)
= Pr

x1,...,xQ←kn
[A(F, F (x1), . . . , F (xQ)) = 0] (162)

+ Pr
y1,...,yQ←km

[A(F, y1, . . . , yQ) = 1]− 1 (163)

where we take the probability over the randomness of A and C.
We define A’s space complexity to be the number of bits and elements of k it

stores simultaneously in step 2, and we define its time complexity by the number
of bit-operations and arithmetical operations over k it performs in step 2.

Theorem 7 (Multi-Challenge Attack). Let d ∈ N, e > 0 be constants. Let
q ≤ n. Let m ≥ n1+e and let F : Zn

q → Zm
q be of degree d. Let Q ∈ qΘ(n

1− e
d−1).

Then, there is an attack algorithm A3multi whose time and space complexity
is bounded from above by nO(n

1− e
d−1). Further, there exists a constant c > 0 s.t.

A3multi’s advantage in the multi-challenge security game in Definition 14 of F
is lower bounded by c.

Before we can show Theorem 7, we first show a technical lemma that will prove
to be helpful.

Lemma 13. Let a, b > 0. We have for almost all t ∈ N(
1− 1

ta

)tb

≤ 1

e
. (164)

Proof. First note, that we have for each x ≥ 1(
1− 1

x

)x

≤ 1

e
. (165)

We distinguish three cases:

Case 1: a < b.
In this case, we have (

1− 1

ta

)tb

≤
(
1− 1

tb

)tb

, (166)

since ta ≤ tb. Since tb ≥ 1, we ergo have(
1− 1

ta

)tb

≤
(
1− 1

tb

)tb

≤ 1

e
. (167)

40

Case 2: a = b.
In this case, we have(

1− 1

ta

)tb

=

(
1− 1

tb

)tb

≤ 1

e
(168)

since tb ≥ 1.
Case 3: a > b.

In this case, we have(
1− 1

ta

)tb

=

(
1− 1

ta

)ta·tb−a

=

((
1− 1

ta

)ta
)tb−a

. (169)

Since tb−a ≥ 1 for t big enough, we get(
1− 1

ta

)tb

=

((
1− 1

ta

)ta
)tb−a

≤
(
1− 1

ta

)ta

≤ 1

e
. (170)

Proof. The algorithm A3multi receives as input the numbers n,m, d, q ∈ N, a
description of F and the challenges y∗1 , . . . , y∗Q ∈ Zm

q . The goal of A3multi is to
output 0, if each y∗i lies in the image of F , and 1, otherwise.
A3multi works similar as A3 and will first use B2 to compute an algebraic

relation h of F . If h vanishes on each y∗i , A3multi will output 0, otherwise it will
output 1. A3multi proceeds as follows:

1. A3multi uses B2 with input F to compute a non-zero algebraic relation h ∈
Rq[Y].

2. A3multi evaluates h one each y∗i . If we have h(y∗1) = . . . = h(y∗Q) = 0, then
A3multi outputs 0.

3. Otherwise, A3multi outputs 1.

We first analyse the space and time complexities of A3multi: In its first step,
A3multi’s complexity is bounded by the complexity of B2, which is upper-bounded
by nO(n

e
d−1). Let a > 0 be constant s.t. the degree D of h outputted by B2 is

smaller than ≤ a · n1−
e

d−1 . Evaluating h on one y∗i costs less than

⌊
a · n1−

e
d−1
⌋
·

((
m+

⌊
a · n1−

e
d−1
⌋⌊

a · n1−
e

d−1
⌋)

+ 1

)
(171)

≤ a · n1−
e

d−1 ·ma·n1− e
d−1 ≤ nv·n

1− e
d−1 (172)

operations for some constant v > 0. Let u > 0 be a constant s.t. Q ≤ qu·n
1− e

d−1 .
Then, the cost of evaluating h on Q points can be upper-bounded by

Q · nv·n
1− e

d−1 ≤ nu·n
1− e

d−1 · nv·n
1− e

d−1 (173)

= n(u+v)·n1− e
d−1 ∈ nO(n

1− e
d−1) (174)

41

operations. Therefore, the complexity of A3multi lies in nO(n
1− e

d−1).
Now, we want to analyse the advantage of A3multi in the multi-challenge

security game:

1. If b = 0, then the points y∗1 , . . . , y∗Q all lie in the image of F . In this case, h
will vanish on all y∗1 , . . . , y∗Q and A3multi will output 0.

2. If b = 1, then each point y∗i has been sampled uniformly from Zm
q . Lemma 12

bounds the number of roots of zeros of h by ≤ qm − qm−D where D is the
degree of h. Therefore, for i ∈ [m], we have

Pr
y∗
i←Zm

q

[h(y∗i) = 0] ≤ qm − qm−D

qm
= 1− qm−D

qm
= 1− q−D. (175)

The probability, that h vanishes on each y∗i can be upper-bounded by

Pr
y∗
1 ,...,y

∗
Q←Zm

q

[h(y∗1) = . . . = h(y∗Q) = 0] (176)

= Pr
y∗
1←Zm

q

[h(y∗1) = 0]Q ≤ (1− q−D)Q. (177)

Let u > 0 be constant s.t. Q ≥ qu·n
1− e

d−1 . Note, that D ≤ a · n1−
e

d−1 for
a > 0 constant. Then, we have

Pr
y∗
1 ,...,y

∗
Q←Zm

q

[h(y∗1) = . . . = h(y∗Q) = 0] (178)

≤ (1− q−D)Q (179)

≤

(
1− 1

qa·n
1− e

d−1

)qu·n
1− e

d−1

(180)

≤

1− 1(
qn

1− e
d−1

)a

(
qn

1− e
d−1

)u

. (181)

Lemma 13 states now that we have for almost all n ∈ N

Pr
y∗
1 ,...,y

∗
Q←Zm

q

[h(y∗1) = . . . = h(y∗Q) = 0] (182)

≤

1− 1(
qn

1− e
d−1

)a

(
qn

1− e
d−1

)u

≤ 1

e
. (183)

Therefore, the probability that A3multi will output 1 if each y∗i has been
sampled from Zm

q uniformly at random is at least 1− 1
e for n big enough.

42

Ergo, we can lower-bound the advantage of A3multi for almost all n by

advQF (A3
multi) = Pr

x1,...,xQ←Zn
q

[A(F, F (x1), . . . , F (xQ)) = 0] (184)

+ Pr
y1,...,yQ←Zm

q

[A(F, y1, . . . , yQ) = 1]− 1 (185)

≤ 1 + (1− 1

e
)− 1 = 1− 1

e
. (186)

A.3 Transcendence and Function Fields

Let k be any field. In Section 3, we claimed that each set of m > n polynomi-
als f1, . . . , fm ∈ k[X] = k[X1, . . . , Xn] must be algebraically dependent. In this
subsection, we will prove this claim formally. For this end, we will study some
properties of extensions of function fields and introduce the notion of transcen-
dental field extensions. For more background on transcendental field extensions,
we refer the reader to the book of Serge Lang [34, Chapter 8].

We will first introduce the notion of function fields:

Definition 15. Let k be any field and k[X] = k[X1, . . . , Xn]. Since k[X] is an
integral domain (i.e. commutative and zero divisor-free), it can be embedded into
its quotient field that is given by

k(X) :=

{
f

g
| f, g ∈ k[X], g ̸= 0

}
. (187)

k(X) is called the function field of n variables over k.

Elements of function fields are called rational functions.
The extension k ⊂ k(X) gives us a prime example of a transcendental field

extension.

Definition 16. The inclusion k ⊂ k(X) gives us an extension of fields. Let L
be an intermediate field i.e. k ⊂ L ⊂ k(X).

We call an element f ∈ k(X) transcendental over L if the morphism of
L-algebras

L[T] −→ k(X) (188)
T 7−→ f(X) (189)

is injective (where T is a fresh new variable). If f is not transcendental, we call
it algebraic over L.

Given elements f1, . . . , fm ∈ k(X) we call them a transcendence basis for
the extension k ⊂ k(X) if the following things hold:

1. For each i ∈ [m], fi is transcendental over k(f1, . . . , fi−1) (where k(f1, . . . , fi−1)
is the smallest field in k(X) that contains k and f1, . . . , fi−1).

2. k(X) is algebraic over k(f1, . . . , fm), i.e.

dimk(f1,...,fm)(k(X)) <∞. (190)

43

As we will see, transcendence bases are very similar to vector space bases.
In fact, one defines the degree of transcendence of a field extension k ⊂ L as the
number of elements of a transcendence basis for this extension. We will see later
that this notion is well-defined i.e. independent of the choice of the basis.

Remark 5. It can be shown that f1, . . . , fm is a transcendence basis iff each of
its permutation fπ(1), . . . , fπ(n), for π ∈ Sn, is a transcendence basis. Therefore,
we can consider unordered sets as transcendence bases.

The following lemma shows how transcendence bases are related to the notion
of algebraically independent polynomials:

Lemma 14. Let f1, . . . , fm ∈ k[X]. The following are equivalent:

1. f1, . . . , fm can be extended to a transcendence basis for k ⊂ k(X).
2. The polynomials f1, . . . , fm are algebraically independent.

Proof. We prove each direction separately:

1. Let f1, . . . , fm be s.t. they can be extended to a transcendence basis for
k ⊂ k(X). Let g1, . . . , gr be a set of elements of k(X) s.t. f1, . . . , fm, g1, . . . , gr
is a transcendence basis for k(X) (note that r may be zero). Then, we have
for each i ∈ [m] that the map

ψi : Li[T] −→ k(X) (191)
T 7−→ fi (192)

is injective where Li = k(f1, . . . , fi−1, fi+1, . . . , fm).
Assume – for the sake of contradiction – that f1, . . . , fm are not algebraically
independent. Set

K := {h ∈ k[Y1, . . . , Ym] | h(Y) ̸= 0, h(f1(X), . . . , fm(X)) = 0} (193)

and let v ∈ K be of minimal degree. Let i ∈ [m] be s.t. we can write v as

v(Y) =

d∑
j=0

cj(Y) · Y j
i (194)

with cj(Y) ∈ k[Y1, . . . , Yi−1, Yi+1, . . . , Ym], d > 0 and cd ̸= 0.
We claim that the polynomial

l(T,X1, . . . , Xn) :=v(f1(X), . . . , fi−1(X), T, fi+1(X), . . . , fm(X)) (195)

=

d∑
j=0

cj(f1(X), . . . , fm(X)) · T j (196)

is a non-zero element of Li[T]. In fact, cd(f1(X), . . . , fm(X)) cannot vanish,
since cd would be an element ofK in that case. However, we picked v to be an
element of minimal degree, and the degree of cd is by d > 0 lower than the de-
gree of v. Therefore, l(T,X) is non-zero. Now, l(fi, X) = v(f1, . . . , fm) = 0,
therefore l lies in the kernel of ψi, therefore ψi is not injective. A contradic-
tion!

44

2. Let f1, . . . , fm be algebraically independent. Set S0 := {f1, . . . , fm}. For
i = 1, . . . , n, we proceed inductively as follows: If Xi is transcendental over
k(Si−1), set Si := Si−1 ∪ {Xi}. Otherwise, set Si := Si−1.
By construction, we will end with a set Sn s.t. eachXi is algebraic over k(Sn).
In particular, the extension k(Sn) ⊆ k(X) will be algebraic. On the other
side, by construction, if Xa1

, . . . , Xal
are elements added to S0, we have for

each i = 1, . . . , l thatXal
is transcendental over k(f1, . . . , fm, Xa1 , . . . , Xal−1

).
So, it is left to show that for i = 1, . . . ,m the element fi is transcendental
over k(f1, . . . , fi−1). Assume – for the sake of contradiction – that this would
not be the case for one i ∈ [m]. Let h(T) ∈ k(f1, . . . , fi−1)[T] s.t. h(T) ̸= 0
and h(fi) = 0. The function h(T) can be written as

h(T) =

d∑
i=0

ci · T i (197)

with c1, . . . , cd ∈ k(f1, . . . , fi−1). Since we can multiply each cj with the
smallest common denominator of c0, . . . , cd, we can – without loss of gener-
ality – assume that each cj lies in k[f1, . . . , fi−1]. In particular, there is a
non-zero polynomial v ∈ k[Y1, . . . , Yi] s.t.

v(f1, . . . , fi−1, T) = h(T). (198)

Now, v is a non-trivial element of the kernel of

ϕ : k[Y] −→ k[X] (199)
Yi 7−→ fi. (200)

Ergo, the elements f1, . . . , fm are not algebraically independent. A contra-
diction!

The previous lemma justifies to extend the notion of algebraically independence
to elements of k(X) in the following way:

Definition 17. We call a list of elements f1, . . . , fm ∈ k(X) algebraically
independent or transcendental over k iff f1, . . . , fm can be extended to a
transcendence basis of k ⊂ k(X).

The next lemma is a well-known fact in the study of transcendent exten-
sion fields. It shows that, for a given extension k ⊂ L, all transcendence bases
must have the same cardinality. We show this fact only in the case of finite
transcendence bases of the extension k ⊂ k(X):

Lemma 15. Let f1, . . . , fm, g1, . . . , gl ∈ k(X) be s.t. {f1, . . . , fm} and {g1, . . . , gl}
are transcendence bases for k ⊂ k(X). Then, we have

m = l. (201)

45

Proof. W.l.o.g., we assume m > l. We claim that there is an i ∈ [l] s.t. the
elements

gi, f2, . . . , fm (202)

are algebraically independent. In fact, if each g1, . . . , gl would be algebraic over
k(f2, . . . , fm), then f1 would be algebraic over k(f2, . . . , fm) and {f1, . . . , fm}
couldn’t be algebraically independent.

We repeat this procedure for the first l elements of f1, . . . , fm and have finally
that the elements

g1, . . . , gl, fl+1, . . . , fm (203)

must be algebraically independent. However, this is not possible, since the el-
ements fl+1, . . . , fm must be algebraic over k(g1, . . . , gl), since {g1, . . . , gl} is a
transcendence basis for k ⊂ k(X). A contradiction!

Since X1, . . . , Xn is a transcendence basis of k ⊂ k(X), it follows that the degree
of transcendency of k ⊂ k(X) must be n and each transcendence basis must
have cardinality n. We can combine this insight with Lemma 14 to deduce the
following corollary:

Corollary 2. Let f1, . . . , fm ∈ k[X]. If f1, . . . , fm are algebraically independent,
then we must have

m ≤ n. (204)

This corollary now explains why algorithm B1 in Definition 7 must stop after
a finite number of iterations if m > n.

46

	Worst-Case Subexponential Attacks on PRGs of Constant Degree or Constant Locality

