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Abstract. Side-channel attacks are a fundamental threat to the security of cryptographic
implementations. One of the most prominent countermeasures against side-channel attacks is
masking, where each intermediate value of the computation is secret shared, thereby concealing
the computation’s sensitive information. An important security model to study the security of
masking schemes is the random probing model, in which the adversary obtains each intermediate
value of the computation with some probability p. To construct secure masking schemes, an
important building block is the refreshing gadget, which updates the randomness of the secret
shared intermediate values. Recently, Dziembowski, Faust, and Zebrowski (ASIACRYPT’19)
analyzed the security of a simple refreshing gadget by using a new technique called the leakage
diagram. In this work, we follow the approach of Dziembowski et al. and significantly improve
its methodology. Concretely, we refine the notion of a leakage diagram via so-called dependency
graphs, and show how to use this technique for arbitrary complex circuits via composition
results and approximation techniques. To illustrate the power of our new techniques, as a case
study, we designed provably secure parallel gadgets for the random probing model, and adapted
the ISW multiplication such that all gadgets can be parallelized. Finally, we evaluate concrete
security levels, and show how our new methodology can further improve the concrete security
level of masking schemes. This results in a compiler provable secure up to a noise level of O(1)
for affine circuits and O(1/n2) in general.
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1 Introduction

Context. Proving the security of cryptographic schemes is the de-facto standard of modern
cryptography. The most widely used security model is the black-box model, where the adversary
has access to the inputs and outputs but has no knowledge or control over the algorithm’s inner
workings. It is well known, however, that real-world implementations may reveal information about
the inner workings, and in particular about the secret key of a cryptographic scheme. Multiple side-
channel attacks exploit physical phenomena such as power consumption [24], cache accesses [10],
acoustic signals [18], or timing [23].

Masking schemes. A popular countermeasure against power analysis attacks is masking. At a
high-level, the idea is to conceal sensitive intermediate values through secret sharing. A masking
scheme relies on an encoding function that takes as input a value on a wire x and shares it over
multiple wires that carry the shares x0, . . . , xn−1. The encoding function we consider in this work
samples x0, . . . , xn−1 uniformly at random such that x =

∑
i xi, where n is called the order of the

masking scheme. If x ∈ F2, then such masking schemes are called Boolean masking. The main
challenge in designing secure masking schemes is to develop operations – often called gadgets
– that securely compute on shared values. Security here means that even if the adversary learns
information on the internals of the gadget, such information does not reveal sensitive information.
In addition, we need a method to compose gadgets without violating security. This is often done
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via the refreshing algorithm, which takes as input a sharing x0, . . . , xn−1 that encodes x, and outputs
a fresh sharing x′0, . . . , x

′
n−1 of the same secret value. Here, for security, we have to guarantee that

even given leakage from the refreshing procedure, the output x′0, . . . , x
′
n−1 is a fresh encoding of x.

Security analysis of masking countermeasure. As the design of the masking scheme is
complex, we analyze their security using security proofs. To this end, we require a leakage model
to describe the leakage emitting from a masked device formally. The most widely used leakage
model is the t-threshold probing model originally introduced in the seminal work of Ishai, Sahai,
and Wagner (ISW) [22]. In this model, cryptographic computation is described as a Boolean
(sometimes arithmetic) circuit, where the adversary is allowed to probe up to t wires and learn the
values carried on these wires during the computation.

Although a security analysis in the threshold probing model provides the first evidence of the
soundness of a masking scheme, it does not accurately model the quantitative nature of leakage,
thereby excluding important types of attacks [34, 12]. To address this problem, Prouff and Rivain
introduced the noisy leakage model [30]. In this model, the adversary obtains a noisy version of
each wire, where the noise is sampled from a certain distribution (e.g., the Gaussian distribution).
Noisy leakages accurately model physical leakage from power consumption and, in particular,
allow for quantitative statements about the noise required to conceal sensitive information – crucial
information for cryptographic engineers. In detail, they define the noise as a set of probabilistic
leakage functions that are restricted by an upper bound using the Euclidean Norm (or statistical
distance) as a metric. An important shortcoming of the noisy leakage model, however, is that it is
very hard to work with. Concretely, in comparison to the threshold probing model, security proofs
are highly cumbersome, and proving the security of natural constructions often requires to rely
on unrealistic assumptions (e.g., the use of leak-free gates). To resolve these problems, somewhat
surprisingly, Duc et al. [14] showed that noisy leakages and the seemingly much weaker threshold
probing model of ISW are related. For their proof, they considered an intermediate model – the
p-random probing model – and showed that security in this model directly implies security against
noisy leakages. The p-random probing model considers a particular noise distribution, where each
wire leaks with probability p, while the adversary obtains no knowledge of the wire’s value with
probability 1 − p. The security in the random probing model only implies security in the noisy
model with a loss of the field size. There are two approaches to avoiding the security loss. The first
approach was presented by Dziembowski et al.[15] who proposed the average random probing
model, a modified version of the random probing model. However, security proofs in this model are
still rather complex for two reasons. First, they assume a more powerful class of leakage functions
because the adversary can choose leakage functions where only the average leakage probability is
p. In other words, for any possible input value, the leakage probability p can be different (up to p
times the field size). Second, the adversary also learns the internal randomness used by the leakage
function to decide whether a value leaks or not. Hence, the adversary even learns something about
the values when the leakage function does not output the value. An alternative approach is given
by Goudarzi et al. [29]. They eliminate the field size by using an alternative metric for the noisy
model. In other words, they do not modify the probing model where the actual proof is done, but
the noisy model that should model the natural leakage. In detail, they use a worst-case metric
called (Average) Related Error and show that security in the random probing model tightly implies
security in the modified noisy model. Since the result of Goudarzi et al. and Duc et al., security in
the random probing model has been studied intensively by the research community [2, 4, 7, 11, 16].
There are two important goals in this research area. First, we aim to design masking schemes
that obtain security for values of p independent of the order n of the masking scheme and are,
in particular, close to 1. This is important as it implies that the masked computation remains
secure in the presence of larger amounts of leakage. Second, the masking schemes that we design
need to be efficient, where efficiency is typically measured in terms of circuit and randomness
complexity. In particular, since all of our gadgets have low depth, the latency of the compiled
circuits is significantly improved. Our main contribution is to improve on both of these goals for
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certain classes of masked computation.

1.1 Contribution

Improved analysis of refreshing gadgets. As discussed above, the main ingredient of any
masked computation is a secure refreshing gadget. It is typically placed throughout the masked
computation to ensure composition. In addition, refreshing gadgets also have applications for key
refreshing, e.g., as part of a masked AES, where the secret key has to be refreshed periodically
to ensure security. There is a large body of literature on designing secure refreshing schemes.
For our work, the most important is the work of Dziembowski et al. [16], who gave a security
analysis of a very simple and efficient refreshing. Their scheme essentially uses only n randomness
and n operations, which is optimal for a refreshing gadget of order n masking. Dziembowski et
al. show that this simple refreshing gadget surprisingly is O(

√
pn)-secure. Our first contribution is

to improve their construction and show that it achieves asymptotically better security of O(pn).

Improved analysis of affine masked computation. As a second contribution, we extend our
analysis of the refreshing gadget to protect affine computation. Affine computation (i.e., addition
and multiplication by a constant) is frequently used in cryptographic schemes since it is less costly
than non-linear operations. This is the reason why, for instance, many symmetric cryptographic
schemes make massive use of affine computation. In our work, we give an improved analysis
for simple masked affine computation. In particular, we consider a very simple addition gadget,
which computes the addition of two sharings a0, . . . , an−1 and b0, . . . , bn−1 by adding the shares
component-wise, i.e., ci = ai + bi followed by a refreshing of c0, . . . , cn−1. We can show that this
gadget remains O(pn)-secure, where earlier works either require significantly more randomness
(namely, [4] with O(n2.4)-randomness required, while ours needs O(n)-randomness to refresh the
inputs) or require more noise (namely [16], O(

√
pn)).

We also show how to extend our results to the masked computation of non-linear operations.
Our multiplication gadget is essentially the widely used and analyzed ISW multiplication. While
it is known that asymptotically, there are more advanced constructions that achieve security
for a constant p, we improve the analysis of the ISW multiplication for small share numbers.
Concretely, we can prove the security up to [18p + 2(1 − (1 − p)8n + 1 − (1 −

√
3p)n−1)]n, instead

of (32np + 4n
√

3p)n) as in [16]. Interestingly, this illustrates that the security for larger share
number n is better than previously assumed [16]. We believe that this is a worthwhile goal due
to the following two reasons. First, it was shown [11] that the ISW-multiplication achieves better
security than more advanced constructions for small values of n. Second, the ISW multiplication is
widely used in many masking schemes, and hence it is important to better understand its security
in the random probing model.

Parallel computation. Finally, we note that all our constructions are highly parallelizable.
Parallel gadgets [13, 3] are particularly interesting for masked circuits as they are faster due to
executing many operations at the same time. In addition, it is also more challenging to perform a
side-channel attack against a parallel implementation than against a serial one. The basic idea is
that parallel computations can increase the noise in the attacks, as shown in [27].

1.2 Related Work

Proof techniques. Analyzing leakage resilience of circuits via graphs was already proposed
in [31] at Crypto 2015. They described a transformation of circuits based on graphs to generalize
the ISW Multiplication and showed that it is closely related to Threshold Implementations [28]
and the Trichina gate [33]. In particular, they give a generalized graph for the multiplication
gadget using different layers, such as linear and non-linear layers, and compare the security of
the different multiplication gadgets. In contrast to the work in [31], the work of [16] did not
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use the graph to analyze a gadget but a full circuit in the random probing model. They also use
a graph based approach that is in particular useful to analyze the linear layers of circuits. We
formalized the approach of [16], and give tighter security proves in the random probing model.
Further, we propose gadgets with lower latency. Alternative approaches to analyze the security in
the random probing model were proposed in [2, 4, 7, 9]. They introduce definitions for random
probing composability based on counting the number of probes at the inputs and outputs of gadgets
that are needed to simulate the leakage. To improve this approach, we could follow the recent work
of Cassiers et al. [11] and tighten the analysis. Concretely, in [11], the authors use a definition,
which they call the Probe Distribution Table (PDT). The PDT allows a tighter analysis since
it considers the concrete wires that the simulator needs. The drawback of the PDT approach is
that the table grows exponentially with the number of shares of the gadgets, and thus a generic
analysis is not possible. The work of [4, 7, 5] allows analysis for generic order, but it only provides
security proofs for circuits with special structures. For this reason, the constructions are typically
less efficient, as discussed above.

Compiler. As mentioned in Section 1.1, many compilers produce masked circuits with provable
security in the random probing model. At Eurocrypt 2016, Andrychowicz et al. [2] presented
a compiler with constant leakage probability using expander graphs. This rather is a feasibility
result since expander graphs require a high number of shares. Two years later, Goudarzi et
al. [19] gave a compiler for polynomial sharing requiring noise p = O(1/ log(n)). Here, they
presented an NTT-based secure multiplication with complexity O(n log(n)). The compiler was
further improved in [20] to allow more general fields F and complexity Θ(n log(n)). They use the
additive FFT algorithm proposed by Gao and Mateerin 2010 [17] to avoid the limitations of the
classical NTT. With self-folding bases, a generalization of Cantor bases, they further optimized the
gadget. However, the field size still restricts the number of shares n < |F| due to the share-wise
different support points of poly sharings. Considering affine circuits, our compiler is more efficient.
For example, our refresh gadget has linear complexity and does not use multiplication gates, while
the one in [20] uses n log(n)/2 multiplications. Further, our compiler allows a leakage rate of O(1)
for affine circuits instead of O(1/ log(n)). Regarding non-affine circuits, their construction has
better complexities with respect to efficiency and security due to their NTT-based multiplication.
However, for our compiler, we slightly modified the ISW multiplication such that it is parallelizable.

To allow security for a constant leakage probability p, Ananth et al. [1] proposed a modular
approach how to compose a secure compiler multiple times. Finally, several follow-up works
further improved this approach [4, 8, 6]. However, as described in Section 1.1, this approach leads
to relatively costly circuits with randomness complexity of at least O(n2.4) for affine and non-affine
circuits, while our compiler only requires O(n) and O(n2), respectively. In particular, our work
analyzes the widely used ISW multiplication that is still promising for reasonable share number
(2 ≥ n ≥ 32) and noise parameters [11]. For this reason, we try to close the gap between practice
and theory and give a tighter security analysis in the random probing model.

2 Background

Notations. Let [n] := {0, 1, . . . n − 1}. Let (F,+, ·) be a finite field with its addition and multi-
plication (and let − be its subtraction). We denote with x and (xi)i∈[n] vectors with coefficients in
the field xi ∈ F. Let X0, X1 be two random variables over a set X. Their statistical distance is:
∆(X0; X1) := 1

2
∑

x∈X
|Pr[X0 = x] − Pr[X1 = x]| . If ∆(X0; X1) ≤ ϵ, we say that X0 and X1 are ϵ-close.

Directed graphs. A directed graph is a pair G = (V, E) with a set of vertices/nodes V and a set
of edges E ⊆ {(x, y)|(x, y) ∈ V2 and x , y}, which are ordered tuples of vertices. Further, we write
(x, y) to refer to such edges. We call x its source node and y its destination node. When we draw our
graphs, we represent the edge (x, y) with an arrow from x pointing to y. We write −(x, y) := (y, x)
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to exchange destination and source. A sub-graph G′ ⊂ G is a graph G′ = (V, E′) with E′ ⊂ E. This
allows us to define unions of sub-graphs G′ = (V, E′), G′′ = (V, E′′) with G′ ∪G′′ := (V, E′ ∪ E′′).
Note that all sub-graphs also have all nodes V . In our work, we are only interested in the edges and
assume that each sub-graph still consists of all nodes. Further, if we consider graphs G′ = (V ′, E′),
G′′ = (V ′′, E′′) with different nodes V ′ , V ′′, we also write G = G′ ∪G′′ := (V ′ ∪ V ′′, E′ ∪ E′′).
Hence, G is a graph consisting of two (sometimes unconnected) sub-graphs G′ and G′′. Let G be
a graph. A path is the image of continuous functions f : [0, 1] ⊂ R → G. A loop is a path s.t.
f (0) = f (1). We consider only loops s.t. f|(0,1) is injective to avoid loops of type (x, y),−(x, y) or
containing it as a sub-loop.

Circuits. An arithmetic circuit over a finite field F is a labeled acyclic graph. Its edges are
the wires, and its vertices are the gates. The edges pointing to a gate are the input wires of the
gate, while those coming from it are the output wires. We use the following gates: addition + :
with fan-in 2 and fan-out 1, outputting the addition of the 2 input variables; subtraction − : as
the addition one, outputting the subtraction; multiplication . as the addition, outputting the
multiplication; constant a : with fan-in 0 and fan-out 1, outputting the constant value a; random
R : with fan-in 0 and fan-out 1 outputting a uniform random variable; copy C : with fan-in 1 and
fan-out 2, outputting 2 copies of the input variable ; input I: with fan-in 1 and fan-out 1, outputting
the input variable; output O: with fan-in 1 and fan-out 1, outputting the output variable. The last
two gates (I and O) are added for syntactic reasons. A complete circuit is a circuit where there is an
I gate at every input wire of the circuit and an O gate at every output wire; otherwise, the circuit is
incomplete. The completion of an incomplete circuit is the addition of I and O whenever needed to
make the circuit complete. An affine circuit is a circuit without multiplication gates. We denote
withW(C) the set of wires of the circuit C.
A wire carries a variable. We say that two variables, x and y, are the same variable if the wires
carrying x and y are connected only via copy gates. The value of a variable x is the value that is
carried on the wire carrying x during an execution with fixed inputs and randomness.

Masking. One of the most common countermeasures against side-channel attacks is masking.
The idea is to split the sensitive variables into n shares and then perform the computations on
these shares and finally recover the output. We use an encoding scheme (Enc, Dec) to encode
variables, gadgets to perform computations on encoded variables, and a refreshing gadget to
securely compose multiple gadgets. We discuss these individual components below in more detail.

Encoding/decoding schemes. An encoding scheme Enc is a probabilistic algorithm that takes
as input x ∈ F and outputs an n-tuple (x0, ..., xn−1) = Enc(x), where n is the masking order. The
decoding scheme Dec takes as input an n-tuple (x0, ..., xn−1) and outputs x = Dec(x0, ..., xn−1). For
correctness, we want that for any x ∈ F it holds that Dec(Enc(x)) = x. For security, we need that
any subset of n − 1 shares of Enc(x) are independent of x. We use arithmetic encoding. Enc(x)

provides a randomized n-tuple x0, ..., xn−1 s.t.
n−1∑
i=0

xi = x , and Dec(x0, ..., xn−1) =
n−1∑
i=0

xi. In the

following, we will often denote an encoding of x by (xi)i∈[n].

Gadgets. To perform computations on encoded variables, we construct gadgets. Gadgets
are made out of simple gates such that even if the internals of the gadgets leak, the adversary
will not learn any “useful” information. Suppose we have a gate implementing the function
f : Fl → Fk (e.g.,l = 2 and k = 1, for + ). The corresponding gadget G f is composed of many
gates and performs the same operation where the input wires hold l encodings and the output
wires carry k encodings of the outputs. We require soundness from the gadgets, i.e., gadgets that
perform the same operation as the underlying gate, just in the encoded domain. Formally, we have
∀x = (x0, ..., xl−1) ∈ Fl,

f (x0, ..., xl−1) = (Dec(y0
i )i∈[n], . . . , Dec(yk−1

i )i∈[n])
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with ((y0
i )i∈[n], . . . , (yk−1

i )i∈[n])← G f (Enc(x0), . . . , Enc(xl−1)).

Refreshing schemes. Refreshing schemes (or refreshing gadgets) are gadgets G f where f is
the identity.1 The scheme takes as input an encoding (xi)i∈[n], and outputs a re-randomized encoding
(yi)i∈[n], such that Dec((xi)i∈[n]) = Dec((yi)i∈[n]). In this work, we consider refreshing schemes using
a linear number of random gates R .

In Figure 1a the simple refresh sRef of [16] is depicted, initially introduced in [32]. The gadget
adds a random value to each input yi ← xi + ri with i = 0, . . . n− 2 and subtracts each random value
from the last input yn−1 ← xn−1 − (r0 + · · · + rn−2).

This work considers an alternative to sRef that we call pRef; see Figure 1b. This gadget was
initially introduced in [3] and has the key feature that it is highly parallelizable. pRef takes as an
input (xi)i∈[n] with n random values ri and processes them in two parallel steps. In the first step, it
computes bi ← xi+ri, and in the second step, it subtracts ri−1 from bi such that yi ← bi−ri−1 (mod n)
for all i ∈ [n], obtaining (yi)i∈[n].

Circuit compilers. Given the components from above, we can transform circuit C into a masked
circuit Ĉ. This is done via the concept of a circuit compiler CC. CC works as follows: First, CC
replaces each wire carrying x with a bundle of n-wires carrying an encoding of x, (xi)i∈[n]. Next, it
replaces all gates in C with the corresponding sound gadgets, input I gates with Î input encoders
(which encodes the input), and output O gates with Ô output decoders. Finally, between every
two gadgets, the compiler CC adds a refreshing gadget to ensure secure composition. The masked
transformation Ĉ of a complete circuit C is sound if Ĉ(x) = C(x) for every possible input x of C.
For an incomplete circuit C, we say that the transformation Ĉ is sound if the transformation of its
completion is sound. A compiler CC is sound if for all circuits C the transformation Ĉ = CC(C) is
sound.

Random probing model. As discussed in the introduction, we use the p-random probing
model, originally introduced in [22] to model side-channel leakage of the transformed circuit
Ĉ. In the p-random probing model, each wire leaks the value that it carries with probability p.
Following [22], we assume that the wires of the input encoders Î and output decoders Ô do not leak.
Notice that, as in [22], this is without loss of generality when we move from stateless to stateful
circuits. To make it explicit what wires leak, we will denote in the following withW′(Ĉ) ⊂ W(Ĉ)
the set of wires of the circuit Ĉ that can leak. The definition below formalizes security in the
p-random probing model.

The transformed circuit is private if its leakage reveals nothing about its inputs and outputs. We
can define this with a security experiment.

Definition 1 (Privacy [16]). Let C be a circuit with fan-in k with input x = (x1, ..., xk). Further, let
Ĉ be a sound transformation of C and p ∈ [0, 1] its leakage probability. The leakage experiment
Leak(Ĉ, x, p) is defined as follows:
• We fed x to Ĉ resulting in some assignments of the wires of Ĉ. If C is incomplete, the input

bundle corresponding to the input wire containing x is fed with an encoding (xi)i∈[n] of x.
• Each wire w ofW′(Ĉ) is added to Lp(Ĉ) with probability p.
• Output: (Lp(Ĉ), A

|Lp(Ĉ)), where A is the set of the values carried by the wires ofW during

the circuit evaluation of Ĉ on input x.
Ĉ is (p, ϵ)-private if there is a simulation algorithm that, not knowing x, outputs a random variable
that is ϵ-close to the actual output of Leak(Ĉ, x, p)

1We emphasize that this does not imply that G f is also the identity. Since the gadget can be probabilistic, the encoding
of the outputs can be re-randomized.
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sRef((xi)i∈[n])

for j ∈ {0 . . . n − 2}

r j ←$ F

c0 ← 0

for j ∈ {0 . . . n − 2}

c j+1 ← c j + r j

y j ← x j + r j

yn−1 ← xn−1 − cn−1

return (yi)i∈[n]

(a) Simple refresh gadget [32].

pRef((xi)i∈[n])

for j ∈ {0 . . . n − 1}

r j ←$ F

for j ∈ {0 . . . n − 1}

b j ← x j + r j

y j ← b j − r j−1 (mod n)

return (yi)i∈[n]

(b) Parallel refresh gadget [3].

Figure 1: Refresh gadgets with linear random complexity.

In other words, the masked circuit Ĉ is (p, ϵ)-private if the leakage in experiment Leak(Ĉ, x, p)
can be simulated independently from the inputs up to ϵ statistical distance. More precisely, if for
any two inputs x, x’ of the circuit, the distributions Leak(Ĉ, x, p) and Leak(Ĉ, x’, p) are ϵ-close,
then Ĉ is (p, ϵ)-private. This observation was used to prove security in [16]. Therefore, they
defined Extended Leakage Shiftability to describe when the leakage is independent of the input. In
particular, shiftability accurately describes the fact that we can change the input of a circuit so that
the observed leakage does not contradict the new input.

Definition 2 (Leakage Shiftability [16]). Let Ĉ be a sound transformation of a circuit C. We
say that an output L of the experiment Leak(Ĉ, x, p) is shiftable to x’ if it can be output of the
experiment Leak(Ĉ, x’, p).

In other words, let L← Leak(Ĉ, x, p) be the leakage with L = A
|Lp(Ĉ), where A is the set of the

values carried by the wires during the circuit evaluation of Ĉ on input x. Then, L is shiftable if there
is an assignment A′ with the same probability during the circuit evaluation of Ĉ on input x’ s.t. it
still holds for both leakages L = A′

|Lp(Ĉ)
. In this case, we can shift the values of the variables from A

to A′ without modifying the values of the variables leaked. This technique allows more fine-grained
security analyzes than simulatability since we show where we can modify the input encodings
of each gadget (without ignoring where exactly, as done for simulatability). So, if the leakage is
shiftable and the leakage of the shifted encoding has the same distribution as the unshifted one, the
leakage is independent of the encoding. Hence, the leakage can be simulated without knowing the
encoded value. This property was also used in [16] to prove their compiler security.

Corollary 1 ([16]). Let Ĉ be the sound transformation of a circuit C via Dziembowski et al.’s
compiler [16]. If

Pr[Leak(Ĉ, x, p) is not shiftable to x’, for any x’] ≤ ϵ,

for any input x, x’ then Ĉ is (p, ϵ)-secure.

To compute the shift probability, the authors give a new technique to transform this problem
into a graph path problem. Next, we present the class of graphs they consider.

Original leakage diagram. Dziembowski et al. [16] introduced the concept of leakage diagrams.
They represent all the variables on a graph and those variables whose values are leaked in a sub-
graph called the leakage diagram. For example, they represent multiple consecutive executions of
sRef (depicted in Figure 2a) with the diagram depicted in Figure 2b. The edges of the diagram
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(a) Simple refresh gadget [16].
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(b) The graph of the simple refresh used for the leak-
age diagram [16].

Figure 2: Refresh gadgets with linear random complexity.

represent the intermediate values that are computed during the execution of this circuit. The
intermediate values of each sRef execution are represented by two consecutive rows and by the
vertical edges between these two rows. On the lower row, there are n edges that represent the input
shares (one edge per share), while on the upper row, there are n edges representing the output
shares of a refreshing gadget. The vertical edges between two rows represent the partial sum ci

j of
the random values used during that execution. Since ci

j+1 = ci
j + ri

j, the variable ri
j is represented

by both the edges ci
j and ci

j+1. They also add the edges corresponding to the variable ci
n. These ci

n

are defined similarly to the others as follows ci
n = ci

n−1 + xi
n−1 − xi−1

n−1. Thus, it always holds ci
n = 0

because ci
n = ci

n−1 + xi
n−1 − xi−1

n−1 = ci
n−1 + (xi−1

n−1 − ci
n−1) − xi−1

n−1 = 0.
During k executions of sRef the adversary receives a leakage Lp (see Def. 1). The leakage

diagram corresponding to Lp is the subgraph of Fig. 2b composed by all the edges corresponding
to the variables belonging to Lp (and all ci

0 and ci
n since they are always equal to 0. Thus their

values are always known by the adversary). Further, Dziembowski et al. [16] proved that the
leakage can be simulated independently from the input x = Dec((x0

i )i∈[n]) if there is no path from
the left to the right of the leakage diagram. The technique was extended to analyze more complex
masked circuits where each gadget’s output is refreshed with the sRef gadget. Further, they show
that the security can be bounded with the probability that there is such a path.

3 Parallel Compiler

The circuit compiler we present in this paper has the key feature that its operations are highly
parallelizable. It uses the standard gadgets for addition (cf. Fig. 3a), copy (cf. Fig. 3b), random
(cf. Fig. 3d), and constant (cf. Fig. 3c) operations. When considering their circuit representation,
the gadgets have a low depth; hence, they can be executed highly parallelly. The more interesting
gadgets are the ones for the multiplication of two encoded inputs (cf. Fig. 3e) and for refreshing
an encoding (cf. Fig. 1b). The multiplication gadgets with input encodings (ai)i∈[n] and (bi)i∈[n]
computes the tensor product aib j of all shares. As in the ISW multiplication, this results in n2

products aib j that we need to compress to a random encoding of the output by appropriately adding
up these values and blinding the intermediate results by injecting fresh randomness. In contrast to
the ISW multiplication that has depth n, we change the way in which this final addition is done to
reduce the depth to log(n). This significantly reduces the latency of the gadget from n to log(n).
The refresh gadget re-randomizes an encoding such that it still decodes to the same value. The
refresh gadget of our compiler has the key feature that it only has depth 2 in contrast to the simple
refreshing from [16], which has an asymptotic depth of n.
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Compiler CCp. The parallel compiler CCp takes as input an arbitrary circuit C using the gates
+ , − , . , a , R and C and replaces each gate with the corresponding gadget from Figure 3

in Ĉ. Note that the gadget for − works by slightly modifying the Add gadget such that the second
input is first share-wise transformed to its additive inverse, i.e., by setting −bi ← bi. At the high
level, the topology of C and Ĉ is the same, i.e., if two gates are connected by wires in C, then
the corresponding gadgets are connected in the same way through wire bundles in Ĉ. These wire
bundles carry the encodings of the variables corresponding to the wires in C. Finally, to guarantee
composability, the compiler CCp inserts refresh gadgets between each computational gadget to
inject further randomness. By applying the compiler to a circuit C, we get a parallelizable masked
circuit that we denote with Ĉ← CCp(C). We start by showing the soundness of the compiler CCp

in the following corollary.

Corollary 2. Let C : Fs → Ft be an arbitrary circuit and Ĉ← CCp(C). For any x0, . . . , xs−1 ∈ F,
we have:

((y0
i )i∈[n], . . . (yt−1

i )i∈[n])← Ĉ(Enc(x0), . . . , Enc(xs−1))

with C(x0, . . . , xs−1) = (Dec((y0
i )i∈[n]), . . . , Dec((yt−1

i )i∈[n])).

Proof. The proof of the corollary immediately follows from the soundness of the gadgets depicted
in Figure 3. □

Our compiler has similar features to the compiler of [16]. More precisely, we can show that
Corollary 1 also holds for our compiler.

Corollary 3. Let Ĉ be the sound transformation of a circuit C via our compiler, CCp. If

Pr[Leak(Ĉ, x, p) is not shiftable to x’, for any x’] ≤ ϵ,

for any input x, x’ then Ĉ is (p, ϵ)-secure.

Proof. This proof is similar to the one in [16]. According to Definition 1, we need to simulate
Leak(Ĉ, x, p) independently from the input x up to ϵ statistical distance. Therefore, we prove
that the distribution of Leak(Ĉ, x’, p)-experiment is ϵ-close to Leak(Ĉ, x, p)-experiment for any
x, x’ if it is shiftable. This immediately gives the required simulator2. So, we are left with the
proof that shiftability for any x, x’ implies that the outputs of the experiments Leak(Ĉ, x, p) and
Leak(Ĉ, x’, p) are ϵ-close. Let n be the number of shares used by Ĉ. We will follow a sequence of
Games where the first game represents the circuit with input x and the last one with input x’:

Game 0: The leakage experiment Leak(Ĉ, x, p).

Game 1: The modified Game 0, where we have modified how pRef gadgets pick the randomness.
Instead of picking the randomness uniformly at random, pRef picks uniformly at random a new
encoding of x, (x∗0, ..., x

∗
n), then, via the randomness reconstructor RandR(pRef) (described in

Fig. 4), it computes the internal randomness. Hence, the output shares (xi
0, ..., x

i
n) are the random

encoding (x∗0, ..., x
∗
n).

Transition between Game 0 and Game 1: We show that the randomness reconstructor RandR(pRef)
outputs randomness indistinguishable from that used by pRef of Game 0. In both cases, r0 is picked
uniformly at random, and hence, r0 is picked in the same way. Since it holds r j = x j − y j − r j−1
and all y j are picked uniformly at random, all r j have the same distribution as if they are picked
uniformly at random. Since Game 0 and Game 1 only differ in how the randomness is used, and the
randomness in Game 0 and Game 1 is indistinguishable. Hence, both games are indistinguishable.

2The simulator takes a random input x’ and outputs Leak(Ĉ, x’, p).
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Add((ai)i∈[n], (bi)i∈[n])

for i ∈ {0 . . . n − 1}

ci = ai + bi

return (ci)i∈[n]

(a) The addition gadget Add for + and −

with bi ← −bi.

Copy((ai)i∈[n])

for i ∈ {0 . . . n − 1}

bi = ai

ci = ai

return (bi)i∈[n], (ci)i∈[n]

(b) The copy gadget Copy for C .

Consta

return (ai)i∈[n]

(c) The constant gadget Consta for a with
(ai)i∈[n] ← Enc(a).

Rand()

for i ∈ {0 . . . n − 1}

r j ←$ F

return (ri)i∈[n]

(d) The random gadget Rand for R .

Mult((ai)i∈[n], (bi)i∈[n])

for i ∈ {1, ..., n − 1}

for j ∈ {0, ..., i − 1}

z0,i, j ←$ F

for i ∈ {0 . . . n − 1}

for j ∈ {i + 1, ..., n − 1}

wi, j = ai · b j − z0, j,i

z0,i, j = wi, j + a j · bi

for i ∈ {0, ..., n − 1}

z0,i,i = ai · bi

L = log2(n + 1)

for i ∈ {0, n − 1}

for l ∈ {1, ..., L}

for j ∈ {0, ..., 2L−l − 1}

zl,i, j = zl−1,i,2 j + zl−1,i,2 j+1

for i ∈ {0, ..., n − 1}

ci = zL,i,0

return (ci)i∈[n]

(e) The multiplication gadget Mult for . .

Figure 3: Parallel gadgets.
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Input: (x0, ..., xn), (y0, ..., xi+1
n )

rn−1 ←$ F
for j = 1, ..., n − 1
r j = x j − y j − r j−1
endfor
Return (r0, ..., rn)

Figure 4: The Randomness Reconstructor Rand(pRef) for (yi)i∈[n] ← pRef((xi)i∈[n]).

Game 2: It is the modified Game 1, where we have replaced the non-leaked intermediate values of
the variables in such a way that Ĉ has the input x’. Note that this is possible due to the shiftablity
assumption, and hence, we can apply shiftabilty without giving further details.
Transition from Game 1 to Game 2: Since an outcome of the Leak(Ĉ, x, p)-experiment can be
shifted to an outcome of the Leak(Ĉ, x’, p)-experiment except with probability ϵ, we can do this
shift with probability 1 − ϵ. Due to the ϵ, this is the only game hop in the proof with a loss.

Game 3: Game 3 is the modified Game 2, where we have replaced the input and output encodings
of all gadgets with random encodings of the same value as we did in Game 1. In other words, every
input/output encoding is again replaced with a random encoding that still decodes to the same
value (the one that we got in Game 2).
Transition between Game 2 and Game 3: Since the inputs and outputs of both games are still
random encodings, we cannot distinguish Games 2 and 3. Note that the encodings in Game 2 are
still random because the shiftability depends only on the leaked variables and not on the values that
this variable assumes.

Game 4: The leakage experiment Leak(Ĉ, x’, p).
Transition between Game 3 and Game 4: It is the inverse of the transition between Game 0 and
Game 1. Thus, using RandR(pRef), we can prove that these two games are indistinguishable.

As mentioned in the transition from Game 1 to Game 2, this is the only step with a security loss
of ϵ. This proves the claim since it immediately flows that Game 0 and Game 4 are ϵ-close. □

3.1 Dependency Graph for our Gadgets

The values carried by the wires of a masked circuit can be considered as a set of random variables
randomized by the random input encodings and the internal random gates. When we analyze such
random variables X and Y representing intermediate wires, they can carry values x, y ∈ F with
Pr[X = x] ≥ 0 and Pr[Y = y] ≥ 0. When we analyze the leakage resilience of circuits, we can
distinguish two cases (i) intermediate values are independent Pr[X = x,Y = y] = Pr[X = x] ·Pr[Y =
y] or (ii) they are dependent Pr[X = x,Y = y] , Pr[X = x] ·Pr[Y = y]. To describe the dependencies
of such a set of random variables T occurring as intermediate values during the computation of a
masked circuit, we use a dependency graph (DG), represented as a directed labeled graph where
all edges have a source and destination node. Further, each edge has a label containing at least one
variable x ∈ T . For any subset of random variables S ⊂ T , we get a subgraph consisting of all
edges whose labels contain at least a variable in S . Further, the edges of the dependency graph are
linked so that any subset S of variables describes a subgraph with no loops (a loop is a path with
the same starting and ending point) if the set S consists of random variables that are independent
of the decoded inputs or outputs of the circuit.

Definition 3. Let C be a masked circuit C with intermediate values T , and G a labeled graph with
k edges e0, e1, . . . , ek−1 each labeled with Ti such that

⋃
i∈[k] Ti = T . G is a dependency graph if for
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each sub graph G′ ⊂ G with edges ei i ∈ I ⊂ [k], it holds

G′ has no loop⇒
⋃

i∈I Ti is independent of the unmasked inputs.

Dependency graphs are helpful for three reasons: First, when we consider the leakage as a
subset S of the random variables T , we can represent the leakage as a subgraph, the so-called
leakage diagram, LD (see Definition 5). Second, using the graph property that all subsets with
elements dependent on the decoding of the inputs are structured as loops; we can classify leakage
diagrams as “good” or “bad” (see Section 4.1). All “good” leakage diagrams correspond to leakages
that can be simulated without knowing sensitive values. Third, with the classification, we can upper
bound the probability that the leakage corresponds to a “bad” leakage diagram if all wires leak
their values with probability p. Hence, we can analyze the leakage resilience of a circuit (Sec. 5).
In the following, we describe the dependency graphs of a simple encoding and for each gadget
used by our compiler. Then, we show how to compose the dependency graphs of our gadgets to get
the dependency graph for any output of our compiler.

Dependency graphs of masked values. Let us consider an encoding of a secret x, with
(xi)i∈[n] ← Enc(x). The corresponding set of random variables is

T = {x0, x1, . . . , xn−1} .

We represent this with the dependency graph depicted in Figure 5a with Ti = {xi}. There are n
edges, each labeled with one of the variables of T . For simplicity, we call the edge labeled with
{xi} the xi-edge. All n edges form a loop, which we can see as a “circle” 3. It is easy to see that this
“circle” is the only loop in the graph, and any strict subset of the n edges does not form a loop. This
describes the abovementioned property that dependent random variables form a loop. The variables
x0, x1, . . . , xn−1 describe a loop because they depend on the secret with Dec((xi)i∈[n]) = x. However,
any strict subset S ⊂ T is a set of independent random variables due to the security property of the
secret sharing, and that is why they do not form a loop in the dependency graph.

Further, the dependency graph is a directed graph, and the xi-edge connects the destination node
of the xi−1-edge with the source node of the xi+1-edges.4 The direction of an edge represents the
sign of the edges labels. Thus, we can also think that there is an edge labeled −xi which connects
the source node of the xi+1-edge with the destination node of the xi−1-edge. In detail, the path ove
rall xi’s can be considered as the sum over all xi’s. If the path also consists of edges with opposite
directions, we subtract the variables represented as an edge with the opposite direction instead of
adding them. Since the random variables of the Rand and Const gadget only consist of output
variables, their dependency graphs are simple dependency graphs of maskings. Next, we give the
dependency graph of pRef.

Dependency graph for pRef. Let pRef refresh an input (xi)i∈[n] with random values (ri)i∈[n].
As intermediate variables it computes (bi)i∈[n] with bi = xi+ri and outputs (yi)i∈[n] with yi = bi−ri−1.
This leads to the set of random variables

TpRef = {x0, x1, . . . , xn−1, r0, r1, . . . , rn−1, b0, b1, . . . , bn−1, y0, y1, . . . , yn−1}.

The dependency graph of pRef is depicted in Figure 5b. Each edge is labeled by a single value
of TpRef. Thus, we can use the same convention as before, and the edge labeled with {x} is the
x-edge for all x ∈ TpRef. The dependency graph (Fig. 5b) forms a skeleton of a cylinder. The
x0, ..., xn−1-edges form a loop, which is the bottom circle of the cylinder, while the y0, ..., yn−1-edges
form a loop, which is the top circle of the cylinder. These two loops are identical to the dependency
graph of masked values described in the previous paragraph. The remaining edges form the lateral

3In the following, when we use circles and rectangles for the elemental geometrical shapes, while loops for the graph
loops defined before. Clearly, “circles” and “rectangles” are loops if they are defined only with the edges of a graph.

4To simplify the notion, we omit the (mod n) in all the operations with the index of variables, as for i − 1.

12



surface of the cylinder. More precisely, this lateral surface consists of n rectangles defined by
the xi, ri, yi, ri−1-edges. The loops defined by those rectangles describe the subset {xi, ri, yi, ri−1} of
dependent random variables because xi + ri − ri−1 = yi. Here it becomes clear why the dependency
graph is a directed graph because the ri−i has the opposite direction when we consider the alternative
path ri−1, xi ri that connects the same nodes as yi. Hence we only add xi and ri but subtract ri−1
to compute yi. Further, the n rectangles each have a diagonal edge: the bi-edges that describe the
remaining intermediate values bi. We add them to the graph such that they fulfill the same additive
properties as the n rectangles. In detail, an alternative path for the edge bi is ri−1, yi or xi, ri because
it holds bi = ri−1 + yi and bi = xi + ri. This construction fulfills the property again that all subsets
S ⊂ TpRef that depend on the decoding of the input (or output) form a loop in the graph. More
precisely, they form a loop that orbits the lateral surface of the cylinder structure of the graph. In
Proposition 6 (Sec. 4.2), we give the formal proof.

Dependency graph for Copy. The copy gadget Copy (Fig. 3b) takes as input an encoding
(ai)i∈[n] and outputs two encodings (bi)i∈[n] and (ci)i∈[n] with ai = bi = ci for all i. Note that the
dependency graph only considers the random variables carried by the wires, and ai, bi, and ci

represent the same variable. Thus,

TCopy = {a0, ..., an−1, b0, ..., bn−1, c0, ..., cn−1} = {a0, . . . , an−1}

results in the same dependency graph as the usual masking described above. The dependency graph
is the graph depicted in Figure 5a, with Ti = {ai, bi, ci} = {ai}. Again, it is clear that the graph is a
dependency graph because any set of possible leaked values is a set of independent values if the set
does not describe a subgraph with a loop.

Dependency graph for Add. The addition gadget Add (Fig. 3a) is a share-wise addition. It
takes as input two encodings (ai)i∈[n] and (bi)i∈[n] and outputs an encoding (ci)i∈[n] with ci = ai + bi

for all i ∈ [n]. This leads to

TAdd = {a0, ..., an−1, b0, ..., bn−1, c0, ..., cn−1}.

A possible dependency graph is depicted in Figure 5a with Ti = {ai, bi, ci}. Compared with the
graphs presented before, the difference is that each edge represents multiple different variables.
More precisely, we map all values of each share-wise computation to a single edge. However, it
holds again that any strict sub-graph has no loop and describes a subset that is independent of
the decoded input or output (see Sec. 4.2 Prop. 5). Note that this fact immediately follows with
the same argument as the one for dependency graphs of usual masking when we consider the
approximation that an adversary learns all variables ai, bi, ci if at least one is leaked.

Dependency graph for Mult. The Mult gadget takes as input two encodings (ai)i∈[n], and
(bi)i∈[n], and outputs an encoding (ci)i∈[n] with

Dec((ci)i∈[n]) = Dec((ai)i∈[n]) · Dec((bi)i∈[n]) .

Therefore, the gadget computes the intermediate values zl,i, j, and wi, j, as defined in Figure 3e. This
leads to the set of random variables generated by the circuit

TMult = {a0, ..., an−1, b0, ..., bn−1, ai · b j, zl,i, j,wi, j and i, j ∈ [n], l ∈ [L + 1]},

with L = log2(n + 1). Considering Figure 3e, it turns out that wi, j and zl,i, j are not defined for all j
and l. For the sake of simplicity, we omit the precise treatment and assume that all the variables
ŵi,̂ j not defined by the algorithm are zero. We see them as not elements in TMult. A possible
dependency graph is depicted in Figure 5a with

Ti = {ai, bi, ci, ai · bi, ai · b j, a j · bi,wi, j,w j,i, zl,i, j and j ∈ [n], l ∈ [L + 1]} .
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It is very similar to the graph used for Add. The idea is to label the Ti-edge with the ith share of
the inputs and outputs ai, bi, ci. The difference to Add is that Mult also has intermediate values
that we still have to add to the graph. Therefore, we add to Ti all the monomials aib j and a jbi,
j ∈ [n]. Note the monomial aib j (and a jbi) belongs to both labels Ti and T j. Finally, we add all
intermediate addends wi, js and the zl,i, j of the ith output share to Ti. This is inspired by [22, 16]. In
Section 4.2 (Proposition 5), we prove that the variables S ⊂ TMult that do not describe a sub-graph
with a loop are independent of the decoding of (ai)i∈[n], (bi)i∈[n], and (ci)i∈[n]. Next, we give the
composition results to construct the dependency graph of any output of our compiler.

3.2 Composition of Dependency Graphs

In the previous section, we introduced the dependency graphs for our gadgets. Since our compiler
always outputs a composition of those gadgets, we are interested in how to get the dependency
graphs for the composition of those gadgets. Therefore, we give composition results to obtain
the dependency graphs of composed gadgets G1 and G2 with dependency graphs DG1 and DG2,
respectively. In [11], they distinguish two different compositions, the sequential composition
written G = G1 ◦G2 where G1 gets as input the output of G2, or the parallel composition written
G = G1||G2 where both gadgets compute parallel and independently of each other. When we
consider parallel compositions of two gadgets where both gadgets run independently (with no
shared inputs), it is easy to see that the dependency graphs of both gadgets do not affect each other.
Hence, the dependency graph of DGG1 ||G2 can be seen as a union of sets DG1 ∪ DG2 where both
graphs are considered as one graph but there is no edge connecting DG1 and DG2 because there is
no further dependency generated by the parallel composition. To compute the dependency graph
of the sequential composed gadgets G1 ◦ G2 out of DG1 and DG2 we use a modified union of
both dependency graphs. When we consider sequential compositions, an output wire becomes
an input wire of another gadget. Hence, two wires merge to only one wire, and a modified union
is required where the two edges of such connected wires become the same. For this reason, we
define a function f (so-called attaching function) that maps the edges of the G2’s output wires to
the according edges of the G1’s input wires. The result is a union of both graphs where f defines
which edges of DG1 and DG2 are the same, and we can write

DGG1◦G2 = DGG1 ∪ f DGG2

For example, let G1 = pRef and G2 = Add, then the output (ci)i∈[n] is the input of pRef. This
can be described with the attaching function f that maps the edge of ci in DGpRef to the edge of
Ti in DGAdd, and the resulting dependency graph DGpRef◦Add = DGpRef ∪ f DGAdd is depicted in
Figure 6a where Ti is labeled with the inputs and outputs of the addition gadget {ai, bi, ci} as the
dependency graph of Add (Fig. 5a). Further, due to the composition, the function f merges the
edges related to the output of the addition with the edges related to the input of the refresh. For this
reason, the edge labeled with Ti is also the edge that represents the input edge of the dependency
graph of pRef (Fig. 5b).

Additionally, we can also refresh the inputs of the addition. Let G be an addition or mul-
tiplication gadget with (ci)i∈[n] ← G((ai)i∈[n], (bi)i∈[n]) where (ai)i∈[n] and (bi)i∈[n] are refreshed
outputs (ai)i∈[n] ← pRef((xi)i∈[n]), (bi)i∈[n] ← pRef((yi)i∈[n]), respectively, and (ci)i∈[n] is refreshed
afterwards (zi)i∈[n] ← pRef((ci)i∈[n]). This composition can be written as pRef ◦ G ◦ (pRef||pRef)
because the refresh of (ai)i∈[n] and (bi)i∈[n] is a parallel composition, and the remaining ones are
sequential. This results in a dependency graph

DGpRef(G(pRef(·),pRef(·))) = DGpRef ∪ f1 DGG ∪ f2 (DGpRef ∪ DGpRef)

depicted in Figure 6b with f1 mapping the input edges DGpRef((ci)i∈[n]) to the output edges of DGG,
and f2 input edges DGG to the output edges DGpRef((xi)i∈[n]) and DGpRef((yi)i∈[n]). Note that Ti is
determined by the choice of G, and in case of Add it is {ai, bi, ci}. Formally, the operation defined
by DG1∪ f DG2 is a topological definition called adjunction space and can be formalized as follows.
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(a) Dependency graph of Enc, Dec, Copy, Add, or
Mult with labels Ti defined in Section 3.1.
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b0bn−1
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(b) The dependency graph for
(yi)i∈[n] ← pRef((xi)i∈[n]).

Figure 5: Dependency graphs of the gadgets.

Definition 4 (Attaching). Let DG1 and DG2 two disjoint dependency graphs, and f a function as
described above mapping some edges of DG1 to edges in DG2. The composed graph is

DG1 ∪ f DG2 = (DG1 ∪ DG2)/ ∼,

where ∼ is the smallest equivalence relation with x ∼ f (x).

The adjunction space of two dependency graphs preserves the properties of the underlying
dependency graphs and merges them in such a way that the resulting graph describes the depen-
dencies from both dependency graphs simultaneously. For the sake of simplicity, we can consider
the composition as described above, where we merge the edges of two dependency graphs if the
according wires become one due to the circuit composition. More formally, we will prove in
Propositions 5, 6, 8, and Theorem 10 that the variables contained only in the labels of the edges of
a sub-graph that does not contain a loop are independent of the inputs or outputs.

The key observation is that the dependency graphs for all our gadgets are either the loop
depicted in Figure 5a or the skeleton of a cylinder, as shown in Figure 5. Further, the compiler
places a refresh gadget between every gadget that is not a refresh gadget. This means that the
resulting dependency graph can be seen as a composition of cylinders (defined by the refresh
gadgets), where the bottom and the top of the cylinder are labeled with the Ti’s defined of the
gadgets between the refresh gadgets.

4 Security Analyzes of the Gadgets

Before we analyze the privacy of our compiler’s output in Section 5, we first give the privacy of our
gadgets in this section. First, in Section 4.1, we formally show how to describe the leakage with
sub-graphs of the gadgets’ dependency graphs presented in the previous chapter (Sec. 3.1). Then,
in Section 4.2, we give all leakages that are not shiftable using the sub-graphs of our dependency
graph, and finally, we compute the probabilities of such sub-graphs under the condition that each
wire leaks its value with probability p.

4.1 Leakage Diagram

Using Corollary 3, it is enough to show shiftability for the privacy proof. To characterize which
outputs Leak(Ĉ, x, p) of the experiment in Definition 1 are shiftable, we start representing the
leakage as a subgraph of the dependency graph. As already discussed in the random probing
model, the adversary receives via leakage the values carried by some of the wires, Lp(Ĉ) ⊆ W′(Ĉ)
(Def. 1). We can represent these variables as a subgraph of the dependency graph.

Definition 5 (Leakage diagram). Let DG be the dependency graph of the circuit Ĉ and Lp(Ĉ) be
the set of wires that leak in the experiment Leak(Ĉ, x, p).The leakage diagram, LD(Lp(Ĉ),C),
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(a) Dependency graph of pRef ◦
G, with (yi)i∈[n] ← pRef((xi)i∈[n])
taking as input the output of G.
The DGG is described in Fig-
ure 5a while DGpRef is described
in Figure 5b. Note that the label
Ti contains xi.
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(b) The dependency graph of the composition of (xi)i∈[n] = pRef((x′i )i∈[n])
with (yi)i∈[n] = pRef((y′i)i∈[n]), (zi)i∈[n] = G((xi)i∈[n], (yi)i∈[n]) (thus, G is
either the Add or the Mult gadget) and (z′i)i∈[n] = pRef((zi)i∈[n]). (For
simplicity, we have omitted the edges of bis and ris.)

Figure 6: Dependency graphs of composed gadgets.

corresponding to the leakage Lp(Ĉ) is the subgraph of DG composed by all edges whose label
contains at least one of the variables carried by the wires in Lp(Ĉ).

Since Lp(Ĉ) is randomized by the leakage probability p, it is a random variable over all
possible subsets of the wires W′(Ĉ) that may leak during the computation of Ĉ. Hence, also
LD(Lp(Ĉ), Ĉ) is a random variable over all possible sub-graphs of the dependency graph. Next,
we give some examples of leakage diagrams LDi with Pr[LD(Lp(Ĉ), Ĉ) = LDi] > 0. They are
also represented in the full version. For this reason, we consider the pRef gadget refreshing an
encoding (xi)i∈[n] ← Enc(x) of a secret x ∈ F

(yi)i∈[n] ← pRef((xi)i∈[n])

with random values ri, and intermediate values yi = bi − ri+1 and bi = xi + ri defined in Figure 1b.

1) LD1 = (x0, ..., , xn−1) reveals the secret because Dec((xi)i∈[n]) = x

2) LD2 = (y0, ..., , yn−1) reveals the secret because Dec((yi)i∈[n]) = Dec((xi)i∈[n]) = x

3) Let LD3 = (x0, ..., xi−1, ri−1, yi, ri, xi+1, ..., xn−1). Since yi = xi + ri − ri+1, we have that these
values reveal x. In fact, ∑

j∈[n], j,i

x j

 + ri + yi + ri+1 =

 ∑
j∈[n], j,i

x j

 + xi = Dec((xi)i∈[n]) = x.

4) Let LD4 = (x0, ..., xi, ri, yi+1, ..., yn−1). We observe that if instead of rn−1, we have r′n−1 =

rn−1 + x′ − x, these values come from a refreshing of x′. In fact i−1∑
j=0

x j

 + ri +

n−1∑
j=i

y j

 =
n−1∑

j=0

x j

 − rn−1 = x − rn−1

since r j−1 + y j = x j + r j. Thus, LD4 does not reveal x because the leakage is shiftable to x′.

Note that, LD′4 = LD4 ∪ {rn−1} would reveal x similarly to B3).

16



1

0xn−1

xn−2

x0

yn−3

yn−4

y1

r0

rn−3

(a) Leakage diagram of (yi)i∈[n] ← pRef((xi)i∈[n])
with an orbiting loop.

1
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xn−2
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yn−1
yn−2 y0

r0

rn−3

(b) Leakage diagram of (yi)i∈[n] ← pRef((xi)i∈[n])
with a not orbiting loop.

Figure 7: Dependency graphs of the gadgets.

5) Now, consider LD5 = {x0, ..., xi−1, xi+1, ..., xn−1, y0, ..., yi−1, yi+1, ..., yn−1, r0, ..., rn−1}. LD5
does not reveal x since LD5∪{xi} comes fromL(pRef((xi)i∈[n], r), p), while LD5∪{xi+x′−x}
comes from L(pRef((x′i)i∈[n], r), p), where (x′i)i∈[n] is defined as x′j = x j if j , i and x′i =
x + i + x′ − x, r = (r + 0, ..., rn−1). We prove this in Section 4.2, Proposition 6.

6) Finally, consider LD6 = (x1, b1, r1), which clearly does not reveal the secret, as we will prove
in the next section.

Considering the examples above, we observe that if the leakage diagram reveals information
about the secret, the leakage diagram also consists of at least one loop. This is not surprising
because this is exactly the property that we presented in Section 3, and immediately follows from
the dependency graph property described in Section 3.1. However, the presence of a loop does
not always prevent shiftability, e.g., LD4, LD5, ad LD6 have a loop and are still shiftable. For
tightness reasons, we want to distinguish loops that reveal the secret from loops that do not reveal
the secret. For this reason, we remember that the dependency graphs of the gadgets (Fig. 5) are
either a circle or the skeleton of a cylinder. Hence, its compositions are composed hollow cylinders,
as depicted in Figure 6. We observe all loops revealing the secret orbit around this hollow cylinder
structure. Further, the loops that do not reveal the secret do not orbit the hollow structure. Figure 7
illustrates the differences between such loops. The first loop is an example of a loop that does orbit
the skeleton, while the second one gives an example of a loop that does not orbit the skeleton. In
the following, we say that a leakage diagram orbits if it contains such an orbiting loop. Similarly
to the adjunction space used to compose the dependency graphs, also the property of hollow and
orbit are well-known in Topology and can be described with the topological definitions simply
connected and homotopically equivalent: Hollow means that all the loops carrying the shares of a
value are not simply connected, and orbiting means that the loop is homotopically equivalent to a
loop containing all xi-edges of a sharing (xi)i∈[n]. Roughly speaking, two paths are homotopically
equivalent (Defined in the full version) if we can put an infinitely elastic rope over the first path,
and we can slide it to cover the second path. For this, we assume that the DG of pRef contains
the lateral surface of the cylinder, and the rope, as in LD3, can slide over it. With this, it is easy
to see that LD3 is homotopically equivalent to LD1 and LD2. Thus, the Topology allows us to
distinguish between “bad” leakage diagrams from good, and all not orbiting leakage diagrams
represent shiftable leakages. This intuition will be proved in the following subsection (Sec. 4.2). In
the following, we will also call “good” diagrams shiftable diagrams.

4.2 Security Analysis for our Gadgets

To avoid that, we have to prove the security of any possible leakage diagram. So we start with a
useful observation.

Proposition 1. If a leakage diagram LD is shiftable, all sub graphs LD′ with LD′ ⊂ LD are also
shiftable.
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Hence, when we prove shiftability for a given leakage diagram, it immediately follows shifta-
bility for any subgraph.

Proof. A leakage diagram LD is shiftable if all the outcomes L of the Leak(Ĉ, x, p) which are
represented by the leakage diagram LD are shiftable to x’ for any x’ , x. That is, (Def. 2) L can be
also an outcome of the Leak(Ĉ, x’, p)-experiment.

Now, consider the leakage diagram LD′ with LD′ ⊂ LD. Let L′ be an outcome of the
Leak(Ĉ, x, p), which can be represented by the leakage diagram LD′. Since LD′ ⊂ LD, there
exists an outcome L of the Leak experiment represented by LD s.t. L|var ∈LD′ = L′, where with
var ∈ LD′, we mean the variables carried only by the labels of the edges in LD′. Since LD
is shiftable, then L can be an outcome of the Leak(Ĉ, x’, p)-experiment. Thus, L′ = L|var ∈LD′

can be an outcome of the Leak(Ĉ, x’, p)-experiment. Thus, all outcomes of the Leak-experiment
represented by LD′ are shiftable to x’. Thus, the leakage diagram LD′ is shiftable. □

For simplicity, we use this result and introduce the concept of maximal diagramMAX(LD)
for any leakage diagram LD of our gadgets. MAX(LD) is a subgraph of the dependency graph,
which contains LD

LD ⊆ MAX(LD) ⊂ DG

and is maximal in the sense that if we add any further edge, it orbits as depicted in Figure 7a. Due
to Proposition 1 we only need to consider all possible maximal diagrams for the security proofs of
our gadgets when we want to show that leakage diagrams are shiftable if they do not orbit. The
existence of maximal diagrams is proved in the following Proposition.

Proposition 2. Let LD be a leakage diagram that does not orbit. Then, there exists a maximal
diagram LD′ containing it.

Proof. Let LD be a subgraph of DG, which does not orbit. Suppose that ∀ edge e ∈ DG \ LD,
LD ∪ {e} orbits. Then, LD is a maximal simply connected subgraph containing LD.

Otherwise, there is an e ∈ DG \ LD s.t LD1 = LD ∪ {e} that does not orbit. Then, we iterate
with LD1 until there is no such an e left. Since there is only a finite number of edges that can be
added, this sequence of subgraphs must end after at most I step (with I ≤ |{e ∈ DG \ LD}|). Hence,
the final LD j is a maximal diagram. □

In general, there are many different maximal diagrams, as we will see in the next section.

Maximal diagrams. Since we use the maximal diagrams in most of the following proofs, we
characterize them for all of our gadgets. The dependency graphs of Enc, Dec, Copy, Add, Mult
(Fig. 5a) are a circle with n edges, all subgraphs containing all edges except one are maximal, that
is, we have n different maximal diagrams Mi defined as follows

Mi = {T0, ...Ti−1,Ti+1, ...,Tn−1} = DG \ {Ti}

where with T j ∈ Mi, we mean that Mi contains the edge labeled with T j as depicted in Fig-
ure 8b and 8b. We formally prove this in the following Proposition.

Proposition 3. Let DG be the dependency graph of one of the Enc, Dec, Copy, Add, and Mult
gadget. Then, there are n different maximals (Sec. 3.1)

Mi = {T0, ...,Tn−1} = DG \ {Ti}

for i = 0, ..., n − 1.

Proof. Mi is a line starting from nodei+1, the starting node of the Ti+1-edge, to nodei, the arriving
node of the Ti−1-edge (and the starting node of the Ti-edge). Thus, it is simply connected. Moreover,
Mi ∪ {Ti} = DG, where Ti is the only edge in DG and not inMi. Since DG orbits,Mi is maximal.
In fact, any other subset LD that does not orbit and is composed of less than n − 1 edges is a subset
of one of theseMi. Hence, there is no other maximal apart from theMi’s. □

18



Tn−3

T0

(a) A possible leakage diagram
LD only consisting of two edges
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(b) Maximal leakage diagram
MAX(LD) = Mn−2 (solid,
black edges).
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(c) Maximal leakage diagram
MAX(LD) = M1 (solid, black
edges).

Figure 8: Two possible maximal leakage diagrams (Fig. 8b and 8b) of a possible leakage diagram
LD (Fig. 8a). The blue dashed edge is the missing one so that the diagram does not orbit.

Further, note thatMAX(LD) is not always unique. As an example, suppose that LD = ∅, then,
there are n different maximal simply connected subgraphMAXi containing LD, with

MAX
i = {e0, ..., ei−1, ei+1, ..., en−1},

that is,MAXi contains all edges except ei. All theMAXis contain LD, do not orbit, and, adding
the only remaining edge (ei), they orbit.

The dependency graph of pRef describes the skeleton of a cylinder (Fig. 5b). There are two
families of maximal diagrams (both depicted in Figure 9): The first family is calledMright since
there is a gap of missing edges turning right, which we call RGap (Fig. 9a).

M
right
i, j := {x0, ..., xi−1, xi+1, ..., xn−1, y0, ..., y j−1, y j+1, ..., yn−1, r j, ..., ri−1, b j, ..., bi},

RGapi, j = {xi, y j, ri, ..., r j−1, bi+1, ..., b j−1}

for i, j ∈ [n] with Mright
i, j = DG \ RGapi, j. Note that r j, ..., ri−1 is a short way to write: if i < j

r0, ...ri−1, r j, ..., rn−1; if i = j ∅; if i > j r j+1, ..., ri−1. The same holds for the bi′s. The second family
is calledMleft since there is a gap, LGap (Fig. 9b), which turns left (or stays straight for LGapi,i)

Mleft
i, j := {x0, ..., xi−1, xi+1, ..., xn−1, y0, ..., y j−1, y j+1, ..., yn−1, ri, ..., r j−1, bi+1, ..., b j−1},

LGapi, j = {xi, y j, r j, ..., ri−1, b j, ..., bi}

for i, j ∈ [n] withMleft
i, j = DG \ LGapi, j. The proof that these are maximal diagrams and that the

classification is complete can be found in the following Proposition:

Proposition 4. The maximal diagrams of DGpRef are either of the typeMright
i, j orMleft

i, j with i, j ∈ [n]

Proof. In other words, if LD is a maximal diagram of DGpRef, there are i, j ∈ [n] s.t. either
LD =Mright

i, j or LD =Mleft
i, j .

First, we start observing that if LD is a maximal diagram, then it must be connected. Otherwise,
since it does not orbit, thus all connected components are simply connected (since the fundamental
group of DGpRef is Z). Thus, we can deform them homotopically to be points. Now adding a single
edge to a set of points, it cannot make it not simply connected (and, thus, orbiting).

Second, in any maximal diagram, there exists one and only one i ∈ [n] s.t. xi < LD, and one
and only one j ∈ [n] s.t. y j < LD. In fact, let us suppose that there exist two edges xi and xi′ not
in LD. Let nodei and the nodei′ be the source nodes of the edge xi, and xi′ , respectively, nodei+1
and nodei′+1 be their respective destination nodes. Now, look at LD. Suppose that i , i′ + 1, i′ − 1.
Since LD is maximal, there is a path path from nodei+1 to nodei s.t. path ∪ {xi orbits. Similarly,
there is a path path′ from nodei′+1 to nodei′ s.t. path′ ∪ {xi′ orbits. For the structure of DGpRef
path and path′ meet in two points. Thus, taking a part of path and a part path′, we have a path
that orbits. Therefore LD is not maximal since it orbits. Now, we observe that if xi < LD then
{bi, ri} ⊈ LD, otherwise, the path

x0, ..., xi−1, bi, ri, xi+1, ..., xn−1
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is a loop in LD orbiting around the hollow graph, thus, LD would orbit. Thus, either ri ∈ LD or
bi ∈ LD. Similarly, if y j < LD then {b j, r j} ⊈ LD, otherwise, the path

y0, ..., y j, r j, b j, y j, ..., yn−1

is a loop in LD orbiting around the hollow graph. Here, we consider the case i = j. It depends if
either bi or ri belongs to LD
• Case ri ∈ LD. (Mleft

i,i ) Since we cannot have both bi and ri in a maximal simply connected
subgraph containing {xi, ..., xi−1, xi+1, ..., xn−1, y0, ..., yi−1, yi+1, ..., yn−1}, the natural maximal
diagram is

LD′ = {x0, ..., xi−1, xi+1, ..., xn−1, y0, ..., yi−1, yi+1, ..., yn−1,

r0, ..., rn−1, b0, ..., bi−1, bi+1, ..., bn−1}.

We observe that it does not orbit since there is no loop turning around the hollow graph since
the square defined by xi, ri, yi and ri−1 is never crossed. Moreover, if we add only the edge in
DG \ LD, that is, bi, we have a not simply connected subgraph since it is DG. Thus, LD′ is a
maximal simply connected subgraph.
• Case bi ∈ LD. (CaseMright

i,i ) We observe that

LD′ := {x0, ..., xi−1, xi+1, ..., xn−1, y0, ..., yi−1, yi+1, ..., yn−1, bi}

does not orbit since there is no non-trivial loop. In fact,

xi+1, ..., xn−1, x0, ..., xi−1, bi, yi+1, ..., yn−1, y0, ..., yi−1

is a line which is not a loop.
Moreover, if we add rl to LD′, we have that

y0, ..., yl, rl, xl+1, ..., xi−1, bi, yi+1, ..., yn−1 for l < i, or

x0, ..., xi−1, bi, yi+1, ..., yl, rl, xl+1, ..., xn+1, ..., xn−1 for l > i, or

is a loop in LD′ ∪ {rl} which orbits 5. Similarly, if we add bl to LD, we have that

y0, ..., yl, bl, xl, ..., xi−1, bi, yi+1, ..., yn−1 for l < i, or

x0, ..., xi−1, bi, yi+1, ..., yl, bl, xl, ..., xn+1, ..., xn−1 for l > i

is a loop in LD′ ∪ {bl} which orbits. Thus LD′ is a maximal simply connected subgraph.
The other cases (which are done in a similar way) can be found in the full version. □

Using the maximal diagrams, we can prove the security of our gadgets with the help of
Proposition 1.

Security for Enc, Dec, Copy, Add, Mult. Now, for all gadgets except pRef, we prove the condi-
tion mentioned in Section 4.1. In other words, we prove any leakage diagram that does not orbit
implies that the leakage is shiftable to another input. Formally,

Proposition 5. Let G be the gadget Add, Mult, or Copy defined in Figure 3. An outcome L of the
Leak(G, x, p) experiment is shiftable to any x’, if the leakage diagram corresponding to L, does
not orbit the dependency graph.

We first give a high-level proof idea.

5The inequalities regarding l, i as all the inequalities in the remaining in the proof are done considering l, i ∈ Z (and not
in Zn)].
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(a) Edges in RGapk,l (dashed, blue) of the dependency graph of (yi)i∈[n] ← pRef((xi)i∈[n]) experiment.
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(b) Edges in LGapk,l (dashed, blue) of the dependency graph of (yi)i∈[n] ← pRef((xi)i∈[n]) experiment.

Figure 9: Example of maximal leakage diagrams of pRef. The blue dashed edges represent
RGapk,l and LGapk,l, respectively. The remaining solid edges are the maximal leakage diagrams
M

right
k,l = DG \ RGapk,l andMleft

k,l = DG \ LGapk,l.

Proof sketch. The proof is substantially the same for all gadgets: we consider the maximalMi and
the values of the variables it contains, and we show that we can modify the values carried by the Ti

label. Hence we can shift the ith share of each input and output encoding such, and prove that this
modification does not change the distribution of the values in Mi. Hence, the distribution of the
values in Mi is the same for Leak(G, x, p) experiment and the shifted one Leak(G, x’, p). □

Next, we give the formal proof.

Proof. We prove the claim for all maximal graphs. Thus, using Proposition 1, we have that the
claim holds for all not orbiting leakage diagrams. The high-level idea is that we can shift change
the inputs and outputs of the edge that are not part of the maximal graph because they are uniformly
distributed and not revealed due to the leakage. We start with the simplest case, (i) the masking of
Enc, Dec and dependency graphs of Copy, then we prove the claim for (ii) Add, and (iii) Mult.

(i) The masking of Enc, Dec and dependency graphs of Copy since the edges of the dependency
graph are labeled with a single variable. Thus, the input is x, and the variables leaked are
those in the labels of the edges ofMi for an i ∈ [n]. Mi contains all x j with j , i. If we
modify the not leaked value xi to x′i = xi + x′ − x, we have shifted the output Leak(G, x, p) to
the output of the experiment Leak(G, x′, p), since x0, ..., xi−1, x′i , xi+1, ..., xn−1 is an encoding
of x′. Hence,Mi has the same distribution for x and x′, and thereforeMi is shiftable for any
i ∈ [n].

(ii) The dependency graph’s edges of Add are labeled with multiple variables. Let us suppose
that Add takes as input (ai)i∈[n] and (bi)i∈[n], and outputs (ci)i∈[n], then each edge is labeled
with Ti = {ai, bi, ci}. Thus, the leaked variable of the maximal graphMi are all a j, b j, and c j

with j , i. If we modify the values ai, bi, and ci which are not leaked in a′i = ai + a′ − a,
b′i = bi+b′−b, and c′i = ci+a′+b′−a−b, we have shifted the output Leak(Add, (a, b), p) to the
output Leak(Add, (a′, b′), p). This hold because d0, ..., di−1, d′i , di+1, ..., dn−1 is an encoding
of d for d = a, b, c, and a j + b j = c j ∀ j , i, and a′i + b′i = c′i . Note that the input sharings are
uniformly distributed, and therefore the modified shares are also uniformly distributed.

(iii) Mult: let us suppose that Mult takes as input (ai)i∈[n] and (bi)i∈[n], and outputs (ci)i∈[n].
Thus, the variables leaked are those only in the labels of the edges of Mi (Def. 5), that
is, ai′ , bi′ , ci′ , ai′bi′ , ai′b j, a jbi′ ,wi′, j,w j,i′ , zl,i′, j for i′ , i, and j ∈ [n] and l ∈ [0, ..., L] with
L = log2(n + 1). Let δ1 = a′ − a and δ2 = b′ − b. We replace the values of the variable in Mi
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as follows: a′i = a′ + δ1, b′i = bi + δ2, (aibi)′ := aibi + δ1bi + δ2ai + δ1δ2, (aib j)′ := aib j + δ1b j,
(a jbi)′ := a jbi + a jδ2, (wi, j)′ := wi, j + δ1b j, and (w j,i)′ := w j,i + δ2a j. For c′i and zl,i, j, since
they are the sum of many wi, js and a j′bi, the modification is done according to the previous
modifications. This can be seen as an output of the Leak(Mult, (a′, b′), p) as we now prove,
modifying the proof of [16]:

In [16] is the proof for all values except for the zl,i, js. The only difference from our Mult
from that in [16], is that the final addition is done sequentially thew (Figure 3e, while we do
it parallel). But, we can observe that ∀l = 1, ..., log(n) and ∀i, j

zl,i, j = aibi +

2l( j+1)−1∑
I=2l j

z0,i,I = aibi +

2l( j+1)−1∑
I=0

z0,i,I −

2l j−1∑
I=0

z0,i,I

Hence, all
2l( j+1)−1∑

I=0
z0,i,I ,

2l( j+1)−1∑
z0,i, j −

2l( j+1)−1∑
z0,i, j are partial sums of the serial sum of the

multiplication of Dziembowski et al. [16], and all these values are mapped on the ith edge.
Thus, since their modifications cannot be detected, ours cannot be detected too.

In this way, we have shifted the output of the Leak(Mult, (a, b), p) to an output of the
experiment Leak(Mult, (a′, b′), p).

The results of (i),(ii), and (iii) conclude the proof. □

The proposition gives us the following privacy result for our gadgets.

Theorem 1. Let Add, Mult and Copy be the gadgets defined in Figure 3. Then, Add and Copy are
(p, (3p)n)-private, for p ≤ 1/3, and Mult is (p, p̃)-private with

p̃ = 1 − (1 − p)8n + 1 − (1 −
√

3p)n−1.

Proof. Using Proposition 5 and the classification of maximal diagrams, the only problems happen
if all edges are leaked. Thus, these gadgets are secure if the leakage diagram does not contain all
edges. In other words, they are secure with probability 1 − Pr[LD = {T0, ...,Tn}] and thus, they are

(p,Pr[LD = {T0, ...,Tn}])-private.

We first bound Pr[LD = {T0, ...,Tn}] for (i) Add and Copy, and then for (ii) Mult.

(i) For Add and Copy, all edges are added independently with probability 1 − (1 − p)3 ≤ 3p
since there are three variables mapped to each edge: For Add there are 3 variables on the
label Ti = {ai, bi, ci} (Section 3.1); For Copy there are 3 variables on the label Ti = {ai, bi, ci}

(Section 3.1) with ai = bi = ci. In both cases, each variable is carried by a single edge. Thus,
the probability that all edges belong to the leakage diagram is 1 − (1 − 3p)n ≤ (3p)n which
concludes the proof.

(ii) For Mult, as in [16], we can prove that if we add each edge independently with probability
p′ = 2(1 − (1 −

√
3p)8n), the leakage diagrams obtained in this way contain the leakage

diagrams obtained in the Leak(Mult, (x, y), p)-experiment.

We prove this fact by doing a proof very similar to the one in [16] (which is inspired by the
original proof in [22]). The two differences are the fact that our Mult is slightly different
from theirs and, more substantially, a different analytical treatment of the bound. We start
observing that there are at most 8n wires which carry at least one variable present in the label
Ti of the Ti-edge. ai is used in n multiplication. Thus, there are n wires carrying it. Similarly,
bi is carried by n wires. There are 2n different zl,i, j for l > 1. There n different aib j and a jbi

(for j ∈ [n]). Finally, there are at most n between z0,i, j and wi, j wires and at n different w j,i

wires.
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Thus, we add the edge Ti with probability at most 1 − (1 − p)8n and the edges Ti and T j with
probability at most 3p.

It is easier to work with independent variables, but in the previous situation, the edges Tis
are not independently added to LD. Thus, we try to add all the Ti edges to LD independently.
To do this, we add Ti with the probability

1 − (1 − p)8n + 1 − (1 −
√

3p)n−1.

The proof is the same as in [16], where we have not used the approximation 1 − (1 − p)8n ≤

8np. 6

This proves the claim of the theorem. □

Note that we do not use the approximation 1 − (1 −
√

3p)n−1 ≤ (n − 1)
√

3p because it is not
tight and makes the security much worse.

Security for pRef. With the same technique, we can analyze pRef. The only difference is the
more complex dependency graph since it forms the skeleton of a cylinder and not a simple loop.
Formally:

Proposition 6. An outcome L of the Leak(pRef, x, p) experiment, is shiftable to x′, if the corre-
sponding leakage diagram, does not orbit.

Proof. Again due to Proposition 1, we only prove the claim for maximal diagrams. We have two
types of maximal diagrams Mright

i, j and Mleft
i, j . For the proof, we show how to shift/modify the

variables in (i) RGapi, j = DG \Mright
i, j and (ii) LGapi, j = DG \Mleft

i, j . It consists of xi, y j, and some
bls and rls.

(i) Mright
i, j : we shift an output of Leak(pRef, x, p) to an output of Leak(pRef, x′, p) as follows:

xi is modified in x′i = xi + x′ − x, y j is modified in y′j = x j + x′ − x, rl is modified in
r′l = rl − (x′ − x), for the rls in RGapi, j, and bl is modified in b′l = bl − (x′ − x), for the bls in
RGapi, j. Note that the modified shares and intermediate values are all uniformly random,
and the modification is done in such a way that they are still uniformly random and the
intermediate dependencies are consistent.

(ii) With the same technique, we can modifyMleft
i, j : we shift an output of Leak(pRef, x, p) to an

output of Leak(pRef, x′, p) as follows: xi is modified in x′i = xi + x′ − x, y j is modified in
y′j = x j + x′ − x, rl is modified in r′l = rl + (x′ − x), for the rls in LGapi, j, and bl is modified
in b′l = bl + (x′ − x), for the bls in LGapi, j.

We have to prove that every shift results in an outcome of the Leak(pRef, x′, p) experiment.
We prove one case and refer to the full version for the other cases.

Let δ = x′−x. Let A be the values carried by the variables of pRef during the Leak(pRef, x, r, p)-
experiment, where r = r0, ..., rn−1 is the randomness used.

The maximal is of typeMright
i,i . The values carried in A′ are

{x0, ..., xi−1, xi + δ, xi+1, ..., xn−1, y0, ..., y j−1, yi + δ, yi+1, ..., yn−1,

r0 − δ, ..., rn−1 − δ, b0 − δ, ..., bi−1 − δ, bi, bi+1 − δ, ..., bn−1 − δ}.

First, we observe that

x0 + ... + xi−1 + (xi + δ) + xi+1 + ... + xn−1 = x0 + ... + xn−1 + δ = x + (x′ − x) = x′.

6We have omitted here the approximation 1 − (1 − p)8n + 1 − (1 −
√

3p)n−1 ≤ [2(1 − (1 −
√

3p)n−1)]n, which was used
in the original version of the paper.
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(a) Values of the variables in RGapk,l in the Leak(pRef, x′, p) experiment. δ = x′ − x.
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(b) Values of the variables in LGapk,l in the Leak(pRef, x′, p) experiment. δ = x′ − x.

Figure 10: Example of the shifting depicted in Proposition 5. The solid edges are in LD. The
maximal is of type Mright

k,l and RGapk,l = DG \ Mright
k,l (10a), and Mleft

k,l and LGapk,l = DG \
Mleft

k,l (10b).

The same holds for the shares of y.
Now, let us consider pRefwith input x0, ..., xi−1, xi+δ, xi+1, ..., xn−1 and randomness r0−δ, ..., rn−1−δ.
For i′ , i, bi′ − δ = xi′ + (ri′ − δ) and yi′ = (bi′ − δ)− (ri′−1 − δ). In stead, for i, bi = (xi + δ)+ (ri − δ),
and yi + δ = (bi) − (ri−1 − δ). Thus, the values carried by A′ are those of an honest evaluation of
pRef with input x0, ..., xi−1, xi + δ, xi+1, ..., xn−1 and randomness r0 − δ, ..., rn−1 − δ.

□

As already discussed before (Section 3.1), the security of the Const and Rand gadgets is given
by the security of the gadgets where their output wires are used. This gives us the following privacy
result for pRef.

Theorem 2. Let pRef be the refreshing gadget defined in Figure 1b. Then, pRef is (p, p̃))-private,
with p̃ = 2 · [(1 + 2(3p))3p]n. If p ≤ 1/6 we can approximate p̃ ≤ 2 · (6p)n.

Proof. As in the security proof of the other gadgets, with Corollary 3 and Proposition 6, we only
need to compute Pr[LD orbits] because it holds

pRef is (p,Pr[LD orbits])-private.

First, we observe that every edge of DG(pRef) (Figure 5b) has a label containing a single variable.
We refer to Figure 5b for the notations. All variables are carried by a single wire except the ri’s,
which are carried by three wires (Figure 1b). Thus, we can assume that each edge is added to LD
independently with probability at most 1− (1− p)3 ≤ 3p. With the result of Proposition 6, we know
that the circuit is private if there is no loop that orbit. Moreover, any orbit must contain at least one
of the source nodes of the edges x0 or y0. Next, we approximate the probability that in LD there is
an orbit containing the source node of x0 called node0

0. (event E0). Since such an orbit is at least n
edges-long, we can upper-bound Pr[E0] with the probability that the leakage diagram contains a
path starting from node0 with n edges. Since each node is connected with at most 4 other nodes,
we have 3n different n long paths7 and the probability for each path is (3p)n. This results in

Pr[E0] ≤ (9p)n.

But, we can refine the bound of E0 as follows. We observe that we are trying to bound the
probability of an orbiting path starting from node0

0. Before, we observed that every path between

7We omit paths where an edge is crossed more than once. In fact, this possibility does not give anything to the adversary.
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these two nodes is at least n edges long. However, it is easy to see that there is only one n-edges
long path that describes a path from node0

0 and arriving to it, 2(n − 1) paths that are n + 1-edges
long, and so on. We observe that given a node y, the paths from y to node0

0 which have the minimal
length8 keeping the direction of the orbit 9, takes as the first edge from y at most two different
edges.

To prove this, it is enough to observe that if the node y is on the x0
i -edges orbits, thus, it is node

node0
j for a j ∈ [n], the source node of the x0

j -edge. Thus, if the path to node0
0 keeping the direction

of the orbit, has to turn left, the shortest path consists of the path x0
j−1, ..., x

0
0; otherwise, if it turns

right, the shortest path is taking the path x0
j , ..., x

0
n−1. They are the shortest path because every time

a path leaves the x0
i orbits, it needs an additional edge to rejoin it. Moreover, it is not possible to

have paths that skip the ith edge (that is, do not contain any edge indexed with i) for i = 0, ..., j − 1
if it turns left, or with i = j, ..., n − 1 if it turns right.

Instead, if y is on the x1
i -edges orbits, thus, it is node node1

j for a j ∈ [n], the source node of
the x1

j -edge. Thus, if the path to node0
0 keeping the direction of the orbit has to turn right, it must

take either the edge x1
j or r j−1. In fact, the first path needs 1 + n − j edges (see above), while the

shortest paths using the-x1
j can take as well at most 1 + n − j edges. The proof that the shortest

path needs 1 + n − j edges can be easily done by induction. We iterate the previous argument until
we arrive at node1

0 for which the shortest path to node0
0 is clearly rn−1.

Finally, if the path to node0
0 keeping the direction of the orbit has to turn left, it must take either

the edge b j−1 or x1
j−1 (for j = 1, it must take b0). In fact, the first path needs j − 1 edges (see above,

the case for y as node node0
j ), while the shortest paths using the-x1

j−1 can take as well at most j − 1
edges. The proof that the shortest path needs j − 1 edges can be easily done by induction. We
iterate the previous argument until we arrive at node1

1 for which the shortest path to node0
0 is clearly

b0. For j = 0, since we have to turn left (the case where you have to go down via rn−1 has already
been treated in turning right, we must take x1

n−1 or bn−1.
Finally, we have to explain why

Pr[E0] ≤ [(1 + 2(3p))3p]n.

This happens because if we consider a loop starting from node0
0, which orbits, and we do not take

the shortest path, which is x0
0, ..., x

0
n−1, and we take the e-th edge to deviate. In this case, we need

to take one of the other two edges connected to the node we have arrived after we have taken the
e-edge. But, this happens with probability at most 3p. From there, we need at most n − i edges to
end our loop, where is the number of edges taken on the x0

0, ..., x
0
n−1 before deviating via the e-edge.

Thus, if a path from y to node0
0 does not pass through one of these two edges, it is at least

l + 1 edges long. Thus, the probability that it belongs to LD is at most (3p)l+1. Thus, we can
upper-bound

Pr[E0] ≤ [(1 + 2(3p))3p]n.

Further, if 6p < 1 it holds
[(1 + 2(3p))3p]n ≤ (6p)n.

Clearly, the same holds for E1, which is the event that there is an orbiting loop starting from the
source node of the edge y0. Thus, Pr[LD orbits] ≤ Pr[E0]+Pr[E1] = 2[(1+2(3p))3p]n for p ≤ 1/3
and 2(6p)n for p ≤ 1/6. □

With Theorem 1 and 2, we have proven the security of the gadgets used by our compiler.
However, it is well known that it is insufficient to prove their compositions’ security. Next, we
examine the security of compositions to argue about the security of the compiler used in the paper.

8minimal means with the least number of edges.
9That is, making the loop node0

0, ..., y, node0
0 orbit.
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Figure 11: Dependency graphs of two composed refresh gadgets.

5 Security Analyzes for Circuits

In Section 4, we have investigated the privacy of the gadgets used by our compiler. In this section,
we analyze the security of their compositions. Hence, we compute the privacy of our compiler’s
output. We start with the composition of pRef gadgets (Sec. 5.1), and then, we give a more general
composition result for all gadgets used by our compiler (Sec.5.2)

5.1 Security Analysis for the Composition of pRef

In this section, we consider k sequential compositions of pRef gadgets (kpRef). Let (x0
i )i∈[n] be

the input of the first refresh gadget, then the jth pRef, denoted with pRef j computes (x j
i )i∈[n] ←

pRef j((x j−1
i )i∈[n]). Further, the internal variables used by pRef j are defined as r j

i and b j
i . Thus, the

final output is (xk
i )i∈[n] ← kpRef((x0

i )i∈[n]). In Figure 11a, we depicted the dependency graph of two
composed refresh gadgets. Compared to the more general compositions with multiple input and
output sharings, as depicted in Figure 6, the dependency graph of the composed refresh gadgets
is relatively simple. More precisely, it is still the skeleton of a cylinder. This cylinder is given by
putting the cylinder of the dependency graph of pRef j (denoted with DG j) over the cylinder of
pRef j−1 (denoted with DG j−1). In other words, the only difference with the security proof of the
single refresh gadget is the length of the cylinder. The dependency graph of the composition of
k refresh gadgets is a cylinder constructed out of the k cylinders (DG j) of the dependency graph
of pRef. As mentioned in the previous section, it is not sufficient to analyze the security of each
gadget. This is easy to see when we remember that we have shown in Section 4.2 that pRef is
secure if the leakage diagram does not orbit the cylinder. Here, it might be the case that the leakage
diagram of its composition orbits the cylinder, but if we consider each leakage diagram of the
composed refresh gadgets separately, it does not orbit each subcylinder. For example, Figure 11b
illustrates such a case. Next, we use the same technique as in Section 4.2 to prove the security of
the composition.

First, we classify the maximal diagrams of kpRef. One way to describe the gap in the cylinder
is to use the multiple subgraphs RGap and LGap as defined in the proof of pRef and compose them
in such a way that they describe such a gap from the bottom to the top of the cylinder. However,
such a gap can also have some detours such that the gap goes partly in the opposite direction. To
cover all such cases, we have to consider four more “gap sets” than RGap and LGap:

(i) BLGapi,i′ := {x j−1
i , x j−1

i′ , r j
i′ , ..., r

j
i−1, b

j
i′+1, ..., b

j
i } describes a gap that starts from the bottom

circle of DG j, then turns left, and, finally, ends in the bottom circle.
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(ii) BRGapi,i′ := {x j−1
i , x j−1

i′ , r j
i , ..., r

j
i′−1, b

j
i+1, ..., b

j
i′ } describes a gap that starts from the bottom

circle of DG j, then turns right, and, finally, it ends in the bottom circle.

(iii) ULGapi,i′ := {x j
i , x

j
i′ , r

j
i′ , ..., r

j
i−1, b

j
i′ , ..., b

j
i−1} describes a gap that starts from the top circle of

DG j, then turns left, and, finally, it ends in the top circle.

(iv) URGapi,i′ := {x j
i , x

j
i′ , r

j
i , ..., r

j
i′−1, b

j
i , ..., b

j
i′−1} describes a gap that starts from the top circle of

DG j, then turns right, and, finally, it ends in the top circle.

We can use these gaps to classify maximal diagrams for kpRef. The next claim describes the
structure of such maximal graphs if we consider each sub-graph of each pRef separately.

Proposition 7. Let (x0
i )i∈[n] be the input of kpRef and (x j

i )i∈[n] ← pRef((x j−1
i )i∈[n]) the jth pRef of

kpRef. Further, let DG j be the sub-graph of DGpRef containing the variables used in pRef j and
MAX a maximal diagram of kpRef. It holds

MAX∩ DG j = DG j
\

[(
∪

I∈I1

RGapiI ,i′I

)
∪

(
∪

I∈I2

LGapiI ,i′I

)
∪

(
∪

I∈I3

BLGapiI ,i′I

)
∪(

∪
I∈I4

BRGapiI ,i′I

)
∪

(
∪

I∈I5

ULGapiI ,i′I

)
∪

(
∪

I∈I6

URGapiI ,i′I

)]
For all LD j :=MAX∩DG j, we get |I1|+ |I2| is odd and all gaps are pairwise disjoint. Moreover,
for LD1 and LDk it holds |I1| + |I2| = 1, for LD1 we get |I3| = |I4| = 0, while for LDk we get
|I5| = |I6| = 0. Each gap RGap and LGap of DG j is connected to one and only one gap of DG j+1,
and to one and only one gap of DG j−1. Each gap BLGap and BRGap is connected to two distinct
gaps of DG j−1, and each gap ULGap and URGap is connected to two distinct gaps of DG j+1.

Proof sketch. Even when the claim looks relatively complex, it only formalizes how the maximal
graphMAX of kpRef looks when we cut it into the sub-graphs LD j describing the individual
(x j

i )i∈[n] ← pRef((x j−1
i )i∈[n]). The proof idea is that the composition of all LD j together still

describes a gap that avoids a path around the dependency graph of kpRef. In other words, we can
see it as construction where we can construct and compose such LD j so that there is still a gap, and
each further added edge would close the gap. Next, we give the formalized proof for this claim.

Proof. First, we prove that all the gaps are connected as described, that is, each gap RGap and
LGap of DG j is connected to at least one gap of DG j+1, and at least one gap of DG j−1; each gap
BLGap and BRGap is connected to two distinct gaps of DG j−1; and each gap ULGap and URGap
is connected to two distinct gaps of DG j+1. If this is not the case, we simply consider the perimeter
of the gap, which is not connected. It is easy to see that this perimeter is homotopically equivalent
to the gap on the (x j

i )i∈[n]-orbit or (x j−1
i )i∈[n]-orbit where it starts. Thus, we can add the edge missing

on that orbit without makingMAX orbiting. Thus,MAX is not maximal, which is absurd by
hypothesis.

We proceed by induction over k. For k = 1, the proof has already been done in Proposition 7.
Using the same argument as in the proof of Proposition 4, there is only one edge missing in the

orbit defined by the (x0
i )i∈[n]-edges. Let j be this missing edge. Thus, there must be a gap either

RGap j, j′ or LGap j, j′ in DG1. Otherwise, taking the perimeter of the gap starting from x0
j , we have

a path in LD which is homotopically equivalent to x0
j . Thus, LD orbits since it contains the path

x0
j+1, ..., x

0
j−1 and a path homotopically equivalent to x0

j . All the remaining gaps are of type ULGap
and URGap since they cannot go out. We have only to prove that all these gaps are disconnected.
If one of these gaps is connected to the LGap gap or the RGap gap, then we have a problem. In
fact, it means that from x0

j , we can go out of the DG1 either from x1
i or x1

i′ . But going out from
these two gaps, we must arrive at the (xk

i )i∈[n]-orbit. (Otherwise, we can use the same argument to
prove that the gaps are connected, to prove thatMAX is not maximal). Thus, we can have two
possibilities: 1) these two gaps do not reconnect. Thus there are two missing edges in (xk

i )i∈[n],
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which is absurd due to the argument that we have explained in the proof of Proposition 4. 2)these
two gaps reconnect. ThusMAX is disconnected, which is absurd due to an argument presented in
the proof of Proposition 4. Similarly, we can prove that two gaps that start and ends on the top
circle of DG1, that is, the (x1

i )i∈[n]-one cannot intersect between each other.
Again we do the same analysis for DGk

∩MAX. Using the same argument as for DG1, we can
prove that there must be a gap of type RGap or LGap and some gaps of type BLGap and BRGap.

Now we considerMAX∩ DG2−>k−1, where with DG2−>k−1 we denote DG of the composition
of pRef2 until pRefk−1. There are I holes in (x1

i )i∈[n], that is, I missing edges, I′ missing edges in
(xk−1

i )i∈[n].
Each of these holes must be connected via a gap in DG2−>k−1 to one and only one other hole.

Otherwise, we have the argument against splitting or terminating at a dead end.
Now we can use the induction. Since each of these gaps is contained there, we can use the

induction hypothesis to prove that each of these gaps has the desired shape.
Finally, we have to prove that |I1|+ |I2|. We observe that we have proved that there is a “snake”

of gaps that starts from x0
j the missing edge in the (x0

i )i∈[n]-orbit), to xk
j′ (the missing edge in the

(xk
i )i∈[n]-orbit). Each time we cross from the top to the bottom, the (xl

i)i∈[n]-orbit, we must cross
from the bottom to the top in the same orbit. Moreover, one additional time we must cross from the
top to the bottom. This concludes the proof. □

In other words, a maximal diagram can be described as a dependency graph with a gap from
the bottom to the top consisting of the six subgraphs defined above. We can use this classification
to prove the security for kpRef.

Proposition 8. An outcome L of the experiment Leak(kpRef, x, p) is shiftable if its leakage diagram
does not orbit the dependency graph.

Proof sketch. The high-level idea is similar to Proposition 6. We have shown that a single
refresh is shiftable if the leakage diagram does not orbit the cylinder structure of its dependency
graph. In detail, we have proven that a not orbiting graph of a single refresh is a sub-graph of
RGapi, j = DG \ Mright

i, j or LGapi, j = DG \ Mleft
i, j . Further, this implies that the input share xi can

be set to an arbitrary value, and we can compute the according share y j without changing the
distribution of the leaked values. Hence, xi and y j are shiftable. It is easy to see that this also holds
for composed gadgets with (yi)i∈[n] ← pRef

1((xi)i∈[n]), and (zi)i∈[n] ← pRef
2((yi)i∈[n]). If xi and y j

are shiftable in pRef1, and y j and zk are shiftable in pRef2, it follows that xi and zk are shiftable in
pRef2(pRef1(·)). In detail, we can set xi to an arbitrary value and compute accordingly y j. Since
y j and zk are shiftable as well, we can also compute the according zk for any y j. For the formal
proof, we also show the shiftability for the four additional types of gaps we have introduced above
and extend the technique to an arbitrary number of compositions.

Proof. Similar to the security proofs of the gadgets, we use Proposition 1, and only prove the claim
for maximal diagrams. We use the same approach as for the maximal diagram of a single refresh.
Hence, using Proposition 1, we have to prove the claim for all maximal diagrams. Therefore,
we want to show how to modify the values in the gaps LGap j

i,i′ ,RGap j
i,i′ , BLGap j

i,i′ , BRGap j
i,i′ ,

ULGap j
i,i′ , and URGap j

i,i′ shifting an output of Leak(pRef, x, p) in another one without being
detected. For LGap j

i,i′ and RGap j
i,i′ the proof was already done in Proposition 6. Hence it remains

to prove it for the other four constructions:

(i) BLGap j
i,i′ : xi is modified in x′i = xi + γ, xi′ is modified in x′i′ = xi′ − γ, rl is modified in

r′l = rl + γ, for the rls in BLGapi, j, and bl is modified in b′l = bl + γ, for the bls in BLGapi, j.
for any γ. Note that x′i + x′i′ = xi + xi′ .

(ii) BRGapi,i′ : xi is modified in x′i = xi + γ, xi′ is modified in x′i′ = xi′ − γ, rl is modified in
r′l = rl − γ, for the rls in BRGapi, j, and bl is modified in b′l = bl − γ, for the bls in BRGapi, j.
Here, as well, x′i + x′i′ = xi + xi′ .
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(iii) ULGapi,i′ : yi is modified in y′i = yi + γ, yi′ is modified in y′i′ = yi′ − γ, rl is modified in
r′l = rl − γ, for the rls in ULGapi, j, and bl is modified in b′l = bl − γ, for the bls in ULGapi, j.
Similarly to before y′i + y′i′ = yi + yi′ .

(iv) URGapi,i′ : yi is modified in y′i = yi + γ, yi′ is modified in y′i′ = yi′ − γ, rl is modified in
r′l = rl + γ, for the rls in URGapi, j, and bl is modified in b′l = bl + γ, for the bls in URGapi, j.
Here, as well, y′i + y′i′ = yi + yi′ .

Hence, we have modified an outcome Leak(pRef, x, p) to another Leak(pRef, x, p). Here, we do
the proof for one case and refer to the full version for the other cases.

The gap is of type BLGapi,i′ with i < i′ 10. The values carried in A′ are

{x0, ..., xi−1, xi + γ, xi+1, ..., xi′−1, xi′ − γ, xi′+1, ..., xn−1, y0, ..., yn−1, r0 + γ, ..., ri−1 + γ,

ri, ..., ri′−1, ri′ + γ, ..., rn−1 + γ, b0 + γ, ..., bi + γ, bi+1, ..., bi′ , bi′+1 + γ, ..., bn−1 + γ}.

First, we observe that

x0 + ... + xi−1 + (xi + γ) + xi+1 + ... + xi′−1 + (xi′ − γ), xi′+1, ..., xn−1 = x0 + ... + xn−1 + γ − γ = x.

Since we have not touched the shares of y, they carry an encoding of y which is equal to x.
Now, let us consider pRef with input x0, ..., xi−1, xi + γ, xi+1, ..., xi′−1, xi′ − γ, xi′+1, ..., xn−1 and
randomness r0 + γ, ..., ri−1 + γ, ri, ..., ri′−1, ri′ + γ, ..., rn−1 + γ. For 0 ≤ j < i, b j + γ = x j + (r j + γ),
and y j = (b j +γ)− (r j−1 +γ). For i, bi +γ = (xi +γ)+ ri, and yi = (bi +γ)− (ri−1 +γ). For i < j < i′

b j = x j + r j, and y j = b j − r j. For i′, bi′ = (xi′ − γ) + (ri′ + γ), and yi′ = bi′ − ri′ . For i′ < j ≤ n − 1,
b j + γ = x j + (r j + γ), and y j = (b j + γ) − (r j−1 + γ). Thus, the values carried by A′ are those of
an honest evaluation of pRef with input x0, ..., xi−1, xi + γ, xi+1, ..., xi′−1, xi′ − γ, xi′+1, ..., xn−1 and
randomness r0 + γ, ..., ri−1 + γ, ri, ..., ri′−1, ri′ + γ, ..., rn−1 + γ. For all the other gaps, we proceed in a
similar way. For more details we refer to the full version. It remains to explain how we can use the
modifications just described to do the shift in the maximal diagram of kpRef. Therefore, we start
with DG1. Using the classification of the maximal of kpRef there is a single gap starting from its
bottom circle. We modify its values according to the proof of Proposition 6. Then, there is another
gap in DG2 that starts from the edge just modified before. We can modify it coherently starting
from this modified value. Iterating, due to our classification, there is always a gap in another DG j′

which starts from the final edge of the gap just modified before. Finally, we arrive at the single gap
of DGk which ends in the top circle.

Formally, we have proved the results for all the additional gaps introduced in Proposition 7.
Every gap is connected only to two other gaps (except for the first and the last.) Now, we start
observing that there are

k∑
j=0

|I
j
3| +

k∑
j=0

|I
j
4| =

k∑
j=0

|I
j
5| +

k∑
j=0

|I
j
6|,

where with Il
6, we denote the set I j

6 in the classification ofMAX∩ DG j (Proposition 7).
Since every time when we follow a RGapi,i′ or a LGapi,i′ gap, we keep the same modifications

for xi and yi′ , while when we follow BLGap, or BRGap, ULGap, or URGap, we modify xi and
yi′ with two opposite values, and we follow an even number of BLGap, BRGap, ULGap, and
URGap, we have that xk

j is modified with +δ = x′ − x, where xk
j is the single edge missing in the

(xk
i )i∈[n]-orbit. Thus, we have modified the values of the variable carried by DG \MAX to modify

an outcome of Leak(kpRef, x, p) in one of Leak(kpRef, x′, p). We give the formal description in
the full version. □

An example of a maximal for kpRef is depicted in the full version. The proposition gives the
following privacy result for our compositions. It only remains to compute the probability that a
leakage diagram does not orbit the cylinder described by the dependency graph of kpRef.

10For simplicity, when we use i < i′, we assume that i, i′ ∈ [n] ⊂ Z and not in Zn.
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Theorem 3. Let kpRef be the composition of k refreshing gadget, defined in Figure 1b. Let n be
the number of shares used. Then, kpRef is (p, (k + 1) · [(2 + 3(3p))3p]n))-private, for p ≤ 1/3 and
(p, 2 · (9p)n)).

Proof. Let kpRef takes as input (x0
0, ..., x

0
n−1) and outputs (xk

0, ..., x
k
n−1), with the ith pRef gadget,

denoted with pRefi does (xi
0, ..., x

i
n−1) ← pRef(xi−1

0 , ..., xi−1
n−1). The proof is completely similar to

the one of Theorem 2 with the following differences: 1) We consider the events Ei, for i = 0, ..., k
(instead of i = 0, 1), which consists in the event that there is an orbit containing the source node of
the edge xi

0 (denoted with nodei
0). 2) Each node is connected with 6 other nodes (and not 4). Thus,

there are at most 5n different paths. 3) There exists a single n-edges long loop orbiting from nodei
0,

4(n− 1) n + 1-edges long, and so on. From 1) and 2), we obtain that we can bound Pr[Ei] ≤ (15p)n.
Moreover, we can use the same argument to obtain, for p ≤ 1/9 that

Pr[Ei] ≤ [(2 + 3(3p))3p]n ≤ (9p)n.

To prove this, we can reuse the same arguments as in the proof of Theorem 2. We must add also
the argument that no edge connects the (x j

i )i∈[n]-orbit and the (x j′

i )i∈[n]-orbit if j′ , j − 1, j, j + 1.
Moreover, if node y belongs to the (xl

i)i∈[n]-orbit, the shortest path to node j
0 can never cross and

edge to go from the (xL
i )i∈[n]-orbit to a node in the (xL′

i )i∈[n]-orbit if |L′ − j| > |L − j| (because we
cannot skip orbits).

Finally, we explain why it holds

Pr[E0] ≤ [(2 + 3(3p))3p]n.

This is due to the fact that not all edges directly give the shortest path and require further edges that
are also added with probability p, and this happens with probability at most 3p. □

5.2 Security Analysis for the Composition of Gadgets

Now, we analyze the security of an arbitrary output of our compiler Ĉ ← CC(C), where C can
be any circuit described in the background. In Figure 6b, we depicted the dependency graph of
Add (or Mult) gadgets composed with pRef gadgets to refresh its inputs and outputs. Since our
compiler puts refresh gadgets after every output of Add, Mult, and Copy gadget, the dependency
graph of our compiler’s output is always a composition of dependency graphs depicted in Figure 6a.
As mentioned, this leads to slightly more complex dependency graphs than the one described in the
previous section (Sec. 5.1.) However, the main idea is the same. We have multiple dependency
graphs, as depicted in Figure 6a, sharing the same upper or lower circle as already described in
the previous section (Figure 11a.) The only difference is that gadgets can also have two input (or
output) sharings. Therefore the cylinder does not only share the bottom (or top) of the cylinder
with one but two further cylinders, as depicted in Figure 6b. Hence, the dependency graph of Ĉ is
still a composition of multiple cylinders. Since the dependency graph describes multiple cylinders
connected by shared upper and lower circles, we can distinguish orbiting loops from not orbiting
loops again. For this reason, we can use the same technique as in Proposition 8 to prove the security
of the composition. Again, we start classifying the maximals of Ĉ.

Proposition 9. LetMAX be a maximal diagram

(i) For each circuit-input encoding and circuit-output encoding, there is only one edge of the
encoding that does not belong toMAX.

(ii) The intersection of the DG of all pRef withMAX has an odd number of components which
have the characterization described in Proposition 8.

(iii) Each of these “gap sets” is connected to others to form gaps from each circuit input encoding
to any output encoding of the circuit.
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Proof. i) We exploit the same argument as presented in the proof of Proposition 7 to prove
that this holds. Substantially, if there is more than one hole in the input/output orbit edge,
the graph is either not maximal or it orbits. If there are more than two holes on the input
(xi)i∈[n]-orbit, we must have a gap starting from each. These two gaps either intersect or do
not intersect. If they intersect, then we can show that the maximal diagram orbit with an
argument similar to the one introduced in the proof of Proposition 7. In the second case,
MAX is not connected. If they do not connect, we cannot assume that they go to two
different other input/output orbits. Because otherwise, we can homotopically reduce these
two input sharings to the copy where the gaps split. Thus we have non-connection.

ii) The idea is the same as in the proof of Proposition 7. It comes from the fact that the gap
cannot split or have a dead end in the DGpRef with the same idea as in Proposition 7.

iii) This happens because if these gaps are not connected to each other, we can homotopically
take them away as done in the proof of Proposition 7.

□

As before, our classification allows us to prove the security of not orbiting leakage diagrams.

Proposition 10. Let Ĉ be a masked circuit obtained from our compiler. An outcome L of the
Leak(Ĉ, x, p) experiment, is shiftable to x′ if its leakage diagram does not orbit the dependency
graph.

Proof sketch. The only difference to the proof in Section 5.1 is that we have gadgets with multiple
input and output sharing. Hence we do not have only one bottom and top. (E.g. Figure 6b has two
bottom circles). However, the high-level idea is the same.

Proof. When we have such dependency graphs, a leakage diagram does not orbit when gaps exist
(as defined in the proof of Proposition 8) from every bottom and top circle. We have described
the maximals above. Using this classification, we can modify the values of the variables carried
by the edges in DGĈ \ MAX as in the proof of Proposition 8. We start with an arbitrary input
encoding, then we modify the values on the subgraphs RGap, LGap, BRGap, BLGap, ULGap,
and URGap as in the previous example (and as described in the Proposition 5, 6, and 8). Iterating,
we arrive at modifying all the values of DG \MAX. With this technique, we can modify all inputs.
Hence, L from Leak(Ĉ, x, p) is shiftable if its leakage diagram is not orbiting. The details that this
modification gives the same output of Leak(Ĉ, x, p) is given now.11

We start with the input orbit sharings. From there, we can change the gaps until we arrive to a
gap that arrives in a gap where two different inputs are modified. There using Proposition 5, we
wait until we have arrived to modify the other input with gaps. We can go on, and we can arrive
that at least we can modify one of the gaps with multiple inputs. [This happens due to the structure
of the gasp inMAX.]

This operation is correct because even here, every time that we go up, we add the shift, while
every time we go down, we subtract the shift. This works as in the proof of Proposition 8.

□

Using Corollary 3 and Proposition 10, we can bound the actual security of the circuits obtained
via our compiler.

Theorem 4. Let Ĉ be a circuit obtained via our compiler, Ĉ← CCp(C), and |C| be the number of
gates of the circuit C, I the number of input gates and O the number of output gates. Then, Ĉ is
(p, (|C| + I + O) p̂n)-private, with

p̂ = 18p + 2(1 − (1 − p)8n + 1 − (1 −
√

3p)n−1)

11In the proof of Proposition 8 this step is easier because each gap set meets at its end a single another gap set.

31



If C is affine, then, Ĉ is (p, (|C|+ I+O)(12p)n). If circuit C is complete, then Ĉ is (p, (|C|p̂n)-private,
or Ĉ is (p, |C|(12p)n)-private.

Proof. The proof is similar to the proof of Theorem 3 with the following differences: 1) We have
at most |C| + I + O different sharings (orbits) containing the shares of an input, intermediate, or
output encoding. If the circuit is complete, the number of such orbits is at most |C|. Thus we have
|C| + I + O events Ei to consider. 2) For each node of DG, there are at most 8 edges. 3) Each edge
is added to LD with probability at most p′ = 1 − (1 − p)8n + 1 − (1 −

√
3p)n−1 for general circuits

(or p′ = 3p for affine circuits),see Proposition 5 and 6. Thus, we can prove that Pr[Ei] ≤ (7p′)n.
Doing a more detailed analysis (full version), similar to the one done in Theorem 2 and 3, we
obtain that Pr[Ei] ≤ [6np + 2(1 − (1 − p)8n + 1 − (1 −

√
3p)n−1)]n (App. A.4) Putting everything

together, we obtain the claim. □

With Theorem 4, we can discuss the security results for our compiler.

5.3 Compiler Security

In the previous section, we have proven that any complete circuit Ĉ obtained via our compiler,
Ĉ← CCp(C) is (p, (|C|)p̂n)-private, with p̂ = [6np + 2(1 − (1 − p)8n + 1 − (1 −

√
3p)n−1)]. Further,

if C is affine, then, Ĉ is (p, (|C| + I + O)(12p)n)-private. This section discusses the results and
demonstrates the improvements compared to the state-of-the-art. As in [22, 16] the condition p̂ < 1
requires an upper-bound for the leakage probability p. In detail, Theorem 4 requires the following.
Unfortunately, given α ∈ [0, 1], we are not able to explicitly compute the maximal p given n, s.t.
[6np+ 2(1− (1− p)8n + 1− (1−

√
3p)n−1)]n ≤ α. Here, we try to study the asymptotic behaviour of

p which makes the previous equation lower than α. Since, we have a term (1 − (1 −
√

3p)n−1)n, we
wonder that we are secure if p = O(n−2). This is the case, as we prove in the following theorem:

Theorem 5. The compiler is secure for any leakage probability p with p = O( 1
n2 ).

Proof. Let p = Cn−2 for a constant C

lim
n→∞

18
C
n2 + 2

1 − (
1 −

C
n2

)8n

+ 1 −

1 − √
3

C
n2

n−1


n

lim
n→∞

18C
n2 + 2

1 − (
1 −

C
n2

)8n

+ 1 −
1 − √3C

n

n−1


n

lim
n→∞

[
18C
n2 + 2

(
1 − e8n log

(
1− C

n2

)
+ 1 − e

(n−1) log
(
1−

√
3C
n

))]n

Using the following well known result from analysis

log(1 + ϵn) ∼ ϵn for n→ ∞ and ϵn → 0

the previous limit becomes

lim
n→∞

[
18C
n2 + 2

(
1 − e8n −C

n2 + 1 − e(n−1)
√
−3C
n

)]n

lim
n→∞

[
18C
n2 + 2

(
1 − e

−8C
n + 1 − e

−(n−1)
√

3C
n

)]n

lim
n→∞

[
18C
n2 + 2

(
1 − e

−8C
n + 1 − e−

√
3C

)]n

.
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Using the well-known result from analysis

eϵn ∼ 1 + ϵn for n→ ∞ and ϵn → 0

we have that

lim
n→∞

[
18C
n2 + 2

(
1 − 1 +

8C
n
+ 1 − e

√
−3C

)]n

.

Now, since 8C
n → 0 and 18C

n2 → 0 when n→ ∞, we have that if 1/2 < e−
√

3C < 1 + 1/2, then

18C
n2 + 2

(
1 − e

−8C
n + 1 − e−

√
3C

)
< 1.

Thus,

lim
n→∞

[
6C
n
+ 2

(
1 − e

−8C
n + 1 − e−

√
3C

)]n

= 0.

But, the condition

1/2 < e−
√

3C < 1 + 1/2⇔ log(1/2) < −
√

3C < log(1 + 1/2)

[log(1 + 1/2)]2 < 3C < log(1/2)2 ⇔
[log(1 + 1/2)]2

3
< C <

[log(1 + 1/2)]2

3
.

□

We have experimentally proved this in Fig 12.
Interestingly, for reasonable n, we have that we behave significantly better than [16] even if

p = O(n), as we prove in Fig. 13. We explain the reason behind this in App. B.

6 Comparison with Dziemobwski et al. [16]

Our work is inspired by Dziembowski et al. [16]. Thus, we want to summarize the differences
between their work and ours. Our compiler provides gadgets that work parallelly. In particular, our
refresh gadget, pRef, works in 3 clock cycles, while their sRef works in O(n) cycles. Moreover,
our multiplication gadget, Mult works in O(log(n)) cycles, while theirs, the ISW [22] works with
O(n) cycles. The other gadgets, which are the same in both compilers, need a constant number of
cycles. Thus, our compiler is significantly faster than theirs for affine and general circuits.

Proof technique. Their proof technique is a particular case of our generalized one. In fact, it is
enough to consider the graph depicted in Figure 2b. Since the values of the variables ci

0 and ci
n are

always 0, we can consider them as equal and glue the edge carrying ci
0 with ci

n ∀i. In this way, we
obtain a cylinder (the formal proof is in the full version.) In other words, the encodings of a value
can also be considered like an orbit. Since cn

i = 0 is fixed and not secret, we must assume that the
adversary knows cn

i . Thus, we consider the edges carrying cn
i as always “leaked; hence, it always

belongs to the leakage diagram. This condition means that our property of not orbiting becomes
the property in which the leakage diagram’s left, and right sides are not connected. Finally, their
way to modify (that is, choosing the so-called modifications vectors) is a way to select a maximal
containing the leakage diagram as we did in our proofs. Further, we show in the full version why
we cannot use their technique for our gadgets. Informally, their technique does not work for our
LD because choosing the so-called modification vectors would have been challenging (since there
are no edges that must belong to the leakage diagrams).
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Figure 12: Comparison between the security of our masked circuits (solid lines) and the one of [16]
(dotted lines) in logarithmic scale, with p = O(1/n2) (n the number of shares) and a single gate
(k = 1). For general circuits the results must be multiplied with the number of gates of the circuit.
We took p = (1/64n2) because we have to offset the factor 32np in [16].

Bound differences. Since every edge of DGpRef (Figure 5b) contains a single variable, while
the ci

j-edges contain two variables (Figure 2b), we have that our affine compiled circuits are

(O([9p]n), p)-private, while theirs is (O([8
√

3p]n), p)-private. Thus, we have gained an order of
magnitude. Second, by doing a more detailed analysis, we have proved that for the Mult gadgets
and, thus, for the general compiled circuits, the security is [18p+2(1−(1−p)8n+1−(1−

√
3p)n−1)]n,

instead of (32np + 4n
√

3p)n. This observation proves better security gains as we have showed in
Figs. 12 and 13 and with additional figures in App. D.

7 Conclusion

In this paper, we have started from the graphs introduced by Dziemboswki et al. [16]. Then, we
showed how to use a broader class of graphs. Our graphs are more general than [16], and we
used them to prove the security in the random probing model of our parallel compiler. Using this,
we have proved that our compiler has O(pn)-security for the affine case and O((n2 p)n)-security
for the general case. Besides being parallel, our compiler has the advantage that it is one of the
simplest possible. This graph technique is interesting and could be applied to other compilers.
Moreover, we believe the same technique can be applied to other probing models, such as the
t-threshold probing model or the average-random probing model, or considering leakage models
where glitches are considered, or also considering security in the presence of faults. We also believe
that our technique can be applied to gadgets corresponding to bigger circuits, as those used to
mask public-key encryption scheme. Finding dependency graphs which can be useful is still an
interesting challenge. Finally, it might be interesting to improve the security bounds of our Mult
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Figure 13: Comparison between the security of our masked circuits (solid lines) and the one of [16]
(dotted lines) in logarithmic scale, with p = O(1/n2) (n the number of shares) and a single gate
(k = 1). For general circuits the results must be multiplied with the number of gates of the circuit.
We remember that in our choice of p we have to consider the factor 32np in [16].

and Add-gadget using improved graphs.

Acknowledgment

This work was partly supported by the German Research Foundation (DFG) via the DFG CRC
1119 CROSSING (project S7), by the German Federal Ministry of Education and Research
and the Hessen State Ministry for Higher Education, Research and the Arts within their joint
support of the National Research Center for Applied Cybersecurity ATHENE, and by the European
Commission(ERCEA), ERC Grant Agreement 101044770 CRYPTOLAYER. F. Berti was funded
by Israel Science Foundation, ISF grant 2569/21.

We would like to thank Stefan Dziembowski and Karol Zebrowski for helpful discussions on
earlier versions of this work, and our reviewers for the many helpful comments to improve the
paper. Further, we thank Jürgen Pulkus for identifying an error in a previous version of this paper.

References

[1] Ananth, P., Ishai, Y., Sahai, A.: Private circuits: A modular approach. In: Shacham,
H., Boldyreva, A. (eds.) Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018,
Proceedings, Part III. Lecture Notes in Computer Science, vol. 10993, pp. 427–455.
Springer (2018). https://doi.org/10.1007/978-3-319-96878-0_15, https://doi.org/10.
1007/978-3-319-96878-0_15

35

https://doi.org/10.1007/978-3-319-96878-0_15
https://doi.org/10.1007/978-3-319-96878-0_15


[2] Andrychowicz, M., Dziembowski, S., Faust, S.: Circuit compilers with o(1/\log (n)) leakage
rate. In: Fischlin, M., Coron, J. (eds.) Advances in Cryptology - EUROCRYPT 2016 -
35th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 9666, pp. 586–615. Springer (2016). https://doi.org/10.1007/978-3-662-49896-
5_21, https://doi.org/10.1007/978-3-662-49896-5_21

[3] Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F., Strub, P.: Parallel im-
plementations of masking schemes and the bounded moment leakage model. In: Coron,
J., Nielsen, J.B. (eds.) Advances in Cryptology - EUROCRYPT 2017 - 36th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 10210, pp. 535–566 (2017). https://doi.org/10.1007/978-3-319-56620-7_19,
https://doi.org/10.1007/978-3-319-56620-7_19

[4] Belaïd, S., Coron, J., Prouff, E., Rivain, M., Taleb, A.R.: Random probing secu-
rity: Verification, composition, expansion and new constructions. In: Micciancio, D.,
Ristenpart, T. (eds.) Advances in Cryptology - CRYPTO 2020 - 40th Annual Interna-
tional Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21,
2020, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12170, pp. 339–368.
Springer (2020). https://doi.org/10.1007/978-3-030-56784-2_12, https://doi.org/10.
1007/978-3-030-56784-2_12

[5] Belaïd, S., Mercadier, D., Rivain, M., Taleb, A.R.: Ironmask: Versatile verifi-
cation of masking security. In: 43rd IEEE Symposium on Security and Privacy,
SP 2022, San Francisco, CA, USA, May 22-26, 2022. pp. 142–160. IEEE (2022).
https://doi.org/10.1109/SP46214.2022.9833600, https://doi.org/10.1109/SP46214.
2022.9833600

[6] Belaïd, S., Mercadier, D., Rivain, M., Taleb, A.R.: Ironmask: Versatile verifi-
cation of masking security. In: 43rd IEEE Symposium on Security and Privacy,
SP 2022, San Francisco, CA, USA, May 22-26, 2022. pp. 142–160. IEEE (2022).
https://doi.org/10.1109/SP46214.2022.9833600, https://doi.org/10.1109/SP46214.
2022.9833600

[7] Belaïd, S., Rivain, M., Taleb, A.R.: On the power of expansion: More efficient constructions
in the random probing model 12697, 313–343 (2021). https://doi.org/10.1007/978-3-030-
77886-6_11, https://doi.org/10.1007/978-3-030-77886-6_11

[8] Belaïd, S., Rivain, M., Taleb, A.R.: On the power of expansion: More efficient con-
structions in the random probing model. In: Canteaut, A., Standaert, F. (eds.) Advances
in Cryptology - EUROCRYPT 2021 - 40th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21,
2021, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12697, pp. 313–343.
Springer (2021). https://doi.org/10.1007/978-3-030-77886-6_11, https://doi.org/10.
1007/978-3-030-77886-6_11

[9] Bogdanov, A., Ishai, Y., Srinivasan, A.: Unconditionally secure computation against low-
complexity leakage. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology -
CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2019, Proceedings, Part II. Lecture Notes in Computer Science, vol.
11693, pp. 387–416. Springer (2019). https://doi.org/10.1007/978-3-030-26951-7_14, https:
//doi.org/10.1007/978-3-030-26951-7_14

[10] Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In: Goubin, L., Matsui,
M. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2006, 8th International

36

https://doi.org/10.1007/978-3-662-49896-5_21
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-030-56784-2_12
https://doi.org/10.1007/978-3-030-56784-2_12
https://doi.org/10.1109/SP46214.2022.9833600
https://doi.org/10.1109/SP46214.2022.9833600
https://doi.org/10.1109/SP46214.2022.9833600
https://doi.org/10.1109/SP46214.2022.9833600
https://doi.org/10.1007/978-3-030-77886-6_11
https://doi.org/10.1007/978-3-030-77886-6_11
https://doi.org/10.1007/978-3-030-77886-6_11
https://doi.org/10.1007/978-3-030-26951-7_14
https://doi.org/10.1007/978-3-030-26951-7_14


Workshop, Yokohama, Japan, October 10-13, 2006, Proceedings. Lecture Notes in Computer
Science, vol. 4249, pp. 201–215. Springer (2006). https://doi.org/10.1007/11894063_16,
https://doi.org/10.1007/11894063_16

[11] Cassiers, G., Faust, S., Orlt, M., Standaert, F.: Towards tight random probing security.
In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology - CRYPTO 2021 - 41st An-
nual International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20,
2021, Proceedings, Part III. Lecture Notes in Computer Science, vol. 12827, pp. 185–
214. Springer (2021). https://doi.org/10.1007/978-3-030-84252-9_7, https://doi.org/10.
1007/978-3-030-84252-9_7

[12] Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal correlation
analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) Information and
Communications Security - 12th International Conference, ICICS 2010, Barcelona, Spain,
December 15-17, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6476, pp.
46–61. Springer (2010). https://doi.org/10.1007/978-3-642-17650-0_5, https://doi.org/
10.1007/978-3-642-17650-0_5

[13] Coron, J., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security and mask
refreshing. In: Moriai, S. (ed.) Fast Software Encryption - 20th International Workshop, FSE
2013, Singapore, March 11-13, 2013. Revised Selected Papers. Lecture Notes in Computer
Science, vol. 8424, pp. 410–424. Springer (2013). https://doi.org/10.1007/978-3-662-43933-
3_21, https://doi.org/10.1007/978-3-662-43933-3_21

[14] Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: From probing attacks to
noisy leakage. J. Cryptol. 32(1), 151–177 (2019). https://doi.org/10.1007/s00145-018-9284-1,
https://doi.org/10.1007/s00145-018-9284-1

[15] Dziembowski, S., Faust, S., Skorski, M.: Noisy leakage revisited. In: Oswald, E., Fischlin, M.
(eds.) Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-
30, 2015, Proceedings, Part II. Lecture Notes in Computer Science, vol. 9057, pp. 159–
188. Springer (2015). https://doi.org/10.1007/978-3-662-46803-6_6, https://doi.org/10.
1007/978-3-662-46803-6_6

[16] Dziembowski, S., Faust, S., Zebrowski, K.: Simple refreshing in the noisy leakage model.
In: Galbraith, S.D., Moriai, S. (eds.) Advances in Cryptology - ASIACRYPT 2019 - 25th
International Conference on the Theory and Application of Cryptology and Information
Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part III. Lecture Notes in Computer
Science, vol. 11923, pp. 315–344. Springer (2019). https://doi.org/10.1007/978-3-030-34618-
8_11, https://doi.org/10.1007/978-3-030-34618-8_11

[17] Gao, S., Mateer, T.D.: Additive fast fourier transforms over finite fields. IEEE Trans. Inf.
Theory 56(12), 6265–6272 (2010). https://doi.org/10.1109/TIT.2010.2079016, https://
doi.org/10.1109/TIT.2010.2079016

[18] Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth acoustic
cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology - CRYPTO
2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part I. Lecture Notes in Computer Science, vol. 8616, pp. 444–461.
Springer (2014). https://doi.org/10.1007/978-3-662-44371-2_25, https://doi.org/10.
1007/978-3-662-44371-2_25

[19] Goudarzi, D., Joux, A., Rivain, M.: How to securely compute with noisy leakage in quasilinear
complexity. In: Peyrin, T., Galbraith, S.D. (eds.) Advances in Cryptology - ASIACRYPT 2018
- 24th International Conference on the Theory and Application of Cryptology and Information

37

https://doi.org/10.1007/11894063_16
https://doi.org/10.1007/978-3-030-84252-9_7
https://doi.org/10.1007/978-3-030-84252-9_7
https://doi.org/10.1007/978-3-642-17650-0_5
https://doi.org/10.1007/978-3-642-17650-0_5
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/s00145-018-9284-1
https://doi.org/10.1007/978-3-662-46803-6_6
https://doi.org/10.1007/978-3-662-46803-6_6
https://doi.org/10.1007/978-3-030-34618-8_11
https://doi.org/10.1109/TIT.2010.2079016
https://doi.org/10.1109/TIT.2010.2079016
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-3-662-44371-2_25


Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 11273, pp. 547–574. Springer (2018). https://doi.org/10.1007/978-
3-030-03329-3_19, https://doi.org/10.1007/978-3-030-03329-3_19

[20] Goudarzi, D., Prest, T., Rivain, M., Vergnaud, D.: Probing security through input-output
separation and revisited quasilinear masking. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2021(3), 599–640 (2021). https://doi.org/10.46586/tches.v2021.i3.599-640, https://doi.
org/10.46586/tches.v2021.i3.599-640

[21] Hatcher, A.: Algebraic topology. Cambridge University Press (2005)

[22] Ishai, Y., Sahai, A., Wagner, D.A.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) Advances in Cryptology - CRYPTO 2003, 23rd An-
nual International Cryptology Conference, Santa Barbara, California, USA, August 17-
21, 2003, Proceedings. Lecture Notes in Computer Science, vol. 2729, pp. 463–481.
Springer (2003). https://doi.org/10.1007/978-3-540-45146-4_27, https://doi.org/10.
1007/978-3-540-45146-4_27

[23] Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In: Koblitz, N. (ed.) Advances in Cryptology - CRYPTO ’96, 16th Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August 18-22, 1996,
Proceedings. Lecture Notes in Computer Science, vol. 1109, pp. 104–113. Springer (1996).
https://doi.org/10.1007/3-540-68697-5_9, https://doi.org/10.1007/3-540-68697-5_
9

[24] Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.) Advances
in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 1999, Proceedings. Lecture Notes in Computer
Science, vol. 1666, pp. 388–397. Springer (1999). https://doi.org/10.1007/3-540-48405-1_25,
https://doi.org/10.1007/3-540-48405-1_25

[25] Lee, J.: Introduction to Topological Manifolds. Graduate Texts in Mathematics, Springer
New York (2010), https://books.google.de/books?id=0XfowAEACAAJ

[26] Manetti, M.: Topology. UNITEXT, Springer International Publishing (2015), https://
books.google.de/books?id=89zyCQAAQBAJ

[27] Medwed, M., Standaert, F., Joux, A.: Towards super-exponential side-channel security with
efficient leakage-resilient prfs. In: Prouff, E., Schaumont, P. (eds.) Cryptographic Hardware
and Embedded Systems - CHES 2012 - 14th International Workshop, Leuven, Belgium,
September 9-12, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7428, pp.
193–212. Springer (2012). https://doi.org/10.1007/978-3-642-33027-8_12, https://doi.
org/10.1007/978-3-642-33027-8_12

[28] Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel
attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) Information and Communications
Security, 8th International Conference, ICICS 2006, Raleigh, NC, USA, December 4-7, 2006,
Proceedings. Lecture Notes in Computer Science, vol. 4307, pp. 529–545. Springer (2006).
https://doi.org/10.1007/11935308_38, https://doi.org/10.1007/11935308_38

[29] Prest, T., Goudarzi, D., Martinelli, A., Passelègue, A.: Unifying leakage models on a rényi
day. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology - CRYPTO 2019 -
39th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2019, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11692, pp. 683–712.
Springer (2019). https://doi.org/10.1007/978-3-030-26948-7_24, https://doi.org/10.
1007/978-3-030-26948-7_24

38

https://doi.org/10.1007/978-3-030-03329-3_19
https://doi.org/10.46586/tches.v2021.i3.599-640
https://doi.org/10.46586/tches.v2021.i3.599-640
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://books.google.de/books?id=0XfowAEACAAJ
https://books.google.de/books?id=89zyCQAAQBAJ
https://books.google.de/books?id=89zyCQAAQBAJ
https://doi.org/10.1007/978-3-642-33027-8_12
https://doi.org/10.1007/978-3-642-33027-8_12
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/978-3-030-26948-7_24
https://doi.org/10.1007/978-3-030-26948-7_24


[30] Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal security proof.
In: Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology - EUROCRYPT 2013,
32nd Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26-30, 2013. Proceedings. Lecture Notes in Computer
Science, vol. 7881, pp. 142–159. Springer (2013). https://doi.org/10.1007/978-3-642-38348-
9_9, https://doi.org/10.1007/978-3-642-38348-9_9

[31] Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating mask-
ing schemes. In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9215, pp. 764–783.
Springer (2015). https://doi.org/10.1007/978-3-662-47989-6_37, https://doi.org/10.
1007/978-3-662-47989-6_37

[32] Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard, S., Stan-
daert, F. (eds.) Cryptographic Hardware and Embedded Systems, CHES 2010, 12th Interna-
tional Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings. Lecture Notes
in Computer Science, vol. 6225, pp. 413–427. Springer (2010). https://doi.org/10.1007/978-3-
642-15031-9_28, https://doi.org/10.1007/978-3-642-15031-9_28

[33] Trichina, E.: Combinational logic design for AES subbyte transformation on masked data.
IACR Cryptol. ePrint Arch. p. 236 (2003), http://eprint.iacr.org/2003/236

[34] Walter, C.D.: Sliding windows succumbs to big mac attack. In: Koç, Ç.K., Naccache,
D., Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2001, Third
International Workshop, Paris, France, May 14-16, 2001, Proceedings. Lecture Notes in
Computer Science, vol. 2162, pp. 286–299. Springer (2001). https://doi.org/10.1007/3-540-
44709-1_24, https://doi.org/10.1007/3-540-44709-1_24

39

https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-642-15031-9_28
http://eprint.iacr.org/2003/236
https://doi.org/10.1007/3-540-44709-1_24


Supplementary Material

A Detailed Proofs

A.1 Classification of the Maximals for pRef

Proof. Now, we study the left cases:
• Case i < j. It depends if either bi or ri belongs to LD.

– Case ri ∈ LD. (CaseMleft
i, j ) We start observing that no edge in

{r0, ..., ri−1, r j, ..., rn−1, b0, ..., bi, b j, ..., bn−1}

can be in LD. In fact, the loop

x0, ..., xl, rl, yl+1, ..., yi, ri, xi+1, ..., xn−1 for 0 ≤ l < i, or

y0, ..., yi, ri, xi+1, ...., xl, rl, yl+1, ..., yn−1 for j ≤ l < n − 1, or

x0, ..., xl, bl, yl+1, ..., yi, ri, xi+1, ..., xn−1 for 0 ≤ l < i, or

y0, ...yi, ri, xi, ..., xl−1, bl, yl+1, ..., yn−1 for j ≤ l ≤ n − 1

orbits and it is contained in LD ∪ {e} with e = rl or bl (we are bypassing the edge xi or
y j). To show that

DG \ {r0, ..., ri−1, r j, ..., rn−1, b0, ..., bi, b j, ..., bn−1}

is simply connected, we observe that we can draw a line from the top orbit of the
cylinder crossing only the edges

xi, y j, r0, ..., ri−1, r j, ..., rn−1, b0, ..., bi, b j, ..., bn−1).

If we cut a cylinder over such a line we obtain a rectangle (topologically), which is
simply connected. Since, we have not cut any edge of the LD, then, LD is simply
connected 12. Thus,

LD = DG \ {xi, y j, r0, ..., ri−1, r j, ..., rn−1, b0, ..., bi, b j, ..., bn−1}

is a maximal diagram. Moreover,

DG \ {xi, y j, r0, ..., ri−1, r j, ..., rn−1, b0, ..., bi, b ji, ..., bn−1} =

{x0, ..., xi−1, xi+1, ..., xn−1, y0, ..., y j−1, y j+1, ..., yn−1, ri, ..., r j−1, bi+1, ..., b j−1}.

– Case bi ∈ LD. (CaseMright
i, j ) We observe that no edge in

{ri, ..., r j−1, bi+1, ..., b j−1}

can belong to LD. Otherwise either

x0, ...xi−1, bi, yi+1, ..., yl, rl, xl+1, ..., xn−1 for i ≤ l < j − 1, or

x0, ...xi−1, bi, yi+1, ..., yl, bl, xl, ..., xn−1 for i + 1 ≤ l < j − 1

12In fact, if Y is a subspace of a simply connected space X, thus, retractable to a point (and the retraction f : X → P
where P is a point can be easily defined as f ′ : Y → P as f ′ := f|Y ))
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is a loop which orbits and it is contained in LD ∪ {e} with e = rl or bl (we bypass the
missing edge xi). As done before, to show that

DG \ {xi, y j, ri, ..., r j−1, bi+1, ..., b j−1}

does not orbit, it is enough to observe that we can draw a line from the top orbit of the
cylinder to the bottom orbit of the cylinder crossing only the edges

(xi, y j, ri, ..., r j−1, bi+1, ..., b j−1).

If we cut a cylinder over such a line we obtain a rectangle (topologically), which is
simply connected. Similarly as above, this proves that LD is simply connected. Thus,

LD = DG \ {xi, y j, ri, ..., r j−1, bi+1, ..., b j−1} = {x0, ..., xi−1, xi+1, ..., xn−1,

y0, ..., y j−1, y j+1, ..., yn−1, r0, ..., ri−1, r j, ..., rn−1, b0, ..., bi, b j, ..., bn−1}

is a maximal diagram.
• Case i > j. It depends if either bi or ri belongs to LD.

– Case bi ∈ LD. (CaseMright
i, j ) We start observing that no edge in

{r0, ..., ri−1, r j, ..., rn−1, b0, ..., b j−1, bi+1, ..., bn−1}

can be in LD. In fact, the loop

y0, ..., yl, rl, xl+1, ..., xi−1, bi, yi+1, ..., yn−1 for 0 ≤ l < j, or

x0, ..., xi−1, bi, yi+1, ...., yl, rl, xl+1, ..., xn−1 for i ≤ l ≤ n − 1, or

y0, ..., yl, bl, xl−1, ..., xi, bi, y j+1, ..., yn−1 for 0 ≤ l < j, or

x0, ...xi−1, bi, yi+1, ..., yl, bl, xl, ..., xn−1 for i < l ≤ n − 1

orbits and it is contained in LD ∪ {e} with e = rl or bl (we are bypassing the edge xi or
y j). As done before, to show that

DG \ {xi, y j, r0, ..., ri−1, r j, ..., rn−1, b0, ..., b j−1, bi+1, ..., bn−1}

does not orbit, we observe that we can draw a line from the top orbit of the cylinder
crossing only the edges

(xi, y j, r0, ..., ri−1, r j, ..., rn−1, b0, ..., b j−1, bi+1, ..., bn−1).

Similarly as above, this proves that LD is simply connected. Thus,

LD = DG \ {xi, y j, r0, ..., ri−1, r j, ..., rn−1, b0, ..., b j−1, bi+1, ..., bn−1} =

{x0, ..., xi−1, xi+1, ..., xn−1, y0, ..., y j−1, y j+1, ..., yn−1, r j+1, ..., ri−1, b j, ..., b j}

is a maximal diagram.
– Case ri ∈ LD. (CaseMleft

i, j ) We start observing that no edge in

{r j, ..., ri−1, bi, ..., b j}

can be in LD. In fact, the loop

x0, ..., xl, rl, yl+1, ..., yi, ri, xi+1, ..., xn−1 for j ≤ l < i, or

x0, ..., xl, bl, yl+1, ...., yi, ri, xi+1, ..., xn−1 for j ≤ l ≤ i, or
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orbits and it is contained in LD ∪ {e} with e = rl or bl (we are bypassing the edge xi or
y j). As done before, to show that

DG \ {xi, y j, r j, ..., ri−1, bi, ..., b j}

is simply connected, we observe that we can draw a line from the top orbit of the
cylinder crossing only the edges

(xi, y j, r j, ..., ri−1, bi, ..., b j).

If we cut a cylinder over such a line we obtain a rectangle (topologically), which is
simply connected. Since, we have not cut any edge of the LD, then, LD is simply
connected, thus, it does not orbit. Thus,

LD = DG \ {xi, y j, r0, ..., ri−1, r j, ..., rn−1, b0, ..., b j−1, bi+1, ..., bn−1} =

{x0, ..., xi−1, xi+1, ..., xn−1, y0, ..., y j−1, y j+1, ..., yn−1,

r0, ..., r j−1, ri, ..., rn−1, b0, ..., b j−1, bi+1, ..., bn−1}

is a maximal diagram.
Note that cases iii) and v) are the same (as it happens for cases iv) and vi) ). It is enough to index
the shares with indexes in [ j, ..., j + n − 1].
Thus, we have classified the possible maximal simply connected subgraph of the DG of pRef. □

A.2 Proof of Proposition 6

Proof. Let δ = x′−x. Let A be the values carried by the variables of pRef during the Leak(pRef, x, r, p)-
experiment, where r = r0, ..., rn−1 is the randomness used.

• The maximal is of typeMright
i, j with i < j 13. The values carried in A′ are

{x0, ..., xi−1, xi + δ, xi+1, ..., xn−1, y0, ..., y j−1, yi + δ, yi+1, ..., yn−1,

r0, ..., ri−1, ri − δ, ..., r j−1 − δ, r j, ..., rn−1, b0, ..., bi, bi+1 − δ, ..., b j−1 − δ, b j, ..., bn−1}.

First we observe that

x0 + ... + xi−1 + (xi + δ) + xi+1 + ... + xn−1 = x0 + ... + xn−1 + δ = x + (x′ − x) = x′.

The same holds for the shares of y.
Now, let us consider pRefwith input x0, ..., xi−1, xi+δ, xi+1, ..., xn−1 and randomness r0, ..., ri−1, ri−

δ, ..., r j−1 − δ, r j, ..., rn−1 − δ. For 0 ≤ i′ < i, bi′ = xi′ + ri′ , and yi′ = bi′ − ri′−1. For
i, bi = (xi + δ) + (ri − δ), and yi = bi − ri−1. For i < i′ < j bi′ − δ = xi′ + (ri′ − δ),
and yi′ = (bi′ − δ) − (ri′−1 − δ). For j, b j = x j + r j, and y j + δ = b j − (r j−1 − δ). For
i < i′ ≤ n − 1, bi′ = xi + ri′ , and yi′ = bi′ − ri′−1. Thus, the values carried by A′ are those
of an honest evaluation of pRef with input x0, ..., xi−1, xi + δ, xi+1, ..., xn−1 and randomness
r0, ..., ri−1, ri − δ, ..., r j−1 − δ, r j, ..., rn−1 − δ.

• The maximal is of typeMright
i, j with i > j. The values carried in A′ are

{x0, ..., xi−1, xi + δ, xi+1, ..., xn−1, y0, ..., y j−1, yi + δ, yi+1, ..., yn−1,

r0 − δ, ..., r j−1 − δ, r j, ..., ri−1, r j − δ, ..., rn−1 − δ,

b0 − δ, ..., b j−1 − δ, b j, ..., bi, bi+1 − δ, ..., bn−1 − δ}.

13For simplicity, when we use i < j, we assume that i, j ∈ [n] ⊂ Z and not in Zn.
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First we observe that

x0 + ... + xi−1 + (xi + δ) + xi+1 + ... + xn−1 = x0 + ... + xn−1 + δ = x + (x′ − x) = x′.

The same holds for the shares of y.
Now, let us consider pRef with input x0, ..., xi−1, xi + δ, xi+1, ..., xn−1 and randomness r0 −

δ, ..., r j−1 − δ, r j, ..., ri−1, ri − δ, ..., rn−1 − δ. For 0 ≤ i′ < j bi′ − δ = xi′ + (ri′ − δ), and
yi′ = (bi′ − δ) − (ri′−1 − δ). For j, b j = x j + r j, and y j + δ = b j − (r j−1 − δ). For j < i′ < i,
bi′ = xi + ri′ , and yi′ = bi′ − ri′−1. For i, bi = (xi + δ) + (ri − δ), and yi = bi − ri−1. For
i < i′ ≤ n − 1 bi′ − δ = xi′ + (ri′ − δ), and yi′ = (bi′ − δ) − (ri′−1 − δ). Thus, the values carried
by A′ are those of an honest evaluation of pRef with input x0, ..., xi−1, xi + δ, xi+1, ..., xn−1 and
randomness r0 − δ, ..., r j−1 − δ, r j, ..., ri−1, r j − δ, ..., rn−1 − δ.

• The maximal is of typeMleft
i,i . The values carried in A′ are

{x0, ..., xi−1, xi + δ, xi+1, ..., xn−1, y0, ..., y j−1, yi + δ, yi+1, ..., yn−1,

r0, ..., rn−1, b0, ..., bi−1, bi + δ, bi+1, ..., bn−1}.

First we observe that

x0 + ... + xi−1 + (xi + δ) + xi+1 + ... + xn−1 = x0 + ... + xn−1 + δ = x + (x′ − x) = x′.

The same holds for the shares of y.
Now, let us consider pRefwith input x0, ..., xi−1, xi+δ, xi+1, ..., xn−1 and randomness r0, ..., rn−1.
For i′ , i, bi′ = xi′ + ri′ and yi′ = bi′ − ri′−1. In stead, for i, bi + δ = (xi + δ) + ri, and
yi + δ = (bi + δ) − ri−1. Thus, the values carried by A′ are those of an honest evaluation of
pRef with input x0, ..., xi−1, xi + δ, xi+1, ..., xn−1 and randomness r0, ..., rn−1.

• The maximal is of typeMleft
i, j with i < j. The values carried in A′ are

{x0, ..., xi−1, xi + δ, xi+1, ..., xn−1, y0, ..., y j−1, yi + δ, yi+1, ..., yn−1,

r0 + δ, ..., ri−1 + δ, ri, ..., r j−1, r j + δ, ..., rn−1 + δ,

b0 + δ, ..., bi + δ, bi+1, ..., b j−1, b j + δ, ..., bn−1 + δ}.

First we observe that

x0 + ... + xi−1 + (xi + δ) + xi+1 + ... + xn−1 = x0 + ... + xn−1 + δ = x + (x′ − x) = x′.

The same holds for the shares of y.
Now, let us consider pRef with input x0, ..., xi−1, xi + δ, xi+1, ..., xn−1 and randomness r0 +

δ, ..., ri−1 + δ, ri, ..., r j−1, r j + δ, ..., rn−1 + δ. For 0 ≤ i′ < i bi′ + δ = xi′ + (ri′ + δ), and
yi′ = (bi′ + δ) − (ri′−1 + δ). For i, bi + δ = (xi + δ) + (ri), and yi = (bi + δ) − (ri−1 + δ). For
i < i′ < j, bi′ = xi+ri′ , and yi′ = bi′−ri′−1. For j, b j+δ = x j+(r j+δ), and y j+δ = (b j+δ)−r j−1.
For j < i′ ≤ n−1 bi′ +δ = xi′ + (ri′ +δ), and yi′ = (bi′ +δ)− (ri′−1+δ). Thus, the values carried
by A′ are those of an honest evaluation of pRef with input x0, ..., xi−1, xi + δ, xi+1, ..., xn−1 and
randomness r0 + δ, ..., ri−1 + δ, ri, ..., r j−1, r j + δ, ..., rn−1 + δ.

• The maximal is of typeMleft
i, j with i > j. The values carried in A′ are

{x0, ..., xi−1, xi + δ, xi+1, ..., xn−1, y0, ..., y j−1, yi + δ, yi+1, ..., yn−1,

r0, ..., r j−1, r j + δ, ..., ri−1 + δ, ri, ..., rn−1,

b0, ..., b j−1, b j + δ, ..., bi + δ, bi+1, ..., bn−1}.

First we observe that

x0 + ... + xi−1 + (xi + δ) + xi+1 + ... + xn−1 = x0 + ... + xn−1 + δ = x + (x′ − x) = x′.
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The same holds for the shares of y.
Now, let us consider pRefwith input x0, ..., xi−1, xi+δ, xi+1, ..., xn−1 and randomness r0, ..., r j−1,
r j + δ, ..., ri−1 + δ, ri, ..., rn−1. For 0 ≤ i′ < j, bi′ = xi + ri′ , and yi′ = bi′ − ri′−1. For j,
b j + δ = x j + (r j + δ), and y j + δ = (b j + δ) − r j−1. For j < i′ < i bi′ + δ = xi′ + (ri′ + δ), and
yi′ = (bi′ + δ) − (ri′−1 + δ). For i, bi + δ = (xi + δ) + (ri), and yi = (bi + δ) − (ri−1 + δ). For
i < i′ ≤ n − 1, bi′ = xi + ri′ , and yi′ = bi′ − ri′−1. Thus, the values carried by A′ are those
of an honest evaluation of pRef with input x0, ..., xi−1, xi + δ, xi+1, ..., xn−1 and randomness
r0, ..., r j−1, r j + δ, ..., ri−1 + δ, ri, ..., rn−1.

Having treated all the cases of maximal diagrams (see Proposition 4), we have concluded. □

A.3 Proof of Proposition 8

Proof. Let A be the values carried by the variables of pRef during the Leak(pRef, x, r, p)-
experiment, where r = r0, ..., rn−1 is the randomness used.

• The gap is of type BLGapi,i′ with i′ < i. The values carried in A′ are

{x0, ..., xi′−1, xi′ − γ, xi′+1, ..., xi−1, xi + γ, xi+1, ..., xn−1, y0, ..., yn−1, r0, ..., ri′−1,

ri′ + γ, ..., ri−1 + γ, ri, ..., rn−1, b0, ..., bi′ , bi′+1 + γ, ..., bi + γ, bi+1, ..., bn−1}.

First we observe that

x0 + ...+ xi′−1 + (xi′ −γ)+ xi′+1 + ...+ xi−1 + (xi −γ), xi+1, ..., xn−1 = x0 + ...+ xn−1 +γ−γ = x.

Since, we have not touched the shares of y, they carry an encoding of y which is equal to x.
Now, let us consider pRef with input x0, ..., xi′−1, xi′ − γ, xi′+1, ..., xi−1, xi + γ, xi+1, ..., xn−1
and randomness r0, ..., ri′−1, ri′ + γ, ..., ri−1 + γ, ri, ..., rn−1. For 0 ≤ j < i′ b j = x j + r j, and
y j = b j − r j. For i′, bi′ = (xi′ − γ) + (ri′ + γ), and yi′ = bi′ − ri′−1. For i′ < j < i, b j + γ =
x j+(r j+γ), and y j = (b j+γ)−(r j−1+γ). For i, bi+γ = (xi+γ)+ri, and yi = (bi+γ)−(ri−1+γ).
For i < j ≤ n − 1 b j = x j + r j, and y j = b j − r j. Thus, the values carried by A′ are those of
an honest evaluation of pRef with input x0, ..., xi′−1, xi′ − γ, xi′+1, ..., xi−1, xi + γ, xi+1, ..., xn−1
and randomness r0, ..., ri′−1, ri′ + γ, ..., ri−1 + γ, ri, ..., rn−1.

• The gap is of type BRGapi,i′ with i < i′. The values carried in A′ are

{x0, ..., xi−1, xi + γ, xi+1, ..., xi′−1, xi′ − γ, xi′+1, ..., xn−1, y0, ..., yn−1, r0, ..., ri−1,

ri − γ, ..., ri′−1 − γ, ri′ , ..., rn−1, b0, ..., bi, bi+1 − γ, ..., bi′ − γ, bi′+1, ..., bn−1}.

First we observe that

x0 + ...+ xi−1 + (xi +γ)+ xi+1 + ...+ xi′−1 + (xi′ −γ), xi′+1, ..., xn−1 = x0 + ...+ xn−1 +γ−γ = x.

Since, we have not touched the shares of y, they carry an encoding of y which is equal to x.
Now, let us consider pRef with input x0, ..., xi−1, xi + γ, xi+1, ..., xi′−1, xi′ − γ, xi′+1, ..., xn−1
and randomness r0, ..., ri−1, ri − γ, ..., ri′−1 − γ, ri′ , ..., rn−1. For 0 ≤ j < i b j = x j + r j, and
y j = b j−r j. For i, bi = (xi+γ)+(ri−γ), and yi = bi−ri−1. For i < j < i′, b j−γ = x j+(r j−γ),
and y j = (b j − γ) − (r j−1 − γ). For i′, (bi′ − γ) = (xi′ − γ) + ri′ , and yi′ = (bi′ − γ) − (ri′ − γ).
For i′ < j ≤ n − 1 b j = x j + r j, and y j = b j − r j. Thus, the values carried by A′ are those of
an honest evaluation of pRef with input x0, ..., xi−1, xi + γ, xi+1, ..., xi′−1, xi′ − γ, xi′+1, ..., xn−1
and randomness r0, ..., ri−1, ri − γ, ..., ri′−1 − γ, ri′ , ..., rn−1.

• The gap is of type BRGapi,i′ with i′ < i. The values carried in A′ are

{x0, ..., xi′−1, xi′ − γ, xi′+1, ..., xi−1, xi + γ, xi+1, ..., xn−1, y0, ..., yn−1, r0 − γ, ..., ri′−1 − γ,

ri′ , ..., ri−1, ri − γ, ..., rn−1 − γ, b0 − γ, ..., bi′ − γ, bi′+1, ..., bi, bi+1 − γ, ..., bn−1 − γ}.
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First we observe that

x0 + ...+ xi′−1 + (xi′ −γ)+ xi′+1 + ...+ xi−1 + (xi −γ), xi+1, ..., xn−1 = x0 + ...+ xn−1 +γ−γ = x.

Since, we have not touched the shares of y, they carry an encoding of y which is equal to x.
Now, let us consider pRef with input x0, ..., xi′−1, xi′ − γ, xi′+1, ..., xi−1, xi + γ, xi+1, ..., xn−1
and randomness r0 − γ, ..., ri′−1 − γ, ri′ , ..., ri−1, ri − γ, ..., rn−1 − γ. For 0 ≤< j < i′, b j −

γ = x j + (r j − γ), and y j = (b j − γ) − (r j−1 − γ). For i′, (bi′ − γ) = (xi′ − γ) + ri′ ,
and yi′ = (bi′ − γ) − (ri′ − γ). For i′ < j < i b j = x j + r j, and y j = b j − r j. For i,
bi = (xi + γ) + (ri − γ), and yi = bi − ri−1. For i < j ≤ n − 1, b j − γ = x j + (r j − γ), and
y j = (b j − γ) − (r j−1 − γ). Thus, the values carried by A′ are those of an honest evaluation
of pRef with input x0, ..., xi′−1, xi′ − γ, xi′+1, ..., xi−1, xi + γ, xi+1, ..., xn−1 and randomness
r0 − γ, ..., ri′−1 − γ.

• The gap is of type ULGapi,i′ with i < i′. The values carried in A′ are

{x0, ..., xn−1, y0, ..., yi−1, xi + γ, yi+1, ..., yi′−1, yi′ − γ, yi′+1, ...yn−1, r0 − γ, ..., ri−1 − γ,

ri, ..., ri′−1, ri′ − γ, ..., rn−1 − γ, b0 − γ, ..., bi−1 − γ, bi, ..., bi′−1, bi′ − γ, ..., bn−1 − γ}.

First we observe that

y0 + ...+ yi−1 + (yi + γ)+ yi+1 + ...+ yi′−1 + (yi′ − γ), yi′+1, ..., yn−1 = y0 + ...+ yn−1 + γ− γ = y.

Since, we have not touched the shares of x, they carry an encoding of x..
Now, let us consider pRefwith input x0, ..., xn−1 and randomness r0−γ, ..., ri−1−γ, ri, ..., ri′−1, ri′−

γ, ..., rn−1 − γ. For 0 ≤ j < i, b j − γ = x j + (r j − γ), and y j = (b j − γ) − (r j−1 − γ). For i,
bi = xi + ri, and yi + γ = bi − (ri−1 − γ). For i < j < i′ b j = x j + r j, and y j = b j − r j. For i′,
bi′−γ = xi′+(ri′−γ), and yi′−γ = (bi′−γ)−ri′−1. For i′ < j ≤ n−1, b j−γ = x j+(r j−γ), and
y j = (b j − γ) − (r j−1 − γ). Thus, the values carried by A′ are those of an honest evaluation of
pRef with input x0, ..., xn−1 and randomness r0 − γ, ..., ri−1 − γ, ri, ..., ri′−1, ri′ − γ, ..., rn−1 − γ.

• The gap is of type ULGapi,i′ with i′ < i. The values carried in A′ are

{x0, ..., xn−1, y0, ..., yi′−1, yi′ − γ, yi′+1, ..., yi−1, yi + γ, yi+1, ..., yn−1, r0, ..., ri′−1,

ri′ − γ, ..., ri−1 − γ, ri, ..., rn−1, b0, ..., bi′−1, bi′ − γ, ..., bi−1 − γ, bi, ..., bn−1}.

First we observe that we have not touched the shares of x. Second,

y0 + ...+ yi′−1 + (yi′ − γ)+ yi′+1 + ...+ yi−1 + (yi − γ), yi+1, ..., yn−1 = y0 + ...+ yn−1 + γ− γ = y.

Now, let us consider pRef with input x0, ..., xn−1 and randomness r0, ..., ri′−1, ri′ − γ, ..., ri−1 −

γ, ri, ..., rn−1. For 0 ≤ j < i′ b j = x j + r j, and y j = b j − r j. For i′, bi′ − γ = xi′ + (ri′ − γ), and
yi′ −γ = (bi′ −γ)− ri′ . For i′ < j < i, b j −γ = x j + (r j −γ), and y j = (b j −γ)− (r j−1 −γ). For
i, bi = xi+ ri, and yi+γ = bi− (ri−1−γ). For i < j ≤ n−1 b j = x j+ r j, and y j = b j− r j. Thus,
the values carried by A′ are those of an honest evaluation of pRef with input x0, ..., xn−1 and
randomness r0, ..., ri′−1, ri′ − γ, ..., ri−1 − γ, ri, ..., rn−1.

• The gap is of type URGapi,i′ with i < i′. The values carried in A′ are

{x0, ...xn−1, y0, ..., , yi−1, yi + γ, yi+1, ..., yi′−1, yi′ − γ, yi′+1, ..., yn−1, r0, ..., ri−1,

ri + γ, ..., ri′−1 + γ, ri′ , ..., rn−1, b0, ..., bi−1, bi + γ, ..., bi′−1 + γ, bi′ , ..., bn−1}.

First we observe that we have not touched the shares of x. Second,

y0 + ...+ yi−1 + (yi + γ)+ yi+1 + ...+ yi′−1 + (yi′ − γ), yi′+1, ..., yn−1 = y0 + ...+ yn−1 + γ− γ = y.
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Now, let us consider pRef with input x0, ..., xn−1 and randomness r0, ..., ri−1, ri + γ, ..., ri′−1 +

γ, ri′ , ..., rn−1. For 0 ≤ j < i b j = x j + r j, and y j = b j − r j. For i, bi + γ = xi + (ri + γ), and
yi + γ = (bi + γ) − ri−1. For i < j < i′, b j + γ = x j + (r j + γ), and y j = (b j + γ) − (r j−1 + γ).
For i′, bi′ = xi′ + ri′ , and yi′ − γ = bi′ − (ri′ + γ). For i′ < j ≤ n − 1 b j = x j + r j, and
y j = b j − r j. Thus, the values carried by A′ are those of an honest evaluation of pRef with
input x0, ..., xn−1 and randomness r0, ..., ri−1, ri + γ, ..., ri′−1 + γ, ri′ , ..., rn−1.

• The gap is of type URGapi,i′ with i′ < i. The values carried in A′ are

{x0, ..., xn−1, y0, ..., yi′−1, yi′ − γ, yi′+1, ..., yi−1, yi + γ, yi+1, ..., yn−1, r0 + γ, ..., ri′−1 + γ,

ri′ , ..., ri−1, ri + γ, ..., rn−1 + γ, b0 + γ, ..., bi′ + γ, bi′+1, ..., bi, bi+1 + γ, ..., bn−1 + γ}.

First we observe that we have not touched the shares of x, Second,

y0 + ...+ yi′−1 + (yi′ − γ)+ yi′+1 + ...+ yi−1 + (yi − γ), yi+1, ..., yn−1 = y0 + ...+ yn−1 + γ− γ = y.

Now, let us consider pRefwith input x0, ..., xn−1 and randomness r0+γ, ..., ri′−1+γ, ri′ , ..., ri−1, ri+

γ, ..., rn−1 + γ. For 0 ≤< j < i′, b j + γ = x j + (r j + γ), and y j = (b j + γ) − (r j−1 + γ). For i′,
bi′ = xi′ + ri′ , and yi′ − γ = bi′ − (ri′ = γ). For i′ < j < i b j = x j + r j, and y j = b j − r j. For i,
bi + γ = xi + (ri + γ), and yi + γ = (bi + γ)− ri−1. For i < j ≤ n− 1, b j + γ = x j + (r j + γ), and
y j = (b j + γ) − (r j−1 + γ). Thus, the values carried by A′ are those of an honest evaluation of
pRef with input x0, ..., xn−1 and randomness r0 + γ, ..., ri′−1 + γ.

□

A.4 Proof of Theorem 4

Proof. Finally, we explain why it holds

Pr[Ei] ≤ [(2 + 5p′)p′]n ≤ [4p′]n.

This is due to the fact that not all edges directly give the shortest path and require further edges that
are also added with probability p′. Moreover, if p′ < 1/3, 5p′ < 5/3 < 2, it holds (2 + 5p′)p′]n ≤

[4p′]n.

Regarding the general circuits, we observe that there are at most 8 edges connected to each
node of the dependency graph and each node belong to one orbit sharing, which can correspond to
any gadget. Moreover, there can be at most 3 pRef connected to this gadget, thus, 3 dependency
graph of pRef connected to that orbit. Thus, the 8 edges can come as follows: 2 of one orbit
sharing, 2 for each pRef (one vertical containing an ri and one diagonal containing either bi (if the
orbit shared is the output orbit of pRef) or bi−1 (if the orbit shared is the input orbit of pRef). Now,
we want to bound the probability that at least one of this edge is leaked: this is ≤ Pr [one of the
edge of the same orbit leaks] + Pr [one edge of pRef is leaked]. But we have already computed
the probability that one edge of the same orbit is leaked. The worst case is if the gadget is Mult
(Prop. 5) and it is 1 − (1 − p)8n + 1 − (1 −

√
3p)n−1, while for pRef the probability that an edge is

added to the leakage diagram is bounded by 3p (Prop. 6). Since to have a leakage diagram which
orbits around the dependency graph, we need to have at least n different consecutive edges in the
leakage diagram, thus the probability that there is an orbit containing the first node of the ith orbit
is bounded by

Pr[Ei] ≤ [2(1 − (1 − p)8n + 1 − (1 −
√

3p)n−1) + 6(3p)]n.

□
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B Other Results

The goal of this section is to prove that the probability of Mult on n-shares to be secure in presence
of leakage p is negligible for p = O(

√
n) asymptotically.

We need to introduce some results from analysis. We start from a well known lemma

Lemma 1. Let x ∈ [0, 1], let y ∈ [1,∞], then

1 − (1 − x)y ≤ yx.

Proof. Let f (x) := 1 − (1 − x)y − yx. The claim is equivalent to say that f (x) ≤ 0 ∀x ∈ [0, 1]. We
observe that f (0) = 0. Then, to show that f (x) ≤ 0, it is enough to show that f ′(x) ≤ 0, where f ′ is
the derivative. f ′ is well defined ∀y ≥ 1 ∀p ∈ [0, 1]. But, for y > 0,

f ′(x) = −y(1 − x)y−1 − yx

Since x ≤ 1, then |1 − x| ≤ 1. Since y is positive, then (1 − x)y−1 ≤ 1, thus f ′(x) ≤ 0 ∀x ∈ [0, 1].
□

This is a very loose approximation for 1−(1−x)y. Nevertheless, it is used in many cryptographic
papers about masking, see for example, [16]. In fact, bounding 1 − (1 − x)y ≤ yx is good only
when x is close to zero, because, using standard analysis

f (x) = f (0) + f ′(0)x + o(x2).

On the other hand this bounding is very loose when x is not close to zero as we show for example in
Figure 14. Finally, note that in our Theorems we have to elevate (1 − (1 − p)n) to the nth power (as,
for example in Theorem 1). And the difference between (1 − (1 − p)n)n and (np)n is much bigger,
as shown in Figure 15. This is the reason to leave (1 − (1 − p)n)n in Theorem 1 and Theorem 4 14.

Figure 14: Comparison between f (p) = 1 − (1 − p)n and np for n = 10 (for clarity we have set
np = 1 when it should be bigger than 1.)

14We have removed one subsection in this appendix.
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Figure 15: Comparison between f (p) = (1 − (1 − p)n)n and g(p) = (np)n for n = 10 (for clarity we
have set g(p) = 1 when it should be bigger than 1.)

C Background in Topology

This section is devoted to present some basic concepts of topology. There are many good books
for them, as [25, 21]. All the definitions, propositions and theorems are taken from [26] when not
explicitly stated. In the first section, we give the definition and the results needed, while in the
second part we give more concepts which can be useful to understand the concept introduced in the
first section. At the end, we explain how we can compute the fundamental group of our dependency
graphs when built attaching the lateral surfaces.

C.1 Essential Concepts

Definition 6 (Connected component). Let X be a topological space. A subspace C ⊂ X is called
connected component of X (or just component) if it satisfies two properties:
• C is connected
• C ⊂ A and C connected implies C = A.

Definition 7 (Attaching). Take disjoint spaces X, Y , a subspace K ⊂ X and continuous map
f : K → Y . Put on X ∪ Y the disjoint-union topology (...), the one for which the inclusions
X ← X ∪ Y and Y ← X ∪ Y are open immersions. Now define a new space

X ∪ f Y = (X ∪ Y)/ ∼,

where ∼ is the smallest equivalence relation, for which x ∼ f (x) for every x ∈ K. This definition
makes sense when K = ∅, as well.
The space X ∪ f Y is said to be obtained attaching X to Y via f ; the map f is called attaching map.

Definition 8 (Homotopy). Two continuous maps f0, f1 : X → Y are said to be homotopic if there
is a continuous function

F : X × [0, 1]→ Y

s.t. F(x, 0) = f0(x) and F(x1) = f1(x) ∀x ∈ X. Such an F is called a homotopy between f0 and f1.
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The homotopy relation is an equivalence relation over the set C(X,Y) which consists over all
the continuous map from X to Y .

Definition 9 (Path space). The space of paths in X between points a, b ∈ X is

Ω(X, a, b) = {α : I → X | a continuous, α(0) = a, α(1) = b}.

where I = [0, 1] ⊂ R.
A loop is a path where α(0) = α(1),

Given two loops α and α′ we can define a group operation as the loop obtained appending α′ to
α. Formally,

α ⋆ β(t) :=

α(2t) if 0 ≤ t ≤ t
2

β(2t − 1) if t
2 ≤ t ≤ 1

Let X a space and a point a ∈ X, one defines π1(X, a) as the quotient of Ω(X, a, a) by a path
homotopy equivalence. For any loop α ∈ Ω(X, a, a), we write [α] for its homotopy class. It can be
proven that it is π1(X, a) is a group.

Definition 10 (Fundamental group). The group π1(X, a) is called the fundamental group, or first
homotopy group of X with base point a.

Definition 11 (Simply connected). A space is simply connected if it is path connected if it is path
connected and its fundamental group is trivial.

Roughly speaking a space is simply connected if there are no holes inside this.

C.1.1 The Fundamental Group of the Cylinder

We observe that we can see the cylinder C described in the previous subsection as the product of
the circumference S 1 with S 1 := {(x, y) ∈ R2 s.t. x2 + y2 = 1} with [0, 1]. That is, C = S 1 × [0, 1].
Here, we want to compute its fundamental group.

To do this, we have the following results:

Proposition 11. The fundamental group of the product of two spaces is isomorphic to the product
of the fundamental groups:

π1(X × Y, (a, b)) ≃ π1(X, a) × π1(Y, b).

Proof. See Propo.11.17 [26]. □

Moreover, we have that

Proposition 12. The hypercube In =
n
Π
i=1

I ⊂ Rn, where I is an interval, is simply connected.

Proof. See Example 11.15 [26]. □

Thus, π1(In) = 0, where 0 is the trivial group (the one composed by a single element, the
identity).

Proposition 13. The fundamental group of the circumference is homomorphic to Z, that is,
π1(S 1) ≃ Z.

Proof. See example 13.16 applying corollary 13.15 [26]. □

Thus, we obtain the following proposition

Proposition 14. Let C be a cylinder, that is, let C = S 1 × [0, 1]. Then, π1(C) ≃ Z.

Proof. Using Prop. 11, we have that

π1(C) ≃ π1(S 1) × π1([0, 1]) ≃ Z × 0 ≃ Z

(the second equality is given by Prop. 13 and Prop. 12). □
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C.2 Other Definitions

Definition 12 (Topological space). A topology on a set X is a family T of subsets of X called open
sets satisfying the following requirements:

A1 ∅ and X are open sets;

A2 the union of any number of open sets is an open set;

A3 the intersection of two open sets is an open set

A set X equipped with a topology is called topological space.

An example is Rm with the topology defined by the infinite union and the finite intersection of
the subsets of the shape (a1, b1) × ... × (am, bm).

Definition 13 (Closed sets). Let X be a topological space. A subset C ⊂ X is called closed if X \C
is open.

Definition 14 (Continuous function). A map f : X → Y between two topological spaces is
continuous if the pre-image

f −1(A) = {x ∈ X| f (x) ∈ A}

of any open set A ⊂ Y is open in X.

Definition 15 (Homeomorphism). A homeomorphism is a continuous and bijective map with
continuous inverse.

Definition 16 (Closure). Given a subset B in a topological space X, one writes B for the intersection
of all closed sets containing B:

B = ∩{C|B ⊂ C ⊂ X, C closed }.

Equivalently, B is the smallest closed set in X containing B and it is called the closure of B; its
points are said to be adherent to B.

Definition 17 (Interior). The interior B◦ of a subset B in X is the union of all open sets contained
in B. Equivalently, B◦ is the largest open set contained in B; its points are called interior points in
B.

Definition 18 (Boundary). The boundary of a subset B in a topological space is the closed set
∂B = B − B◦ = B ∩ X \ B. hence boundary points are those adherent to B and to X \ B.

Definition 19 (Neighbourhood). Let X be a topological space and x ∈ X a point. A subset U ⊂ X
is called a neighbourhood of x, if there is an open set V s. t. x ∈ V and V ⊂ U, i.e. if x is an interior
point of U.

Definition 20 (Embedding). An embedding is a map that is a homeomorphism onto its image. [21]

Definition 21 (Connection). A topological space X is connected if the only subsets that are both
open and closed are ∅ and X. A non-connected topological space is called disconnected.

Definition 22 (Path connection). A topological space X is path(wise)-connected if, given any two
points x, y ∈ X, there is a continuous mapping α : [0, 1]→ X s. t. α(0) = x and α(1) = y. Such an
α is called path from x to y.

Path connected implies connected, on the other hand there are connected spaces which are not
path-connected.

Definition 23 (Identification). A continuous and onto (that is, surjective) map f : X → Y is called
an identification if the open sets on Y are precisely the subset A ⊂ Y s.t. f −1(A) is open in X.
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Definition 24 (Quotient topology). Let X be a topological space. Let Y be a set. Let f : X → Y .
The quotient topology is the only topology on Y that makes f an identification and the finest
topology for which f is continuous.

Definition 25 (Quotient space). Let X be a topological space. Let ∼ be an equivalence relation on
X. We denote by X/ ∼ the set of equivalence classes and by π : X → X/ ∼, the surjective mapping
x ∈ X to its class π(x) = [x]. The topological space X/ ∼ equipped with the quotient topology of π
is called the quotient space.

Definition 26 (Hausdorff). A topological space is called Hausdorff space or T2 space, if any two
distinct points admit disjoint neighbourhoods.

Definition 27 (Manifold). A topological space M is a m-dimensional manifold if M is Hausdorff,
every point in M has an open neighbourhood homeomorphic to an open space of Rm and every
connected component is second countable.

If m = 2, then M is called a surface.
In some books, the third conditions is replaced with paracompactness:

Definition 28 (Paracompactness). A space is called paracompact if every open cover posses a
locally finite open refinement.

In stead, we are interested in a manifold with a boundary. Formally

Definition 29 (Manifold with boundary [25]). A topological space M is a m-dimensional manifold
with boundary if M is Hausdorff, every point in M has an open neighbourhood homeomorphic to
an open space of the Euclidean half space Rm

+ where the last component is not negative15 and every
connected component is second countable.

Definition 30 (Covering space). Let X be a connected space. A space E together with a continuous
map p : E → X is a covering space of X if every point x ∈ X is contained in an open set V ⊂ X
whose pre-image p−1(V) is the disjoint union of open sets Ui with the property that p : Ui → V is
a homeomorphism for every i.

The following is a definition from theory of category:

Definition 31 (Commutative diagrams [21]). A diagram of maps with the property that any two
composition of maps starting at one point in the diagram and ending in another are equal is
commutative diagram.

C.3 The Cylinder as a Quotient Space

Consider the subset I = [0, 1] × [0, 1] ⊂ R2.
Defining over I a relation of equivalence ∼ as follows: (x, y) ∼ (x′, y′) if (x, y) = (x′, y′) or if x = 0
and x′ = 1 and y = y′ (or vice versa).
It is easy to prove that this is an equivalence relation.
That is, we identify the right edge of I with its left edge.
We consider the quotient space X/ ∼.
It is possible to prove that X/ ∼ is homeomorphich to a closed cylinder (i.e. for example the
subspace of R3 defined by {x2 + y2 = 1, 0 ≤ z ≤ 1} [26]. Thus, we call X/ ∼ closed cylinder.
It is easy to see that the closed cylinder is a surface (2-manifold) with boundary16.
Given the Def. 24, there is a continuous map π : I → I/ ∼.

15that is, Rm
+ := {(a1, ..., am) ∈ R⋗ : am ≥ 0}.

16The open cylinder is, for example, the subspace of R3 defined by {x2 + y2 = 1, 0 < z < 1} which is homeomorphic to
the quotient of I′ = [0, 1] × (0, 1) with respect to the same relation of equivalence ∼.
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H
ψ

ϕ ∃!η

Figure 16: The universal property of free groups.

Gs

F

H
ψs

ϕs ∃!η

Figure 17: The universal property of free products of a family of groups.

C.4 Fundamental Group and Attaching - Van Kampen’s Theorem

The goal of this section is to compute the fundamental group of a space from the fundamental
group of its subspaces. For this, we need to talk about free groups

Definition 32 (Free group). Let S be a group. A free group generated by S is a group F together
with a map ϕ : S → F with the following universal property: for every group H and every map
ψ : S → H there exists a unique homomorphism η : F → H s.t. ψ = η ◦ ϕ.

The property is represented in Figure 16.
It can be proved that for any set, free groups exist. In particular, if S = ∅, its free group is

F = 0 (the trivial group), while if |S | = 1, its free group is isomorphic to Z. Finally, the free group
generated by S is formed by all elements of the type sa1

1 ...s
am
m with ai ∈ Z with m ∈ N, si , si+1 and

si ∈ § ∀S . The operation on these elements and the proof that this is a group can be found in [26].

Definition 33 (Free product). The free product of a family of groups {Gs |s ∈ S } is a group F
together with a homomorphism ϕs : Gs → F, for every s ∈ S , so that the following universal
property holds: for every group H and every family of homomorphism ψs : Gs → H, s ∈ S , there
is a unique homomorphism η : F → H s.t. ψs = η ◦ ϕs for every s.

The property is represented in Figure 17.
We denote the free product of the groups G1 and G2 with G1 ∗G2.
Here we present a simplified version of Van Kampen’s theorem with respect to [26].

Theorem 6 (Van Kampen). Lat A, B be open in a space X with X = A ∪ B; suppose that
A, B and A ∩ B are path connected, A ∩ B , ∅ and the fix a point x0 ∈ A ∩ B. First, the
inclusion A ⊂ X, B ⊂ X, A ∩ B ⊂ A, and A ∩ B ⊂ B induce the commutative diagram of
homomorphisms depicted in Figure 18a with respect to the homomorphism α∗, β∗, f∗, g∗. Second,

there is a isomorphism between
π1(A, x0) ∗ π1(B, x0)

N
and π1(X, x0) where N is the smallest normal

subgroup containing elements of the type α̂(γ) · (̂β)(γ)−1 for any γ ∈ π1(A ∩ B, x0), where α̂ and β̂
are defined in Figure 18c using the universal property of free products.

Note that N is the kernel of h.
This allows us to compute the fundamental group of a space when we attach another space.

C.5 Fundamental Group of our Dependency Graphs

We start observing that the fundamental group of our DG for every gadget is Z.
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π1(A ∩ B, x0)

π1(B, x0)

π1(A, x0)

π1(X, x0)

α∗

β∗ f∗

g∗

(a) The first commutative diagram of Van
Kampen’s theorem.

π1(A, x0) ∗ π1(B, x0)
N

π1(A, x0)

π1(A ∩ B, x0)

π1(B, x0)

π1(X, x0)

α∗

β∗

f∗

g∗

≃

(b) The second commutative diagram of Van
Kampen’s theorem.

π1(A, x0) ∗ π1(B, x0)

π1(A, x0)π1(A ∩ B, x0)

π1(A ∩ B, x0) π1(B, x0)

π1(X, x0)

α∗

β∗

f∗

g∗

h
α̂

β̂

(c) The definitions of α̂ and β̂ using the uni-
versal property of the free product.

Figure 18: Commutative diagrams for Van Kampen’s theorem.

For pRef, it is easy to see that when we add the lateral surface, we make xi ⋆ ri ⋆ −bi = 1G,
and bi ⋆ −yi ⋆ −ri−1 = 1G. Thus, the fundamental group of DGpRef = Z.

Now, we consider a complex circuit. We start considering the topology of the underlying circuit.
Its fundamental group is Z#C−#O where #C is the number of copy gates and #O is the number of
output.

When we use our compiler, using the previous argument, we can prove that the fundamental
group is Z#C−#O+1. We can also see it as a consequence of Proposition 11.

D Additional Figures

E Representation of our Composed Dependency Graphs in
R

4

This section is devoted to explain how we can embed our dependency graphs in a vector space.
We explain it for the dependency graph depicted in Figure 6b. We fix the notation. Let us

suppose that (xi)i∈[n] = pRef((x′i )i∈[n]) (with dependency graph DG1) with (yi)i∈[n] = pRef((y′i)i∈[n])
(with DG2), (zi)i∈[n] = G((xi)i∈[n], (yi)i∈[n]) (thus, G is either the Add or the Mult gadget, with DG3)
and (z′i)i∈[n] = pRef((zi)i∈[n]) (with DG4). The first dependency graph, DG1, contains a circle
formed by the n edges labeled with xi, the second, DG2 contains a circle formed by the n edges
labeled with yi, the fourth, DG4 contains a circle formed by the n edges labeled with zi, while
the third, DG3 contains a circle of n edges, whose label contains xi, yi, and zi. The composed
dependency graph, DG, is the gluing of DG1, DG2, DG4 and DG3 obtained identifying the xi-edge
of DG1 with the yi-edge of DG2, with the zi-edge of DG4 and with the edge of DG3 whose label
contains xi, yi, zi.

For example, considering Figure 6b, we can see the graph as a composition of three cylinders.
However, all cylinder share the loop with the labels Ti. If we see the construction as the surfaces of
three cylinders in a three dimensional space it is not possible that three cylinders intersect in the
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00 01

10 11

x0 x1 x2 x3 x4 x5 x6

y0 y1 y2 y3 y4 y5 y6

r6 r0 r1 r2 r3 r4 r5 r6b0 b1 b2 b3 b4 b5 b6

(a) LD1.

00 01

10 11

x0 x1 x2 x3 x4 x5 x6

y0 y1 y2 y3 y4 y5 y6

r6 r0 r1 r2 r3 r4 r5 r6b0 b1 b2 b3 b4 b5 b6

(b) LD2.

00 01

10 11

x0 x1 x2 x3 x4 x5 x6

y0 y1 y2 y3 y4 y5 y6

r6 r0 r1 r2 r3 r4 r5 r6b0 b1 b2 b3 b4 b5 b6

(c) LD3 where we have chosen i = 2.

00 01

10 11

x0 x1 x2 x3 x4 x5 x6

y0 y1 y2 y3 y4 y5 y6

r6 r0 r1 r2 r3 r4 r5 r6b0 b1 b2 b3 b4 b5 b6

(d) LD4 with i = 3. LD′4 is LD4 with the dashed edge.

00 01

10 11

x0 x1 x2 x3 x4 x5 x6

y0 y1 y2 y3 y4 y5 y6

r6 r0 r1 r2 r3 r4 r5 r6b0 b1 b2 b3 b4 b5 b6

(e) LD5.

00 01

10 11

x0 x1 x2 x3 x4 x5 x6

y0 y1 y2 y3 y4 y5 y6

r6 r0 r1 r2 r3 r4 r5 r6b0 b1 b2 b3 b4 b5 b6

(f) LD6.

Figure 19: Figure of the example leakage diagrams depicted in Section 4.1. The edges belonging
to the leakage diagrams are the solid ones. For simplicity, we have chosen n = 7, and we have used
the cylindrical projection of DGpRef (that is the two edges denoted with r6 should be glued together,
and the nodes denoted with 00 and 10, should be identified with the nodes 00 and 11 respectively).
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xi′−1 xi′ xi′+1 xi−1 xi xi+1

yi′−1 yi′ yi′+1 yi−1 yi yi+1

r i′
−

2

r i′
−

1

r i′ r i′
+

1

r i−
1

r i r i+
1b i′ −

1
b i′ b i′ +

1
b i−

1 b i b i+
1

(a) Edges in BLGapi,i′ (dashed, blue) of the dependency graph of (yi)i∈[n] ← pRef((xi)i∈[n]) experiment.

xi−1 xi xi+1 xi′−1 xi′ xi′+1

yi−1 yi yi+1 yi′−1 yi′ yi′+1

r i−
2

r i−
1

r i r i+
1

r i′
−

1

r i′ r i′
+

1b i−
1 b i b i+

1
b i′ −

1
b i′ b i′ +

1

(b) Edges in BRGapi,i′ (dashed, blue) of the dependency graph of (yi)i∈[n] ← pRef((xi)i∈[n]) experiment.

xi′−1 xi′ xi′+1 xi−1 xi xi+1

yi′−1 yi′ yi′+1 yi−1 yi yi+1

r i′
−

2

r i′
−

1

r i′ r i′
+

1

r i−
1

r i r i+
1b i′ −

1
b i′ b i′ +

1
b i−

1 b i b i+
1

(c) Edges in ULGapi,i′ (dashed, blue) of the dependency graph of (yi)i∈[n] ← pRef((xi)i∈[n]) experiment.

xi−1 xi xi+1 xi′−1 xi′ xi′+1

yi−1 yi yi+1 yi′−1 yi′ yi′+1

r i−
2

r i−
1

r i r i+
1

r i′
−

1

r i′ r i′
+

1b i−
1 b i b i+

1
b i′ −

1
b i′ b i′ +

1

(d) Edges in URGapi,i′ (dashed, blue) of the dependency graph of (yi)i∈[n] ← pRef((xi)i∈[n]) experiment.

Figure 20: Example of the gaps BLGap, BRGap, ULGap, and URGap in the dependency graph
of pRef. The blue dashed edges represent BLGapi,i′ , BRGapi,i′ , ULGapi,i′ , and URGapi,i′ , respec-
tively. Note that BLGapi,i′ = BRGapi′,i, and ULGapi,i′ = URGapi′,i.
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6 LGap3
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40 41
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0 x4
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2 x4

3 x4
4 x4

5 x4
6

BLGap4
5,2, LGap5

0,0r4
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1 r4
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3 r4
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5 r4

6b4
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2 b4

3 b4
4 b4

5 b4
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50 51

x5
0 x5

1 x5
2 x5

3 x5
4 x5

5 x5
6

r5
6 r5

0 r5
1 r5

2 r5
3 r5

4 r5
5 r5

6b5
0 b5

1 b5
2 b5

3 b5
4 b5

5 b5
6 LGap5

0,1

Figure 21: This is the cylindrical projection of the DG of kpRef with k = 5, n = 7. The leakage
diagram is formed by the solid (black edges). A maximal diagramMAX containing it is formed
by the solid (black) edges and the dashed (red) edges. The dotted (blue) edges are the remaining
else. There is also the classification of the gaps, according to Proposition 7.
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Figure 22: How we modify the values carried by DGpRef \MAX for Figure 21.
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T0

Tn−1 T2
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y′0
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T 1
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T 1
n−3

T 1
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Figure 23: DG of a circuit with no copy gadget. For simplicity we have removed the r j
i and

b j
i -labels. Its embedding in R4 is depicted in Appendix E.

2

31

0
a0

an−1

an−2

an−3

a2a1 b0
bn−1

bn−2
bn−3

b2b1 c0
cn−1

cn−2

cn−3

c2c1
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y2

y1

z0

zn−1 z2

z1

z′0
z′n−1

z′n−2

z′n−3

z′2z′1

Figure 24: DG of a circuit with copy gadgets. We are computing (a + b)(b + c) and refresh the final
output. x = a + b, y = b + c and z = xy and z′ = pRef(z). Note that the hollow graph contains a
loop which is not simply connected or equivalent to an orbit-loop (the one defined by arrows that
connects the nodes identified with the numbers 0,1,2,3 and the arrows directly connecting them).
For simplicity we have removed the r j

i and b j
i -labels and we have not drawn all the r j

i and b j
i -edges.

Its embedding in R4 is depicted in Appendix E.
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Figure 25: This is an example of 2pRef with n = 7. In this example, if we follow the idea of
Dziembowski et al. [16], we should modify the dashed edges (blue) (considering edges connected
with the first node of the x1 orbit). But, this is not possible since we should modify only the dash
dotted edge (red). This can be easily proved considering that for pRef2, we have clearly a LGap2,2.
No other gap is possible.

loop labeled with Ti. But if we assume a higher dimensional space, it is possible due to the formula

dim(V + U) = dim(V) + dim(U) − dim(V ∩ U)

where V,U are two vector subspaces each representing one of the two cylinders on the bottom,
and V + U is the space generated by V and U that contains both cylinders sharing the same loop
Ti’s on the top. In detail, we can see DG1 ⊂ V and DG2 ⊂ U with dim(V) = dim(U) = 3. If we
suppose that V,U ⊂ R4, we can have that dim(V +U) = 4, thus dim(V ∩U) = 2. Thus, DG1 ∩DG2
can be contained in a plane, thus, it may contain a circle.

F Random Probing Composability (RPC)

In this section, we want to prove that our results are always better that what can be achieved with
IronMask on our gadget. We start stating RPC, then we prove that our security estimation are
always better for our refreshing gadget in App., then,

Note that these results hold also for the expandability strategy (as proved in Appendix F.4).

F.1 Random Probing Composition (RPC)

Since it is difficult to bound the RP (random probing)-security of a complete circuits, Belaid et
al. [4] proposed a security notion for gadgets that can be composed:

Definition 34 ([4]). Let n, l,m ∈ N. An n-share gadget Gadget : (Fn)l → (Fn)l is (t, p, ϵ)-random
probing composable (RPC) for some t ∈ N and p, ϵ ∈ [0, 1] if there exists a deterministic simulator
Sim

Gadget

1 and a probabilistic simulator SimGadget2 s.t for every input x̂ ∈ (Fn)l and for ever set of
collection J1 ⊂ [n], ..., Jm ⊂ [n] of cardinals |J1| ≤ t, ..., |Jm| ≤ t, the random experiment

W← LeakingWires(Gadget, p)

I← SimGadget1 (W, J)

out ← SimGadget2 (x̂|I)

yields
Pr[(|I1| > t) ∨ ... ∨ (|Il| > t)] ≤ ϵ and

out id
= (AssignWires(Gadget,W, x̂), ŷ|J)

where J = (J1, ..., Jm) and ŷ = Gadget(̂x). Let f : R← R.
The gadget Gadget is (t, f )-RPC if it is (t, p, f (p))-RPC for every p ∈ [0, 1].
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Figure 26: Comparison between the security of our compiler for affine circuits (solid lines) and
the one of [16] (dotted lines), with n = 4, 6, 10, 20 shares and circuit size |C| = 6. The security is
defined as with Def. 1. The lines represent the bounds for the security obtained by our Thm.4 and
their paper.

That is, the first simulator, receiving as input the output shares leaked and the wires that leak,
outputs the input shares that are needed to the second simulator to perfectly simulate the values
carried by the wires inW. This definition allows to bound the security of a circuit composed by
multiple gadgets, only knowing the RPC-security of each gadget. This is proved in [4] via the
following:

Theorem 7. Let t, n ∈ N with t < n. Let p, ϵ ∈ [0, 1] and let CC be a standard compiler with
(t, p, ϵ)-RPC n-share base gadgets. For every (randomized) arithmetic circuit C composed of |C|
gadgets, the compiled circuit CC(C) is (p, |C|ϵ)-random probing secure. Equivalently, the standard
circuit compiler CC is (p, ϵ)-random probing secure.

With respect to Thm. [4], we have added t < n; otherwise the previous theorem does not make
sense, since every n-share gadget is (n, p, 1)-RPC ∀p (as proved in [4]).

IronMask [5] can compute the RPC-security of a circuit. Thus, using the previous theorem,
Ironmask can prove the security of a circuit if it can compute the RPC security of all gadgets.

F.2 Upper Bounding the RPC-Security of pRef

To lower bound the RPC security of pRef, we start showing that we can recover the value refreshed
via an attack that assumes that only 2 wires are leaked per execution. This attack inspired by
Dziembowski et al. [16] is depicted in Fig. It is assumed that in the ith execution the wires
carrying the variables bi

i−1 and ri
n−1. This leakage reveals the refreshed values. It is easy to see that

b1
0 + b2

1 + ... + bn
n−1 − rn

n−1 − ... − r1
n−1) = x0

0 + ... + xn
n−1 = x, since that path orbits DGnpRef. We

can generalize this attack starting with b0
q. This attacks needs that for every execution of the pRef

gadgets the values (b j
q+ j ( mod n)

, r j
q+n−1 ( mod n)

) are leaked.
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Figure 27: Comparison between the security of our transformation for affine circuits (solid lines)
and the one of [16] (dotted lines) in logarithmic scale. |C| is the size of the circuit, n, the number of
shares.

Figure 28: Comparison between the security of our refreshing gadget (solid lines) and the one
of [16] (dotted lines). k is the number of times the refreshing gadget is used and n the number of
shares.

In particular, we can observe that ∀t ∈ N, if (b j, r j+t ( mod n)) are leaked we cannot simulate
the wires leaked and the set of t output variables (y j+1 ( mod n), ..., y j+t ( mod n)) without knowing
at least t + 1 input variables (x j, j+t ( mod n) ) since

b j − r j+t ( mod n) +

j+t ( mod n)∑
l= j+1

yl (modn) =

j+t ( mod n)∑
l= j

xl ( mod n).

This allows us to lower bound the RPC security of pRef

Theorem 8. Consider pRef for n shares, ∀p ∈ [0, 1] and t < n pRef is (t, p, ϵ)-RPC secure with

ϵ ≥

n∑
i=1

(
n
i

)
pi(1 − p)n−i

[
1 −

(
1 − [1 − (1 − p)3]

)i
]
.

Proof. For the prove we give a bound for the probability ϵ that we need more then t wires for the
simulation of the (t, p, ϵ)-RPC secure refresh in the p-random probing model. When we consider
the algorithm of pRef, we observe that if both b j and r j+t ( mod n) leak (for any j), then, we cannot
simulate this leakage with the leakage of any t output shares only using t input shares. This follows
immediately from the fact discussed above.
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Figure 29: Comparison between the security of our refreshing gadget (solid lines) and the one
of [16] (dotted lines) in logarithmic scale. k is the number of times the refreshing gadget is used
and n the number of shares.

Thus, ϵ > Pr[E] where E is the event that there is a couple (b j, r j+t ( mod n)) between the leaked
variables. To compute Pr[E], we start observing that the probabilities that b j and r j+t ( mod n) leak

are independent. After that, we observe that the probability that i different b j leak is
(

n
i

)
pi(1 − p)n−i.

Then, we observe that the probability that r j+t ( mod n) leaks is 1 − (1 − p)3. Finally, we observe
that the probability that at least one of i variable is leaked is 1 − (1 − p̃)i. Summing everything, we
obtain the thesis. □ □

For sake of simplicity we give a further bound of the equation in the theorem:

Proposition 15.
n∑

i=1

(
n
i

)
pi(1 − p)n−i

[
1 −

(
1 − [1 − (1 − p)3]

)i
]
≥ p(1 − (1 − p)n).

Proof.
n∑

i=1

(
n
i

)
pi(1 − p)n−i

[
1 −

(
1 − [1 − (1 − p)3]

)i
]
≥

n∑
i=1

(
n
i

)
pi(1 − p)n−i

[
1 − (1 − [1 − (1 − p)])i

]
=

n∑
i=1

(
n
i

)
pi(1 − p)n−i

[
1 − (1 − p)i

]
≥

n∑
i=1

(
n
i

)
pi(1 − p)n−i [1 − (1 − p)

]
=

n∑
i=1

(
n
i

)
pi(1 − p)n−i p =

p
n∑

i=1

(
n
i

)
pi(1 − p)n−i = p(1 − (1 − p)n)

The first and third inequalities are due to the fact that (1 − p)i ≤ (1 − p) ∀i ≥ 1. The last equality is
due to the fact that

n∑
i=1

(
n
i

)
pi(1 − p)n−i =

 n∑
i=0

(
n
i

)
pi(1 − p)n−i

 − (1 − p)n = 1 − (1 − p)n
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Figure 30: Comparison between the security of our masked circuits (solid lines) and the one of [16]
(dotted lines) in logarithmic scale, for two fixed p = 10−3, 10−4 where the number of shares n is
between 2 and 100. p = O(1/n2) and a single gate (k = 1). For general circuits the results must be
multiplied with the number of gates of the circuit. We remember that in our choice of p we have to
consider the factor 32np in [16].

since
(

n
i

)
pi(1 − p)n−i is the probability that in a binomial distribution with parameters n and p, we

get i. □

It is easy to observe that around 0 the previous bound (for RPC) is asymptotical to np2

(remember that (1 − p)n ∼ 1 − np + o(p)), for a security for k executions of pRef ∼ knp2 (via
Thm. 7). In stead, the bound of pRef , thanks to Thm. 3 is ≤ (k + 1)(9p)n. It seems clear that (at
least for n > 3) we should be better. [We have used the same approximation for both bounds, thus,
the analysis of Section 5.3 do not influence our comparison]. This is proved in the following

Proposition 16. Let n ≥ 2, p ≤ 10−1, (k + 1)(9p)n ≤ kp(1 − (1 − p)n) if p ≤ min(10−1, 1 − α) with

α =
n−1

√
(k + 1)(n − 1)92

kn

(
9

10

)n−2

.

Proof. First, we observe that for p = 0 the claim holds, since both sides are equal to 0. In
stead, for p > 0, the claim is equivalent to ask that (k + 1)9n pn−1 ≤ k(1 − (1 − p)n) Let f (p) :=
(k + 1)9n pn−1 − k(1 − (1 − p)n). Since f (0) = 0, to prove the claim it is enough to prove that
f ′(p) ≤ 0. But

f ′(p) = (k + 1)(n − 1)9n pn−2 − kn(1 − p)n−1

Thus, we have to prove that

kn(1 − p)n−1 ≥ (k + 1)(n − 1)9n pn−2

62



Figure 31: Comparison between the security of our masked circuits (solid lines) and the one of [16]
(dotted lines) in logarithmic scale, for two fixed p = 10−4, 10−5, and 10−6 where the number of
shares n is between 2 and 100, and a single gate (k = 1). For general circuits the results must be
multiplied with the number of gates of the circuit. We remember that in our choice of p we have to
consider the factor 32np in [16].

we observe that since we have assumed that p ≤ 10−1, it is enough to find for which p the following
holds:

kn(1 − p)n−1 ≥ (k + 1)(n − 1)9n
(

1
10

)n−2

⇔ (1 − p)n−1 ≥
(k + 1)(n − 1)92

kn

(
9

10

)n−2

⇔

1 − p ≥
n−1

√
(k + 1)(n − 1)92

kn

(
9
10

)n−2

⇔ p ≤ 1 −
n−1

√
(k + 1)(n − 1)92

kn

(
9

10

)n−2

which is the claim. □

Note that for n ← ∞, then α ← 10−1. But we asked that p ≤ 10. Finally note that in our
approximation, we have done many approximations, thus, in practice, we believe, our bounds are
much better. We do a function comparison of these two bounds for some fixed n and k in Fig. from
which it is possible to see how much we are better.

Anyway, we compute α for some n and k in Tab..

F.3 Upper Bounding the RPC-security of the Add, Mult and Copy Gadget

In this section we analyze our compiler. Therefore, we give the security of our parallel gadgets.
The addition gadget is clearly (t, p, 0)-RPC secure, since we have only input and output wires. But
the masked circuit generated by our compiler is dominated by the RPC-bound of the pRef gadget.
Note that due to the continuous nature of leakage covered by the random probing model it is clear
that those refreshes are unavoidable. In stead, for the multiplication gadget, it is easy to see that
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Figure 32: Comparison between the security of our masked circuits (solid lines) and the one of [16]
(dotted lines) in logarithmic scale,in function of p„ for three fixed number of shares n = 16, 32, 64.
p = O(1/n2) and a single gate (k = 1). For general circuits the results must be multiplied with the
number of gates of the circuit. We remember that in our choice of p we have to consider the factor
32np in [16].

F.4 Random Probing Expandability (RPE)

Since it is difficult to assess the RP security of a complex circuit, [1] proposed a gadget expansion
strategy.

Expanded strategy. The idea is to compile a circuit replacing the gates with gadgets and then
compile the new circuit replacing the gates of the compiled circuit with the gadgets and iterate.
Suppose that we have 3 n-shares gadgets: Add, Copy and Mult and denote CC the standard circuit
compiler for these gadgets. We obtain three new n2-shares gadgets by simply applying CC to each
gadget: Add(2) = CC(Add), Mult(2) = CC(Mult), Copy(2) = CC(Copy). This process can be iterated
an arbitrary number of times, say N to an input circuit C:

C
CC
← Ĉ1

CC
← ...

CC
← Ĉk.

Thus, we have an expanding circuit compiler. Formally,

Definition 35 ( [4]). Let C be the standard circuit compiler with sharing order n and base gadget
Add, Mult and Copy. The expanding circuit compiler with expansion level k and base compiler CC
is the circuit compiler (C(k), Enc(k), Dec(k)) satisfying the following:
• The input encoding Enc(k) is an (nk)-linear encoding.
• The output decoding Dec(k) is the (nk)-linear decoding mapping.
• The circuit compilation is defined as

CC(k)(·) = CC ◦ CC ◦ ... ◦ CC︸               ︷︷               ︸
k times

(·)
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To prove that this strategy is good to build a secure algorithm, Belaid et al. [4] defined this
security notion:

Definition 36 ([4]). Let n ∈ N. An n-share gadget Gadget : Fn×Fn → Fn is (t, f )-random probing
expandable (RPE) if there exists a deterministic simulator SimGadget1 and a probabilistic simulator
Sim

Gadget

2 s.t for every input (x̂, ŷ) ∈ Fn × Fn and for ever set of collection J ⊂ [n] and for every
p ∈ [0, 1], the random experiment

W← LeakingWires(Gadget, p)

(I1, I2, J′)← Sim
Gadget

1 (W, J)

out ← SimGadget2 (W, J′, x̂|I1 , ŷ|I2 )

ensures that
1) the failure events F1 ≡ (|I1| > t) and F2 ≡ (|I2| > t) verify

Pr[F1] = Pr[F1] = ϵ and Pr[F1 ∧ F2] = ϵ2.

with ϵ = f (p) (in particular F1 and F2 are mutually independent), 2) J′ is such that J′ = J if |J′| ≤ t
and J′ ⊂ [n] with |J′| = n − 1 otherwise, 3) the output distribution is

out id
= (AssignWires(Gadget,W, (x̂, ŷ)), ẑ|J′ )

where ẑ = Gadget(x̂, ŷ).

This definition can be used to give the security of an expanding compiler:

Theorem 9 ([4]). Let n ∈ N and f : R ← R. Let Add, Mult and Copy be n-shares gadgets
for the addition, multiplication and copy on F. Let CC be the standard circuit compiler with
sharing order n and base gadgets Add, Mult and Copy. Let CC(k) be the expanding circuit compiler
with base compiler C. If the base gadget Add, Mult and Copy are (t, f )-RPE, then CC(k) is
(p, 2 f (k)(p))-random probing secure.

RPE and RPC are related via this proposition:

Proposition 17 ( [4]). Let f : R→ R and n ∈ N. Let Gadget be a n-share gadget. If Gadget is
(t, f )-RPE then Gadget is (t, f ′)-RPC with f ′(·) = 2 f (·).

Thus, the previous results are also extended to the expandability strategy.

RPE for the other gadgets. Already in the paper when RPE has been introduced, [4], it has
been proved that the classical addition gadget (which is ours) cannot achieve RPE if at least a wire
leaks. In addition also for the multiplication gadget,
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