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Abstract. Oblivious Pseudo-Random Functions (OPRFs) are a central
tool for building modern protocols for authentication and distributed
computation. For example, OPRFs enable simple login protocols that do
not reveal the password to the provider, which helps to mitigate known
shortcomings of password-based authentication such as password reuse
or mix-up. Reliable treatment of passwords becomes more and more
important as we login to a multitude of services with different passwords
in our daily life.
To ensure the security and privacy of such services in the long term,
modern protocols should always consider the possibility of attackers with
quantum computers. Therefore, recent research has focused on construct-
ing post-quantum-secure OPRFs. Unfortunately, existing constructions
either lack efficiency, or they are based on complex and relatively new
cryptographic assumptions, some of which have lately been disproved.
In this paper, we revisit the security and the efficiency of the well-known
“OPRFs via Garbled Circuits” approach. Such an OPRF is presumably
post-quantum-secure and built from well-understood primitives, namely
symmetric cryptography and oblivious transfer. We investigate security
in the strong Universal Composability model, which guarantees security
even when multiple instances are executed in parallel and in conjunction
with arbitrary other protocols, which is a realistic scenario in today’s
internet. At the same time, it is faster than other current post-quantum-
secure OPRFs. Our implementation and benchmarks demonstrate that
our proposed OPRF is currently among the best choices if the privacy of
the data has to be guaranteed for a long time.

Keywords: Oblivious Pseudo-Random Function · Garbled Circuits ·
Post-Quantum Cryptography · Universal Composability

1 Introduction
An Oblivious Pseudo-Random Function (OPRF) is a two-party protocol for
obliviously evaluating a Pseudo-Random Function (PRF), which is a function
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that outputs a pseudorandom value. One party (the server) holds the key k and
the other party (the user) has the input p. The goal is that the user does not learn
anything about the server’s key k while the server does neither learn anything
about the user’s input nor the output. This interaction is shown in Figure 1.

User Server

OPRF

p k

output

Fig. 1: Sketch of the Oblivious Pseudo-Random Function (OPRF) functionality.

OPRFs lie at the heart of many privacy-preserving protocols. To illustrate the
importance of secure OPRF protocols we elaborate on some examples: Private set
intersection [37] for instance allows two users to find out which contacts they both
have in common, without revealing the full list of their contacts to each other
or a service provider. The OPRF allows one party to hide its input while still
computing some fingerprints of its elements for the other party. PrivacyPass [25]
allows users to bypass subsequent Captchas (after solving the first one), while
preventing tracking of the users. In this use-case, the OPRF is used for letting a
user retrieve unlinkable tokens after solving a Captcha. OPAQUE [36] enables
password-based authentication while hiding the password from the server, which
alleviates many of the known problems of passwords. In OPAQUE, the OPRF is
used to turn a low entropy password into a high entropy secret while completely
hiding the password from the server. At the time of writing, OPAQUE is in the
process of being standardized by the IETF6. One can see that all these protocols
crucially rely on an OPRF as a cryptographic building block.

The above-mentioned protocols are designed to run in today’s Internet, where
many protocols run concurrently and are used as building blocks for other proto-
cols. In these complex environments, attackers may be able to gain information
by maliciously relaying messages from different sessions, or by otherwise making
different protocol executions interfere. One of the most common approaches
to construct composable protocols that keep their security guarantees in these
complex situations was proposed in [16], called universal composability. Subse-
quently, this concept has also been applied to formalize and construct composable
OPRFs [34–36]. Formally proving the security of an OPRF protocol in a model
that guarantees composability is an important aspect of ensuring the security of
a protocol in reality.

The security of most existing OPRF constructions is based on concrete
hardness assumptions. A disadvantage of this is that any concrete assumption
may be broken, which would then break the corresponding OPRF. On the other
hand, if a protocol relies on more general assumptions such as secure symmetric

6 https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-09.html
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encryption, one can easily switch from one symmetric encryption scheme to
another in case new attacks render the former one insecure. This makes generic,
versatile OPRFs an important goal.

OPRFs were intensively studied in the literature and by now, classical, i.e.,
Discrete Logarithm (DLog) based protocols are amazingly efficient and enjoy
a rich set of additional properties. Nonetheless, it still remains a challenge to
construct similarly efficient and versatile OPRFs in the presence of adversaries
with quantum computers. In their vision paper, Kampanakis et al. [38] identify
the research on post-quantum (pq) OPRFs as a highly relevant research area for
post-quantum migration, in particular because of the importance of OPRFs for
pq anonymous authentication protocols. In this work, we focus on presumably pq-
secure protocols, i.e., protocols that can be instantiated from pq-assumptions. This
does not necessarily mean that the security proof considers quantum attackers.

When OPRFs are used in practice efficiency is a major concern. Therefore, it
is important that OPRF proposals are accompanied by an implementation to
analyze their efficiency and compare them to related results. A too slow OPRF in
PrivacyPass [25] or OPAQUE [36] can significantly disturb user experience during
web-browsing or authentication. Thus, improving the efficiency of pq OPRFs is
a decisive objective, as the current (presumably) pq-secure OPRFs still do not
match the classical constructions in terms of efficiency.

All together these motivations raise the following question:

Can we obtain an efficient, composable, and presumably post-quantum secure
oblivious pseudo-random function constructed from generic techniques?

We answer this question in the affirmative. We show how to adapt an OPRF
protocol from [44] based on Yao’s garbled circuits such that this adapted version
can be proven to be secure in the universal composability model of [16]. Because
both garbled circuits and oblivious transfer can be instantiated from pq-secure
primitives, our protocol is presumably pq-secure. We demonstrate its concrete
efficiency via detailed benchmarks of our implementations.

1.1 Contribution

Our work on answering the above question is based on different areas, wherefore
our contribution is threefold. We give a brief technical overview for each part. It
can be summarized as follows:

1. We use the Multi-Party Computation (MPC) technique of Garbled Circuits
to construct an OPRF protocol and prove its security in the Universal
Composability (UC) framework against malicious users and semi-honest
servers.

2. We implemented two versions of our protocol and compare it to other state-
of-the-art protocols in extensive performance tests.

3. We compare two different approaches from the literature of defining OPRF
security in the UC framework and show that one of them is strictly stronger
and that it cannot be achieved by a large class of protocols.
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(1) Construction and Proof of OPRFs via Garbled Circuits. By now multiple
presumably post-quantum OPRF protocols have been proposed [1,2,11,12,31,32].
Some are based on new cryptographic assumptions and some have been broken.
Therefore, an OPRF protocol that relies on generic and well studied building
blocks is very desirable. The idea of using generic MPC techniques such as Garbled
Circuits (GCs) to construct OPRFs has first been described in [44]. As we will
argue, the protocol described in [44] does not satisfy the strong OPRF security
definition of [35,36]. Our first contribution is that we show how a modification of
the protocol from [44] can be proven secure in the model of [35,36] assuming semi-
honest corruption of the server and malicious users. GCs have been optimized
intensively [7,40,48], such that they have become efficient for computing functions
that have a small representation as a boolean circuit. Furthermore, [13] shows
that GCs can be proven secure against quantum attackers in a certain model [10],
if instantiated with appropriate building blocks. As Oblivious Transfer (OT) and
symmetric primitives can be instantiated in many different ways, the security of
GCs does not depend just on a single hardness assumption—that might or might
not be broken in the future. Because of these advantages of GCs, we followed an
idea from [44] to construct OPRFs via GCs that can be sketched as follows: If a
server and a user participate in a secure two-party computation, where the jointly
evaluated circuit is a PRF, the resulting protocol is an OPRF. However, this
construction does not yet achieve composability which is one of our main goals. To
get security in the UC framework, we additionally introduce two hash functions,
wich will be modeled as Random Oracles (ROs), following a general idea from [36].
The ROs are crucial for the security proof in the UC framework. We prove security
assuming semi-honest servers and malicious users. We will elaborate further on
this in Section 3.2. Because we prove security in the UC framework, the protocol
can be securely used—even in parallel or concurrently—with itself or with other
protocols.

(2) Implementation and Benchmarks of our OPRF Protocol. We implemented our
protocol twice to compare its performance to the current state-of-the-art protocol,
2HashDH, by [34–36], the lattice-based protocol by [2], and the isogeny-based
protocol by [32]. The first implementation is in a C++ framework, called EMP-
Toolkit7, which offers most known optimizations for GCs. We also implemented
the protocol with PQ-MPC8. This framework builds upon EMP-Toolkit and
implements a garbling scheme that was proven secure by [13] in a model that
considers powerful quantum adversaries [10]. We chose the Advanced Encryption
Standard (AES) as the concrete instantiation of the PRF. We compared our
implementations to an implementation of 2HashDH [36] building upon OPENSSL9

and to a simplified implementation of the lattice-based protocol of [2]. We assess
the efficiency of the implementations in terms of running time and network traffic.
We performed our experiments on a conventional consumer laptop and measured

7 https://github.com/emp-toolkit/emp-tool
8 https://github.com/encryptogroup/PQ-MPC
9 https://www.openssl.org/

https://github.com/emp-toolkit/emp-tool
https://github.com/encryptogroup/PQ-MPC
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the running time over the local network interface as well as over a simulated
Wide Area Network (WAN). The experiments show that our protocol is much
faster than the lattice-based construction of [2] and the isogeny-based protocols
of [32]. Further, the experiments show that 2HashDH by [34–36] is still about 50
times faster than our construction and requires less than 100B of communication.
However, with a running time of about 22ms and traffic of about 250 kB our
protocol is still in a reasonable efficiency range. Considering the benchmark
results, we see GC-based OPRFs as promising candidates for practically efficient
OPRFs that are secure in the presence of adversaries with quantum computers.

(3) Comparison of Different OPRF Functionalities. In the literature on compos-
able OPRFs, one can find two different approaches defining OPRFs in the UC
framework. We compare a definition from [34–36] and an approach from [14]. We
are the first to show that the first one is strictly stronger. This justifies our use
of the stronger definition from [34–36] throughout this paper. We show that the
plain protocol from [44] does not satisfy the stronger definition from [34–36] and
we further show that it is impossible to prove a huge class of protocols secure
under the stronger definition from [34–36] in the Non-Programmable Random
Oracle Model (NPROM). The impossibility justifies our approach to achieving
UC-security for the OPRF from [44] and it rules out the UC-security of a variety
of constructions, including [12, Sec. 8] and [32].

1.2 Related Work

Started by [29], there is an ongoing research-line on OPRF protocols in which
most protocols are based on the DLog or the integer factorization problem. This
renders them vulnerable to potential quantum attacks. However, recent works
focused on OPRFs based on presumably pq-secure assumptions. The first lattice-
based construction was proposed by [2]. However, prohibitively large parameters
must be chosen and expensive lattice-based zero-knowledge proofs are used.
Additionally, the security analysis does not consider composition as our analysis
does. A more efficient lattice-based OPRF was proposed in [1]. It uses FHE to
evaluate the Dark Matter weak PRF proposed by [11]. Boneh at al. [11] also
proposed an OPRF using the same weak PRF but instead of FHE they used
MPC with preprocessing. This line of work was continued by Dinur et. al [26]
who use secret-sharing-based MPC to evaluate a PRF that also builds on the
modulus-switching idea from [11]. All those works have in common that they rely
on the relatively new Dark Matter weak PRF. Although it is a very promising
weak PRF candidate that currently receives a lot of attention from the research
community, it is arguably not as thoroughly understood as well-established
symmetric primitives like AES. Further, none of these works considers security
in the UC framework which is crucial to applications like OPAQUE [36]. Two
isogeny-based constructions were proposed by [12]. The authors estimate 424 kB
of communication for the other protocol. However, it is not clear if the chosen
parameters are sufficient or if bigger parameters are necessary to achieve a secure
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protocol, see [4,20,21]. Also there is no UC proof for this OPRF. A second isogeny-
based OPRF is proposed in the same work [12]. However, the construction was
broken by [5], even before the underlying SIDH assumption was recently broken
by [20]. Further, there is ongoing work on how to fix the shortcomings of the
broken construction [4,32]. Another approach is to combine the PRF based on the
Decisional Shifted Legendre Symbol Problem (DSLS) [24], which is presumably
pq-secure, with a protocol allowing secure function evaluation over Fp for p > 2.
The construction is proposed in [46] but no proof of security is given. A second
drawback is that the pseudo-randomness of the Legendre symbol with hidden shift
is not a standard assumption. There has been some work on the cryptanalysis of
the assumption [9]. But one might be more confident in generic assumptions, e.g.
OT or the existence of PRFs—like we use in our construction—because they are
well-studied and there are several concrete instantiations.

To the best of our knowledge, the authors of [44] were the first proposing
an OPRF construction from generic building blocks. They suggest realizing an
OPRF by using GCs to evaluate the circuit of a PRF. The privacy requirement
for the OPRF is satisfied as the GC protocol guarantees the privacy of inputs.
A formal proof of security is not given in [44]. However, the work refers to the
general proof for garbled circuit security in the presence of active adversaries
of [41]. However, this proof analyzes very costly cut-and-choose techniques that
make the garbling scheme rather impractical. The simulation-based proof uses
the framework of [15] that even considers a weak form of composition. Note
that the provided guarantees are not as strong as in the UC definition from [36].
In [39] a different approach is chosen. The authors use efficient OT extensions,
introduced in [33], to instantiate something close to an OPRF protocol. The
defined security notion is called batched related-key OPRF (BaRK-OPRF). This
notion is related to usual OPRFs but it is not equivalent. BaRK-OPRF has
the drawback that each PRF value is computed under a different key. While
this limitation is not problematic for their use case of private set-intersection,
it is not clear how to instantiate e.g. asymmetric Password Authenticated Key
Exchange (aPAKE) [36], Password-Protected Secret Sharing (PPSS) [35], or
distributed Single Sign On (SSO) [6] with BaRK-OPRF as these protocols
require that the PRF is evaluated under the same key. The security is analyzed
in a stand-alone simulation-based model, assuming server and client to be semi-
honest, while our protocol only assumes semi-honest servers but allows malicious
clients. A similarity between our protocols is that both rely only on the security of
OT and symmetric cryptography. We summarized the above discussion in Table 1.
For a more thorough discussion of OPRFs, we refer to [19].

2 Preliminaries

Pseudo-Random Functions. A Pseudo-Random Function (PRF) is a function
that produces “random looking” output values. More precisely, the function is
indexed by a key k and takes inputs x. If the key is chosen uniformly at random,
the output Fk(x) is indistinguishable from a random value. The security is defined
via a Probabilistic Polynomial Time (PPT) distinguisher D that either gets oracle
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UC (presum.) Pract. Adv.
Protocol Secure pq Secure Efficient Model Assumption

Our work ✓ ✓(OT) ✓ SH OT, symm. crypto.
2HashDH [36] ✓ × ✓ M om-DH
Plain Garbled Cir-
cuits [44]

× ✓(OT) ✓ SH OT, symm. crypto.

BaRK-OPRF [39] × ✓(OT) ✓ SH OT, symm. crypto.
Lattice-based [2] × ✓ × M RLWE, 1D-SIS
TFHE-based [1] × ✓ × SH Dark-Matter wPRF
NR Isogeny-
based [12]

× ✓ (✓) SH CSIDH

OPUS [32] × ✓ × SH CSIDH,CSI-FiSh
Legendre-based [24,
31]

× ✓ ? ? DSLS

MPC w. preprocess-
ing [11,26]

× ✓ (✓) SH Dark-Matter wPRF

Table 1: Overview of related protocols. We write (✓) if we have not implemented
the protocol in this work but an implementation will likely be efficient. We write
✓(OT) if a protocol is presumably pq-secure, as long as a pq-secure OT is used.
We write M if the protocol is secure against malicious adversaries and SH if it is
secure against semi-honest adversaries.

access to Fk(·) for randomly chosen k ∈ {0, 1}m or to a truly random function
RF. The goal of D is to tell those situations apart.

Definition 1 (PRF & PRP). Let F : {0, 1}m × {0, 1}n → {0, 1}l be a function
family such that there is a polynomial-time algorithm that takes k ∈ {0, 1}m
and p ∈ {0, 1}n and outputs Fk(p) ∈ {0, 1}l. Let p0 := Pr

[
DFk( · )(1λ) = 1

]
and

p1 := Pr
[
DRF( · )(1λ) = 1

]
, where the probabilities are taken over random choices

of k ∈ {0, 1}m and RF ∈ {f : {0, 1}n → {0, 1}l}. We say F is a pseudo-random
function if the advantage AdvPRF

F (D, λ) := |p0 − p1| is negligible for every PPT
distinguisher D. If Fk is indistinguishable from a random permutation RF

$← Sn
then we say F is a pseudo-random permutation.

Oblivious Pseudo-Random Functions. A conventional PRF must be evaluated by
a single party, which knows k as well as p. An OPRF for a certain PRF consists of
two parties that interact to jointly compute an output of the PRF. One party—the
server—holds the key k of the PRF and the other party—the user—holds the
input value p. In the end, the user learns the output value y = Fk(p), but
nothing about the key k. The server obtains no additional information from the
interaction. In particular, it learns nothing about the user’s input p.

The ROM and NPROM for UC. A random oracle H : A → B maps elements
from a set A to elements of a set B. If H receives an input query x ∈ A for the
first time, it outputs a uniformly random drawn value y ∈ B and stores the tuple
⟨x, y⟩. If H receives the query x again, it outputs y. To not clutter notation too
much, we will notate the random oracle in our work like a “conventional hash
function” instead of an ideal functionality.
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In [42], the NPROM is defined as a variant of the UC framework of [16]. We
provide a short intuition to the UC framework in Appendix B.1. In contrast to the
original UC framework, each machine—including the environment machine—gets
access to an oracle O. The oracle is a random oracle in the sense that it answers
queries of the form x ∈ {0, 1}∗ with a uniformly random y ∈ {0, 1}l, where l ∈ N
is fixed, and it records the tuple ⟨x, y⟩. If x is queried again, O answers again
with y. The difference to a normal random oracle described before is that O is
not a hybrid functionality. In particular, a simulator in the UC experiment has no
way of influencing the output of O. More precisely, we write MO to denote that
a machine M gets an oracle input tape, where M can write queries to x and an
oracle output tape, where M receives the answers from O. We say a protocol π
UC-emulates a protocol ϕ in the NPROM if EXECπO,AO,EO

c
≈ EXECϕO,SO,EO .

Authenticated Channels. In this work, we assume authenticated channels. In-
tuitively, this means that a receiver of a message can be sure that only the
alleged sender could have sent the message—not an adversary. It is also possible
that no one receives the message, in case the message gets lost. Additionally,
a sender can be sure that the message was not altered by an adversary. See
Figure 8 in Appendix B for a precise definition of the UC functionality FAUTH

of authenticated channels.

Oblivious Transfer. In its simplest form, OT [45] allows a sender to transfer one
of two messages to a receiver (1-out-of-2 OT). The receiver can choose which
message it wants. The security guarantee for the receiver is that the sender does
not learn anything about the choice of the receiver. The security guarantee for the
sender is that the receiver does not learn anything about the message that was
not chosen. Looking ahead, OT allows the evaluator of a Garbled Circuit (GC)
to get the wire labels for their input, without leaking the input to the GC creator.
A graphical explanation of OT can be found in Figure 2.

Receiver(b) Sender(x0, x1)

OT

b x0, x1

xb

Fig. 2: Sketch of the 1-out-of-2 OT functionality.

Garbled Circuits. Garbled circuits are a technique for secure two-party computa-
tion, which allows two parties to jointly evaluate any boolean circuit in a secure
way. GCs ensure that the input of each party remains hidden from the other
party. The original construction offers only security against a semi-honest garbler.
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The garbler could for example garble a different circuit, even one that leaks
information about the evaluator’s input. Several works improved the efficiency of
GCs, most notably the techniques called free-xor [40] and half-gates [48]. The
authors of [8] defined an abstraction of the above-described technique.

Definition 2 (Garbling Scheme [8, Sec. 3.1]). A garbling scheme is a tuple of a
probabilistic garble algorithm Gb and deterministic algorithms En for encoding,
De for decoding, Ev for garbled evaluation, and ev for “plain” evaluation, i.e.,
G = (Gb,En,De,Ev, ev). Let f ∈ {0, 1}∗ be a description of the function that shall
be garbled. The function ev(f, ·) : {0, 1}n → {0, 1}m denotes the actual function,
we want to garble, where n ∈ N and m ∈ N must be efficiently computable from
f . On input f and a security parameter λ ∈ N, the algorithm Gb returns a triple
of strings (F, e, d)← Gb(1λ, f). String e describes an encoding function, En(e, ·),
that maps an initial input x ∈ {0, 1}n to a garbled input X = En(e, x). String
F describes a garbled function, Ev(F, ·), that maps each garbled input X to an
encoded output Z = Ev(F,X). String d describes a decoding function, De(d, ·),
that maps an encoded output Z to a final output z = De(d, Z).

When we talk about the encoded input (sometimes we say labels) generated
by Gb, we will write X[0] (or X[1], rsp.) to denote that the label is an encoding
of 0 (or 1, rsp.). When b ∈ {0, 1}n we will write X[b] to denote the concatenation
of the encodings of all bits in b. An execution of Yao’s garbled circuits protocol
is depicted in Figure 10 in Appendix B.

We require a garbling scheme to have privacy as defined in [8]. Intuitively,
privacy means that anything that can be learned from the garbled circuit F , the
input labels X, and the decoding information d, can also be learned from the
output value y and the public circuit f alone. In particular, no efficient adversary
can “break” the scheme to get the input value of one of the parties. We give a
formal definition of this notion in Appendix B.

3 Construction
In this section we present a protocol that UC-realizes FOPRF—the ideal OPRF
functionality —under static malicious corruptions of users and static semi-honest
corruptions of servers.

Adversarial Model. We formulate the assumptions about our adversaries: We
will implement an OPRF with garbled circuits. As “textbook versions” of garbled
circuits offer only security against a passive, i.e., semi-honest garbler, we will
restrict our construction to these adversaries. This means that a corrupted garbler
(in our case the server) follows the protocol honestly but tries to learn additional
information from its view of the protocol execution. In Section 3.2 we discuss
more reasons why evaluating a PRF with MPC is not sufficient to realize FOPRF

in the presence of a malicious server. However, we do allow malicious corruption
of the evaluator (the user). Further, we assume static corruption. This means
the adversary can only corrupt parties at the start of the protocol. If a party is
corrupted, we assume that the adversary learns the party’s input, the content of
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the party’s random tape, and all messages received by the party. The adversary
can send messages in the name of a corrupted party.

Security Notion. We will not use the same formulation of the ideal OPRF
functionality F∗OPRF from [36]defined in Appendix B.1, but rather a slightly
simplified version described in Figure 3. Note that FOPRF does not capture the
adaptive compromise of the server, as we only assume static corruption of servers.
For the sake of simplicity, we also omit the prefixes used in F∗OPRF.

Functionality FOPRF

Initialization: For each value i and each session sid, an empty table Tsid(i, ·) is
initially undefined. Whenever Tsid(i, p) is referenced below while it is undefined,
draw Tsid(i, p)

$← {0, 1}l.
On (Init, sid) from S, if this is the first Init message for sid, set tx(sid) = 0 and
send (Init, sid,S) to A. From now on, use “S” to denote the unique entity which
sent the Init message for sid. Ignore all subsequent Init messages for sid.

Offline Evaluation: On (OfflineEval, sid, i, p) from P ∈ {S,A}, send
(OfflineEval, sid, Tsid(i, p)) to P if any of the following hold: (i) S is cor-
rupted and i = S, (ii) P = S and i = S, (iii) P = A and i ̸= S.

Online Evaluation:
– On (Eval, sid, ssid,S, p) from P ∈ {U,A}, record ⟨ssid,S,P, p⟩ and send

(Eval, sid, ssid,P,S) to A.
– On (SndrCmplt, sid, ssid) from S, increment tx(sid) or set to 1 if previ-

ously undefined, send (SndrCmplt, sid, ssid,S) to A. On ok from A, send
(SndrCmplted, sid, ssid) to S.

– On (RcvCmplt, sid, ssid,P, i) from A, retrieve ⟨ssid, S,P, p⟩, where P ∈ {U,A}.
Ignore this message if at least one of the following holds: (i) There is no record
⟨ssid,S,P, p⟩, (ii) i = S but tx(sid) = 0, (iii) S is honest but i ̸= S. Send
(EvalOut, sid, Tsid(i, p)) to P. If i = S decrement tx(sid).

Fig. 3: The ideal functionality FOPRF like in [36].

3.1 The main construction

Let m,n ∈ Ω(λ) and F : {0, 1}m × {0, 1}n → {0, 1}n be a Pseudo-Random
Permutation (PRP). In our implementation in Section 4, we instantiate the PRP
with AES. We will garble the circuit C that describes F to construct our OPRF.

The user runs with p ∈ {0, 1}∗ as input. This input is hashed to an n bit
value, so we can use it as input to C. Our construction involves two hash functions
H1 : {0, 1}∗ → {0, 1}n and H2 : {0, 1}∗ × {0, 1}m → {0, 1}l, where l ∈ Ω(λ). We
will model these hash functions as random oracles. The server takes no input.
Initially, for each session, it chooses a key k ∈ {0, 1}m uniformly at random. The
PRF, that is computed by the OPRF protocol is Fk(p) := H2(p, Ck(H1(p))).
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User U(p) Server S

x← H1(p) k
$← {0, 1}mGarble

(F, e, d)← Gb(1λ, C)
(X[in] ∥K) := En(e, in ∥ k) ∀i ∈ {0, 1}

(F,K, d)

OT

X[0n ], X[1n ]x

X[x]

Y := Ev(F,K ∥X[x])

y := De(d, Y ), ρ← H2(p, y)

Fig. 4: Overview of GC-OPRF.

In our description of the protocol depicted in Figure 4, the server garbles
the circuit and the user evaluates the circuit. The user starts the execution of
the protocol by hashing its input p. The obtained value x = H1(p) will be used
as the user’s input to the circuit. The user then requests a garbled circuit by
sending (Garble, sid, ssid) to the server. The server proceeds by generating the
garbled circuit. In particular, it encodes its key as input for the circuit. It sends
the garbled circuit, the input labels of the key, and the decoding information to
the user. The user and the server perform n parallel 1-out-of-2-OTs to equip the
user with the wire labels for its input x = H1(p). Next, the user can evaluate the
garbled circuit on the encoded inputs X and K and receives an output label Y .
This label can be decoded to obtain the output value of the circuit y. Finally, the
user hashes its input and the output of the circuit again to obtain the output
ρ = H2(p, y). We describe the OPRF more precisely in Figure 5.

Theorem 1. Let the garbling scheme G = (Gb,En,De,Ev, ev) have privacy, as
defined in Definition 4. Let C denote the boolean circuit of a PRP. Then GC-OPRF
UC-realizes FOPRF in the FOT,FAUTH, FRO-hybrid model.

Proof sketch: The general strategy of the proof is as follows: First consider the
case where both parties are honest. The simulator chooses a uniformly random
key k and runs the protocol like the real server would. The simulator does not
get the user’s input. But as it plays the role of FOT it can report messages to
the environment as if the user had given input to FOT. The simulator requests
user output from FOPRF. We must argue why FOPRF provides this output, i.e.,
why the counter is not exceeded. As both parties are honest, this is ensured by
the simulator receiving a SndrCmplt message for the honest server. The OPRF
output comes from FOPRF and thus is a random value. The environment E can
only distinguish it from the real output if it queries H2(p, Ck(H1(p)). We use the
PRP property of C to argue that without any information about k, E sends this
query with negligible probability. Next we consider the case where the user is
maliciously corrupted. In contrast to the first case, E obtains the labels K of
the key. Thus, E can query H2 on p and De(d,Ev(F,X[H1(p)] ∥K)). Hence, the
simulator must program H2 accordingly on that input. To that end, Sim uses the
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U on (Eval, sid, ssid, S, p) from E

x← H1(p), send (Garble, sid, ssid) to S via FAUTH

S on (Init, sid) from E

if first (Init, sid) message from E
k

$← {0, 1}m, record ⟨k, sid⟩

U on (sid, ssid, (F,K, d)) from S via FAUTH

if already received (Eval, sid, ssid,S, pw) :

send (OT-Receive, ssid, p) to FOT

else ignore this message

S on (SndrCmplt, sid, ssid) from E

if already received (Garble, sid, ssid) :

goto GarbleCircuit

else remember the receipt of this message

U on (OT-Received, ssid, (Xi)
n
i=1) from FOT

if already received (sid, ssid, (F,K, d)) :

X := X1 ∥ . . . ∥Xn

Y := Ev(F,X ∥K)

y := De(d, Y )

ρ← H2(p, y)

output (EvalOut, sid, ssid, ρ) to E
else ignore this message

S on (Garble, sid, ssid) from U via FAUTH

if already received (SndrCmplt, sid, ssid) :

GarbleCircuit :

if ∄⟨k, sid⟩ : ignore this message
else

(F, e, d)← Gb(1λ, C)
(X[0n] ∥K) := En(e, 0n ∥ k)
(X[1n] ∥K) := En(e, 1n ∥ k)
send (sid, ssid, (F,K, d) to U via FAUTH

send (OT-Send, ssid, (Xi[0], Xi[1])
n
i=1) to FOT

else remember the receipt of this message

S on (OT-Sent, sid, ssid) from FOT

output (SndrCmplted, sid, ssid)

Fig. 5: The GC-OPRF construction in the FOT,FRO,FAUTH-hybrid model.

RcvCmplt interface. However, that means the counter is decreased. We argue
that E can only query De(d,Ev(F,X[H1(p)] ∥K)) if it received a garbling (F,K, d)
and labels X[H1(p)] before. Sim produces this garbling if the counter was increased
once. By the privacy of the garbling scheme, E gets only enough information
to query H2 on one such critical point for every garbling with labels that it
obtains. Finally we consider the case where the server is passively corrupted. In
this case, E learns the key kŜ of the server and can thus query H2(p, CkŜ

(H1(p))).
The simulator must detect these queries and use its OfflineEval interface to
receive an output value ρ to program H2(p, CkŜ

(H1(p))) := ρ. It is crucial that
OfflineEval does not change FOPRF’s counter. Sim knows the key kŜ, as we
assume passive corruption of the server, i.e., the server does not maliciously choose
some other key. Note that we used H1 as a non-programmable but observable RO
and H2 as a programmable RO. We present the complete proof in Appendix C.

3.2 Some Remarks on the Construction

In the following, we give some remarks on the construction and explain the
decisions on the protocol design.

Who garbles? We believe that the above-described approach could easily be
adapted to feature switched roles of garbler and evaluator. More precisely, we
believe that it is also possible to construct a similar OPRF protocol where the
user garbles the circuit and the server evaluates the circuit. However, we decided
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to let the server garble the circuit because our construction only is secure against
a semi-honest garbler. If the protocol would be implemented in a real-world
scenario, it is a more realistic assumption that a server behaves in a semi-honest
way than to assume that a user behaves that way. A server might be maintained
by a company that would fear economic damage if malicious behavior of their
servers is uncovered, while arbitrary users on the internet are likely to behave
maliciously. Nonetheless, we are aware that malicious security is more desirable.
However, techniques from the literature to achieve this are expensive in terms
of running time and network traffic [41, 47]. If actively secure garbled circuits
would be used, it might even be beneficial to switch roles. Then the user has to
“invest” computation time on the creation of a garbled circuit, which decreases
the threat of Denial of Service (DOS) attacks on the server. Note that actively
secure garbling is still not enough to make our construction UC-realize FOPRF

in the presence of malicious servers, as we will detail below.

On the Need for Authenticated Channels. In the proof of security, we assume
authenticated channels. This is necessary, as otherwise, we could not rely on
the semi-honest nature of messages sent to the simulator. Assuming that the
server behaves semi-honest, does not explicitly include the adversary. Thus, the
adversary could still replace the honestly generated circuit from the server with
a malformed circuit. To avoid this problem, we assume authenticated channels,
which prevent the adversary from replacing or injecting messages.

One could argue that the need for authenticated channels renders our con-
struction impractical for many settings. For instance, if the OPRF is used for
password-based authentication, one might not necessarily accept to already have
an authenticated channel. But in fact, authenticated channels are already estab-
lished in many practical scenarios! Typically, a user would connect to a server
over a Transport Layer Security (TLS) channel, and thus, at least the server is
authenticated via digital certificates. We expect the security of our construction to
hold even if only the server is authenticated. This does guarantee that the garbled
circuit was generated by the party with which the user intends to communicate.
Applications that build on top of TLS can thus make use of our OPRF protocol.

On security against semi-honest servers. Because our construction only provides
security against semi-honest servers, let us discuss the implications of this in
various use cases. When our OPRF protocol is used for secure password-based
authentication as in OPAQUE, then a malicious server could learn the user’s
password. Note, however, that the main problem in practice is usually not that
the service provider itself (e.g. email provider) is actively malicious, but rather
that the server gets hacked and the data stolen. Multiple big tech companies10
did log cleartext passwords. So if we trust the service provider not to be actively
malicious, then our OPRF can be used to protect against such problems as
inadvertent logging of cleartext passwords. Also, note that our protocol is secure

10 https://www.zdnet.com/article/twitter-says-bug-exposed-passwords-in-plaintext,
https://about.fb.com/news/2019/03/keeping-passwords-secure

https://www.zdnet.com/article/twitter-says-bug-exposed-passwords-in-plaintext
https://about.fb.com/news/2019/03/keeping-passwords-secure
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against malicious users and, thus, one user cannot impersonate another user in
an authentication setting like OPAQUE. In Privacy Pass11 a malicious server
may be able to learn the user-chosen token, which would allow them to track
the user. This is probably an unacceptable risk for dissident Tor users, but for
many others, it may be an acceptable risk. In Private Set Intersection (PSI) a
malicious OPRF sender could learn all set elements of the other party, which
clearly violates the security goals. The practical impact of this again depends on
the trust relation between the two parties. If the OPRF sender is a somewhat
trusted service provider then semi-honest security may be sufficient. Of course, it
is better to choose a maliciously secure OPRF, if an efficient pq secure protocol
is available, even though the semi-honest version provides sufficient security
guarantees in many settings.

Challenges towards full malicious security. We like to highlight that for securing
our construction against malicious servers it is likely necessary to employ actively
secure garbled circuits (e.g. using cut-and-choose [41] or authenticated garbling
[47]) but it is not sufficient, as the definition of FOPRF has very strict security
requirements. It guarantees that the output is uniformly random even if the
server is malicious, in particular, the server cannot force the output to be a
specific value. For some protocols such as [36] this guarantee is necessary to
prevent a Man-in-the-Middle attacker from impersonating an honest server. The
first reason why evaluating a PRF with MPC is not enough to realize FOPRF in
the presence of a malicious server is that a PRF F can have weak keys (such as a
key k, where F(k, x) = 0, regardless of x). The function F can still be a secure
PRF because the definition of a PRF only requires the output to look random
if the key was chosen uniformly at random. However, the malicious server is
not bound to choose the key randomly, but can deliberately choose a weak key,
thereby violating the security guarantees of FOPRF. The second reason is more
specific to the proof and the simulator. When the PRF key is the same in two
sessions, then the same inputs must yield the same outputs. In the ideal world,
the simulator determines a table via the RcvCmplt message, from which FOPRF

chooses the output value. To choose the correct table, the simulator has to be
able to determine a value that uniquely identifies the key that the server used.
In [35] this is achieved by letting the simulator include a DLOG trapdoor in the
simulated messages of the honest user to the malicious server. In our case, as
well as in other general MPC protocols, it is unclear how this unique identifier
can be derived. The first reason shows that one would need to make stronger
assumptions about the PRF to use it to build a maliciously secure OPRF. The
second reason is an obstacle to the proof that may be solvable but would need new
insights. Using covert security, which lies in between semi-honest and malicious
security, also does not help, because a server choosing a different PRF key cannot
be caught and, thus, has no incentive to be honest.

11 Privacy Pass requires a verifiable OPRF. One can follow the idea of [2] to achieve
this using garbled circuits. We leave a proof of security of that to future work.
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4 Comparison of Concrete Efficiency

As we were interested in the concrete efficiency of GC based OPRFs, we imple-
mented the protocol from Section 3 in two versions and compared it to other
OPRF protocols. We used AES-128 and AES-256 as instantiations for the cir-
cuit C. For the first implementation, we leveraged a C++ framework, called
EMP-Toolkit7. Because the available OT implementations from the EMP-Toolkit
(and PQ-MPC) do not provide UC-security we opted for the most efficient OT
protocol available in that library. We employed the Chou-Orlandi OT [22]
protocol. Note that this is not a UC-secure OT protocol, as explained in the
full-version of their paper [23]. It is also not post-quantum (PQ) secure as it
relies on the GapDH assumption. If one wants to instantiate the OT using a
protocol that is UC secure and plausible pq secure, one can use e.g. the OT
proposed in [27]. The protocol from [27] is UC secure and can be instantiated
under Learning Parity With Noise (LPN) in the CRS model. The protocol only
requires two messages. Alternatively, one can employ the protocol proposed
in [3]. It can also be instantiated under LPN and is secure in the Random Or-
acle Model (ROM). However, it is a four-message protocol, which might result
in worse performance than [27]. We leave it to future work to implement a
pq and UC secure OT protocol. We also used the pq-secure adaptation of the
EMP-Toolkit, called PQ-MPC8. The security of this instantiation of garbled
circuits against quantum adversaries is proven in [13] in the Quantum-accessible
Random Oracle Model (QROM) [10]. Our resulting OPRF implementation is
presumably secure against quantum adversaries. As we are garbling a 128-bit-key
AES circuit, we reach the same level of quantum security as defined in the NIST
post-quantum competition as Security Strength Category 112. Further, we imple-
mented a version of the state-of-the-art OPRF protocol, 2HashDH, by [34–36].
Finally, we also compared the two former protocols to the lattice-based protocols
of [2] and the isogeny-based protocol from [32]. We used the implementations
that were provided by the respective works and run them on our machine. The
main goal was to compare the concrete efficiency of different OPRFs on the
same hardware. All source code described below can be found in the repository
github.com/SebastianFaller/Composable-OPRF-via-Garbled-Circuits13. We also
tried to run the provided implementation of [1]. But one OPRF evaluation did
not finish within several hours on a normal laptop and therefore we did not
benchmark the protocol extensively. This is not surprising as the benchmarks
of [1] were performed on a server with 96 cores and over 700GB RAM.

Benchmarks. We tested the implementations on a machine with an 11th Gen
Intel® Core™ i7-1165G7 @ 2.80GHz × 8 CPU. We made measurements on the
local network interface, as well as a simulated WAN with limited bandwidth of
50Mbit and a delay of 100ms. We used the Linux tool tc for the latter. The
WAN measurement simulates the situation where the server and user operate
12 https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/call-for-proposals-final-dec-2016.pdf
13 The benchmark results refer to the version of commit ece1921.

github.com/SebastianFaller/Composable-OPRF-via-Garbled-Circuits
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
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on machines in different countries or even continents. We measured the running
time in milliseconds that each implementation needs from the invocation of a
single OPRF session until the user calculated the output. The server used the
same PRF key for all executions. We also measured the amount of data that the
protocols exchange over the network, meaning data sent from the user to the
server and vice-versa. We summarized the results in Table 2.

Avg. Runtime Avg. Runtime Network UC PQ
Protocol (Local) [ms] (WAN) [ms] Traffic [kB]

Our work (AES-128, EMP-Tool) 19.92 ± 0.77 268.19 ± 19.42 232.71 × ×
Our work (AES-256, EMP-Tool) 26.53 ± 0.99 282.48 ± 26.04 299.78 × ×
Our work (AES-128, PQ-MPC) 47.12 ± 3.22 1696.91 ± 53.62 4746.13 × ✓
Our work (AES-256, PQ-MPC) 72.63 ± 4.51 2074.42 ± 22.98 6787.48 × ✓
2HashDH [36] 0.36 ± 0.13 201.88 ± 0.21 0.07 ✓ ×
Lattice VOPRF [2] 88512.92 ± 2079.35 95418.25 ± 989.30 513.25 ± 0.17 × ✓
OPUS [32] 11218.45 ± 61.98 35285.26 ± 36.50 24.70 × ✓

Table 2: Overview of the benchmark results. The protocol from [2] is a simplified
version that does not include any Zero-Knowledge (ZK) proofs. The column UC
marks if the implementation with their concrete building blocks is UC secure.
Similarly, the column PQ indicates the same for plausible PQ security.

Running Time. We measured an average running time of 19.92ms and 26.53ms
for our GC-OPRF implementation with EMP-Toolkit for AES-128 and AES-256,
respectively. We measured an average running time of 47.12ms and 72.63ms
for our GC-OPRF implementation with PQ-MPC for AES-128 and AES256,
respectively. The performance of the PQ-MPC version of the protocol is still
reasonable, as it is about twice as high as the running time for the classical
circuit. The difference is a bit higher in the simulated WAN. This is most likely
due to the bandwidth limitation, as the PQ-MPC version sends about 20 times
as much data over the network as the EMP-Toolkit version.

Comparing with the other protocols in Table 2, we can see that our protocol
is orders of magnitude more efficient than the competing pq-secure protocols.
However, the elliptic curve protocol 2HashDH [36] is still more efficient than
our protocol. Note that the comparison to [2] has to be taken with a grain of
salt. On the one hand, their implementation omits all ZK proofs, which are
necessary to make the protocol secure. These proofs would make the protocol
even more impractical. On the other hand, the implementation was done with
SageMath, while the implementations of our work, [36] and [32] were written
in C++ and C, respectively. Further, the OPRF protocol from [2] is verifiable,
which means that a server cannot arbitrarily choose new keys for each query. The
other implementations do not have this property.

Network Traffic. Our EMP-Toolkit implementation with AES-128 sends 232.71 kB
of data over the network, while the PQ-MPC version of our construction with AES-
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128 sends 4.746MB. This huge difference comes from the fact that PQ-MPC uses
a pq secure OT protocol based on FHE and does not use optimizations for garbled
circuits, as e.g. free-xor [40] or half-gates [48]. While the Chou-Orlandi OT from
the EMP-Toolkit implementation is based on GapDH, and thus, is certainly not
pq secure, it is still plausible that all implemented garbled-circuit-optimizations
from EMP-Toolkit are pq secure, as they do not involve DLog- or RSA-type
assumptions. Also, note that the network traffic of all implementations except
of [2] are constant values, while there are slight variations in the measurement
for the protocol of [2]. This is because the transmitted value in the protocol is a
random element in a cyclotomic ring. SageMath seems to automatically compress
those elements if possible which leads to a varying size.

5 On the Ideal OPRF Functionality

In this section, we discuss two different UC-definitions of OPRFs and their
relation. We show that the definition that we use is strictly stronger than the
alternative formulation. It is important to note that security in the UC framework
is always defined relative to an ideal functionality. Broadly speaking, a protocol
UC-realizes a functionality if every attack that is possible against the real protocol
is also possible against the ideal functionality. Thus, the security of the protocol
highly depends on the definition of the ideal functionality.

5.1 Existing OPRF functionalities

There exist several descriptions of ideal OPRF functionalities in the litera-
ture [14,34–36]. What most of them have in common is that the ideal functionality
internally holds a truly random table of outputs from which the functionality
delivers outputs to the user, when a protocol execution takes place. This ensures
pseudo-randomness, as the output of the real-world protocol must be computa-
tionally indistinguishable from those random values. However, we are aware of
one OPRF functionality that works differently. In [14] an ideal functionality is
proposed that internally chooses a PRF key and delivers output values from one
specific PRF to the user. We depict the differences in Figure 6. We will denote the
first functionality that chooses the output values randomly by FOPRF and the sec-
ond functionality that is parameterized by a PRF F : {0, 1}m × {0, 1}n → {0, 1}l
as FF

OPRF. As a first step, we will show that the two definitions are indeed not
equal in the sense that FOPRF UC-realizes FF

OPRF but not vice-versa. We will
also argue on a high level why a protocol using the weaker functionality FF

OPRF

cannot e.g. control the number of password guesses after a server is compromised.
This shows that password-based protocols such as aPAKE or PPSS must rely
on the stronger functionality FOPRF. As a next step, we argue that a natural
class of protocols cannot UC-realize FOPRF in the NPROM from [42]. Finally, we
argue that the garbled circuit-based OPRF proposed by [44] does not UC-realize
FOPRF. This suggests the need to introduce a random oracle to our construction
Section 3.1 and to program it in our proof of securityin Appendix C .



18 S. Faller et al.

Functionality F F
OPRF

Initialization: For each value i and each session sid, an empty table
Fsid,i(p), for all inputs p ∈ {0, 1}n keys(sid, i) is initially undefined. When-

ever Fsid,i(p) keys(sid, i) is referenced below while it is undefined, draw

Fsid,i(p)
$← {0, 1}l keys(sid, i) $← {0, 1}m .

On (Init, sid) from S, if this is the first Init message for sid, set tx(sid) = 0 and
send (Init, sid,S) to A. From now on, use “S” to denote the unique entity which
sent the Init message for sid. Ignore all subsequent Init messages for sid.

Offline Evaluation: On (OfflineEval, sid, i, p) from P ∈ {S,A}, send
(OfflineEval, sid, Fsid,i(p) keys(sid, i) ) to P if any of the following hold: (i)
S is corrupted and i = S, (ii) P = S and i = S, (iii) P = A and i ̸= S.

Online Evaluation:
– On (Eval, sid, ssid,S, p) from P ∈ {U,A}, record ⟨ssid,S,P, p⟩ and send

(Eval, sid, ssid,P,S) to A.
– On (SndrCmplt, sid, ssid) from S, increment tx(sid) or set to 1 if previ-

ously undefined, send (SndrCmplt, sid, ssid,S) to A. On ok from A, send
(SndrCmplted, sid, ssid) to S.

– On (RcvCmplt, sid, ssid,P, i) from A, retrieve ⟨ssid, S,P, p⟩, where P ∈ {U,A}.
Ignore this message if at least one of the following holds: (i) There is no record
⟨ssid,S,P, p⟩, (ii) i = S but tx(sid) = 0, (iii) S is honest but i ̸= S. Send
(EvalOut, sid, Fsid,i(p) Fkeys(sid,i)(p) ) to P. If i = S set tx(sid)−−.

Fig. 6: Comparison between the ideal functionality FOPRF inspired by [36] and
the one inspired by [14]. Text in boxes is as in FOPRF, text in grey is inspired
by [14]. Normal text is shared between both functionalities.

5.2 Relation between FOPRF and FF
OPRF

First, we establish that FOPRF is stronger than FF
OPRF. Second, we show that

FOPRF can not be realized in the NPROM by a natural class of protocols. Lastly,
we show that computing a PRF with garbled circuits alone cannot realize FOPRF.
This gives a theoretical foundation for our proposed changes from Section 3, as we
added a programmable random oracle to the construction from [44] to achieve the
strong security notion of FOPRF. We defer the complete proofs to Appendix D.

Claim 1. FOPRF UC-emulates FF
OPRF.

Proof Sketch. The simulator just forwards all messages between E and the
functionality. On corruption of the server, the simulator gets the key from FF

OPRF,
which makes answering OfflineEval queries trivial.

Claim 2. FF
OPRF does not UC-emulate FOPRF.

Proof Sketch. The second claim can be shown by contradiction. Assume there is a
simulator. An environment can query arbitrarily many PRF values. If E corrupts
the server after sufficiently many PRF queries, a simulator can find a key that
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matches all previously produced PRF outputs only with negligible probability.
Thus, there cannot be such a simulator.

Note that we make use of FF
OPRF’s (Compromise, sid, S) interface that allows

an adversary to get the key of the underlying PRF. Once the adversary has this key
it can evaluate the PRF as often as it likes. Typically in password-based protocols,
a user and a server execute the OPRF with the user’s password as input. Now,
if an adversary gets unlimited PRF evaluations it can mount offline dictionary
attacks against the password. This is also possible when using FOPRF but the
difference is that FOPRF outputs one PRF-output per (OfflineEval, sid, p)
message. Therefore, a protocol that uses FOPRF as hybrid functionality can keep
track of all password-guessing attempts of the adversary. The same is not possible
with FF

OPRF, as the adversary can guess “locally” after it received the key.
Next, we formalize a natural class of protocols that cannot realize FOPRF.

Definition 3. We say a protocol has reproducible output if the following holds:
In an execution with a passive, (i.e., semi-honest) adversary A, every user U
outputs—with overwhelming probability—the same output y when executing
the protocol π on input p with a server S with fixed state k. In other words,
the output of a protocol execution depends only on the user’s input and on the
server’s internal state (and not e.g. on the user’s internal state).

One can think of the server’s state as the key of the server. But we cannot assume
how this state may look for arbitrary protocol.

Claim 3. Let π be a protocol that does not use any additional hybrid functionality
and that has reproducible output. Then π does not UC-realize FOPRF in the
NPROM.

Proof Sketch. The environment can execute a protocol run between a server and
a user internally without the simulator being able to detect this. Then E can
instruct two actual parties, i.e., parties that are not just internally run by E , to let
them execute the protocol. As the protocol π has reproducible output the output
of the internal execution will be the same as the output of the external execution
in the real-world experiment. By the definition of FOPRF the output of the user
in the external execution will be drawn uniformly random in the ideal-world
experiment. Therefore, both outputs will not match with high probability.

We can use a very similar argument to prove a statement about the protocol
proposed in [44]. We assume that the employed garbling scheme is correct
and has privacyas given in Definition 4. Because it makes no difference to our
argument, we can even assume that the employed garbling scheme from [44] uses
a programmable random oracle.

Claim 4. Executing garbled circuits to jointly compute a PRF F between a user
and a server—as proposed in [44]—is not sufficient to UC-realize FOPRF in the
NPROM.

Claim 3 and Claim 4 justify our method to achieve a UC-secure protocol
from the protocol of [44]. Loosely speaking, they say that without exploiting the
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programmability of a random oracle, one cannot realize the strong OPRF notion
of [36] that is used e.g. in OPAQUE or the PPSS scheme [35]. To overcome this,
we added two random oracles and carefully programmed them in the UC-proof.

6 Conclusion

In this work, we investigated the security of a garbled-circuit-based OPRF in the
UC-framework [16]. To realize an ideal OPRF functionality in the style of [34–36],
we augmented the construction of [44] with two hash functions, of which the
second was modeled as a programmable random oracle. The resulting protocol
is secure assuming static passive corruptions of servers and malicious users. We
implemented two prototypes of our protocol—one using the optimized garbling
scheme from EMP-Toolkit and one using the post-quantum garbling scheme
from PQ-MPC. Although both implementations use building blocks that are not
proven to be UC secure, to the best of our knowledge, our implementation is
the only presumably pq secure implementation that can be made UC secure by
plugging in UC secure building blocks. We also implemented the state-of-the-art
OPRF protocol 2HashDH by [34–36]. We compared the implementations to a
simplified implementation of the lattice-based OPRF by [2] and the isogeny-based
protocol from [32]. The experiments showed that our construction is significantly
faster than the lattice-based and isogeny-based protocol. We also found that our
construction is not as efficient as the DLog-based 2HashDH protocol. Nonetheless,
the efficiency is still in a reasonable range with a running time of around 22ms
and around 250 kB network traffic. This indicates, that garbled-circuit-based
OPRF protocols are very promising candidates for pq secure OPRFs. Finally, we
investigated the theoretical differences between definitions of OPRFs in the UC
framework. We compared the ideal functionalities in the style of [34–36] and a
functionality in the style of [14] and showed that the functionality from [34–36]
is strictly stronger. We show that a natural class of protocols cannot realize this
strong functionality in the NPROM. We further show that the OPRF protocol
from [44], cannot realize the strong functionality. The last two claims justify
our approach of augmenting the protocol from [44] by a random oracle and
programming it in the security proof.
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A Acronyms

AES Advanced Encryption Standard
aPAKE asymmetric Password Authenticated Key Exchange
CRS Common Reference String
CSIDH Commutative Supersingular Isogeny Diffie–Hellman
CSI-FiSh Commutative Supersingular Isogeny-based Fiat-Shamir

Signatures
DLog Discrete Logarithm
DSLS Decisional Shifted Legendre Symbol Problem
DOS Denial of Service
FHE Fully Homomorphic Encryption
GC Garbled Circuit
LPN Learning Parity With Noise
MPC Multi-Party Computation
NIST National Institute of Standards and Technology
NPROM Non-Programmable Random Oracle Model
om-DH One-More Diffie-Hellman
OPRF Oblivious Pseudo-Random Function
OT Oblivious Transfer
PPSS Password-Protected Secret Sharing
PPT Probabilistic Polynomial Time
PRF Pseudo-Random Function
PRP Pseudo-Random Permutation
PSI Private Set Intersection
PQ post-quantum
pq post-quantum
RLWE Ring Learning With Errors
RO Random Oracle
ROM Random Oracle Model
RSA Rivest Shamir Adleman
SIDH Supersingular Isogeny Diffie–Hellman
SSO Single Sign On
TLS Transport Layer Security
UC Universal Composability
VOPRF Verifiable Oblivious Pseudo-Random Function
WAN Wide Area Network
ZK Zero-Knowledge
1D-SIS 1-Dimensional Short Integer Solution Assumption

B Extended Preliminaries

Notation: We write λ for the security parameter. We always assume that all
algorithms take λ as an implicit parameter. We call a probabilistic Turing
machine Probabilistic Polynomial Time (PPT) if its running time is bounded by
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a polynomial in λ. By x
$← S we denote that x is chosen uniformly at random

from the set S. We write y ← A(x) to assign the output of the randomized
algorithm A on input x to the variable y. We write x ∥ y for the concatenation
of the strings x ∈ {0, 1}∗ and y ∈ {0, 1}∗. We use O(·), o(·), Θ(·), Ω(·), and ω(·)
for asymptotic notation. We say a function is negligible in λ, if it asymptotically
falls faster than the inverse of any polynomial in λ. More precisely, we call a
function f : N → R negligible if for every c ∈ N there is an N ∈ N, such that
for all n > N it holds that |f(n)| < n−c. We call f noticeable if there exists
c ∈ N, N ∈ N, such that for all n > N it holds that |f(n)| ≥ n−c. Note that
noticeable is a stronger notion than being non-negligible. We will call a protocol
presumably pq-secure if it is secure against classical adversaries and completely
relies on post-quantum assumptions such as certain lattice problems. On the
other hand, we call a protocol pq-secure if its security proof considers quantum
adversaries.

Security of Garbling Schemes [8] gave a game-based security definition, as well
as a simulation-based security definition for the first two properties.We use only
the simulation-based notions in this work.

Definition 4 (Privacy). [8, Sec. 3.4] For a simulator S, we define the advantage
of adversary A in the security experiment defined in Figure 7, as

Advprv.sim,Φ,S
G (A, λ) := 2Pr[PrvSimAG,Φ,S(λ) = 1]− 1.

A garbling scheme has privacy if for every PPT adversary A there is a simulator
S such that

Advprv.sim,Φ,S
G (A, λ) ≤ negl(λ),

for a negligible function negl(·).

Game PrvSimA
G,Φ,S(λ)

– The challenger C chooses a bit b ∈ {0, 1} uniformly at random.
– A sends a function f : {0, 1}n → {0, 1}∗ and input x ∈ {0, 1}n to C.
– If x /∈ {0, 1}n the challenger sends ⊥ to A.

Else if b = 1 the challenger sets (F, e, d)← Gb(1λ, f) and X := En(e, x).
Else the challenger calculates y := ev(f, x) and simulates (F,X, d) ←
S(1λ, y, Φ(f)).
Finally, C sends (F,X, d) to A.

– A outputs a bit b′

– The game outputs b′
?
= b.

Fig. 7: The simulation-based privacy game from [8, Fig. 5].
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B.1 Universal Composability

Often, cryptographic protocols are not used in isolation but are combined to serve
in a bigger context. However, the security of protocols is not always conserved
under composition. For example, the parallel composition of two ZK protocols
is in general not a ZK protocol [30]. Universal Composability (UC), introduced
in [16] is a notion of security that tackles this problem. Protocols that are secure
in the UC model can be composed while keeping their security as stated formally
in the composition theorem [17, Theo. 22].

The rough idea of the UC-security experiment is to compare an ideal world
with the real world, similar to a “stand-alone” simulation-based proof. In the ideal
world, we do not regard the actual protocol π but rather an idealized functionality
F. The gist is however that all interactions between parties are orchestrated by
a so-called environment machine E . The environment machine can be thought
of as the “bigger context” of the protocol execution, e.g., when the protocol is
used as a subroutine in another protocol. In contrast to a distinguisher in a
stand-alone security notion, the environment can adaptively interact with the
protocol parties. In the real world, the environment machine E interacts with the
real-world adversary A and with the real protocol parties of a protocol π. We
will denote the view of the environment on this interaction by EXECπ,A,E . In the
ideal world, the protocol parties are replaced by “Dummy-Parties”, which relay
the input from E to F and vice-versa. Additionally, the idealized functionality F
and the environment E interact with a simulator S, who plays the role of the
real-world adversary. The job of S is to simulate an execution of π for E in a way
that looks like the real-world execution. If no PPT environment can tell both
worlds apart, the protocol π UC-realizes the ideal functionality F, see [17, Def. 9].
We say a protocol π UC-emulates a protocol ϕ (π ≥ ϕ) if for all PPT adversaries
A there is a PPT simulator S, such that for all environment machines E it holds
that EXECπ,A,E

c
≈ EXECϕ,S,E . Let IDEALF denote the protocol that consists

of a machine F, the ideal functionality, and a Dummy-Party for each protocol
party of π. We say a protocol π UC-realizes a functionality F, if π UC-emulates
IDEALF , see [17, Definition 20].

Authenticated Channels In [17] authenticated communication is defined via an
ideal functionality that closely resembles the one depicted in Figure 8. Note that
Figure 8 is a bit simpler as the functionality from [17], as we do not deal with
adaptive corruptions.

Oblivious Transfer We slightly adapt an ideal functionality introduced by [18]
and used e.g. by [43]. It considers one sender and one receiver.

For the sake of clarity, we augment the original functionality from [18] with
explicit messages allowing the sender to delay executions. We stress again that
this does not give the adversary additional power but rather makes properties of
the UC framework more explicit. We describe our functionality FOT in Figure 9.
Further directly notate that the sender sends n pairs of messages and the receiver
chooses n of these messages by sending a n-bit string. One can easily realize
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this functionality with every protocol that already UC-realizes a 1-out-of-OT
by simply executing the protocol n times in parallel. The protocol yields the
output after all n sub-OTs are completed. The security follows directly from the
UC-composition theorem [17, Theo.22].

Security of OPRFs We recall the security notion defined in [36]. The security
is defined in the UC-framework. We describe the ideal functionality F∗OPRF in
Figure 11. We will write F∗OPRF to distinguish this functionality, from the slightly
simplified functionality FOPRF, which we introduce in Section 3.

The intuition of the functionality is that in each session multiple users interact
with a server. A session is indexed by an id sid. An honest server uses the same
key for the whole session sid. The user can request an output of the PRF by
interacting with the server in a subsession, identified by ssid. The user starts
the request of an output Fk(x) by sending (Eval, sid, ssid,S′, x) to F∗OPRF. S′
denotes the server from which the user wants to get the output. In other words,
the user specifies the function fk(·) from which the output should be taken, only
that the user does not know the value k but rather specifies the server that holds
k. As we assume that an honest server only holds one k for every session sid, the
ideal functionality denotes its internal function as Fsid,S(·). The function is an
initially empty table and gets lazily filled with randomly drawn values.

A server can consent to the interaction with the user by sending
(SndrCmplt, sid, ssid) to F∗OPRF. Finally, the adversary can send
(RcvCmplt, sid, ssid,U, i) to F∗OPRF to indicate that the user U can receive the
requested output. However, F∗OPRF gives the adversary the means to tamper with
the output by specifying an identity i. This i indicates from which function Fsid,i(·)
the output should be chosen. If the adversary sends (RcvCmplt, sid, ssid,U, S′),
where S′ is the server from the user’s (Eval, sid, ssid, S′, x) message, the interac-
tion yields exactly the output that the user requested. But if i ̸= S′, the request is
“detoured” and the user receives an output from a different table, namely Fsid,i(·).
The identity i does not need to correspond to an existing protocol party, but can
by any identity label, e.g. any bit string of a predefined length.

The above might give the impression that F∗OPRF undermines the security of
OPRF protocols realizing F∗OPRF. If the adversary can arbitrarily detour queries,
it could e.g. answer all queries with just one function Fsid,S(·). This problem
is solved via the ticket counter tx(·). With this counter, FOPRF keeps track of
the number of OPRF outputs that a server generates and the number of OPRF

Functionality FAUTH

– Upon invocation, with input (Send,mid,R,m) from S, send backdoor message
(Sent,mid, S,R,m) to the adversary.

– Upon receiving backdoor message (ok,mid): If not yet generated output, then
output (Sent,mid, S,R,m) to R.

Fig. 8: The ideal functionality FAUTH from [17].
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Functionality FOT

FOT proceeds as follows, interacting and running with an oblivious transfer sender
S, a receiver R, and an adversary A.

– Upon receiving a message (OT-Send, sid, (xi
0, x

i
1)

n
i=1) from S, where each

xi
0, x

i
1 ∈ {0, 1}m, record ⟨sid, (xi

0, x
i
1)

n
i=1⟩. Reveal (OT-Send, sid) to the ad-

versary. Ignore further (OT-Send, . . . ) messages from S with the same sid.
– Upon receiving a message (OT-Receive, sid, b) from R, where b ∈ {0, 1}n

record the tuple ⟨sid, b⟩ and reveal (OT-Receive, sid) to the adversary. Ignore
further (OT-Receive, . . . ) messages from R with the same sid.

– Upon receiving a message (OT-Sent, sid) from the adversary, ignore the
message if ⟨sid, (xi

0, x
i
1)

n
i=1⟩ or ⟨sid, b⟩ is not recorded; Otherwise return

(OT-Sent, sid) to S; Ignore further (OT-Sent, sid, . . . ) messages from the
adversary.

– Upon receiving a message (OT-Received, sid) from the adversary ignore
the message if ⟨sid, (xi

0, x
i
1)

n
i=1⟩ or ⟨sid, b⟩ is not recorded; Otherwise return

(OT-Received, sid, (xi
b)

n
i=1) to R; Ignore further (OT-Received, sid, . . . )

messages from the adversary.

Fig. 9: Our ideal functionality FOT.

outputs from that server that is delivered to the user by the adversary. More
precisely, every time the server consents to participate in an OPRF execution
by sending (SndrCmplt, sid, ssid,S), the counter tx(S) is incremented. If an
output from S is delivered to a user by a (RcvCmplt, sid, ssid,U,S) message
to F∗OPRF, the counter tx(S) is decremented. If the counter is zero but output is
request by a (RcvCmplt, sid, ssid,U,S) message, F∗OPRF ignores this message.

The ideal functionality F∗OPRF also allows offline evaluation of functions, by
sending (OfflineEval, sid, i, x) to F∗OPRF. This is possible in four cases:

1. If the server i is corrupted. This represents the fact that the adversary learns
the PRF key k by corrupting a server. When the adversary knows k, it can
evaluate Fk(·) at arbitrary points.

2. If the server itself wants to evaluate the function, it can do that, as it knows
its key.

3. A real-world adversary can just make up random output values. This is
reflected by the fact that the adversary can send offline evaluation requests
for identities i that are not an existing party. We call them “virtual corrupt
identities”. For virtual corrupt identities, the adversary can arbitrarily often
query output values.

4. If the server is compromised, we are in a similar situation as in the case of
corruption, in the sense that an adversary can now evaluate the PRF offline.

We also note that the ideal OPRF functionality from [35] assumes authen-
ticated channels, while the ideal functionality from [36] dispenses with them.
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Alice(x) Bob(y)

(F, e, d)← Garble(C)

(X ∥Y [0n]) := Encode(e, x ∥ 0n)

(X ∥Y [1n]) := Encode(e, x ∥ 1n)

(F,X)

OT

Y [0], Y [1] y

Y [y]

Z := Eval(F,X ∥Y )

z := Decode(d, Z)

Z

Fig. 10: Yao’s garbled circuits protocol.

C Proving Security

In order to prove that the protocol GC-OPRF Figure 5 actually UC-emulates
FOPRF Figure 3 in the {FOT,FRO,FAUTH}-hybrid model, we have to compare
the views of two protocol executions. More precisely, for every PPT adversary A
we must specify a PPT simulator Sim such that for every PPT environment E
we have:

EXECIDEALFOPRF
,Sim,E

c
≈ EXECGC-OPRF,A,E ,

where IDEALFOPRF denotes the ideal protocol execution.
As discussed in [17], we will only consider a Dummy-Adversary A. We con-

struct the simulator as in Figures 12 to 16. For the sake of readability, we split
the description of Sim into five figures. We write ⟨·⟩ for records, made by the
simulator. We denote parties with a hat, e.g. P̂, if it is clear from the context
that they are corrupted. We use ∃⟨x⟩ (or ∄⟨y⟩) to express that the simulator
goes through its records and checks if there is a matching record ⟨x⟩ (or there
is no matching record ⟨y⟩). Whenever the behavior of an ideal functionality on
the receipt of a certain message is not explicitly defined, we assume that the
functionality ignores the message.

Some Intuition on the Simulator Before we give a formal proof, we like to
give some intuition on the simulator in Figures 12 to 16. First, note that in
the formulation of the UC security experiment, the simulator Sim replaces the
adversary A. That means all messages the environment sends to A will be received
by Sim. We also assume that the real-world adversary A is a dummy adversary,
as elaborated in [16]. Nonetheless, we write in Figures 12 to 16 as if there were a
party “A”. By this we mean the messages Sim receives from E addressed to A or
messages that Sim sends to E acting as A.

As always in the UC model, the simulator answers all queries addressed to
ideal functionalities that were present in the real world. As we are working in
the {FOT,FRO,FAUTH}-hybrid model, Sim has to simulate these functionalities.
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Functionality F∗
OPRF

Public Parameters: PRF output-length l, polynomial in the security pa-
rameter λ. Conventions: For every i, x, value Fsid,i(x) is initially undefined,
and if undefined value Fsid,i(x) is referenced then F∗

OPRF assigns Fsid,i(x)
$← {0, 1}l.

Initialization:
On (Init, sid) from S, if this is the first Init message for sid, set tx = 0 and send
(Init, sid,S) to A. From now on, use tag “S” to denote the unique entity which
sent the Init message for session id sid. Ignore all subsequent Init messages for sid.

Server Compromise:
On (Compromise, sid, S) from A, mark S as Compromised. If S is corrupted, it is
marked as Compromised from the beginning. Note: Message (Compromise, sid, S)
requires permission from the environment.

Offline Evaluation:
On (OfflineEval, sid, i, x) from P ∈ {S,A}, send (OfflineEval, sid,Fsid,i(x))
to P if any of the following hold: (i) S is corrupted, (ii) P = S and i = S, (iii)
P = A and i ̸= S, (iv) P = A and S is as marked Compromised.

Evaluation:

– On (Eval, sid, ssid,S′, x) from P ∈ {U,A}, send (Eval, sid, ssid,P,S′) to
A. On prfx from A, ignore this message if prfx was used before. Else record
⟨ssid,P, x, prfx⟩ and send (Prefix, sid, ssid, prfx) to P.

– On (SndrCmplt, sid, ssid) from S, send (SndrCmplt, sid, ssid,S) to A.
On prfx′ from A, send (Prefix, sid, ssid, prfx′) to S. If there is a record
⟨ssid,P, x, prfx⟩ for P ̸= A and prfx ̸= prfx′, change it to ⟨ssid,P, x,OK⟩. Else
set tx++.

– On (RcvCmplt, sid, ssid,P, i) from A, ignore this message if there is no
record ⟨ssid,P, x, prfx⟩ or if (i = S, tx = 0 and prfx ≠ OK). Else send
(EvalOut, sid, ssid,Fsid,i(x)) to P and if (i = S and prfx ̸= OK) then set
tx−−.

Fig. 11: The ideal functionality F∗OPRF from [36].
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We note again that a random oracle is strictly speaking an ideal functionality,
too. Thus, Sim must also answer queries to the random oracles H1, and H2. We
omit the explicit notation of the simulation of FAUTH queries for the sake of
readability. In the ideal world of the UC security experiment all honest parties just
forward the input they receive from the environment E to the ideal functionality.
If they receive output from the ideal functionality, they forward this output to
E . However, the adversary can send messages on behalf of corrupted parties,
meaning the adversary gets instructed to do so by the environment.

From a high viewpoint, the simulator can be summarized as follows: For
honest servers, the simulator chooses internally a PRF key k and follows the
protocol exactly as a real server would do with key k. For an honest user, the
simulator requests a garbled circuit from the server and simulates the request of
input labels via OT. Note here, that Sim does not know the input of the user.
It can simulate the messages anyway as Sim does also act as FOT. Then Sim
receives a garbled circuit and input labels but for every input bit xi ∈ {0, 1},
Sim receives both labels Xi[0] and Xi[1], again because Sim simulates FOT. Sim
requests an output for the user from FOPRF. Now, FOPRF makes the user output
some uniformly random value, and Sim programs H2(p, y) accordingly. As we
will see, correct programming is non-trivial.

H2 must be programmed because the output of a user in the real world is
always the output of H2(p, y) for some values p and y. However, in the ideal
world, the output for honest users is generated by the ideal functionality FOPRF.
Hence, the simulator must ensure that the output generated by FOPRF and
H2(p, y) coincide for values of p and y that can occur in the execution of the
protocol. Sim can query output from FOPRF but this has to be done carefully as
FOPRF maintains a ticket counter that ensures that not more PRF values can be
received than server executions were performed. Especially, Sim must somehow
identify a server holding the key k that mapped p to y = Ck(H1(p)). We argue in
the following, why Sim has to do this.

Let’s assume Sim would always choose the same server identity i to receive its
output from. The environment would notice a difference to the real-world execu-
tion as soon as it instructs the adversary to make the user output two output values
from two different virtual corrupt identities by sending (RcvCmplt, sid, ssid,P, i)
and (RcvCmplt, sid, ssid,P, i′) in two executions with the same server input
but i ̸= i′.

One might be tempted to try the other extreme instead. What happens if the
simulator uses a completely new identity i for every new query? By that we mean
the following: Sim can query PRF output for a server identity i from FOPRF if
this i is no identity of an actual server of the session, as defined by OfflineEval
point (iii) in Figure 3. These virtual corrupt identities do not have a ticket counter.
By using sending (OfflineEval, sid, i, p) to FOPRF, the simulator receives the
entry Tsid(i, p) from FOPRF’s table. This identity i must not correspond to an
existent server in that session sid. Why can Sim not create a new such virtual
corrupt identity for every H2 query it receives? One can easily see that Sim would
need to use the same virtual corrupt identity again when simulating a protocol
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execution. = Sim has to send (RcvCmplt, sid, ssid,U, i), where i was used to
program the output of H2 for the corresponding input. But by the definition of
the ideal functionality, Sim does not learn the input of the user. Consequently,
programming of H2 must somehow depend on the identity of the server.

Our strategy for programming H2(p, y) is the following: If Sim receives a
query, it looks up the corresponding H1 query H1(p) = x. If no such query exists,
Sim can safely set H2(p, y) to a uniformly random value. If such a query exists,
Sim knows the input value x for the circuit. Now, it checks if there either was an
honest server or a corrupted server, such that y = Ck(x) holds for the key k of one
of the servers. For an honest server, Sim requests the output value from FOPRF

by sending a RcvCmplt message and for a corrupted server, Sim requests the
output value from FOPRF with an OfflineEval message.

Proof Strategy In the ideal world, the environment can control the execution by
sending messages to the parties in the following ways:

– Honest user U: The environment E sends
(Eval, sid, ssid, S, p) messages to U. User U transmits this message to FOPRF

and outputs (EvalOut, sid, ssid, ρ) to E .
– Honest server S:
• E sends (Init, sid) to S. Server S transmits this message to FOPRF who

sends (Init, sid,S) to A.
• E sends (SndrCmplt, sid, ssid) to S. Server S forwards this message

to FOPRF. The functionality FOPRF forwards this message to A. If A
approves with ok, FOPRF sends (SndrCmplted, sid, ssid) to the server.

– Dummy adversary A:
• The environment can send (Garble, sid, ssid), and
(OT-Receive, ssid, x) to A. The adversary A acts as corrupted user
Û and forwards these messages to Sim. A sends all responses it receives
to E .

• The environment can send (sid, ssid, (F,K, d)), and
(OT-Send, ssid(Xi[0], Xi[1])

n
i=1) to A. The adversary A acts as cor-

rupted server Ŝ and A forwards these messages to Sim. Again, A sends
all responses it receives to E .

• The environment can send (OT-Sent, ssid),
(OT-Received, ssid) to A. The adversary A will send these messages
to Sim, acting as the adversary.

The view of the environment E is comprised of all messages that E receives as
a reaction to one of the messages above. The following messages form the view
of the environment:

– (EvalOut, sid, ssid, ρ) from U as response to an
(Eval, sid, ssid, S, p) message.

– (SndrCmplted, sid, ssid) from S whenA approved a (SndrCmplt, sid, ssid)
message by sending ok.
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– (Garble, sid, ssid) from A when A acts as the server and receives this
message, formatted as being sent from a user via FAUTH.

– (sid, ssid, (F,K, d)) from A when A acts as a user and receives this message,
formatted as being sent from a server via FAUTH.

– (OT-Send, ssid) from A when a server sends OT-input to Sim, who acts as
FOT.

– (OT-Receive, ssid) from A when a user sends choice bits to Sim, who acts
as FOT.

– (OT-Sent, sid) from A when A acts as server and sent
(OT-Send, sid, (Xi[0], Xi[1])

n
i=1) to Sim before. Sim acts as FOT.

– (OT-Received, sid, (Xi)
n
i=1) from A when A acts as user and sent

(OT-Receive, ssid, x) to Sim before. Sim acts as FOT.
– Responses to H1(·) and H2(·, ·) queries from A.

Our goal in the following proof is to argue, why the above-described view of
the environment in the ideal world is computationally indistinguishable from the
view of the environment in the real world. We construct a simulator such that
each message in the real world, has a directly corresponding message in the ideal
world. Loosely speaking, the simulator creates messages that “look the same” as
in the real world. For instance, Sim sends a message (Garble, sid, ssid) that is
formatted exactly like a (Garble, sid, ssid) message sent by the user in the real
world. Further, Sim ensures that the messages are sent in the same circumstances,
i.e., at the same time. For example, Sim will send (Garble, sid, ssid) when
an honest user is invoked by E with (Eval, sid, ssid,S, p), as this is how the
real-world user would react. The main idea is that the view in the real world is
indistinguishable from the view in the ideal world, if each message in the real
world is indistinguishable from its corresponding message in the ideal world.

We cannot analyze the protocol with a single distinction of cases in the style of
“(1) both parties are honest, (2) only the user is corrupted, (3) only the server is
corrupted, (4) both parties are corrupted.” This is because the ideal functionality
Figure 3 – and also Figure 11 from [36] – handles multiple users interacting
with a server. Therefore, we will only consider one simulator Sim that has to
keep records of messages it gets to “dynamically” decide for each message which
situation Sim must simulate.

Formal Proof In this paragraph, we formally prove Theorem 1.

Proof. As explained above, we will argue for each message that E receives why
it is indistinguishable for E whether the message comes from a real protocol
execution or the ideal execution with the simulator.

Responses to OT messages

– (OT-Send, ssid) from Sim when a server sends OT-input to FOT. In the ideal
world, Sim acts as FOT: This message is exactly formatted as a OT-Send
message from the functionality FOT. Further, Sim behaves exactly like FOT in
sending those messages. Concretely, on a message
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(OT-Send, ssid, (Xi[0], Xi[1])
n
i=1), Sim stores the labels and informs the

adversary that the labels were sent – but not which labels – by sending
(OT-Send, ssid) to A. This is exactly the behavior of FOT, as described in
Figure 9. Additionally, Sim sends (OT-Send, ssid) messages to simulate an
honest server, see line 29 in Figure 13. However, as this is done in reaction to a
(SndrCmplt, sid, ssid, S) message from A, E expects to see this message. In
the real world, the environment is only informed of an honest server sending a
(OT-Send, ssid, (Xi[0], Xi[1])

n
i=1) message to FOT by the (OT-Send, ssid)

message. Therefore, E cannot distinguish whether this message comes from
the real- or the ideal execution.

– (OT-Receive, ssid) from Sim when a user sends the choice bits to FOT

(simulated by Sim):
As above, we see that Sim behaves exactly like the original FOT. That means,
on a message (OT-Receive, ssid, x), Sim stores the choice bits x and informs
the adversary that the choice bits were received, but not which bits. Therefore,
E cannot distinguish whether this message comes from the real or the ideal
execution.

– (OT-Sent, sid) from Sim when a corrupted server sent
(OT-Send, sid, (Xi[0], Xi[1])

n
i=1) to FOT before:

Again, Sim behaves like the real FOT when creating those messages. Namely,
upon receiving a message (OT-Sent, sid) from the adversary, Sim ignores the
message if
⟨sid, (Xi[0], Xi[1])

n
i=1⟩ or ⟨sid, x⟩ is not recorded; Otherwise Sim sends

(OT-Sent, sid) to Ŝ. Therefore, E cannot distinguish whether this message
comes from the real or the ideal execution.

– (OT-Received, sid, (Xi)
n
i=1) from Sim when a corrupted user sent

(OT-Receive, ssid, x) to FOT before:
These are the only messages on which Sim behaves not exactly as the real
FOT. The messages are received by Sim when the environment “allows the
delivery” of the OT-messages to the OT-receiver. If Sim recorded choice bits
x ̸= ⊥, it means that a corrupted user sent (OT-Receive, ssid, x) before
and Sim answers the query like FOT would do. In particular, those queries
do not stem from the simulation of a protocol run with an honest user.
Sim does behave differently than FOT in the case when there is a OT-Received
message (OT-Received, ssid), and the recorded choice bits are x = ⊥, see
line 71 in Figure 15. The OT-Received message indicates that the input
labels were sent via OT. The fact that x = ⊥ is recorded for the choice bits
means that Sim simulates a protocol execution for an honest user. If further
a record ⟨sid, ssid, (F,K, d)⟩ or ⟨sid, ssid, (F,K, d), X[0n], X[1n]⟩ exists with
the same ssid, all information for one OPRF execution was exchanged be-
tween server and user. In the real protocol, a user would evaluate the garbled
circuit and output the result as soon as it received all necessary input labels
via FOT. Thus, the simulator must also produce an output for honest users.
The simulator retrieves the server identity S connected to sid. Sim sends
(RcvCmplt, sid, ssid,U,S) to FOPRF. The functionality FOPRF will ignore
this message in any of the three following cases:
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1. There is no record ⟨ssid,S,P, p⟩.
2. i = S but tx(sid) = 0.
3. S is honest but i ̸= S.

The ignore condition of Item 1 cannot occur, as Sim found a record
⟨sid, ssid, (F,K, d)⟩. Sim does only create this record if a corresponding
⟨Garble, sid, ssid⟩ record was found. That record in turn is only created
when an
(Eval, sid, ssid,U, S) message was received from FOPRF. We argue in Lemma 1
why the condition of Item 2 occurs at most with negligible probability. The
third condition in Item 3 can indeed occur. However, as we assume passive
corruption and authenticated channels, a real-world user would also ignore a
message (sid, ssid, (F,K, d)) that is not from the designated server.
If the RcvCmplt message is not ignored in line 74 in Figure 15, the ideal
functionality will choose a random value ρ according to its internal random
function associated to S as output for U and U will output ρ. We will examine
the distribution of ρ in the paragraph “Honest User Output” on Page 37.

Responses to Protocol Messages

– (Garble, sid, ssid) from A when a server receives this message, formatted
as being sent from a user via FAUTH:
In the ideal world, the message (Garble, sid, ssid) is sent by Sim as a reaction
to an (Eval, sid, ssid,U, S) message from FOPRF, because a real user would
also start a protocol execution by requesting a garbled circuit from S. The
message itself contains only the session- and subsession id, it is identical
in both executions. Thus, we see that E ’s view on the (Garble, sid, ssid)
message in the real world is is indistinguishable from this message created by
Sim.

– (sid, ssid, (F,K, d)) from A when a user receives this message, formatted as
being sent from a server via FAUTH:
In the ideal world, this message is created by Sim, when Sim received a
(SndrCmplt, sid, ssid) message. If the user of the subsession is corrupted,
Sim also expects a (Garble, sid, ssid) message from the user, as in a real exe-
cution, the server only starts garbling a circuit when it received both messages.
In a subession with an honest user, Sim can simulate a (Garble, sid, ssid)
message itself. The garbled circuit F and the decoding information d are cal-
culated in the same way in both worlds, using Gb(1λ, C). The only difference
is the encoded key K. In the ideal world, K is an encoding of a random value
k, which is chosen for the honest server S by Sim. In the real world, K is
an encoding of the PRF-key k of that server. However, in both cases, k is a
uniformly random value in {0, 1}m and in both experiments, k is encoded
via Enc. Therefore, the two worlds are distributed identically.

Responses of the Random Oracles:

– H1(p) queries:
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In the real world, a random oracle chooses a uniformly random output for
every fresh query and stores this random value as “hash” of the input. On
further queries, that stored value is returned. The simulator answers the calls
to H1 exactly, as a real random oracle would do, with uniformly random
values x ∈ {0, 1}n.

– H2(p, y) queries:
In the following, we will only argue why the simulated H2 is indistinguishable
from the original H2 in the real execution. As we’ve seen at the beginning
of Appendix C, the random oracle H2 must also be compared to the user’s
output. We defer this discussion to the next paragraph. We distinguish the
following cases:

Case 1: There is no record ⟨H1, p, x⟩ found: The random oracle is programmed
with a uniformly random value. In this case, Sim behaves like the real
random oracle and sets the output to some random value.

Case 2: Records ⟨H1, p, x⟩ and ⟨S, sid, ssid, (F,K, d),
X[0n], X[1n]⟩ exist, such that De(d,Ev(F,X[x] ∥K)) = y: In that case,
the value y was calculated with the garbled circuit of an honest server,
with overwhelming probability. That means the simulator can query
FOPRF for the correct output value by choosing an unused subsession id
ssid′ and calling (Eval, sid, ssid′, S, p) and (RcvCmplt, sid, ssid′,A, S).
If the ideal functionality does not answer, Sim aborts. Remember that
FOPRF does only ignore (RcvCmplt, sid, ssid,P, i) messages in one of
the following three cases:
(a) There is no record ⟨ssid,S,P, p⟩.
(b) i = S but tx(sid) = 0.
(c) S is honest but i ̸= S.
We prove in Lemma 1 that the condition in Item 2 happens at most
with negligible probability. Further, the first and the third abort con-
dition Item 1 and Item 3 can not occur in this case, as Sim itself
sends the message (Eval, sid, ssid′,S, p) to FOPRF just before sending
(RcvCmplt, sid, ssid′,A,S).
H2(p, y) is then programmed to the output ρ of FOPRF. This is, by the
definition of FOPRF, a uniformly random value.

Case 3: There is a record ⟨H1, p, x⟩ but no record
⟨S, sid, ssid, (F,K, d), X[0n], X[1n]⟩ exists, such that
De(d,Ev(F,X[x] ∥K)) = y: In that case, Sim checks the keys of all
corrupted parties kŜ. Note that in the ideal world, Sim knows those keys
as it’s Sim who delivers them (i.e., the whole internal state of the servers)
to E on corruption. If there is such a corrupted server with key kS such
that CkS

(x) = y, the simulator can use its ability to offline evaluate PRFs
from corrupted parties. Thus, Sim will program H2(p, y) to the output
of the offline evaluation. This will, again, be a uniformly random value
ρ ∈ {0, 1}l. If no such key exists H2(p, y) is set to a uniformly random
value, as from a real random oracle.

In case H2(p, y) is already defined, Sim outputs that value again. This is the
normal behavior of a random oracle.
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Honest Serve Output (SndrCmplted, sid, ssid) from S at the end of a server’s ex-
ecution: In the real-world execution, the server outputs (SndrCmplted, sid, ssid)
after successfully completing the OT to send the labels to the user. The simulator
sends ok in line 58 of Figure 15 which is a reaction to (OT-Sent, ssid) message.
Thus, the honest server will also produce this output in the ideal-world after
successfully performing the proof.

Honest User Output (EvalOut, sid, ssid, ρ) from U as response to a message
(Eval, sid, ssid, S, p):

In the real world, ρ is calculated as

ρ = H2(p,De(d,Ev(F,X[x] ∥K))),

where (F,K, d) was generated by the server and X are the labels received via OT
for x = H1(p). In the ideal world, ρ is chosen uniformly at random by FOPRF if
a fresh (Eval, sid, ssid, S, p) message was sent. Remember that FOPRF keeps an
internal table Tsid(i, ·) for possible server IDs i. If an honest user with input p
interacts with S, the functionality FOPRF will send ρ = Tsid(S, p) as output for
the honest user. The simulator must produce the same output ρ for H2(p, y) if
y = Ck(H1(p)) holds for S’s key k. We, therefore, have to compare the output
of H2 with the outputs of FOPRF. We distinguish the following cases in the
simulation of H2:

Case 1: There is no record ⟨H1, p, x⟩ found: Sim only needs to program the random
oracle, if p and y do occur in a protocol execution. More precisely, if y =
Ck(H1(p)) holds for some server’s key k. That is because in this case FOPRF

can eventually output a value ρ as the output of an honest user with input p
interacting with a server with key k. In other words, if there is a server with
key k such that k “maps” H1(p) to y, then there can be a protocol execution
that leads to a query H2(p, y) where Sim must program H2. We will call a
query (p, y) relevant if there is a server with key k, such that y = Ck(H1(p)).
In the following, we bound the probability for the event that (p, y) becomes
relevant, when H1(p) is not determined yet.
Let t ∈ N be the number of servers in the protocol execution. Let k1, . . . , kt be
the keys used by the servers and let n ∈ Ω(λ) be the output length of C. We
assumed in the beginning that Cki

(·) is a permutation for every i ∈ {1, . . . , t}.
Thus, if we choose some uniformly random input x ∈ {0, 1}n, we get that
Cki

(x) ∈ {0, 1}n is uniformly random. If H1(p) is not queried yet, we have
for every i ∈ {1, . . . , t} and every y ∈ {0, 1}n:

Pr[Cki
(H1(p)) = y] ≤ 1

2n
, (1)

where the probability is taken over the random output of H1. This follows
from the fact that Cki

(·) is a permutation.
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We have for every tuple (p, y) ∈ {0, 1}∗×{0, 1}n where H1(p) was not queried
yet:

Pr[(p, y) becomes relevant] = Pr

[
t∨

i=1

(Cki
(H1(p)) = y)

]

≤
t∑

i=1

Pr[Cki
(H1(p)) = y]

= tPr[Ck1(H1(p)) = y]

Eq.2
≤ t

2n
,

(2)

where the probability is taken over the randomness of H1(p). As t is polyno-
mial in λ and we assume n ∈ Ω(λ), a tuple (p, y) becomes relevant at most
with negligible probability if H1(p) was not queried yet. Thus, Sim can assign
a uniformly random value to H2(p, y).

Case 2: Records ⟨H1, p, x⟩ and ⟨S, sid, ssid, (F,K, d), X[0n], X[1n]⟩ exist, such that
De(d,Ev(F,X[x] ∥K)) = y:
In this case, the value x is the output of the random oracle H1 on input p. The
tuple (p, y) is relevant because the key of an honest server produces the output
y, when the input x is provided to the circuit. Sim knows to which server
the key belongs, as the record ⟨S, sid, ssid, (F,K, d), X[0n], X[1n]⟩ explicitly
contains the server id S. The simulator Sim sends (Eval, sid, ssid′,S, p) to
FOPRF for a new subsession id ssid′. That means, Sim initiates a new protocol
execution and requests itself the output value ρ = Tsid(S, p) from FOPRF.
Next, Sim can safely send the (RcvCmplt, sid, ssid′,A, S) message, without
decreasing the ticket counter of S below 0. Intuitively, this is because the key
of an honest server and the input labels of an honest user are hidden from E .
We prove that in Lemma 1. The random oracle H2(p, y) is programmed to
the answer ρ of FOPRF. The programming ensures that E will get the same
output ρ = H2(p, y) when invoking an execution of the protocol between a
honest user with input p and the honest server that generated (F,K, d).

Case 3: There is a record ⟨H1, p, x⟩ but no record
⟨S, sid, ssid, (F,K, d), X[0n], X[1n]⟩ exists, such that
De(d,Ev(F,X[x] ∥K)) = y:
In that case, the value x is the output of the random oracle H1 on input p,
but no honest server key maps x to y = Ck(x). Thus, Sim checks the keys of
all corrupted server kŜ. If one of the keys kŜ is such that CkŜ

(x) = y holds,
Sim will use its ability to offline evaluate corrupted server’s tables Tsid(Ŝ, ·).
The simulator Sim sends (OfflineEval, sid, Ŝ, p) to FOPRF and receives
the answer (OfflineEval, sid, ρ) from FOPRF. Note, that Sim will always
receive an answer in this case, as Ŝ is the identity of a corrupted server.
Sim programs H2(p, y) to the output ρ of the offline evaluation. E will get
the same ρ as output from the execution of the protocol between a user with
input p and the corrupted server with key kŜ.
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If there are multiple such keys, i.e., the condition in line 101 of Figure 16
is true, Sim aborts. This happens at most with negligible probability, as we
prove in Lemma 2.
If no such key exists H2(p, y) is set to a uniformly random value, as in this
case, y does not correspond to some protocol execution, i.e., (p, y) is not
relevant. □

Lemma 1. Let the garbling scheme G = (Gb,En,De,Ev, ev) have privacy, as de-
fined in Definition 4. When interacting with the simulator in Figures 12 to 16, for
each server S the probability that a
(RcvCmplt, sid, ssid,P,S) message for P ∈ {U,A} is sent when the ideal func-
tionality’s ticket counter tx(sid) is 0, is negligible. That means, only with negligible
probability FOPRF ignores a RcvCmplt message because the ticket counter is 0.

Proof. The ticket counter tx(sid) is only increased by
(SndrCmplt, sid, ssid) messages from S to FOPRF, i.e., by invocations of the
server by E . The counter is decreased by
(RcvCmplt, sid, ssid,P,S) messages for P ∈ {U,A} from Sim to FOPRF. The
simulator from Figures 12 to 16 sends (RcvCmplt, sid, ssid,P,S) messages in
two cases. We will regard them separately:

Case 1: Sim received a query H2(p, y) and has records ⟨H1, p, x⟩ and
⟨S, sid, ssid, (F,K, d), X[0], X[1]⟩ such that
De(d,Ev(F,X[x] ∥K)) = y, i.e., the condition in line 85 in Figure 16 is
true:

As Sim found the record ⟨S, sid, ssid, (F,K, d), X[0n], X[1n]⟩, we can be sure
that a (SndrCmplt, sid, ssid) message was sent by E to Sim. This means the
counter tx(sid) was increased at least once before the circuit was garbled. This
holds, because Sim does only store the record
⟨S, sid, ssid, (F,K, d), X[0n], X[1n]⟩ when it received a
(SndrCmplt, sid, ssid) message from FOPRF.
Next, we know that De(d,Ev(F,X[x] ∥K)) = y holds. If that holds, Sim can
safely assume that the server S that created (F,K, d) is the server for which
Sim must query an OPRF output ρ = Tsid(S, x) value from FOPRF. We argue
in Lemma 2 that another key k′ ̸= k could lead to the same result y with at
most negligible probability.
The (RcvCmplt, sid, ssid,U, S) messages in line 74 of Figure 15 are only sent
to produce an output of honest users. If the user is corrupted, that implies
that there cannot be a message (RcvCmplt, sid, ssid,U, S) produced by Sim
in response to an (OT-Received, ssid) message, in line 74 of Figure 15.
If the user is honest, we show in Lemma 3 that the situation we currently
argue about, i.e., Sim received a query H2(p, y) and has records ⟨H1, p, x⟩ and
⟨S, sid, ssid, (F,K, d), X[0n], X[1n]⟩ such that
De(d,Ev(F,X[x] ∥K)) = y, happens at most with negligible probability.
In conclusion, sending (RcvCmplt, sid, ssid′,A, S) in line 89 of Figure 16 as a
consequence of a H2(p, y) query will decrease the ideal functionality’s counter
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tx(sid) by one. Another (RcvCmplt, sid, ssid,U, S) for the same S is sent in
line 74 of Figure 15 at most with negligible probability. Querying the same
tuple H2(p, y) again will not result in a second (RcvCmplt, sid, ssid′,A, S)
message in line 89 of Figure 16, as the output of H2(p, y) is already defined.
Thus, the counter is only decreased by one if it was increased at least once
before with a (SndrCmplt, sid, ssid) message to FOPRF.

Case 2: Sim received (OT-Received, ssid) and a garbling (F,K, d) for a subsession
ssid, where the recorded OT-request x is ̸= ⊥, i.e., the condition in line
71–73 of Figure 15 is true:
We know that the user already received a garbling (F,K, d), as either the
clause in line 72 or the clause in line 73 of Figure 15 is true. We assume
passive adversaries, which implies that a (SndrCmplt, sid, ssid) message was
already sent to FOPRF. Else, the server would not have created the garbling
(F,K, d). This means, the counter tx(sid) is only decreased by one with a
(RcvCmplt, sid, ssid,U,S) message in line 74 of Figure 15 if it is increased
at least once before by a message (SndrCmplt, sid, ssid) to FOPRF.
We argue why there cannot be another
(RcvCmplt, sid, ssid,P,S) message with P ∈ {U,A} for the same sid, ssid
and label S. There cannot be another (RcvCmplt, sid, ssid,U,S) message
sent in line 74 of Figure 15 for the same subsession ssid. This holds be-
cause we argue about the case where Sim simulates the behavior of an
honest user. Sim only sends (RcvCmplt, sid, ssid,U, S) once, at the moment
when all n input labels are received by the user, i.e., when the condition
in lines 71–73 of Figure 15 is true. If Sim receives further labels for the
same ssid it will not trigger a second (RcvCmplt, sid, ssid,U,S) message
for this ssid. Remember that there are only two situations in which Sim
sends (RcvCmplt, sid, ssid,P,S) with P ∈ {U,A}. The first one is the sit-
uation where the message (OT-Received, ssid) was received. This is the
situation we currently reason about. The second one is when an H2(p, y) is
received and it turns out that the corresponding key k∗ belongs to an honest
server. We argue why the second situation can happen at most with negligible
probability. The recorded OT-request x is ̸= ⊥. Thus, the corresponding
(OT-Receive, ssid) message was simulated by Sim for an honest user. But
the (RcvCmplt, sid, ssid′,A,S) messages in line 89 of Figure 16 are only
sent if the key that “maps” H1(p) to y belongs to an honest server. Again,
it follows from Lemma 3 that the (RcvCmplt, sid, ssid′,A,S) messages in
line 89 of Figure 16 is sent at most with negligible probability.
In conclusion, the counter tx(sid) is only decreased by a
(RcvCmplt, sid, ssid,U, S) message sent in line line 74 of Figure 15 if there
was a corresponding
(SndrCmplt, sid, ssid) message to FOPRF before. The message
(RcvCmplt, sid, ssid,U,S) is never sent twice for the same ssid and there
cannot be a corresponding
(RcvCmplt, sid, ssid′,A,S) message in line 89 of Figure 16 for the same S
because of Lemma 3. □
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Lemma 2. For m,n, l ∈ Ω(λ) let the function F : {0, 1}m ×{0, 1}n → {0, 1}l be
a PRF. Let t ∈ N be polynomial in λ. For every fixed x ∈ {0, 1}n, and uniformly
random and independently drawn keys k1, . . . , kt ∈ {0, 1}m, there are, at most
with negligible probability in λ, indices i, j ∈ {1, . . . , t} with i ̸= j such that
Fki

(x) = Fkj
(x). This means, the simulator can assume in line 85 of Figure 16

that no other server has a key that maps the input H1(p) to the output y.

Proof. We start with the simpler case where the first index is i = 1. In other
words, we bound the probability that there is a key in k2, . . . , kt, such that
Fk1

(x) = Fkj
(x), for j ∈ {2, . . . , t}. For x ∈ {0, 1}n, we consider the following

sequence of hybrid experiments: In the first experiment E1, uniformly random
keys k2, . . . , kt ∈ {0, 1}m are chosen. The experiment outputs 1 iff there is one
j ∈ {2, . . . , t} such that Fk1(x) = Fkj (x). E2 is defined as above, except that the
second value Fk2(x) is replaced by a uniformly random value y2 ∈ {0, 1}l. Now,
for every r ∈ {3, . . . t}, we define the experiments Er as follows: The experiment
chooses uniformly random values y2, . . . , yr ∈ {0, 1}l and uniformly random keys
kr+1, . . . , kt ∈ {0, 1}m. The experiment outputs 1 iff Fk1

(x) = yj for j ∈ {2, . . . , r}
or Fk1

(x) = Fkj
(x) for j ∈ {r + 1, . . . , t}. Finally, Et is the experiment, where

all values y2, . . . , yt are uniformly random. We get by a union-bound that Et

outputs 1 with probability

Pr[Et = 1] = Pr

 t∨
j=2

(yj = Fk1
(x))

 ≤ (t− 1)

2l
, (3)

where the probability is taken over the random choices of y2, . . . , yt. Note, that
Fk1

(x) is constant here. Assume, by way of contradiction, that the probability that
the experiment E1 outputs 1 with a noticeable probability. Then there is an index
N ∈ {1, . . . , t − 1} such that the difference ∆ := |Pr[EN = 1]− Pr[EN+1 = 1]|
is noticeable. We construct a distinguisher D for the PRF security experiment,
see Definition 1. D proceeds as the experiment EN but instead of using kN to
calculate FkN

(x), the distinguisher D queries x from its PRF oracle and receives
an output y∗. If the oracle answers with a PRF output y∗, the output of D is
exactly distributed as in EN . If the oracle answers with a truly random output,
the output of D is distributed as in EN+1. Thus, by our assumption, D has a
noticeable advantage ∆ in the PRF experiment, which is a contradiction to F
being a PRF. This concludes the hybrid argument.

In Equation (3), we bound the probability that there is another key whose
output collides with k1. With a completely analogous reduction, we get a similar
inequality for every k1, . . . , kt. Hence, we have for all x ∈ {0, 1}n that the
probability that there are i, j ∈ {1, . . . , t} with i ̸= j such that Fki

(x) = Fkj
(x) is

Pr

 t∨
i=1

 t∨
j=1;j ̸=i

Fki(x) = Fkj (x)

 ≤ t(t− 1)

2l
, (4)

which is negligible because in our case as l ∈ Ω(λ). □
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Lemma 3. Let the garbling scheme G = (Gb,En,De,Ev, ev) have privacy, as
defined in Definition 4. Let C be the boolean circuit of a PRF, as defined in
Definition 1. Suppose the environment E initiates an OPRF execution between
an honest server and an honest user with input p. The environment E can
at most with negligible probability send a request H2(p, y) ∈ {0, 1}n such that
Ck(H1(p)) = y, where k ∈ {0, 1}m is the key of the honest server.

Proof. Without loss of generality, we can assume that E requested x = H1(p) for
the user input p ∈ {0, 1}∗. Further, we assume that E received a garbled circuit,
an encoded key , and decoding information (F,K, d), that were created by Sim
in simulating an honest server. We know, E received no labels for the user input
x, as Sim simulated the OT for an honest user.

Assume, by way of contradiction, that E calculates an output y ∈ {0, 1}n
such that
De(d,Ev(F,X[x] ∥K)) = y with noticeable probability P . First, we construct an
adversary B that plays the privacy experiment as in Figure 7 and communicates
with E as if B was the simulator. As we assume that the garbling scheme
has privacy, we will get the existence of a simulator SimPRF for the privacy
experiment. We will use this simulator SimPRF and the adversary B to construct
a second adversary BPRF that will have a noticeable success probability in
distinguishing the PRF C from a truly random function, which is a contradiction
to our assumption that C satisfies Definition 1 of a PRF.
B plays the UC-security experiment with E . Let t ∈ N be the number of

subsessions that E invokes between an honest server and an honest user. The
adversary B initially chooses an index i∗ ∈ {1, . . . , t} uniformly at random. B
behaves like our normal simulator from Figures 12 to 16, except when E initiates a
subsession between an honest server and an honest user. If that session is the i∗th
of those sessions, B behaves as follows: When B receives an (Eval, sid, ssid,U, S)
message and a (SndrCmplt, sid, ssid, S) message from FOPRF, B must simulate
the honest server. It chooses a uniformly random key k ∈ {0, 1}m and a uniformly
random value x′ ∈ {0, 1}n. The second value x′ can be seen as a “mock” input to
the privacy challenger Cprivacy. Note that x′ and the actual hash value x = H1(p)
are chosen independently. B answers queries to H1(p) as usual by choosing
x ∈ {0, 1}n uniformly at random and storing ⟨H1, p, x⟩. The adversary B sends
(x′, k, C) to Cprivacy. The privacy challenger chooses b ∈ {0, 1} uniformly at
random. If b = 1, it calculates (F, e, d)← Gb(1λ, C) and (X̃,K) = En(e, x′ ∥ k). If
b = 0, it calculates y′ = ev(C, x′ ∥ k) = Ck(x′). Next, Cprivacy runs the simulator
SimPRF on input y′. The simulator SimPRF outputs (F, X̃,K, d). In both cases
b = 1 and b = 0, the challenger Cprivacy sends (F, X̃,K, d) to B. Now, B uses this
garbled circuit to simulate the honest server. That means, B sends (F,K, d) to
E , formatted as if U sent it to S via FAUTH. Note that X̃ is not sent to E as our
actual OPRF simulator from Figures 12 to 16 would also not do that. Finally, B
checks for ever H2 query (p, y∗) from E , if y∗ = Ck(H1(p)) holds. Only if that is
the case, B outputs 1, else it outputs 0.

In the case where the challenger Cprivacy chose b = 1, the view of E is
identically distributed as in a normal OPRF execution with our simulator Sim.
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That holds, because k ∈ {0, 1}m is also chosen uniformly at random and F and
d are also calculated as (F, e, d) ← Gb(1λ, C). The calculation of those values
is completely independent of the value x′. The encoded key is calculated as
(X̃,K) = En(e, x′ ∥ k), but the value of K does only depend on e and not on
x′. With probability 1/t, the adversary B chooses the right index i∗ of the
execution, where E succeeds in calculating y∗ such that y∗ = Ck(H1(p)) holds.
By our assumption, this means that B outputs 1 with probability P/t, which
is noticeable. Now, the privacy of the garbling scheme guarantees us that a
simulator SimPRF exists that makes B output 1 with noticeable probability P ′

in the case b = 0. We now show in a second reduction that we can build an
adversary BPRF that uses SimPRF and E as subroutines and that distinguishes
between a PRF and a truly random function with noticeable probability.

Like B above, the adversary BPRF plays the UC-security experiment with
E . The adversary BPRF chooses an index i∗ ∈ {1, . . . , t} uniformly at random,
where t ∈ N is the number of subsession of honest users with honest servers. For
the i∗th subsession, when BPRF receives an (Eval, sid, ssid,U, S) message and a
(SndrCmplt, sid, ssid, S) message from FOPRF, the adversary BPRF must simu-
late the honest server. BPRF chooses a uniformly random value x̂ ∈ {0, 1}n and
sends x̂ to to PRF challenger CPRF. The challenger CPRF chooses a bit b′ ∈ {0, 1}
uniformly at random. If b′ = 1, the challenger calculates ŷ = Ck′(x̂), for some
uniformly random k′ ∈ {0, 1}m. If b′ = 0, the challenger CPRF sets ŷ = RF(x̂)
where RF ∈ {f : {0, 1}n → {0, 1}n} is chosen uniformly at random. CPRF sends ŷ
to BPRF. The adversary BPRF calls SimPRF on input ŷ and receives (F, X̃,K, d)
as output. BPRF simulates a message to E as if the honest server sent (F,K, d)
to the honest user via FAUTH. The environment E answers with a value ȳ. Now,
BPRF checks for every H2 query (p, ȳ) if ȳ = Ck(H1(p)) holds. Only if that is
true, BPRF outputs 1, else it outputs 0.

Suppose that BPRF chose the correct index i∗, i.e., the subsession in which E
is successful in sending the query (p, ȳ). That happens with probability 1/t. In
case b′ = 1, the view of SimPRF is exactly distributed as in the privacy experiment
with B above. By our assumption on SimPRF, the environment E has noticeable
probability P ′ to send a query (p, ȳ) such that ȳ = Ck(H1(p)). That means, the
overall success probability of BPRF, in this case, is P ′/t, which is noticeable. In
case b′ = 0, the value ŷ ∈ {0, 1}n is uniformly random. That means in particular
that SimPRF’s output (F, X̃,K, d) is stochastically independent of Ck(H1(p)). In
that case, the input (F,K, d) gives E information-theoretically no advantage in
guessing Ck(H1(p)). Consequently, E outputs (p, ȳ) such that ȳ = Ck(H1(p)) at
most with probability 2−n. This is a contradiction to the PRF probability, as
BPRF outputs 1 with noticeable probability in the case b′ = 1. In conclusion, no
such simulator SimPRF can exist, which is a contradiction to the assumed privacy
of the garbling scheme. Thus, the assumed environment E cannot exist. □

D Omitted Proofs from Section 5

In the following, we give a proof for Claim 1.
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Initialization

1 : for all corrupted servers Ŝ with key kŜ :

2 : record ⟨kŜ , Ŝ⟩

On (Init, sid, S) from FOPRF

3 : If this is the first (Init,S, sid) message from FOPRF

4 : k
$← {0, 1}m; record ⟨S, sid, k⟩

On (Eval, sid, ssid,U, S) from FOPRF

5 : // simulate sending (Garble, sid, ssid) on behalf of U to S via FAUTH

6 : send (Garble, sid, ssid) to S on behalf of U.
7 : record ⟨Garble, sid, ssid⟩
8 : if U is honest and ∃⟨SndrCmplt, sid, ssid⟩ :
9 : goto label SimulateGarbling

Fig. 12: The simulator Sim part I. Initialization and simulation of receiving a
Eval message.

On (SndrCmplt, sid, ssid, S) from FOPRF

12 : if U is corrupted and ∄⟨receivedGarble, sid, ssid⟩ :
13 : record ⟨SndrCmplt, sid, ssid⟩
14 : elseif U is honest and ∄⟨Garble, sid, ssid⟩ :
15 : record ⟨SndrCmplt, sid, ssid⟩
16 : else

17 : SimulateGarbling :

18 : // simulate receiving (Garble, sid, ssid) from U via FAUTH

19 : send (Garble, sid, ssid) to A on behalf of U.
20 : search for recorded tuple⟨S, sid, k⟩
21 : if ∄⟨S, sid, k⟩ :
22 : k

$← {0, 1}m; record ⟨S, sid, k⟩

23 : (F, e, d)← Gb(1λ, C)
24 : (X[0n] ∥K) := En(e, 0n ∥K); (X[1n] ∥K) := En(e, 1n ∥K)

25 : send (sid, ssid, (F,K, d)) to Û on behalf of S
26 : record ⟨S, sid, ssid, (F,K, d), X[0n], X[1n]⟩
27 : // simulate sending labels X[0], X[1] via FOT.
28 : record ⟨ssid, (Xi[0], Xi[1])

n
i=1⟩

29 : send (OT-Send, ssid) to A

Fig. 13: The simulator Sim part II. Simulation of receiving a SndrCmplt message.
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On (Garble, sid, ssid) from A on behalf of Û to S

35 : if ∄⟨SndrCmplt, sid, ssid⟩ :
36 : record ⟨receivedGarble, sid, ssid⟩
37 : else

38 : goto label SimulateGarbling

On (sid, ssid, (F,K, d)) from A on behalf of Ŝ to U

39 : if ∄⟨Garble, sid, ssid⟩ :
40 : ignore this message
41 : record ⟨sid, ssid, (F,K, d)⟩
42 : // simulator requesting OT labels
43 : send (OT-Receive, ssid) to A
44 : record ⟨ssid,⊥⟩

On a query p to H1(·)

49 : if ∃⟨H1, p, x⟩ :
50 : return x

51 : else

52 : x
$← {0, 1}n

53 : record ⟨H1, p, x⟩
54 : return x

Fig. 14: The simulator Sim part III. Simulation of protocol messages and the first
random oracle H1.
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On (OT-Send, ssid, (Xi[0], Xi[1])
n
i=1) from A to FOT on behalf of Ŝ

55 : record ⟨Ŝ, ssid, (Xi[0], Xi[1])
n
i=1⟩

56 : send (OT-Send, ssid) to A.
57 : ignore further (OT-Send, ssid, . . . ) messages

On (OT-Sent, ssid) from A to FOT

58 : if S is honest, send ok to FOPRF

59 : elseif ∄⟨Ŝ, ssid, (Xi[0], Xi[1])
n
i=1⟩ :

60 : ignore this message
61 : else

62 : send (OT-Sent, ssid) to Ŝ

63 : ignore further (OT-Sent, ssid) messages

On (OT-Receive, ssid, x) from A to FOT on behalf of Û

63 : record ⟨ssid, x⟩
64 : send (OT-Receive, ssid) to A
65 : ignore further (OT-Receive, ssid) messages

On (OT-Received, ssid) from A to FOT

66 : if ∄⟨S, ssid, (Xi[0], Xi[1])
n
i=1⟩ or ∄⟨ssid, x⟩ :

67 : ignore this message
68 : elseif x ̸= ⊥

69 : send (OT-Received, ssid, (Xi[xi])
n
i=1) to Û

70 : else

71 : if (∃⟨sid, ssid, (F,K, d)⟩
72 : or ∃⟨S, sid, ssid, (F,K, d), X[0n], X[1n]⟩) :
73 : send (RcvCmplt, sid, ssid,U, S) to FOPRF

74 :

Fig. 15: The simulator Sim part IV. Simulation of FOT.
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On a new query (p, y) to H2(·, ·)

77 : if ∃⟨H2, p, y, ρ⟩ :
78 : return ρ

79 : else

80 : if ∄⟨H1, p, x = H1(p)⟩ :

81 : ρ
$← {0, 1}l and record ⟨H2, p, y, ρ⟩

82 : return ρ

83 : else

84 : // check all simulated honest server S:
85 : if ∃⟨S, sid, ssid, (F,K, d), X[0n], X[1n]⟩, s.t. De(d,Ev(F,X[x] ∥K)) = y :

86 : // De(d,Ev(F,X[x] ∥K)) means Ck(x) for the garbled k

87 : choose a new ssid′

88 : send (Eval, sid, ssid′, S, p) to FOPRF

89 : send (RcvCmplt, sid, ssid′,A, S) to FOPRF

90 : if FOPRF does not answer :
91 : output fail and abort

92 : else

93 : receive (EvalOut, sid, ssid′, ρ) from FOPRF

94 : record ⟨H2, p, y, ρ⟩
95 : return ρ

96 : else

97 : // check all corrupt server Ŝ with key kŜ :

98 : if ∄⟨kŜ , Ŝ⟩ s.t. Ck
Ŝ
(x) = y :

99 : ρ
$← {0, 1}l and record ⟨H2, p, y, ρ⟩

100 : return ρ

101 : elseif there are multiple kŜ : Ck
Ŝ
(x) = y :

102 : output fail and abort

103 : else

104 : retrieve ⟨kŜ , Ŝ⟩

105 : send (OfflineEval, sid, Ŝ, p) to FOPRF

106 : receive (OfflineEval, sid, ρ) from FOPRF

107 : record ⟨H2, p, y, ρ⟩
108 : return ρ

Fig. 16: The simulator Sim part V. Simulation of the second random oracle H2.
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Proof. A simulator for this works straightforwardly. The simulator just relays all
messages to FF

OPRF. When it receives a Compromise message, it also relays this
message to FF

OPRF and receives the key k, chosen by the functionality. With this,
the simulator can answer all OfflineEval queries consistently by computing
Fk(p) himself. The environment never sees k. However, by the definition of FF

OPRF

the key k is chosen uniformly at random. Thus, if the environment can distinguish
the “real-world” experiment with FOPRF and an adversary from the “ideal-world”
experiment with FF

OPRF and the simulator, we can use the environment E to
construct an adversary B in the PRF security game, see Definition 1. In the
game, B gets access to an oracle that answers either with truly random values
or values from a PRF Fk for some uniformly random k in the key space of
the PRF. B internally executes E and interacts with E in the UC-experiment.
B plays the role of the ideal functionality. Whenever the functionality would
send (EvalOut, sid, ρ) (or (OfflineEval, sid, ρ)) to a party as reaction to
a (Eval, sid, ssid,S, p) (or (OfflineEval, sid, i, p)) message, B sends p to the
PRF oracle and sets ρ to whatever the oracle returns. If E halts and outputs a
bit b, the adversary B outputs the same bit b.

If the PRF oracle answers with truly random values, the view of E is distributed
as in the “real-world” experiment with FOPRF. If the PRF oracle answers with
values from a PRF, the view of E is distributed as in the “ideal-world” experiment
with FF

OPRF and the simulator. Hence, B has the same success probability as E ,
which is by assumption negligible. □

Next, we give a proof for Claim 2.

Proof. If FF
OPRF UC-realizes FOPRF then we have for the dummy adversary D

interacting with FF
OPRF a simulator Sim interacting with FOPRF such that no

environment E can tell the two executions apart with noticeable probability. We
describe in the following why such a simulator cannot exist. Suppose that E
initializes a session between a server S and a user U. Let’s denote by n,m, l ∈ N
the input length, the key length, and the output length of the PRF, respectively.
Now E chooses arbitrary input values p1, . . . , pN ∈ {0, 1}n for some polynomial
N := N(λ), where N > (m+λ)/l. The environment proceeds by sending messages
(Eval, sid, ssid1, S, p1), . . . , (Eval, sid, ssidN , S, pN ) to the user, and respectively
(SndrCmplt, sid, ssidj) and (RcvCmplt,
sid, ssidj ,U,S) messages to the server and the adversary. In the “real-world”
experiment, U will receive a (EvalOut, sid, ρj) message for each input pj and
will output the received value to E . Therefore, every valid simulator must ensure
that the user also receives (EvalOut, sid, ρj) messages in the “ideal-world” ex-
periment. In the “ideal-world” the values ρj will be chosen uniformly at random
in {0, 1}l by the ideal functionality. Note that the simulator may change from
which table Tsid(i, pj) the values will be sampled but every entry in the table
is uniformly random. That is because a user will only receive output if Sim
sends (RcvCmplt, sid, ssidj ,P, i) to FOPRF, where i indicates the random table
Tsid(i, ·) from which the output is taken.

Now, E sends a (Compromise, sid, S) message to the adversary. In the “real-
world” execution with FF

OPRF, the environment will receive a key k ∈ {0, 1}m
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such that all output values ρ1, . . . , ρN are PRF outputs with respect to k, i.e.,
ρj = Fk(pj). But that means that a simulator now must come up with a key k
that explains the uniformly random values ρ1, . . . , ρN . For a fixed PRF key k, the
function Fk(·) is deterministic. For each input pj ∈ {0, 1}n we let yj := Fk(pj).
Now, we have for a uniformly random output ρj ∈ {0, 1}l that yj = ρj at most
with probability 2−l, over the randomness of ρj . Thus, the probability that the
key k fits to all N inputs is at most 2−Nl. There are 2m different keys. So the
probability that at least one of the keys maps all N inputs to the corresponding
ρi value is 2m−Nl ≤ 2−λ, which is negligible. □

The next proof shows Claim 3.

Proof. Assume, by way of contradiction, π to be a protocol with reproducible out-
put that UC-realizes FOPRF in the NPROM. We have to show that for every sim-
ulator SimO there is an environment EO that can distinguish EXECπ,DO,EO and
IDEALFO

OPRF,Sim
O,EO with noticeable probability, where DO denotes the dummy

adversary. Remember that we are in the NPROM and thus all parties—even the
environment—get access to a random oracle O. We write m′ = π(P,m, state, rP)
to denote that a P following protocol π will send message m′ as next message,
when P received the message m while being in state state and having random-tape
rP. The intuition for the proof is that the environment is going to pre-compute
the output of the protocol execution “in its head” and will compare this out-
put to the actual execution. The environment E starts and chooses randomness
rU, rS ∈ {0, 1}λ uniformly at random and some (arbitrary) input value p. It then
internally executes the protocol π between a user U(p; rU) and a server S(rS).
Whenever one of the parties makes a query to the random oracle, E forwards
this message to O and also forwards the response of O. At the end of the ex-
ecution, U will output a value y. We denote the internal state of the server at
the end of the execution as k. Note that E knows this state k as S is executed
internally by E . Next, E invokes a user U′ and a corrupted server S′ externally,
meaning in the actual UC-experiment. The environment E instructs the user U′

to execute the protocol π with server S′. On every message m to S′, E calculates
m′ = π(P,m, k, rS′), and instructs the adversary D to send m′ to U′ on behalf of
S′. At the end of the execution, U′ outputs a value y′. The environment outputs
1 iff y ̸= y′.

In the “real-world” execution EXECπ,DO,EO , the users U and U′ have the
same view as two users with input p who interact with a server S that is in state
k after the first execution. As π is a protocol with reproducible output, we have
that y = y′ with overwhelming probability.

In the “ideal-world” execution IDEALFO
OPRF,Sim

O,EO the simulator Sim must
produce an output for the (honest) user U′, as U′ also had some output in the
real-world execution. This means, Sim must send a (RcvCmplt, sid, ssid,P, i)
message to FOPRF. The user’s output y′ will be uniformly random in {0, 1}l, as
it comes directly from the ideal functionality. In particular, it will be independent
of the output y, which E computed before “in its head”. That means that y = y′

at most with probability 2−l. Consequently, any protocol that UC-realizes FOPRF
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in the ROM (without using additional hybrid functionalities) must program the
Random Oracle in the security proof. □

Finally, we show Claim 4.

Proof. Let π be the protocol as in Figure 10, where the server garbles the circuit
of a PRF F and chooses a uniformly random key k as input to the circuit. The
user gives its input p as choice bits to the OT protocol. Finally, the user evaluates
the circuit and outputs the output of the circuit as OPRF output. Again, we
have to give an environment that distinguishes the real-world execution from the
ideal-world execution.

As in the proof above, our environment will pre-calculate the output of the
garbled circuit as Fk(p) =: ρ. The environment will initialize an execution of the
protocol between an honest user with input p and a corrupted server with key k.
The environment will then observe the output of this execution. In the real-world,
the execution will output ρ, by the correctness of the garbling scheme. In the
ideal-world, the simulator must produce an output ρ′ for the user by sending
a (RcvCmplt, sid, ssid,P, i) message to FOPRF. Again, Sim can only influence
the output by choosing a different value i′ ≠ i. But regardless of which i′ it is
choosing, the resulting output for the user will be uniformly random. Also, note
that manipulating the responses of FOT and FRO will not help Sim. The OT-
messages (OT-Send, ssid) and (OT-Sent, ssid) messages that Sim produces in
the execution do not affect the user’s output. The programming of the random
oracle might indeed be used to manipulate the output of Ev(F,K,X) to be ρ.
But the environment does not do its pre-computation with the garbled version of
the circuit (F,K,X) but with the “plain” version Fk(p). Consequently, it means
that still ρ ̸= ρ′ with high probability. □

Note that the above poof does not hold for 2HashDH [36] because the environment
cannot pre-compute the OPRF output H ′(p,H(p)k) without the simulator being
able to tamper with the RO queries.
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