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Abstract. We present a new framework for building round-optimal (two-round) adaptively secure
MPC. We show that a relatively weak notion of OT that we call indistinguishability OT with receiver
oblivious sampleability (r-iOT) is enough to build two-round, adaptively secure MPC against malicious
adversaries in the CRS model. We then show how to construct r-iOT from CDH, LPN, or isogeny-based
assumptions that can be viewed as group actions (such as CSIDH and CSI-FiSh). This yields the first
constructions of two-round adaptively secure MPC against malicious adversaries from CDH, LPN, or
isogeny-based assumptions. We further extend our non-isogeny results to the plain model, achieving
(to our knowledge) the first construction of two-round adaptively secure MPC against semi-honest
adversaries in the plain model from LPN.

Our results allow us to build a two-round adaptively secure MPC against malicious adversaries from
essentially all of the well-studied assumptions in cryptography. In addition, our constructions from
isogenies or LPN provide the first post-quantum alternatives to LWE-based constructions for round-
optimal adaptively secure MPC. Along the way, we show that r-iOT also implies non-committing
encryption (NCE), thereby yielding the first constructions of NCE from isogenies or LPN.
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1 Introduction

Secure multiparty computation (MPC) allows mutually distrusting parties to jointly evaluate functions of
their secret inputs in a manner that doesn’t reveal any information outside of the final output. More precisely,
an MPC protocol involves n parties P1, . . . , Pn with private inputs x1, . . . , xn such that, at the end of the
protocol, each party Pi learns an output of the form fi (x1, . . . , xn) but nothing else about the private inputs
of any other party.

MPC has been extensively studied since the 1980s [Yao86, GMW87] and is currently used in practice for a
wide variety of applications, such as privacy-preserving studies for social good [LJA+18], privacy-preserving
online advertising [IKN+17], distributed key management [unb], and securely instantiating blockchain pro-
tocols [CCD+20].

MPC constructions are closely related to (and often based upon) another widely studied primitive called
oblivious transfer (OT) [Rab05, EGL82]. Informally speaking, an OT protocol involves a sender holding two
messages m0 and m1, and a receiver holding a bit b. At the end of the protocol, the receiver should only
learn the message mb and nothing about m1−b, while the sender should learn nothing about the bit b. Due
to its wide range of applications, OT has been studied extensively in a long line of works [NP01, PVW08,
BD18, FMV19, DGH+20, LGdSG21, CSW20, ADMP20].

Models and Round Complexity. Given the ubiquity of MPC in cryptography, it is no surprise that
MPC protocols have been studied in many different security models. Examples of such models include semi-
honest/malicious as well as static/adaptive adversarial corruptions. MPC has also been studied in a variety of
computational models such as the plain model and the common reference string (CRS) model. An important
feature of any MPC protocol is its round complexity (i.e., the number of rounds of communication between
the parties during protocol execution). Minimal round complexity is desirable when communication time
dominates computational cost, which is the case in many practical protocols. So, designing round-optimal
MPC protocols is widely regarded to be an important topic in MPC research.

The Static Corruption Model. In the static corruption model for MPC, the adversary is allowed to
corrupt a pre-determined set of parties. A long line of works have shown how to design round-optimal
MPC protocols in this model from a variety of assumptions in the CRS model [GGHR14, MW16, CPV17a].
Notably, [BL18, GS18] showed how to construct two-round MPC protocols from two-round OT protocols in
different security models and computational settings.

In terms of concrete computational assumptions, two-round maliciously secure OT protocols in the static
corruption model have been constructed from DDH, QR/DCR, and LWE [NP01, PVW08, HK12, BD18].
More recently, such OT protocols have been designed from the CDH and LPN assumptions [DGH+20], as
well as from isogenies of elliptic curves [ADMP20]. To summarize, we can currently build round-optimal ma-
liciously secure MPC in the static corruption model from essentially all of the commonly used computational
assumptions.

Limitations of the Static Corruption Model. Unfortunately, the static corruption model for MPC is
not strong enough for certain real-world applications. In particular, the static corruption model does not
provide security against “hacking attacks” where an adversary might adaptively corrupt parties at different
stages of the protocol. For instance, what happens if the adversary seizes control of the parties’ machines
through backdoor access? Secure erasures of the party’s state upon corruption is one possible solution to
tackle such an attack. However, it is an impractical solution as argued by [CFGN96] since it requires the
party to detect an attack and honestly execute its erasure of internal state. This motivates designing MPC
protocols that are secure in the adaptive corruption model without relying on secure erasures. In this work
we refer to adaptive security in the non-erasure model as adaptive security.

The Adaptive Corruption Model. In the adaptive corruption model for MPC, the adversary is allowed
to dynamically corrupt any set of parties at any time during the protocol execution. Canetti et al. [CDD+04]
presented the first formal investigation of the adaptive corruption model for MPC, and the relationships
between adaptive security and static security in several models of computation. Garay et al. [GWZ09] showed
how to construct adaptively secure two-party computation protocols in a generic manner from OT protocols

1



satisfying a weaker notion of semi-adaptive security ; they also showed how to obtain semi-adaptively secure
OT protocols from somewhat non-committing encryption (NCE), which is a weaker variant of standard
NCE [CLOS02]. Subsequently, Hazay et al. [HV15] showed that adaptively secure MPC protocols can be
obtained from minimal assumptions like trapdoor simulatable public key encryption (PKE).

However, the scenario is different once round optimality is taken into consideration. It is currently open
to design round-optimal maliciously secure MPC protocols even from certain commonly used computational
assumptions such as CDH, LPN and isogeny-based assumptions.5 Initial works on two round, adaptively
secure MPC relied on indistinguishability obfuscation (and other standard assumptions) [CGP15, GP15,
CPV17a, CsW19] or assuming secure erasures6 [CsW19] of the party’s internal states. There are adaptively
secure protocols [GOS12, CSW22] for NIZKs as well from specific assumptions like pairings, DDH+LPN
and LWE. There are adaptively secure constant round MPC protocols [GS12, CGPS21] in the plain model
based on non-blackbox simulation techniques since it is impossible to obtain constant round adaptively secure
protocol without setup with blackbox simulation. [LLW20] constructs a two-round information theoretic MPC
protocol in the honest-majority setting against semi-honest adversaries which can be adaptively corrupt.

The work of Benhamouda et al. [BLPV18] was the first to show how to construct round-optimal adap-
tively universal composability (UC) [Can01] secure MPC protocols from certain standard computational
assumptions without obfuscation and erasures. More concretely, they established the following:

– Against semi-honest adversaries, adaptively UC-secure two-round MPC in the plain model is implied by
non-committing encryption (NCE) [CLOS02], which in turn can be built from CDH/DDH, LWE, and
RSA [CDMW09].

– Against malicious adversaries, adaptively UC-secure two-round MPC in the CRS model can be built
from a certain kind of two-round statically secure OT protocol with additional “oblivious sampleability”
properties, which in turn can be based on DDH, QR, and LWE.

The work of [CSW20] constructs a two round adaptively secure MPC protocol based on the DDH assump-
tion. It is currently open to construct round-optimal (i.e., two-round) maliciously secure MPC protocols
in the adaptive corruption model from commonly studied assumptions such as CDH, LPN and isogeny-
based assumptions. In particular, the constructions of Benhamouda et al. [BLPV18] crucially rely on certain
primitives such as “obliviously sampleable” smooth projective hash functions (SPHFs) and “augmented”
non-committing encryption (NCE) that are not known from some or all of these assumptions. More gener-
ally, it is not known how to construct such MPC protocols from a single generic primitive that can be built
from commonly used computational assumptions.

Moreover, there are motivating concerns about efficient quantum computing and adaptive MPC. Cur-
rently, the only plausibly post-quantum secure constructions [BLPV18, CsW19] of two-round maliciously
secure MPC protocols in the adaptive corruption model are based on LWE. This lack of diversity in
post-quantum constructions is potentially concerning since a major advance in lattice cryptanalysis could
substantially degrade (or in the worst case, invalidate) the security of LWE-based constructions for all
practical parameter sets. Notably, the recent NIST competition to standardize post-quantum cryptosys-
tems [CJL+16, AAAS+19, AASA+20] considers a wider class of post-quantum assumptions, including
isogeny-based assumptions. In this paper, we ask the following question:

Can we construct two round adaptively UC-secure MPC protocols from a wider class of assumptions, such
as CDH, LPN, and isogeny-based assumptions?

1.1 Our Contributions

We answer this above question in the affirmative. We establish a new route to achieving two round mali-
ciously UC-secure MPC protocols in the adaptive corruption setting that relies on potentially weaker (or

5 Note that constant round maliciously secure MPC against adaptive corruptions can only be achieved in the CRS
model; see [GS12] for results establishing the impossibility of maliciously secure adaptive MPC in the plain model
from black-box simulation.

6 The secure erasures model allows erasing the internal state of an honest party when its gets adaptively corrupted
by the adversary. It is a strictly weaker model than the one we consider, where erasing the party’s state is not
allowed.
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Fig. 1. A simplified overview of our results

“less structured”) cryptographic primitives as compared to those used by Benhamouda et al. [BLPV18].
We also show how to instantiate these primitives from CDH, LPN, and certain families of isogeny-based
assumptions (such as CSIDH [CLM+18] and CSI-FiSh [BKV19]). Our results thus establish the feasibility
of realizing adaptively secure MPC from essentially all commonly used cryptographic assumptions.

We present our results in the “local” CRS model where every session of protocol execution has a local
independently sampled CRS string. This is the same model in which Benhamouda et al. [BLPV18] described
their constructions and proofs. The only other work [CSW20] in this setting is in the single common random
string model, but it is solely based on DDH. We note here that Choi et el. [CKWZ13] achieved efficient,
adaptively secure, composable OT protocols with a single, global CRS, albeit from a different set of concrete
assumptions as compared to what we consider in this paper.

Our Ingredients. Our constructions of two-round, adaptively UC-secure MPC essentially rely on a single
building block, which we refer to as indistinguishability OT with receiver oblivious sampleability (r-iOT).
Informally, r-iOT is a two-message OT protocol that satisfies indistinguishability security [DGH+20] against
the sender and the receiver in the static corruption model, while also satisfying an additional property called
“receiver oblivious sampleability”. At a high level, this property requires that it is possible to obliviously
sample the OT receiver’s message (without knowledge of any secret randomness and receiver’s choice bit).
This property also requires an algorithm for claiming that an honestly generated receiver’s message was, in
fact, obliviously sampled.

We note that the concept of receiver oblivious sampleable OT was introduced and used in their construc-
tions by Benhamouda et al. [BLPV18]. However, our constructions rely on a strictly weaker set of properties
for our starting r-iOT protocol. First of all, the constructions in [BLPV18] assume that the starting OT
protocol satisfies (simulation-based) UC-security against a semi-honest sender and a malicious receiver in
the static corruption model, i.e. a malicious receiver’s input can be extracted. On the other hand, our start-
ing r-iOT protocol is only required to achieve a strictly weaker notion of indistinguishability security, which
we subsequently bootstrap all the way to full-fledged UC security via a sequence of transformations. Ad-
ditionally, the constructions in [BLPV18] assume that the starting OT protocol satisfies both receiver and
sender oblivious sampleability, while we show a generic construction to build such an OT protocol (with
both receiver and sender oblivious sampleability) starting our r-iOT protocol which satisfies only receiver
oblivious sampleability.

Main Results. Figure 1 summarizes the main results of this paper. We compare the state-of-the-art results
and our result in Fig. 2. Our first main result is a generic construction of UC-secure two-round adaptive
MPC from any r-iOT protocol. In somewhat more detail, our first result can be summarized as follows:

Theorem 1 (Informal). Assuming r-iOT, i.e, a two-message OT protocol that satisfies indistinguishability
security and receiver oblivious sampleability against static corruption of the sender/receiver by malicious
adversaries in the CRS model (resp. semi-honest adversaries in the plain model), there exists a two-round
MPC protocol for any functionality f that satisfies UC security against adaptive corruption of any subset of
the parties by malicious adversaries in the CRS model (resp. semi-honest adversaries in the plain model).
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Fig. 2. Comparison of Adaptively Secure MPC Protocols

We achieve this result via a sequence of transformations that build progressively stronger OT protocols
from weaker ones. These transformations use a number of additional cryptographic primitives, all of which
we show can be built in a generic way from any r-iOT protocol in the appropriate model.

Next, we show how to instantiate an r-iOT protocol in various models from a variety of concrete assump-
tions, including CDH, LPN, and isogeny-based assumptions. In somewhat more details, our second main
result can be summarized as follows:

Theorem 2 (Informal). Assuming CDH or LPN, there exists a construction of r-iOT that is secure against
malicious adversaries in the CRS model (resp. semi-honest adversaries in the plain model).

Theorem 3 (Informal). Under certain isogeny-based assumptions (notably, CSIDH [CLM+18] or CSI-
FiSh [BKV19]), there exists a construction of r-iOT that is secure against malicious adversaries in the CRS
model.

Our constructions of r-iOT from CDH and LPN build upon previous work due to Döttling et al. [DGH+20]
that realized UC-secure OT/MPC against static corruptions from the same set of assumptions. Our con-
struction of r-iOT from isogeny-based assumptions is based on a novel usage of the (restricted) effective group
action framework due to Alamati et al. [ADMP20]. In particular, we show how to use a trusted setup to
bypass issues around sampling obliviously from the “set” of an effective group action, which is a well-known
open problem in the isogeny literature [Pet17, DMPS19, CPV20].7

Combined with the previous theorem, we obtain as a corollary the first constructions of two-round
adaptively UC-secure MPC against malicious adversaries from the same concrete assumptions:

Corollary 1 (Informal). Assuming CDH, LPN, or certain isogeny-based assumptions (notably, CSIDH
[CLM+18] or CSI-FiSh [BKV19]), there exists a two-round MPC protocol for any functionality f that satisfies
UC security against adaptive corruption of any subset of the parties by malicious adversaries in the CRS
model.

In summary, we show that it is feasible to construct round-optimal maliciously secure MPC in the adaptive
corruption model from essentially all of the commonly used cryptographic assumptions. This essentially closes
the gap between the static corruption model and the adaptive corruption model in terms of constructing
round-optimal maliciously secure MPC from concrete assumptions. Figure 3 presents a high-level summary
of our roadmap from r-iOT to adaptively UC-secure MPC.

7 Unlike CDH or LPN, we do not achieve a construction of r-iOT from isogeny-based assumptions in the plain
model. Achieving this seemingly requires new techniques for sampling obliviously from the “set” of an effective
group action beyond those used in state-of-the-art isogeny-based cryptography.
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Additional Results. Besides our main contributions, we show some additional results that could be of
independent interest. In particular, we show that any r-iOT protocol that is secure against semi-honest
adversaries implies the existence of a trapdoor-simulatable PKE, which in turn is known to imply non-
committing encryption (NCE) in a generic manner (in fact, it was shown in [CDMW09] that trapdoor-
simulatable PKE implies an “augmented” variant of NCE). Due to its wide range of applications, NCE (and
its augmented variants) have been studied by a long line of works [CFGN96, CDMW09, CPR17, YKT19,
BBD+20].

Theorem 4 (Informal). Any r-iOT that is secure against semi-honest adversaries implies a construction
of trapdoor-simulatable PKE.

Combined with the previous theorem on instantiations of r-iOT from concrete assumptions, and the
known implication due to [CDMW09], we obtain as a corollary the first constructions (to our knowledge) of
(augmented) NCE from LPN or certain isogeny-based assumptions:

Corollary 2 (Informal). Assuming LPN, there exists a construction of a two round (augmented) non-
committing encryption (NCE) scheme.

Corollary 3 (Informal). Assuming isogeny-based assumptions such as CSIDH [CLM+18] or CSI-FiSh
[BKV19], there exists a construction of a two round (augmented) non-committing encryption (NCE) scheme
in the CRS model.

Outline. The rest of the paper is organized as follows. Section 2 provides a high-level overview of our
compiler. Section 3 presents notations and definitions for two-round OT protocols in the CRS model. Section 4
describes our construction of two-round iOT with both receiver and sender oblivious sampleability from any
two-round r-iOT protocol. Section 5 describes our construction (and proof) of semi-adaptively secure two-
round OT from any two-round iOT with both receiver and sender oblivious sampleability. Combining with
the result of [BLPV18] we obtain an adaptively secure MPC protocol in the CRS model. Section 6 presents
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our construction of trapdoor simulatable PKE (and augmented NCE) from any two-round r-iOT protocol.
Section 7 describes our concrete constructions of two-round r-iOT from isogeny-based assumptions, CDH or
LPN.

2 Technical Overview

In this section, we present an overview of our proposed route to achieving two round maliciously secure MPC
protocols in the adaptive corruption setting, and compare this roadmap to that in the work of Benhamouda
et al. [BLPV18]. In particular, we present a discussion of why it is seemingly difficult to instantiate the
framework of [BLPV18] from concrete assumptions such as CDH, LPN and certain isogeny-based assump-
tions. We then aim to elucidate how our framework relies on inherently “less powerful” primitives that can
actually be instantiated from these assumptions.

The [BLPV18] Construction. As already mentioned, [BLPV18] was the first work to show how to con-
struct round-optimal malicious-adaptively secure MPC protocols from standard computational assumptions
such as DDH, QR, and LWE. Their construction uses a sequence of transformations that progressively build
OT protocols with stronger security guarantees from ones with weaker security guarantees (and some addi-
tional cryptographic primitives). Here, we focus on the weakest OT protocol that is essentially the starting
point of their construction. At a high level, this (two-round) OT protocol is required to satisfy the following
properties:

– Universal composability (UC) security against a malicious receiver8 and a semi-honest sender in the
static corruption model.

– Receiver oblivious sampleability, which requires the possibility of obliviously sampling the message from
the receiver to the sender (without knowing any secrets), and also the possibility of claiming that any
honestly generated receiver’s message was, in fact, obliviously sampled.

– Sender oblivious sampleability, which requires the possibility of obliviously sampling the message from
the sender to the receiver (again without knowing any secrets), and also the possibility of claiming that
any honestly generated sender’s message (for random input strings) was obliviously sampled.

In [BLPV18], Benhamouda et al. showed how to instantiate such a two-round OT protocol in the
plain/CRS model from a variety of mainstream cryptographic assumptions, including DDH, QR, and LWE.

Barriers to More Instantiations. Unfortunately, it seems inherently difficult to instantiate such a two-
round OT protocol from other concrete assumptions such as CDH, LPN, and isogeny-based assumptions.
We outline some reasons for why this seems to be the case for each of the assumptions below.

– The two-round OT constructions from CDH and LPN due to [DGH+20] do achieve UC security against
a malicious receiver in the static corruption model. However, the final UC-secure construction is achieved
through a sequence of generic transformations, and it is unclear how to argue receiver/sender oblivious
sampleability for this final construction. While it could be potentially easier to argue receiver/sender
oblivious sampleability for some of the weaker OT protocols at various stages of this transformation
process, these weaker protocols do not satisfy UC security for a maliciously corrupt receiver.

– The two-round OT construction from the (restricted) effective group action framework due to [ADMP20]
achieves UC security against a maliciously corrupt receiver in the static corruption model. It can also
be instantiated from certain families of isogeny-based assumptions such as CSIDH [CLM+18] and CSI-
FiSh [BKV19]. However, this construction does not satisfy receiver/sender oblivious sampleability; in
particular, achieving such properties in a straightforward manner would require the ability to sample
obliviously from the “set” of an effective group action, which is a well-known open problem in the isogeny
literature and is believed to intractable from state-of-the-art isogeny techniques (see [Pet17, DMPS19,
CPV20] for more details).

8 UC security requires that the malicious party’s input is extractable.
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To summarize, while there do exist two-round OT protocols in the static setting with UC security
against maliciously corrupt receiver from CDH, LPN, and isogeny-based assumptions, these do not satisfy
the necessary oblivious sampleability properties, and hence, cannot be used to instantiate the [BLPV18]
construction of adaptive MPC.

Difficulty in Mirroring Similar Techniques. We additionally argue that it is difficult to mirror the
techniques used by [BLPV18] in the context of CDH, LPN, and isogeny-based assumptions. We again outline
why this seems to be the case for each of the assumptions below.

– In [BLPV18], the authors use smooth projective hash proof systems with certain special oblivious sam-
pleability properties as a starting point for their DDH-based instantiation. On one hand, we do no know
how to instantiate hash proof systems from the CDH assumption; in particular, unlike DDH, CDH does
not naturally support an “algebraically structured” hard membership language that is a prerequisite
for any hash proof system. On the other hand, the known constructions of hash proof systems from
isogenies [ADMP20] do not satisfy the special oblivious sampleability properties for the same reasons as
described earlier.

– In [BLPV18], the authors use an LWE-based construction of half-OT, which does not translate naturally
to the LPN setting. This is because the LWE-based construction in [BLPV18] crucially relies on (full-
rank) lattice trapdoors (and associated techniques from [GPV08]) for which there are no known LPN-
based analogues. There are also no known constructions of smooth projective hash proof systems from
LPN.

To summarize, it seems hard to import the techniques used by [BLPV18] to construct adaptively secure
MPC to the setting of CDH, LPN, and isogeny-based assumptions. At a high level, these difficulties arise from
the fact that these concrete assumptions lack the necessary structure that is seemingly needed to support
the techniques in [BLPV18]. While it might be possible to overcome of these structural limitations using
novel cryptographic techniques, we opt for a different strategy - that of weakening the necessary generic
assumption to build adaptive MPC to the point where instantiations from CDH, LPN, and isogenies become
feasible based on a combination of known techniques.

Weakening the Generic Assumption. Our main technical contribution is showcasing a new set of
techniques for realizing adaptively secure MPC from a strictly weaker (two-round) OT protocol as compared
to the [BLPV18] construction. In particular, our starting point is a (two-round) OT protocol that satisfies
the following properties (we refer to this primitive as r-iOT throughout the paper):

– Indistinguishability security against a sender and the receiver in the static corruption model (this is a
strictly weaker requirement as compared to UC security required by the [BLPV18] construction).

– Only receiver oblivious sampleability; in particular, sender oblivious sampleability need not be satisfied.

We show how to bootstrap this r-iOT protocol with seemingly weak security guarantees all the way up
to our final goal of UC-secure adaptive MPC. We achieve this via a sequence of transformations. At a high
level, similar to [BLPV18], our transformations also progressively build OT protocols with stronger security
properties from ones with weaker security properties. However, the ingredients and techniques used differ
significantly. Figure 3 presents a high-level summary of our roadmap from r-iOT to adaptively UC-secure
MPC. We expand more on this below.

Our Roadmap from r-iOT to Adaptively Secure MPC. The first step in our roadmap is a generic
construction of (two-round) OT satisfying indistinguishability security in the static corruption model and
both receiver and sender oblivious sampleability starting from any generic r-iOT protocol. In a bit more
detail, this step can be summarized as follows:

Theorem 5 (Informal). Assuming r-iOT secure against malicious adversaries in the CRS model, there ex-
ists a two-round OT protocol that satisfies indistinguishability security and both receiver and sender oblivious
sampleability against static corruption of the sender/receiver by malicious adversaries in the CRS model.
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This transformation is detailed in Section 4. Besides r-iOT, we require three additional cryptographic
primitives:

– A non-interactive commitment scheme with oblivious sampleability [Nao91].

– A garbling scheme with oblivious sampleability [LP09, HV16].

– An equivocal garbling scheme [CPV17b].

Based on known results [Nao91, LP09, HV16, CPV17b], all of these primitives can be built in a generic
way from one-way functions, and hence, from any generic r-iOT protocol. In other words, we do not need
any additional assumptions for this step in the roadmap.

Bootstrapping to Semi-Adaptively Secure OT. The second step in our roadmap is a construction of (two-
round) semi-adaptively secure OT protocol from any (two-round) OT protocol satisfying indistinguishability
security in the static corruption model and receiver oblivious sampleability, trapdoor simulatable PKE (PKE
where both the public key and the ciphertext can be obliviously sampled) and one-way function. We build
the trapdoor simulatable PKE from the two round OT with both receiver and sender oblivious sampleability.
We provide a high-level recap of what is meant by semi-adaptive security. Note that we use the same notion
of semi-adaptive security for OT as used in previous works [GWZ09, ABP17, BLPV18, CSW20].

Informally, an OT protocol is said to be secure against semi-adaptive sender corruptions if it is secure in a
model where the adversary can adaptively corrupt the sender, but is restricted to corrupting the receiver only
in a static manner. Similarly, an OT protocol is said to be secure against semi-adaptive receiver corruptions
if it is secure in a model where the adversary can adaptively corrupt the receiver, but is restricted to
corrupting the sender only in a static manner. Finally, an OT protocol is said to be semi-adaptively secure
if it is simultaneously secure against both semi-adaptive sender and receiver corruptions.

At this point, we summarize the construction of our semi-adaptive OT in our sequence of transformations
as follows:

Theorem 6 (Informal). Assuming a two-round OT protocol that satisfies indistinguishability security and
receiver oblivious sampleability against static corruption of the sender/receiver by malicious adversaries in
the CRS model, and a trapdoor simulatable PKE, then there exists a two-round OT protocol that satisfies
UC security against semi-adaptive corruption of the parties by malicious adversaries in the CRS model.

This transformation is detailed in Section 5. Besides r-iOT, we also require a trapdoor simulatable PKE
scheme [CDMW09] (and some other ingredients implied by any one-way function). Finally, we show in
Section 6 that any r-iOT protocol that is secure against semi-honest adversaries in the CRS model implies
a construction of trapdoor-simulatable PKE. We note here that the authors of [BLPV18] also presented a
construction of semi-adaptively UC-secure OT as a crucial step of their framework. In comparison with their
construction, our construction relies on significantly weaker assumptions. In particular, the construction
in [BLPV18] relies on a two-round OT protocol which is receiver and sender oblivious sampleable and the
receiver’s choice bit can be extracted from the OT first message. On the other hand, our construction
relies entirely on primitives that are implied by any indistinguishability-secure two-round OT with receiver
oblivious sampleability (with no extractability and no sender oblivious sampleability requirements).

Bootstrapping to Adaptive MPC. At this point, we import the following theorem from [BLPV18] to achieve
our final goal of adaptively UC-secure MPC:

Theorem 7 (Informal, [BLPV18]). Assuming an augmented NCE scheme and a two-round OT protocol
that satisfies UC security against semi-adaptive corruption of the parties by malicious adversaries in the
CRS model, there exists a two-round MPC protocol for any functionality f that satisfies UC security against
adaptive corruption of any subset of the parties by malicious adversaries in the CRS model.

Note that augmented NCE can be built from any (trapdoor-) simulatable PKE scheme (this was shown
in [CDMW09]), which in turn can be built from r-iOT, as outlined earlier.

Having provided an overview of our proposed roadmap for building adaptively UC-secure two-round MPC
from any two-round r-iOT, we now turn to instantiating the same from a variety of concrete assumptions,
including isogeny-based assumptions, as well as CDH and LPN. We provide here an overview of how we
build two-round r-iOT protocols from each of these assumptions.
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Instantiation from Isogeny-Based Assumptions. In Section 7.1, we show how to construct a two-
round r-iOT protocol secure against malicious adversaries in the CRS setting from certain isogeny-based
assumptions (notably, CSIDH [CLM+18] or CSI-FiSh [BKV19]). More specifically, we assume the existence
of a secure (restricted) effective group action equipped with appropriate computational hardness assumptions
as described in [ADMP20].

The starting point of our construction of r-iOT is the construction of iOT from any (restricted) effective
group action proposed originally in [ADMP20]. This construction offers all of the features we want, except
for receiver oblivious sampleability. It turns out that achieving receiver oblivious sampleability for this
construction in a straightforward manner would require the ability to sample obliviously from the “set”
of a (restricted) effective group action. As already mentioned, this is a well-known open problem in the
isogeny literature and is likely to require fundamentally new ideas beyond state-of-the-art techniques for
isogeny-based cryptography (see [Pet17, DMPS19, CPV20] for more details).

In this paper, we propose a workaround for this by settling for a weaker notion of trapdoor oblivious
sampleability for the “set” of a (restricted) effective group action. In other words, while it hard to obliviously
sample a “set” element in the plain model, one can obliviously sample a “set” element given a specially
designed trapdoor (corresponding to some public CRS). This is the core idea behind our construction of r-iOT
from (restricted) effective group action. In view of the inherent restrictions outlined earlier, our workaround
only allows us to achieve an r-iOT construction in the CRS model (and not in the plain model). However, in
the CRS model, we achieve the desired notion of indistinguishability secure against malicious sender/receiver,
while also achieving receiver oblivious sampleability.

Instantiation from CDH or LPN. In Section 7.2, we show that assuming CDH or LPN, there exists
a construction of r-iOT that is secure against malicious adversaries in the CRS model. We can also extend
the same results for semi-honest adversaries in the plain model and thus construct an adaptively secure
semi-honest MPC from CDH and LPN in the plain model. This result follows from a simple observation on
the two-round iOT constructions from CDH or LPN due to Döttling et al. [DGH+20].

Specifically, Döttling et al. showed that iOT can be constructed from a weaker notion of OT called
elementary OT, and they demonstrated instantiations of two-round elementary OT from CDH or LPN. The
generic transformation of [DGH+20] is done in two steps: (1) they first show how to build iOT from an
intermediate primitive called search OT via parallel repetition, (2) they show how to construct search OT
from elementary OT. At this point, we rely on the following (relatively straightforward) observations:

– The transformation preserves receiver oblivious sampleability at both steps. In other words, if the initial
(two-round) elementary OT satisfies receiver oblivious sampleability, then the final iOT resulting from
this transformation is, in fact, an r-iOT.

– The elementary OT constructions from CDH or LPN described in [DGH+20] already satisfy receiver
oblivious sampleability.

Combining the aforementioned observations, we get constructions of r-iOT assuming CDH or LPN, as
desired. We refer the reader to Section 7.2 for more details surrounding these observations and the corre-
sponding implications. We believe that the simplicity of these observations essentially highlights the benefits
of basing our construction on a much weaker notion of OT that follows more naturally from a wider variety
of cryptographic assumptions. We hope that our roadmap makes it similarly easier to achieve adaptive MPC
protocols from newer assumptions in the future.

3 Preliminaries

In this section, we present some core preliminaries that are integral to our constructions. We defer many
definitions and other background with which we expect most readers to be familiar to the full version of our
paper.
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3.1 Notations

We denote by a← D a uniform sampling of an element a from a distribution D. The set of elements {1, . . . , n}
is represented by [n]. We denote polylog(a) and poly(b) as polynomials in log a and b respectively. We denote
a probabilistic polynomial time algorithm as PPT. We denote the computational security parameter by κ.
We denote a negligible function in κ as neg(κ). When a party S gets corrupted we denote it by S∗. Our
security proofs are in the Universal Composability (UC) framework of [Can01]. We refer to the original

paper for details. We denote computational and statistical indistinguishability by
c
≈ and

s
≈ respectively. We

abbreviate “common reference string” as CRS. Unless otherwise specified, our constructions and proofs are
in “local” CRS model. This happens to be the same CRS model in which the prior work due to Benhamouda
et al. [BLPV18] showed constructions of adaptive MPC protocols with security against malicious adversaries.
We refer to Section A for the security model of adaptively secure MPC.

3.2 Two-Message Oblivious Transfer in the CRS Model

In this section, we formally define a two-message oblivious transfer (OT) protocol in the common reference
string (CRS) model. We then define two security notions for such an OT protocol, namely universal compos-
ability (UC) security and a weaker notion of indistinguishability-based security. We first focus on security
against static corruptions by a malicious adversary. Subsequently, we discuss different levels of adaptive
security.

A two-message OT protocol in the CRS model is a tuple of four algorithms of the form OT = (Setup,
OTR1, OTS, OTR2) described below:

– Setup(1κ): Takes as input the security parameter κ and outputs a CRS string crs and a trapdoor td. 9

– OTR1(crs, b ∈ {0, 1}): Takes as input the crs and a bit b ∈ {0, 1}, and outputs the receiver’s message MR

and the receiver’s internal state st.

– OTS(crs,MR,m0,m1): Takes as input the crs, the receiver’s message MR, a pair of input strings (m0,m1),
and outputs the sender’s message MS.

– OTR2(crs,MS, b, st): Takes as input the crs, the sender’s message MS, a bit b, and receiver’s internal state
st, and outputs a message string m′.

Correctness. A two-message OT protocol in the CRS model is said to be correct if for any b ∈ {0, 1} and any
(m0,m1), letting (crs, td) ← Setup(1κ) and (MR, st) ← OTR1(crs, b), the following holds with overwhelming
probability:

OTR2(crs,OTS(crs,MR,m0,m1), b, st) = mb.

Corruption Models. We consider the following (progressively non-decreasing in strength) adversarial
models against any two-message OT protocol:

– Static Corruption: The adversary corrupts the parties at the onset of the protocol.
– Semi-Adaptive Corruption: The adversary corrupts one party (either the receiver or the sender) adap-

tively (at any point before/during/after the protocol) and the other party statically at the beginning of
the protocol.

– Adaptive Corruption: The adversary corrupts both parties adaptively (at any point before/during/after
the protocol). This scenario covers the previous corruption cases.

Indistinguishability-Based Security. We also consider a weaker notion of indistinguishability-based
security against malicious adversaries in the static corruption setting. This notion is adopted directly
from [DGH+20]. A two-message OT protocol iOT = (Setup, iOTR1, iOTS, iOTR2) satisfies indistinguishability-
based security if the following properties hold:

9 For standard two-message OT protocols, the setup algorithm need not output a trapdoor td, but we include it for
certain security properties described subsequently.
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Receiver’s Indistinguishability Security. Formally, receiver’s indistinguishability security requires that the
following holds for any (crs, td)← Setup(1κ):

(crs, iOTR1(crs, 0))
c
≈ (crs, iOTR1(crs, 1)).

Sender’s Indistinguishability Security. Sender’s indistinguishability security is defined in [DGH+20] via an

experiment Expcrs,r,w,biOT (A) between a non-uniform PPT adversary A = (A1,A2) and a challenger, where
the experiment is parameterized by some honestly generated crs, random coins r ∈ {0, 1}κ, an integer n
representing the bitwise length of messages, a bit w ∈ {0, 1}, and a bit b ∈ {0, 1}:

Expcrs,r,w,biOT (A):

1. Run (m0,m1,MR, st)← A1(1κ, crs).

2. If b = 0, compute MS ← iOTS(crs,MR, (m0,m1)).

3. If b = 1, compute MS ← iOTS(crs,MR, (m
′
0,m

′
1)) where m′w ← {0, 1}n and m′1−w := m1−w.

4. Output s← A2(st,MS).

For a given (crs, r, w ∈ {0, 1}), we define the advantage Acrs,r,w
iOT (A) as:

Advcrs,r,wiOT (A) = |Pr[Expcrs,r,w,0iOT (A) = 1]− Pr[Expcrs,r,w,1iOT (A) = 1].

We say that iOT satisfies sender’s indistinguishability security if for any PPT adversary A, Advcrs,r,wiOT (A)
is negligible in κ for at least one w ∈ {0, 1}, where the probability is taken over crs = Setup(1κ) and
r ← {0, 1}κ.10

3.3 iOT with Oblivious Sampleability

We also consider notions of oblivious sampleability for indistinguishability-secure two-message OT protocols
in the CRS model. An iOT protocol of the form iOT = (Setup, iOTR1, iOTS, iOTR2) is said to satisfy oblivious

sampleability if it supports additional “oblivious sampling” algorithms - ( ˜iOTR, ĩOTS) and the corresponding

“randomness inversion” algorithms - ( ˜iOTRInv, ˜iOTSInv) defined as:

– ˜iOTR(crs; r) : Outputs an obliviously sampled receiver’s message MR.

– ĩOTS(crs,MR, w,m1−w; r) Outputs an obliviously sampled sender’s message MS where sender’s OT pro-
tocol message for choice bit w is obliviously sampled and sender’s message for choice bit 1−w is m1−w. If
w = m1−w = ⊥, then the sender samples OT protocol messages for both choice bits 0 and 1 obliviously.

– ˜iOTRInv(crs,MR, td, r) : Outputs randomness r̃ corresponding to an honestly generated receiver message
MR where MR is claimed to be obliviously generated.

– ˜iOTSInv(crs, w,MS, td, r) : Outputs randomness r̃ corresponding to an honestly generated sender message
MS where branch w is claimed to be obliviously sampled. If w = ⊥, then both branches are claimed to
be obliviously sampled.

We say that the iOT is obliviously sampleable if it satisfies both receiver and sender oblivious sampleability,
as defined below.

Receiver Oblivious Sampleability: For any bit b ∈ {0, 1}, an obliviously sampled receiver’s message should
be indistinguishable from an honestly generated one, even given the sampling randomness. More formally,

we require that for any (crs, td) = Setup(1κ) and any bit b ∈ {0, 1}, we have (crs,MR, r̂)
c
≈ (crs, M̃R, r̃), where

for uniformly random coins r, r̃ ← {0, 1}κ, we have

MR = iOTR(crs, b; r), r̂ = ˜iOTRInv(crs,MR, td, r), M̃R = iOTR(crs, b; r̃).

10 This is slightly different from the traditional notion of sender’s indistinguishability security for two-message OT;
we refer to [DGH+20] for more details.
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Sender Oblivious Sampleability: We also require that a corrupt receiver cannot infer whether the sender’s
message (corresponding to the bit w which is not chosen by the receiver) was obliviously sampled or generated

honestly. We consider an adversary A = (A1,A2) participating in an experiment Expcrs,r,w,b
ĩOT

(A), indexed by

a crs, random coins r ∈ {0, 1}κ, a bit w ∈ {0, 1} and a bit b ∈ {0, 1}:
Expcrs,r,w,b

ĩOT
(A) (for branch w):

– Run (m0,m1,MR, st)← A1(1κ, crs; r).

– If b = 0, sample randomness r̃ and compute MS ← ĩOTS(crs,MR, w,m1−w; r̃).

– If b = 1, sample randomness r̂, compute MS ← iOTS(crs,MR, (m0,m1); r̂) and r̃ = ˜iOTSInv(crs, w,MS, td, r̂).

– Compute and output s← A2(st, r̃,MS).

Define the advantage of A as

Advcrs,r,w
ĩOT

(A) = |Pr[Expcrs,r,w,0
ĩOT

(A) = 1]− Pr[Expcrs,r,w,1
ĩOT

(A) = 1]|.

We say that iOT satisfies sender oblivious sampleability for branch w if for any PPT adversaryA Advcrs,r,w
ĩOT

(A)

is negligible in κ, where (crs, td)← Setup(1κ) and r ← {0, 1}κ.

OT with receiver Sampleability r-iOT: We denote by r-iOT = (Setup,r-iOTR1, r-iOTS, r-iOTR2, ˜r-iOTR,

˜r-iOTRInv), an indistinguishability-secure two-message OT in the CRS model that satisfies receiver oblivious
sampleability but not necessarily sender oblivious sampleability. Such an OT protocol only needs to support

“receiver oblivious sampling” algorithm ˜r-iOTR (where ˜r-iOTR is defined similar to ˜iOTR) and the corre-

sponding “randomness inversion” algorithm ˜r-iOTRInv (where ˜r-iOTRInv is defined similar to ˜iOTRInv) for the
receiver.

3.4 UC Security of OT in the Static Corruption Setting

For UC security of OT against malicious adversaries in the static corruption setting, we directly use Canetti’s
UC security framework for static corruptions [Can01]. We note here that the UC security framework is only
relevant to our construction of semi-adaptively UC-secure two-message OT detailed in Section 5.

Fig. 4. The ideal functionality FOT for Oblivious Transfer

FOT

FOT interacts with an ideal sender S and an ideal receiver R as follows:

– On input (Choose, rec, sid, b) from R where b ∈ {0, 1}; if no message of the form (rec, sid, b) has been recorded in
the memory, store (rec, sid, b) and send (rec, sid) to S.

– On input (Transfer, sen, sid, (m0,m1)) from S with m0,m1 ∈ {0, 1}n, if no message of the form (sen, sid, (m0,m1))

is recorded and a message of the form (rec, sid, b) is stored, send (sent, sid,mb) to R and (sent, sid) to S. Ignore
future messages with the same sid.

Following the standard notation associated with Canetti’s UC security framework [Can01], we use Z to
denote the underlying environment. For a real protocol π and an adversary A, we use EXECπ,A,Z to denote
the real-world ensemble. Also, for an ideal functionality F and an adversary S, we use IDEALF,S,Z to denote
the corresponding ideal-world ensemble.

The Ideal Functionality for OT. The ideal functionality FOT for any OT protocol is described in Figure 4.
We adopt this description essentially verbatim from prior works [CLOS02, PVW08, DGH+20].
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Fig. 5. The ideal functionality FDCRS

FDCRS

FDCRS (parameterized by a distribution D) is run by parties P1, . . . , Pn and an adversary S as follows:

– Whenever receiving a message of the form (sid, Pi, Pj) from a party Pi, sample crs← D and send (sid, crs) to the
party Pi and send (sid, crs, Pi, Pj) to the adversary S.

– Whenever receiving the message of the form (sid, Pi, Pj) from a party Pj , send (sid, crs) to both the party Pj
and the adversary S.

The Ideal Functionality for CRS. Since we describe OT protocols in the CRS model, we also describe
the ideal functionality FDCRS (parameterized by a distribution D from which the CRS string is sampled) in
Figure 5. Again, we adopt this description essentially verbatim from prior works [CR03, PVW08, DGH+20].

Receiver’s UC Security. We say that an OT protocol πOT satisfies receiver’s UC security if for any
(malicious) adversary A corrupting the sender, there exists a simulator S such that for all environments Z,
we have:

EXECπOT,A,Z
c
≈ IDEALFOT,S,Z ,

where the ideal OT functionality FOT is as described in Figure 4.

Sender’s UC Security. We say that an OT protocol πOT satisfies sender’s UC security if for any (mali-
cious) adversary A corrupting the receiver, there exists a simulator S such that for all environments Z, we
have:

EXECπOT,A,Z
c
≈ IDEALFOT,S,Z ,

where the ideal OT functionality FOT is again as described in Figure 4.
Note that in the above descriptions, we adopt the same style of security definitions as was used in prior

work [CLOS02, PVW08, DGH+20]. We refer to Section A for the security model of adaptively secure MPC.

3.5 Garbling Schemes

A garbling scheme [Yao86, CPV17b] is a tuple Garble = (Gb,En,Ev), described as follows:

– Gb (1κ, C) → (GC,Keys): A randomized algorithm which takes as input the security parameter and a
circuit C : {0, 1}n → {0, 1}m and outputs a tuple of strings (GC,Keys), where GC is the garbled circuit
and Keys denotes the input-wire labels.

– En (x,Keys) = X: a deterministic algorithm that outputs the garbled input X corresponding to input x.
– Ev (GC,X) = y: A deterministic algorithm which evaluates garbled circuit GC on garbled input X and

outputs y.

We borrow this definition and the associated notations from the work of [CPV17b]. The garbling scheme
used in our protocols needs to satisfy standard properties such as correctness and privacy (we refer to [Yao86,
BHR12, CPV17b] for the definitions). We additionally borrow two extra properties from [CPV17b] for our
garbling schemes: namely, oblivious sampleability and equivocability, which we define here.

Definition 1. Perfect Correctness: A garbling scheme Garble is perfectly correct if for all input lengths
n ≤ poly(κ), circuits C : {0, 1}n → {0, 1}m and inputs x ∈ {0, 1}n, the following holds:

Pr
[
Ev(GC,En(Keys, x)) 6= C(x) : (GC,Keys)← Gb(1κ, C)

]
= 1.

Definition 2. Privacy [BHR12] A garbling scheme Garble is private if for all input lengths n ≤ poly(κ),
circuits C : {0, 1}n → {0, 1}m, there exists a PPT simulator S such that for all inputs x ∈ {0, 1}n, for
all probabilistic polynomial-time adversaries A, the following two distributions are computationally indistin-
guishable:
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– real(C, x) : run (GC,Keys)← Gb(1κ, C), and output (GC,En(x,Keys)).
– idealS(C, C(x)): Compute (GC′,X, st)← SGC(C, C(x)), output (GC′,X).

Oblivious Sampleability [CPV17b]. Oblivious sampleability allows the garbler to obliviously sample
a garbled circuit and a garbled input given the output, without the knowledge of the input keys Keys. It
also enables an honestly computed garbled circuit to be claimed as obliviously sampled. A garbling scheme

Garble = (Gb,En,Ev) is said to satisfy oblivious sampleability if there exist PPT algorithms G̃b and GbInv
defined as:

– G̃b(1κ, C, y) → (G̃C, X̃): A randomized algorithm that outputs an obliviously sampled garbled circuit

G̃C and obliviously sampled wire labels X̃ such that evaluating G̃C on X̃ would yield y as output,
– GbInv(r,Keys, x) → r̂: A randomness inversion algorithm that given some randomness of garbling r,

input-wire labels Keys, and an input x, outputs some random coins r̂,

such that for any polynomial-time circuit C and for all input output pairs (x, y) such that C(x) = y it holds
that

(GbInv(r,Keys, x),GC,X)
c
≈ (r̃, G̃C, X̃),

where for random coins r, r̃ ← {0, 1}κ, we have

(GC,Keys) = Gb(1κ, C; r), X = En(x,Keys), (G̃C, X̃) = G̃b(1κ, C, y; r̃).

The point-and-permute variant of Yao’s garbling scheme by [BMR90] based on one-way functions satisfies
oblivious sampling property.

Equivocal Garbling [CPV17b]. Finally, we require the garbled circuit to be equivocal [CPV17b]. It allows

a privacy simulator SGC to generate a fake garbled circuit G̃C and fake input wire labels X̃ that always
evaluate to a fixed output. Later, the simulator can open (G̃C, X̃) to a particular input x by providing
consistent randomness used in the garbling process. We define this as follows: a garbling scheme Garble =
(Gb,En,Ev) is said to be equivocal if there exists a pair of PPT algorithms (S1

GC,S2
GC), such that any PPT

adversary A wins the following game with at most negligible advantage:

1. A gives a circuit C and an input x to the challenger.
2. The challenger samples a bit b← {0, 1}.

– If b = 0 : It computes (GC,Keys)← Gb(C; r) and X← En(x,Keys).

– If b = 1 : It sets y = C(x). It runs the simulator (GC,X, st) ← S1
GC(C, y). It runs the simulator

(Keys, r)← S2
GC(st, x).

3. The challenger sends (GC,X,Keys, r) to the adversary A.

4. The adversary outputs a bit b′.

The adversary wins if b = b′. For the privacy game, S1
GC plays the role of privacy simulator in Def. 2 for the

equivocal garbling scheme.
The garbling scheme of [CPV17b] based on one-way function satisfies equivocal property. Moreover, the

wire labels of [CPV17b] are uniformly distributed.

3.6 Trapdoor Simulatable PKE.

We recall the definition of trapdoor simulatable PKE from [CDMW09]. A trapdoor simulatable PKE scheme
in the CRS model is a tuple of the form (Setup,Gen,Enc,Dec, oGen, oEnc), where the tuple (Setup,Gen,Enc,Dec)
is a standard PKE scheme that is augmented with oblivious sampling algorithms (oGen, oEnc) and random-
ness inverting algorithms (rGen, rEnc). The trapdoor of the setup string allows generating a public key (resp.
a ciphertext) honestly and then claiming that the public key (resp. a ciphertext) was obliviously sampled
using the rGen (resp. the rEnc) algorithm. Formally, we require that for any message m ∈ {0, 1}`, letting
(crs, td) = Setup(1κ),

(pk, c, r̂G, r̂E)
c
≈ (p̃k, c̃, r̃G, r̃E),

where for random coins rG, rE , r̃G, r̃E ← {0, 1}κ, we have (pk, sk) = Gen(crs; rG), c = Enc(crs, pk,m; rE),

p̃k = oGen(crs; r̃G), c̃ = oEnc(crs, p̃k; r̃E), and

r̂G = rGen(crs, rG, td), r̂E = rEnc(crs, rG, rE ,m, td).
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3.7 Non-Committing Encryption in the crs model.

A non-committing encryption in the setup model consists of four algorithms NCE = (Setup,Gen,Enc,Dec).
It is a public key encryption scheme which allows a simulator to encrypt a plaintext in the presence of
an adaptive adversary. Given a trapdoor, the simulator (on behalf of the honest party) can produce some
dummy ciphertext c without the knowledge of any plaintext m. Later when the honest party gets corrupted
and the simulator produces matching randomness (or decryption key) s.t. c decrypts to m. More formally,
it is defined as follows.

Definition 3. (Non-Committing Encryption). A non-committing (bit) encryption scheme (NCE) con-
sists of a tuple (Setup,Gen,Enc,NCE.Dec,S) where (Setup,Gen,Enc,Dec) is an IND-CPA public key encryp-
tion scheme in the crs model and S is the simulation satisfying the following property: for b ∈ {0, 1} the
following distributions are computationally indistinguishable:

{(pk, c, rG, rE) : (pk, sk)← Gen(crs, rG), c = Enc(crs, pk, b; rE)}κ,b
c
≈

{(pk, c, rbG, rbE) : (pk, c, r0
G, r

0
E , r

1
G, r

1
E)← S(crs, td)}κ,b,

where (crs, td)← Setup(1κ).

Definition 4. (Augmented Non-Committing Encryption). An augmented NCE scheme consists of a
tuple of algorithms (Setup,Gen,Enc,Dec,S, GenObl,GenInv) where (Setup,Gen,Enc,Dec,S) is an NCE in the
crs model and:

- Oblivious Sampling: GenObl(1
κ) obliviously generates a public key pk (without knowing the associated secret

key sk.
- Inverse Key Sampling: GenInv(pk) explains the randomness for the key pk satisfying the obliviousness

property. Given the trapdoor td of the crs, the following distributions are indistinguishable:

{(pk, r) : pk← NCE.GenObl(crs; r)}κ ≈

{(pk, r′) : (pk, sk)← NCE.Gen(crs; rG); r′ ← NCE.GenInv(crs, rG, pk, td)}κ ,

where (crs, td)← Setup(1κ).

3.8 Cryptographic Background

Min-entropy and Leftover Hash Lemma. For a discrete random variable Z with sample space Ω, its
min-entropy is defined as

H∞(Z) = min
ω∈Ω
{− log Pr[Z = ω]}.

For two random variables Y and Z, we use H∞(Z|Y ) to denote the min-entropy of Z conditioned on Y . We
will use the following lemma, which is a simplified version of the leftover hash lemma.

Lemma 1. Let {Hs : Z → Y }s∈S be a family of pairwise independent hash functions, and assume that Z
and S be discrete random variables over Z and S, respectively. If H∞(Z) > log |Y |+ 2 log(ε−1) we have

∆[(S,HS(Z)), (S,U)] ≤ ε,

where ∆ denotes the statistical distance and U denotes the uniform distribution over the set Y .

We will also use the following corollary of the leftover hash lemma.

Lemma 2. Let G be an (additive) finite abelian group such that |G| = λω(1). Let n be an integer such that
n > log |G|+ ω(log(λ)). If g← Gn and s← {0, 1}n, we have

(g,

n∑
i=1

si · gi)
s
≈ (g, u),

where u← G is a uniformly chosen element from G.
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One-Way Function. Let P , X and Y be sets indexed by the parameter λ, and let DP and DX be
distributions on P and X respectively. A (DP , DX)-OWF family is a family of efficient computable functions
{fpp(·) : X → Y }pp∈P such that for all PPT adversaries A we have

Pr[fpp(A(pp, fpp(x))) = fpp(x)] ≤ negl(λ),

where pp ← DP and x ← DX . If DP and DX are uniform distributions, then we simply speak of an OWF
family.

Weak Pseudorandom Permutation. Let K and X be sets indexed by λ, and let DK and DX be
distributions on K and X respectively. A (DK ,DX)-weak PRP (wPRP) is a family of efficiently computable
permutations {F (k, ·) : X → X}k∈K such that for all PPT adversaries A we have∣∣∣Pr[AF

$
k (1λ) = 1]− Pr[Aπ

$

(1λ) = 1]
∣∣∣ ≤ negl(λ),

where k ← Dk, π ← SX and π$ is the randomized oracle that samples x← DX and outputs (x, π(x)). If DK
and DS are uniform distributions, then we simply speak of a wPRP family.

3.9 Cryptographic Assumptions

Definition 5. (Computational Diffie-Hellman Assumption). We say that the CDH assumption holds
in a group G if for any PPT adversary A,

Pr[A(g, h, T ) = Z] = neg(κ).

holds, where h, T ← G, and T = gt, Z = ht.

For our LPN-based construction, we rely on a variant of LPN assumption with noise rate n−ε for any
constant ε > 1/2. In addition, we draw the secret from error (Bernoulli) distribution, which is known to
be equivalent to standard LPN assumption [ACPS09, DGH+20]. We formally define this variant of LPN as
follows:

Definition 6. (Learning Parity with Noise Assumption). Let n = poly(λ), and let ε < 1/2 be a
fixed constant. In addition, let Bp be Bernoulli distribution which outputs 1 with probability ρ = n−ε. If
A← Zn×n2 , s← Bnρ , and s← Bnρ , then the LPN assumption states that

(A,As + e)
c
≈ (A,As + u),

where u← Zn2 .

3.10 Commitment Schemes

We define an equivocal commitment scheme Com = (Setup,Com,Ver,Equiv) as follows:

Definition 7. (Correctness) Com is a correct commitment scheme if the following holds true

Pr
[
Ver(m, c, crs, r) = 1|(crs, td)← Setup(1κ), c← Com(m, crs; r)

]
= 1

Definition 8. (Binding) Com is computationally binding scheme if the following holds true for all PPT
adversary A

Pr
[
(m0, r0,m1, r1)← A(crs)|(crs, td)← Setup(1κ),

Com(m0; r0) = Com(m1; r1)
]
≤ neg(κ)
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Definition 9. (Hiding) Com is computationally hiding scheme if the following holds true for all PPT
adversary A = (A1,A2).

Pr
[
b == b′|(crs, td)← Setup(1κ), (m0,m1, st)← A1(crs), b←r {0, 1},

(c, d)← Com(mb), b
′ ← A2(c; st)

]
≤ 1

2
+ neg(κ)

Definition 10. (Equivocal) Com is equivocal if it has a PPT algorithm Equiv s.t. the following holds true
for all PPT adversary A and all message pairs (m0,m1).∣∣∣Pr

[
A(c, r) = 1|(crs, td)← Setup(1κ),m← A(crs), c = Com(crs,m; r)

]
−Pr

[
A(c, r) = 1|(crs, td)← Setup(1κ),m← A(crs), c = Com(crs,m′; r′),

r = Equiv(m, r, c′, td)
]∣∣∣ ≤ neg(κ), for m 6= m′

A commitment scheme with a sampling algorithm C̃om and randomness inversion algorithm C̃omInv

satisfies oblivious commitment sampling property as follows:

Definition 11. (Oblivious Sampling) Com satisfies oblivious sampling if the following holds true for all
PPT adversary A = (A1,A2).∣∣Pr[A2(st, c, r̃) = 1|(m, st)← A1(crs), c = C̃om(crs; r̃)]− Pr[A2(st, c, r̃) = 1|

(m, st)← A1(crs), c = Com(crs,m; r), r̃ ← C̃omInv(crs,m, r, td)]
∣∣ < neg(κ),

where (crs, td)← Setup(1κ).

3.11 Cryptographic Group Actions

In this section we recall the definitions of cryptographic group actions from [ADMP20].

Definition 12. (Group Action) A group G is said to act on a set X if there is a map ? : G×X → X that
satisfies the following two properties:

1. Identity: If e is the identity element of G, then for any x ∈ X, we have e ? x = x.
2. Compatibility: For any g, h ∈ G and any x ∈ X, we have (gh) ? x = g ? (h ? x).

The authors of [ADMP20] use the abbreviated notation (G,X, ?) to denote a group action.

Remark 1. If (G,X, ?) is a group action, for any g ∈ G the map πg : x 7→ g ? x defines a permutation of X.

Properties of group actions. The authors of [ADMP20] consider group actions that satisfy one or more of
the following properties:

1. Transitive: A group action (G,X, ?) is said to be transitive if for every x1, x2 ∈ X, there exists a group
element g ∈ G such that x2 = g?x1. For such a transitive group action, the set X is called a homogeneous
space for G.

2. Faithful: A group action (G,X, ?) is said to be faithful if for each group element g ∈ G, either g is the
identity element or there exists a set element x ∈ X such that x 6= g ? x.

3. Free: A group action (G,X, ?) is said to be free if for each group element g ∈ G, g is the identity element
if and only if there exists some set element x ∈ X such that x = g ? x.

4. Regular: A group action (G,X, ?) is said to be regular if it is both free and transitive. For such a regular
group action, the set X is called a principal homogeneous space for the group G, or a G-torsor.

Remark 2. Typically group action-based cryptography has focused on regular actions. If a group action is
regular, then for any x ∈ X, the map fx : g 7→ g ? x defines a bijection between G and X; in particular, if G
(or X) is finite, then we must have |G| = |X|.
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Effective Group Action The authors of [ADMP20] define an effective group action (EGA) as follows.

Definition 13. (Effective Group Action) A group action (G,X, ?) is effective if the following properties are
satisfied:

1. The group G is finite and there exist efficient (PPT) algorithms for:

(a) Membership testing, i.e., to decide if a given bit string represents a valid group element in G.
(b) Equality testing, i.e., to decide if two bit strings represent the same group element in G.
(c) Sampling, i.e., to sample an element g from a distribution DG on G. In this paper, We consider

distributions that are statistically close to uniform.
(d) Operation, i.e., to compute gh for any g, h ∈ G.
(e) Inversion, i.e., to compute g−1 for any g ∈ G.

2. The set X is finite and there exist efficient algorithms for:

(a) Membership testing, i.e., to decide if a bit string represents a valid set element.
(b) Unique representation, i.e., given any arbitrary set element x ∈ X, compute a string x̂ that canoni-

cally represents x.

3. There exists a distinguished element x0 ∈ X, called the origin, such that its bit-string representation is
known.

4. There exists an efficient algorithm that given (some bit-string representations of) any g ∈ G and any
x ∈ X, outputs g ? x.

Computational assumptions. The authors of [ADMP20] define certain computational assumptions pertaining
to group actions.

Definition 14. (One-Way Group Action) A group action (G,X, ?) is (DX ,DG)-one-way if the family of
efficiently computable functions {fx : G→ X}x∈X is (DX ,DG)-one-way, where fx : g 7→ g ? x, and DX , DG
are distributions on X, G respectively.

Definition 15. (Weak Pseudorandom Group Action) A group action (G,X, ?) is (DG,DX)-weakly pseudo-
random if the family of efficiently computable permutations {πg : X → X}g∈G is (DG,DX)-weakly pseudo-
random, where πg : x 7→ g ? x, and DX , DG are distributions on X, G respectively.

In each of the definitions above, if DG is a probability distribution on G and DX is the distribution
induced on X by taking g ← DG and outputting g ? x0, then we simply write DG-OW group action for
(DX ,DG)-OW group action, and similarly for weak unpredictable/pseudorandom group actions. If both
distributions are uniform (or statistically close to uniform), we omit them.

Restricted Effective Group Action The authors of [ADMP20] pointed out that while EGA is a useful
abstraction, sometimes it is too powerful in comparison to what is achievable in practice. A Restricted
Effective Group Action (REGA) is a weakening of EGA, where we can only evaluate the action of a generating
set of small cardinality.

Definition 16. (Restricted Effective Group Action) Let (G,X, ?) be a group action and let g = (g1, . . . , gn)
be a (not necessarily minimal) generating set for G. The action is said to be g-restricted effective, if the
following properties are satisfied:

– G is finite and n = poly(log(|G|)).
– The set X is finite and there exist efficient algorithms for:

1. Membership testing, i.e., to decide if a bit string represents a valid set element.
2. Unique representation, i.e., to compute a string x̂ that canonically represents any given set element

x ∈ X.

– There exists a distinguished element x0 ∈ X, called the origin, such that its bit-string representation is
known.

– There exists an efficient algorithm that given any i ∈ [n] and any bit string representation of x ∈ X,
outputs gi ? x and g−1

i ? x.
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Although an REGA is limited to evaluations of the form gi ? x, this is actually enough to evaluate the
action of many, and potentially all elements of G without even needing axioms on the effectivity of G.

A word on (g1, . . . , gn) is a finite sequence σ ∈ {g1, . . . , gn, g
−1
1 , . . . , g−1

n }∗, to which we canonically
associate an element of G by

σ = σ1σ2 · · ·σ` 7→
∏̀
i=1

σi.

By hypothesis, any element of G can be represented by a word on g, however this representation may not
be unique, nor equality needs to be efficiently testable. From the definition of a g-REGA, it is clear that the
action on x ∈ X of any word of polynomial length on g can be computed in polynomial time.

When G is abelian, words on g can be rewritten as vectors in Zn, canonically mapped to G by

(a1, . . . , an) 7→
n∏
i=1

gaii .

It follows from the axioms of REGA that the action of a vector a ∈ Zn can be efficiently evaluated on any
x ∈ X as long as ‖a‖ is polynomial in log(|G|), where ‖ · ‖ is any Lp-norm.

Protocols built on REGA will need to sample elements from G that are statistically close to uniform
and for which the group action is efficiently computable. Prior works suggest sampling from a distribution
DG on the words on g in the non-abelian case, or from a distribution on vectors in Zn in the abelian case.
Classic choices in the latter case are balls of fixed radius in L∞-norm [CLM+18], in L1-norm [NOTT20],
in weighted infinity norms [Sto12, MR18], or discrete Gaussian distributions [DG19]. The latter is plausibly
sufficient for applications that require group elements to be sampled from distributions statistically close to
uniform [DG19].

4 iOT with Oblivious Sampleability from r-iOT

In this section, we present the first generic construction in our overall framework: we show how to build a
two-message iOT protocol in the CRS model with both oblivious sender and receiver sampleability given a
two-message r-iOT protocol (iOT with receiver oblivious sampleability but not necessarily sender oblivious
sampleability). For simplicity of exposition, we describe the construction in the CRS model against mali-
cious corruptions; the corresponding construction in the plain model against semi-honest corruptions follows
analogously.

4.1 Overview and Intuition

We construct a two-message iOT protocol with oblivious sender and receiver sampleability in the CRS model
given the following ingredients: (1) a two-message r-iOT protocol in the CRS model which satisfies receiver
oblivious sampleability, (2) an equivocal garbling scheme, (3) an obliviously sampleable garbling scheme,
and (4) an obliviously sampleable commitment scheme (in the CRS model). The latter three schemes are
implied by one-way functions (and hence by r-iOT).

A First Attempt. We describe below an initial attempt to build iOT with receiver and sender oblivious
sampleability from r-iOT. This simple construction additionally uses a standard garbling scheme and an
obliviously sampleable non-interactive commitment scheme. Additionally, let C[β, c](r,m) denote a circuit
that is hardwired with a bit β ∈ {0, 1} and a commitment c. It takes as input some randomness r and a
message m, and outputs m if c is valid commitment to β using randomness r. Otherwise, it outputs ⊥ (the
circuit C is also hardwired with the CRS string for the commitment scheme, but we avoid mentioning this
explicitly for simplicity of presentation.).

– iOTR1: The receiver uses the commitment scheme to create a commitment c = Com(b; r) to its input
choice bit b under randomness r. The receiver transmits this commitment c to the sender. Then the
receiver runs two sets of r-iOT protocols corresponding to bit 0 and bit 1. For bit b, the receiver uses
the r-iOT protocol to send one r-iOT-receiver message corresponding to each bit of the randomness r (in
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parallel). For bit 1− b, the receiver samples ` = |r| number of r-iOT protocol messages obliviously. The
receiver sends the two sets of ` protocol messages of r-iOT to the sender.

– iOTS: The sender uses the commitment c from the receiver to create two circuits C0,c(·,m0) and C1,c(·,m1)
as described earlier, where m0 and m1 are the sender input messages. It then garbles these circuits using
the garbling scheme to create a pair of garbled circuits GC0 and GC1, along with the corresponding
wire labels for their input bits.

The sender sends across GC0 and GC1 to the receiver. The sender also sends the wire labels for m0

and m1 corresponding to GC0 and GC1 respectively. In parallel, the sender uses the underlying r-iOT
scheme and the two sets of ` = |r| r-iOT messages from the receiver to generate two sets of ` number of
r-iOT-sender messages. The sender inputs to the r-iOT are the wire labels of the garbled circuits.

Let us denote the sets as the 0th set and the 1th set corresponding to GC0 and GC1. The 0th (resp. 1th)
set corresponds to the ` bits of the commitment randomness of the receiver corresponding to c being a
commitment to 0 (resp 1). For the ith OT in the 0th set, the sender considers its inputs as the garbled
circuit wire labels (for GC0) corresponding to the ith bit of the receiver randomness, which is provided
as input to the garbled circuit. Similarly, for the ith OT in the 1th set, the sender considers its inputs as
the garbled circuit wire labels (for GC1) corresponding to the ith bit of the receiver randomness, which
is provided as input to the garbled circuit. The sender sends the two sets of ` number of r-iOT sender
messages to the receiver.

– iOTR2: The receiver considers the bth set of r-iOT sender messages. It uses the r-iOT-sender messages
to recover the wire labels corresponding to its randomness string r for garbled circuits GCb. It then
evaluates GCb on r by using the corresponding wire labels to recover the message mb.

Correctness. It can be observed that correctness trivially holds, since an honest receiver obtains the wire
labels (of GCb) corresponding to randomness r from the bth set of r-iOT sender messages. Then it evaluates
GCb to obtain mb. Evaluation is successful since the garbled verifies that the commitment c = Com(b; r) is
correct given randomness r and bit b, and if verification succeeds then it outputs mb to the receiver.

Receiver Security. Arguing receiver’s indistinguishability security is relatively straightforward. Informally,
the commitment c computationally hides the receiver’s choice bit b and the r-iOT messages sent by the
receiver computationally hide the receiver’s randomness string r.

Sender Security. To argue sender’s indistinguishability security, we need to establish (at a high level) that
the receiver learns no information about m1−b. To see why this is the case, observe that the only information
about m1−b that the receiver could learn is from the garbled circuit GC1−b. However, the receiver cannot
evaluate GC1−b to anything other than ⊥ since: (1) it cannot prove that c is a commitment to (1− b) under
randomness some r′ (this follows from the binding property of the commitment scheme), and (2) it cannot
recover any input labels to GC1−b other than those corresponding to r′ (due to the sender privacy of the
underlying r-iOT protocol). At this point, we can invoke the privacy of the garbling scheme itself to argue
that the receiver learns no information about the message m1−b.

Oblivious Receiver Sampleability. The above protocol satisfies oblivious receiver sampleability since the
commitment is obliviously sampleable and the r-iOT messages are obliviously receiver sampleable.

Barriers to Sender Oblivious Sampleability. The above approach fails to give us sender’s oblivious sam-
pleability as explain next. Note that the sender’s message has two parts - the garbled circuits (GC0,GC1),
and the two sets of ` number of r-iOT-sender messages. Using an obliviously sampleable garbling scheme
naturally allows oblivious sampleability for the first part of the sender’s message, i.e. the garbled circuits
GC0 and GC1. However, it is not clear if the second part of the sender’s message can be obliviously sampled
since the underlying r-iOT protocol does not necessarily support sender oblivious sampleability.

Recall the sender’s oblivious sampleability security definition as defined in Definition 3.3. In this game,

the challenger must provide the adversary with the randomness r̃ used in the ĩOTS algorithm. Since we have
an obliviously sampleable garbling scheme available to us by assumption, the garbled circuits (GC0,GC1)
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can be obliviously sampled. However, the r-iOT sender messages are not obliviously sampleable, since r-iOT
does not give sender’s oblivious sampleability by definition.

As a result, we can construct adversary for the sender’s oblivious sampleability game that can distinguish
between an honestly generated sender message from an obliviously sampled one. Since the adversary has
access to the oblivious sampling randomness r̃, it can obtain all of the wire labels from the r-iOT sender
messages in the sampling game. It can then evaluate the garbled circuits on whatever inputs it wants using all
the wire labels and as a result distinguish an honestly generated garbled circuit from an obliviously sampled
one, as the evaluation of the “obliviously sampled” garbled circuit will be unlikely to be correct.

4.2 Our Protocol

We address this issue by using two separate sets of garbled circuits. The first set of garbled circuits are
created using a garbling scheme Garble′ that is obliviously sampleable [LP09], while the second set of garbled
circuits are created using a garbling scheme Garble that is equivocal [CPV17b]. More concretely, we use the
following circuits (hardwired with the CRS string for the commitment scheme):

– Let C[β, c](r, p) denote a circuit that is hardwired with a bit β ∈ {0, 1} and a commitment c. It takes
as input some randomness r and a string p, and outputs p if c is valid commitment to the bit β using
randomness r. Otherwise, it outputs ⊥.

– Let C′(c′, s,m) denote a circuit that takes as input a commitment c′, some randomness s and a message
m, and outputs m if c′ is valid commitment to 0 using randomness s. Otherwise, it outputs ⊥.

Note. The circuits C′ and C are both also hardwired with the CRS string for the commitment scheme, but
we again avoid mentioning this explicitly for simplicity of presentation.

The Receiver’s Message. In our modified protocol, the receiver message to the sender is still generated as
in the simple protocol described earlier. In other words, the receiver uses the commitment scheme to create
a commitment c to its input choice bit b under randomness r. The receiver transmits this commitment c to
the sender. Then the receiver also uses the underlying r-iOT protocol to compute two sets of `(= |r|) number
of r-iOT-receiver message corresponding to each bit of the randomness r (in parallel). The receiver runs two
sets of r-iOT protocols corresponding to bit 0 and bit 1. For bit b, the receiver uses the r-iOT protocol to
send one r-iOT-receiver message corresponding to each bit of the randomness r (in parallel). For bit 1 − b,
the receiver samples ` number of r-iOT protocol messages obliviously. The receiver sends the two sets of `
protocol messages of r-iOT to the sender.

The Sender’s Message. The key alteration is in how the sender’s message to the receiver is generated. The
sender proceeds as follows:

– The sender creates two commitments c′0 = Com(0; s0) and c′1 = Com(0; s1) - both of which are commit-
ments to 0 under randomness s0 and s1 respectively.

– The sender then uses the obliviously sampleable garbling scheme Garble′ to create two (independent) gar-
bled circuits GC′0 and GC′1 for the circuit C′.

– Corresponding to GC′0, the sender computes p0 – a string representing the set of wire-labels in GC′0
corresponding to the input c′0. Similarly, corresponding to GC′1, the sender computes p1 – a string
representing the set of wire-labels corresponding to c′1 in GC′1.

– For β ∈ {0, 1}, the sender sets Vβ as the wire labels in GC′β corresponding to (sβ ||mβ). It also represents

pβ as the garbled sets pβ as the garbled input for c′β corresponding to GC′β .

– At this point, the sender does something very similar to flavor to its counterpart in the simpler protocol
described earlier. In particular, it uses the commitment c from the receiver and the p0 and p1 strings
from the previous step to create two circuits C0,c(·, p0) and C1,c(·, p1). It then garbles these circuits using
the equivocal garbling scheme Garble to create a pair of garbled circuits GC0 and GC1, along with the
corresponding wire labels for their input bits.

21



Fig. 6. Constructing iOT with Oblivious Sampleability from r-iOT

πiOT

– Public Inputs: crsiOT = (crsr-iOT, crscom) where crsr-iOT and crscom are the setup strings of r-iOT and Com respec-
tively.

– Circuits: Circuit C[c, crscom, β](r, p) = p if c = Com(crscom, β; r), else C outputs ⊥. Circuit C′[crscom](c′, s,m) = m if
c′ = Com(crscom, 0; s), else it outputs ⊥.

– Private Inputs: S has input bits (m0,m1) where m0,m1 ∈ {0, 1}; R has input choice bit b.

– Primitives: Let πr-iOT = (r-iOTR1, r-iOTS, r-iOTR2, ˜r-iOTR) denote a receiver obliviously sampleable indistin-
guishable OT. (Com, C̃om) is an obliviously sampleable commitment scheme. Garble = (Gb,En,Ev,SGC) is an
equivocal garbling scheme. Garble′ = (Gb′,En′,Ev′, G̃b

′
) is an obliviously sampleable garbling scheme.

iOTR1(crsiOT, b):

– R commits to b using randomness r as c = Com(b; r). Let |r| = `.

– R computes πr-iOT receiver messages as {γ0,i, γ1,i} where γb,i = r-iOTR1(crsr-iOT, ri) and γ1−b,i ← ˜r-iOTR(crsr-iOT)

for i ∈ [`].
– R sends MR =

(
c, {γ0,i, γ1,i}i∈[`]

)
as the receiver’s message.

iOTS(crsiOT,MR, (m0,m1)):
S runs the following algorithm for β ∈ {0, 1} :

– S computes c′β = Com(0; sβ). S garbles
(
GC′β ,Keys

′
β

)
= Gb′(1κ, C′[crscom]; rβ,GC′ ). S computes {Yβ,i}i∈[t+`+1] =

En′(c′β ||sβ ||mβ ,Keys
′
β).

– The sender sets Vβ = {Yβ,i}i∈[t,t+`], where {Yβ,i}i∈[t,t+`] is the garbled input for (sβ ||mβ) in GC′β . The sender
sets pβ = {Yβ,i}i∈[t] as the garbled input for c′β corresponding to GC′β .

– S garbles another garbled circuit for circuit C as (GCβ ,Keysβ) = (GCβ , {X0
β,i,X

1
β,i}i∈[`+tκ]) =

Gb(1κ, C[c, crscom, β]; rβ,GC). Let |pβ | = tκ from the previous step. Sender sets Xpβ = En(pβ , {X0
β,i,X

1
β,i}i∈[`,`+tκ])

as the garbled input for pβ corresponding to GCβ .

– S computes πr-iOT sender messages for receiver’s input r in GCβ as τβ,i = r-iOTS(crsr-iOT, γβ,i, (X
0
β,i,X

1
β,i); rβ,r-iOT)

for i ∈ [`]. It corresponds to the wire labels in GCβ corresponding to the bits of the commitment randomness
r sampled by the receiver for constructing commitment c = Com(crscom, β; r).

S sends Ms = {MS,β}β∈{0,1} = {GCβ ,GC′β , {τβ,i}i∈[`],X
p
β ,Vβ}β∈{0,1} and sets rS = (r0||r1) where rβ =

(rβ,GC, rβ,GC′ , rβ,r-iOT) for β ∈ {0, 1}.

iOTR2(crsiOT,MS, b):

– R computes the wire labels corresponding to commitment randomness r in GCb as Xi = r-iOTR2(crsr-iOT, τb,i) for
i ∈ [`]. R evaluates GCb on {Xi}i∈[`] and Xpb to receive garbled input U for c′b corresponding to GC′ as follows:

U = Ev(GCb, {Xi}i∈[`]||X
p
b ),

where |U| = tκ and U = pb corresponds to the wire labels for the commitment c′b in GC′b.

– R computes mb by evaluating GC′b on U and Vb as follows:

mb = Ev′(GC′,U,V).

– As in the earlier protocol, the sender sends across GC0 and GC1 to the receiver. The sender sends the
wire labels, denoted as Xp0 and Xp1, for p0 and p1 corresponding to GC0 and GC1 respectively. Next, the
sender computes the r-iOT sender messages similar to the previous simple protocol. The sender inputs to
the r-iOT are the wire labels of the garbled circuits GC0 and GC1 corresponding to the receiver’s input
randomness for the receiver’s commitment c.

More formally, the sender uses the underlying r-iOT scheme and the two sets of ` number of r-iOT receiver
messages from the receiver to generate two sets of ` number of r-iOT-sender messages. Let us denote the
sets as the 0th set and the 1th set corresponding to GC0 and GC1. The 0th set corresponds to the `
bits of the commitment randomness of the receiver corresponding for commitment c. For the ith OT in
the 0th set, the sender encrypts the garbled circuit wire labels (for GC0) corresponding to the ith bit of
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the receiver randomness, which is provided as input to the garbled circuit. Similarly, for the ith OT in
the 1th set, the sender encrypts the garbled circuit wire labels (for GC1) corresponding to the ith bit
of the receiver randomness, which is provided as input to the garbled circuit. The sender sends the two
sets of ` number of r-iOT sender messages to the receiver.

The sender also sends V0 and V1 to the receiver, which are the wire labels for inputs (s0||m0) and (s1||m1)
in GC′0 and GC′1 respectively. Additionally, the sender also sends across the two garbled circuits GC′0
and GC′1 to the receiver.

Receiver’s Message-Recovery. As in the simpler protocol described earlier, the receiver uses the r-iOT-sender
messages to recover the wire labels corresponding to its randomness string r for garbled circuit GCb. It
then evaluates GCb on r by using the corresponding obtained wire labels from the r-iOT protocols and Xpb
string. However, unlike the simple protocol, it does not immediately recover the message mb. Instead, it
recovers the intermediate string U = pb. Recall, however, that U = pb is nothing but a string representation
of the wire-labels corresponding to the garbled circuit GC′b on c′b. Combined with the string Vb, U||Vb is
the garbling of (c′b, sb,mb) for GC′b. Hence, the receiver can evaluate the garbled circuit GC′b using these
wire-labels to recover the message mb.

The complete solution is described formally in Figure 6. The oblivious sampling and randomness inversion
algorithms are described in Figure 7.

Receiver Oblivious Sampleability. The receiver obliviously computes ˜iOTR by obliviously sampling the com-

mitment c and obliviously sampling the r-iOTR messages using ˜r-iOTR algorithm. To argue oblivious sam-

pleability, we need an inversion algorithm ˜iOTRInv that given an honestly generated MR as the receiver’s
message and the corresponding randomness rR computes the oblivious sampling randomness r̂R such that
the honestly generated receiver message and r̂R is indistinguishable from obliviously sampled MR and the
sampling randomness. The inversion algorithm receives the commitment randomness and the r-iOTR receiver
randomness as input corresponding to honestly generated commitment c and r-iOTR messages. The inver-

sion algorithm invokes the inversion algorithms C̃omInv (of commitment scheme) and ˜r-iOTRInv (for inverting
randomness for r-iOTR) to generate the sampling randomness as r̂R = (r̂Com||r̂r-iOT).

Sender Oblivious Sampleability. We now argue that the modified construction also achieves sender oblivious

sampleability. To obliviously sample, i.e. ĩOTS, a sender message for the branch w = (1 − b), the sender
obliviously samples GC′w (recall that GC′w is generated using an obliviously sampleable garbling scheme

Garble′) to receive the obliviously sampled wire labels Ỹ. The sender uses these wire labels to compute Ṽw
and p̃w using Ỹ. The sender garbles GCw as per the “real” garbling scheme and computes X̃

p
by encoding

p̃w. The r-iOT messages are computed using the wire labels of GCw. Formal protocol details can be found

in Fig. 7. To argue oblivious sampleability, we need an inversion algorithm ˜iOTSInv that given an honestly
generated MS as the sender’s message and the corresponding randomness rS computes the oblivious sampling
randomness r̂S such that the honestly generated receiver message and r̂S is indistinguishable from obliviously
sampled MR and the sampling randomness rS. The corresponding inversion algorithm takes as input the
randomness used for correctly constructing GCw, GC′w and r-iOT messages. The simulator can now rely
on the oblivious sampleability of the garbling scheme Garble′ to claim that GC′w was, in fact, obliviously
sampled. The randomness for the honestly generated r-iOT messages and GCw is provided as the sampling
randomness. This is indistinguishable from an obliviously sampled sender message since in both cases GCw
evaluates to ⊥. At this point, we rely on the equivocal property of the garbling scheme Garble to argue that
these two cases are indistinguishable since the inputs of GCw are predetermined from receiver’s OT message.
This holds true even when the sampling adversary gets all the input wire labels for GCw from the r-iOT
randomness. This is the fundamental reason why we added the extra “layer” of garbling to our protocol.
In the formal proof, this argument is a bit more technically involved: we need to also rely on distinguisher
dependent simulation techniques [JKKR17, DGH+20].

We prove that our OT protocol in Fig. 6 satisfies receiver and sender privacy, and we prove that the
protocol satisfies receiver and sender oblivious sampleability (via the oblivious sampling and randomness
inversion algorithms in Fig. 7) by proving Thm. 8.
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Fig. 7. Oblivious Sampling and Randomness Inversion Algorithms for iOT

ĩOTR(crsiOT):

R computes c ← C̃om(crscom; rCom) and γβ,i ← ˜r-iOTR(crsr-iOT; rr-iOT,β,i) for β ∈ {0, 1}, i ∈ [`]. Set rr-iOT =

{rr-iOT,β,i}β∈{0,1},i∈[`]. R returns rR = (rCom||rr-iOT) as the sampling randomness.

˜iOTRInv(crs,MR, td = (tdCom, tdr-iOT), rR)

Denote rR = (rCom||rr-iOT||b||r) as the randomness for an honestly generated MR = iOTR1(crsiOT, b; rR). Obtain r̂Com =

C̃omInv(crscom, b, rCom, tdCom) and r̂r-iOT = { ˜r-iOTRInv(crsr-iOT, γβ,i, tdr-iOT, rr-iOT,β,i)}β∈{0,1},i∈[`]. Return r̂R = (r̂Com||r̂r-iOT)

as the randomness.˜iOTS(crsiOT,MR, w,m1−w; rS):

– S obliviously samples garbled circuit as (G̃C
′
w, Ỹ) = G̃b

′
(1κ, C′[crscom],⊥; rw,GC′ ) using randomness rw,GC′ . The

sender sets p̃w = {Ỹw,i}i∈[t] and Ṽw = {Ỹw,i}i∈[t,t+`].

– S correctly garbles GCw as (GCw,Keysw) = (GCw, {X0
w,i,X

1
w,i}i∈[`+tκ]) = Gb(1κ, C[c, crscom, b]; rw,GC) using ran-

domness rw,GC. Sender sets X̃
p
w= En(p̃w, {X0

w,i,X
1
w,i}i∈[`,`+tκ]) as the garbled input for p̃w in GCw.

– S computes τw,i messages correctly as follows. S computes τw,i = r-iOTS(crsr-iOT, γw,i, (X
0
w,i,X

1
w,i); rw,r-iOT,i) using

randomness rw,r-iOT,i for i ∈ [`]. Denote rw,r-iOT = {rw,r-iOT,i}i∈[`].

– If m1−w 6= ⊥, S computes MS,1−w correctly corresponding to message m1−w using randomness r1−w. Else, S

repeats the above steps for branch 1− w similar to branch w.

– S sets Ms,w = (GCw, G̃C
′
w, {τw,i}i∈[`], X̃

p
w, Ṽw). Set rw as the garbling randomness for GCw, G̃C

′
w and {τw,i}i∈[`]

as rw = (rw,GC||rw,GC′ ||rw,r-iOT).

– Return MS = (MS,0,MS,1) as the sender OT message. Set the sender randomness as rS = (r0||r1).

˜iOTSInv(crs, w,MS, td = ⊥, rS) (Inverts randomness for branch w)

– Denote rS = (r0||r1) and set r̂1−w = r1−w as the randomness for an honestly generated MS message.

– rw contains the garbling randomness for GCw, GC′w and {τw,i}i∈[`] as rw = (rw,GC||rw,GC′ ||rw,r-iOT). Set r̂w,GC =

rw,GC, r̂w,GC′ = GbInv(rw,GC′ ,Keys
′
w, 0

t+`+1), where Keys′ is the encoding information of GC′ when GC′ was
honestly garbled. Compute r̂w = (r̂w,GC||r̂w,GC′ ||rw,r-iOT).

– Output r̂S = (r̂0||r̂1) and claim that Xpw, {Yw,i}i∈[t,t+`] were randomly sampled.

˜iOTSInv(crs,⊥,MS, td = ⊥, rS) (Inverts randomness for both branches w ∈ {0, 1})
– Denote rS = (r0||r1).

– For w ∈ {0, 1}: rw contains the garbling randomness for GCw, GC′w and {τw,i}i∈[`] as rw =

(rw,GC||rw,GC′ ||rw,r-iOT). Set r̂w,GC = rw,GC, r̂w,GC′ = GbInv(rw,GC′ ,Keys
′
w, 0

t+`+1), where Keys′ is the encoding
information of GC′ when GC′ was honestly garbled. Compute r̂w = (r̂w,GC||r̂w,GC′ ||rw,r-iOT).

– Output r̂S = (r̂0||r̂1) and claim that Xpw, {Yw,i}i∈[t,t+`] were randomly sampled for w ∈ {0, 1}.

Theorem 8. Assuming that: (1) πr-iOT is a two-message r-iOT protocol satisfying sender privacy and obliv-
ious receiver sampleability in the crsiOT model, (2) Com is an obliviously sampleable commitment scheme,
(3) Garble is an equivocal garbling scheme, and (4) Garble′ is an obliviously sampleable garbling scheme, πiOT

is a two-message iOT protocol with sender and receiver oblivious sampleability in the CRS model.

Proof. We prove Theorem 8 by showing receiver privacy, sender privacy, receiver oblivious sampleability and
sender oblivious sampleability as follows. The corresponding algorithms can be found in Fig. 7.

Receiver Privacy. Receiver privacy of iOT follows from the hiding property of Com and oblivious receiver
sampleability of r-iOT. We prove the following via a sequence of hybrids.

{Com(0; r), {γ0,i, γ1,i} : γ0,i ← r-iOTR1(crsr-iOT, ri), γ1,i ← ˜r-iOTR(crsr-iOT)}i∈[`]
c
≈

{Com(1; r), {γ0,i, γ1,i} : γ1,i ← r-iOTR1(crsr-iOT, ri), γ0,i ← ˜r-iOTR(crsr-iOT)}i∈[`]

Our hybrids and indistinguishability argument are as follows:

– Hyb0 : MR = {Com(0; r), {γ0,i, γ1,i} : γ0,i ← r-iOTR1(crsr-iOT, ri), γ1,i ← ˜r-iOTR(crsr-iOT)}i∈[`]. This is the
receiver OT message MR with choice bit 0 as input.
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– Hyb1 : MR = {Com(0; r), {γ0,i, γ1,i} : γ0,i ← ˜r-iOTR(crsr-iOT)}i∈[`], γ1,i ← ˜r-iOTR(crsr-iOT)}i∈[`]. This is
same as Hyb0, except γ0,i OT messages are obliviously sampled. An adversary distinguishing between Hyb0

and Hyb1 can be used to break oblivious receiver sampleability of r-iOT since γ0,i is honestly generated
in Hyb0 and γ0,i is obliviously sampled in Hyb1.

– Hyb2 : MR = {Com(1; r), {γ0,i, γ1,i} : γ0,i ← ˜r-iOTR(crsr-iOT)}i∈[`], γ1,i ← ˜r-iOTR(crsr-iOT)}i∈[`]. This is
same as Hyb1, except c is a commitment to 1 instead of commitment to 0. Indistinguishability follows
from hiding property of the commitment scheme.

– Hyb3 : MR = {Com(1; r), {γ0,i, γ1,i} : γ1,i ← r-iOTR1(crsr-iOT, ri), γ0,i ← ˜r-iOTR(crsr-iOT)}i∈[`]. This is
same as Hyb2, except γ1,i OT messages are correctly generated using ri as input choice bits where r
is the commitment randomness. This is the receiver OT message MR with choice bit 1 as input. An
adversary distinguishing between Hyb2 and Hyb3 can be used to break oblivious receiver sampleability of
r-iOT since γ1,i is obliviously sampled in Hyb2 and γ1,i is honestly generated in Hyb3.

Sender Privacy. Sender privacy of iOT follows from the binding of the commitment scheme, sender privacy
of r-iOT, and the privacy of GC and GC′. If the adversary’s choice bit is 1−w then the commitment c should
be a valid commitment to 1−w using randomness rCom that needs to be provided as input to r-iOTR by the
receiver during the computation of γ1−w,i. If c is also a valid commitment to w using randomness r′Com and the
receiver provides this as randomness to r-iOTR during the computation of γw,i then the receiver breaks the
binding property of the commitment scheme. By relying on distinguisher dependent simulation techniques,
the reduction can the two openings - (1−w, rCom) and (w, r′Com), of c and break the binding property. Hence,
we can safely rely on the binding property of the commitment scheme to argue that (w, r′Com) will be an
invalid opening of c. As a result, GCw will always evaluate to ⊥ and as a result GC′w would always evaluate
to ⊥ since the receiver fails to get the correct wire labels (corresponding to GCw) for c′w. This happens
irrespective of whether GC′w is evaluated on mw = 0 or mw = 1. Thus, indistinguishability follows from
the privacy of the garbling scheme. We also require sender privacy of r-iOT since a corrupt receiver should
not get both input wire labels for any input wire of GCw. For adversary’s chosen bit (1 − w) ∈ {0, 1}, we
demonstrate the following:

iOTS(crsiOT,MR, (m0,m1); r) ≈c iOTS(crsiOT,MR, (m
′
0,m

′
1); r′),

where m′1−w = m1−w, mw = 0 and m′w = 1. This is shown via a sequence of hybrids:

– Hyb0 : Sender’s message is MS = iOTS(crsiOT,MR, (m0,m1); r).

– Hyb1 : Same as Hyb0, except the reduction extracts rCom and r′Com from the γ1−w,i and γw,i messages
as receiver input choice bits for the randomness using distinguisher dependent simulation techniques. If
both (1 − w, rCom) and (w, r′Com) are valid openings of c then the reduction aborts. Else, the reduction
computes MS = iOTS(crsiOT,MR, (m0,m1); r) correctly following the sender algorithm. An adversary
distinguishes between Hyb0 and Hyb1 if it breaks the binding property of the commitment scheme.

– Hyb2 : Same as Hyb1, except τw,i = r-iOT(crsiOT, γw,i, (X
0
w,i,X

0
w,i)). Indistinguishability follows from

sender privacy of r-iOT since in both hybrids GCw evaluates to ⊥ (and as a result GC′w also evaluates
to ⊥), given X0

w,i or X1
w,i (but not both), and the only difference lies in the r-iOT sender messages.

– Hyb3 : Same as Hyb2, except GCw is computed by invoking the privacy simulator for the garbling
scheme with output ⊥. The r-iOT sender messages are set similar to previous hybrid, i.e. τw,i =
r-iOT(crsiOT, γw,i, (Xw,i,Xw,i)), where the privacy simulator S1

GC (of garbling scheme Gb) returns Xw as
the wire labels on being invoked as (GCw,Xw, st) ← S1

GC(C[c, crscom, β],⊥). Indistinguishability follows
from the privacy of garbling scheme for GCw since in both hybrids GCw outputs ⊥.

– Hyb4 : Same as Hyb3, except GC′w is computed using the privacy simulator SGC (of Gb′) with output
⊥. The privacy simulator SGC (of garbling scheme Gb′) returns Yw as the wire labels on being invoked
as (GC′w,Yw, st

′) ← SGC(C′[crscom],⊥). The sender sets Vw = {Yw,i}i∈[t,t+`] and pw = {Yw}i∈[t]. The
rest of the sender protocol is same as Hyb3. Note that in Hyb3 the garbled circuit GC′w was computed
correctly and pw||Vw was a valid encoding of (c′w||sw||mw) in GC′w. Meanwhile in Hyb4 the receiver
obtains simulated wire labels. GC′w in both hybrids evaluates to ⊥. As a result, if an adversarial receiver
distinguishes between the two hybrids then it breaks the privacy of the garbling scheme Gb′.
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– Hyb5 : Same as Hyb4, except GC′w is correctly garbled and the sender encodes (c′w||sw||m′w) as pw||Vw
using the encoding information generated during the garbling process. Indistinguishability between Hyb4

and Hyb5 follows from privacy of garbling scheme Gb′ since in both hybrids GC′w evaluates to ⊥.

– Hyb6 : Same as Hyb5, except GCw is correctly garbled and the r-iOT sender messages are set as τw,i =
r-iOT(crsiOT, γw,i, (X

0
w,i,X

0
w,i)). Indistinguishability follows from privacy of GC since in both hybrids the

receiver evaluates GCw to ⊥.

– Hyb7 : Sender’s message is MS = iOTS(crsiOT,MR, (m
′
0,m

′
1)). Indistinguishability follows from sender

privacy of r-iOT since in Hyb6 the r-iOT sender messages are τw,i = r-iOT(crsiOT, γw,i, (X
0
w,i,X

0
w,i)) and

in Hyb7 the r-iOT sender messages are τw,i = r-iOT(crsiOT, γw,i, (X
0
w,i,X

1
w,i)).

Receiver Oblivious Sampleability. To argue receiver oblivious sampleability the adversary needs to be pro-
vided with the obliviously sampled/honestly generated receiver message and the sampling randomness/inverted
randomness for the receiver message MR. Receiver oblivious sampleability of iOT follows from the oblivious
sampling property of Com and receiver oblivious sampleability of r-iOT. We demonstrate this via a sequence
of hybrids:

– Hyb0 : This hybrid corresponds to the receiver’s view by running the oblivious receiver sampling algorithm

˜iOTR. Compute c = C̃om(crscom; rCom) and γb,i ← ˜r-iOTR(crsr-iOT; rr-iOT) for b ∈ {0, 1}, i ∈ [`]. Return
r = (rCom||rr-iOT) as the sampling randomness.

– Hyb1 : Compute c = Com(crscom, b; rCom) and γβ,i ← ˜r-iOTR(crsr-iOT; rr-iOT) for β ∈ {0, 1}, i ∈ [`]. Compute

commitment sampling randomness as r̂Com = C̃omInv(crscom, b, rCom, tdCom) and return (r̂Com||rr-iOT) as
the sampling randomness. The two hybrids are indistinguishable due to oblivious sampleability of Com.

– Hyb2 : This hybrid corresponds to the receiver’s view by running the receiver algorithm iOTR1 on

choice bit b and generating the sampling randomness by running the inversion algorithm ˜iOTRInv.
Compute c = Com(crscom, b; rCom). Construct r-iOT receiver messages as γb,i = r-iOTR1(crsr-iOT, rCom,i)

and γb̄,i ← ˜r-iOTR(crsr-iOT) for i ∈ [`] using rr-iOT as randomness. Compute sampling randomness

r̂R = (r̂Com||r̂r-iOT) using ˜iOTRInv algorithm. Indistinguishability between the two hybrids follows from
the receiver sampleability of r-iOT.

Sender Oblivious Sampleability. To argue sender oblivious sampleability the adversary needs to be provided
with the obliviously sampled/honestly generated sender message and the sampling randomness/inverted
randomness for the sender message MS. An obliviously sampled MS contains (MS,0,MS,1).A provides (m0,m1)
and MS,1−w is correctly generated using m1−w where 1 − w is the choice bit of R. We will argue that an
honestly generated MS,w can be claimed as obliviously generated based on the equivocal property of GCw and
the oblivious sampling property of GC′w. Let us concentrate on the structure of an obliviously sampled MS,w.
It contains an honestly generated GCw, an obliviously generated GC′w and the r-iOT messages {τw,i}i∈[`] are
correctly constructed using the input wire labels of GCw. But the wire labels for c′w in GC′w are not provided
correctly in GCw. As a result the receiver cannot obtain the correct input wire labels(corresponding to c′w)
for GC′w since GCw always evaluates to ⊥ (since the receiver’s commitment c is a commitment to 1 − w).
This holds even if the adversarial receiver is provided with the sampling randomness for GC due to equivocal
property of GCw and oblivious sampleability of GC′w. An honestly generated MS would contain an honestly
generated MS,w which encrypts sender’s message mw. However, in this case the adversarial receiver also fails
to obtain the correct input wire labels(corresponding to c′w) for GC′w since GCw always evaluates to ⊥. As
a result, we show sender oblivious sampleability. The previous argument assumes that the commitment c is
binding and it is a valid commitment to 1 − w. The formal argument for sender oblivious sampleability is
more complex and we it is proven through a sequence of hybrids shown below. We only describe changes in
MS,w since MS,1−w remains same in every hybrid.

– Hyb0 : MS is obliviously sampled using randomness rS. Provide rS as the sampling randomness.
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Fig. 8. Hybrids 0-2 for arguing Sender Oblivious Sampleability

Hyb0 : ˜iOTS(crsiOT,MR, w,m1−w; rS):

– S computes MS,1−w correctly corresponding to message m1−w using randomness r1−w.

– S obliviously samples garbled circuit as (G̃C
′
w, Ỹ) = G̃b

′
(1κ, C′[crscom],⊥; rw,GC′ ) using randomness rw,GC′ . The

sender sets p̃w = {Ỹw,i}i∈[t] and Ṽw = {Ỹw,i}i∈[t,t+`].

– S correctly garbles GCw as (GCw,Keysw) = (GCw, {X0
w,i,X

1
w,i}i∈[`+tκ]) = Gb(1κ, C[c, crscom, b]; rw,GC) using ran-

domness rw,GC. Sender sets X̃
p
w= En(p̃w, {X0

w,i,X
1
w,i}i∈[`,`+tκ]) as the garbled input for p̃w in GCw.

– S computes τw,i messages correctly as follows. S computes τw,i = r-iOTS(crsr-iOT, γw,i, (X
0
w,i,X

1
w,i); rw,r-iOT,i) using

randomness rw,r-iOT,i for i ∈ [`]. Denote rw,r-iOT = {rw,r-iOT,i}i∈[`].

– S sets Ms,w = (GCw, G̃C
′
w, {τw,i}i∈[`], X̃

p
w, Ṽw). Set rw as the garbling randomness for GCw, G̃C

′
w and {τw,i}i∈[`]

as rw = (rw,GC||rw,GC′ ||rw,r-iOT).

– Return MS = (MS,0,MS,1) as the sender OT message. Set the sender randomness as rS = (r0||r1).

Hyb1 : ˜iOTS(crsiOT,MR, w,m1−w; rS):

– The reduction (acting as S) extracts rCom and r′Com from the γ1−w,i and γw,i messages as receiver input choice
bits for the randomness using distinguisher dependent simulation techniques. If both (1−w, rCom) and (w, r′Com)

are valid openings of c then the reduction aborts.

– S computes MS,1−w correctly corresponding to message m1−w using randomness r1−w.

– S obliviously samples garbled circuit as (G̃C
′
w, Ỹ) = G̃b

′
(1κ, C′[crscom],⊥; rw,GC′ ) using randomness rw,GC′ . The

sender sets p̃w = {Ỹw,i}i∈[t] and Ṽw = {Ỹw,i}i∈[t,t+`].

– S correctly garbles GCw as (GCw,Keysw) = (GCw, {X0
w,i,X

1
w,i}i∈[`+tκ]) = Gb(1κ, C[c, crscom, b]; rw,GC) using ran-

domness rw,GC. Sender sets X̃
p
w= En(p̃w, {X0

w,i,X
1
w,i}i∈[`,`+tκ]) as the garbled input for p̃w in GCw.

– S computes τw,i messages correctly as follows. S computes τw,i = r-iOTS(crsr-iOT, γw,i, (X
0
w,i,X

1
w,i); rw,r-iOT,i) using

randomness rw,r-iOT,i for i ∈ [`]. Denote rw,r-iOT = {rw,r-iOT,i}i∈[`].

– S sets Ms,w = (GCw, G̃C
′
w, {τw,i}i∈[`], X̃

p
w, Ṽw). Set rw as the garbling randomness for GCw, G̃C

′
w and {τw,i}i∈[`]

as rw = (rw,GC||rw,GC′ ||rw,r-iOT).

– Return MS = (MS,0,MS,1) as the sender OT message. Set the sender randomness as rS = (r0||r1).

Hyb2 : ˜iOTS(crsiOT,MR, w,m1−w; rS):

– The reduction (acting as S) extracts rCom and r′Com from the γ1−w,i and γw,i messages as receiver input choice
bits for the randomness using distinguisher dependent simulation techniques. If both (1−w, rCom) and (w, r′Com)

are valid openings of c then the reduction aborts.

– S computes MS,1−w correctly corresponding to message m1−w using randomness r1−w.

– S obliviously samples garbled circuit as (G̃C
′
w, Ỹ) = G̃b

′
(1κ, C′[crscom],⊥; rw,GC′ ) using randomness rw,GC′ . The

sender sets p̃w = {Ỹw,i}i∈[t] and Ṽw = {Ỹw,i}i∈[t,t+`].

– S garbles GCw as (GCw,Xw, st) ← S1
GC(C[c, crscom, w],⊥) by invoking the privacy simulator S1

GC of the equivocal
garbling scheme Garble. S computes (Keysw, rw,GC) = ({X0

w,i,X
1
w,i}i∈[`+tκ],GCw)← S2

GC(st, rCom) as the encoding
information by invoking the privacy simulator S2

GC with input rCom that is provided as input by the receiver
to r-iOT. Sender sets X̃

p
w= En(p̃w, {X0

w,i,X
1
w,i}i∈[`,`+tκ]) as the garbled input for p̃w in GCw.

– S computes τw,i messages correctly as follows. S computes τw,i = r-iOTS(crsr-iOT, γw,i, (X
0
w,i,X

1
w,i); rw,r-iOT,i) using

randomness rw,r-iOT,i for i ∈ [`]. Denote rw,r-iOT = {rw,r-iOT,i}i∈[`].

– S sets Ms,w = (GCw, G̃C
′
w, {τw,i}i∈[`], X̃

p
w, Ṽw). Set rw as the garbling randomness for GCw, G̃C

′
w and {τw,i}i∈[`]

as rw = (rw,GC||rw,GC′ ||rw,r-iOT).

– Return MS = (MS,0,MS,1) as the sender OT message. Set the sender randomness as rS = (r0||r1).

– Hyb1 : Same as Hyb0, except the reduction extracts rCom and r′Com from the γ1−w,i and γw,i messages
as receiver input choice bits for the randomness using distinguisher dependent simulation techniques
of [JKKR17, DGH+20]. If both (1 − w, rCom) and (w, r′Com) are valid openings of c then the reduction
aborts. Else, the reduction obliviously samples MS using randomness rS. The reduction provides rS as
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Fig. 9. Hybrids 3-5 for arguing Sender Oblivious Sampleability

Hyb3 : ˜iOTS(crsiOT,MR, w, (m0,m1); rS):

– The reduction (acting as S) extracts rCom and r′Com from the γ1−w,i and γw,i messages as receiver input choice
bits for the randomness using distinguisher dependent simulation techniques. If both (1−w, rCom) and (w, r′Com)

are valid openings of c then the reduction aborts.

– S computes MS,1−w correctly corresponding to message m1−w using randomness r1−w.

– S computes c′w = Com(0; sw). S garbles
(
GC′w,Keys

′
w

)
= Gb′(1κ, C′[crscom]). S computes {Yw,i}i∈[t+`+1] =

En′(c′w||sw||mw,Keys′w). The sender sets Vw = {Yw,i}i∈[t,t+`], where {Yw,i}i∈[t,t+`] is the garbled input for
(sw||mw) in GC′w. The sender sets pw = {Yβ,i}i∈[t] as the garbled input for c′w corresponding to GC′w.

– S garbles GCw as (GCw,Xw, st) ← S1
GC(C[c, crscom, w],⊥) by invoking the privacy simulator S1

GC of the equivocal
garbling scheme Garble. S computes (Keysw, rw,GC) = ({X0

w,i,X
1
w,i}i∈[`+tκ],GCw)← S2

GC(st, rCom) as the encoding
information by invoking the privacy simulator S2

GC with input rCom that is provided as input by the receiver

to r-iOT. Sender sets Xp
w= En(pw, {X0

w,i,X
1
w,i}i∈[`,`+tκ]) as the garbled input for pw in GCw.

– S computes τw,i messages correctly as follows. S computes τw,i = r-iOTS(crsr-iOT, γw,i, (X
0
w,i,X

1
w,i); rw,r-iOT,i) using

randomness rw,r-iOT,i for i ∈ [`]. Denote rw,r-iOT = {rw,r-iOT,i}i∈[`].

– S sets Ms,w = (GCw, G̃C
′
w, {τw,i}i∈[`],X

p
w,Vw). Set rw as the garbling randomness for GCw, G̃C

′
w and {τw,i}i∈[`]

as rw = (rw,GC||rw,GC′ ||rw,r-iOT).

– Return MS = (MS,0,MS,1) as the sender OT message. Set the sender randomness as rS = (r0||r1). Return the
sender’s sampling randomness as r̂S.

Hyb4 : ˜iOTS(crsiOT,MR, w, (m0,m1); rS):

– The reduction (acting as S) extracts rCom and r′Com from the γ1−w,i and γw,i messages as receiver input choice
bits for the randomness using distinguisher dependent simulation techniques. If both (1−w, rCom) and (w, r′Com)

are valid openings of c then the reduction aborts.

– S computes MS,1−w correctly corresponding to message m1−w using randomness r1−w.

– S computes c′w = Com(0; sw). S garbles
(
GC′w,Keys

′
w

)
= Gb′(1κ, C′[crscom]). S computes {Yw,i}i∈[t+`+1] =

En′(c′w||sw||mw,Keys′w). The sender sets Vw = {Yw,i}i∈[t,t+`], where {Yw,i}i∈[t,t+`] is the garbled input for
(sw||mw) in GC′w. The sender sets pw = {Yβ,i}i∈[t] as the garbled input for c′w corresponding to GC′w.

– S correctly garbles GCw as (GCw,Keysw) = (GCw, {X0
w,i,X

1
w,i}i∈[`+tκ]) = Gb(1κ, C[c, crscom, b]; rw,GC) using ran-

domness rw,GC. Sender sets Xpw= En(pw, {X0
w,i,X

1
w,i}i∈[`,`+tκ]) as the garbled input for pw in GCw.

– S computes τw,i messages correctly as follows. S computes τw,i = r-iOTS(crsr-iOT, γw,i, (X
0
w,i,X

1
w,i); rw,r-iOT,i) using

randomness rw,r-iOT,i for i ∈ [`]. Denote rw,r-iOT = {rw,r-iOT,i}i∈[`].

– S sets Ms,w = (GCw, G̃C
′
w, {τw,i}i∈[`],X

p
w,Vw). Set rw as the garbling randomness for GCw, G̃C

′
w and {τw,i}i∈[`]

as rw = (rw,GC||rw,GC′ ||rw,r-iOT).

– Return MS = (MS,0,MS,1) as the sender OT message. Set the sender randomness as rS = (r0||r1). Return the

sender’s sampling randomness as r̂S = ˜iOTSInv(crs, w,MS, td = ⊥, rS)

Hyb5 : ˜iOTS(crsiOT,MR, w, (m0,m1); rS):

– Compute (MS, rS) = iOTS(crsiOT,MR, (m0,m1)). Compute sender’s sampling randomness as r̂S =

˜iOTSInv(crsiOT, w,MS,⊥, rS).

– Return MS as the sender OT message and r̂S as the sender’s sampling randomness.

the sampling randomness. An adversary distinguishes between Hyb0 and Hyb1 if it breaks the binding
property of the commitment scheme.

– Hyb2 : Same as Hyb1, except the reduction extracts rCom as the input of the receiver to the wth instance of
r-iOTR protocol. GCw is computed by invoking S1

GC using output ⊥. Then Keysw is generated by invoking
S2
GC using input rCom. We use the distinguisher dependent simulation technique of [JKKR17, DGH+20]

to find receiver’s choice bits in {γw,i}i∈[`]. The sampling randomness is provided similar to Hyb0 except
the sampling randomness for GCw is the one provided by the privacy simulator S2

GC of the equivocal
garbling scheme Garble. Indistinguishability follows due to equivocal property of Garble since in both

28



hybrids GCw evaluates to ⊥ even when the adversary knows the garbling randomness for GCw. As a
result, GC′w also evaluates to ⊥.

– Hyb3 : Same as Hyb2, except the algorithm receives (m0,m1) as input corresponding to the sender’s input.
The sender algorithm correctly computes c′w and garbles GC′w correctly. Indistinguishability follows from
oblivious sampling property of Garble′ since in both hybrids: 1) GC′w evaluates to ⊥ even when the

adversary knows the garbling randomness for GC′w, 2) in Hyb2, Ṽw and p̃w was generated as a challenge

by the oblivious garbling algorithm G̃b
′
, whereas in Hyb3, Vw and pw are generated as a challenge by the

honest garbling algorithm Gb′. An adversary distinguishing between the two hybrids breaks the oblivious
garbling property of Garble′.

– Hyb4 : Same as Hyb3, except GCw is correctly garbled following the honest sender algorithm. The sam-

pling randomness is computed by running the inversion algorithm ˜iOTSInv on the sender randomness.
Indistinguishability follows from the equivocal property of the garbling scheme since in both Hyb3 and
Hyb4 GCw evaluates to ⊥. The indistinguishability argument is same as Hyb1 ≈c Hyb2.

– Hyb5 : This is same as Hyb4, except the reduction does not extract the commitment randomness from
MR in Hyb5. This is same as computing MS using iOTS algorithm with (m0,m1) as inputs and rS as

randomness, then computing the sampling randomness by running the inversion algorithm ˜iOTSInv on
rS and MS. An adversary distinguishing between Hyb4 and Hyb5 needs to break the binding property of
the commitment scheme.

ut

5 Semi-Adaptive OT from r-iOT with Oblivious Sampleability

In this section, we show how to build a semi-adaptively simulation-secure two-message OT protocol starting
from a two-message r-iOT protocol with receiver sampleability as follows.

5.1 Overview and Intuition

To generate the receiver OT message, the receiver uses the equivocal commitment scheme to create a com-
mitment c to its choice bit b under some appropriately sampled randomness r. Next, the receiver creates a
set of encryptions (e0, e1). We need two encryptions instead of one to enable semi-adaptive security (which
is discussed later on). The encryption eb encrypts the commitment randomness r under the trapdoor simu-
latable PKE scheme using some appropriately sampled randomness s (we explain the intuition for this step
subsequently). Meanwhile, eb̄ is obliviously sampled. The receiver also creates a set of (parallel) r-iOT-receiver
messages with the bits of r and s as input. The receiver sends across to the sender the commitment c, the
encryptions (e0, e1) and the r-iOT-receiver messages.

Upon receiving the receiver’s first message, the sender in the semi-adaptive OT protocol uses its input
strings m0 and m1 to create two circuits. Based on the value of mβ , the garbled circuit GCβ is created as
follows for β ∈ {0, 1}:

– If mβ = 0 the garbled circuit GCβ is garbling of the following circuit C:

C[c, crscom, crspk, β, e, pk](r, s) = 0 if c = Com(crscom, b; r) ∧ e = Enc(crspk, pk, r; s); else C outputs ⊥

Circuit C is hardwired with the setup strings crscom, crspk, the public key pk, a bit β, the receiver’s
commitment c and the receiver’s commitment-encryption eβ ; each circuit takes as input some randomness
r and some randomness s and outputs 0 if all of the following conditions are satisfied: (a) c is a valid
commitment to β under randomness r, (b) eβ is a valid encryption of r under randomness s. Otherwise
it outputs ⊥.

– Else, if mβ = 1, then S computes a simulated garbled circuit by invoking the privacy simulator S1
GC of the

equivocal garbling scheme with output as ⊥. To compute the input wire labels Keysβ = {X0
β,i,X

1
β,i}i∈[`],

the sender invokes the second privacy simulator S2
GC with input as 0`.
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Fig. 10. Semi-Adaptively Simulation-Secure Oblivious Transfer

πsaOT

– Public Inputs: crsOT = (crsr-iOT, crscom) where crsr-iOT and crscom are the setup strings of r-iOT and Com, respec-
tively. Circuit C[c, crscom, crspk, β, e, pk](r, s) = 0 if c = Com(crscom, b; r)∧ e = Enc(crspk, pk, r; s); otherwise C outputs
⊥.

– Private Inputs: S has input bits (m0,m1) where m0,m1 ∈ {0, 1}; R has input choice bit b.

– Primitives: Let πr-iOT = (r-iOTR1, r-iOTS, r-iOTR2, ˜r-iOTR) denote an r-iOT with receiver oblivious sampling.
Com is an equivocal commitment scheme. pk is the public key of a trapdoor simulatable PKE. Garble =

(Gb,En,Ev,S1
GC,S

2
GC) be an equivocal garbling scheme.

OTR1(crsOT, b):

– R commits to b using randomness r as c = Com(crscom, b; r).
– R encrypts r using randomness s as eb = Enc(crspk, pk, r; s). R samples eb̄ ← oEnc(crspk, pk) obliviously. Let t = (r||s)

denote the commitment and encryption randomness, where |t| = `.

– R computes {γ0,i, γ1,i} where γb,i = r-iOTR1(crsr-iOT, ti) and γb̄,i ← ˜r-iOTR(crsr-iOT) for i ∈ [`].
– R sends MR =

(
c, e0, e1, {γ0,i, γ1,i}i∈[`]

)
as the receiver’s OT message.

OTS(crsOT,MR, (m0,m1)):
S runs the following algorithm for β ∈ {0, 1} :

– If mβ = 0 then S computes the garbled circuit and input encoding as (GCβ , {X0
β,i,X

1
β,i}i∈[`]) =

Gb(1κ, C[c, crscom, crspk, β, eβ , pk]; rβ,GC).

– If mβ = 1 then S computes a simulated garbled circuit as (GCβ , X̃, stβ) ← S1
GC(C[c, crscom, crspk, β, eβ , pk],⊥). S

computes the encoding information as (Keysβ , rβ,GC)← S2
GC(stβ , 0

`). S parses Keysβ = {X0
β,i,X

1
β,i}i∈[`].

– S computes the r-iOT sender messages as τβ,i = r-iOTS(crsr-iOT, γβ,i, (X
0
β,i,X

1
β,i); rβ,r-iOT,i) for i ∈ [`].

S sends MS = {GC0, {τ0,i}i∈[`],GC1, {τ1,i}i∈[`]} as the sender’s OT message

OTR2(crsOT,MS, b):

– R computes the wire labels corresponding to commitment and encryption randomness t in GCb as Yi =

r-iOTR2(crsr-iOT, τb,i, b) for i ∈ [`].
– R outputs mb = 0 if Ev(GC, {Yi}i∈[`]) = 0 else R outputs mb = 1.

The sender finally sends across GC0 and GC1 to the receiver. In parallel, the sender uses the r-iOT messages
from the receiver to generate one r-iOT-sender message for each pair of wire labels, and also sends all of
these to the receiver.

The receiver uses the r-iOT-sender messages to recover the wire labels corresponding to its randomness
strings (r, s) for both garbled circuits GC0 and GC1. It then evaluates GCb on r and s by using the
corresponding wire labels to recover the correct message mb (it sets mb to 0 if the GCb evaluates to 0;
otherwise, it sets mb to 1).

Our Protocol Figure 10 presents a detailed description of our semi-adaptively simulation-secure two-message
OT protocol πsaOT in the CRS model from the following ingredients: (1) a two-message r-iOT protocol πr-iOT

with receiver oblivious sampleability in the CRS model, (2) a trapdoor simulatable PKE, (3) an equivocal
garbling scheme Garble, and (4) an equivocal commitment scheme Com (in the CRS model). We state the
following theorem.

Theorem 9. Assuming that: (1) πr-iOT is a two-message r-iOT protocol with receiver oblivious sampleability
in the CRS model, (2) Com is an equivocal commitment scheme, (3) Garble is an equivocal garbling scheme,
(4) the PKE scheme is trapdoor simulatable, πsaOT is simulation-secure in the CRS-model against semi-
adaptive malicious corruption of parties.

Proof.

Security against statically corrupt sender. The commitment c computationally hides the receiver’s choice
bit b because the encryption (e0, e1) computationally hides the receiver’s randomness string r used for the
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commitment, and the r-iOT messages sent by the receiver computationally hide the receiver’s randomness
string s for encryption.

A corrupt sender’s messages can be extracted by a simulator S (playing the role of a simulated receiver).
The simulator S constructs the commitment c in equivocal mode, i.e. c = Com(0; r0) = Com(1; r1). The
encryptions are set as follows - e0 is an encryption of r0 under randomness s0 and e1 is an encryption of r1

under randomness s1. S runs the two set of r-iOT messages correctly with input choice bits t0 = (r0||s0) and
t1 = (r1||s1). Upon obtaining sender’s OT message, the simulator decrypts input wire labels for both GC0

and GC1. S evaluates GC0 and GC1 to extract m0 and m1 respectively.

Security against statically corrupt receiver. Next, we describe a simulator that extracts a corrupt receiver’s
input. The receiver’s input can be extracted using the secret key associated with the public key in the
crs. The simulator decrypts e0 and e1 to obtain candidate randomness r0 and r1. It then checks whether
c = Com(0; r0) or c = Com(1; r1). If both conditions are satisfied then the corrupt receiver has broken the
binding property of the commitment scheme. Otherwise, the receiver’s choice bit can be uniquely extracted.
We argue that a corrupt receiver learns no information about mb̄. To see why this is the case, observe that
the only information about mb̄ that the receiver could learn is from the garbled circuit GCb̄. However, the
receiver cannot evaluate GCb̄ to anything other than ⊥ since: (1) it cannot prove that c is a commitment to b̄
under randomness r (this follows from the binding property of the commitment scheme), (2) it cannot prove
that eb̄ decrypts to anything other than the commitment randomness r (this follows from the correctness
of decryption for the PKE scheme), and (3) it cannot recover any input labels to GCb̄ other than those
corresponding to r (due to the sender privacy of the underlying r-iOT protocol). At this point, we invoke the
privacy argument of the garbling scheme to argue that the receiver learns no information about the message
mb̄. Sender privacy follows from the privacy of the garbling scheme, binding of the commitment scheme and
the sender privacy of r-iOT. A corrupt receiver cannot obtain both wire labels for any input wire of a garbled
circuit due to sender privacy of r-iOT. Given this argument holds, an honestly generated garbled circuit
GCb̄ (when mb̄=0) is indistinguishable from a simulated one (when mb̄=1) since in both cases the receiver
evaluates GCb̄ to ⊥. This completes out description of static security.

ut

Overview of Semi-adaptive Simulation-Security. Let us denote the set of OT messages for the bth branch
(resp. b̄th branch) as the bth set(resp. b̄th set). Semi-adaptive simulation security considers two corruption
scenarios: 1) the receiver gets corrupted post execution and the sender is statically corrupt, or 2) the receiver
is statically corrupt and the sender gets corrupted post execution. In either of the cases, the simulator plays
the role of the honest party which gets corrupted post-execution. The simulator needs to extract the input
of the statically corrupt party. Also, when the honest party gets corrupted post execution, the simulator
obtains the input of the honest party. The simulator needs to show randomness for the party such that the
randomness is consistent with the party’s input. We consider two corruption cases:

1. We first consider the case where the receiver gets corrupted post execution and the sender is statically
corrupt. The simulator constructs the receiver OT message as described above. When the receiver gets
corrupted post-execution the simulator shows randomness for the construction of eb and claims that
c = Com(b; rb). It also claims that eb̄ and the r-iOT sender messages for the b̄th set were obliviously
sampled. Indistinguishability follows due to the equivocal property of the commitment scheme, the
oblivious ciphertext sampleability of the encryption scheme, and the receiver sampleability of r-iOT.

2. Next we consider the case where the sender gets corrupted post-execution and the receiver is statically
corrupted. In this setting the simulator S extracts the choice bit b from the receiver’s OT message. The
simulator invokes the OT functionality FOT with b to obtain mb. S constructs GCb and the r-iOT sender
messages for the bth set correctly. S also constructs GCb̄ and r-iOT sender messages for the b̄th set
correctly as if mb̄ = 0. This helps to equivocate the sender’s view if mb̄ turns out to be 1 when the sender
gets corrupted post-execution. We know that the evaluation of GCb̄ always yields ⊥ since c is not a valid
commitment to b̄. If the simulator is required to show randomness for mb̄ = 1 then the simulator claims
that GCb̄ was generated using the privacy simulator of the garbling scheme. This is indistinguishable
from the real world execution due to the equivocal property of the garbling scheme.

We prove semi-adaptive security of πsaOT by proving Theorem. 9 by considering two cases of corruptions
for our security proof as follows.
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Fig. 11. Simulation against statically corrupted S and adaptively corrupted R

Simulating OTR1:

– S constructs commitment c = Com(0; r0) = Com(1; r1) in equivocal mode using trapdoor tdCom of crscom.
– For b ∈ {0, 1}, S encrypts rb using randomness sb as eb = Enc(pk, rb; sb). Set tb = (rb||sb).
– R computes {γ0,i, γ1,i} where γb,i = r-iOTR1(crsr-iOT, t

b
i ;ui,b) for b ∈ {0, 1}, i ∈ [`].

– R sends MR =
(
c, e0, e1, {γ0,i, γ1,i}i∈[`]

)
as the receiver’s OT message.

OTS(crsOT,MR, (m0,m1)):
S∗ sends MS = {GC0, {τ0,i}i∈[`],GC1, {τ1,i}i∈[`]} as the sender’s OT message

Simulating OTR2:

– For b ∈ {0, 1}, S computes the wire labels corresponding to commitment and encryption randomness tb in GCb
as Yi = r-iOTR2(crsr-iOT, τb,i, b) for i ∈ [`]. S extracts mb = 0 if Ev(GC, {Yi}i∈[`]) = 0 else it sets mb = 1.

– S invokes FOT functionality with input (m0,m1) and completes simulation.

Simulating Post-execution corruption of R:

S obtains receiver’s choice bit b when R gets corrupted. S opens the randomness for commitment as (b, rb)

and encryption eb as sb. S opens randomness ui,b for the γb,i messages corresponding to choice bit b. S
claims that eb̄ and γb̄,i were obliviously sampled by providing sampling randomness as rGen(crspk, sb̄, tdpk) and

˜r-iOTRInv(crsr-iOT, γb̄,i, tdr-iOT, ui,b̄) where tdpk and tdr-iOT are the trapdoors of crspk and crsr-iOT respectively.

S∗ is statically corrupted and R is post-execution corrupted The simulator plays the role of the honest receiver
and constructs c in the equivocal mode such that it can decrypt both sender messages (m0,m1) from MS. It
constructs e0 and e1 honestly using the commitment randomness for bits 0 and 1. The r-iOT messages are
also constructed honestly corresponding to bit 0 and 1. When the receiver gets corrupted and the simulator
obtains input choice bit b, the simulator opens the randomness corresponding to bit b and claims that eb̄
and the r-iOT messages (γb̄,i) corresponding to b̄ were obliviously sampled. Indistinguishability follows due
to equivocal property of Com and oblivious sampleability of PKE and receiver oblivious sampleability of
r-iOT. Details of simulation can be found in Fig. 11. We provide the hybrids and argue indistinguishability
as follows:

– Hyb0 : Real world execution of the protocol.
– Hyb1 : Same as Hyb0, except c = Com(0; r0) = Com(1; r1) is constructed in the equivocal mode with

randomness r0 and r1 respectively. Indistinguishability follows due to equivocal property of Com.
– Hyb2 : Same as Hyb1, except e0 = Enc(crspk, pk, r0) and e1 = Enc(crspk, pk, r1). When R gets post adap-

tively corrupted, S claims that eb̄ was obliviously sampled. Indistinguishability follows due to trapdoor
sampleability of PKE.

– Hyb3 : Same as Hyb2, except γb̄,i is constructed honestly following simulation algorithm. When R gets
post adaptively corrupted, S claims that γb̄,i was obliviously sampled. Indistinguishability follows due
to receiver oblivious sampleability of r-iOT. This is the ideal world execution of the protocol.

R∗ is statically corrupted and S is post-execution corrupted The simulator plays the role of the honest sender
and extracts the corrupt receiver’s committed bit b as follows: Decrypts both e0 and e1 to obtain randomness
r0 and r1, if both r0 and r1 are valid then S aborts else it sets b = σ where rσ is the valid randomness. A
corrupt R∗ cannot construct c in equivocal mode due to the binding property. After extracting b, S invokes
FOT with b to obtain mb. GCb and τb,i are correctly constructed. Meanwhile, GCb̄ and τb̄,i are constructed
such that mb̄ = 0. This takes care of sender simulation when sender gets corrupted post-execution. In such
a case if mb̄ = 1 then S claims that GCb̄ was generated using the privacy simulator of the garbling scheme.
The garbled circuit GCb̄ outputs ⊥ in both worlds since c 6= Com(b̄; rb̄). As a result, the adversary cannot
distinguish between the real and ideal world due to equivocal property of GC. Details of simulation can be
found in Fig. 12. We provide the hybrids and argue indistinguishability as follows:

– Hyb0 : Real world execution of the protocol.

– Hyb1 : Same as Hyb0, except S decrypts r0 and r1 and the reduction aborts if c = Com(0; r0) = Com(1; r1).
The adversary distinguishes between the two hybrids if it breaks the binding property of the commitment
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Fig. 12. Simulation against statically corrupted R and adaptively corrupted S

OTR1(crsOT, b):
R∗ sends MR =

(
c, e0, e1, {γ0,i, γ1,i}i∈[`]

)
as the receiver’s OT message.

Simulating OTS:

– S decrypts r0 = Dec(sk, e0) and r1 = Dec(sk, e1) and proceeds as following:
• If c = Com(0; r0) = Com(1; r1) then S aborts.

• Else if c 6= Com(0; r0) and c 6= Com(1; r1) then S sets b = ⊥.

• Else, c = Com(σ; rσ) for σ ∈ {0, 1} and S sets extracted receiver’s input as b = σ.

– S invokes FOT with b to obtain mb.

– If b 6= ⊥, then the simulator performs the following:
• S constructs GCb and {τb,i}i∈[`] as per the honest sender algorithm using randomness rb,GC and
{rb,r-iOT,i}i∈[`] respectively.

• S sets mb̄ = 0 and constructs (GCb̄, {X0
b̄,i
,X1
b̄,i
}i∈[`]) = (GCb̄,Keysb̄) ← Gb(rb̄,GC, C[c, crscom, crspk, b̄, eb̄, pk])

using randomness rb̄,GC.

• S computes the r-iOT sender messages as τb̄,i = r-iOTS(crsr-iOT, γb̄,i, (X
0
b̄,i
,X1
b̄,i

); rb̄,r-iOT,i) for i ∈ [`] using
randomness rb̄,r-iOT,i.

– If b == ⊥, then the simulator performs the following for β ∈ {0, 1}:
• S sets mβ = 0 and constructs (GCβ , {X0

β,i,X
1
β,i}i∈[`]) = (GCβ ,Keysβ) ← Gb(rβ,GC, C[c, crscom, crspk, β, eβ , pk])

using randomness rβ,GC.

• S computes the r-iOT sender messages as τβ,i = r-iOTS(crsr-iOT, γβ,i, (X
0
β,i,X

1
β,i); rβ,r-iOT,i) for i ∈ [`] using

randomness rβ,r-iOT,i.

S sends MS = {GC0, {τ0,i}i∈[`],GC1, {τ1,i}i∈[`]} as the sender’s OT message.

OTR2(crsOT,MS, b):
R∗ performs its own adversarial algorithm.

Simulating Post-execution corruption of S:

S obtains sender messages (m0,m1) when sender gets adaptively corrupted. S simulates the sender’s randomness
as follows based on the extracted bit b as follows.

– If b 6= ⊥ then S performs the following:
• For mb, S opens the randomness for GCb as rb,GC.

• If the adversary provided mb̄ = 0, then S also opens the randomness for GCb̄ as rb̄,GC and claims that it
was honestly garbled.

• If the adversary provided mb̄ = 1, then S claims that GCb̄ was garbled by running the S1
GC and S2

GC

algorithms using randomness rb̄,GC.
– If b == ⊥, then S performs the following for β ∈ {0, 1}:

• If the adversary provided mβ = 0, then S also opens the randomness for GCβ as rβ,GC and claims that it
was honestly garbled.

• If the adversary provided mβ = 1, then S claims that GCβ was garbled by running the S1
GC and S2

GC

algorithms using randomness rβ,GC.

The simulator provides {r0,r-iOT,i}i∈[`] and {r1,r-iOT,i}i∈[`] as the sampling randomness for the r-iOT sender messages.

scheme by constructing c in equivocal mode. In such a case, the reduction return (0, r0) and (1, r1) as
the openings to the commitment.

– Hyb2 : Same as Hyb1, except S extracts (using distinguisher dependent simulation [JKKR17, DGH+20])
the inputs of R to {γ0,i}i∈[`] and {γ1,i}i∈[`] as (r′0||s′0) and (r′1||s′1) respectively. S sets b = ⊥ if the
malicious receiver didn’t provide the decommitments of c as OT inputs. More specifically, S sets b = ⊥
if the following conditions hold:

(c 6= Com(crscom, 0; r′0) ∨ e0 6= Enc(crspk, pk, r
′
0; s′0)) ∧ (c 6= Com(crscom, b; r

′
1) ∨ e1 6= Enc(crspk, pk, r

′
1; s′1))

If b == ⊥, then S assumes m0 = m1 = 1 and generates GC0 and GC1 by invoking the privacy simulator
on input (r′0||s′0) and (r′1||s′1) respectively. The r-iOT sender messages are computed using the input
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wire labels of GC0 and GC1 following the honest sender algorithm. Upon post-execution corruption of
the sender, the simulator obtains m0 and m1. If b == ⊥, then for β ∈ {0, 1}, if mβ == 1, then the
simulator shows the randomness for mβ . If mβ == 0, then the simulator claims that GCβ was correctly
generated. The simulator follows the honest sender algorithm for showing the r-iOT sender randomness.
Indistinguishability follows from the r-iOT sender privacy and equivocal property of the garbling scheme
since in Hyb1, GC0 and GC1 encrypt the actual sender inputs (m0,m1), whereas in Hyb2, GC0 and GC1

encrypt m0 = m1 = 1. An adversary distinguishing between the two hybrids must either break the OT
sender privacy to obtain the GC wire labels, evaluate the garbled circuits and distinguish between the
hybrids based on the evaluated output, or the adversary can distinguish between the garbled circuits of
both hybrids based on the randomness and the input wire labels (obtained after post-execution corruption
of sender) and break equivocal garbling property.

– Hyb3 : Same as Hyb2, except S sets b = σ where c = Com(σ, rσ) (unless it was set as ⊥ based on
the algorithm in Hyb2). S invokes FOT with b to obtain mb. S constructs GCb and {τb,i}i∈[`] honestly
based on mb. S constructs GCb̄ considering mb̄ = 0 by running the honest garbling algorithm using
randomness rb̄,GC. Then, S constructs {τb̄,i}i∈[`] by using the input wire labels of GC1−b as input. When
S gets corrupted post-execution and if mb̄ = 0 then the simulator opens the randomness and claims the
algorithm as it has computed above. If mb̄ = 1, then the simulator claims that GCb̄ was generated using
the privacy simulator of the garbling scheme and the simulator provides the corresponding randomness
as rb̄,GC. Indistinguishability follows from equivocal garbling since in Hyb3 GCb̄ is correctly generated
even when mb̄ == 1, but in Hyb3 GCb̄ is simulated and in both hybrids GCb̄ evaluates to ⊥ since c is
not a valid commitment to bit b̄.

– Hyb4 : Same as Hyb3, except the simulator does not perform the OT input extraction (using distinguisher
dependent simulation) of {τ0,i}i∈[`] and {τ1,i}i∈[`] as (r′0||s′0) and (r′1||s′1) respectively. The simulator
only sets b == ⊥, if c 6= Com(0; r0) and c 6= Com(1; r1) where r0 and r1 are decrypted from e0 and
e1 respectively. This is the ideal world execution of the protocol and the details can be found in Fig.
12. Indistinguishability follows from OT sender privacy since in Hyb3 the receiver can still compute the
correct output if e0 (or e1) encrypts a valid commitment randomness r0 (or r1) while providing a different
input r′0 6= r0 (or r′1 6= r1) in the OT as input. Meanwhile, in Hyb4, the receiver will always fail to compute
the correct output if it provides a bad opening r′0 6= r0 (or r′1 6= r1) in the OT as input. However, the
receiver needs to break OT sender privacy to distinguish between the two hybrids.

6 Trapdoor Simulatable PKE from r-iOT

In this section, we show that any (two-message) r-iOT protocol implies a trapdoor simulatable PKE. The
work of [CDMW09] constructed a two-round augmented NCE protocol from any trapdoor simulatable PKE
scheme. This implies that any (two-message) r-iOT protocol implies a two-round augmented NCE protocol.

We actually show that any (two-message) iOT protocol satisfying both receiver and sender oblivious
sampleability implies a trapdoor simulatable PKE. Since we already showed in Section 4 that any (two-
message) r-iOT protocol implies that a (two-message) iOT protocol satisfying both receiver and sender
oblivious sampleability, this yields our desired result.

Our Construction. Let iOT = (SetupiOT, iOTR1, iOTS, iOTR2) be an indistinguishability based OT. We
construct a trapdoor simulatable PKE as follows:

– Setup(1κ): Sample and output (crs, td)← SetupiOT(1κ).

– Gen(crs): Sample MR = iOTR1(crs, 0; rrR) for uniformly sampled receiver randomness rrR. Output (pk, sk) =
(MR, rrR).

– Enc(crs, pk = MR,m): Samplem′ ← {0, 1} and generate the OT sender message MS ← iOTS(crs,MR, (m,m
′)).

Output the ciphertext ct = MS.

– Dec(crs, sk, ct = MS): Output m′ = iOTR2(crs, sk,MS).
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Additionally, suppose that iOT is equipped with the oblivious sampling algorithms - ( ˜iOTR, ĩOTS) for the

receiver and sender, and the corresponding inverting algorithms - ( ˜iOTRInv, ˜iOTSInv). We design the trapdoor
simulatable PKE to have oblivious sampling algorithms (oGen, oEnc) and randomness inverting algorithms
(rGen, rEnc) defined as follows:

– oGen(crs; r̃rG): Sample M̃R = ˜iOTR(crs; r̃rG) and output p̃k = M̃R.

– oEnc(crs, p̃k; r̃rE): Sample m′ ← {0, 1} and M̃S = ĩOTS(crs, M̃R, 0,m
′; r̃rE). Output c̃t = M̃S.

– rGen(crs, rrG, td): Generate MR = iOTR1(crs, 0; rrG) and output oblivious sampling randomness for key
generation

r̂rG = ˜iOTRInv(crs,MR, td, rrG).

– rEnc(crs,m, rrG, rrE , td): Generate the following:

MR = iOTR1(crs, 0; rrG), MS = iOTS(crs,MR, (m,m
′); rrE),

and output oblivious sampling randomness for encryption

r̂rE = ˜iOTSInv(crs, 0,MS, td, rrE).

Correctness of decryption follows immediately from the correctness of the underlying iOT scheme.

Theorem 10. Our construction of trapdoor simulatable PKE is IND-CPA secure assuming that iOT satisfies
indistinguishability security against a semi-honest sender and a semi-honest receiver. Our construction of
trapdoor simulatable PKE satisfies trapdoor oblivious sampleability and randomness inversion assuming that
iOT satisfies oblivious receiver and sender sampleability.

Proof. At a high level, ensuring oblivious sampleability (correspondingly randomness inversion) of the public
key and ciphertexts in the resulting trapdoor simulatable PKE are relatively straightforward; one can simply
reuse the receiver and sender oblivious sampling (correspondingly randomness inversion) algorithms provided
by the iOT for obliviously sampling (correspondingly, inverting the randomness of) the public key and the
ciphertext, respectively. Formally, we require that for any message m ∈ {0, 1}`, the following holds:

(r̂G, r̂E , pk, ct)
c
≈ (r̃G, r̃E , p̃k, c̃t)

where (crs, td)← Setup(1κ) and let

(pk, sk) = Gen(crs; rrG) , ct = Enc(crs, pk,m; rrE),

r̂rG = rGen(crs, rrG, td) , r̂rE = rEnc(crs,m, rrG, rrE , td).

for appropriately sampled random coins rrG and rrE . Also, let

p̃k = oGen(crs; r̃rG) , c̃t = oEnc(crs, p̃k; r̃rE),

for appropriately sampled random coins r̃rG and r̃rE , and for m′ ← {0, 1}.

Hyb0. In this hybrid, we have the tuple (r̂rG, r̂rE , pk, ct) distributed identically to the tuple

( ˜iOTRInv(crs,MR, td, rrG), ˜iOTSInv(crs, 0,MS, td, rrE),MR,MS)

where
MR = iOTR1(crs, 0; rrG), MS = iOTS(crs,MR, (m,m

′); rrE).

Hyb1. By invoking receiver oblivious sampleability of the underlying iOT protocol, we can claim that the
aforementioned tuple in Hyb0 is computationally indistinguishable from the tuple

( r̃rG , ˜iOTSInv(crs, 0,MS, td, rrE), M̃R ,MS)

where we have

M̃R = ˜iOTR(crs; r̃rG) , MS = iOTS(crs, M̃R, (m,m
′); rrE)
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Hyb2. By invoking sender oblivious sampleability of the underlying iOT protocol, we can claim that the
aforementioned tuple in Hyb0 is computationally indistinguishable from the tuple

(r̃rG, r̃rE , M̃R, M̃S )

where we have

M̃R = ˜iOTR(crs; r̃rG), M̃S = ĩOTS(crs, M̃R, 0,m
′; r̃rE) .

Hyb3. Finally, we note that the aforementioned tuple in Hyb2 is identical to the tuple

(r̃rG, r̃rE , p̃k , c̃t )

ut

Remark. Note that in the aforementioned construction, if the underlying iOT protocol is secure in the plain
model (as opposed to in the CRS model), then we immediately obtain a construction of simulatable PKE (as
opposed to trapdoor simulatable PKE) in the plain model (as opposed to in the CRS model where the
randomness inversion algorithms needs the CRS trapdoor).

7 Instantiations of r-iOT from Concrete Assumptions

In this section we briefly discuss our instantiations of r-iOT from isogeny-based assumptions, CDH and LPN.

7.1 Instantiation from Isogeny-based Assumptions

In this section, we show how to construct a two-message r-iOT protocol secure against malicious adversaries in
the CRS model from certain isogeny-based assumptions (notably, CSIDH [CLM+18] or CSI-FiSh [BKV19]).
We base our construction on the existence of a secure (restricted) effective group action (EGA) equipped
with appropriate computational hardness assumptions as described in [ADMP20]. We then rely on known
instantiations of such a group action from the aforementioned isogeny-based assumptions. There has been
quite a lot of OT constructions [LGd21, BPS22, BMM+23] based on the group actions framework.

In the rest of the section, we rely on the notations and formal definitions of EGA introduced in [ADMP20].
We refer the reader to [ADMP20] and to the full version of our paper for background material on group
actions and EGA. We simply state here that our construction of r-iOT from group actions relies on the
existence of a weak pseusorandom EGA, which is essentially the analogue of the DDH assumption in the
context of group actions. As pointed out in [ADMP20], a weak pseudorandom EGA can be instantiated from
isogeny-based assumptions, such as the decisional CSIDH assumption [CLM+18] and counterpart assumption
in the setting of CSI-FiSh [BKV19].

The starting point of our construction of r-iOT is the construction of iOT from any (restricted) EGA pro-
posed originally in [ADMP20]. This construction already satisfies indistinguishability-based security against
maliciously corrupted sender and the receiver in the static corruption model. The key feature that this
construction does not provide is receiver oblivious sampleability.

It turns out that we could argue that this construction satisfies receiver oblivious sampleability in a
straightforward manner if we had the ability to sample obliviously from the “set” of a (restricted) EGA
by “hashing into” the set. However, this is a well-known open problem in the isogeny literature and is
likely to require fundamentally new ideas beyond state-of-the-art techniques for isogeny-based cryptogra-
phy (see [Pet17, DMPS19, CPV20] for more details).

Our Construction. Our core technical centerpiece is a workaround for this wherein we settle for a weaker
notion of trapdoor oblivious sampleability for the “set” of a (restricted) EGA. In other words, while it is hard
to obliviously sample a “set” element in the plain model, one can obliviously sample a “set” element given a
specially designed trapdoor (corresponding to some public CRS). This is the core idea behind our construction
of r-iOT from (restricted) EGA. In view of the inherent restrictions outlined earlier, our workaround only
allows us to achieve an r-iOT construction in the CRS model (and not in the plain model). Our construction
of r-iOT from any weak pseudorandom (restricted) EGA is summarized in Fig. 13. Note that the sender and
receiver algorithms remain unchanged from the original iOT construction due to [ADMP20].
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Fig. 13. Construction of r-iOT from weak pseudorandom EGA

Private Inputs: S has input bits (m0,m1); R has input choice bit b.
Primitives: (G,X, ?) is a weak pseudorandom EGA with initial set element x0 and H : X` → {0, 1} is a pairwise
independent hash function.

Setup(1κ):

– Sample and g, h← G, and set x1 = g ? x0 and x2 = h ? x0.
– Sample t← G and compute y0 = t ? x0, y1 = t ? x1 and y2 = t ? x2.
– Set crsr-iOT = (x0, x1, x2, y0, y1, y2) and tdr-iOT = (g, h, t).

r-iOTR1(crsr-iOT, b): Sample s← G and output MR computed as follows:

MR = (u, v) = (s ? xb, s ? yb), st = s.

r-iOTS(crsr-iOT,MR, (m0,m1)): For each β ∈ {0, 1}, uniformly sample

rβ = (rβ,1, . . . , rβ,`)← G`, bβ = (bβ,1, . . . , bβ,`)← {0, 1}`.

For each i ∈ [`] and for each β ∈ {0, 1}, compute

cβ,i =

{
rβ,i ? xβ if bβ,i = 0

rβ,i ? yβ if bβ,i = 1
, c′β,i =

{
rβ,i ? u if bβ,i = 0

rβ,i ? v if bβ,i = 1.

For β ∈ {0, 1}, define the vectors cβ , c
′
β ∈ X

` as:

cβ := (cβ,1, . . . , cβ,`), c′β := (c′β,1, . . . , c
′
β,`).

For β ∈ {0, 1}, compute zβ = H(c′β)⊕mβ , and output the sender message

MS = ((c0, z0), (c1, z1)).

r-iOTR2(crsr-iOT,MS; st = s): Output mb computed as follows:

mb = H(s ? c1, . . . , s ? c`)⊕ zb.

˜r-iOTR(crsr-iOT): Sample s← G and output M̃R = (s ? x2, s ? y2).

˜r-iOTRInv (crsr-iOT,MR, tdr-iOT, rr): Represent rr = (b||s) and tdr-iOT = (g, h, t). If b = 0 then output ŝ = sh−1, else output
ŝ = sgh−1.

Theorem 11. Let (G,X, ?) be a weak pseudorandom EGA (as introduced in [ADMP20]). The protocol in
Figure 13 is an r-iOT protocol in the CRS model.

Proof. We first show that our protocol satisfies perfect receiver privacy and then we demonstrate computa-
tional sender privacy and perfect oblivious receiver sampleability.

Perfect Receiver Privacy. The receiver’s choice bit b is perfectly hidden from the point of view of a (computa-
tionally unbounded) malicious receiver, even given crsr-iOT and MR = (u, v). We show this by assuming b = 1
(the same argument holds when b = 0). If receiver computes (u, v) using randomness s when b = 1, then the
same (u, v) can be shown as a valid receiver message for b = 0 using randomness s′ = sg. In particular, we
have (u, v) = (sg ? x0, sg ? y0), since x1 = g ? x0 and y1 = t ? x1 = tg ? x0 = g ? (t ? x0) = g ? y0.

Computational Sender Privacy. We show the following that there must be some bit w ∈ {0, 1} such that

r-iOTS(crsiOT,MR, (m0,m1))
c
≈ r-iOTS(crsiOT,MR, (m

′
0,m

′
1)),

where m1−w = m′1−w and mw 6= m′w. We first modify the setup string to crs′r-iOT such that y0 = t0 ? x0 and
y1 = t1 ? x1 where t0 6= t1. We argue that crsr-iOT and crs′r-iOT are computationally indistinguishable based
on the weak pseudorandomness of EGA.

37



Next, we argue that under the modified CRS crs′r-iOT, there must be some bit w ∈ {0, 1} such that MS

statistically hides mw irrespective of the manner in which a malicious receiver generates the message MR. It
allows us to move to a hybrid where the sender’s message is modified to m′w. The proof is very similar to
the proof of Lemma 4.10 of [ADMP20].

Finally, we change the setup string back to crsr-iOT as in the real protocol. This switch is again computa-
tionally indistinguishable based on the weak pseudorandomness of EGA. At this point, the sender’s message
is distributed as r-iOTS(crsiOT,MR, (m

′
0,m

′
1)), as desired. We refer to the full version of our paper for the

formal proof.

– Hyb0: Sender’s OT message is MS = r-iOTS(crsiOT,MR, (m0,m1)) where crsr-iOT is generated as in the
“real” protocol, i.e., we have

crsr-iOT = (x0, x1, x2, t ? x0, t ? x1, t ? x2).

– Hyb1: Sender’s OT message is MS = r-iOTS(crs′iOT,MR, (m0,m1)) where the CRS string is switched from
crsr-iOT to crs′r-iOT, where

crs′r-iOT = (x0, x1, x2, t0 ? x0, t1 ? x1, t0 ? x2)

for t0 6= t1. The two hybrids are computationally indistinguishable due to the weak pseudorandomness
of the EGA.

– Hyb2: Sender’s OT message is MS = r-iOTS(crs′iOT,MR, (m
′
0,m

′
1)). We prove that this switch is statistically

indistinguishable. Suppose that the malicious receiver sends to the honest sender a message of the form
MR = (u, v), where u and v could be arbitrarily created set elements (this assumption captures the fact
that a maliciously corrupt receiver is allowed to behave arbitrarily during protocol execution).
We first argue that given the switch in the manner in which the CRS is generated across the hybrids
Hyb1 and Hyb2, there must be some w ∈ {0, 1} such that we have

u = s ? xw, v = s′ ? yw,

for s 6= s′, irrespective of how the malicious receiver generated the set elements u and v. Indeed, if this
was not the case, we would have an expression of the following form (without loss of generality):

u = s ? x0 = s̃ ? x1, v = s ? y0 = s̃ ? y1,

implying that there exists some t ∈ G such that

y0 = t ? x0, y1 = t ? x1,

which immediately contradicts the manner in which the CRS was set up in its switched form across the
hybrids Hyb1 and Hyb2.
We now claim that for this w ∈ {0, 1}, the corresponding sender message mw must be statistically hidden
from the malicious receiver. Indeed, observe that given the sender message

MS = ((c0, z0), (c1, z1))

the malicious receiver can only infer any information about mw from the component (cw, zw). We claim
that (cw, zw) statistically hides mw. Recall that

cw = (cw,1, . . . , cw,`), c′w = (c′w,1, . . . , c
′
w,`), zw = H(c′w)⊕mw,

where for each i ∈ [`], we have

cw,i =

{
rw,i ? xw if bw,i = 0

rw,i ? yw if bw,i = 1
, c′w,i =

{
rw,i ? u if bw,i = 0

rw,i ? v if bw,i = 1.
,

for some uniformly sampled vector of group elements (rw,1, . . . , rw,`) and some uniformly sampled bit-
string (bw,1, . . . , bw,`).
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Now, letting u = s ? xw and v = s′ ? yw for s 6= s′, we get the following for each i ∈ [`] and for each
w ∈ {0, 1}:

c′w,i =

{
s ? cw,i if bw,i = 0

s′ ? cw,i if bw,i = 1
.

Since s 6= s′ and (bw,1, . . . , bw,`) is a uniformly random bit-string (sampled by the honest sender), given
(x0, x1, y0, y1, u, v, cw), the vector of set elements c′w has exactly ` bits of min-entropy, i.e.

H∞(c′w | (x0, x1, y0, y1, u, v, cw)) = `.

Observe that this argument crucially relies on the fact that we use independent pairs of vectors (rw,bw)
for each w ∈ {0, 1} as opposed to using the same (r,b) pair across both choice bits. In particular, given
the tuple (x0, x1, y0, y1, u, v, cw), the vector bw corresponding to the choice bit w has ` bits of entropy;
however, this was not the case when the same vector b was used for both choice bits.

In more detail, if the receiver’s choice bit is β, then w must be (1 − β), and the vector b1−β has ` bits
of entropy given (x0, x1, y0, y1, u, v, c1−β), which ensures that m1−β is statistically hidden. On the other
hand, the vector bβ is completely determined given (x0, x1, y0, y1, u, v, cβ).

Thus, our fix of using independent pairs of vectors (rw,bw) for each w ∈ {0, 1} allows the argument to
go through.

Hence, by the properties of the universal hash function H, zw = H(c′w) is statistically indistinguishable
from random, and even an unbounded malicious receiver has no information about mw (except with
negligible probability).

– Hyb3: Sender’s OT message is MS = r-iOTS(crsr-iOT,MR, (m
′
0,m

′
1)) where crsr-iOT is switched back to its

original form as in the “real” protocol, i.e., we have

crsr-iOT = (x0, x1, x2, t ? x0, t ? x1, t ? x2).

The two hybrids are again computationally indistinguishable due to the weak pseudorandomness of the
EGA.

This concludes the proof of computational sender privacy.

Perfect Receiver Oblivious Sampleability. Finally, we claim that an obliviously sampleable receiver’s mes-
sage is distributed identically to an honestly generated message, even given the sampling randomness. In
particular:

– If the receiver’s choice bit b = 0, then (u, v) = (s?x0, s?y0) generated using randomness s can be claimed
as obliviously sampled using randomness ŝ = sh−1, since (u, v) = ((sh−1) ? x2, (sh

−1) ? y2).
– If the receiver’s choice bit b = 1, then (u, v) = (s?x1, s?y1) generated using randomness s can be claimed

as obliviously sampled using randomness ŝ = sgh−1, since (u, v) = ((sgh−1) ? x2, (sgh
−1) ? y2).

This concludes the proof of Theorem 11. ut

7.2 Instantiation from CDH or LPN

To instantiate r-iOT from CDH or LPN, we rely on the iOT constructions of [DGH+20]. Specifically,
Döttling et al. showed that iOT can be constructed from a weaker notion of OT called elementary OT,
and they demonstrated instantiations of elementary OT from CDH or LPN assumption. The generic trans-
formation of [DGH+20] is done in two steps: (1) they first show how to build iOT from an intermediate
primitive called search OT via parallel repetition (which preserves receiver oblivious sampleability), (2) they
show how to construct search OT from elementary OT where the receiver’s message in search OT is identical
to that of elementary OT.

Since the generic transformation of [DGH+20] does not affect receiver oblivious sampleability, it suffices
to show that their elementary OT constructions from CDH or LPN inherently satisfy the receiver oblivious
sampleability property. We refer the reader to [DGH+20] for more details.
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CDH based instantiation. Let (G, q) be a cyclic group of order q for which the CDH assumption holds.
We first recall the relevant algorithms from the CDH-based construction of elementary OT in [DGH+20].11

– The setup algorithm samples crs as crs := X = gx where x← Zq.

– In order to generate its message to the sender, the receiver samples r ← Zq and it sets MR = grX−b

where X is the crs and b is the choice bit.

The receiver oblivious sampleability can be argued as follows:

– We slightly modify the setup algorithm to generate a trapdoor along with a crs. Specifically, we sample
crs as crs := X = gx where x← Zq, and we set the trapdoor as td := x.

– ˜r-iOTR(crs; r) : Given crs = X ∈ G, sample r ← Zq and output R = gr.

– ˜r-iOTRInv(crs,MR, td, r): Given crs = X, MR = grX−b, td = x, the inversion algorithm uses the trapdoor
x to find b ∈ {0, 1}, which can be computed efficiently because both x and r are available. It then outputs
r − bx ∈ Zq.

Based on the algorithms above, observe that

(gx, gr, r)
s
≈ (gx, gr−bx, r − bx),

where x and r (in both tuples) are independent, the left tuple is generated obliviously, and the right tuple is
generated honestly. It follows that the CDH-based r-iOT construction of [DGH+20] satisfies receiver oblivious
sampleability, as required.

LPN based instantiation. We first recall the relevant algorithms from the LPN-based construction of
elementary OT in [DGH+20].12

– The setup algorithm samples crs as crs := (A,v) where A← Zn×n2 and v← Zn2 .

– In order to generate its message to the sender, the receiver samples two vectors x ← Bnρ and e ← Bnρ ,
where Bρ is Bernoulli distribution with error rate ρ < 1/2. It sets MR = Ax + e + bv where b is the
choice bit.13

The receiver oblivious sampleability can be argued as follows:

– ˜r-iOTR(crs; r) : Given crs = (A,v) ∈ Zn+1
2 , sample r← Zq and output r.

– ˜r-iOTRInv(crs,MR, td, r): Output MR (ignore other components).

Observe that by LPN assumption we have

((A,v), r, r)
c
≈ ((A,v),Ax + e + bv,Ax + e + bv),

where the left tuple is generated obliviously and the right tuple is generated honestly. It follows that the
LPN-based r-iOT construction of [DGH+20] satisfies receiver oblivious sampleability, as required.
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A Security Model for Adaptively Secure MPC

In this section we recall the formal definition of adaptively secure MPC protocols in the stand-alone setting
as in [CFGN96, GS12].

Some MPC Notations. Let n denote the number of parties involved in the protocol. We assume that n is
fixed. A multi-party protocol problem is cast by specifying a n-ary functionality, denoted by f : ({0, 1}∗)n →
({0, 1}∗)n, where f = (f1, · · · , fn). For a input vector ~x = {x1, · · · , xn} the output is a tuple of random
variables denoted by (f1(~x), · · · , fn(~x)). The ith party Pi initially holds the input xi and obtains fi(~x). We
also assume that all the parties hold input of equal length, i.e., |xi| = |xj | for all i, j ∈ [n].

Adversarial behavior. For the analysis of our protocols we consider the setting of malicious adversaries
that can adaptively corrupt parties throughout the protocol execution depending on its view during the exe-
cution. We consider the definition of security in terms of the real-world and ideal-world simulation paradigm.

Real World. In the real world, the MPC protocol Π is executed by the interaction of n parties {P1, · · ·Pn}.
Each party Pi has input xi ∈ {0, 1}∗, random input ri ∈ {0, 1}∗, and the security parameter κ. Let C ⊂ [n]
and H = [n] \C denote the indices of the malicious corrupted parties and honest parties in Π. Consequently,
let us denote by PC and PH the set of maliciously corrupted and honest parties respectively. We assume
that all communication is done via a broadcast channel. We consider the synchronous, with rushing model
of computation.

At the onset of the computation the adversary A receives some auxiliary input denoted by z. The
computation proceeds in rounds, with each round consisting of several mini-rounds. Each mini-round starts
by allowing A to adaptively corrupt parties one by one. Once a party is corrupted the party’s input and
random input become known to A. Next, A activates an uncorrupted party Pi, which has not been activated
so far in this round. Upon activation, Pi receives the messages sent to it in the previous round, generates the
message for this round, and the next mini-round begins. A also gets to learn the messages sent by Pi. Once
all the uncorrupted parties are activated, A sends the messages on behalf of the corrupt parties that were
not yet activated in this round, and the next round begins. Finally, at the end of the computation (after
some pre-specified number of rounds) the parties locally generate their outputs. Each uncorrupted/honest
parties output what is specified as in the protocol. The corrupt parties may output an arbitrary probabilistic
polynomial-time function of the view of A.

The overall output of the real-world experiment consists of the output of all parties at the end of the
protocol, and the real world adversary view is denoted by RealΠ,(C,A)(κ, ~x,~r, z). Let RealΠ,(C,A)(κ, ~x, z) be
the distribution of RealΠ,(C,A)(κ, ~x,~r, z) when ~r is chosen uniformly at random. Let RealΠ,(C,A) denote the
distribution ensemble {RealΠ,(C,A)(κ, ~x, z)}κ∈N,~x∈({0,1}∗)n,z∈{0,1}∗ .
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Fig. 14. The Ideal World Execution of an Adaptive MPC Protocol

– Input: Let ~x = {x1, · · · , xn} denote the initial inputs for the parties. As in the real-world, the adver-
sary/simulator S additionally has an auxiliary input denoted by z.

– First corruption stage: S proceeds in iterations, where in each iteration S may decide to corrupt some party
based on the random input of S. Once a party is corrupted its input becomes known to S.

– Send inputs to T: Each honest party Pi sends its input xi to T. The corrupted parties may either abort (send
special symbol ⊥), send correct input xi, or send some other input x′i (|xi| = |x′i|) to T. Let ~x′ = {x′1, · · · , x′n}
denote the input vector received by T.

– Early abort option: If T receives the special symbol ⊥, it sends abort to the honest parties and the ideal
execution terminates. Otherwise,

– T sends output to adversary: T chooses rf uniformly at random, computes f(~x′, rf ) and sends it to the S
first.

– Adversary S instructs T to continue or halt: S either sends continue or abort to T. In case of continue,
T sends f(~x′, rf ) to the honest parties. Otherwise, if S sends abort, T sends abort to the honest parties.

– Second corruption stage: Upon learning the corrupted parties’ outputs of the computation, S proceeds
in another sequence of iterations, where in each iteration S may decide to corrupt some additional parties,
based on the information gathered so far. Upon corruption, S learns the sees the corrupted party’s input and
output.

– Output stage: Each honest party output the output received from T, while the maliciously corrupted parties
PC output any probabilistic polynomial-time computable function of their input, the auxiliary input z, and
the output received from T.

– Post-execution corruption: Once the outputs are generated, S may at any point in the protocol may decide
to adaptively proceed in another sequence of iterations, where in each iteration S may decide to corrupt some
additional party, based on the information gathered so far.

Ideal World. In the ideal world we assume the existence of an incorruptible trusted third party (TTP), with
whom all the parties interact. Each party Pi gets input xi ∈ {0, 1}∗ and wish to evaluate f1(~x, rf ), · · · , fn(~x, rf ),
where rf ← {0, 1}s, and s is a value determined by the security parameter, and Pi learns fi(~x, rf ). The ideal
world computation in the presence of an adaptive ideal world adversary S (with random input r) and the
TTP T proceeds as in Figure 14.

The overall output of the ideal-world experiment consists of the output of all parties at the end of the
protocol, and the ideal world adversary view is denoted by Idealf,(C,S)(κ, ~x,~r, z), where ~r = (r, rf ). Let
Idealf,(C,S)(κ, ~x, z) be the denote the distribution of Idealf,(C,S)(κ, ~x,~r, z) where ~r is chosen uniformly at
random. Also, let Idealf,(C,S) denote the distribution ensemble

{Idealf,(C,S)(κ, ~x, z)}κ∈N,~x∈({0,1}∗)n,z∈{0,1}∗ .

Now that the ideal and real world executions are defined, we put forward the notion of security for an
adaptively secure multi-party protocol Π. Informally, we require that executing a protocol Π in the real
world emulates the ideal process for evaluating f .

Definition 17 (Adaptive MPC Security). Let f be any adaptive well-formed n-ary function, Π be a be
a protocol for n parties. We say that Π adaptively securely evaluates f if for every real world adversary A
there exists an ideal world adversary S, such that RealΠ,(C,A) ≈c Idealf,(C,S).
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