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Abstract. Subversion-resistant zk-SNARKs allow the provers to ver-
ify the Structured Reference String (SRS), via an SRS Verification (SV)
algorithm and bypass the need for a Trusted Third Party (TTP). Pairing-
based zk-SNARKs with updatable and universal SRS are an extension of
subversion-resistant ones which additionally allow the verifiers to update
the SRS, via an SRS Updating (SU) algorithm, and similarly bypass
the need for a TTP. In this paper, we examine the setup of these zk-
SNARKs by benchmarking the efficiency of the SV and SU algorithms
within the Arkworks library. The benchmarking covers a range of updat-
able zk-SNARKs, including Sonic, Plonk, Marlin, Lunar, and Basilisk.
Our analysis reveals that relying solely on the standard Algebraic Group
Model (AGM) may not be sufficient in practice, and we may need a model
with weaker assumptions. Specifically, we find that while Marlin is secure
in the AGM, additional elements need to be added to its SRS to for-
mally prove certain security properties in the updatable CRS model. We
demonstrate that the SV algorithms become inefficient for mid-sized cir-
cuits with over 20,000 multiplication gates and 100 updates. To address
this, we introduce Batched SV algorithms (BSV) that leverage standard
batching techniques and offer significantly improved performance. As a
tool, we propose an efficient verification approach that allows the parties
to identify a malicious SRS updater with logarithmic verification in the
number of updates. In the case of Basilisk, for a circuit with 220 multi-
plication gates, a 1000-time updated SRS can be verified in less than 30
sec, a malicious updater can be identified in less than 4 min (improvable
by pre-computation), and each update takes less than 6 min.

1 Introduction

Let R be an NP relation which defines the language L of all statements, x,
for which there exists a witness, w, s.t. (x,w) ∈ R. A Non-Interactive Zero-
Knowledge (NIZK) argument [24,11] for R allows an untrusted prover P, know-
ing w, to non-interactively convince a sceptical verifier V about the truth of a
statement x, without leaking extra information about the witness w. Due to a
wide range of applications, there has been a growing interest in recent years
to develop NIZK proof systems, particularly those allowing for succinct proofs
and efficient verifications, so-called zk-SNARKs (zero-knowledge Succinct Non-
interactive Arguments of Knowledge) [34,25].
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A zk-SNARK is expected to satisfy Zero-Knowledge (ZK) and Knowledge
Soundness (KS). ZK ensures that V learns nothing beyond the truth of state-
ment, x, from the proof. KS ensures that no malicious P can convince honest V
of a false statement, unless he knows the witness. To achieve ZK and KS at the
same time, zk-SNARKs rely on a Structured Reference String (SRS), which is
supposed to be sampled by a Trusted Third Party (TTP), using the SRS gener-
ation algorithm SG [11]. Therefore, in the SRS model a zk-SNARK consists of
three algorithms (SG,P,V). In practice, finding a mutually TTP for executing
the SG algorithm to generate the SRS can be challenging.

Mitigating the Trust on the Setup of zk-SNARKs. To relax the imposed trust
on the setup of zk-SNARK, a line of research distributes the SG algorithm
and constructed Multi-Party Computation (MPC) protocols to sample the
SRS [10,12,29]. In such protocols, both P and V need to trust only 1 out of
i > 1 participants.

In a different research direction, in 2016, Bellare et al. [8] built the first
NIZK argument that can achieve ZK, even if its SRS was subverted, so-called
Subversion ZK (Sub-ZK). In a Sub-ZK NIZK argument, the prover does not
need to trust the SRS generator, instead, it needs to run an algorithm, so-
called SRS Verification (SV), and verify the validity of SRS before using it.
The SV algorithm uses some pairing equations to verify the well-formedness of
SRS elements. Two subsequent works of [2,18] presented subversion-resistant zk-
SNARKs that similarly come with an SV algorithm and can achieve Sub-ZK. In
a Sub-ZK SNARK, consisting of four algorithms (SG,SV,P,V), the provers can
verify the validity of SRS, by one-time executing the SV algorithm, and then
bypass the need for a TTP. On the other side, the verifiers either need a TTP to
generate the SRS, or they need to run an MPC protocol (e.g. [10,12]) to sample
the SRS elements, which will relax the level of trust to 1 out of i (participants).

As an extension to the MPC approach and subversion-resistant zk-SNARKs,
in 2018, Groth et al. [26] proposed a new model, so-called updatable SRS model,
which allows the verifiers to also bypass the trust on a TTP. To this end, a
V needs to update the SRS one time, using an SRS Updating (SU) algorithm,
and also verify the validity of previous updates and the final SRS, using the
SV algorithm. Roughly speaking, in a zk-SNARK with updatable SRS, which
consists of five algorithms (SG,SU,SV,P,V), to bypass the trust on a third party,
a P needs to run the SV algorithm, and a V needs to run both SU and SV. In
this model, the SRS is universal and can be used for various circuits within a
bounded size. Then, Groth et al. [26] built the first zk-SNARK with universal
and updatable SRS, but comes with O(n2) SRS size, where n is the number of
multiplication gates in the circuit. In practice, this results in a huge SRS size,
and impractical SU and SV algorithms.

Recently, there has been an impressive progress on designing Random Oracle-
based zk-SNARKs with linear-size updatable SRS, shorter proofs, and more ef-
ficient provers and verifiers. Some of the known schemes that consecutively im-
prove the initial scheme of [26] and the subsequent works are called, Sonic [32],
Plonk [21], Marlin [14], Lunar [13], Basilisk [35], and Counting Vampires [31].
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Table 2 in App. A.1, compares their efficiency in terms of computational costs of
(SG,P,V) and the SRS size. Currently, Counting Vampires [31] has the shortest
proofs, i.e., two group elements less than Basilisk, but its SRS is 17× larger than
the SRS of Basilisk, and this can result in a considerably slower setup phase.
The SU and SV algorithms are two essential algorithms for achieving Sub-ZK
and Updatable Knowledge Soundness (Upd-KS, KS in the updatable SRS model)
and the employment of updatable zk-SNARKs. In order to achieve Sub-ZK and
Upd-KS in the updatable SRS model, the underlying SRS must be publicly veri-
fiable and trapdoor extractable [8,2,18,26]. Meaning that, the consistency of SRS
elements should be publicly verifiable, and one should be able to extract the SRS
trapdoors from the setup phase (e.g., by relying on a knowledge assumption).
The initial scheme [26], and some follow-up generic constructions [3,7,6] come
with SU and SV algorithms, under Bilinear Diffie-Hellman Knowledge of Expo-
nent (BDH-KE) assumption. But their SV algorithm is identical for both P and
V, which in case of verifying an i-time updated SRS, it brings O(i) pairing oper-
ations as an overload for the P. In [31], authors have proposed an SV algorithm
to achieve Sub-ZK in their construction. However, their SV algorithm can only
be used by P (to achieve Sub-ZK), and it does not consider the verification of
an i-time updated SRS, needed by V.

Our Contributions. The main objective of the current paper is to examine
the efficiency of the setup phase in updatable zk-SNARKs, and evaluate their
empirical performance, particularly in large-scale applications.

To this end, we first present a pair of (SU,SV) algorithms for each of the up-
datable zk-SNARKs including: Sonic [32], Plonk [21], Marlin [14], LunarLite [13]
and Basilisk [35]. Similar to the earlier works [8,2,18,26], the proposed algorithms
use pairing products and are tailored to each specific updatable zk-SNARK. As
all the aformentioned zk-SNARKs can be instantiated in various ways, we focus
on the pairing-based version of them with the shortest proof, which is commonly
used for comparison in the literature. During the construction of the SU and SV
algorithms, we noticed that relying only on the standard Algebraic Group Model
(AGM) may not be enough in practice. In some cases, we may require a model
with weaker assumptions, such as the AGM with hashing [30]. In fact, there
might be a case that a zk-SNARK with monomial SRS is proven to achieve
ZK and KS in the AGM model, but their SRS needs to be modified to achieve
Sub-ZK and U-KS. The reason is that, to achieve Sub-ZK and Upd-KS the SRS
needs to be publicly verifiable and trapdoor extractable [2,26]. In the rest, we
show that the SRS of Marlin [14] is not trapdoor extractable as it is, but it can be
made trapdoor extractable under the BDH-KE assumption, by adding a single
group element to its SRS.

In the rest, we show that using the presented SU and SV algorithms, Sonic,
Plonk, LunarLite and Basilisk also can achieve trapdoor extractability, under a
subverted/maliciously updated SRS. Since all of them already are proven that
satisfy ZK and KS, this implies that they also satisfy Sub-ZK and Upd-KS.
Similar to the earlier works [8,2,18,14], our SV algorithms use pairing product
equations to verify the SRS. But, differently our SV algorithms get an additional
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Fig. 1: Setup in the updatable zk-SNARKs: SG, SU, and SV by P or V.

input, denoted by party, which allows us to determine whether a P or V runs the
algorithm. Due to achieving Sub-ZK and Upd-KS in the updatable zk-SNARKs,
P only needs to verify the final (srsi, Πi), while V additionally needs to verify
the intermediate proofs {Πj}i−1

j=0. Fig. 1 depicts a graphical representation of
the setup phase in the pairing-based updatable zk-SNARKs, and highlights the
parts that need to be verified by P or V. By running an SV algorithm, P needs
to compute O(n) pairings, where n is the number of multiplication gates in the
circuit, and V requires to compute at least O(n + i) pairings, where i is the
number of updates done on the SRS. In practice, even for mid-size circuits (e.g.
n ≥ 104) with 100 updates, the SV algorithms can be very slow, consequently
impractical.

Next, we use the standard batching techniques from [9] and propose a batched
version of the SV algorithms, so-called BSV, for each of the studied updatable zk-
SNARKs. Using the BSV algorithms, to verify an i-time updated SRS, P needs
O(n) exponentiations (with short exponents) and constant number of pairings,
which is independent of the number of updates. A V needs to compute O(n+ i)
exponentiations (with short exponents) and O(i) pairings. Table 1, compares the
efficiency of our proposed SU, SV and BSV algorithms for both P and V.

The schemes built in the updatable SRS model [26] can achieve security only
with abort, if the parties do not verify the updated SRS after each update.
Namely, by verifying the final SRS srsi and the intermediate proofs {Πj}ij=0 [26]
the parties will abort the final SRS srsi and would not be able to identify a mali-

Table 1: An efficiency comparison of our proposed SU, SV and BSV algorithms.
SVP: SV run by P, BSVV: BSV run by V, El: Exponentiations in Gl, •: Pairing, m:
#total (multiplication and addition) gates, n: #multiplication gates, k: #matrix
elements with non-zero values describing the circuit, i: # SRS updates

SG/SU SVP SVV BSVP BSVV

Scheme E1 E2 • • E1 E2 • E1 E2 •
Sonic 4n 4n 12n 12n+ 10i 8n 4n 7 8n+ 8i 6n+ 2i 4i+ 14
Marlin k log k 2k + 12 2k + 9i+ 12 2k log k 4 2k + 5i 2i+ log k 2i+ 9
Plonk 3m 2 6m 6m+ 4i 6m — 2 6m+ 3i i i+ 3

LunarLite n n 3n 3n+ 4i+ 2 2n n 3 2n+ 3i n+ i i+ 3
Basilisk n 2 2n 2n+ 4i 2n — 2 2n+ 3i i i+ 3
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cious SRS generator/updater. To identify a malicious SRS generator/updater, if
the parties (or a third party) verify each updated SRS {srsj}ij=0 (instead of only
srsi), then the verification of whole setup phase will be impractical. To deal with
that, we introduce an efficient verification approach for identifying the malicious
updater. For an i-time updated SRS, it allows the parties to identify the (first)
malicious SRS updater with log i times running the BSV (or SV) algorithm. We
discuss different optimizations that can speed up the proposed recursive SRS
verification considerably, at the cost of some pre-computations and storage.

Finally, we present a comprehensive benchmark on the efficiency of our pro-
posed SU, SV and BSV algorithms in the Arkworks library, which is written
in Rust and currently is one of the most popular libraries programming zk-
SNARKs. Full details of the benchmarking are reported in Sec. 5. In summary,
for a particular circuit, by comparing the performance of BSV and SV algorithms,
we observed that BSV can achieve up to 110−150× better efficiency. In the case
of Basilisk which has the most efficient setup phase, for a circuit with n = 220

multiplication gates, a 1000-time updated SRS can be verified in less than 30
sec. In the case that the verification of final SRS fails, using our proposed re-
cursive verification approach, a malicious SRS updater can be identified in less
than 4 min (or in less than 1 min by some pre-computations), and each party
equipped with a multi-core CPU can update the SRS in less than 6 min. Our
BSVP algorithms are considerably faster than BSVV ones, in case of a short SRS
(e.g. n ≤ 30K) and a large number of updates (e.g. i ≥ 200).

Related Works. To mitigate the trust in the setup phase of zk-SNARKs, there
are two key research directions. Either, by using an MPC protocol to sample the
SRS [10,12,29], [1] or by directly constructing subversion-resistant [8,2,18,4] and
updatable zk-SNARKs [26,32,3,7,6]. Our work is focused on the latter approach.

A bottleneck with the initial MPC protocols [10], is that the number of
parties has to be known in advance. Bowe et al. [12] presented an MPC protocol
for Groth16 [25] setup, which has two phases. The first phase is known as “Powers
of Tau”, which can be used to sample a universal SRS for all circuits up to a
given size. In the second phase, given the universal SRS generated in the previous
phase, parties generate a circuit-dependent SRS. In the Powers of Tau protocol,
a coordinator is used to manage messages between the participants, however the
output of the protocol is verifiable. Compared with the case one uses the Powers
of Tau protocol [12], 1) our proposed algorithms do not need a random beacon,
2) our SV and BSV algorithms are constructed in the updatable SRS model
which allows one to verify an i-time updated SRS considerably more efficient
than i-time running their SRS verification algorithm. For verifying even one-
time updated SRS, our proposed BSV algorithms can be more than 100× faster
than their verification algorithm, 3) our SV and BSV algorithms for the provers
and verifiers are different, which allows the provers to verify a large-time updated
SRS more efficient than verifiers. 4) our protocols can achieve identifiable security
more efficiently (using a new recursive SRS verification approach).

In [29], Kohlweiss et al. presented a more efficient version of the Powers
of Tau [12]. Their ceremony protocol [29] uses an RO-based proof system,
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and comes with a BSV algorithm. Similar to previous SG,SU,SV and BSV
algorithms, our algorithms do not use a random beacon or a random oracle.
Similar to the earlier works on subversion-resistant or updatable NIZK argu-
ments [2,18,26,4,3,7,6],we rely on particular knowledge assumptions. In compar-
ison with the case that one uses the protocol proposed in [29], 1) our proposed
algorithms (i.e., SG,SU,SV, and BSV) do not rely on RO, 2) we have different
SV (and BSV) algorithms for the provers and verifiers, which allow the provers
to verify an updated SRS more efficient than the verifiers, 3) our constructions
can achieve identifiable security.

In another related research direction, some studies have defined subversion-
resistant and updatable commitments [5,16,22], and have proposed SV and SU
algorithms for their studied (knowledge, vector, and polynomial) commitment
schemes. Our proposed SV algorithm for Sonic can be considered as an extension
of the one proposed in [5], which checks some extra terms and also allows the
verifiers to verify an i-time updated SRS. Our SV algorithm for the verifiers
in Basilisk is similar to the one proposed in [22], but our SV algorithm for the
provers is more efficient. We also propose a batched version of SV algorithms
that make them considerably more efficient in practice.

Organization. Sec. 2 introduces notations and preliminaries. In Sec. 3, we present
SU and SV algorithms for each of the studied zk-SNARKs, and then prove that
they all can achieve Sub-ZK and Upd-KS. We present more efficient and batched
variants of the proposed SV algorithms, in Sec. 4. In Sec. 5, we benchmark the
performance of our proposed algorithms, and also study identifiable security in
the updatable SRS model. Finally, we conclude the paper in Sec. 6.

2 Preliminaries

Throughout, we suppose the security parameter of the scheme and its unary
representation to be denoted by λ and 1λ, respectively. For all positive functions
ε(λ), a mapping function negl : N → R+ is called negligible function if there
exists λ0 ∈ N such that for all λ > λ0 we have, negl(λ) < 1/ε(λ). We use x←$ X
to denote x sampled uniformly according to the distribution X.

Let PPT and NUPPT denote probabilistic polynomial-time and non-uniform
probabilistic polynomial-time, respectively. For an algorithm A, let im(A) be the
image of A, i.e., the set of valid outputs of A. Moreover, assume RND(A) denotes
the random tape of A, and r ←$ RND(A) denotes sampling of a randomizer r of
sufficient length for A’s needs. By y ← A(x; r) we mean given an input x and
a randomizer r, A outputs y. For algorithms A and ExtA, we write (y ∥ y′) ←
(A∥ExtA)(x; r) as a shorthand for “y ← A(x; r), y′ ← ExtA(x; r)”.

We use additive and the bracket notation, i.e., in group Gζ , [a]ζ = a [1]ζ ,
where [1]ζ is the generator of Gζ for ζ ∈ {1, 2, T}. A bilinear group generator
BGgen(1λ) returns (p,G1,G2,GT , ê, [1]1 , [1]2), where p (a large prime) is the
order of cyclic abelian groups G1, G2, and GT . Finally, ê : G1 × G2 → GT

is an efficient non-degenerate bilinear pairing, s.t. ê([a]1 , [b]2) = [ab]T . Denote
[a]1 • [b]2 = ê([a]1 , [b]2).
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2.1 Updatable, Universal and Subversion-Resistant zk-SNARKs

We adopt the definition of subversion-resistant and updatable zk-SNARKs
from [2,26]. Let R be a relation generator, such that R(1λ) returns a polynomial-
time decidable binary relation R = {(x,w)}, where x is the statement and w
is the witness. We assume one can deduce λ from the description of R. Let
L = {x : ∃w | (x,w) ∈ R} be an NP-language including all the statements which
there exist corresponding witnesses in relation R. A NIZK argument ΨNIZK in
the updatable SRS model for R consists of the following PPT algorithms:
– (srs0, Π0)← SG(R): Given R, the SRS generator SG first deduces the upper

bound N on the relation size. Next, sample the trapdoor ts and then use
it to generate srs0 along with Π0 as a proof of its well-formedness. Finally,
return (srs0, Π0) as the output.

– (srsi, Πi) ← SU(srsi−1, {Πj}i−1
j=0): Given (srsi−1, {Πj}i−1

j=0), an SRS updater
SU returns the pair of (srsi, Πi), where srsi is the updated SRS and Πi is a
proof for correct updating.

– (⊥/1)← SV(srsi, {Πj}ij=0, party): Given a potentially updated srsi, {Πj}ij=0,
SV, and party ∈ {P,V}, return either ⊥ (if srsi is incorrectly formed or
updated) or 1 (if srsi is correctly formed or updated).

– (π/⊥)← P(R, srsi, x,w): Given the tuple of (R, srsi, x,w), such that (x,w) ∈
R, P output an argument π. Otherwise, it returns ⊥.

– (0/1)← V(R, srsi, x, π): Given (R, srsi, x, π), V verify the proof π and return
either 0 (reject) or 1 (accept).

In the standard SRS model, a zk-SNARK for R has a tuple of algorithms
(SG,P,V) (and SG does not return the Π0), while subversion-resistant construc-
tions [8,2] additionally have an SV algorithm which is used to verify the well-
formedness of the SRS elements to achieve Sub-ZK [8]. But as listed above, in the
updatable SRS model, a NIZK argument additionally has an SU algorithm that
allows the parties (more precisely, the verifiers) to update the SRS and add their
own private shares to the SRS generation. Note that in the latest case, the algo-
rithm SG does not necessarily need R, and it only deduces security parameter
1λ and the upper bound N from it. We highlight that, in comparison with pre-
vious definitions [26], our SV algorithm gets an additional input party ∈ {P,V}.
We later show that this allows us to build a more efficient SV algorithm for the
prover. It is worth mentioning that in the updatable SRS model, there also ex-
ists a publicly computable deterministic algorithm Derive which given (R, srsi)
outputs a specialized SRS for relation R. The output elements of Derive all are
in the span of the universal SRS, but they allow to build more efficient proof
generation and verification algorithms.

In the subversion-resistant and updatable SRS model, a zk-SNARK is ex-
pected to satisfy updatable completeness, Subversion-Zero-Knowledge (Sub-ZK)
and Updatable Knowledge Soundness (Upd-KS), of which the definitions are
summarized below. In the definition of Sub-ZK, one requires the existence of
a PPT simulator Sim consisting of algorithms (SimSG,SimP) that share state
with each other. The idea is that it can be used to simulate the SRS and proofs
without knowing the corresponding trapdoors.
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The algorithm of proof simulation. π ← SimP(R, srsi, tsi, x): For SV(srsi, Πi) = 1,
given the tuple (R, srsi, tsi, x), where tsi is the simulation trapdoor associated
with the latest SRS, namely srsi, outputs a simulated argument π.

Definition 1 (Perfect Updatable Completeness). A non-interactive ar-
gument ΨNIZK is perfectly updatable complete for R, if for all (R) ∈ im(R(1λ)),
and (x,w) ∈ R, the following probability is 1 on security parameter λ,

Pr

[
(R)← R(1λ), (srs0, Π0)← SG(R), ({srsj , Πj}ij=1)← A(R, srs0),

{SV(srsj , Πj , party) = 1}ij=0 : (x, π)← P(R, srsi, x,w) ∧ V(R, srsi, x, π) = 1

]
,

where Πi is a proof for the correctness of the initial SRS generation or SRS
updating. Note that in the above definition and all the following one, i is the
index of final update, and without loss of generality, A can also first generate
{srsj}i−1

j=0 and then an honest updater updates srsi−1 to srsi.

Definition 2 (Sub-ZK). A NI argument Ψ is computationally Sub-ZK for R,
if for any PPT subvertor Sub there exists a PPT extractor ExtSub, s.t. for all λ,
all R ∈ im(R(1λ)), and for any PPT A, one has ε0 ≈λ ε1, where

εb = Pr

[
r ←$ RND(Sub), ((srs, Πsrs, ξSub) ∥ ts)← (Sub ∥ExtSub)(R; r) :

SV(srs, Πsrs, party) = 1 ∧ AOb(·,·)(R, srs, ts, ξSub) = 1

]
.

Here, ξSub is auxiliary information generated by subvertor Sub, the party is set to
be the prover, and the oracle O0(x,w) returns ⊥ (reject) if (x,w) ̸∈ R, and other-
wise it returns P(R, srs, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) ̸∈ R,
and otherwise it returns Sim(R, srs, ts, x). Ψ is perfectly Sub-ZK for R if one re-
quires that ε0 = ε1.

Definition 3 (Updatable nBB Knowledge Soundness). A non-interactive
argument ΨNIZK is updatable non-black-box knowledge sound for R, if for every
PPT adversary A and any subvertor Sub, there exists a PPT extractor ExtA,
and the following probability is negl(λ),

Pr


R← R(1λ), (srs0, Π0)← SG(R), rs ←$ RND(Sub),

({srsj , Πj}ij=1 , ξSub)← Sub(srs0, Π0, rs), {SV(srsj , Πj , party) = 1}ij=0 ,

rA ←$ RND(A), ((x, π) ∥w)← (A∥ExtA)(R, srsi, ξSub; rA) :

(x,w) ̸∈ R ∧ V(R, srsi, x, π) = 1

 ,

Here RND(A) = RND(Sub), Πsrs is a proof for correctness of SRS generation or
updating process, and the party is set to be the verifier.

2.2 Assumptions

Definition 4 (Bilinear Diffie-Hellman Knowledge of Exponent (BDH-
KE) Assumption [2]). We say BGgen is BDH-KE secure for relation set R if
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for any λ, R ∈ im(R(1λ)), and PPT adversary A, there exists a PPT extractor
ExtA, such that, the following probability is negl(λ),

Pr

[
(p,G1,G2,GT , ê, [1]1 , [1]2)← BGgen(1λ), r ←$ RND(A),
([α1]1 , [α2]2 ∥ a)← (A∥ExtA)(R, r) : [α1]1 • [1]2 = [1]1 • [α2]2 ∧ a ̸= α1

]
.

The BDH-KE assumption [2] is an asymmetric-pairing version of the original
knowledge assumption [15]. We refer to App. A for some preliminaries on poly-
nomial commitments that are used in the rest of paper.

3 SU and SV Algorithms for Updatable zk-SNARKs
In this section, we present a pair of SRS updating and SRS verification algorithms
for each of the studied updatable zk-SNARKs, Sonic [32], Plonk [21], Marlin [14],
LunarLite [13] and Basilisk [35].

The General Strategy. Our proposed SV and SU algorithms use pairing checks
for SRS verification and the SRS elements are updated in a round-robin multi-
plicative manner. In comparison with the earlier works, we have a subtle change
in the construction of SV algorithms, which allows the provers to verify an up-
dated SRS more efficiently, especially in case of small circuits with a large num-
ber of updates. Recall that, a pairing-based zk-SNARK satisfies Sub-ZK if it can
achieve ZK, even if its SRS is subverted (i.e., is generated by the adversary). In
Sub-ZK zk-SNARKs [8,2,18,4], this is formalized and achieved by building an
SV algorithm that verifies the well-formedness and trapdoor extractability of the
SRS. The former guarantees that the whole SRS elements are consistent with
each other, and the latter ensures that the (simulation) trapdoors of SRS can be
extracted from an SRS subverter. Given the simulation trapdoors of SRS, the
proofs are simulated as in the standard ZK. On the other side, a universal zk-
SNARK is updatable [26] if its SRS can be sequentially updated by the parties,
such that Upd-KS holds if at least one of the updates with SU or the initial SRS
generation with SG is done honestly. To ensure that SRS generation/updating
is done correctly, parties should return a knowledge assumption-based proof
Π when running SG or SU algorithms. This proof is also known as the well-
formedness proof of the SRS. In the presented SV algorithms, we use the fact
that to achieve Sub-ZK, a P only needs to verify the final SRS. Without loss of
generality, one can assume that the initial SRS generation and all the follow-up
updates are done with a single adversary who can control all the updaters who
run SU and the initial party who runs SG. However, to achieve Upd-KS without
a TTP, a V needs to one-time run the SU and update the SRS, and also verify
the final SRS and the correctness of all intermediate proofs, generated by all the
updaters (See Fig. 1).

Next, in each subsection, we present an overview of a particular updatable
zk-SNARK, and then describe its SRS Generation (SG) algorithm. Different from
the original papers, in the description of SG algorithms, we also determine what
constitutes a well-formedness proof that can be used to extract individual shares
from the SRS generator/updaters, and more importantly, can be used to verify
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the final SRS. The well-formedness proof is shown with Π which consists of two
sets of elements (ΠAgg, Π Ind), where ΠAgg can be interpreted as the aggregated
elements necessary for verifying the well-formedness of final SRS, and Π Ind can
be interpreted as an individual proof for the correctness of updating using the
secret shares, e.g. x̄. The latter, also enables extracting the individual shares
from a malicious SRS generator/updater in the proof of Upd-KS. Finally, we
present SU and SV algorithms.

3.1 SU and SV Algorithms for Sonic

Sonic and its SG algorithm. The first proposed updatable zk-SNARK, presented
by Groth et al. [26], came with explicit SU and SV algorithms, but its SRS
size scales quadratically in the number of multiplication gates in the circuit
that encodes the relation, which made the algorithms very slow. In a follow-up
work, Maller et al. [32] proposed Sonic as the first updatable zk-SNARK with
linear size SRS. The authors mostly focused on achieving a linear size SRS and
more efficient P and V algorithms, and omitted the descriptions of SU and SV
algorithms (and even SG which should determine the well-formedness proof) and
mentioned that they can built as in [26]. For further details, we refer to the main
paper [32]. We describe the SG algorithm of Sonic in Fig. 2.

SU and SV Algorithms and Their Efficiency. Fig. 3 describes the SU and SV
algorithms for Sonic. As briefly mentioned before, the SRS update is done in a
multiplicative manner, such that the updater multiplies a proper power of its
secret shares x̄i and āi to the SRS elements. Similar to the SG algorithm, we
also determine the elements of the well-formedness proof separately. Note that
[a]T is omitted from updating, as due to the fact that [a]T := [1]1 • [a]2, it can
finally be computed from the other SRS elements. The pairing checks inside SV
chase two main goals. First, they check if all the individual proofs generated by
the SRS generator and by all the follow-up SRS updaters are correct. If so, then
it uses the elements of Πi and verifies the final SRS, srsi.
Efficiency. As it can be seen in Fig. 2 and 3, given the SU algorithm, similar to
the SG algorithm, to update the SRS of size n in Sonic, one needs to compute
4n + 2 exponentiations in G1 and 4n + 2 exponentiations in G2. Using the SV

SRS Generation, (srs0, Π0)← SG(R): Given R, first deduce the security param-
eter 1λ and k, then obtain (p,G1,G2,GT , ê, [1]1 , [1]2) ← BGgen(1λ); after that
act as follows:
– Sample x̄0, ā0 ← Z⋆

p, and set x0 := x̄0 and a0 := ā0 which are the simulation
trapdoor associated with srs0;

– For k = −n, · · · , n: compute
[
xk
0

]
1
,
[
xk
0

]
2
,
[
a0x

k
0

]
2
;

– For k = −n, · · · ,−1, 1, · · · , n: compute
[
a0x

k
0

]
1
; Compute [a0]T ;

– Set srs0 := ((
[
xk
0

]
1
,
[
xk
0

]
2
,
[
a0x

k
0

]
2
)nk=−n,

([
a0x

k
0

]
1

)n
k=−n,k ̸=0

, [a0]T ), and

the well-formedness proof Π0 := (ΠAgg
0 , Π Ind

0 ) := (([x0]1 , [a0x0]1 , [a0]2),
([x0]1 , [x0]2 , [a0x0]1 , [a0x0]2 , [a0]2));

– Return (srs0, Π0);

Fig. 2: SG algorithm for SONIC.
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SRS Update, (srsi, Πi)← SU(srsi−1, {Πj−1}i−1
j=0): Given (srsi−1, {Πj−1}i−1

j=0),
– Parse srsi−1 := ((

[
xk
i−1

]
1
,
[
xk
i−1

]
2
,
[
ai−1x

k
i−1

]
2
)nk=−n, (

[
ai−1x

k
i−1

]
1
)nk=−n,k ̸=0);

– Sample x̄i, āi ←$ Z⋆
p, as the secret shares to be used for updating srsi−1.

– For k = −n, · · · , n: set
[
xk
i

]
1
:= x̄k

i ·
[
xk
i−1

]
1
; set

[
xk
i

]
2
:= x̄k

i ·
[
xk
i−1

]
2
; set[

aix
k
i

]
2
:= āix̄

k
i ·

[
ai−1x

k
i−1

]
2

;
– For k = −n, · · · ,−1, 1, · · · , n: set

[
aix

k
i

]
1
:= āix̄

k
i ·

[
ai−1x

k
i−1

]
1
;

– Set srsi := ((
[
xk
i

]
1
,
[
xk
i

]
2
,
[
aix

k
i

]
2
)nk=−n, (

[
aix

k
i

]
1
)nk=−n,k ̸=0, [ai]T ),

and the well-formedness proof Πi := (ΠAgg
i , Π Ind

i ) :=((
[xi]1 , [aixi]1 , [ai]2

)
,
(
[x̄i]1 , [x̄i]2 , [āix̄i]1 , [āix̄i]2 , [āi]2

))
;

– Return (srsi, Πi);

SRS Verify, (⊥/1)← SV(srsi, (Πj)
i
j=0, party): To verify (an i-time updated)

srsi := ((
[
xk
i

]
1
,
[
xk
i

]
2
,
[
aix

k
i

]
2
)nk=−n, (

[
aix

k
i

]
1
)nk=−n,k ̸=0, [ai]T ), and Πj :=(

ΠAgg
j , Π Ind

j

)
:=

((
[xj ]1 , [ajxj ]1 , [aj ]2

)
,
(
[x̄j ]1 , [x̄j ]2 , [āj x̄j ]1 , [āj x̄j ]2 , [āj ]2

))
for

j = 0, 1, · · · , i:
If party = P:
1. For k = −n, · · · , n: check if

[
xk
i

]
1
• [1]2 = [1]1 •

[
xk
i

]
2
;

2. For k = −n+ 1, · · · , n: check if
[
xk
i

]
1
• [1]2 =

[
xk−1
i

]
1
• [xi]2;

3. For k = −n, · · · ,−1, 1, · · ·n: check if
[
aix

k
i

]
1
• [1]2 = [1]1 •

[
aix

k
i

]
2
=

[
xk
i

]
1
•

[ai]2;
If party = V:

- If i = 0: srs0 is sampled by verifier, and it does not need to be verified.
- If i ≥ 1:

1. Check that [x0]1 = [x̄0]1, [a0x0]1 = [ā0x̄0]1, and [a0]2 = [ā0]2;
2. For j = 0, 1, · · · , i: check if [x̄j ]1 • [1]2 = [1]1 • [x̄j ]2
3. For j = 0, 1, · · · , i: check if [āj x̄j ]1 • [1]2 = [1]1 • [āj x̄j ]2 = [x̄j ]1 • [āj ]2;
4. For j = 1, 2, · · · , i: check if [xj ]1 • [1]2 = [xj−1]1 • [x̄j ]2;
5. For j = 1, 2, · · · , i: check if [ajxj ]1 • [1]2 = [xj ]1 • [aj ]2 = [aj−1xj−1]1 •

[āj x̄j ]2;
6. For k = −n, · · · , n: check if

[
xk
i

]
1
• [1]2 = [1]1 •

[
xk
i

]
2
;

7. For k = −n+ 1, · · · , n: check if
[
xk
i

]
1
• [1]2 =

[
xk−1
i

]
1
• [xi]2;

8. For k = −n, · · · ,−1, 1, · · ·n: check if
[
aix

k
i

]
1
• [1]2 = [1]1 •

[
aix

k
i

]
2
=[

xk
i

]
1
• [ai]2;

Return 1 if all the checks passed, otherwise return ⊥.

Fig. 3: SU and SV algorithms for SONIC.

algorithm described in Fig. 3, to verify an i-time updated SRS, i ≥ 1, a prover
needs to compute 12n − 1 pairing operations (importantly, independent of the
number of updates), while a verifier needs to compute 12n+ 10i+ 4 pairings.
Security Proofs. In [32, Theorem 6.1, 6.2], authors proved that assuming the
ability to extract a trapdoor for the subverted/updated SRS (without proving
it), Sonic satisfies Sub-ZK and KS. The following lemmas prove that using the
SG,SU and SV algorithms (given in Fig.2 and 3), under the BDH-KE assumption,
one can extract the simulation trapdoors from a subverted/updated SRS.
Lemma 1 (Trapdoor Extraction from a Subverted SRS). Given the
algorithm in Fig. 2 and 3, suppose that there exists a PPT adversary A that
outputs a (srsi, Πi) such that SV(srsi, Πi,P) = 1 with non-negligible probability.
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Then, by the BDH-KE assumption (given in Def. 4) there exists a PPT extractor
ExtA given the random tape of A as input, outputs (xi, ai) such that running SG
with (xi, ai) results in (srsi, Πi).

Proof. An SRS, srsi, and proof, Πi, that passes verification is struc-
tured as if it were computed by SG(R); i.e., there exist values
(xi, ai) ∈ F2

p such that Πi includes ([xi]1 , [aixi]1 , [ai]2) and srsi includes(([
xk
i

]
1
,
[
xk
i

]
2
,
[
aix

k
i

]
2

)n
k=−n

,
([
aix

k
i

]
1

)n
k=−n,k ̸=0

)
. Note that, for k = 1, one

can deduce ([xi]1 , [aixi]1 , [xi]2 , [ai]2 , [aixi]2) from srsi.
Let A be an adversary that outputs (srsi, Πi). We then define algorithms

Axi
and Aai

, that each run (srsi, Πi) ← A(R), parse Π as above, and returns
([xi]1 , [xi]2) and ([aixi]1 , [ai]2), respectively. According to the BDH-KE assump-
tion (given in Def. 4) there exist PPT extractors ExtAxi

and ExtAai
that, given

the randomness of Axi
and Aai

, output some xi, ai ∈ Fp that can be used to
generate ([xi]1 , [aixi]1 , [xi]2 , [ai]2 , [aixi]2). By combining ExtAxi

and ExtAai
, we

obtain a full extractor for A. From the rest of checks within the SV algorithm one
concludes that all the SRS elements are consistent and the SRS is well-formed.

⊓⊔

The following lemma shows that SRS trapdoors can be extracted from an
updated SRS. To this end, we first recall a corollary from [23].

Corollary 1. In the updatable SRS model, single adversarial updates imply full
updatable security [23, Lemma 6].

Lemma 2 (Trapdoor Extraction from an Updated SRS). Given the
algorithm in Fig. 2 and 3, suppose that there exists a PPT A such that given
(srs0, π0)← SG(R), A returns an updated SRS (srs1, π1), where SV(srs1, Π1,V) =
1 with a non-negligible probability. Then, the BDH-KE assumption implies that
there exists a PPT extractor ExtA that, given the randomness of A as input,
outputs (x̄1, ā1) that are used to update srs0 and generate (srs1, Π1).

Proof. According to the Corollary 1, we consider the case that A updates the
SRS only once, but similar to [23, Lemma 6], it can be generalized. Parse Π0

as a tuple (([x0]1 , [a0x0]1 , [a0]2), ([x0]1 , [x0]2 , [a0x0]1 , [a0x0]2 , [a0]2)) and srs0 as
(
[
xk
0

]
1
,
[
xk
0

]
2
,
[
a0x

k
0

]
2
)nk=−n and

[
a0x

k
0

]
1

for k = −n, · · · ,−1, 1, · · · , n.
We consider an adversary A, that given (srs0, Π0), returns an updated

SRS, srs1, which contains (
[
xk
1

]
1
,
[
xk
1

]
2
,
[
a1x

k
1

]
2
)nk=−n and

[
a1x

k
1

]
1

for k =
−n, · · · ,−1, 1, · · · , n, and a proof π1 for correct updating as containing (([x1]1 ,
[a1x1]1 , [a1]2), ([x̄1]1 , [x̄1]2 , [ā0x̄0]1 , [ā0x̄0]2 , [ā0]2)). If the SRS verification ac-
cepts the updated SRS, namely if SV(srs1, Π1,V) = 1, then the following equa-
tions hold, 1) [x̄1]1 • [1]2 = [1]1 • [x̄1]2 , 2) [ā1x̄1]1 • [1]2 = [1]1 • [ā1x̄1]2 =
[x̄1]1 • [ā1]2 , 3) [x1]1 • [1]2 = [x0]1 • [x̄1]2 , 4) [a1x1]1 • [1]2 = [x1]1 • [a1]2 =
[a0x0]1 • [ā1x̄1]2. So from the equations 1) and 2) , under the BDH-KE assump-
tion, there exist extractors Extx̄1

and Extā1
that output ā1 and x̄1. If ā1 and x̄1

are non-zero, then from the rest of verification equations within SV algorithm
(e.g., [x1]1 • [1]2 = [x0]1 • [x̄1]2), one can conclude that x1 = x̄1x0, a1 = ā1a0,
and the SRS is well-formed. ⊓⊔
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3.2 SU and SV Algorithms for Marlin

Marlin. As a follow-up work to Sonic and a concurrent work to Plonk, Chiesa
et al. proposed Marlin [14], which is comparable to Plonk in performance and
outperforms Sonic. Compared to Sonic, Marlin reduces P’s computational cost
by a factor of 10× and improves V’s time by a factor of 4× without compromising
the constant-size property of proofs. To this end, the authors first propose an
information-theoretic model called Algebraic Holographic Proof (AHP), which
is an interactive protocol between algebraic P and V. The verifier performs a
small number of queries on an encoding of the circuit instead of receiving the
entire circuit description. At the end, the verifier makes a number of queries
to the proofs provided by the prover and then performs low-degree tests to be
convinced about the validity of proof and the encoding of the circuit. Then, they
proposed a transformation that uses PCs with Fiat-Shamir transformation [17]
and compiles any public coin AHP for sparse Rank 1 Constraint System (R1CS)
instances into a preprocessing zk-SNARK with universal and updatable SRS.
To build Marlin, authors first proposed two PC schemes, which one is proven to
be secure under a concrete knowledge assumption, and the other one is built in
the Algebraic Group Model (AGM) [14, Appendix B]. The scheme built in the
AGM model achieves a better efficiency and requires a single group element to
commit to a polynomial (instead of two in the initial construction). Marlin is a
zk-SNARK which is obtained by instantiating their transformation by the AGM-
based PC scheme. Both their PC schemes are proven to be secure (complete,
hiding, extractable, as defined in App. A.2) under a trusted setup [14, Lemmas
B.5-B.15], and later, the AGM-based one is used to obtain updatable zk-SNARK
Marlin.

Achieving Sub-ZK and Upd-KS in Marlin. Marlin uses a universal SRS and
assuming that the simulation trapdoors are provided to the ZK simulator, it is
proven to achieve ZK and KS in the AGM. In [14, Remark 7.1], authors argue
that their constructions have updatable SRS because of using monomial terms
in the SRS, and thus fall within the framework of [26]. The SRS of Marlin,
which is equivalent to the SRS of their AGM-based PC scheme, consists of
srs := (

([
xk

]
1
,
[
γxk

]
1

)n
k=0

, [1]2 , [x]2) group elements. This SRS is shown to be
sufficient for their PC scheme. Note that a standard PC scheme, is constructed
under a trusted setup, and there is no guarantee that it will remain secure under a
subverted SRS or a maliciously updated SRS. Therefore, once we use the SRS of a
PC scheme (with a trusted setup) to build a Sub-ZK zk-SNARK with updatable
SRS, we need to ensure that the SRS of resulting zk-SNARK is well-formed and
trapdoor-extractable [23]. Since Marlin is proven to satisfy KS under the above
SRS srs, therefore, to prove that it also achieves Upd-KS, we need to show that
the SRS trapdoors can be extracted from a subverted or a (maliciously) updated
SRS. However, one may notice that in practice an adversary, capable of hashing
to an elliptic curve, can produce the SRS ([x]1 , [γx]1 , [1]2 , [x]2) without knowing
γ. For instance, it can sample a group element from G1, without knowing its
exponent, and then use a known x to compute ([x]1 , [γx]1 , [1]2 , [x]2) for an
unknown γ. A malicious SRS updater can perform a similar attack.
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One may argue that Marlin (and some follow-up schemes) is proven in the
original AGM [19], which adversaries are purely algebraic and do not have the
capability to create random group elements without knowing their discrete loga-
rithms. This argument is valid, but the problem still exists in practice and such
constructions may not achieve Sub-ZK be default, as an adversary can use elliptic
curve hashing [27] to sample random group elements without knowing the expo-
nents. To deal with such concerns, earlier Sub-ZK SNARKs [2,30] used and are
proven in more realistic models, namely the Generic Group Model (GGM) with
hashing [2] and the AGM with hashing [30]. The “with hashing” parts mean that
the adversary is allowed to sample random group elements without knowing the
exponents, say using the elliptic curve hashing [27]. Considering the discussed
issue, one can see that to achieve Sub-ZK/Upd-KS in updatable zk-SANRKs,
including Marlin, a more realistic option is to prove them in the more realistic
variant of AGM, namely AGM with hashing [30], and also explicitly construct
the extraction algorithms requited in the games of Sub-ZK/Upd-KS. It is worth
to mention that, by chance, the SRS of Kate et al.’s polynomial commitment
scheme [28] is well-formed and without further modification, its SRS can achieve
trapdoor extractability under BDH-KE assumption. This is the reason that the
updatable zk-SNARKs that directly use Kate et al.’s PC scheme [28], e.g., Lu-
nar or Basilisk, do not face with the mentioned issue. In the rest, we focus
on constructing a concrete extraction algorithm which is necessary to prove the
Sub-ZK and Upd-KS of Marlin. As we argued above, γ cannot be extracted from
the original SRS of Marlin, and we need to slightly modify its SRS to achieve
trapdoor extractability and prove Sub-ZK and Upd-KS.
Marlin with a Trapdoor Extractable SRS. To deal with the discussed issue, the
solution is to force the adversary to add a proof of knowledge of γ to the SRS,
such that the simulator would be able to extract γ from a maliciously gener-
ated SRS. In earlier works [8,2,23], this is simply achieved by forcing the SRS
generator to return γ in two different groups. Then, relying on the BDH-KE
assumption one can extract γ from a maliciously generated SRS. Consequently,
we slightly modify the SRS of Marlin and add a single group element [γx]2 to it.
Then, we show that in the modified version, the SRS trapdoors can be extracted
from a subverted/updated SRS, which would allow to prove Sub-ZK/Upd-KS.

SRS Generation, (srs0, Π0)← SG(R): Given R, first deduce the security param-
eter 1λ and obtain (p,G1,G2,GT , ê, [1]1 , [1]2)← BGgen(1λ); then act as follows:
– Sample x̄0, γ̄0 ← Z⋆

p, and set x0 := x̄0, and γ0 := γ̄0 which are the trapdoors
of srs0;

– For k = 0, · · · , n: compute
[
xk
0

]
1
,
[
γ0x

k
0

]
1
;

– Compute [x0]2, and [x0γ0]2 ;
– Set srs0 := ((

[
xk
0

]
1
,
[
γ0x

k
0

]
1
)nk=0, [x0]2 , [x0γ0]2 ), and the well-formedness

proof Π0 := (ΠAgg
0 , Π Ind

0 ) := (([γ0]1 , [x0γ0]1 , [x0]2), ([x̄0]1 , [γ̄0]1 , [x̄0]2 ,
[x̄0γ̄0]2 ));

– Return (srs0, Π0);

Fig. 4: Slightly modified SG algorithm of Marlin. The term [x0γ0]2 is added to
SRS and proof to make the SRS well-formed and achieve trapdoor extractability.
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SRS Update, (srsi, Πi)← SU(srsi−1, {Πj−1}i−1
j=0): Given (srsi−1, {Πj−1}i−1

j=0),
– Parse srsi−1 := ((

[
xk
i−1

]
1
,
[
γi−1x

k
i−1

]
1
)nk=0, [xi−1]2 , [xi−1γi−1]2 );

– Sample x̄i, γ̄i ← Z⋆
p as the secret shares to use for updating srsi−1.

– For k = 0, · · · , n: set
[
xk
i

]
1
:= x̄k

i ·
[
xk
i−1

]
1
,
[
γix

k
i

]
1
:= γ̄ix̄

k
i ·

[
γi−1x

k
i−1

]
1
;

– set [xi]2 := x̄i · [xi−1]2 and [xiγi]2 := x̄iγ̄i · [xiγi]2;
– Set srsi := ((

[
xk
i

]
1
,
[
γix

k
i

]
1
)nk=0, [xi]2 , [xiγi]2 ), and the well-formedness

proof Πi := (ΠAgg
i , Π Ind

i ) := (([γi]1 , [xiγi]1 , [xi]2), ([x̄i]1 , [γ̄i]1 , [x̄i]2 ,
[x̄iγ̄i]2 ));

– Return (srsi, Πi);
SRS Verify, (⊥/1)← SV(srsi, (Πj)

i
j=0, party): To verify (an i-time updated)

srsi := ((
[
xk
i

]
1
,
[
γix

k
i

]
1
)nk=0, [xi]2 , [xiγi]2), and Πj := (ΠAgg

j , Π Ind
j ) := (([γj ]1 ,

[xjγj ]1 , [xj ]2), ([x̄j ]1 , [γ̄j ]1 , [x̄j ]2 , [x̄j γ̄j ]2)); for j = 0, 1, · · · , i:
If party = P:
1. For k = 1, · · · , n: check if

[
xk
i

]
1
• [1]2 =

[
xk−1
i

]
1
• [xi]2;

2. For k = 1, · · · , n: check if
[
γix

k
i

]
1
• [1]2 =

[
γix

k−1
i

]
1
• [xi]2;

3. Check if [xiγi]1 • [1]2 = [1]1 • [γixi]2;
If party = V:

- If i = 0: srs0 is sampled by verifier, and it does not need to be verified.
- If i ≥ 1:

1. Check if [γ0]1 = [γ̄0]1 and [x0]2 = [x̄0]2;
2. For j = 0, 1, · · · , i: check if [x̄j ]1 • [1]2 = [1]1 • [x̄j ]2 and [1]1 • [x̄j γ̄j ]2 =

[γ̄j ]1 • [x̄j ]2.
3. For j = 1, 2, · · · , i: check if [1]1 • [xj ]2 = [x̄j ]1 • [xj−1]2, [xjγj ]1 • [1]2 =

[xj−1γj−1]1 • [x̄j γ̄j ]2 = [γj ]1 • [xj ]2;
4. For k = 1, · · · , n: check if

[
xk
i

]
1
• [1]2 =

[
xk−1
i

]
1
• [xi]2;

5. For k = 1, · · · , n: check if
[
γix

k
i

]
1
• [1]2 =

[
γix

k−1
i

]
1
• [xi]2;

6. Check if [xiγi]1 • [1]2 = [1]1 • [γixi]2;
Return 1 if all the checks passed, otherwise return ⊥.

Fig. 5: SV and SU algorithms for Marlin with the slightly modified SRS.

We describe the modified SG algorithm of Marlin in Fig. 4, and the new added
element is shown with gray background.

SU and SV Algorithms and Their Efficiency. In Fig. 5, we describe our con-
structed SU and SV algorithms for Marlin with the modified SRS. As the other
cases, the SRS update is multiplicative, and at the end, the updater also gives a
well-formedness proof which includes the new element [x̄iγ̄i]2 . The new element
allows one to verify the well-formedness of the final SRS as well as the validity
of intermediate proofs. The SV algorithm verifies if {Πj}ij=0 are valid and the
final SRS, srsi, is well-formed.

Using the SU algorithm in Fig. 5, similar to the SG algorithm (in Fig. 4),
to update the SRS of size n in Marlin, one needs to compute 2 exponentiations
in G2 and 2n + 1 exponentiations in G1. Using the SV algorithm described in
Fig. 5, to verify an i-time updated SRS, i ≥ 1, a prover needs to compute 4n+2
pairing operations, while a verifier needs to compute 4n+ 2 + 9i+ 4 pairings.
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Security Proofs. Relying on the fact that the underlying PC scheme is secure,
Marlin, is proven to achieve ZK and KS in the AGM model [14, Theorem 8.1, 8.3
and 8.4]. Our evaluations show that our minimal modification to their PC scheme
does not compromise the security of the original scheme (see App. B.1 for further
details). Moreover, in the rest, we show that using the presented SG,SU and SV
algorithms (given in Fig. 4 and 5), under the BDH-KE assumption (as in [30]),
it is also possible to extract the simulation trapdoors from a subverted/updated
SRS and achieve Sub-ZK and Upd-KS in the AGM.

Lemma 3 (Trapdoor Extraction from a Subverted SRS). Given the
algorithms in Fig. 4 and 5, suppose that there exists a PPT adversary A that
outputs (srsi, Πi) such that SV(srsi, Πi,P) = 1 with a non-negligible probability.
Then, by the BDH-KE assumption (given in Def. 4) there exists a PPT extractor
ExtA that, given the random tape of A as input, outputs (xi, γi) such that running
SG with (xi, γi) results in (srsi, Πi).

Proof. The proof is analogue to the proof of Lemma 1. ⊓⊔

Lemma 4 (Trapdoor Extraction from an Updated SRS). Given the
algorithms in Fig. 4 and 5, suppose that there exists a PPT A such that given
(srs0, Π0)← SG(R), A returns an updated SRS (srs1, Π1) s.t. SV(srs1, Π1,V) =
1, with a non-negligible probability. Then, the BDH-KE assumption implies that
there exists a PPT extractor ExtA that, given the randomness of A as input,
outputs (x̄1, γ̄1) that are used to update srs0 and generate (srs1, Π1).

Proof. The proof is analogue to the proof of Lemma 2. ⊓⊔

3.3 SU and SV Algorithms for LunarLite

LunarLite and its SG algorithm. In 2021, Campanelli et al. proposed Lunar [13]
and compared to Marlin the authors describe several improvements. As we men-
tioned above, Marlin is built over sparse R1CS instances while Campanelli et
al. define a new and simpler version of R1CS, known as R1CS-lite, with only
two characterizing matrices instead of three s.t. one of the matrices can be the
identity matrix. R1CS-lite with almost the same complexity as R1CS can be
utilized to express the language of circuit satisfiability. Meanwhile, the property
of two-matrix instances enables the authors to achieve more efficient and sim-
pler zk-SNARKs. In addition, Campanelli et al. demonstrate an efficient method
to prove PC soundness with partial opening rather than opening all the com-
mitments. Note that in Marlin and Lunar like Plonk, the prover to commit to
vectors utilizes the Lagrange interpolation basis. For further details, we refer to
the main paper [13]. In Fig. 6, we describe the SG algorithm of LunarLite, which
is the most efficient instantiate of Lunar in term of proof size. Lunar has an-
other variant, so called LunarLite2x, which has slightly shorter SRS, but results
in slightly longer proofs.
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SRS Generation, (srs0, Π0)← SG(R): Given R, first deduce the security param-
eter 1λ and obtain (p,G1,G2,GT , ê, [1]1 , [1]2)← BGgen(1λ); then act as follows:
– Sample x0 := x̄0 ← Z⋆

p, which is the trapdoor associated with srs0;
– For k = 1, · · · , n: compute

[
xk
0

]
1
,
[
xk
0

]
2
;

– Set srs0 :=
([
xk
0

]
1
,
[
xk
0

]
2

)n
k=0

, and the well-formedness proof Π0 :=

(ΠAgg
0 , Π Ind

0 ) :=
(
[x0]1 ,

(
[x̄0]1 , [x̄0]2

))
;

– Return (srs0, Π0);

Fig. 6: SG algorithm for LunarLite.

SRS Update, (srsi, Πi)← SU
(
srsi−1, {Πj−1}i−1

j=0

)
: Given

(
srsi−1, {Πj−1}i−1

j=0

)
,

– Parse srsi−1 :=
([
xk
i−1

]
1
,
[
xk
i−1

]
2

)n
k=0

;
– Sample x̄i ← Z⋆

p, as the secret share used for updating srsi−1.
– For k = 1, · · · , n: set

[
xk
i

]
1
:= x̄k

i ·
[
xk
i−1

]
1
; and

[
xk
i

]
2
:= x̄k

i ·
[
xk
i−1

]
2
;

– Set srsi :=
([
xk
i

]
1
,
[
xk
i

]
2

)n
k=0

, and Πi :=
(
ΠAgg

i , Π Ind
i

)
:=(

[xi]1 ,
(
[x̄i]1 , [x̄i]2

))
.

– Return (srsi, Πi);
SRS Verify, (⊥/1)← SV

(
srsi, (Πj)

i
j=0, party

)
: To verify (an i-time updated)

srsi :=
([
xk
i

]
1
,
[
xk
i

]
2

)n
k=0

, and Πj :=
(
ΠAgg

j , Π Ind
j

)
:=

(
[xj ]1 ,

(
[x̄j ]1 , [x̄j ]2

))
for

j = 0, 1, · · · , i:
If party = P:
1. For k = 1, 2, · · · , n: check if

[
xk
i

]
1
• [1]2 = [1]1 •

[
xk
i

]
2
=

[
xk−1
i

]
1
• [xi]2;

If party = V:
- If i = 0: srs0 is sampled by verifier, and it does not need to be verified.
- If i ≥ 1:

1. Check that [x0]1 = [x̄0]1;
2. For j = 0, 1, · · · , i: check if [x̄j ]1 • [1]2 = [1]1 • [x̄j ]2;
3. For j = 1, 2, · · · , i: check if [xj ]1 • [1]2 = [xj−1]1 • [x̄j ]2;
4. For k = 1, · · · , n: check if

[
xk
i

]
1
• [1]2 = [1]1 •

[
xk
i

]
2
=

[
xk−1
i

]
1
• [xi]2;

Return 1 if all the checks passed, otherwise return ⊥.

Fig. 7: SU and SV algorithms for LunarLite.

SU and SV Algorithms and Their Efficiency. Fig. 7 illustrates our constructed
SU and SV algorithms for updatable zk-SNARK LunarLite. In order to update
the SRS of size n in LunarLite, one needs to execute the SU algorithm described
in Fig. 7 that similar to the SRS generation algorithm, it requires n+1 exponen-
tiations in G1 and n + 1 exponentiations in G2. Using the SV algorithm (given
in Fig 7), to verify an i-time updated SRS, i ≥ 1, a prover needs to compute 3n
pairing operations (importantly, independent of the value of i), while a verifier
needs to compute 3n+ 4i+ 2 pairings.

Security Proofs. In [13], authors proved that different versions of Lunar, includ-
ing LunarLite can achieve ZK and KS. However, similar to other constructions,
they did not explicitly prove Sub-ZK and Upd-KS. For example, to prove ZK,
they assumed that the simulation trapdoor x is provided to the simulator. The
same as other constructions, next, we prove that using the SG,SU and SV algo-
rithms (given in Fig.6 and 7), under the BDH-KE assumption, we can extract
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the simulation trapdoors for LunarLite from a subverted or updated SRS, which
implies that LunarLite meets Sub-ZK and Upd-KS.

Lemma 5 (Trapdoor Extraction from a Subverted SRS). Given the
algorithms in Fig. 6 and 7, suppose that there exists a PPT adversary A that
outputs a (srsi, Πi) such that SV(srsi, Πi,P) = 1 with non-negligible probability.
Then, by the BDH-KE assumption (given in Def. 4) there exists a PPT extractor
ExtA that, given the random tape of A as input, outputs xi such that running
SG with xi results in (srsi, Πi).

Proof. An srsi and Πi that passes verification, namely SV(srs1, Π1,P) = 1, is
structured as if it were computed by SG(R); i.e., there exist values xi ∈ Fp s.t.
Πi includes [xi]1 and srsi includes (

[
xk
i

]
1
,
[
xk
i

]
2
)nk=0. Therefore, for k = 1, one

can obtain ([xi]1 , [xi]2).
Let A be an adversary (or subverter) that outputs (srsi, Πi). We then define

algorithm Axi
, that runs (srsi, Πi) ← A(R), parse Πi as above, and returns

([xi]1 , [xi]2). Under the BDH-KE assumption (given in Def. 4) there exists a
PPT extractor ExtAxi

that, given the randomness of Axi
, outputs a xi ∈ Fp

that can be used to generate ([xi]1 , [xi]2). This gives an extractor for A. From
the rest of pairing checks within the SV algorithm, one concludes that all SRS
elements are consistent and the SRS is well-formed. ⊓⊔

Lemma 6 (Trapdoor Extraction from an Updated SRS). Given the al-
gorithms in Fig. 6 and 7, suppose that there exists a PPT adversary A such
that given (srs0, π0) ← SG(R), A returns an updated SRS, (srs1, π1), where
SV(srs1, Π1,V) = 1 with a non-negligible probability. Then, the BDH-KE as-
sumption implies that there exists a PPT extractor ExtA, given the randomness
of A as input, outputs x̄1 that are used to update srs0 and generate (srs1, Π1).

Proof. In Corollary 1, we consider the case where A updates the SRS only once.
However, as in [23, Lemma 6], this case is generalizable. Parse Π0 as containing
([x0]1 , ([x0]1 , [x0]2)) and srs0 includes (

[
xk
0

]
1
,
[
xk
0

]
2
)nk=0.

We consider an adversary A, that given (srs0, Π0), returns an updated
SRS, srs1, which contains (

[
xk
1

]
1
,
[
xk
1

]
2
)nk=0, and a proof π1 = ([x1]1 , ([x̄1]1 ,

[x̄1]2)) for correct updating. If the SV algorithm accepts the updated SRS,
say SV(srs1, Π1,V) = 1, then the following equations hold, 1) [x̄1]1 • [1]2 =
[1]1 • [x̄1]2 , 2) [x1]1 • [1]2 = [x0]1 • [x̄1]2 , 3) [a1]1 • [1]2 = [1]1 • [x1]2. If the
equation 1) holds, under the BDH-KE assumption, there exists an extractor
Extx̄1

that outputs x̄1. If x̄1 is non-zero, then from the other one concludes that
x1 = x̄1x0, and the SRS is well-formed. ⊓⊔

3.4 SU and SV Algorithms for Plonk and Basilisk

Plonk and Basilisk and their SG algorithms. As a subsequent work on Sonic [32],
in 2019, Gabizon et al. [21] designed Plonk as an updatable and universal zk-
SNARK that can be run in two modes: either with a small proof (large SRS)
or with a long proof (short SRS). Although Plonk relies neither on bivariate
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SRS Generation, (srs0, Π0)← SG(R): Given R, first deduce the security param-
eter 1λ and obtain (p,G1,G2,GT , ê, [1]1 , [1]2)← BGgen(1λ); then act as follows:
– Sample x0 ← Zp, which is the simulation trapdoor associated with srs0;

chooses an arbitrary u0 ∈ Z⋆
p ;

– Compute [x0]2 and
[
xk
0

]
1

for k = 1, 2, · · · , n;

– Set srs0 :=
(([

xk
0

]
1

)n
k=1

, [x0]2 , u0

)
, and Π0 := (ΠAgg

0 , Π Ind
0 ) :=(

[x0]1 ,
(
[x0]1 , [x0]2

))
;

– Return (srs0, Π0);

Fig. 8: SG algorithm for Basilisk (and Plonk without the elements u0 ).

polynomials nor sparse matrices that leads to a more general type of constraints,
its SRS depends both on addition and multiplication gates for any given circuit.
While Sonic commits to vectors using standard interpolation basis, Plonk uses
Lagrange interpolation basis. As a subsequent work on Sonic, Plonk, Marlin
and LunarLite, in 2021, Rafols and Zapico [35] presented Basilisk updatable zk-
SNARK. They, first defined a novel information theoretical interactive technique
called Checkable Subspace Sampling (CSS) arguments in which P shows that a
vector is sampled from a subspace based on V’s coin. To be more precise, for a
given matrix M , both P and V agree on a polynomial F (x) which encodes a row
v within M ’s rows space. This method is efficient because, in spite of the fact
that the coefficients of the linear combination defining v are sampled according
to V’s coin, there is no need to perform a linear number of operations in order
to check that F (x) is well-formed. There are a number of trade-offs associated
with universal and updatable zk-SNARK resulting from the CSS proof systems
constructed. The most efficient instantiation is called Basilisk that is built for
a limited constraint system in which R1CS instances’ matrices have a small
constant number of elements per row (it is equivalent to arithmetic circuits of
bounded fan-out). For further details about Plonk and Basilisk, we refer to their
main papers [21,35]. Plonk and Basilisk have almost the same SG algorithms
with a similar SRS elements, except that in the case of Basilisk, there exists
an extra element ui in the SRS and the SRS is generated with a smaller upper
bound on the size of relation. The reason is that the constraint system used in
Plonk, encodes both the addition and multiplication gates that leads to a longer
SRS. We investigate and construct the SG,SU and SV algorithms for Basilisk,
but with minimal changes they can be adapted and be used for Plonk. We start
by describing the SG algorithm of Basilisk in Fig. 8.

SU and SV Algorithms and Their Efficiency. Fig. 9 describes our constructed
SU and SV algorithms for updatable zk-SNARK Basilisk. By removing the parts
related to the element ui, the algorithms can also be used for Plonk. To one
time updating the SRS of Basilisk, one would need to execute the SU algorithm
that requires to compute n+ 1 exponentiations in G1 and 2 exponentiations in
G2. On the other side, to verify an i-time updated SRS, a prover would need to
compute 2n pairing operations (independent of the number of updates), while a
verifier would need to compute 4i+ 2n+ 2 pairings.
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SRS Update, (srsi, Πi)← SU
(
srsi−1, {Πj−1}i−1

j=0

)
: Given

(
srsi−1, {Πj−1}i−1

j=0

)
,

– Parse srsi−1 :=
(([

xk
i−1

]
1

)n
k=1

, [xi−1]2 , ui−1

)
;

– Sample x̄i ← Zp; Chooses an arbitrary ūi ∈ Z⋆
p ;

– Set ui := ūi · ui−1 ; [xi]2 = x̄i · [xi−1]2; and
[
xk
i

]
1
:= x̄k

i ·
[
xk
i−1

]
1

for k =
1, 2, · · · , n;

– Set srsi :=
(([

xk
i

]
1

)n
k=1

, [xi]2 , ui

)
, and Πi := (ΠAgg

i , Π Ind
i ) :=

([xi]1 , ([x̄i]1 , [x̄i]2));
– Return (srsi, Πi);

SRS Verify, (⊥/1)← SV
(
srsi, (Πj)

i
j=0, party

)
: To verify (an i-time updated)

srsi :=
(([

xk
i

]
1

)n
k=1

, [xi]2 , ui

)
, and Πj := (ΠAgg

j , Π Ind
j ) :=

(
[xj ]1 ,

(
[x̄j ]1 , [x̄j ]2

))
for j = 0, 1, · · · , i:
If party = P:
1. For k = 1, 2, · · · , n: check if

[
xk
i

]
1
• [1]2 =

[
xk−1
i

]
1
•
[
x1
i

]
2
;

2. Check if ui ∈ Z⋆
p;

If party = V:
- If i = 0: srs0 is sampled by verifier, and it does not need to be verified.
- If i ≥ 1:

1. Check that [x0]1 = [x̄0]1;
2. For j = 0, 1, · · · , i: check if [x̄j ]1 • [1]2 = [1]1 • [x̄j ]2;
3. For j = 1, 2, · · · , i: check if [xj ]1 • [1]2 = [xj−1]1 • [x̄j ]2;
4. For k = 1, 2, · · · , n: check if

[
xk
i

]
1
• [1]2 =

[
xk−1
i

]
1
•
[
x1
i

]
2
;

5. Check if ui ∈ Z⋆
p;

Return 1 if all the checks passed, otherwise return ⊥.

Fig. 9: SU and SV algorithms for Basilisk (and Plonk without the elements ui ).

Using a minimally modified versions of the algorithms given in Fig. 8 and 9,
to update the SRS of Plonk, one would need to compute 3m+1 exponentiations
in G1 and 2 exponentiations in G2, where m is the number of total (addition and
multiplication) gates in the circuit. To verify an i-time updated SRS, a prover
would need to compute 6m pairing operations (independent of the number of
updates), while a verifier would need to compute 4i+ 6m+ 2 pairings.

Security Proofs. Similar to Lunar [13], the authors of Plonk and Basilisk have
proved that their schemes achieve ZK and KS. Similarly, by assuming that the
simulation trapdoor x is provided to the simulator. Next, we prove that using the
SG,SU and SV algorithms (given in Fig.8 and 9), under the BDH-KE assumption,
one can extract the trapdoor x from a subverted or updated SRS of Basilisk and
Plonk, that shows that they both satisfy Sub-ZK and Upd-KS.

Lemma 7 (Trapdoor Extraction from a Subverted SRS). Given the
algorithms in Fig. 8 and 9, suppose that there exists a PPT adversary A that
outputs a (srsi, Πi) such that SV(srsi, Πi,P) = 1 with a non-negligible probability.
Then, by the BDH-KE assumption (given in Def. 4) there exists a PPT extractor
ExtA that, given the random tape of A as input, outputs xi such that running
SG with xi results in (srsi, Πi).



Benchmarking the Setup of Updatable zk-SNARKs 21

Proof. The proof is analogue to the proof of Lemma 5. ⊓⊔

Lemma 8 (Trapdoor Extraction from an Updated SRS). Given the al-
gorithms in Fig. 8 and 9, suppose that there exists a PPT adversary A such
that given (srs0, π0) ← SG(R), A returns an updated SRS (srs1, π1), where
SV(srs1, Π1,V) = 1 with a non-negligible probability. Then, the BDH-KE as-
sumption implies that there exists a PPT extractor ExtA that, given the ran-
domness of A as input, outputs x̄1 that are used to update srs0 and generate
(srs1, Π1).

Proof. The proof is analogue to the proof of Lemma 6. ⊓⊔

4 Batched SRS Verification Algorithms

By now, we presented SU and SV algorithms for Sonic, Marlin, Plonk, LunarLite
and Basilisk, that allow the parties to update/verify the SRS and bypass the
need for a TTP. However, when running an SV algorithm, the prover needs to
compute at least O(n) pairing operations, where n denotes the number of mul-
tiplication gates in the circuit. On the other hand, the verifier needs to compute
O(n + i) pairings, where i represents the number of updates done on the SRS.
Consequently, even for circuits of moderate size (e.g., n ≥ 104) with a consider-
able number of updates (e.g., i = 100), the efficiency of these algorithms can be
severely impacted. In Section 5, we will provide concrete numerical examples to
further illustrate this inefficiency.

To make them practical, we use batching techniques from [9] and construct
a Batched version of the SV algorithms, BSV in short, which allow the provers
to verify the SRS by O(n) exponentiations (mostly, short-exponent) and con-
stant pairings, and the verifiers by O(n + i) exponentiations (mostly, short-
exponent) and O(i) pairings. To build the BSV algorithms, we use a corollary of
the Schwartz-Zippel lemma stating that if

∑s−1
i=1 tiXi +Xs = 0 is a polynomial

in Zq[ti] with coefficients X1, . . . , Xs, ti ←r {1, . . . , 2κ} for i < s, then Xi = 0 for
each i, with probability 1− 1/2κ. Namely, if

∑s−1
i=1 ti([ai]1 • [bi]2) =

∑s−1
i=1 ti [c]T

for uniformly random ti, then w.h.p., [ai]1 • [bi]2 = [c]T for each individual
i = 1, 2, · · · , s− 1. In Sec. 5, we show that the BSV algorithms can be consider-
ably faster than SV algorithms (at the soundness error rate 2−80, where 80 is a
statistical security parameter) and even faster at the soundness error rate 2−40.

It is worth to mention that, using the batching technique comes at the cost
of a small loss of soundness: even if the batched equation verifies, there is a
probability of at most 2−κ that one of the non-batched (original) equations was
false. In other words, the BSV algorithms will become probabilistic, and they
will accept incorrect SRSs with negligible probability. Therefore, once using the
BSV algorithms, one needs to modify some of our security results from Sec. 3
to achieve statistical SRS trapdoor extractability. Next, we describe a BSV al-
gorithm for each of the studied schemes, and then discuss their efficiency.
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Batched SRS Verification, (⊥/1)← BSV(srsi, (Πj)
i
j=0, party):

To verify (an i-time updated) srsi :=(([
xk
i

]
1
,
[
xk
i

]
2
,
[
aix

k
i

]
2

)n
k=−n

,
([
aix

k
i

]
1

)n
k=−n,k ̸=0

, [ai]T

)
, and Πj :=(

ΠAgg
j , Π Ind

j

)
:=

((
[xj ]1 , [ajxj ]1 , [aj ]2

)
,
(
[x̄j ]1 , [x̄j ]2 , [āj x̄j ]1 , [āj x̄j ]2 , [āj ]2

))
for

j = 0, 1, · · · , i:

If party = P:
1. Sample

{
tk , t̂k ← Z⋆

p

}n

k=−n
;

2. Check if
(∑n

k=−n tk ·
[
xk
i

]
1

)
• [1]2 = [1]1 •

(∑n
k=−n tk ·

[
xk
i

]
2

)
;

3. Check if
(∑n

k=−n+1 tk ·
[
xk
i

]
1

)
• [1]2 =

(∑n
k=−n+1 tk ·

[
xk−1
i

]
1

)
• [xi]2;

4. Check if
(∑n

k=−n,k ̸=0 t̂k ·
[
aix

k
i

]
1

)
• [1]2 = [1]1 •(∑n

k=−n,k ̸=0 t̂k ·
[
aix

k
i

]
2

)
=

(∑n
k=−n,k ̸=0 t̂k ·

[
xk
i

]
1

)
• [ai]2;

If party = V:
1. Sample

{
r1,j , r2,j , r3,j , r4,j ← Z⋆

p

}i

j=0
; and

{
tk , t̂k ← Z⋆

p

}n

k=−n
;

2. Check that [x0]1 = [x̄0]1, [a0x0]1 = [ā0x̄0]1, and [a0]2 = [ā0]2;
3. Check if

(∑i
j=0 r1,j · [x̄j ]1

)
• [1]2 = [1]1 •

(∑i
j=0 r1,j [x̄j ]2

)
;

4. Check if
(∑i

j=0 r2,j · [āj x̄j ]1

)
• [1]2 = [1]1 •

(∑i
j=0 r2,j [āj x̄j ]2

)
=∑i

j=0

(
r2,j · [x̄j ]1 • [āj ]2

)
;

5. Check if
(∑i

j=1 r3,j · [xj ]1

)
• [1]2 =

∑i
j=1

(
r3,j · [xj−1]1 • [x̄j ]2

)
;

6. Check if
(∑i

j=1 r4,j · [ajxj ]1

)
• [1]2 =

∑i
j=1

(
r4,j · [xj ]1 • [aj ]2

)
=∑i

j=1

(
r4,j · [aj−1xj−1]1 • [āj x̄j ]2

)
;

7. Check if
(∑n

k=−n tk ·
[
xk
i

]
1

)
• [1]2 = [1]1 •

(∑n
k=−n tk ·

[
xk
i

]
2

)
;

8. Check if
(∑n

k=−n+1 tk ·
[
xk
i

]
1

)
• [1]2 =

(∑n
k=−n+1 tk ·

[
xk−1
i

]
1

)
• [xi]2;

9. Check if
(∑n

k=−n,k ̸=0 t̂k ·
[
aix

k
i

]
1

)
• [1]2 = [1]1 •(∑n

k=−n,k ̸=0 t̂k ·
[
aix

k
i

]
2

)
=

(∑n
k=−n,k ̸=0 t̂k ·

[
xk
i

]
1

)
• [ai]2;

Return 1 if all the checks passed, otherwise return ⊥.

Fig. 10: BSV: The Batched version of SV algorithm for Sonic.
Batched SV Algorithm for Sonic Fig. 10, describes the batched version of
Sonic’s SV algorithm (given in Fig. 3). Using the proposed BSV algorithm, to
verify an i-time updated SRS of size n: 1) a prover will compute 7 pairings,
4n exponentiations in G2, and 8n − 1 exponentiations in G1, 2) and a verifier
would need to calculate 4i+14 pairings, 6n+2i+1 exponentiations in G2, and
8n+ 8i+ 2 exponentiations in G1.

Batched SV Algorithm for Marlin. Our proposed BSV algorithm for Marin
is described in Fig. 11. Using the BSV algorithm, to verify an i-time updated SRS
of size n: 1) a prover will compute 3 pairings and 4n exponentiations (mostly,
short exponent) in G1, 2) and a verifier would need to calculate 4i+ 9 pairings,
3i+ 2 exponentiations in G2, and 4n+ 6i+ 2 exponentiations in G1.

Batched SV Algorithm for LunarLite. The batched SV algorithm for Lu-
narLite is shown in Fig. 12. Using the proposed BSV algorithm, to verify an
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Batched SRS Verification, (⊥/1)← BSV(srsi, (Πj)
i
j=0, party): To verify (an i-

time updated) srsi := (
([
xk
i

]
1
,
[
γix

k
i

]
1

)n
k=0

, [xi]2 , [xiγi]2), and Πj :=

(ΠAgg
j , Π Ind

j ) := (([γi]1 , [xiγi]1 , [xi]2), ([x̄i]1 , [γ̄i]1 , [x̄i]2 , [x̄iγ̄i]2)); for j =
0, 1, · · · , i:
If party = P:
1. Sample {t1,k , t2,k ← Z⋆

p}nk=1;
2. Check if

(
[γixi]1 +

∑n
k=1(t1,k ·

[
xk
i

]
1
+ t2,k ·

[
γix

k
i

]
1
)
)
• [1]2 = (

∑n
k=1(t1,k ·[

xk−1
i

]
1
+ t2,k ·

[
γix

k−1
i

]
1
)) • [xi]2 + [1]1 • [γixi]2;

If party = V:
- If i = 0: srs0 is sampled by verifier, and it does not need to be verified.
- If i ≥ 1, act as follows,

1. Sample
{
r1,j , r2,j , r3,j , r4,j ← Z⋆

p

}i

j=0
; and

{
tk , t̂k ← Z⋆

p

}n

k=1
;

2. Check if [γ0]1 = [γ̄0]1 and [x0]2 = [x̄0]2;
3. Check if (

∑i
j=0 r1,j · [x̄j ]1) • [1]2 = [1]1 • (

∑i
j=0 r1,j [x̄j ]2);

4. Check if [1]1 • (
∑i

j=0 r2,j · [γ̄j x̄j ]2) =
∑i

j=0(r2,j [γ̄j ]1 • [x̄j ]2);
5. Check if [1]1 • (

∑i
j=1 r3,j · [xj ]2) =

∑i
j=1(r3,j · [x̄j ]1 • [xj−1]2);

6. Check if (
∑i

j=1 r4,j ·[γjxj ]1)•[1]2 =
∑i

j=1(r4,j ·[γj−1xj−1]1•[γ̄j x̄j ]2) =∑i
j=1(r4,j · [γj ]1 • [xj ]2);

7. Check if
(
[γixi]1 +

∑n
k=1(tk ·

[
xk
i

]
1
+ t̂k ·

[
γix

k
i

]
1
)
)
• [1]2 =(∑n

k=1

(
tk ·

[
xk−1
i

]
1
+ t̂k ·

[
γix

k−1
i

]
1

))
• [xi]2 + [1]1 • [γixi]2;

Return 1 if all the checks passed, otherwise return ⊥.

Fig. 11: BSV: The Batched version of SV algorithm for Marlin.

Batched SRS Verification, (⊥/1)← BSV(srsi, (Πj)
i
j=0, party): To verify (an i-

time updated) srsi := (
[
xk
i

]
1
,
[
xk
i

]
2
)nk=1, and Πj := (ΠAgg

j , Π Ind
j ) :=

([xj ]1 , ([x̄j ]1 , [x̄j ]2)) for j = 0, 1, · · · , i:
If party = P:
1. Sample tk ← Z⋆

p for k = 2, · · · , n;
2. Check if ([xi]1 +

∑n
k=2 tk ·

[
xk
i

]
1
) • [1]2 = [1]1 • ([xi]1 +

∑n
k=2 tk ·

[
xk
i

]
2
) =

([1]1 +
∑n

k=2 tk
[
xk−1
i

]
1
) • [xi]2;

If party = V:
- If i = 0: srs0 is sampled by verifier, and it does not need to be verified.
- If i ≥ 1, act as follows,

1. Sample tj , sj ← Z⋆
p for j = 1, · · · , i; and hk ← Z⋆

p for k = 1, · · · , n;
2. Check if [x0]1 = [x̄0]1;
3. Check if ([x̄0]1 +

∑i
j=1(tj [x̄j ]1 + sj [xj ]1) + 2

∑n
k=1 hk

[
xk
i

]
1
) • [1]2 =

[1]1•([x̄0]2+
∑i

j=1 tj [x̄j ]2+
∑n

k=1 hk

[
xk
i

]
2
)+

∑i
j=1(sj [xj−1]1•[x̄j ]2)+

(
∑n

k=1 hk

[
xk−1
i

]
1
) • [xi]2

Return 1 if all the checks passed, otherwise return ⊥.

Fig. 12: BSV: The Batched version of SV algorithm for LunarLite.

i-time updated SRS of size n, 1) a P will compute 3 pairings, n− 1 exponentia-
tions in G2, and 2n−2 exponentiations in G1, 2) and a V would need to compute
i+ 3 pairings, n+ i exponentiations in G2, and 2n+ 3i exponentiations in G1.
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Batched SRS Verification, (⊥/1)← BSV(srsi, (Πj)
i
j=0, party): To verify (an i-

time updated) srsi := ((
[
xk
i

]
1
)nk=1, [xi]2 , ui), and Πj := (ΠAgg

j , Π Ind
j ) :=

([xj ]1 , ([x̄j ]1 , [x̄j ]2)) for j = 0, 1, · · · , i:
If party = P:
1. Sample tk ← Z⋆

p for k = 2, · · · , n;
2. Check if ([xi]1 +

∑n
k=2 tk ·

[
xk
i

]
1
) • [1]2 = ([1]1 +

∑n
k=2 tk

[
xk−1
i

]
1
) • [xi]2;

3. Check if ui ∈ Z⋆
p;

If party = V:
- If i = 0: srs0 is sampled by verifier, and it does not need to be verified.
- If i ≥ 1, act as follows,

1. Sample tj , sj ← Z⋆
p for j = 1, · · · , i; and hk ← Z⋆

p for k = 1, · · · , n;
2. Check that [x0]1 = [x̄0]1;
3. Check if ([x̄0]1+

∑i
j=1(tj [x̄j ]1+ sj [xj ]1)+

∑n
k=1 hk

[
xk
i

]
1
)•[1]2 = [1]1•

([x̄0]2+
∑i

j=1 tj [x̄j ]2)+
∑i

j=1(sj [xj−1]1 • [x̄j ]2)+(
∑n

k=1 hk

[
xk−1
i

]
1
)•

[xi]2
4. Check if ui ∈ Z⋆

p;
Return 1 if all the checks passed, otherwise return ⊥.

Fig. 13: The BSV algorithm for Basilisk (and Plonk without checking ui).

Batched SV Algorithm for Basilisk and Plonk. Similar to the previous
cases, in Fig. 13, we propose a probabilistic batched variant of the Basilisk’s
SV algorithm (given in Fig. 9). A slightly modified version of this algorithm
can be used for Plonk, just by removing the checks related to ui. However, one
should pay attention that Plonk and Basilisk are using two difference constraint
systems, and the value of n will be different once one uses the same BSV for
both. In summary, by running the BSV algorithm given in Fig. 13, to verify an
i-time updated SRS of size n: 1) a prover will compute 2 pairings and 2n − 2
exponentiations in G1, 2) and a verifier would need to compute i+ 3 pairings, i
exponentiations in G2, and 2n+ 3i exponentiations in G1.

5 Performance Analysis and Identifiable Security

5.1 Implementation Results

Next, we evaluate the efficiency of the presented algorithms using a prototype
implementation in Arkworks library 1, which is a Rust library for developing and
programming with zk-SNARKs. We have made the source code of our bench-
marks publicly available to the research community for reproducibility and fur-
ther experimentation 2. For benchmarking Sonic, Plonk, LunarLite, and Basilisk
we use the algorithms constructed in Sec. 3 and Sec. 4. But in case of Marlin,
we use a variant of it, which is implemented in Arkworks 3. The original paper

1 Available on https://github.com/arkworks-rs.
2 Our open-source implementations can be accessed on the Git page at https://
github.com/Baghery/BMS23.

3 Available on https://github.com/arkworks-rs/marlin.

https://github.com/arkworks-rs
https://github.com/Baghery/BMS23
https://github.com/Baghery/BMS23
https://github.com/arkworks-rs/marlin
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I) Identification (n = 50K)

Fig. 14: A) SG or SU, B) SVV for a fixed i = 5, C) BSVV for a fixed i = 5, D) BSVV for
a fixed circuit size (n = 10K,m = 30K), E) Comparison of Basilisk’s BSVP and BSVV

for a fixed n = 10K, F) Basilisk’s SG/SU with multi-threading, G) Basilisk’s BSVV with
multi-threading, H) Basilisk’s BSVV with n = 106, and different security parameters in
batching, I) Identifying a malicious SRS updater with recursive verification in Basilisk.

does not explain this variant, which uses a different PC scheme to reduce proof
size, which is a variant of the scheme proposed in [20]. We built the associated
(SG,SU,SV,BSV) algorithms for that version in App. B.2.

Our empirical analysis are done with the elliptic curves BLS12-381 that is
estimated to achieve between 117 and 120 bits security [33]. All experiments are
done on a desktop machine with Ubuntu 20.4.2 LTS, an Intel Core i9-9900 pro-
cessor at base frequency 3.1 GHz, and 128GB of memory. All algorithms first are
executed in the single-thread mode, while later we show that they all can be par-
allelized and executed in the multi-thread mode. We also report the benchmarks
for Basilisk in the multi-thread mode, with 16 threads. For the benchmarks, we
report the running times of all the proposed algorithms, for an arithmetic circuit
with different circuit sizes, and by circuit size we mean sum of the multiplica-
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tion and the addition gates. For Plonk, whose constraint system encodes both
multiplication and addition gates, we set the number of addition gates 2× the
number of multiplication gates. This choice was based on the evaluation done
in the original paper [21]. Motivated by the blockchains and large-scale appli-
cations, we also report the SRS verification/updating times for a big number
of users and large circuits. All times are expressed in seconds or minutes. In
the execution of the BSV algorithms, we first sample some vectors t⃗i of random
numbers from the range [1 .. 280], the time of sampling randomnesses are not in-
cluded in the run times of BSV algorithm, as they can be pre-computed. Based
on earlier results, one can re-use the same randomness for different verification
equations, and zk-SNARKs.

The graphs in Fig. 14 summarize our implementation results based on dif-
ferent criteria for all our studied zk-SNARKs. In the rest, we go through them
sequentially and explain the key points. The plot A compares the run times of SG
and SU in the single-thread mode, for all the studied zk-SNARKs. Naturally, the
shorter SRS, the faster SG and SU algorithms. The plot B presents the run times
of SV algorithm executed by V, for a 5-time updated SRS and various circuit
sizes. As it can be seen, standard SV algorithms can be very slow for even small
circuits, e.g. circuits of sizes < 50K (this is why we are not giving its timings for
n > 50K). In this case, since the size of SRS (n = 50K), is considerably larger
than the number of updates (i = 5), then the run times of SVP and SVV are
almost the same, therefore SVP is omitted from the plot.

The plot C illustrates the efficiency of BSV algorithm run by V, for i = 5
(5-time updated SRS) and different circuit sizes. One can see that they are
considerably faster than standard SV algorithms, and in some cases they are
very efficient even for large circuits. e.g. circuits of sizes > 1M . Similar to the
last plot, in this setting again the run times of SVP and SVV are very close. In
plot D, we set the circuit size fixed (n = 10K multiplication gates, m = 30K
total gates) and plot the run times of BSVV algorithms for different number
of updates. Similar to the previous plots, we observe that the setup phase of
Basilisk can be considerably faster than other schemes. Therefore, in the rest
of benchmarks, we mainly used Basilisk’s algorithms. In plot E, we compare
the run times of Basilisk’s BSV algorithm executed by the prover (BSVP) and
verifier (BSVV), for a circuit with n = 1K or 10K multiplication gates, and
different numbers of updates. As it can be seen, for the cases that a small circuit
is updated many times, BSVP can be significantly faster, independent of the
number of updates. The plot shows that BSVP for n = 10K, is as efficient as
BSVV for n = 1K and i ≈ 300.

By now all evaluations are done in the single-thread mode. In the rest, in
both plots F and G, we execute the algorithms of Basilisk in the multi-thread
mode and re-evaluate the efficiency of SU (or SG) and BSVV, for various circuits
and different number of updates. We observed that, the SRS of Basilisk for a
particular circuit with 2M multiplication gates, can be generated/updated in
about 11 min, and verified in less than 1 minute. As mentioned before, within
the BSV algorithms, the randomness vector t⃗i are sampled from [1 .. 280] which
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assures that the batching causes security gap not bigger than 2−80. This is a
conservative approach. In plot H, we compare the run times of BSVV for Basilisk
in the case that the coordinates of t⃗i were chosen from [1 .. 240]. This makes the
SRS verification even faster, but at the cost of a bigger error rate, i.e., 2−40.

5.2 Identifiable Security in the Updatable SRS Model

In the updatable SRS model [26], the initial SRS generator and the follow-up
SRS updaters attach a proof to each updated SRS, and the parties do not store
every updated SRS but only update proofs. At the end, each party runs the
SV (or BSV) algorithm once to verify the validity of proofs in a chain and then
uses the final proof to check the well-formedness of the final SRS (see Fig. 1). In
lemmas 1-8, we also observed that after the final update on SRS, it is sufficient
that all the participants in the SRS generation/updating phases run the SV (or
BSV) algorithm only once. In the rest, this case is referred to as the optimistic
case or optimistic verification. As we observed in Fig. 14, in this case the setup
phase of updatable zk-SNARKs can be significantly fast, and can easily be scaled
for a large number of users (e.g. thousands of parties), without the need for a
third party. However, then the parties would only abort a maliciously updated
SRS at the end, without identifying a malicious party. This can lead to repeat
the SRS generation and updates all over again. Note that, the SV (and BSV)
algorithm verifies the proofs Π0 till Πi, and the final SRS srsi. If a malicious
SRS generator/updater generates a valid proof but an invalid SRS, it cannot
be detected by just verifying the proofs. To deal with this concern, a naive
solution is to verify the SRS after each update (by either all the participants or
a TTP) and identify the malicious party. In practice, the above approach would
be impractical for large scale applications.

Identifying a Malicious Updater with Logarithmic Verification. Next, we describe
an efficient approach to identify a malicious party in the updatable SRS model.
To this end, the parties need to store all the transcripts, as in current ceremonies,
and then recursively run the BSV (or SV) algorithm for one SRS and a smaller
set of proofs. More precisely, parties would run the BSV (or SV) algorithm of the
target zk-SANRK, with a single SRS and i

21 ,
i
22 , · · · ,

i
2log i proofs, respectively.

Note that with this approach, only ⌈log i⌉+1 of SRSs are verified (e.g., boldface
SRSs srs15, srs7, srs11, srs9, srs10 in Fig. 15), instead of i. As in practice, the circuit
size is considerably higher than the number of SRS updates, e.g. 222 vs. 100
in current ceremonies, therefore the run time of SV (and BSV) is dominated
by the size of SRS, rather than the number of updates. Due to this fact, in
practice, the proposed verification approach can be considerably faster than the
naive solution. Fig. 15, presents an example of such recursive execution of BSV
algorithms for i = 15. We also evaluate the performance of this approach with
a sample implementation. The plot I in Fig. 14, illustrates the required time to
identify a malicious updater in Basilisk’s setup for different number of updates
with the SRS of a circuit with n = 50K multiplication gates. As it can be seen,
for 2000-time updated SRS of length 50K, the first malicious updater can be
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Fig. 15: Recursive execution of BSV to identify a malicious SRS updater.

identified in less than 20 sec. In similar settings, where n >> i, the identification
time would be independent of the precise position of the malicious updater, and
it will take an approximate run time of log i times that of a single BSV.

As an optimization, one may notice that once a verifier runs the BSV al-
gorithm on the final SRS, e.g. BSV(16)

0 in the mentioned example, we already
compute the batched form of the proof elements required in all the follow-up
steps of the recursive search, as e.g.

∑15
i=0 ti [xi]1 =

∑7
i=0 ti [xi]1+

∑15
i=8 ti [xi]1 =∑3

i=0 ti [xi]1 +
∑7

i=4 ti [xi]1 +
∑11

i=8 ti [xi]1 +
∑15

i=12 ti [xi]1. By storing a proper
set of batched proofs, one can speed up the follow-up executions of BSV. This
optimization is more effective in cases that the circuit size is small but the SRS is
updated many times. As another optimization, one can precompute the batched
version of the checks on some intermediate SRSs, e.g. srs11, srs7, srs3, and speed-
up the run times of BSV algorithms in the follow-up steps. Note that our BSV
and SV algorithms, by default verifies all the proofs for j = 0 till the final SRS
srsi, i.e. j = i. In the recursive execution, we need to run the BSV (or SV) algo-
rithm for a particular set of SRSs and proofs. In those cases, one can feed proper
starting and finishing indexes to the BSV (or SV) algorithms. For instance, to
check the SRS srs11 and the set of proofs {Π8, Π9, Π10, Π11} one needs to run
the algorithms for j = 8 till j = 11, which will verify a batched variant of
(Π8, Π9, Π10, Π11) and the final SRS srs11.

In practice, if the values of i and n will be huge, it might happen that the
setup phase would take a long time, especially if a malicious update occurs
during the earlier updates. To minimize the run time, as well as to gain the
benefits of the optimistic verification, an effective solution would be to verify the
updated SRS after a particular number of updates, i.e. one would need to verify
the updated SRS every k updates, where 1 < k < i. Basically, the idea is rather
than verifying every update (the slowest case), or all i updates once (the fastest
case), the parties will verify the SRS after each k updates. If the verification of
srsk was successful, then the parties will continue with updating the SRS. If not,
they would use the recursive search approach (given in Fig. 15) to find the first
malicious updater and then will continue the SRS update from there (without
the malicious updater).
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Since the entire described procedure is accountable, in practice one can mini-
mize the risk of a malicious SRS update significantly by enforcing a high penalty
for a malicious SRS updater.

6 Conclusion

In this study, we examined the setup phase of updatable zk-SNARKs. We con-
structed the necessary algorithms, namely (SG,SU,SV), for the setup phase
of various updatable zk-SANRKs, including Sonic, Plonk, Marlin, Lunar, and
Basilisk. To make SV algorithms practical, we also presented a batched version
of them, called BSV. We constructed the algorithms for the most efficient version
of each zk-SNARK, in terms of proof size. However, the proposed algorithm can
be adapted to their different versions. Our results show that in a few cases, to
achieve better efficiency in the setup phase, one option would be to use a version
of the studied schemes, with a shorter SRS but slightly larger proofs and slower
provers. For instance, Lunar [13] has a version, so-called LunarLite2x, which has
the same SRS as Basilisk, therefore can be as efficient as Basilisk in the setup
phase, but in cost of slightly longer proofs and slower prover. In another exam-
ple, we observed that Counting Vampires [31] has only two fewer group elements
than Basilisk in the proof, but its SRS size is 17× larger and such an SRS can
result in a prolonged setup.

Meanwhile, we observed that to achieve Sub-ZK/Upd-KS in updatable zk-
SANRKs, a more realistic model for security proofs could be the AGM with
hashing [30], rather than the original AGM [19].

Moreover, we showed that pairing-based updatable zk-SNARKs, or other
primitives constructed in the updatable SRS model, by default achieve security
with abort, and the parties cannot identify a malicious SRS generator/updater.
A naive solution to deal with this concern is verifying the SRS after each update
(either by the parties or a third party), but it can be impractical in a large-scale
application. To make it practical, we proposed an efficient recursive verifica-
tion approach, that allows the parties to identify a malicious SRS updater by
a logarithmic number of SRS verification (instead of linear) in the number of
updates. We believe our proposed approach to achieve identifiable security, can
also be used in the MPC SRS generation protocols [29], as well as in other cryp-
tographic primitives (like commitments, signatures, encryptions) constructed in
the updatable SRS model [16,3,7,22,6].

Finally, our empirical analysis showed that the algorithms are practical for
large-scale applications, and among the current updatable zk-SNARKs, Basilisk
(and the Lunarlite2x variant of Lunar) can have the fastest setup phase. Count-
ing Vampires, Sonic and Plonk can have a very slow setup phase, which is mainly
because of having a very long SRS or using a specific constraint system (i.e.,
Plonk) that encodes both addition and multiplication gates.
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A Appendix

A.1 Comparison of Updatable zk-SNARKs

Table 2, compares the efficiency of some known universal and updatable zk-
SNARKs.

A.2 Polynomial Commitments for a Single Degree Bound

PCs are a key primitive to build an efficient updatable zk-SNARK. In a PC
scheme, a prover commits to a polynomial, and later opens it to an evaluation
of the polynomial at a random point, chosen by the verifier [28]. Next, we re-
call the definition of PC schemes that support a single degree bound chosen
in the setup phase [14]. Over a field family, F , a PC scheme, PC, for a sin-
gle degree bound and a single evaluation point consists of the PPT algorithms
PC = (KG,Com,Open,Vfy), defined as follows:

– (ck, vk)← KG(1λ, D): Given λ in its unary representation, and a maximum
degree bound D ∈ N as inputs, it then samples and returns a key pair
(ck, vk). Note that the keys contain the description of a finite field F ∈ F .

Table 2: An efficiency comparison of the existing updatable and universal zk-
SNARKs. The pairing operation is shown by P . Additionally, m: #total gates,
m0: #public input wires, n: #multiplication gates, k: #matrix elements with
non-zero values describing the circuit.

|srs| |π| SG P V

Sonic
[32]

G1

G2

F

4n− 1

4n

−

20

−
16

4n− 1

4n

−

273n

−
O(k log(k))

7P

O(m0 + log(k))

Plonk
[21]

G1

G2

F

3m

1

−

7

−
7

3m

−
−

11m

−
O(m log(m))

2P

O(m0 + log(m))

Marlin
[14]

G1

G2

F

3k

2

−

13

−
8

3k

−
−

14n+ 8k

−
O(k log(k))

2P

O(m0 + log(k))

LunarLite
[13]

G1

G2

F

k

k

−

10

−
2

k

k

−

8n+ 3k

−
O(k log(k))

7P

O(m0 + log(k))

Basilisk
[35]

G1

G2

F

n

1

−

6

−
2

n

−
−

6n

−
O(n log(n))

2P

O(m0 + log(n))

Vampires
[31]

G1

G2

F

12n+ k

4n+ k

−

4

−
2

12n+ k

4n+ k

−

20n+ 2k

−
O(k log(k))

5G1 + 6P

21

O(m0 + log(n))
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– c ← Com(ck,p,w): Given ck, a set of univariate polynomials p = [pi]
n
i=1

over the finite field F s.t. deg(pi) ≤ D for all i ∈ [n] as inputs, it returns
commitments c = [ci]

n
i=1 to the set of polynomials p. The randomnesses

w = [wi]
n
i=1 are used when the commitments c are meant to be hiding.

– π ← Open(ck,p, z, ζ;w): Given ck, set of univariate polynomials p = [pi]
n
i=1,

evaluation point z ∈ F, and opening challenge ζ as inputs, it outputs an
evaluation proof π. Note that the used randomnesses w should be identical
to the ones in the commitment algorithm.

– (1/0)← Vfy(vk, c, z,v, π, ζ): Given the verification key vk, commitments c =
[ci]

n
i=1, evaluation point z ∈ F, supposed evaluations v = [vi]

n
i=1, evaluation

proof π, and opening challenge ζ as inputs, it then outputs either 1, if the
proof π confirms that, for each i ∈ [n], the polynomial committed in ci has
degree at most D and evaluates to vi at z. Otherwise it returns 0.

A (perfectly) hiding PC scheme satisfies the completeness, hiding, and ex-
tractability properties defined below.

Definition 5 (Completeness). For all degree bounds D ∈ N and efficient
adversary A, a PC, PC, satisfies Completeness property, if:

Pr

[
(ck, vk)← KG(1λ, D), (p, z, ζ,w)← A(ck, vk),v← p(z),

π ← Open(ck,p, z, ζ;w) : Vfy(vk, c, z,v, π, ζ) = 1 ∧ deg(p) ≤ D

]
= 1 .

Definition 6 (Extractability). A PC PC, is called extractable if for all upper
bound D ∈ N and PPT adversaries A, there exists an efficient extractor Ext
s.t. for every efficient public-coin challenger C, efficient query sampler Q, PPT
adversaries B = (B1,B2) and a round bound q ∈ N,

Pr



(ck, vk)← KG(1λ, D), {ρi = C(ck, vk, i),
ci ← A(ck, vk, [ρj ]ij=1),pi ← Ext(ck, vk, [ρj ]

i
j=1), }i∈[q],

Q← Q(ck, vk, [ρj ]qj=1), (v, st)← B1(ck, vk, [ρj ]
q
j=1, Q),

Sample opening challenge ζ, π ← B2(st, ζ) :
Vfy(vk, c, z,v, π, ζ) = 1 ∧ deg(p) ≤ D ∧ v = p(z)

 ≥ 1− negl(λ) ,

where [ci]
n
i=1 := [ci]

q
i=1, [pi]

n
i=1 := [pi]

q
i=1, [di]

n
i=1 := [di]

q
i=1. For a Q as the

form of T × {z} s.t. T ⊆ [n] and z ∈ F we set c := [ci]i∈T , p := [pi]i∈T and
d := [di]i∈T .

Definition 7 (Simulation-based Hiding). A PC PC, satisfies
(simulation-based) hiding if there exists a polynomial-time simulator
Sim = (SimKG,SimCom,SimOpen) such that, for every maximum degree bound
D ∈ N, round bound q ∈ N and NUPPT adversary A = (A1,A2,A3), we have,∣∣Pr[Real(1λ, D,A) = 1]− Pr[Ideal(1λ, D,A) = 1]

∣∣ ≤ negl(λ) .
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Real(1λ, D,A)Real(1λ, D,A)Real(1λ, D,A) :
(ck, vk)← KG(1λ, D);
Let c0 :=⊥; for i ∈ [q] :

- (pi, hi)← A1(ck, vk, [cj ]
i−1
j=0);

- if hi = 0 : sample wi ←$ F;
- else: set wi :=⊥;
- ci ← Com(ck,pi,wi);

c := [ci]
q
i=1, p := [pi]

q
i=1, w := [wi]

q
i=1;(

[Qj ]
t
j=1, [ζj ]

t
j=1, st

)
← A2(ck, vk, c);

for i ∈ [t] :

πj ← open (ck,p, Qj , ζj ;w);
return b← A3(st, [πj ]

t
j=1).

Ideal(1λ, D,A)Ideal(1λ, D,A)Ideal(1λ, D,A) :
(ck, vk, τ)← SimKG(1

λ, D)

Let c0 :=⊥; for i ∈ [q] :

- (pi, hi)← A1(ck, vk, , [cj ]
i−1
j=0);

- if hi = 0 : sample wi ←$ F; and
compute ci ← SimCom(τ, |pi|;wi);

- else: set wi :=⊥; and compute
real ci ← Com(ck,pi;wi);

c := [ci]
q
i=1, p := [pi]

q
i=1, w := [wi]

q
i=1;

Zero out hidden polynomials: p′ := [hipi]
q
i=1;(

[Qj ]
t
j=1, [ζj ]

t
j=1, st

)
← A2(ck, vk, c);

for i ∈ [t] : πj ← Simopen (τ,p
′,p(Qj), Qj , ζj ;w);

return b← A3(st, [πj ]
t
j=1).

B More On Marlin Updatable zk-SNARK

B.1 Marlin’s PCs with a Slightly Modified SRS

In [14], authors presented two PC schemes in the GGM and AGM, and then
used them to instantiate their general transformation and obtain updatable zk-
SNARK. Marlin is obtained by instantiating their general transformation with
their AGM-based scheme. However, in Sec. 3.2, we showed that in order to use
the AGM-based one, to build a updatable zk-SNARK, one needs to slightly
modify its SRS and add a single group element to its SRS. The same issue also
exists in their GGM-based PC.

In this section, we describe a new variant of their AGM-based construction
that has an additional group element, namely [xγ]2, in the SRS, and allows us to
prove Sub-ZK and Upd-KS in Marlin. A similar modification needs to be done
on their GGM-based PC scheme, while using it in updatable zk-SNARKs. Next,
we summarize the modified version of their AGM-based PC scheme, which the
only difference is that it has an additional element in the SRS.

– (ck, vk) ← KG(1λ, D): Given a λ in its unary representation, it runs the
bilinear pairing generator BG := (p,G1,G2,GT , ê, [1]1 , [1]2) ← BGgen(1λ),
and samples the random integers x, γ ←$ Fp and then computes:

Γ :=

[1]1 [x]1
[
x2

]
1

. . .
[
xD

]
1

[γ]1 [γx]1
[
γx2

]
1
. . .

[
γxD

]
1

 .

It sets ck := (BG, Γ ) and vk :=
(
D,BG, [γ]1 , [x]2 , [x0γ0]2

)
and then returns

(ck, vk) as output. Note that the element [x0γ0]2 is not needed to commit
and verify openings, but it is useful to verify ck and also achieve trapdoor
extractability in the updatable SRS model.
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– c← Com(ck,p,w): Given commitment key ck, for any univariate polynomial
pi ∈ p for i ∈ [n] of degree deg(pi) ≤ D it computes the commitment
ci := [pi(x)]1 + [γp̄i(x)]1. It then returns c := [ci]i∈[n] as output.

– π ← Open(ck,p, z, ζ;w): Given ck, a single evaluation point z ∈ Fp and
opening challenge ζ ∈ Fp, it computes the linear combination of poly-
nomials p(X) :=

∑n
i=1 ζ

ipi(X) and p̄(X) :=
∑n

i=1 ζ
ip̄i(X) and the wit-

ness polynomials w(X) := p(X)−p(z)
X−z and w̄(X) := p̄(X)−p̄(z)

X−z . It then sets
w := [w(x)]1+[γw̄(x)]1 and v̄ := p̄(z) and then returns the evaluation proof
π := (w, v̄) as output.

– (1/0) ← Vfy(vk, c, z,v, π, ζ): Given the verification key vk, commitments
c = [ci]

n
i=1, evaluation point z ∈ Fp and opening challenge ζ ∈ Fp, it calcu-

lates the linear combination C :=
∑n

i=1 ζ
ici and the lineanr combination of

evaluation as v :=
∑n

i=1 ζ
ivi and check the validty of the following pairing

product equation:

(C − [v]1 − [γv̄]1) • [1]2 == w • ([x]2 − [z]2) .

If it holds, then it accepts the proof; otherwise it rejects the proof π.

In [14, Theorem B.12, Lemmas B.13-B.15], authors showed that under Strong
Diffie–Hellman (SDH) assumption, the above PC scheme satisfies hiding, bind-
ing, and extractability against algebraic adversaries. By minimal modification
to their security proofs it can be shown that the modified scheme still achieves
hiding, binding, and extractability in the AGM.

B.2 On the Setup of Marlin with the Shortest Proofs

In [14], authors presented two PC schemes in the GGM and AGM, where the
AGM-based one is more efficient. In Sec. 3.2, we described the SG,SU,SV and
BSV algorithms for Marlin, once it is instantiated with a minimally modified
version of the AGM-based one. However, in practice, to obtain shorter proofs,
in the latest version of Marlin’s implementation 4, authors use a different PC
scheme, that can be considered as a variant of the scheme proposed in [32], which
is optimized in [20]. Next, in Fig. 16, we present the SG, and SU algorithms for
the mentioned PC, which we use in our implementations and comparisons 5. Note
that similar to the PC schemes proposed in Marlin, the SRS of the implemented
PC scheme was not trapdoor extractable, and similar to previous cases we add
[γx]2 to the SRS, which allows to extract the simulation trapdoors. Also in
Fig. 17, we describe the SV and BSV algorithms corresponding to the SG and
SU algorithms described in Fig. 16.

4 Available on https://github.com/arkworks-rs/marlin.
5 Specifically, the details about the SRS elements of this variant are provided with

Pratyush Mishra, a co-author of Marlin, in a private communication.

https://github.com/arkworks-rs/marlin
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SRS Generation, (srs0, Π0)← SG(R): Given R, first deduce the security param-
eter 1λ and obtain (p,G1,G2,GT , ê, [1]1 , [1]2)← BGgen(1λ); then act as follows:
– Sample x̄0, γ̄0 ← Z⋆

p, and set x0 := x̄0, and γ0 := γ̄0 which are the trapdoors
of srs0;

– For k = 0, · · · , n: compute
[
xk
0

]
1
;

– For k = 0, · · · , 5: compute
[
γ0x

k
0

]
1
;

– For k = 1, 2, 4, 8, · · · , logn: compute
[
x−k
0

]
2
;

– Compute [x0]2, and [x0γ0]2 ;

– Set srs0 :=
(([

xk
0

]
1

)n
k=0

,
([
γ0x

k
0

]
1

)5
k=0

,
[
x−l
0

]
2
, [x0]2 , [x0γ0]2

)
, for l =

1, 2, 4, · · · , logn, and the well-formedness proof Π0 := (ΠAgg
0 , Π Ind

0 ) :=
(([γ0]1 , [x0γ0]1 , [x0]2), ([x̄0]1 , [γ̄0]1 , [x̄0]2 , [x̄0γ̄0]2));

– Return (srs0, Π0);

SRS Update, (srsi, Πi)← SU(srsi−1, {Πj−1}i−1
j=0): Given (srsi−1, {Πj−1}i−1

j=0),

– Parse srsi−1 :=
(([

xk
i−1

]
1

)n
k=0

,
([
γi−1x

k
i−1

]
1

)5
k=0

,
[
x−l
i−1

]
2
, [xi−1]2 , [xi−1γi−1]2

)
,

for l = 1, 2, 4, · · · , logn;
– Sample x̄i, γ̄i ← Z⋆

p as the secret shares to use for updating srsi−1.
– For k = 0, · · · , n: set

[
xk
i

]
1
:= x̄k

i ·
[
xk
i−1

]
1
,
[
γix

k
i

]
1
:= γ̄ix̄

k
i ·

[
γi−1x

k
i−1

]
1
;

– For k = 0, · · · , 5: set
[
γix

k
i

]
1
:= γ̄ix̄

k
i ·

[
γi−1x

k
i−1

]
1
;

– For k = 1, 2, 4, · · · , logn: set
[
x−k
i

]
2
:= x̄−k

i ·
[
x−k
i−1

]
2
;

– set [xi]2 := x̄i · [xi−1]2 and [xiγi]2 := x̄iγ̄i · [xi−1γi−1]2 ;

– Set srsi :=
(([

xk
i

]
1

)n
k=0

,
([
γix

k
i

]
1

)5
k=0

,
[
x−l
i

]
2
, [xi]2 , [xiγi]2

)
, for l =

1, 2, 4, · · · , logn, and the well-formedness proof Πi := (ΠAgg
i , Π Ind

i ) :=
(([γi]1 , [xiγi]1 , [xi]2), ([x̄i]1 , [γ̄i]1 , [x̄i]2 , [x̄iγ̄i]2));

– Return (srsi, Πi);

Fig. 16: SG and SU algorithms for the implemented variant of Marlin.

On the Efficiency of SU, SV, and BSV Algorithms in Marlin: Using the SU
algorithm described in Fig. 16, similar to the SG algorithm, in order to update
the SRS of size n in Marlin, one needs to compute log log n exponentiations in G2

and n+6 exponentiations in G1. Using the SV algorithm described in Fig 17, to
verify an i-time updated SRS, i ≥ 1, a prover needs to compute 2n+log log n+12
pairing operations (importantly, independent of the value of i), while a verifier
needs to compute 2n+ log log n+ 9i+ 16 pairings. To verify an i-time updated
SRS of size n more efficiently, using the BSV algorithm (given in Fig. 17),

– a prover will compute 4 pairings, log log n exponentiations in G2, and 2n+
log log n+ 10 exponentiations in G1,

– and a verifier would need to compute 2i+9 pairings, 2i+ log log n exponen-
tiations in G2, and 2n+ log log n+ 5i+ 10 exponentiations in G1,

which in practice is considerably faster than the standard SV algorithm.
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SRS Verify, (⊥/1)← SV(srsi, (Πj)
i
j=0, party): To verify (an i-time up-

dated) srsi :=
(([

xk
i

]
1

)n
k=0

,
([
γix

k
i

]
1

)5
k=0

,
[
x−l
i

]
2
, [xi]2 , [xiγi]2

)
,

for l = 1, 2, 4, · · · , logn, and Πj := (ΠAgg
j , Π Ind

j ) :=((
[γj ]1 , [xjγj ]1 , [xj ]2

)
,
(
[x̄j ]1 , [γ̄j ]1 , [x̄j ]2 , [x̄j γ̄j ]2

))
; for j = 0, 1, · · · , i:

If party = P:
1. For k = 1, · · · , n: check if

[
xk
i

]
1
• [1]2 =

[
xk−1
i

]
1
• [xi]2;

2. For k = 1, · · · , 5: check if
[
γix

k
i

]
1
• [1]2 =

[
γix

k−1
i

]
1
• [xi]2;

3. For k = 1, 2, 4, · · · , logn: check if
[
x
(logn)−k
i

]
1
• [1]2 =

[
xlogn
i

]
1
•
[
x−k
i

]
2
;

4. Check if [xiγi]1 • [1]2 = [1]1 • [γixi]2;
If party = V:

- If i = 0: srs0 is sampled by V, and it does not need to be verified.
- If i ≥ 1:

1. Check if [γ0]1 = [γ̄0]1 and [x0]2 = [x̄0]2;
2. For j = 0, 1, · · · , i: check if [x̄j ]1 • [1]2 = [1]1 • [x̄j ]2 and [1]1 • [x̄j γ̄j ]2 =

[γ̄j ]1 • [x̄j ]2.
3. For j = 1, 2, · · · , i: check if [1]1 • [xj ]2 = [x̄j ]1 • [xj−1]2, [xjγj ]1 • [1]2 =

[xj−1γj−1]1 • [x̄j γ̄j ]2 = [γj ]1 • [xj ]2;
4. For k = 1, · · · , n: check if

[
xk
i

]
1
• [1]2 =

[
xk−1
i

]
1
• [xi]2;

5. For k = 1, · · · , 5: check if
[
γix

k
i

]
1
• [1]2 =

[
γix

k−1
i

]
1
• [xi]2;

6. For k = 1, 2, 4, · · · , logn: check if
[
x
(logn)−k
i

]
1
•[1]2 =

[
xlogn
i

]
1
•
[
x−k
i

]
2
;

7. Check if [xiγi]1 • [1]2 = [1]1 • [γixi]2;
Return 1 if all the checks passed, otherwise return ⊥.

Batched SRS Verification, (⊥/1)← SV(srsi, (Πj)
i
j=0, party): To verify (an i-

time updated) srsi :=
(([

xk
i

]
1

)n
k=0

,
([
γix

k
i

]
1

)5
k=0

,
[
x−l
i

]
2
, [xi]2 , [xiγi]2

)
, for l =

1, 2, 4, · · · , logn, and Πj := (ΠAgg
j , Π Ind

j ) := (([γj ]1 , [xjγj ]1 , [xj ]2), ([x̄j ]1 , [γ̄j ]1 ,
[x̄j ]2 , [x̄j γ̄j ]2)); for j = 0, 1, · · · , i:
If party = P:
1. Sample

{
t1,k ← Z⋆

p

}n

k=1
,
{
t2,k ← Z⋆

p

}5

k=1
,
{
t3,k ← Z⋆

p

}
k=1,2,4,··· logn

;

2. Check if ([γixi]1 +
∑n

k=1(t1,k ·
[
xk
i

]
1
) +

∑5
k=1(t2,k ·

[
γix

k
i

]
1
) +

∑logn
k=1 (t3,k ·[

x
(logn)−k
i

]
1
)) • [1]2 = (

∑n
k=1(t1,k ·

[
xk−1
i

]
1
) +

∑5
k=1(t2,k ·

[
γix

k−1
i

]
1
)) •

[xi]2 +
[
xlogn
i

]
1
• (

∑
k=1,2,4,··· ,logn(t3,k ·

[
x−k
i

]
2
)) + [1]1 • [γixi]2;

If party = V:
- If i = 0: srs0 is sampled by verifier, and it does not need to be verified.
- If i ≥ 1, act as follows,

1. Sample {r1,j , r2,j , r3,j , r4,j ← Z⋆
p}ij=0; and {t1,k ← Z⋆

p}nk=1, {t2,k ←
Z⋆
p}5k=1, {t3,k ← Z⋆

p}k=1,2,4,··· ,logn;
2. Check if [γ0]1 = [γ̄0]1 and [x0]2 = [x̄0]2;
3. Check if (

∑i
j=0 r1,j · [x̄j ]1) • [1]2 = [1]1 • (

∑i
j=0 r1,j [x̄j ]2);

4. Check if [1]1 • (
∑i

j=0 r2,j · [γ̄j x̄j ]2) =
∑i

j=0(r2,j [γ̄j ]1 • [x̄j ]2);
5. Check if [1]1 • (

∑i
j=1 r3,j · [xj ]2) =

∑i
j=1(r3,j · [x̄j ]1 • [xj−1]2);

6. Check if (
∑i

j=1 r4,j ·[γjxj ]1)•[1]2 =
∑i

j=1(r4,j ·[γj−1xj−1]1•[γ̄j x̄j ]2) =∑i
j=1(r4,j · [γj ]1 • [xj ]2);

7. Check if ([γixi]1+
∑n

k=1(t1,k ·
[
xk
i

]
1
)+

∑5
k=1(t2,k ·

[
γix

k
i

]
1
)+

∑logn
k=1 (t3,k ·[

x
(logn)−k
i

]
1
))• [1]2 = (

∑n
k=1(t1,k ·

[
xk−1
i

]
1
)+

∑5
k=1(t2,k ·

[
γix

k−1
i

]
1
))•

[xi]2 +
[
xlogn
i

]
1
• (

∑
k=1,2,4,··· ,logn(t3,k ·

[
x−k
i

]
2
)) + [1]1 • [γixi]2;

Return 1 if all the checks passed, otherwise return ⊥.

Fig. 17: SV and an BSV algorithms for Marlin with the shortest proofs.
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