
Composable Gadgets with Reused Fresh Masks
First-Order Probing-Secure Hardware Circuits with only 6 Fresh Masks

David Knichel and Amir Moradi

Ruhr University Bochum, Horst Görtz Institute for IT Security, Bochum, Germany
firstname.lastname@rub.de

Abstract. Albeit its many benefits, masking cryptographic hardware designs has
proven to be a non-trivial and error-prone task, even for experienced engineers.
Masked variants of atomic logic gates, like AND or XOR – commonly referred to
as gadgets – aim to facilitate the process of masking large circuits by offering free
composition while sustaining the overall design’s security in the d-probing adversary
model. A wide variety of research has already been conducted to (i) find formal
properties a gadget must fulfill to guarantee composability and (ii) construct gadgets
that fulfill these properties, while minimizing overhead requirements. In all existing
composition frameworks like NI/SNI/PINI and all corresponding gadget realizations,
the security argument relies on the fact that each gadget requires individual fresh
randomness. Naturally, this approach leads to very high randomness requirements
of the resulting composed circuit. In this work, we present composable gadgets with
reused fresh masks (COMAR), allowing the composition of any first-order secure
hardware circuit utilizing only 6 fresh masks in total. By construction, our newly
presented gadgets render individual fresh randomness unnecessary, while retaining
free composition and first-order security in the robust probing model. More precisely,
we give an instantiation of gadgets realizing arbitrary XOR and AND gates with an
arbitrary number of inputs which can be trivially extended to all basic logic gates.
With these, we break the linear dependency between the number of (non-linear)
gates in a circuit and the randomness requirements, hence offering the designers
the possibility to highly optimize a masked circuit’s randomness requirements while
keeping error susceptibility to a minimum.

Keywords: Side-Channel Analysis · Masking · Probing Security · Composability ·
COMAR

1 Introduction
Masking. The increasing amount of easily accessible devices creates a permanent surge
in demand for highly effective countermeasures against physical attacks, causing Side-
Channel Analysis (SCA) attacks to retain their topical relevance since its first seminal
description in [Koc96, KJJ99]. Since then, a considerable amount of effort has been put into
mitigating the threat originating from a wide variety of divers side channels, ranging from
timing [Koc96], power consumption [KJJ99], electromagnetic (EM) emanations [GMO01],
or temperature and heat dissipation [HS13]. Among a multitude of proposed methods,
masking has evolved to be a promising technique to achieve SCA resilience due to is solid
theoretical background rooted in the concepts of secret sharing. Despite the strong effort
committed to masking cryptographic primitives [ISW03, Tri03, NRS11, RBN+15, GMK17,
GM18], many of the proposed schemes have proven to suffer from invalid assumption or
design flaws [MMSS19], eventually compromising their practical security.

https://orcid.org/0000-0002-2510-8881
https://orcid.org/0000-0002-4032-7433
mailto:david.knichel@rub.de,amir.moradi@rub.de

2 Composable Gadgets with Reused Fresh Masks

Formal Adversary Models. In order to prevent these bugs, researchers have started to
lay focus on establishing formal adversary models which aim to accurately capturing the
adversary’s capabilities and the circuit behavior in the real world, while being sufficiently
abstract to enable (automated) evaluation of SCA resilience on an algorithmic level [ISW03,
BDF+17, PR13, FGP+18]. As a consequence, these models, on the one hand, enable
detecting security flaws in an early stage of the design process. For this, a wide variety
of tools have been proposed [BGI+18, BBC+19, KSM20, BDM+20, BBD+16, BGR18,
BBD+15, CGLS21]. On the other hand, they allow following a more systematic approach
when constructing provable-secure masking schemes. The ISW d-probing model – initially
introduced in [ISW03] – and its extension to model physical defaults contributing to data
leakage in hardware implementations [FGP+18], has turned out to be an adversary model
well suited for finding implementations that are provably resilient against SCA attacks due
to both, its sufficiently high abstraction and the existing reduction into the Noisy Leakage
Model [DDF14], which is considered to be the closest to reality with respect to accurately
modeling leakage behavior.

Composable Gadgets. As it has proven to be a hard task to mask circuits realizing large
functions for high security orders, a new line of research has emerged aiming to formally
define composability notions which enable the construction of masked circuits in a divide-
and-conquer fashion. Here, the goal is to derive masked realizations of atomic logic gates –
typically AND and XOR – that fulfill the properties specified by the composability notion,
and in so doing, guaranteeing security in the d-probing model, even when interconnected
into a larger circuit. Hence, this reduces the task of finding (higher-order) masked versions
of large circuits to constructing masked, atomic logic gates that are in conformity with the
security notions and then modularly constructing the overall circuit based on these masked
gates – commonly referred to as gadgets. In the context of the d-probing model, Non-
Interference (NI)/Strong Non-Interference (SNI) [BBD+15, BBD+16] and Probe-Isolating
Non-Interference (PINI) [CS20] were introduced as such notions, where SNI ironed out
flaws of NI whose properties were not sufficient to guarantee composability. As the scope
of SNI was originally limited to single-output gates, Cassiers et al. generalized it in [CS20],
but at the same time introduced PINI as an elegant notion to construct composable
gadgets which further reduces implementation overheads and allows trivial realization, i.e.,
share-wise application, of linear functions. Accompanied by the introduction of this wide
variety of notions, many concrete gadget constructions have been proposed, either realizing
small logic gates [ISW03, BDM+20, BBD+16, CS20, CGLS21, CS21], or even arbitrary
logic functions [KSM22].

Randomness Reduction. As gadgets typically realize atomic logic functions like a simple 2-
input AND gate, and fresh randomness is required for each of these gadgets, the composition
to entire cipher designs results in a significant randomness overhead being introduced
to the circuit. As fresh randomness needs to be provided by a source, i.e., Pseudo-
Random Number Generators (PRNGs), randomness requirements directly translate into
area consumption on a chip and hence into an increase in costs of production. Consequently,
it is an interesting research topic to elaborate on how randomness overhead of composable
gadgets can be further reduced. One possible solution is to extend the functionalities
of the gadgets while preserving individual randomness requirements. In [KSM22], a
methodology was presented that allows the construction of first-order-secure gadgets
realizing arbitrary Boolean functions with only one random bit per output. Although this
certainly leads to randomness reductions compared to the utilization of 2-input gadgets
when constructing large masked circuits, it also significantly increases the area requirements
of the implementation.

Another approach is to minimize the randomness requirements per gadget. In [GSM+19],

David Knichel and Amir Moradi 3

Gross et al. presented a methodology to derive a first-order-secure implementation from
AND and XOR gadgets requiring two fresh random bits in total – including the initial
sharing. This approach is restricted to software implementations, i.e., does not guarantee
SCA resilience in the presence of physical defaults [WM18]. Another drawback is that
interconnection of gadgets is not trivial, i.e., the designer has to follow a certain set of
rules when composing the gadgets.

Faust et al. introduced a methodology for reusing randomness in masked implemen-
tations in [FPS17]. Interestingly, the authors proposed a scheme that requires only two
fresh random bits to achieve first-order security in the probing model, and they applied
their findings to an AES implementation. However, their designs do not offer free compos-
ability, as the protected implementation must be carefully constructed to suit a specific
structure. Moreover, the work does not consider physical defaults that drive leakage in
their discussions, making it not directly applicable to the hardware context.

Theoretical discussions on defining the necessary properties of PRNGs to reduce the
overall randomness requirements of masked implementations are presented in [IKL+13,
CGZ20, GIS22a, GIS22b]. In [CGZ20], Coron et al. demonstrated a practical application
of their findings by protecting an AES at the second security order using only 384 random
bits. However, their work does not take into account physical defaults that may occur in
hardware. In delimitation to these works, our goal is to derive concrete, secure, and freely
composable structures in the hardware context that utilize very few fresh random bits and
are well-suited for automated masking.

Our Contributions. In this work, we present COMAR, a methodology for achieving free
composition of hardware gadgets that enable construction of arbitrary first-order-secure
hardware implementations in the d-probing model under glitches, utilizing – apart from
the initial sharing – only 6 fresh random bits in total. In this context, we construct
freely-composable gadgets, realizing 2-input XOR and AND gates which can be trivially
converted to all atomic logic gates. We further show how to extend such gadgets to cover
an arbitrary number of inputs at the cost of investing more fresh masks which can still
be reused by other gadgets. We demonstrate that our constructions lead to a significant
reduction with respect to randomness overhead introduced into the design compared to
existing schemes, offering the same composability and security guarantees. Our work hence
paves the ground for enabling the designer to optimize for different overhead parameters
when masking a cryptographic implementation, while keeping design constraints and error
susceptibility as low as possible. We further practically verify our findings by means of
case studies and leakage assessments.

Outline. We first present a brief recap of all necessary concepts and methodologies in
Section 2. In particular, we give an introduction to the robust d-probing model and all
well-established composability notions. In Section 3, we present our novel methodology
for constructing gadgets with constant randomness requirements, and argue about their
first-order security and composability, before we discuss the practical implications of
our work by means of different case studies in Section 4. After presenting a dedicated
comparison to the state of the art in Section 5 and conducting an exemplary leakage
assessment in Section 6, we conclude our work in Section 7.

2 Preliminaries
2.1 Notations
While we denote random variables by capital letters, e.g., X ∈ F2 is a binary random
variable, we use bold capital letters, e.g., X, for sets containing random variables. The

4 Composable Gadgets with Reused Fresh Masks

i-th input to a function is identified by Xi, while superscripts are used to denote share
indices when dealing with masked functions. Consequently, Xi is the i-th share of X.
Moreover, Xi denotes the set of all elements in X with subscript i. When masking a
function F : Fn

2 7→ Fm
2 with t shares per input, the set containing all input shares is given

as Sh(X) = [X0
0 , X1

0 , . . . , Xt−1
0 , X0

1 , . . . , Xt−1
n−1]. In the same manner, for a set of share

indices I ⊆ [0, . . . , t− 1], Sh(X)I denotes the set of all input shares Xs∈I
0≤i<n. Eventually,

drawing a value X uniformly and at random from a set R is denoted as X
$← R.

2.2 Boolean Masking
Rooted in the concept of secret sharing, a Boolean Masking of a secret X ∈ Fn

2 is a set

X ∈ Fn×s
2 of s independent secret shares Xi ∈ Fn

2 , 0 ≤ i < s, such that X =
s−1⊕
i=0

Xi. The

secret shares are commonly derived by sampling Xi $← Fn
2 , for 0 ≤ i < s− 1 and deriving

the remaining share as Xs−1 = X ⊕
(s−2⊕

i=0
Xi

)
. This directly implies that, in order to

achieve d-th order security, all sensitive data has to be split in at least d + 1 shares, i.e.,
two shares in the case of first-order security.

2.3 Circuit Model
As derived in [ISW03] and later in its extension [FGP+18], any stateful, deterministic
circuit C can be modeled as a Directed Acyclic Graph (DAG) GC = {V, E} with V being
the set of vertices and E the set of edges of GC. The edges represent wires carrying elements
of F2 while the vertices model combinational gates such as AND and XOR or memory gates,
i.e., registers. On any circuit invocation, registers output the previous input to the gate
while storing the current input for the next invocation. Eventually, GC realizes a Boolean
function F : Fn

2 7→ Fm
2 .

Encoded Circuit Model. To precisely define the adversary’s capabilities when probing a
masked circuit, a more fine-grained breakdown of the circuit becomes necessary. As defined
in [AIS18], a circuit compiler consists of three algorithms. The COMPILE algorithm is
deterministic and takes a circuit C as input and outputs a randomized (masked) circuit C̃.
The probabilistic ENCODE algorithm takes as input X and outputs the encoded input X̃.
In our case, this corresponds to performing Boolean masking as described in Section 2.2.
DECODE is a deterministic algorithm, eventually taking encoded data Ỹ and outputting
Y. In the case of Boolean masking, this can be simply achieved by building the XOR-sum
of all shares, i.e., unsharing.

Given these three algorithms, data processing in a shared manner can be described by
computing Y← DECODE ◦ C̃ ◦ ENCODE(X) for Y← C(X). It is important to highlight
that the adversary’s probing capabilities are limited to only collect observations in C̃, while
the actual execution of the ENCODE and DECODE operations stay hidden. In other words,
these operation are known to the adversary, i.e., no obscurity, but they cannot be probed.

2.4 Probing Security
2.4.1 d-Probing Model

The traditional ISW d-probing model [ISW03] grants the attacker the ability to probe up
to d wires in the circuit and hence to observe the values carried by them. Modeling the
circuit behavior relies on the assumption that at any given time, each wire carries a stable
signal defined by the combinatorical function contributing to it. As a result, a circuit is

David Knichel and Amir Moradi 5

Algorithm 1 glitch-extend
Input: Non-extended probe P

Output: Glitch-extended probes Pext

1: if P is placed on an output of a combinational gate then
2: Pext ←

⋃
0≤i<n

glitch-extend(Pi) ▷ where {P0, . . . , Pn−1} are all
inputs of the driving gate

3: else if P is placed on an output of a register or on a primary input then
4: Pext ← {P}
5: end if

considered secure in the d-probing model, if, and only if, observing the joint distribution
of up to d probes reveals no information about any sensitive data.

2.4.2 Robust Probing Model

The traditional ISW d-probing model is mainly relevant for verifying the security of software
implementations, as the assumption of wires carrying stable signals has proven to be false
for hardware implementations due to physical defaults additionally contributing to the
circuit’s information leakage. In [FGP+18], Faust et al. introduced the robust d-probing
model, broadening the scope of the d-probing model to accurately model (i) glitches, i.e.,
differences in signal delays, possibly causing unintentional share recombinations, (ii) data
transitions occurring at registers, and (iii) coupling, i.e., dependencies between adjacent
wires in a circuit.

Glitches are captured by the robust probing model in a worst-case manner, meaning
that a probe is not restricted to observe the stable, and functionally intended, value of a
wire, but is also able to observe any value contributing to its computation up to the last
register stage or primary input. This is formalized in Definition 1, where a standard probe
on a wire is recursively extended by either extending all input probes of the driving gates
or by returning the standard probe itself if it probes a register output or a primary input.
For a set of probes, the corresponding extended set of probes is built straightforwardly by
the union of all individual extended probes.

Definition 1 (Glitch-Extended Probes). A set of standard probes P = {P0, P1, ..., Pd−1}
is glitch-extended through Pext =

⋃
0≤i<d

glitch-extend(Pi), where the procedure of glitch-

extend is given in Algorithm 1 and Pext is called the set of glitch-extended probes with
respect to P.

2.5 Composability Notions
Previous efforts have shown that direct masking of large and complex functions is a hard
task, especially for higher orders. This is why a new stream of research has emerged,
dealing with developing composability notions which aim at defining sufficient properties a
masked sub-circuit – in this context, commonly referred to as gadgets – must fulfill in order
to guarantee security in the (robust) d-probing model of a larger, composed circuit. All
these notions focus on limiting the propagation of probes which intuitively describes, how
leakage is traversed backwards throughout a circuit [CS20], originating from the position
where the probe is initially placed and which is directly connected to the concept of probe
simulatability [BBP+16]. Probes placed on a gadget are restricted to propagate only into
a limited set of input shares, allowing to draw conclusions about probe propagation into
primary inputs of the larger, composed circuit.

6 Composable Gadgets with Reused Fresh Masks

2.6 Probe Simulatability
Probe simulatability helps to formalize probe propagation, i.e., dependencies between
probes placed on the encoded circuit and input shares. It can be formally defined as
follows.

Definition 2 (Perfect Probe Simulation). Given a set of (extended) probes P with
cardinality |P| = t placed on a masked circuit C̃, P is said to be perfectly simulatable
by a set of input shares S iff there exist a simulator SIM, such that for any value for
the inputs of C̃, the joint probability distribution over P and SIM(S) are equal, where
SIM(S) : F|S|

2 7→ Ft
2 with input S ⊆ Sh(X) is a probabilistic polynomial time (p.p.t.)

simulator.

With the help of this formal definition, we can give a definition for the common
composability notions in the following.

2.6.1 Non-Interference/Strong Non-Interference

As introduced in [BBD+15], NI does not differentiate between internal and output probes
and limits probe propagation likewise for both. Due to the lack of any distinction between
internal and output probes placed on a masked circuit, NI has proven to be non-sufficient
to guarantee composability. As a remedy, its definition was adjusted by Barthe et al. in
[BBD+16], resulting in the notion of SNI where probes placed on the output of a gadget
are not allowed to propagate into any input share at all.

2.6.2 Probe-Isolating Non-Interference

As the definition of SNI only covers single-output gadgets in its original form, Cassiers et
al. extended it in [CS20] to be applicable to multiple-output gadgets as well. At the same
time, they introduced the notion of PINI as an alternative to guarantee composability. Its
advantages stem from its reduced overhead and enabling trivial construction, i.e., share-
wise application, of masked linear functions without the need for any fresh randomness
and without introducing any additional latency into the design.

Borrowed from Domain-Oriented Masking (DOM) [GMK16], share domains where
introduced and probe propagation of output probes was restricted to only occur within
the same share domain, while internal probes are limited to propagate within a single, but
arbitrary, share domain.

Definition 3 (d-Probe-Isolating Non-Interference (PINI)). Let PI be the set of internal
probes with |PI| = t1. Further, let IO be the index set (share domains) assigned to the
output wires probed by PO with |IO| = t2 and PO containing all output probes.

A masked circuit C̃ provides d-Probe-Isolating Non-Interference iff for every set of
probes P = PI ∪PO with t1 + t2 ≤ d, there exists a set II of circuit input share indices
with |II| ≤ t1 such that P can be perfectly simulated by S = Sh(X)II∪IO .

2.7 Hardware Private Circuits
Along with the introduction of this multitude of notions, several concrete realizations
of composable gadgets have been proposed. As a limitation, these gadgets mostly cover
only atomic gates – like 2-input AND or XOR – as finding efficient constructions, which
are provably secure in the (robust) d-probing model under a sufficient composability
notion, is a hard task for large functions. The only exception poses GHPC [KSM22],
which is a methodology for constructing first-order secure and trivial composable gadgets
for arbitrary, vectorial Boolean functions requiring only one bit of fresh randomness per
coordinate function, but leaves a relatively large area footprint. Nevertheless, all known

David Knichel and Amir Moradi 7

gadgets leverage the introduction of gadget-individual fresh randomness to guarantee the
confirmatory to the corresponding probe propagation restrictions and hence composability.
As complete cipher designs are composed of many of these fundamental gates (AND-XOR),
this directly implies a significant randomness overhead for the implementation of full
encryption/decryption functions. A concrete instantiation of a gadget realizing a simple
AND gate and fulfilling trivial composability by means of the PINI notion is given as HPC2
which is initially presented in [CGLS21]. HPC2 contains two register stages, introducing
a latency of two clock cycles regardless of the security order. In Figure 1, a schematic
representing an exemplary circuit composed of first-order HPC2 AND gadgets is depicted,
where each gadget is supplied with an individual fresh random bit, already resulting
in a total of 7 fresh random bits for this simple example. Note that every share-wise
implementation of a linear function is already PINI-conform. Hence, the XOR operation
does not introduce any additional randomness or latency into the design.

HPC2

R0

HPC2

R1

HPC2

R2

HPC2

R3

HPC2

R4

HPC2

R5

HPC2

R6

⊕

X0

X1

X2

X3

X4

X5

X6

X7

2
2

2
2

2
2

2
2

Z
2

2

2

2

2

2

22

2

2

Figure 1: Example for a circuit composed of first-order HPC2 AND gadgets.

2.8 Automated Generation of Masked Hardware
Composable hardware gadgets are well suited for automated masking of hardware designs.
The underlying methodology is to simply synthesize a given unprotected design utilizing
a restricted library including only those cells for which composable gadgets exist, before
substituting each of the resulting cells with the corresponding gadget. If these gadgets
provably guarantee secure composition, the resulting netlist will be secure in the (robust)
probing model.

AGEMA [KMMS22] is a software tool for realizing this transformation from an unpro-
tected netlist to a protected one. For this, the Verilog netlist is represented as a graph
before it is translated into a Mealy machine, i.e., a combinational circuit and a single main
register stage. The designer can then specify which part of the netlist should be masked,
and which family of gadgets should be instantiated. In the naive approach integrated
in AGEMA, the structure of the given netlist stays unchanged, and only the cells are
substituted by their corresponding gadgets. Of course, since these gadgets introduce
additional latency, pipelining or clock gating is automatically applied to ensure the correct
functionality of the circuit. This process elegantly ensures security in the glitch-extended
robust probing model while being less error-prone than manually applying the masking at

8 Composable Gadgets with Reused Fresh Masks

ANDCOMAR

R||R′

ANDCOMAR

R||R′

ANDCOMAR

R||R′

ANDCOMAR

R||R′

ANDCOMAR

R||R′

ANDCOMAR

R||R′

ANDCOMAR

R||R′

XORCOMAR

R||R′

X0

X1

X2

X3

X4

X5

X6

X7

2
2

2
2

2
2

2
2

Z
2

2

2

2

2

2

22

2

2

6

6

6

6

6

6

6 6

Figure 2: Exemplary circuit composed of COMAR gadgets.

the algorithmic level. In this work, we utilize AGEMA to construct the masked ciphers
for our case studies, i.e., we provide our gadget definitions to AGEMA when selecting the
naive approach. This intentional choice allows fair comparison with several case studies
given in the original work [KMMS22].

3 Technique
3.1 Overview
Our objective is to reduce the randomness requirements of gadget-composed cipher designs
in hardware. As given in Section 2.7, each 2-input HPC2 AND gadget requires one
individual fresh mask bit which is necessary to guarantee composability under the PINI
notion and can thus not be nullified. Therefore, pursuing our goal, we introduce COMAR, a
methodology for constructing first-order secure gadgets, which allows us to reuse the same
randomness in each gadget, drastically reducing the randomness requirements compared
to existing designs which rely on gadget-individual masks. Thanks to the composability of
COMAR gadgets, their composition to larger circuits leads to d-probing secure designs (for
d = 1) under glitch-extended probes.

Naturally, the randomness requirements of HPC2 (and also other composable gadgets)
scale with the size and complexity of the target function which is to be masked, i.e., the
number of 2-input non-linear gates, while our approach only demands for 6 random bits
regardless of the underlying function.

In Figure 2, the same circuit as presented in Section 2.7 is depicted where every input
is split into two shares, but now the circuit is realized by instantiating our new COMAR
gadgets instead of HPC2 AND. In contrast to HPC2, each of our 2-input AND gadgets
needs 6 random masks, instead of only a single one, but as these fresh masks can be reused
for every gadget, it is directly obvious that the break-even-point with respect to fresh
randomness requirements of our approach compared to HPC2 lies at a number of 6 AND
gadgets. Meaning that if a circuit contains more than 6 AND gates, our approach requires
less fresh randomness compared to HPC2. This threshold is actually fulfilled for every
real-world logic circuit. Figure 2 shows an example to demonstrate this break-even-point.
Compared to Figure 1, our approach here needs only 6 instead of 7 bits. Naturally, this

David Knichel and Amir Moradi 9

⊕ P

R

X0

.
.

X1

G

Figure 3: Example probe on a gadget.

advantage becomes more significant for larger circuit.
Note that, in contrast to PINI gadgets, a trivial, i.e., share-wise, realization of an XOR

gadget is not possible in case of COMAR. Here, the XORCOMAR needs 6 random mask bits,
which are the same as those 6 bits reused in every other COMAR gadget. It also needs two
register stages, increasing the latency requirements for composed circuits. Nonetheless,
there are usecases where it is favorable for designer to trade additional latency against
significantly less randomness requirements. We give more detail about this trade-off in
Section 4 and Section 5.

3.2 On the Necessity of Introducing Fresh Randomness into Gadgets
Usually, fresh randomness is introduced into gadgets wherever probe propagation is to be
stopped into certain inputs of the gadget. Often, introducing fresh randomness conveniently
allows simulation of a wire independent of any other value contributing to its distribution.
Considering the simple example given in Figure 3, a probe on the output of the register
can be perfectly simulated tossing a fair coin if R is a fresh random bit, i.e., R is certainly
independent of any other wire in the design – in particular independent of X0. Therefore,
P = R⊕X0 can be perfectly simulated by P

$← F2 which is formalized by Theorem 1.
The situation changes if X0 depends on R. We assume X0 = X ⊕ R and X1 = R

as stable input signals. In this case, P is not perfectly simulatable using only X0, as
P = (X ⊕R)⊕R = X. To simulate this, we need both input shares X0 and X1.

Theorem 1. If a wire W of a gadget G is statistically independent of R, P = Reg[W ⊕R]
can be simulated by flipping a coin, i.e., P

$← F2.

Proof. It holds that Pr[W ⊕R = 1] = Pr[W = 1] + Pr[R = 1]− 2 · Pr[W = 1 ∨R = 1].
If now W is statistically independent of R, it follows that Pr[W ⊕ R = 1] = Pr[W =
1] + Pr[R = 1]− 2 · Pr[W = 1]Pr[R = 1]. It is directly observable that if R is uniformly
distributed over F2, then Pr[W ⊕R = 1] = Pr[W = 1] + 1

2 − 2 · P r[W =1]
2 = 1

2 , regardless
of the value of Pr[W = 1].

3.3 COMAR
Before presenting the details of COMAR gadgets, we define Simple Sharing below, which
is required to understand the underlying concept.

Definition 4 (Simple Sharing). A sharing F ∈ Fn
2 of F ∈ F2 is called Simple Sharing iff

∃!i ∈ [0, n− 1] with F i = F ⊕
⊕

∀j ̸=i

Rj and F ∀j ̸=i = Rj
$← F2, i.e., n− 1 shares are set to

individual random masks and one share is set to the unmasked value F added by the sum
of all n− 1 masks.

10 Composable Gadgets with Reused Fresh Masks

A0

A1

⊕

⊕
R0

B0

B1

⊕

⊕
R1

⊕

⊕

⊕

⊕

R′
0

R′
1

R′
2

R′
3

⊕ C0

R′
0

R′
1

R′
2

R′
3

⊕ C1

Figure 4: COMAR first-order 2-input AND gate (ANDCOMAR).

Algorithm 2 COMAR first-order n-input AND (ANDn
COMAR)

Input: shares (A0
0, A1

0), . . . , (A0
n−1, A1

n−1) s.t. A0≤j<n = A0
j ⊕A1

j and
fresh masks (Rj)0≤j<n and (R′

i)0≤i<2n

Output: shares (C0, C1) s.t. C0 ⊕ C1 =
∏
j

Aj

1: for ∀j ∈ {0, . . . , n− 1} do ▷ input sharing refresh
2: A′0

j ← Reg[A0
j ⊕Rj]

3: A′1
j ← Reg[A1

j ⊕Rj]
4: end for

5: for ∀i ∈ {0, . . . , 2n − 1} do
6: C ′

i ← Reg
[∏

j

A
′bitj(i)
j ⊕R′

i

]
▷ bitj(i): j-th bit of binary representation of i

7: end for

8: C0 ←
⊕

0≤i<2n

C ′
i

9: C1 ← Reg
[⊕

0≤i<2n

R′
i

]

3.3.1 AND

Figure 4 represents the first-order COMAR 2-input AND gate. Based on the above given
definitions, every signal at the output of a gate is simply shared with the same mask bit
R, e.g., (A0, A1) : (A⊕M, M), and (B0, B1) : (B + M, M). Therefore, each input A and
B should be first refreshed using R0 and R1 respectively. We further require 4 fresh mask
bits R′

0 to R′
3 to blind the non-linear monomials. As shown, the shared output is formed

as (C0, C1) : (AB ⊕M, M) with M = R′
0 ⊕R′

1 ⊕R′
2 ⊕R′

3, i.e., satisfying simple sharing
given in Definition 4. Further, placing any probe at the output sharing does not propagate
to any input shares.

In total, the gadget has a latency of 2 clock cycles and requires 6 fresh mask bits. This
is clearly larger than HPC2 2-input AND gadget (Section 2.7), but all our gadgets can
receive the same fresh masks ⟨R0, R1, R′

0, R′
1, R′

2, R′
3⟩. In other words, independent of the

size of the circuit, and the number of instantiated 2-input AND gates, only 6 fresh masks
are required.

This scheme can be extended to AND operations with a higher number of inputs. The
corresponding pseudo-code is given in Algorithm 2. For an n-input AND gate, n fresh mask
bits are required to refresh the sharing of n inputs, and 2n fresh mask bits for blinding the
non-linear monomials. In short, in a circuit with at most n-input AND gates, n + 2n fresh

David Knichel and Amir Moradi 11

A0

A1

⊕

⊕
R0

B0

B1

⊕

⊕
R1

⊕

⊕

⊕

⊕

R′
0

R′
1

R′
2

R′
3

⊕ C0

R′
0

R′
1

R′
2

R′
3

⊕ C1

Figure 5: COMAR first-order 2-input XOR gate (XORCOMAR).

mask bits are required which are reused by all corresponding gadgets.
Note that since the second shares A1, B1 and C1 in all such AND gadgets are the

same, for the sake of performance, the associated gates and registers (i.e., lines 3 and 9 of
Algorithm 2 and Reg[A1 ⊕R0], Reg[B1 ⊕R1], and Reg[R′

0 ⊕ . . .⊕R′
3] in Figure 4) do not

need to be repeated for every gadget.

3.3.2 XOR

We should highlight that the share-wise application of XOR operations in HPC2 naturally
fulfill the composability requirements and can be easily cascaded. However, this is not
the case for COMAR, since the output of every gadget is shared by the same mask, and
XORing them would clearly lead to unmasked values, i.e., first-order leakage. Therefore,
in contrast to HPC2, we constructed an XOR gadget, whose block diagram is shown in
Figure 5 and whose structure is very similar to that of the ANDCOMAR. Originating from
another gadget’s output, both inputs A and B are shared with the same M = R′

0⊕ . . .⊕R′
3,

before they are refreshed by R0 and R1 respectively, which are the same R0 and R1 used
in ANDCOMAR gadgets. In the next stage, each of the refreshed shares is XORed with
one R′

i∈{0,...,3}, also being the same as those applied in ANDCOMAR gadget. Therefore, the
output shares of the XOR gadget become C0 = A⊕B⊕M and C1 = M , i.e., satisfying the
definition of a Simple Sharing with the same M as used for all other inputs and outputs of
other gadgets.

As a disadvantage, its area footprint is higher than the HPC2 XOR and it requires
two register stages. However, similar to AND2

COMAR, we can extend the construction of
XORCOMAR to support XORing a higher number of operands. The corresponding pseudo-
code is given in Algorithm 3. Similar to the ANDCOMAR, the gates and registers associated
to the second share, i.e., Reg[A1 ⊕R0]⊕R′

1, Reg[B1 ⊕R1]⊕R′
3, C1 = Reg[R′

0 ⊕ . . .⊕R′
3]

and lines 3 and 9 in Algorithm 3 do not need to be repeated for every gadget.

3.3.3 Proofs

Below, we provide necessary theorems to prove the security of our constructed COMAR
gadgets when composed to build larger circuits.

Assumption 1. Every COMAR gadget with n inputs is supplied with two sets of fresh
masks

(
R

)
0≤j<n

and
(
R′)

0≤i<n′ with n′ = 2n for ANDn
COMAR and n′ = 2n for XORn

COMAR.
For every evaluation of the gadget, each of these n + n′ fresh masks is individually drawn
from a uniform distribution at random and is independent of other n + n′ − 1 bits.

Theorem 2. If each Rj is statistically independent of A0
j and A1

j , for every 0 ≤ j < n,
ANDn

COMAR provides first-order security under the Probe-Isolating Non-Interference notion.

12 Composable Gadgets with Reused Fresh Masks

Algorithm 3 COMAR first-order n-input XOR (XORn
COMAR)

Input: shares (A0
0, A1

0), . . . , (A0
n−1, A1

n−1) s.t. A0≤j<n = A0
j ⊕A1

j and
fresh masks (Rj)0≤j<n and (R′

i)0≤i<2n

Output: shares (C0, C1) s.t. C0 ⊕ C1 =
⊕
j

Aj

1: for ∀j ∈ {0, . . . , n− 1} do ▷ input sharing refresh
2: A′0

j ← Reg[A0
j ⊕Rj],

3: A′1
j ← Reg[A1

j ⊕Rj]
4: end for

5: for ∀j ∈ {0, . . . , n− 1} do
6: C ′

2j ← Reg
[
A′0

j ⊕R′
2j

]
, C ′

2j+1 ← Reg
[
A′1

j ⊕R′
2j+1

]
7: end for

8: C0 ←
⊕

0≤i<2n

C ′
i

9: C1 ← Reg
[⊕

0≤i<2n

R′
i

]

Proof.

Input to the first register stage: A probe on the input to the first register stage
observes the distribution over

(
A

l∈{0,1}
j , Rj

)
. As Al

j is independent of Rj , this can be
simulated by Al

j and choosing Rj
$← F2. Hence, an extended probe only propagates

into Al
j .

Input to the second register stage: An extended probe on the input to
the second register stage reveals the distribution over

(
A

′bit0(i)
0 ⊕ R0, A

′bit1(i)
1 ⊕

R1, . . . , A
′bitn−1(i)
n−1 ⊕Rn−1, R′

i

)
for i ∈ {0, . . . , 2n − 1}. Directly following Theorem 1,

each such an observation, so-called O, can be simulated by sampling O
$← Fn+1

2 .

Output: An extended probe on the output observes the distribution over
(
C ′

0, C ′
1, . . . ,

C ′
2n−1

)
, with C ′

i =
∏
j

A
′bitj(i)
j ⊕ R′

i. Since
∏
j

A
′bitj(i)
j is independent of R′

i, this can

be simulated by sampling the observation O
$← F(2n)

2 , due to Theorem 1.

Theorem 3. If each Rj is statistically independent of A0
j and A1

j , for every 0 ≤ j < n,
XORn

COMAR provides first-order security under the Probe-Isolating Non-Interference notion.

Proof.

Input to the first register stage: A probe on the input to the first register stage
is similar to that on an ANDn

COMAR, which is covered by Theorem 2.

Input to the second register stage: A probe on the input to the second register
stage observes the distribution over

(
A

bit0(i)
⌊i/2⌋ ⊕R⌊i/2⌋, R′

i

)
for i ∈ {0, . . . , 2n−1}. Due

to the independence of R⌊i/2⌋ and R′
i, following Theorem 1, each such an observation

can be simulated by sampling O
$← F2

2.

David Knichel and Amir Moradi 13

Output: A glitch-extended probe on the output observes the distribution over(
C ′

0, C ′
1, . . . , C ′

2n−1
)
, with C ′

i = A
bit0(i)
⌊i/2⌋ ⊕ R⌊i/2⌋ ⊕ R′

i. Since each A
l∈{0,1}
j is inde-

pendent of Rj (the assumption of the theorem), this can be simulated by sampling
the observation O

$← F(2n)
2 , due to Theorem 1.

Assumption 2. In a circuit composed of only COMAR AND gadgets with at most n inputs
and COMAR XOR gadgets with at most m inputs, all gadgets receive the same set of fresh
masks

(
R

)
max(n,m) and

(
R′)

max(2n,2m).

Theorem 4. Every masked circuit composed of COMAR gadgets is first-order secure in
the glitch-extended d-probing model with d = 1.

Proof.
Let CCOMAR be a masked (sub)-circuit with m outputs realizing the Boolean function
F : Fn

2 7→ Fm
2 , F = ⟨F0, F1, . . . , Fm−1⟩ with each Fi being a coordinate function Fn

2 7→ F2,
solely composed of COMAR gadgets.

- ANDm
COMAR ◦ CCOMAR. First, we consider the case where the inputs to an ANDm

COMAR
are the outputs of a circuit composed of XORCOMAR and ANDCOMAR, i.e., only 2-input
gadgets. A probe placed on such an interconnection hence observes distributions of
one of the following forms:(

F′
i ⊕R′

0, F′′
i ⊕R′

1, F′′′
i ⊕R′

2, F′′′′
i ⊕R′

3
)

or
(
R′

0 ⊕R′
1 ⊕R′

2 ⊕R′
3
)
,

with Fi = F′
i⊕F′′

i ⊕F′′′
i ⊕F′′′′

i when the output of either an ANDCOMAR or an XORCOMAR
is probed. These probed signals are the input of the next ANDm

COMAR as well which are
blinded by the corresponding Ri. Following Assumption 2, the above-given probed
values are independent of Ri; hence, their simulatability is implied by Theorem 2.
The same holds when m outputs of CCOMAR are provided by larger gadgets, i.e.,
ANDn1>2

COMAR and XORn2>2
COMAR. More precisely, a probe placed on an output of CCOMAR

observes distributions which are blinded by R′
j with 0 ≤ j < 2n

1 for ANDn1
COMAR or

0 ≤ j < 2n2 for XORn2
COMAR. Since the first stage of ANDm

COMAR blinds the inputs with
the corresponding Ri, following Assumption 2 and Theorem 2, their simulatability is
implied.

- XORm
COMAR ◦ CCOMAR. Here, we consider the case where the outputs of CCOMAR are

given to an XORm
COMAR. Since the first stage of XORm

COMAR is identical to that of
ANDm

COMAR, the statements given above for ANDm
COMAR ◦ CCOMAR holds true here as

well.

3.3.4 Other Gates

Other gadgets, e.g., NOT, NAND, OR, NOR, and XNOR, can be easily constructed. In order
to maintain the simple sharing, negation should be performed on the first share. More
precisely, (X0, X1) should be the output of the NOT gadget. The same holds for NAND
and XNOR. Since A|B = A B, an OR gadget is constructed by placing a NOT gate at the
first share of all inputs and the output of an AND gadget. Therefore, all statements and
proofs given in Section 3.3.3 are valid for other COMAR gadgets constructed as explained
above.

14 Composable Gadgets with Reused Fresh Masks

3.3.5 Discussions

If a circuit is made by only NOT and 2-input AND, NAND, OR, NOR, XOR, and XNOR
gates, its first-order secure variant requires 6 fresh mask bits independent of its size and the
number of gates. When larger gadgets (i.,e., with a higher number of inputs) are employed,
naturally the circuit needs more fresh mask bits as a trade-off between the latency and the
amount of demand for fresh randomness. If the circuit instantiates non-linear COMAR
gadgets with at most n inputs and linear COMAR gadgets with at most m inputs, the
number of required fresh mask bits for the entire circuit is max(n, m) + max(2n, 2m). As
stated, the drawback is that the XORs would introduce additional register stages compared
to the equivalent first-order HPC2 circuit, whose required number of fresh mask bits equals
the number of 2-input non-linear gates. Further, note that HPC2 gadgets are only available
for 2-input gates and hence there is no trade-off possible at all. We like to highlight that
supporting n-input gadgets is a valuable feature of COMAR, as it allows a designer to
structure a circuit differently, i.e., allowing gadgets with a larger or smaller number of
inputs, hence adjusting the masked variant towards the specific randomness, area and
latency requirements of the use case.

4 Case Studies
In order to examine the performance and security of our scheme, we have considered five
cases studies including the round-based implementations of the full cipher encryption func-
tions of AES-128 [DR20], Skinny64-64 [BJK+16], CRAFT [BLMR19], LED-64 [GPPR11],
and Midori-64 [BBI+15].

To this end, we have constructed HDL specifications of COMAR gadgets and utilized the
recently introduced open-source tool AGEMA [KMMS22], which translates the gate-level
netlist of an unprotected implementation to a masked description by exchanging the gates
with their corresponding masked gadgets (see Section 2.8). In order to apply AGEMA to
our case studies, we first constructed the custom library of AGEMA, where the definition
of the gadgets are given, i.e., the I/O port names, number of fresh masks and number of
register stages of every gadget. We further used the netlist of the unprotected cores which
are given in the case studies of AGEMA available through GitHub1. Direct application of
AGEMA using COMAR gadgets, would construct the masked circuits correctly, but would
result in individual fresh masks being given to each gadget. However, the underlying idea
of COMAR is to reuse the fresh masks, i.e., giving the same fresh masks to all gadgets.
Therefore, we slightly modified the source code of AGEMA to support this feature. For
the sake of simplicity and to highlight the maximum possible randomness optimization,
we covered just 2-input COMAR gadgets. This implies that only 6 fresh masks are used
for the entire design, which are given to all COMAR gadgets.

After applying our modified version of AGEMA on the aforementioned unprotected
full cipher designs we synthesized the resulting circuits with Design Compiler and Nan-
Gate 45nm standard cell library. The corresponding results are depicted in Table 1 showing
the number of required fresh mask bits, the latency cycles, the critical path delay, and
the area footprint of all designs. In order to enable comparison to the state of the art, we
further covered the performance figures of the same designs realized utilizing HPC2, GHPC,
and GHPCLL gadgets. The last two cases are introduced in [KSM22], which – similar to
COMAR– are limited to first order. They can highly reduce the latency, particularly the
GHPCLL variant at cost of a relatively high demand for randomness. Note that in all case
studies, we applied the masking on all inputs of the circuit, i.e., in case of encryption both

1https://github.com/Chair-for-Security-Engineering/AGEMA

https://github.com/Chair-for-Security-Engineering/AGEMA

David Knichel and Amir Moradi 15

plaintext and key are masked which results in applying the masking on the key schedule
of the ciphers as well.

The benefit of COMAR with respect to the number of required fresh masks is obvious.
In the most advantageous case, 680 fresh mask bits are required by the round-based
AES-128 HPC2 design reduces to 6 bits in COMAR. The critical path delay of the COMAR
circuits is also most of the time less than the equivalent HPC2 counterparts, allowing high
clock frequencies. On the downside, the added latency of COMAR circuits is significantly
more than the HPC2 circuits. This is somehow expected, since – as stated in Section 3 –
each XORCOMAR gadget introduces two latency cycles. Therefore, in designs with a high
number of cascaded XOR gates, the latency of the COMAR circuit would potentially be
high. As it can be seen in Table 1, the COMAR circuits of AES-128 and LED-64, which
have a strong diffusion layer made by several XORs, have a higher added latency compared
to the other case studies.

For the sake of completeness, we included the performance figures of some first-order
AES designs in Table 1, which have not been designed based on composable gadgets, and it
is not straightforward to prove their (robust) probing security when considering the entire
encryption function as a whole. Nevertheless, we give a detailed discussion on comparison
with the start of the art in Section 5.

4.1 Area Overhead
At first glance, COMAR circuits lead to a higher area overhead, which is shown in
Table 1 by pure area. However, for the sake of a fair comparison, the area requirement
of a design should include the part needed to realize the sources for generating the
fresh random masks. This fact is usually ignored by the state of the art, and different
designs are compared ignoring the area required for generating the fresh masks (see
e.g., [CRB+16, MMW18, SM21b]). The reason behind such a simplification lies in the
nonexistence of a suitable cost function. More precisely, the cost (e.g., required area or
energy) of generating a single-bit fresh mask updated every clock cycle is not well-known.
Here, we try to include this open question into our consideration by giving an intuition for
possible costs of randomness creation.

Randomness Generation. In order to guarantee security, i.e., simulatability of every wire
independent of any secret, each fresh mask bit has to be drawn independently from a
uniform distribution over F2, and the adversary should not have control over or knowledge
about the fresh masks. Note that, this is not an assumption specific to our work, but a
general assumption of Boolean masking. For the sake of simplicity, we can for example
assume that an adversary places a probe on X0(X1 ⊕ R). If R is drawn from a biased
distribution, for example with Pr[R = 0] = 0.6 instead of 0.5, X0X1 will be observed
20% more often than X0X1, trivially leaking information about X = X0 ⊕X1. Hence,
violating the assumption of fresh masks being drawn from a uniform distribution can
naturally cause leakage. This is why the required randomness is commonly generated by a
PRNG seeded with a random initial input. The independence of the generated bits, i.e.,
the PRNG’s non-predictability, and the discussed uniformity requirement may be assessed
following [BRS+].

Looking at the state of the art2, some works used Linear Feedback Shift Registers
(LFSRs), which are randomly seeded during the device power-up. Naturally, a single
individual LFSR should be employed for each required fresh mask bit, i.e., sharing an

2Excluding those which generated the fresh masks on a PC and fed the cryptographic module with all
required fresh masks.

16 Composable Gadgets with Reused Fresh Masks

Table 1: Performance figures of first-order round-based full cipher encryption functions,
excluding PRNGs.

Scheme Fresh Random Latency [cycle] Critical Path Area
[bit/cycle] added full Delay [ns] [GE]

AES-128

HPC2 680 8 99 2.04 52 597
GHPC 680 8 99 1.48 67 193
GHPCLL 2720 4 55 2.28 52 450
COMAR 6 42 473 1.23 140 214
[SBM21a]a 8 216 14 256
[SM21a]a 0 246 6.25 7 136
[Sug19]a 0b 266 17 100
[SBHM20]c 976 10 157 500

Skinny64-64

HPC2 64 4 165 0.55 6 895
GHPC 64 2 99 0.80 22 850
GHPCLL 1024 1 66 0.85 18 705
COMAR 6 22 759 0.58 22 090

CRAFT

HPC2 256 8 288 0.94 15 680
GHPC 64 2 96 0.75 22 106
GHPCLL 1024 1 64 0.81 15 748
COMAR 6 14 480 0.61 23 369

LED-64

HPC2 64 4 165 1.98 7 691
GHPC 64 2 99 1.58 22 904
GHPCLL 1024 1 66 1.84 17 382
COMAR 6 42 1419 0.93 31 163

Midori-64

HPC2 256 8 153 1.10 17 801
GHPC 64 2 51 1.05 23 901
GHPCLL 1024 1 34 1.08 19 493
COMAR 6 16 289 0.80 36 580

a Based on a byte-serial design architecture, and not using NanGate 45nm library.
b Using changing of the guards.
c Using a masked dual-rail pre-charge logic, and not based on NanGate 45nm library.

LFSR between multiple parts of the circuit would potentially lead to weaknesses, and
hence security degradation, as the underlying masking schemes commonly suppose the
independence of fresh masks given to different gadgets (in contrary to the core idea of
COMAR). As an example, 31-bit LFSRs with feedback polynomial x31 + x28 + 1 are used
in multiple works [KMMS22, SM21b, MMW18, KSM22] as each one can highly efficiently
be realized in FPGAs. Each such an LFSR costs 286 GE when synthesized for ASIC using

David Knichel and Amir Moradi 17

Table 2: Performance figures of different PRNGs.

Variant Bitrate∗ Delay Area
[bit/cycle] [ns] [GE]

LFSR 31-bit 1 0.17 286
LFSR 64-bit 1 0.18 565

Keccak−f [25] round-based 15/12 0.61 360
Keccak−f [25] unrolled 15 7.10 4.370
Keccak−f [25] unrolled pipeline 15 0.62 4 320

Keccak−f [50] round-based 30/14 0.74 1 154
Keccak−f [50] unrolled 30 9.97 9 136
Keccak−f [50] unrolled pipeline 30 0.76 16 156

Keccak−f [100] round-based 60/16 1.11 2 137
Keccak−f [100] unrolled 60 17.31 20 692
Keccak−f [100] unrolled pipeline 60 1.12 34 192

Keccak−f [200] round-based 136/18 1.14 4 173
Keccak−f [200] unrolled 136 19.84 43 714
Keccak−f [200] unrolled pipeline 136 1.16 75 114

Keccak−f [400] round-based 336/20 1.05 7 989
Keccak−f [400] unrolled 336 20.43 98 846
Keccak−f [400] unrolled pipeline 336 1.06 159 780

Keccak−f [800] round-based 736/22 1.11 16 209
Keccak−f [800] unrolled 736 23.79 205 250
Keccak−f [800] unrolled pipeline 736 1.13 356 598

Keccak−f [1600] round-based 1536/24 1.04 31 361
Keccak−f [1600] unrolled 1536 24.27 466 682
Keccak−f [1600] unrolled pipeline 1536 1.06 752 664

∗ For all Keccak variants we considered c = min(0.4 × state size, 64), providing a resistance of at most 2c

against state recovery.

NanGate 45nm library. If a larger period is desired, one can instantiate 64-bit LFSRs with
feedback polynomial x64 + x63 + x61 + x60 + 1. This translates to 565 GE. It should be
noted that the majority of the area required for an LFSR is due to the registers. The
combinational circuit is made by a few XORs, and the delay of the circuit is at minimum,
i.e., that of 2 or 3 XORs and the setup and hold time of registers.

Some other works like [CRB+16] used a reduced-round version of a cipher
e.g., PRINCE [BCG+12] in Output FeedBack (OFB) mode implemented in an unrolled
fashion. Since no detailed information about the number of covered rounds and the
security of such random numbers is given, we cannot predict the corresponding area
requirements. Alternatively, Sponge-Based PRNGs are known as a suitable candidate
passing the statistical tests proposed by NIST [BDPA10].

Naturally, different variants of Keccak are suggested to be used in Sponge-Based
PRNGs, depending on the number of required random bits and the desired period. Such
designs allow skimming some bits as random values through a squeezing process, i.e., after
applying the Keccak permutation function. However, the permutation function is made by

18 Composable Gadgets with Reused Fresh Masks

a couple of Keccak round functions depending on the size of the employed variant, i.e.,
the state size. For example, Keccak[r = 96, c = 104] with a 200-bit state and a bitrate
of 96 bits, which provides a resistance of about 2104 against state-recovery attacks3, uses
Keccak−f [200] as the permutation function involving 18 rounds of the Keccak round
function. This means that a typical round-based implementation of such a PRNG would
provide 96 random bits every 18 clock cycles, which are obviously not suitable to be used
as fresh masks that should be updated every clock cycle. One solution is to realize the
unrolled version of such a design, i.e., one clock cycle to fully apply Keccak−f [200] on
the state. This highly increases the area requirements as well as the delay of the entire
design. To mitigate the delay, pipeline registers can be added at each unrolled round
function, realizing an unrolled pipeline design. To give an overview of the performance
of such PRNGs, we constructed and synthesized different variants with different design
architectures whose results are shown in Table 2. We would like to refer to [SBHM20],
where a PRNG based on Keccak−f is used. The authors did not fully explain which
Keccak variant has been integrated, but based on the given statements, their PRNG had
an internal state of 650-1050 bits, they were able to fetch up to 976 bits every clock cycle,
and the PRNG (requiring 14.8 GE) did not impact critical path in their design. It is not
fully clear, but we guess that at every clock cycle only one Keccak round function has
been applied, not a full Keccak−f .

Finally, we considered the area required for the generation of mask bits by each full-
cipher HPC2, GHPC, GHPCLL, and COMAR design, and listed their area footprint for
different choices of PRNGs in Table 3. This clearly shows that COMAR circuits outperform
other gadget-based designs with respect to the area overhead with only one exception, i.e.,
when using 31-bit LFSRs, LED-64 HPC2 design has the smallest area footprint. As stated,
this is due to the extensive number of XORs in the diffusion layer of LED-64, for which
several XORCOMAR gadgets should be instantiated.

5 Comparison with the State of the Art

5.1 Algorithmic-Level Masking
There exists a variety of works – examples being [SM21a, SBM21a, Sug19] – aiming to
achieve high optimization when masking a certain design architecture of a particular cipher
like AES. We in the following refer to these approaches as algorithmic-level masking. The
general advantage of these approaches is that they usually result in implementations with
globally optimized overhead requirements. However, as an disadvantages, they are bound
to a certain architecture of a cipher and transferring the approach to other designs is
not trivially possible or not possible at all. Another major drawback of these schemes is
that they are often based on ad-hoc engineering and that there exist no formal security
and composability proofs of the final design in a whole. This is due to the fact that
existing verification tools like SILVER [KSM20] cannot cope with large hardware circuits.
These works usually present experimental evaluations indicating the security of the design.
However, their (possible) non-conformity with the formal notions in the probing security
model may result in insecure implementations when experienced on different hardware
platform or with more accurate measurement setup.

In [SM21a], the authors present a technique to mask a 2-input AND gate where no fresh
randomness is needed. They further applied the same technique on S-boxes for different
ciphers. However, we would like to highlight that the presented AND realization is not

3Note that LFSRs do not provide security against state recovery. Knowing l consecutive outputs of an
LFSR with an l-bit state would lead to full recovery of the shift register. Nevertheless, it is still unknown
whether security against state recovery in the context of SCA security under probing security model is
required.

David Knichel and Amir Moradi 19

Table 3: Area footprint of first-order round-based full cipher encryption functions, including
PRNGs.

Scheme Area [GE]
LFSR 31-bit LFSR 64-bit Keccak, Variant

AES-128

HPC2 247 281 437 205 409 195, [800]
GHPC 261 673 451 393 423 791, [800]
GHPCLL 830 370 1 589 250 1 557 778, [1600]×2
COMAR 141 932 143 608 144 534, [25]

Skinny64-64

HPC2 25 218 43 093 82 009, [200]
GHPC 41 154 59 010 97 964, [200]
GHPCLL 311 569 597 265 771 369, [1600]
COMAR 23 808 25 483 26 410, [25]

CRAFT

HPC2 88 973 160 473 175 460, [400]
GHPC 40 410 58 266 97 220, [200]
GHPCLL 308 612 594 308 768 412, [1600]
COMAR 25 087 26 762 27 689, [25]

LED-64

HPC2 26 014 43 889 82 805, [200]
GHPC 41 208 59 064 98 018, [200]
GHPCLL 310 246 595 942 770 046, [1600]
COMAR 32 881 34 557 35 483, [25]

Midori-64

HPC2 91 094 162 595 177 581, [400]
GHPC 42 205 60 061 99 015, [200]
GHPCLL 312 357 598 053 772 157, [1600]
COMAR 38 298 39 974 49 900, [25]

directly composable, and hence special care has to be taken when constructing larger
circuits. This manual process might be error-prone and is not well-suited for automated
masking of arbitrary implementations. In short such the masked AND gate of [SM21a] is
first-order probing secure, but it cannot be used as a gadget in composed circuits. Below
we give a counterexample.

Let us assume the target circuit should compute D ← B | (A & B), with | and &
denoting the OR and AND operations respectively. This can be realized through computing
C ← AND(A, B) and D ← AND(B, C) by utilizing the AND gadgets of [SM21a]. Note that
inversion of a masked value can be realized by inverting one of its shares, i.e., C = (C0, C1)
or C = (C0, C1). Following the authors’ definition in [SM21a], we get

C0 ←
[
[A0B0 ⊕B0]⊕ [A0B1]

]
, C1 ←

[
[A1B0]⊕ [A1B1 ⊕B1]

]
,

D0 ←
[
[B0C0 ⊕ C0]⊕ [B0 C1]

]
, D1 ←

[
[B1C0] ⊕ [B1C1 ⊕ C1]

]
,

20 Composable Gadgets with Reused Fresh Masks

where square brackets denote values stored into registers. Placing a single probe at the
first part of D0, i.e., the output of the register storing [B0C0 ⊕ C0], leads to

B0C0 ⊕ C0 = B0C0 = B0(
(A0B0 ⊕B0)⊕ (A0B1)

)
= A0B0 ⊕B0 ⊕A0B0B1

= A0B0 ⊕A0B0B1 = P.

This leaks information about B, since if B = 1, i.e, (B0, B1) = (0, 1) or (B0, B1) = (1, 0),
there is only one fullfilling assignment to A0B0 ⊕ A0B0B1 = 1, namely (A0, B0, B1) =
(1, 1, 0), hence Pr[P = 1|B = 1] = 1/4 instead of 1/2. We verified this by SILVER [KSM20].
Note that this is an arithmetic issue not originating from glitches; hence, placing extra
registers in the circuit would not have any effect on this vulnerability.

Furthermore, no formal security proof has been given in [SM21a] for the robust
probing security of the full cipher implementations. Although several experimental leakage
assessments were performed, we would like to highlight that those experimental assessments
only allow to make security statements under a specific setup, whereas the probing security
model abstracts from a certain setup in order to attest a design’s general SCA resilience.

In another work [SBM21a], the authors efficiently applied two-share Boolean masking on
the cubic bijections of the decomposed AES S-box. Their design requires 16 fresh mask bits
per S-box, which can be reduced to 8 bits via pipelining. Their aim was to fit such masked
cubic functions into BRAM of FPGAs, although they gave ASIC performance results of a
byte-serial design in the eprint version of the paper [SBM21b]. Similar to [SM21a], the
security of the S-Box has been examined by SILVER, but no statement about the security
of the encryption function in a whole can be provided. This becomes more relevant in
serialized architectures, where various parts of the circuit are active in different clock
cycles and several multiplexers decide which modules’ output should be stored in which
registers. Hence, there are more locations, where the designer may unintentionally violate
the probing security requirements.

Other algorithmic-level approaches, like the one presented in [Dae17], can also lead to
good results. The technique, so-called changing of the guards, helps to provide uniformity
in td + 1 Threshold Implementations when the masked S-Box does not have a uniform
output sharing. The underlying concept is conceptually very different to gate-level masking
and composable security. Hence, it cannot be directly compared to our approach as it does
not offer integration into automated masking tools, but need careful engineering when
used in entire cipher designs. For example, we refer to [Sug19], where the same technique
has been carefully applied on each module of a tower-field representation of the AES S-Box
to overcome their non-uniform output sharing. Similar to many other works, the robust
probing security of such a design has not been yet proven, e.g., by means of any tools.

Another promising work is the low-latency masked AES presented in [SBHM20], where
the underlying concept is based a masked dual-rail pre-charge logic, called LMDPL.
This allowed the authors to make large combinational circuits by LMDPL gates without
instantiating register between the gates, hence leading to low-latency masked circuits. The
scheme can be seen as a gate-level approach, but the application of LMDPL gates in a
circuit requires specific pre-computed values which should be generated by a dedicated
module called “mask table generator” designed based on the algorithm of the targeted
circuit. The authors have constructed a round-based implementation, and examined its
resistance by experimental evaluations showing first-order leakage after 400 million traces.
As elaborated in Section 4.1, a form of Keccak− f has been used as the PRNG to generate
fresh masks required for the mask table generator module. As the authors themselves
stated, the technique might not exhibit the same level of resistance if it is used in algorithms
and designs with smaller and/or fewer S-boxes.

David Knichel and Amir Moradi 21

5.2 Gate-Level Masking
Gate-level masking approaches, like in this work, on the other hand, deal with constructing
masked variants of composable subcircuits which guarantee the security of the final
implementation as a whole and under the (robust) probing security model, regardless of
the underlying cipher or the design architecture. These approaches are well suited for
automated masking of any unprotected implementation [KMMS22], while usually coming
at the cost of higher overheads (area and/or latency). However, their benefits compared to
algorithmically-masked, manually-crafted and optimized designs are (i) the ability to prove
the security of the resulting circuit, and (ii) the possibility for any engineer to use existing
tools in order to construct secure masked circuits without requiring extensive expertise,
as the tools and composable gadgets automatically mask any given netlist, preventing
engineering flaws which may possibly compromise an implementation’s practical security.

Next to NI/SNI [BBD+15, BBD+16], PINI [CS20] was introduced as a formal notion to
guarantee gadget composabality. As linear operation can be trivially realized in the PINI
framework and the PINI-secure HPC2 AND gadget [CGLS21] introduces less overhead
than existing SNI-gadgets, utilizing HPC2 gadgets is currently the most efficient way
for gadget-level masking in hardware when only considering basic 2-input logic gates. A
PINI-based approach for transforming any vectorial function into a first-order secure and
trivial composable gadget is proposed in [KSM22]. However this approach comes with a
high area demand if the considered function is large.

The main disadvantage of all NI/SNI/PINI-gadgets is that each gadget of a composed
circuit requires individual and fresh randomness, naturally increasing overhead size with
circuit complexity. COMAR decouples this relation by enabling the reuse of the same 6
random mask bits for every gadget in the circuit. This way, every implementation can
be automatically transformed into a masked variant using only 6 individual masks in
total, drastically reducing the overall randomness requirement of the resulting top-module
circuit compared to other gate-level masking schemes. Of course, as for COMAR, linear
operations introduce additional register stages, applying COMAR gadgets will result in a
higher number of clock cycles needed for the masked implementation.

We further like to highlight that we present AND and XOR COMAR gadgets for an
arbitrary number of inputs, whereas HPC2 is restricted to the realization of only 2-input
non-linear gates. Hence, COMAR can be beneficial if the given unprotected implementation
is optimized for 3-bit, 4-bit, or even larger gates. Although the majority of the currently
available S-box implementations of different ciphers are optimized for 2-input non-linear
gates, there is emerging research in this direction [BDK+21].

With COMAR, we do not aim for an overall better solution, but for offering designers
an alternative when area overhead (which directly translates into production cost) is to be
reduced while additional latency is acceptable.

6 Analyses
As the first analysis step, we examined COMAR gadgets and S-boxes of the case studies
given in Section 4 by SILVER, an open-source tool verifying masked hardware circuits
under different security notions, including the glitch-extended probing model. Since our
work is limited to the first security order, the evaluation runtime of SILVER is rather small
for our cases. Therefore, we could even examine large circuits, e.g., 4 AES S-boxes followed
by a MixColumns composed of COMAR gadgets. Supporting the theory and proofs given
in Section 3, SILVER verified first-order security of all our constructions. Since evaluation
of larger circuits, particularly those with a sequential loop (as in our case studies), is
not feasible with SILVER, we have conducted FPGA-based experiments given as follows.
Note, that these experiments, in contrast to other algorithmic-level masking approaches

22 Composable Gadgets with Reused Fresh Masks

(see Section 5.1), are given for the purpose of presenting a complete work while security
in the probing model is already guaranteed due to the gadget composability proven in
Section 3.3.3.

Setup. For this experimental analysis, we consider our COMAR AES-128 round-based
encryption function, given in Section 4, where both plaintext and key are masked. For
the generation of the fresh masks we instantiated 6 individual 31-bit LFSRs as given in
Section 4.1. We implemented the design on the target FPGA of a SAKURA-G SCA-
evaluation board [SAK], i.e., a Xilinx Spartan-6 FPGA. We have further collected the
corresponding power consumption traces by measuring the voltage drop of a shunt resistor
placed in the VDD path of the target FPGA, amplified by 10 dB and then sampled by
a digital oscilloscope at a sampling rate of 500 MS/s while the targeted AES design was
being operated by a stable clock source at a frequency of 6 MHz. As given in Table 1, the
full encryption of the AES design takes 473 clock cycles, resulting in relatively long traces
to cover the entire encryption process (see Figure 6a).

As the evaluation technique, we applied the common and well-known fixed versus
random t-test [CDMG+13], for which the power consumption traces are measured while the
circuit is supplied with either a fixed (but masked) plaintext or a random one while the key
(also masked) is kept constant for all measurements. In order to avoid false positive/negative
evaluations, we followed the procedure given in [SM15] and collected 100 million traces.
The analysis results are depicted in Figure 6, confirming our expectations, i.e., first-order
security of the design but not second-order. Following [SM15], the second-order t-test
was performed by evaluating the distribution over each sample point individually, i.e.,
univariate, and selecting the second central moment (variance) as the distinguisher between
the fixed and random distributions. As we already identified significant leakage for the
univariate second-order case, we did not extend our evaluation to multivariate analysis,
i.e., the distribution over combination of different sample points.

We should highlight that the underlying cryptographic algorithm of the case study
would not have an affect on the result of this evaluation. This is because – as given in
Section 4 – AGEMA considers the given design as a Mealy machine, and replaces the
gates with the given gadgets. At the end, the equivalent circuit with COMAR gadgets is
constructed. In other words, examining other case studies presented in Section 4 would have
led to the same analysis report. We additionally have examined our COMAR Skinny64-64
design, whose results are omitted for the sake be brevity. The HDL of our designs including
the specification of the COMAR gadgets and the case studies of Section 4 can be found in
the GitHub: https://github.com/Chair-for-Security-Engineering/COMAR.

7 Conclusions
In this work, we presented a new set of gadgets – COMAR– offering security and free
composability in the glitch-extended robust d-probing model for d = 1 and requiring only
6 fresh random bits in total to mask any circuit in its entirety, whereas comparable related
works always introduce a linear dependency between the number of (non-linear) gates,
i.e., circuit size, and the randomness requirements. With a constant number of 6 fresh
random bits when utilizing 2-input COMAR gadgets, we enable the designer to highly
optimize for randomness, while the achieved, free composability keeps the design-error
susceptibility minimized. Moreover, we extended our gadget definitions to realize masked
variants of multiple-input gates, giving the designer the opportunity to adjust a masked
circuit’s latency and randomness requirements to a specific use case. We further gave
formal arguments with respect to the composability and security of our constructions in
the first-order (robust) probing security model and practically confirmed our findings by
means of an exemplary leakage assessment. Eventually, we discussed our results on the

https://github.com/Chair-for-Security-Engineering/COMAR

David Knichel and Amir Moradi 23

0 10 20 30 40 50 60 70 80 90 100
Time [s]

P
ow

er
 &

 T
rig

ge
r

(a) A sample trace

0 10 20 30 40 50 60 70 80 90 100
Time [s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(b) first-order t-test

1 10 20 30 40 50 60 70 80 90 100
Number of Traces 106

0

1

2

3

4

m
ax

 |t
-s

ta
tis

tic
s|

(c) first-order t-test over number of traces

0 10 20 30 40 50 60 70 80 90 100
Time [s]

-60
-40
-20

0
20
40

t-
st

at
is

tic
s

(d) second-order univariate t-test

Figure 6: FPGA-based analysis of first-order round-based AES-128 encryption design,
composed of COMAR gadgets, using 100 million traces.

basis of several case studies. Although our approach exceeds latency requirements when
compared to related approaches, we show that our methodology outperforms them with
respect to the area footprint when a fair comparison is made, i.e., when further considering
the area overhead introduced by the randomness source.

To conclude, we think that COMAR offers a valuable increase in the designer’s flexibility
with respect to different design metrics and use cases, while it remains an interesting
question whether a randomness optimization technique can also be found for higher-order
composable gadgets. Unfortunately, the same concept cannot be easily transferred to
higher orders. When more than one probe is allowed, and two gadgets which reuse the
same fresh masks have simple output sharing (defined in Definition 4), two probes are
also enough to reveal the XOR difference between unmasked output of the corresponding
gadgets. However, there might be other possible techniques to partially reuse some fresh

24 Composable Gadgets with Reused Fresh Masks

masks in certain circuits, which certainly deserve more attention and more research effort.

Acknowledgments
The work described in this paper has been supported in part by the German Research
Foundation (DFG) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972,
and through the project 393207943 “Security for Internet of Things with Low Energy and
Low Power Consumption (GreenSec)".

References
[AIS18] Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. Private Circuits: A

Modular Approach. In CRYPTO 2018, volume 10993 of Lecture Notes in
Computer Science, pages 427–455. Springer, 2018.

[BBC+19] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin
Grégoire, and François-Xavier Standaert. maskVerif: Automated Verification
of Higher-Order Masking in Presence of Physical Defaults. In ESORICS
2019, volume 11735 of Lecture Notes in Computer Science, pages 300–318.
Springer, 2019.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. Verified Proofs of Higher-Order
Masking. In EUROCRYPT 2015, volume 9056 of Lecture Notes in Computer
Science, pages 457–485. Springer, 2015.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong Non-
Interference and Type-Directed Higher-Order Masking. In CCS 2016, pages
116–129. ACM, 2016.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
Block Cipher for Low Energy. In ASIACRYPT 2015, volume 9453 of Lecture
Notes in Computer Science, pages 411–436. Springer, 2015.

[BBP+16] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Randomness Complexity of Private
Circuits for Multiplication. In EUROCRYPT 201, volume 9666 of Lecture
Notes in Computer Science, pages 616–648. Springer, 2016.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof
Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga
Yalçin. PRINCE - A Low-Latency Block Cipher for Pervasive Computing
Applications - Extended Abstract. In ASIACRYPT 2012, volume 7658 of
Lecture Notes in Computer Science, pages 208–225. Springer, 2012.

[BDF+17] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
François-Xavier Standaert, and Pierre-Yves Strub. Parallel Implementations
of Masking Schemes and the Bounded Moment Leakage Model. In EURO-
CRYPT 2017, volume 10210 of Lecture Notes in Computer Science, pages
535–566, 2017.

David Knichel and Amir Moradi 25

[BDK+21] Anubhab Baksi, Vishnu Asutosh Dasu, Banashri Karmakar, Anupam Chat-
topadhyay, and Takanori Isobe. Three Input Exclusive-OR Gate Support for
Boyar-Peralta’s Algorithm. In INDOCRYPT 2021, volume 13143 of Lecture
Notes in Computer Science, pages 141–158. Springer, 2021.

[BDM+20] Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu Rivain,
and Raphaël Wintersdorff. Tornado: Automatic Generation of Probing-
Secure Masked Bitsliced Implementations. In EUROCRYPT 2020, volume
12107 of Lecture Notes in Computer Science, pages 311–341. Springer, 2020.

[BDPA10] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Sponge-Based Pseudo-Random Number Generators. In CHES 2010, volume
6225 of Lecture Notes in Computer Science, pages 33–47. Springer, 2010.

[BGI+18] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan
Mangard, and Johannes Winter. Formal Verification of Masked Hardware
Implementations in the Presence of Glitches. In EUROCRYPT 2018, volume
10821 of Lecture Notes in Computer Science, pages 321–353. Springer, 2018.

[BGR18] Sonia Belaïd, Dahmun Goudarzi, and Matthieu Rivain. Tight Private Circuits:
Achieving Probing Security with the Least Refreshing. In ASIACRYPT 2018,
volume 11273 of Lecture Notes in Computer Science, pages 343–372. Springer,
2018.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS. In
CRYPTO 2016, volume 9815 of Lecture Notes in Computer Science, pages
123–153. Springer, 2016.

[BLMR19] Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh.
CRAFT: Lightweight Tweakable Block Cipher with Efficient Protection
Against DFA Attacks. IACR Trans. Symmetric Cryptol., 2019(1):5–45, 2019.

[BRS+] Lawrence Bassham, Andrew Rukhin, Juan Soto, James Nechvatal, Miles
Smid, Stefan Leigh, M Levenson, M Vangel, Nathanael Heckert, and D Banks.
A Statistical Test Suite for Random and Pseudorandom Number Generators
for Cryptographic Applications. Special Publication (NIST SP), National
Institute of Standards and Technology, Gaithersburg, MD.

[CDMG+13] Jeremy Cooper, Elke De Mulder, Gilbert Goodwill, Joshua Jaffe, Gary
Kenworthy, Pankaj Rohatgi, et al. Test vector leakage assessment (TVLA)
methodology in practice. In International Cryptographic Module Conference,
volume 20, 2013.

[CGLS21] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Stan-
daert. Hardware Private Circuits: From Trivial Composition to Full Verifica-
tion. IEEE Trans. Computers, 70(10):1677–1690, 2021.

[CGZ20] Jean-Sébastien Coron, Aurélien Greuet, and Rina Zeitoun. Side-Channel
Masking with Pseudo-Random Generator. In Anne Canteaut and Yuval
Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part III, volume
12107 of Lecture Notes in Computer Science, pages 342–375. Springer, 2020.

26 Composable Gadgets with Reused Fresh Masks

[CRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. Masking AES with d+1 Shares in Hardware.
In CHES 2016, volume 9813 of Lecture Notes in Computer Science, pages
194–212. Springer, 2016.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and Efficiently
Composing Masked Gadgets With Probe Isolating Non-Interference. IEEE
Trans. Information Forensics and Security, 15:2542–2555, 2020.

[CS21] Gaëtan Cassiers and François-Xavier Standaert. Provably Secure Hardware
Masking in the Transition- and Glitch-Robust Probing Model: Better Safe
than Sorry. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):136–158,
2021.

[Dae17] Joan Daemen. Changing of the Guards: A Simple and Efficient Method for
Achieving Uniformity in Threshold Sharing. In CHES 2017, volume 10529 of
Lecture Notes in Computer Science, pages 137–153. Springer, 2017.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying Leakage
Models: From Probing Attacks to Noisy Leakage. In EUROCRYPT 2014,
volume 8441 of Lecture Notes in Computer Science, pages 423–440. Springer,
2014.

[DR20] Joan Daemen and Vincent Rijmen. The Design of Rijndael - The Advanced
Encryption Standard (AES), Second Edition. Information Security and
Cryptography. Springer, 2020.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable Masking Schemes in the Presence
of Physical Defaults & the Robust Probing Model. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(3):89–120, 2018.

[FPS17] Sebastian Faust, Clara Paglialonga, and Tobias Schneider. Amortizing ran-
domness complexity in private circuits. In Tsuyoshi Takagi and Thomas
Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd In-
ternational Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part I, volume 10624 of Lecture Notes in Computer Science, pages 781–810.
Springer, 2017.

[GIS22a] Vipul Goyal, Yuval Ishai, and Yifan Song. Private Circuits with Quasilinear
Randomness. In Orr Dunkelman and Stefan Dziembowski, editors, Advances
in Cryptology - EUROCRYPT 2022 - 41st Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Trondheim,
Norway, May 30 - June 3, 2022, Proceedings, Part III, volume 13277 of
Lecture Notes in Computer Science, pages 192–221. Springer, 2022.

[GIS22b] Vipul Goyal, Yuval Ishai, and Yifan Song. Tight Bounds on the Randomness
Complexity of Secure Multiparty Computation. In Yevgeniy Dodis and
Thomas Shrimpton, editors, Advances in Cryptology - CRYPTO 2022 - 42nd
Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara,
CA, USA, August 15-18, 2022, Proceedings, Part IV, volume 13510 of Lecture
Notes in Computer Science, pages 483–513. Springer, 2022.

[GM18] Hannes Groß and Stefan Mangard. A unified masking approach. J. Cryptogr.
Eng., 8(2):109–124, 2018.

David Knichel and Amir Moradi 27

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-Oriented Mask-
ing: Compact Masked Hardware Implementations with Arbitrary Protection
Order. In TIS@CCS 2016 Vienna, page 3. ACM, 2016.

[GMK17] Hannes Groß, Stefan Mangard, and Thomas Korak. An Efficient Side-Channel
Protected AES Implementation with Arbitrary Protection Order. In CT-RSA
2017, volume 10159 of Lecture Notes in Computer Science, pages 95–112.
Springer, 2017.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
Analysis: Concrete Results. In CHES 2001, volume 2162 of Lecture Notes in
Computer Science, pages 251–261. Springer, 2001.

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw.
The LED Block Cipher. In CHES 2011, volume 6917 of Lecture Notes in
Computer Science, pages 326–341. Springer, 2011.

[GSM+19] Hannes Groß, Ko Stoffelen, Lauren De Meyer, Martin Krenn, and Stefan
Mangard. First-Order Masking with Only Two Random Bits. In TIS@CCS
2019, pages 10–23. ACM, 2019.

[HS13] Michael Hutter and Jörn-Marc Schmidt. The Temperature Side Channel and
Heating Fault Attacks. In CARDIS 2013, volume 8419 of Lecture Notes in
Computer Science, pages 219–235. Springer, 2013.

[IKL+13] Yuval Ishai, Eyal Kushilevitz, Xin Li, Rafail Ostrovsky, Manoj Prabhakaran,
Amit Sahai, and David Zuckerman. Robust Pseudorandom Generators.
In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David
Peleg, editors, Automata, Languages, and Programming - 40th International
Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I,
volume 7965 of Lecture Notes in Computer Science, pages 576–588. Springer,
2013.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private Circuits: Securing
Hardware against Probing Attacks. In CRYPTO 2003, volume 2729 of
Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer, 1999.

[KMMS22] David Knichel, Amir Moradi, Nicolai Müller, and Pascal Sasdrich. Automated
Generation of Masked Hardware. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2022(1):589–629, 2022.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In CRYPTO 1996, volume 1109 of Lecture Notes
in Computer Science, pages 104–113. Springer, 1996.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - Statistical
Independence and Leakage Verification. In ASIACRYPT 2020, Lecture Notes
in Computer Science. Springer, 2020.

[KSM22] David Knichel, Pascal Sasdrich, and Amir Moradi. Generic Hardware Private
Circuits - Towards Automated Generation of Composable Secure Gadgets.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(1), 2022.

28 Composable Gadgets with Reused Fresh Masks

[MMSS19] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier Stan-
daert. Glitch-Resistant Masking Revisited or Why Proofs in the Robust
Probing Model are Needed. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2019(2):256–292, 2019.

[MMW18] Lauren De Meyer, Amir Moradi, and Felix Wegener. Spin Me Right Round
Rotational Symmetry for FPGA-Specific AES. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(3):596–626, 2018.

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hardware
Implementation of Nonlinear Functions in the Presence of Glitches. J.
Cryptol., 24(2):292–321, 2011.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against Side-Channel
Attacks: A Formal Security Proof. In EUROCRYPT 2013, volume 7881 of
Lecture Notes in Computer Science, pages 142–159. Springer, 2013.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating Masking Schemes. In CRYPTO 2015, volume
9215 of Lecture Notes in Computer Science, pages 764–783. Springer, 2015.

[SAK] SAKURA. Side-channel Attack User Reference Architecture. http://satoh.
cs.uec.ac.jp/SAKURA/index.html.

[SBHM20] Pascal Sasdrich, Begül Bilgin, Michael Hutter, and Mark E. Marson. Low-
Latency Hardware Masking with Application to AES. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2020(2):300–326, 2020.

[SBM21a] Aein Rezaei Shahmirzadi, Dusan Bozilov, and Amir Moradi. New First-Order
Secure AES Performance Records. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2021(2):304–327, 2021.

[SBM21b] Aein Rezaei Shahmirzadi, Dusan Bozilov, and Amir Moradi. New First-Order
Secure AES Performance Records. IACR Cryptol. ePrint Arch., page 37,
2021.

[SM15] Tobias Schneider and Amir Moradi. Leakage Assessment Methodology - A
Clear Roadmap for Side-Channel Evaluations. In CHES 2015, volume 9293
of Lecture Notes in Computer Science, pages 495–513. Springer, 2015.

[SM21a] Aein Rezaei Shahmirzadi and Amir Moradi. Re-Consolidating First-Order
Masking Schemes Nullifying Fresh Randomness. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2021(1):305–342, 2021.

[SM21b] Aein Rezaei Shahmirzadi and Amir Moradi. Second-Order SCA Security
with almost no Fresh Randomness. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2021(3):708–755, 2021.

[Sug19] Takeshi Sugawara. 3-Share Threshold Implementation of AES S-box without
Fresh Randomness. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(1):123–
145, 2019.

[Tri03] Elena Trichina. Combinational logic design for AES subbyte transformation
on masked data. IACR Cryptol. ePrint Arch., 2003:236, 2003.

[WM18] Felix Wegener and Amir Moradi. A Note on Transitional Leakage When
Masking AES with Only Two Bits of Randomness. IACR Cryptol. ePrint
Arch., 2018:1117, 2018.

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html

	Introduction
	Preliminaries
	Notations
	Boolean Masking
	Circuit Model
	Probing Security
	Composability Notions
	Probe Simulatability
	Hardware Private Circuits
	Automated Generation of Masked Hardware

	Technique
	Overview
	On the Necessity of Introducing Fresh Randomness into Gadgets
	COMAR

	Case Studies
	Area Overhead

	Comparison with the State of the Art
	Algorithmic-Level Masking
	Gate-Level Masking

	Analyses
	Conclusions

