
SoK: Public Randomness

Alireza Kavousi
University College London

Zhipeng Wang
Imperial College London

Philipp Jovanovic
University College London

Abstract—Public randomness is a fundamental component
in many cryptographic protocols and distributed systems
and often plays a crucial role in ensuring their security,
fairness, and transparency properties. Driven by the surge
of interest in blockchain and cryptocurrency platforms and
the usefulness of such a building block in those areas,
designing secure protocols to generate public randomness
in a distributed manner has received considerable attention
in recent years. This paper presents a systematization of
knowledge on the topic of public randomness with a focus
on cryptographic tools providing public verifiability and
key themes underlying these systems. We provide concrete
insights on how state-of-the-art protocols achieve this task
efficiently in an adversarial setting and present various
research gaps that may be of interest for future research.

1. Introduction

Public randomness is about the generation and distri-
bution of random values that are publicly verifiable and
accessible by anyone after a certain barrier point. This is in
stark contrast to the notion of private randomness, which
has strict confidentiality requirements and is not supposed
to be shared widely, e.g., as used for cryptographic key
generation. While some of the earliest known use cases for
public randomness date back to antiquity, the concept is
also a critical building block for various modern applica-
tions that have a vital need for transparency and fairness,
like lotteries [109], [133], online games [76], blockchain
sharding [103], [148], timestamps [51], and more.

Public randomness can be obtained through various
means with the most straightforward one being to simply
gather it from a centralized entity [99], [116]. This ap-
proach, however, has obvious disadvantages that no one
can check whether the provided values have actually been
generated randomly or the entity can simply withhold an
output. In this paper, we are concerned with randomness
generation in a publicly verifiable manner and without
relying on trusted third parties. Despite the apparent sim-
plicity of the concept, it turns out that producing high-
quality random values and ensuring their desired proper-
ties is a non-trivial challenge requiring deep insights from
distributed systems and cryptography.

1.1. Applications

Having access to a trustworthy source of randomness
is an essential part of many real-world systems. We now
explore several application areas that have attracted more
attention in recent years.

Lotteries and Streaming Games. The need for a reliable
source of randomness is paramount in lotteries and stream-
ing games [1], [78]. Lotteries, whether traditional [72] or
blockchain-based [76], [109], [133], rely on randomness
to determine the winning numbers or participants. Using
proper randomness is crucial to prevent any manipulation
or bias that could compromise the integrity of the process.
In the context of streaming games [1], randomness plays
a vital role in maintaining excitement and engagement by
enabling randomly generated events, such as item drops,
enemy spawns, or in-game challenges.
Single Secret Leader Election (SSLE). In proof-of-stake
(PoS) blockchains, leader election plays a critical role in
maintaining the security and liveness of the system. In
SSLE, a unique elected leader learns about their leadership
prior to others and can claim it in a publicly verifiable
manner [13], [34], which provides two important prop-
erties: First, it protects the leaders from various attacks,
particularly denial-of-service (DoS). Second, it obviates
the need for a tie-breaking process to choose among
possible set of leaders for a given time slot. Existing SSLE
mechanisms usually rely on public randomness to ensure
security [95] or uniqueness [34].
Timelock Encryption. One useful property for a public
randomness generator is the scheduled release of random
outputs [99]. For example, drand [4], the public ran-
domness beacon deployed by the League of Entropy [2],
produces an output every 30 seconds. The recent work
of Gailly et al. [75] shows how to take advantage of this
feature to build a time-lock encryption [132] service that
does not require sequential computation. They observed
that one could view the output of a threshold VRF on
an epoch number as a secret key in an identity-based
encryption scheme [35], allowing the encryption of a
message to the future with the public key being the epoch
number.
Secure Aggregation. Public randomness has recently also
been used for secure aggregation in federated learning.
Flamingo [111] is a multi-round secure aggregation
protocol that deploys public randomness to establish
a graph between clients. The neighbors of a client in
the graph will help the server to obtain the outcome if
the client becomes unavailable by unmasking its input
collaboratively. In LiSA [145], public randomness is used
to choose the set of clients contributing to the outcome
at each aggregation round as well as the committee
members with whom they derive shared keys as noise to
mask their inputs.

As the need for trustworthy sources of public ran-
domness continues to grow, a large volume of works



utilizing different methods has appeared in academia and
industry over the last decade or so. This paper contributes
to the discussion by providing a comprehensive and sys-
tematic analysis of the notions, challenges, solutions, and
techniques of state-of-the-art schemes. We acknowledge
recent efforts on the topic [55], [129] and argue that this
work presents complementary perspectives, distinguishing
it from previous works in the following key aspects:
• First, our categorization according to primitives with

public verifiability and the principal properties including
security, liveness, and scalability allows for making
appropriate connections across primitives and relevant
properties. This allows us to observe and present vari-
ous novel insights and research gaps as one of the main
contributions of our work.

• Second, we approach the topic of public randomness
from a more constructive yet less formal perspective
than existing works and, in particular, elaborate on
several important properties, such as network assump-
tions, adaptiveness, responsiveness, guaranteed output
delivery, etc., that have a critical impact on the overall
protocol design but that are covered either not at all
or only superficially by previous works.For instance,
giving up on the guaranteed output delivery allows using
weaker primitives than broadcast channels [61].

• Third, our modular categorization not only facilitates the
first two points but also offers a bottom-up perspective
to readers in comparison to the top-down approach
of [55]. This could make it easier, e.g., for developers
to decide which approach would be most suitable for
their use case if they already have certain tools at their
disposal or familiarity with them, instead of having to
figure out the abstract concepts first before being able
to decide on a technique to use.

• Fourth, we discuss various applications and recent
works such as [16], [18], [20], [57], [62] that are not
covered in previous SoKs.

Paper Organization. Section 2 introduces the required
background, concepts, and primitives from cryptography
and distributed systems. Section 3 presents the notion
of distributed randomness beacon (DRB) and its relevant
properties as a service for generating public randomness.
Section 4 presents our systematization methodology and
an overview of the four main tools to generate public
randomness, which are publicly verifiable secret sharing
(PVSS), verifiable random function (VRF), verifiable de-
lay function (VDF), and public blockchain. These are then
investigated in-depth in the subsequent sections. Finally,
Section 9 concludes the paper with a discussion on further
related properties and considerations. Also, throughout the
paper, we include plenty of insights and potential research
gaps labeled by “Insight” and “Gap”, respectively.

2. Background

In the following, we give a brief overview on the
relevant preliminaries and primitives used in this paper.
Threat and System Models. We denote by n the total
number of parties in a protocol and by f the number of
Byzantine parties, which are those that an adversary has
corrupted. Such parties are not required to follow the pro-
tocol steps and are free to act as they wish. In particular,

they may collude with each other, provide wrong values,
not answer at all, or follow any other malicious behaviour
in an attempt to thwart the security guarantees of the
protocol. An adversary may be rushing which means that
it waits until all honest parties’ messages have arrived
before deciding on how to act next. We further denote by
t a threshold parameter denoting the maximum number of
corruptions with f ≤ t < n. Protocols are often executed
in discrete time intervals that we call epochs.
Network Model. We distinguish two message dissemi-
nation approaches, namely (1) via reliable authenticated
channels which guarantee confidentiality and integrity of
the exchanged messages and all communicating parties
know each other and (2) via gossip where parties propa-
gate messages to a random set of their peers and they do
not necessarily know other network participants. We dis-
tinguish three different communication models depending
on the influence an adversary can have on the message de-
livery between (honest) parties. In the synchronous model,
there is a finite known time-bound ∆ for message delivery.
The partial synchronous model relaxes this assumption by
making the time-bound ∆ unknown. The asynchronous
model just makes the minimal assumption of eventual
delivery without specifying any time-bound. It is worth
noting that there is an equivalent treatment for partial
synchrony, which divides the system into two periods; an
initial period of asynchrony followed by synchrony after
some unknown point in time.
Consensus. The fundamental problem of consensus [105],
[123] deals with enabling a group of n parties, each
with an initial input value vi to reach agreement on a
common value v despite adversarial behavior by f of the
participants. A working consensus protocol must satisfy
the two main properties: safety/consistency, ensuring that
all honest parties agree on the same decision; and liveness,
ensuring that the protocol eventually terminates with hon-
est parties reaching a valid decision. Different variants of
consensus problems exist (refer to [79] for more details).
A well-studied one, relevant to the focus of this paper, is
Byzantine fault-tolerant state machine replication (BFT-
SMR) [136], which aims to maintain consistency among
a group of parties while processing ever-growing inputs.
Publicly Verifiable Secret Sharing (PVSS). A (t, n)
secret sharing scheme [138] allows a dealer to distribute
shares of a secret s among n parties, such that any
gathering of size at most a threshold t of shares reveals
no information about the secret while it can be uniquely
revealed by any larger subset. To enable public verifica-
tion, where anyone (even an external party) can verify the
sharing phase by the dealer and reconstruction phase by
the parties, PVSS [47], [137] incorporates cryptographic
primitives including encryption, commitment, and non-
interactive zero-knowledge proofs.
Distributed Key Generation (DKG). To carry out cryp-
tographic algorithms (e.g., encryption, signing) jointly, a
DKG protocol provides the necessary setup by sharing a
uniformly distributed random secret sk among n parties.
It provides each party with a partial secret key ski for
performing partial evaluations, a corresponding partial
public key pki to verify the correctness of the partial
evaluations, and a common public key pk to verify the
correctness of the final evaluation. DKG is executed in a



single-shot manner, meaning that it is only needed to run
once to produce the required keys, which can then be used
polynomially many times thereafter.
Verifiable Random Function (VRF). A VRF [117] al-
lows the production of a pseudorandom value along with
a proof on an input using a secret key sk such that anyone
can verify its correctness using the corresponding public
key pk. It can be considered as an asymmetric counterpart
to a pseudorandom function (PRF) with an attached proof.
With a DKG, it is possible to establish a threshold VRF
such that at least a threshold t out of n parties need to
collaborate to be able to jointly evaluate the VRF using
their respective secret keys.
Verifiable Delay Function (VDF). A VDF [32], [127],
[146] is an inherently sequential function that takes a
predefined time T (i.e., steps) to compute, even with
a polynomial number of processors working in parallel.
Given an input value x, it outputs a unique value y that
can be verified efficiently by anyone in poly(log T, λ)
time. Two well-known VDFs [127], [146] are based on
repeated squaring, y = x2T , in a group of unknown order.

3. Distributed Randomness Beacon

The process of obtaining public randomness in a dis-
tributed manner is commonly captured in the literature
via distributed randomness beacon (DRB), a service that
produces a continuous series of randomness with public
verifiability. It is straightforward to see that one can turn a
public randomness protocol into a DRB by executing the
protocol continuously in a scheduled manner. Although
recent works [28], [61] have taken a formal approach
to the DRB problem via game-based security definitions,
many existing works have relied on a rather informal treat-
ment [134], [135], [143]. These works explore individual
properties and make informal arguments about their ful-
fillment. We refer the reader to [55] for a more formalized
approach to defining public randomness properties1.
Distributed Randomness Beacon (DRB). A DRB pro-
tocol enables a group of n distrustful parties to jointly
generate a series of random values with the following
properties: (1) unpredictability, meaning the adversary
cannot predict the future beacon outputs except with
a negligible probability; (2) unbiasability, meaning the
adversary cannot impact an output to its advantage; (3)
availability, meaning the protocol should continue mak-
ing progress and produce valid outputs; and (4) public-
verifiability, meaning the correctness of the result should
be verifiable even by an external party.

Following the above well-established properties, we
conceptualize the problem using three principal challenges
a DRB confronts. That is, security, capturing the secrecy
of the produced values against adversarial behavior, live-
ness, capturing certain conditions that affect the progress
of the protocol, and scalability, capturing the overhead
of the protocol and its deployment at scale. We believe
such distinction allows us to focus on the core concerns
accordingly. Needless to say, the interconnected aspect of
these challenges makes a perfect distinction difficult and
some level of intersection is inevitable.

1. Note that not all the required properties have yet been defined
formally, though, such as liveness/availability.

Security. Unpredictability and unbiasability are two vital
security properties of a DRB protocol.

• Unpredictability: Undoubtedly, the most important
property of a DRB is unpredictability, which prevents
the adversary from predicting future beacon outputs
according to its existing knowledge. Unpredictability
comes in two variants: absolute unpredictability and
probabilistic unpredictability. The former places a hard
bound d ≥ 1 on the number of epochs when the
outputs become fully unpredictable, whereas the latter
only guarantees that the probability of obtaining the
next outputs decreases exponentially with the number
of epochs.

• Unbiasability: Ruling out the feasibility of any action by
the adversary to influence the outputs to its advantage is
captured by the unbiasability property. The adversarial
impact on the DRB can occur in different ways. One
common type of such an impact is to withhold announc-
ing contributions by an adversary after becoming aware
of other parties’ contributions in the hope of avoiding
an undesirable output, known as last actor attack [92].

The baseline security for a randomness beacon is
unpredictability, and not all the proposed solutions can
satisfy unbiasability [27], [38], [65]. The core definition
of unbiasability implies that the beacon output should be
uniformly distributed across the set of possible outputs.
Existing DRB protocols achieve this quality at two major
types: uniform randomness, ensuring the beacon output is
a truly random value, and pseudorandomness, ensuring the
beacon output is computationally indistinguishable from a
truly random value. A long-lasting approach for generat-
ing randomness is via the so-called commit-reveal method
which each party commits to some local random value
(i.e., private randomness) to later open it and compute
the resulting outcome by running some operation, e.g.,
adding all the proposals. Although this approach provides
unpredictability in its strongest type when only a single
honest contribution (i.e., true randomness) is involved, it
fails to guarantee unbiasability as the adversary may act as
the last actor and decide on its action (i.e., to open or not)
based on the view of the protocol. Intuitively, secure con-
structions with a commit-reveal paradigm output uniform
randomness that is of importance for specific applications
such as PRG seed.

DRB protocols often operate in epochs, where one
of the parties may be selected as a leader to coordinate
and advance the protocol to the next epoch [61], [134],
[135]. The leader election process is either deterministic
when the sequence of leaders is known in advance,2 or
is probabilistic when the next leader is chosen randomly.
Although most of the existing DRB protocols can produce
randomness with absolute unpredictability, the ones with
probabilistic leader election yield the weaker notion, as
there is always a possibility that some corrupted party
is elected as the leader [29], [134], [135]. An immedi-
ate implication is the leader’s ability to learn the next
epoch’s output prior to others, leading to achieving only
d-unpredictability for d ≥ 2 epochs in the future. One
way to address this issue is to transform the role of the

2. For instance, in a Round-Robin election the leader of epoch r is
party i = r mod n.



leader from a sole contributor (to the beacon output) to
only a coordinator [61].

Liveness. Ensuring the continual operation of the protocol
under certain conditions is a decisive aspect of a DRB.
The liveness of a distributed protocol is typically evalu-
ated based on two key parameters: network assumption,
defining limits to what extent the adversary can cause
delay in message delivery, and fault tolerance, indicating
the maximum number of corrupted parties tolerated for
successful protocol execution. The bulk of existing works
on DRB focuses on the synchronous model. However,
this cannot faithfully cover real-world scenarios as the
protocol might face severe outages like denial-of-service
(DoS) attacks. As a result, the study of DRB protocols
in non-synchronous models, such as partial synchronous
and asynchronous models, has gained attention [41], [61].
The partially synchronous model aims to strike a balance
by offering the advantages of the others. It introduces a
notion of time for convenient analysis while providing a
robust network definition to handle occasional outages.

Significant progress has been made in the distributed
system literature regarding fault tolerance under various
network assumptions [70], [73]. In particular, the optimal
fault tolerance for a BFT-SMR protocol is t < n/2 under
the synchrony and is t < n/3 under the partial synchrony
(and asynchrony). A DRB protocol with a set of parties on
ever-growing inputs working towards establishing a totally
ordered log of outputs resembles the consensus problem,
particularly state machine replication (SMR) [136] with
two ingredient properties of consistency and liveness.

Apart from the two crucial aspects of network assump-
tion and fault tolerance, there are two additional features
relevant to liveness in the context of DRB protocols.
Namely, guaranteed output delivery (GOD), ensuring that
all honest parties obtain the beacon output at each epoch
irrespective of the adversary’s actions, and responsiveness,
allowing the protocol to make progress at the actual
network speed rather than under a conservative delay ∆.
Although GOD is deemed to be pivotal for the proper
functionality of a DRB that may need to consistently
feed the end users even in the face of non-Byzantine
failures (e.g., temporary disconnection), not all the ex-
isting secure proposals can achieve it [61]. Due to the
lack of (known) time-bound in their formulations, non-
synchronous network models come with responsiveness
that matters for getting higher throughput (i.e., number
of produced outputs per time unit). However, it has been
shown that the synchronous model can only offer opti-
mistic responsiveness under certain conditions, including
the presence of an honest leader and f < n/4 [122].

Scalability. The level of reliability achieved in a dis-
tributed computing system consequently impacts the scal-
ability. In the context of DRBs, it amounts to providing
randomness at a reasonable cost depending on the number
of participating parties. Asymptotically, this is typically
measured using the following terms: (1) communication
complexity, which quantifies the total number of messages
exchanged among parties during protocol execution; (2)
computation complexity, which measures the amount of
local work performed by each party per output; and (3)
verification complexity, which evaluates the work required
by an external party to verify the output. Moreover, ac-

commodating dynamic participation of parties also matters
for a scalable system. The presence of an expensive setup
phase as part of the protocol poses a serious challenge to
achieving this goal.

4. Systematization Methodology

Upon reviewing the existing literature, we realize that
a representative method to categorize existing works is
based on their underlying tools. Public verifiability, as a
default property, imposes constraints on the cryptographic
tools employed in these constructions. This, in turn, en-
ables us to pinpoint four of these, including PVSS, VRF,
VDF, and public blockchain. The protocols deploying
these tools can be further classified into leaderless and
leader-based according to their communication patterns.
The former requires all-to-all communication, whereas the
latter designates a leader to communicate with others in a
one-to-all (possibly together with an all-to-one) manner.
For each category, we then evaluate different protocol
designs with regard to security, liveness, and scalability.
This categorization enables us to classify most of the
literature coherently.3 While we put our focus on illustra-
tive peer-reviewed papers, where appropriate, we point to
some compelling ideas presented in other works. We also
present a comparison between different DRBs in Table 1.
In the following, we provide a brief overview of each
category before doing an in-depth analysis later.

Protocols Using PVSS. The majority of research around
generating public randomness is focused on using PVSS
schemes that yield the strongest quality (i.e., uniform ran-
domness). The idea of using PVSS is built upon the well-
known commit-reveal paradigm [31], making it robust
against adversarial attacks due to its inherent threshold
security, and publicly verifiable due to the use of non-
interactive zero-knowledge proof (NIZK). A major limita-
tion of this approach is its intense communication cost due
to the exchange of large messages (i.e., PVSS transcripts)
in an all-to-all manner. To address this, various techniques
have been proposed, including the appointment of a leader
for coordination and transcript aggregation.

Protocols Using VRF. VRFs have gained popularity as
a viable option for designing DRBs due to their sim-
plicity and practicality. They are usually derived from
signatures with uniqueness, a property ensuring that for
each message and public key, there exists only one valid
signature. The DRB’s security properties are tied to those
of VRF, with DRB’s unpredictability and unbiasability
stemming from VRF’s unforgeability and uniqueness, re-
spectively. However, similar to the traditional commit-
reveal mechanism, a VRF-based construction may be
susceptible to bias if a party with prior knowledge of the
beacon output chooses to abort the protocol. The common
approach to deal with this issue is to make the construction
thresholdize via deploying a distributed key generation
(DKG) [124] in the setup phase. While this mitigates the
bias concern, it introduces communication overhead and
hampers efficient dynamic participation.

3. We highlight that our focus is merely on cryptographic solutions
with public verifiability and do not consider other lines of work,
e.g., [66], [102].



Protocols Using VDF. A promising way to produce public
randomness is to deploy time-based cryptography and in
particular verifiable delay functions that have efficient
public verification. VDFs have found themselves useful
in various blockchain-related applications since their in-
troduction by Boneh et al. [32]. In this context, it has been
proposed mainly as a method to protect against the last
actor attack in a commit-reveal configuration by injecting
a computationally guaranteed delay before releasing the
output. Such a delay prevents the adversary from learning
the output prior to the reveal phase. Interestingly, VDFs
can also be used solely to generate public randomness,
e.g., through its continuous variant [71] or the version
with trapdoor [134]. The security properties of the re-
sulting DRB protocol stem from its inherently sequential
characteristic and uniqueness.
Protocols Using Public Blockchain. A straightforward
approach to obtaining public randomness is by extract-
ing it from the available entropy in publicly available
resources. One notable example of such resources is proof-
of-work (PoW) blockchains, where parties can access high
entropy values using the intrinsic randomness that lies in
the mining process. Despite its simplicity, this approach
has been shown to be vulnerable to different attacks that
compromise the desired security properties [40].

5. Protocols Using PVSS

5.1. Security

The protocols in this category follow the commit-
reveal paradigm used by the prominent work of [31],
allowing two parties to jointly flip a coin and generate a
uniformly random string. Due to the inherent weakness of
this basic approach for guaranteeing unbiased randomness,
numerous works [28], [47], [48], [61], [101], [135], [143]
have employed PVSS to enable the recovery of any com-
mitted secret, relying on an honest majority assumption. In
fact, it requires a quorum of parties (involving at least one
honest party, i.e., f+1) to execute the protocol by sharing
some secret with uniform distribution. Since more than
a threshold t of parties are involved in the randomness
generation process, the existence of at least one honest
contribution guarantees a uniformly distributed random-
ness.4 Moreover, anyone can use the information posted
on a public bulletin board, which is typically assumed to
exist, to verify the correctness of the protocol.

Syta et al. [143] present a collection of randomness
beacon protocols in an incremental way such that each
one complements the previous in some respect. The first
one, RandShare [143], runs in a single-shot manner and
outputs a shared randomness to each party via collect-
ing a proper agreed set of local randomness through
VSS. The second one, RandHound [143], builds upon
RandShare and introduces scalability improvements by
randomly sharding parties into sub-groups. Within each
sub-group, PVSS is executed to generate local contri-
butions, which are then combined to produce a single
beacon output. The third one, RandHerd [143] further
enhances RandHound by augmenting it with collective

4. Note that the resulting beacon output has uniform distribution with
computational security, due to the properties of PVSS.

signing [144] and threshold (Schnorr) signatures [142] to
provide a continuous sequence of beacon outputs.

SCRAPE randomness beacon [47] follows the idea
originally proposed in Ouroboros [101] and works by
having each party run a PVSS for a randomly distributed
secret and reconstruct an aggregated randomness from
more than a threshold of contributions. Note that the
public verification property of PVSS obviates the need for
running a consensus among parties to determine the set
of parties with correct sharing. In SCRAPE PVSS, parties
use Lagrange interpolation in the exponent to reconstruct
a group element of the form S = hs, where s ∈ Zq and
h ∈ G. ALBATROSS [48] takes the idea behind SCRAPE
a step further to construct a protocol that generates a batch
of beacon outputs at each epoch. They do so by deploying
packed Shamir secret sharing [30] in SCRAPE PVSS.
Packed Shamir secret sharing allows a dealer to share a
vector of secrets of size l using a single polynomial of
degree t + l − 1 as in the standard scheme. The parties
share a tuple of l random secrets in the commit phase and
compute a set of l2 beacon outputs by locally applying
a randomness extractor [56] on the correctly revealed
secrets. If some parties refuse to open their secret tuples,
others jointly do so. Moreover, the security properties of
the randomness extractors imply that as long as there
exists a proper set of uniform input values of size n− t,
no information will be inferred about the output by the
adversary choosing t input coordinates. This is in line with
the honest majority assumption of the underlying PVSS
scheme. One can observe that in such protocols each
epoch’s beacon output is determined once the set of parties
with valid sharing is known. Subsequently, even if some
parties in the set decide not to open their commitments
in the hope of adversarially affecting the output of the
protocol (i.e., violating unbiasability), other parties can
jointly reconstruct the secrets.

However, in some applications such as lottery, obtain-
ing all the random values in one go is not desirable,
as fresh randomness may be required. To address this
issue, GULL [49] was introduced, which is a randomness
beacon using PVSS that allows progressive release of sub-
batch of beacon outputs at different steps depending on
the need of the protocol. They do so by modifying the
ALBATROSS in a way that instead of having parties
reveal all their secrets in the reconstruction phase, they
use threshold cryptography to encrypt parts of their secrets
and open them gradually at further stages if needed. Thus,
whenever some fresh uniformly random value is required,
a new sub-batch will be revealed, which is significantly
more efficient than re-executing the full protocol.

Insight 1. Unpredictability is the base level of secu-
rity while pseudorandomness is strictly stronger and
implies it. However, we may have pseudorandom val-
ues that are not unpredictable, if a batch of them is
generated at once as in ALBATROSS [48].

Gap 1. Producing a batch of uniform beacon out-
puts while maintaining their unpredictability as in
GULL [49] is a subtle task. One alternative method to
explore is designing packed PVSS with gradual release
of secrets, e.g., using techniques from [5].



The authors in [135] propose Hydrand, a leader-based
DRB where rather than having all parties perform PVSS
per epoch, one single party (i.e., leader) is designated to
do so. In fact, either the leader opens their previously
committed secret, or a threshold t + 1 of the parties
jointly reconstruct the secret using the corresponding
shares. Adopting a leader-based style comes at the cost
of weakening the unpredictability with two consequences.
First, the leader gets to know in advance the output of the
epoch in which they are selected as the leader. Second, if
the adversary happens to control t consecutive leaders, it
can pre-compute the next t random values ahead of all the
honest parties. Therefore, Hydrand only achieves absolute
unpredictability of the next t+1 epochs. To ensure an hon-
est leader is indeed selected after t+1 successive epochs,
Hydrand uses a leader election mechanism with the pos-
sibility of exempting the current leader to be selected in
the next t epochs. GRandPiper roughly follows the same
design model of Hydrand by having a leader derive the
protocol and buffered PVSS shares to enable recovery in
the presence of a Byzantine leader. The key idea behind
BrandPiper [134] to improve upon GRandPiper in terms
of achieving absolute unpredictability of the next epoch is
to consume inputs from more than t parties for computing
each beacon output. This ensures the presence of at least
one honest contribution and takes away the opportunity of
being the sole contributor from the leader.

The two recent works of SPURT [61] and Op-
tRand [28] take advantage of the aggregation property
of the PVSS transcript (for commitments and encrypted
shares) to design a leader-based DRB, with the leader
acting as an orchestrator instead of a sole contributor.
This design rationale is promising as it offers absolute
unpredictability of the next epoch due to the involvement
of t + 1 contributions in the beacon output. Moreover,
even if a leader decides to abort, it will not affect the
unbiasability property as this is a blind action without
knowing the beacon output. Notice that a consensus pro-
tocol (i.e., SMR) is required to get everyone to agree on
a threshold set of contributions picked up by the leader.

Insight 2. Corrupting leaders violates unbiasability
if either the leader is the sole contributor with no
recovery mechanism, or they can abort after observing
the output prior to others. Also, corrupting the next t
leaders violates unpredictability if the leader is the
sole contributor.

5.2. Liveness

The majority of works using PVSS are constructed
over synchronous network [28], [29], [47], [101], [135],
[143]. This is to ensure that sharing of parties’ secrets
arrives at the recipient within a certain time-bound to guar-
antee the completion of each epoch. Since randomness
beacon is a continually-running service, the authors in [47]
argue about the necessity of having the additional property
of guaranteed output delivery (GOD) [128] as a strong
notion of liveness. This property guarantees that (honest)
parties always complete each epoch with a beacon output
no matter what the adversary does. In [47], [48], [101],
GOD is achieved via the use of a public bulletin board to
post PVSS sharing by each party that essentially has the

same effect as broadcast channels as a variant of consensus
protocol [47]. These protocols can accomplish the fault
tolerance of t < n/2 which is optimal in the synchronous
setting.

In a leader-based construction where a single party
advances the protocol at each epoch, achieving GOD be-
comes rather complicated as a (faulty) leader can withhold
the beacon output or even abort the protocol. To address
this challenge, [28], [29], [135] utilize the idea of buffering
of secrets. The intuition behind buffering is that each
party commits to a randomly chosen secret using PVSS in
advance (i.e., more than t epochs before) and updates their
commitment with a fresh random value when they are
selected as the leader again. The purpose of such buffering
is twofold. First, it ensures GOD since no matter what
the Byzantine leader decides to do, the honest parties in
the protocol can jointly reconstruct the already committed
secret and may also remove that leader from the protocol.
Second, it ensures that all honest parties open the same
committed value as the underlying consensus may require
t + 1 epochs to ensure consistency.5 While [28], [29]
are optimally resilient randomness beacons in synchrony,
[135] can only satisfy fault tolerance of t < n/3 under the
same network assumption. This limitation arises from their
need for a quorum intersection as part of their consensus
protocol to avoid equivocation by the leader.6

An immediate consequence of ensuring GOD is the
deployment of broadcast channels [88], [128] that are
only achievable in the synchronous network.7 Recently,
SPURT [61] proposed to relax the strong notion of GOD
to just ensure that the adversary cannot abort the protocol
after learning the beacon output at each epoch. This
relaxation allows for a reduction in the reliance on broad-
cast channels and the possibility of replacing them with
variants of SMR protocols [7], [147]. Roughly speaking,
the leader of an epoch employs the SMR protocol to
get parties to agree on a constant-sized message with
the remaining heavy parts of the aggregated data being
sent through private channels to each party individually
to enable verification. Note that no buffering is used in
SPURT as the protocol does not aim at achieving GOD.

Insight 3. The notion of fairness in secure multiparty
computation [60] is weaker than GOD. It states that if
the adversary learns the output, it will not be able to
prevent others from doing so, similar to SPURT [61].

Adopting SMR has the benefit of implementing under
a partial synchronous network [50], [147]. This, in turn,
opens the door for responsiveness, a property allowing
the randomness beacon protocol to proceed at the actual
network speed and produce outputs faster than sticking to
the conservative synchrony condition. This is important
for achieving higher throughput and enhancing resilience
against DoS attacks. As responsiveness is a potential
property of systems without strict time dependencies,
the recent work of [28] aims at achieving optimal fault
tolerance of t < n/2 in a synchronous setting while

5. BFT-SMR is weaker than Byzantine broadcast in the sense that it
does not require committing an honest leader’s proposal at each view [8].

6. Given a set of n elements, two subsets of size n− t must intersect
at n− 2t elements. So, n > 3t is needed to derive a contradiction.

7. Note that this should not be confused with Byzantine reliable
broadcast that can be realized in asynchrony [9].



enjoying the feature of optimistic responsiveness [122],
[141], obtaining responsiveness only in certain occasions
when the leader is honest and f < n/4. This approach
is realized through designing a BFT-SMR that supports
responsive leader change by eliminating the timeout of
Ω(∆) in BFT-SMR of [29] to detect equivocation before
parties make a commit.

Insight 4. The (partial) responsiveness in synchrony
requires a reduction in the number of faults from
n/2 to n/4, while (complete) responsiveness in partial
synchrony can always tolerate n/3 faults.

RandShare [144] is presented as an asynchronous pro-
tocol, targeting termination as a liveness property with-
out making timing assumptions. However, as discussed
in [135], it implicitly relies on a notion of time such that
the protocol cannot guarantee liveness under asynchrony.
The RandHound [144] protocol is driven by a single client
which may abort a protocol run and enforce a restart.

5.3. Scalability

Despite offering uniform randomness and useful prop-
erties such as transcript aggregation, protocols using PVSS
face a significant challenge in terms of the overhead
imposed on participating parties. At a high level, every
single party is supposed to commit to a secret value and
broadcast the result to others. However, this broadcasting
process entails sending a message of size O(n), with a
communication complexity of O(n3) based on the lower
bound of Ω(n2) [67]. As a result, the overall complexity
becomes O(n4). Additionally, each PVSS sharing requires
a computation and verification overhead of O(n). A linear
public verification cost is inevitable due to the need for
verifying the transcript of protocol execution [61]. From a
practical point of view, communication complexity is the
main concern over the applicability of this line of ran-
domness beacons, as they are inherently communication
intense. The interesting work of SCRAPE [47] used the
observation by [113] regarding the equivalence of (t, n)
Shamir secret sharing and the Reed-Solomon Code [130]
to introduce a PVSS scheme with linear computational
complexity. However, their randomness beacon requires
all parties to perform PVSS, resulting in an overall com-
munication complexity of O(n4).

RandHound [143] makes use of sampling techniques
to shard a system of n parties to the sub-groups of size c.
Running a randomness beacon protocol within each sub-
group and combining the results into the final outcome
reduces the communication complexity from the total of
O(n4) to O(c2n). RandHerd [143] takes the previous
approach a step further by taking advantage of collective
signing [144] to generate a sequence of random values,
reducing communication (and computation) complexity to
O(c2logn) and verification complexity to O(1). Although
sharding is a pivotal technique to reduce the overhead, it
will cause overall fault tolerance reduction to ensure an
honest majority for each shard [61]. Using packed secret
sharing enables ALBATROSS [48] to produce a batch
of O(n2) random values instead of one at each epoch,
reducing the amortized communication and computation
complexity to O(n2) and O(n), respectively. Notice that,
the resulting asymptotic boost in complexity comes with

decreasing the fault tolerance as a natural trade-off, i.e.,
t ≤ (n− l)/2.

Recent works take advantage of their leader-based
design to lower the overheads, particularly communication
complexity [28], [29], [61], [135]. This is an effective
approach to dramatically mitigate the use of broadcast
channels by replacing all-to-all with an all-to-one/one-
to-all communication pattern. In SPURT [61], the leader
only broadcasts a constant-sized message (i.e., crypto-
graphic digest) and sends the bigger part of the data
(e.g., aggregated transcripts) over private channels, leading
to a quadratic communication complexity. GRandPiper,
RandPiper, and OptRand [28], [29] deploy a BFT-SMR
protocol without any use of threshold signature to commit
transcript of size O(n), which could potentially lead to cu-
bic communication complexity. To maintain the quadratic
cost, they use error-correcting code [130] to encode the
leader’s proposal, and accumulators [119] to enable ef-
ficient equivocation checking. Utilizing a type of SMR
that does not use threshold signature (and therefore DKG)
is necessary to allow the system (efficiently) support dy-
namic change in the set of parties. They also present a
concrete reconfiguration mechanism for their systems to
maintain the resilience of the protocol after eliminating
some Byzantine party.

Insight 5. Supporting dynamic participation for un-
derlying consensus may enable the leader-based DRB
protocols using PVSS to deal with the reconfiguration
procedure smoothly.

6. Protocols Using VRF

6.1. Security

Verifiable random function (VRF) [117] can be consid-
ered as an asymmetric variant of a pseudo-random func-
tion (PRF) [87], with public verifiability of the output. In-
tuitively, its security properties state that given a sequence
of VRF values, r0, r1, . . . , rn−1, for any n ≥ 1, it should
not be computationally possible to distinguish rn from the
output of a random function. Such properties make VRF a
promising fit for generating public randomness. Although
the original work of [117] proposed a rather complex
design, it was later shown a straightforward approach to
build VRF is through applying a hash function modeled
as random oracle to a unique signature scheme [65], [85].
The uniqueness of the signature matters to guarantee the
security properties of VRF. Two of the most well-known
unique signature schemes are RSA [140] and BLS [36].

Insight 6. Applying a hash function to a signature
results in a PRF in the random oracle model. When
the signature is unique, it actually is a VRF with proof
being the signature.

DRBs using VRF follow a range of blueprint designs.
Algorand [85] and Ouroboros Praos [65] deploy an inte-
grated DRB protocol as part of their systems with a focus
on achieving efficiency for large-scale usage rather than
getting high-quality randomness. They do so by letting
each party set up their own VRF key-pairs. Algorand has
the taste of a leader-based protocol where the output of



VRF evaluation by the leader at each epoch determines
the epoch’s beacon value and the next leader. Ouroboros
Praos takes a slightly different approach by having the
XOR of all submitted VRFs by parties to be the epoch’s
beacon output. Due to its randomized leader-based design,
Algorand has probabilistic unpredictability. As observed
by [77], in the constructions where parties individually
generate VRF key-pairs, the security of the beacon out-
put relies on an honest generation of keys. In fact, the
adversary may generate a malicious key that affects the
security of the output (i.e., unbiasability). To address this
issue, the authors in [49] design a VRF construction by
adopting that of [65], guaranteeing the security of the VRF
output under malicious key generation.

Unfortunately, these protocols do not satisfy unbi-
asability property as they are subject to the last actor
attack. There are two typical options to resolve the is-
sue. First, introducing a computational delay prior to
the release of the beacon output as used in the design
of [3]. Second, deploying VRF in a distributed setting
with threshold security. When it comes to setting up
a threshold cryptosystem, a distributed key generation
(DKG) [124] is the first step that allows parties to obtain
a common pubic key, a partial public key and its corre-
sponding secret key. Motivated by the work of Cachin
et al. [41], a number of protocols such as Drand [4],
DFINITY [42], [92], Glow [77], and GRandLine [16]
construct a DRB with continuously signing a common
value (e.g., epoch’s number) in a threshold manner to
create a series of randomness. To create a chain of ran-
domness, the common value is typically considered to
be the epoch number concatenated with the last beacon
output so that each beacon value uniquely determines
the chain of randomness all the way to the earliest one.
In a threshold setting, the uniqueness property for an
underlying signature scheme additionally requires any set
of partial signatures of size above threshold results in the
same signature. This consequently leads to the consistency
of the produced randomness, removing the need to run
some form of consensus among participating parties on
the beacon output.

Insight 7. The uniqueness of the threshold signature
scheme is crucial with two main implications. First,
it circumvents running a consensus. Second, it allows
parties to multicast their partial signature instead of
broadcasting which is a stronger requirement.

Insight 8. The chained and unchained DRB of [4] are
different in terms of what gets signed in each epoch.
However, due to the underlying threshold security both
achieve the same security properties.

The underlying threshold security guarantees no ad-
versary controlling at most t parties neither can predict
the future beacon outputs nor bias them. To instantiate
a threshold VRF and thus ensure pseudorandomness, the
beacon output is computed by applying a cryptographic
hash function on the signature in the random oracle
model [77], [92]. The basic security definition of a VRF
can straightforwardly be extended to the threshold setting
[77]. Due to the similarities in the concept of VRF and
PRF, [77] adapts and revisits the definition of standard and
strong pseudorandomness presented in [148] with respect

to a threshold VRF. They provide a framework to build
a DRB protocol from any threshold VRF instances in a
secure way. At a high level, compared to the standard
definition, the strong pseudorandomness preserves the se-
curity against an adversary with the additional power of
getting partial evaluations on its challenges, selecting the
corrupted parties’ local secret keys, and influencing the
public parameters computation. As observed by [77], all
the constructions in [3], [65], [85] fail to satisfy two types
of pseudorandomness.

Gap 2. One caveat with using threshold VRF is that
the initial seed cannot be used to generate unbiased
randomness forever as the entropy is limited. It is
worth exploring the process of quality degeneration
over time and the way to handle it efficiently.

Gap 3. Adopting a leader-based design with VRF
while handling the bias through another route helps
to avoid a (DKG) setup phase. One possible approach
would be deploying digital signatures with key extrac-
tion [11].

Mt. Random [49] presents a DRB with three layers
each one providing a different type of randomness in ex-
change for different security/performance trade-offs. More
accurately, the first layer generates uniform randomness;
the second layer generates pseudorandomness, and the
last layer generates (bounded) biased randomness. They
design such a construction by nicely combining different
primitives including PVSS, threshold VRF, and VRF in
each layer respectively. Moreover, each lower layer feeds
the higher one with seeds to provide a consistent level of
bias across the structures. Beaver et al. [22] proposed a
DRB protocol called STROBE, where the beacon output
at each epoch xr is computed by repeated RSA decryption
of the previous epoch’s output xr−1 in a distributed way.
In fact, after running a setup phase assuming a dealer who
generates the RSA modulus N and Shamir decryption
key shares ski, each party disseminates their contribution
xski and the epoch’s output is computed by aggregating
a threshold number of valid contributions through per-
forming a Lagrange interpolation in the exponent. This
construction is an extension to the work of [23] which
was the first distributed randomness beacon producing
values by repeated squaring of a random seed. Distributed
generation of RSA modulus [52] is an old but still active
line of research that can be used to get rid of the trusted
dealer in this protocol.

Gap 4. Inspired by the construction in [49] that out-
puts different types of randomness, it would be interest-
ing to build a construction that generates beacon out-
puts under various thresholds, where a higher thresh-
old could imply better randomness quality. Adopting
the “Multiverse” DKG proposed in [19] to generate a
unique signature could essentially lead to such DRB.

Gap 5. One direction to explore is the effects of long-
range attacks [14] on the DRBs using (threshold) VRF.
What makes the problem sophisticated here is the fact
that such attacks might be unobservable due to the
pseudorandomness property of the beacon outputs.



6.2. Liveness

The DRB protocols in [65], [85] are built on top
of their underlying distributed ledger, with the former
using a BFT-type consensus in partial-synchrony with
t < n/3 and the latter having parties communicate in
a synchronous peer-to-peer fashion with t < n/2.8 In a
stand-alone DRB protocol like [100], the fact that parties
evaluate their VRFs individually necessitates deploying
Byzantine reliable broadcast [9] that works in asynchrony.

Protocols deploying threshold VRF, however, do not
need to use broadcast channels for producing their beacon
outputs. This implicitly results in constructions that can
be implemented in a non-synchronous setting while sup-
porting the corresponding fault tolerance (i.e., t < 1/3).
Therefore, DFINITY [42], [92] is presented in partial-
synchrony and Drand [4] in synchrony, despite having
the same protocol flow. However, several existing DRB
protocols using threshold VRF, such as [22], [49], [77],
make synchronous assumptions due to the use of DKG in
their setup phase [81]. The context of asynchronous DKG
[6], [64] has recently started receiving more attention
which has a direct effect on constructing asynchronous
DRB protocol. The protocol proposed by Cachin et al.
[41] works independently of network delay and therefore
is suitable for an asynchronous setting.

Insight 9. Designing a DRB protocol in asynchrony
is tricky due to the fact that randomness itself is
needed to get around FLP impossibility [73]. With an
asynchronous DKG, however, it is possible to generate
public randomness via computing a threshold VRF
in a single-shot manner and then repeat the process
multiple times.

One important consideration in protocols with a chain
of randomness is that producing beacon output at each
epoch is necessary for initiating the next one. This means
if the protocol fails to output at any epoch, the next epochs
will also be influenced. Thus, satisfying GOD property
is necessary for the correct operation of such protocols.
Protocols like Algorand [85] and Ouroboros Praos [65]
where parties individually evaluate their VRFs, cannot
feature GOD due to the possibility of abortion.

6.3. Scalability

DRBs with individually set VRFs such as [85], [100],
[101] are quite efficient in terms of computation and ver-
ification cost with a constant overhead of O(1). However,
they still need a quadratic communication complexity for
broadcasting or deploying a public bulletin board.9

Running a DKG is the most expensive part of pro-
tocols using threshold VRF that dominates the commu-
nication and computation complexity. There are various
DKG constructions in the literature among which [82],
[89], [96], [104] are widely used. DFINITY uses the non-
interactive distributed key generation of [89] with O(n3)

8. In the original work of [65] the network was assumed to be “semi-
synchronous”. Later it was shown that a longest-chain consensus requires
synchronous assumption to work safely [131].

9. Algorand [85] uses random committees of size c. This makes the
communication complexity reduced to O(cn), however, asymptotically
remains quadratic if c depends on n.

communication complexity, while Drand employs [82]
that incurs at least O(n3 log n) overhead. As a popular
option, generating key materials for threshold BLS over
internet takes O(n3) communication complexity with an
asynchronous DKG [6], [63]. Running such a setup phase
is for once and when done, the parties can perform the
rest of the process at a much lower cost. If needed,
one can also use a publicly verifiable DKG [90] in the
setup phase. The aggregation property of the underlying
PVSS enables this DKG to offer lower communication
and computation costs (with a gossiping approach for
dissemination) and can be used to instantiate verifiable
unpredictable function (VUF), which essentially works as
a randomness beacon.10 GRandLine [16] uses aggregation
techniques to design a DKG with O(n2 log n) communi-
cation cost. It achieves this by first separating the parties
into two subsets and then running the protocol in each of
the subsets recursively to produce two transcripts. Finally,
all parties receive these transcripts and end up with a
single aggregated PVSS transcript. Their techniques are
inspired from the recursive Phase-King [108], where the
protocol terminates in two phases instead of t + 1 given
the honest majority of at least one of the halves. Exclud-
ing the DKG setup, the DRB protocols using threshold
VRF are way more efficient compared to the ones using
PVSS. However, all the protocols of [22], [41], [92] still
have a quadratic communication complexity of O(n2)
due to multicasting a partial signature by each party to
others at each epoch. Each party then needs to verify
the received set of messages, leading to a linear cost.
An external verifier just needs to verify the final beacon
output against the common public key, providing optimum
public verifiability of O(1). In GRandLine [16], however,
the final output is not efficiently verifiable and one needs
to instead verify all of the partial signatures to achieve
public verifiability. One major limitation of having DKG
as the setup phase is an inability to support dynamic
participation, due to the need for re-running the DKG
whenever a new party joins or leaves.

Insight 10. Achieving a sub-cubic cost in the pre-
processing phase of GRandLine [16] sets it apart from
Drand [4] as a randomness beacon. However, it comes
at a higher cost of verification compared to Drand due
to their locally verifiable threshold signature, estab-
lishing a trade-off.

A recent advancement in the literature is the concept
of silent setup [80] that avoids the usual DKG setup and
allows key generation for threshold (BLS) signatures non-
interactively using some local computation by each party.
This, in turn, enables dynamic corruption threshold (i.e.,
fault tolerance) and participation.

7. Protocols Using VDF

7.1. Security

Although time-based primitives have been around for
decades [132], the evolution of VDF in recent years [32],
[71], [146] as an interesting variant has opened new

10. The DKG of [90] outputs group element as secret key and is not
suitable for BLS signature that requires a field element.



doors to take advantage of their promising features to
produce public randomness [32], [71], [91], [134]. The
most common VDF constructions are those based on
repeated squaring in groups of unknown order, like an
RSA group, to enforce a guaranteed computational delay
[127], [146]. The properties of VDF including uniqueness,
sequentially, and public verifiability make it a solid option
to construct a randomness beacon by simply using its
output iteratively evaluated on an initial seed at regular
points in time. It is worth mentioning that the sequen-
tially of VDF implies unpredictability and its uniqueness
together with timed-dependent evaluation implie unbi-
asability. However, a VDF provides efficient verification
for a complete invocation, and not for every iteration.
That is the main motivation behind the design of the
Continuous VDF (cVDF) [71] that addresses this issue by
introducing a primitive that enables efficient verification
of a VDF at each iteration, which is independent of the
time parameter. Thus, starting with an unpredictable seed,
cVDF is iteratively applied to produce the epoch’s output
which is also used as the seed for the next epoch. As
with VRF, one needs to apply a cryptographic hash func-
tion on the resulting VDF output to turn beacon outputs
pseudorandom [71].

Gap 6. The construction using cVDF in [71] is a cen-
tralized randomness beacon. One could explore how to
use such a primitive with iterative public verification
to build a DRB. Using the notion of collaborative VDF
[115] may be a direction to look into this further.

The first concrete attempt towards constructing a DRB
using VDF was due to the researchers at Ethereum Foun-
dation [69]. Their proposal is based on applying a VDF
on the aggregated local randomness from a set of parties
through the commit-reveal process in a leaderless fashion,
a blueprint later adopted by others such as Harmony [3].
The necessity of computing VDF prevents the adversary
from learning the beacon output before revealing its input.
HeadStart [106] is a recent randomness beacon protocol
that follows a commit-reveal approach where a central-
ized organizer computes the VDF. To protect against
a colluding organizer, it needs to compute the Merkle
root of all the contributions and publishes the respective
membership proofs prior to the release of the beacon
output. Particularly noteworthy is the fact that having
only one honest (i.e., random) contribution is enough to
ensure the security of the resulting beacon value. Very
recently, Christ et al. [57] proposed Cornucopia that
essentially follows the same design of HeadStart, but with
a more generic approach (i.e., using any accumulator) and
elaborate security considerations.

RandRunner [134] constructs a DRB protocol by
cleverly making use of trapdoor VDF, enabling fast com-
putation of VDF with some additional knowledge. The
core idea behind the construction is to have each party
designated as the epoch’s leader efficiently compute VDF
on the last beacon output using their trapdoor and broad-
cast the result to others. The crucial part is to ensure
that the knowledge of the trapdoor does not give the
leader an opportunity to threaten the uniqueness of the
VDF, and is merely used to accelerate the process of
computation. To this end, given the security properties of

[127] as the underlying VDF construction, a setup phase
is required where each party must generate a NIZK [43] to
show the correctness of the RSA modulus.11 Observe that
this procedure allows getting around an interactive setup
phase for RSA modulus generation as each party needs to
individually set up their own VDF. An important consid-
eration is the necessity of ensuring strong uniqueness for
trapdoor VDF in case public parameters are adversarial
generated, similar to the setting where parties set up
their VRFs individually [77]. With a deterministic leader
election, the protocol provides absolute unpredictability
only after d = α·t epochs which α denotes the adversary’s
computational advantage in evaluating VDFs compared to
that of honest parties.

Gap 7. As the only leader-based protocol using VDF,
RandRunner [134] ensures absolute unpredictability of
the next t + 1 epochs. Further research is needed to
reduce this preferably to one epoch.

A recent attempt to design a DRB according to the
commit-reveal paradigm is Bicorn [54], featuring an in-
teresting approach to address the last actor attack effi-
ciently. The subtle novelty of the approach is to enable
the recovery of missed contributions just by doing one
sequential computation, no matter how many parties abort.
This is achieved by having each party commit to their con-
tribution αi as ci = gαi with the resulting beacon output
being

∏n
i=1 h

αi , where h = g2
T

is a VDF evaluation with
parameter T . In the event of abortion, this design allows
anybody to compute the beacon output via

∏n
i=1(ci)

2T ,
resembling a VDF computation on the product of com-
mitment

∏n
i=1(ci). Bicorn [54] has a similar flow as

leaderless protocols using PVSS in the sense that they both
follow a “commit-reveal-recover” paradigm [54], but the
former handles the recovery with a slow computation and
the latter does that with reconstruction due to its threshold
security.

Insight 11. Bicorn [54] shows the importance of the
way beacon output is determined in a commit-reveal
manner. Using an exponentiation operation results in
an (optimistically) efficient protocol with optimal timed
recovery, i.e., one slow computation for many aborts.

7.2. Liveness

Time-based cryptography allows circumventing the
result of [59], showing the impossibility of doing a secure
coin flipping without an honest majority. That is, dishonest
majority can be tolerated due to the possibility of timed re-
covery and security can be preserved due to the sequential
nature of time-dependent computation, even against par-
allel processors. Although time-based cryptography can
potentially relax the underlying network assumption and
obtain the highest fault tolerance of n−1 [55], [114], there
exists some hurdle in realizing these exciting properties.
Working in a synchronous setting seems to be critical for
the current DRB protocols using VDF [54], [69], [106],
[134] for two reasons. First, the reliance on time/timeout
may be needed to indicate different stages of the protocol
[54], [69], [106]. Second, the use of a public bulletin board

11. It should be the product of two safe primes of form 2p+ 1.



or broadcast channel is assumed in [54], [134] to ensure
consistency or security.12 More precisely, in Bicorn [54]
parties should have access to a public bulletin board to
consistently post their commitment in the commit phase.
In RandRunner [134], the corrupted leader may try to
violate the unpredictability of the protocol by selectively
disseminating the beacon output to a portion of parties,
forcing others to go through slow computation to catch
up. Deploying broadcast channels/reliable broadcast in the
system is a countermeasure that consequently implies a
fault tolerance of t < n/2. Due to the strong uniqueness
of the used VDF that ensures the equality of the VDF
evaluation normally and with a trapdoor, the only aspect
of the protocol suffered from periods of asynchrony (i.e.,
network partitions) is the unpredictability as anybody
can compute the missed beacon output by a slow VDF
computation, offering unbiasability and GOD.

7.3. Scalability

The major issue with this type of DRB is the need
for performing sequential computation which is a highly
energy-consuming task, introducing latency and damp-
ening throughput. The idea of trapdoor VDF in [134]
allows a fast beacon computation for the leader and ef-
ficient verification of O(1) for verifiers. The same is the
case in [54], except in the leaderless fashion with O(n)
verification cost. The necessity of deploying broadcast
or public bulletin board in the system leads to a cubic
communication complexity for [54] and quadratic com-
munication complexity for [134] due to its leader-based
style. Gossiping is an alternative approach that has lower
complexity of O(n log n) but increases the latency. While
the set of parties is known and fixed in [134], the two
works of [54], [106] support public participation, allowing
parties to efficiently come and go without knowing the set
of parties in advance.

8. Protocols Using Public Blockchain

8.1. Security

Some of the earlier works for building randomness
beacons were based on using a source of information as
high entropy data that is publicly available [27], [38],
[58], [107], [126]. High-quality randomness is typically
extracted by applying a randomness extraction function
to parts of the corresponding data. Among the existing
public data structures, proof-of-work (PoW) blockchain is
considered the most suitable one as it is always available
(unlike financial markets in [58]) and inherently comes
with additional security properties like the underlying
Nakamoto consensus [118]. The randomness used in the
process of mining a block (e.g., PoW puzzle) can be
utilized to extract a large number of unpredictable random
bits. However, as mentioned in [40], two types of manipu-
lation attacks can be launched: (1) a miner could withhold
proposing a valid block because it does not lead to the
desired randomness; 13 (2) due to the network latency it

12. This requirement, however, could be lifted by deploying Byzantine
reliable broadcast.

13. It is however costly, as they require to spend considerable time
and computational efforts on this action.

is possible that forks occur. One might also consider an
attack scenario to affect the beacon output by manipu-
lating the network to prevent or delay the propagation
of a particular block producing an undesirable output.
Although imposing financial penalties or slashing is a
well-known way to restrict miners from such manipulation
attacks [12], [15],14 the possible gain from attacks may
be unbounded while any penalty is bounded. A detailed
security analysis on the ability of malicious miners is
carried out in [27], showing the impossibility of deriving
even one single truly random bit when the attacker has
a considerable fraction of the total computing power. On
the other hand, when the attacker has a limited computing
power that is not enough for block production, generating
truly random bits is feasible. The authors in [120] present
a model for uniform randomness extraction over a public
blockchain that has each party output a public value
together with secret values to the other parties in a multi-
round fashion.

As common in the DRB literature, incorporating a
delay function is a working method to protect against a
malicious miner via imposing a delay period only after
which the output is achievable. [40], [107] proposed two
protocols for augmenting such delay functions based on
computing modular square root and iterating a pseudoran-
dom permutation (e.g., block cipher) or hash function as
compositionally-sequential functions. Notice that despite
having a (randomized) leader-based style with the miner
being the epoch’s leader, these protocols can provide
absolute unpredictability, even for the current epoch’s
beacon output, thanks to intrinsic randomness lied in the
system (plus the use of delay). RandChain [91] combines
security properties of Nakamoto consensus and delay
functions to address two main issues in a PoW blockchain-
based system including biasability, and unfairness, i.e.,
parties with high computational power dominating the
randomness generation. It introduces a primitive called
SeqPoW which is a puzzle that, unlike the typical PoW
puzzle, cannot be solved faster using multiple parallel
processors. To put it another way, SeqPoW is a cryp-
tographic puzzle that takes a random and unpredictable
number of sequential steps to solve. Similar to VDFs,
sequentiality in SeqPoW also implies unpredictability.

Insight 12. Proof-of-work mechanism in Nakamoto
consensus prevents equivocation by the leader (e.g.,
miner) via making it costly, somewhat resembling the
use of (threshold) signature in BFT-type consensus.

8.2. Liveness

As Nakamoto consensus works safely only in syn-
chrony [131], the randomness beacon protocol built on
top of it inherently should have the same network assump-
tion [38], [40], [91]. More precisely, a non-synchronous
network condition (partial-synchronous or asynchronous)
leads to arbitrarily long network partitions, violating the
consistency of the system. Moreover, these protocols can
tolerate a (computationally) honest majority of t < n/2.

14. We note that slashing is an established method for a proof-of-stake
(PoS) setting where the actors have some stake already deposited in the
system.



8.3. Scalability

The properties of DRBs using public blockchain rely
on their underlying distributed ledger and cannot be
treated in a stand-alone regime. In [38], [40], [91] the
party who first finds the solution to a puzzle, publishes
the result globally to the peer-to-peer network. In such
a network, the message is delivered by a sender to a
random subgroup of parties (i.e., its peers) in different
steps until all parties receive the message. Thus, the
parties do not necessarily know each other in contrast
to the network with point-to-point channels. Although
the availability of a (public) distributed ledger facilitates
the process, one may argue that posting to a blockchain
could be more costly compared to implementing broadcast
channels. That is, the former usually contains a large
population of parties that are not necessarily involved in
the randomness generation, but the latter is only concerned
with a fixed set of participants. Verification should be
done efficiently just by checking the correctness of the
solution, resulting in O(1) cost. In these protocols, the
set of participants may dynamically change over time,
enabling public participation.

9. Discussion

We now look at some aspects of DRB protocols that
are worthy enough to be highlighted independently from
the systematization already provided. Due to the limitation
in space, we provide further discussion in Appendix A.
Adaptive Security. There are two widely known strategies
that an adversary can adopt to corrupt parties: static
corruption, where the set of corrupted parties is fixed
and known to the adversary before the protocol begins;
and adaptive corruption, where the adversary can corrupt
any party it wishes based on its view of the protocol.
The adversary’s capability is still limited to corrupt only
a certain number of parties and they remain corrupted
until the end of protocol [46], [110]. In [121], two levels
of adaptiveness are considered for an adversary, namely
fully and mildly. The former refers to a strong adversary
that may corrupt the victims instantly while it takes some
time for the latter to corrupt a new party. Most of the
public randomness protocols in the literature consider the
static adversary. In fact, providing proven security against
an adversary enjoying adaptiveness is rather delicate and
requires more work. RandRunner [134] offers absolute
unpredictability of the next t + 1 epochs for both static
(worst-case) and adaptive adversary while it offers proba-
bilistic unpredictability against a mild adaptive adversary
since the protocol can make progress before the adversary
gets a chance to corrupt new leaders.

Insight 13. In a leader-based protocol with the leader
solely contributing to the beacon output, an adaptive
adversary can corrupt up to t consecutive leaders and
violate the unpredictability. Therefore, the adaptive
adversary essentially acts as a static adversary in a
worst-case scenario.

As mentioned in [100], the single or multi-round
design of the protocol plays a critical role in providing
adaptive security. A single-round protocol where each
party only speaks once during an epoch can provide

adaptive security as the best the adversary can do is to
try and randomly corrupt parties before they contribute;
otherwise, any corruption would be useless. This model
is known and formalized under the notion of YOSO,
you only speak once [26], [83]. Therefore, the important
observation in designing an adaptively secure leader-based
protocol is that the adversary should not be able to detect
the next leader ahead of disseminating the result. Given
this, Algorand [85] provides probabilistic unpredictability
in the presence of an adaptive adversary. The work of Ki-
ayias et al. [100] can be thought of as a parallelization of
Algorand where instead of having a leader at each epoch,
all parties individually compute the VRF on a common
seed and broadcast it to others. Eventually, the hash of
the least k submissions (i.e., VRFs with smallest values)
determines the beacon output. This approach eliminates
the risk of a malicious adversary having complete control
over all contributors, as the probability of the k-th smallest
adversarial contribution being smaller than an honest one
is bounded when the parameters are appropriately chosen.
This ensures the inclusion of at least one honest con-
tribution to secure the beacon output. Consequently, the
protocol remains secure even when an adaptive adversary
corrupts up to t < n/2 parties.

Gap 8. One could explore how to construct an
adaptively secure DRB protocol with absolute unpre-
dictability, where the leader solely contributes to the
beacon output at each epoch. Such protocol should
likely resemble the Nakamoto-style structure, where by
the time the adversary decides to corrupt a party, they
have already revealed the contribution.

Leaderless protocols using VRF, in particular those
based on threshold signature, can be viewed as a single-
round protocol excluding the one-time DKG phase. So,
adaptiveness should be investigated in the combination
of the two sub-protocols. As realized in [46], one major
problem with adaptive security for threshold scheme is
constructing a simulator to simulate the adversary’s view
in the real execution of the protocol as it is hard to
predict which subset of parties is corrupted.15 The authors
in [10], [46] use some techniques such as erasing the
secrets, rewinding, and zero-knowledge proof to achieve
an adaptively secure threshold RSA signature on top of a
static-secure one. A requirement of such transformation is
the refreshment of partial secret keys after each signature
generation that additionally leads to proactive security
[94], [112], a level of security required when parties are
under threat of losing/leaking their secret keys. Recently,
Bacho and Loss [17] introduced an adaptive security proof
in algebraic group model (AGM) [74] for threshold BLS
signature which could essentially bring the respective
randomness beacon protocols the joy of adaptiveness.

It is rather challenging to argue about the adaptiveness
of protocols using PVSS despite not knowing concrete
attack against them [61]. It is clear, however, to argue that
in such multi-round protocols parties go through at least
two logical steps of commit, and reveal. So, to provide
security against an adaptive adversary using more than
t contributions from distinct parties is inevitable. This

15. Unless we assume that the simulator knows all the private shares
of parties which do not make sense.



TABLE 1: Comparison of distributed randomness beacons (DRBs).

Category Protocol Security Liveness Scalability
Setup

Dynamic

Adaptive
GOD

Responsive

Unpre. Unbias. Net. Faults Comm. Comp. Veri.

PVSS

RandShare∗ [143] ✓ ✓ async. n/3 O(c2n) O(c2n) O(c2n) CRS ✓ ✓ ✓ ✓
RandHound [143] ✓ ✓ sync. n/3 O(c2n) O(c2n) O(c2n) CRS ✓ ✗ ✗ ✗
RandHerd [143] ✓ ✓ sync. n/3 O(c2 logn) O(c2 logn) O(1) DKG ✗ ✗ ✓ ✗
Ouroboros [101] ✓ ✓ sync. n/2 O(n4) O(n3) O(n3) CRS ✓ ✗ ✓ ✗
SCRAPE [47] ✓ ✓ syn. n/2 O(n4) O(n2) O(n2) CRS ✓ ✗ ✓ ✗
Hydrand [135] t+ 1 ✓ sync. n/3 O(n2) O(n) O(n) CRS ✓ ✗ ✗ ✗
ALBATROSS [48] ✓ ✓ sync. n/2 O(n2) O(n) O(1) CRS ✓ ✗ ✓ ✗
GULL [49] ✓ ✓ sync. n/2 O(n4) O(n2) O(n2) DKG ✗ ✗ ✓ ✗

GRandPiper [29] t+ 1 ✓ sync. n/2 O(n2) O(n2) O(n) CRS†† ✓ ✗ ✓ ✓

BRandPiper∗ [29] ✓ ✓ sync. n/2 O(n3) O(n2) O(n2) CRS†† ✓ ✓ ✓ ✓
SPURT [61] ✓ ✓ p.sync. n/3 O(n2) O(n) O(n) CRS ✓ ✓ ✗ ✓

OptRand [28] ✓ ✓ sync. n/2 O(n2) O(n) O(n) CRS†† ✓ ✓ ✓ ✓

VRF

Cachin et al. [41] ✓ ✓ async. n/3 O(n2) O(n) O(1) DKG ✗ ✗ ✓ ✓
DFINITY [92] ✓ ✓ p.sync. n/3 O(n2) O(n) O(1) DKG ✗ ✓ ✓ ✓
Drand [4] ✓ ✓ sync. n/2 O(n2) O(n) O(1) DKG ✗ ✓ ✓ ✗
Algorand [85] Ω(t) ✗ p.sync. n/3 O(cn) O(1) O(1) CRS ✗ ✓ ✗ ✓

Ouroboros Praos [65] Ω(t) ✗ sync. n/2 O(n)† O(n) O(n) CRS ✓ ✓ ✗ ✗
Glow [77] ✓ ✓ sync. n/2 O(n2) O(n) O(1) DKG ✓ ✗ ✓ ✗
STROB [22] ✓ ✓ sync. n/2 O(n3) O(n) O(1) DKG ✗ ✗ ✓ ✗
Kiayias et al. [100] ✓ ✓ sync. n/2 O(n3) O(n) O(1) CRS ✓ ✓ ✗ ✗
GRandLine [16] ✓ ✓ sync. n/2 O(n2) O(n) O(n) DKG ✗ ✓ ✓ ✓

VDF

Harmony [3] Ω(t) ✓ p.sync. n/3 O(n2) VDF O(n) CRS ✓ ✗ ✗ ✗
RandRunner [134] t+ 1 ✓ sync. n/2 O(n2) VDF O(1) CRS ✓ ✗ ✓ ✓

HeadStart [106] ✓ ✓ sync. n O(n)† VDF O(1) - ✓ ✗ ✗ ✗
Bicorn [54] ✓ ✓ sync. n O(n3) VDF O(n) - ✓ ✓ ✓ ✗

Cornucopia [57] ✓ ✓ sync. n O(n)† VDF O(1) - ✓ ✗ ✗ ✗

Blockchain
Bitcoin [38] ✓ ✗ sync. n/2 O(1)† PoW O(1) CRS ✓ ✓ ✗ ✗

Proof-of-Delay [40] ✓ ✓ sync. n/2 O(1)† VDF O(log λ) CRS ✓ ✓ ✗ ✗

RandChain [91] ✓ ✓ sync. n/2 O(1)† PoW O(1) CRS ✓ ✓ ✗ ✗
∗ =: VSS is used; † =: Public bulletin board is assumed; †† =: Private setup is assumed.

is the way BrandPiper [29] achieves adaptive security,
employing the communication-wise efficient VSS scheme
of [98] with more than t contributions involved in produc-
ing the beacon output at each epoch. With this in mind,
the authors in [18] very recently presented new security
definition for aggregatable PVSS fulfilled against an adap-
tive adversary in the algebraic group model. Aggregation
refers to homomorphic combination of multiple PVSS
transcripts into one aggregated transcript that shares the
sum of the corresponding secrets. This implies adaptive
security for some of the existing DRBs in the literature
such as [28], [61].

Gap 9. Investigating the adaptive security for non-
aggregatable PVSS and proving it for aggregatable
PVSS under standard and less strong assumptions
are two research questions. This, in turn, leads to
analyzing the adaptiveness of resulting DRB protocols.

History Generation. STROBE [22] put forth an in-
teresting property for a DRB regarding the efficient
(re)generation of the beacon history, given the current
epoch’s output. This novel feature is of importance in
applications that require a high-throughput stream of ran-
domness and are likely to suffer from occasional discon-
nections, e.g., online gaming. Therefore, at epoch r, it
is possible to generate all the previous beacon outputs
{x1, . . . , xr−1} using xr and public key. This also im-
plies self-verification, enabling verification of each output
against the previous ones with no need for NIZK proof.
This property is the direct result of using a (threshold)
RSA signature where the secret key is the multiplicative
inverse of the public key, allowing to trace the chain of
randomness back by iterative encryptions. Despite the pos-
sibility of generating the history, it gets more computation-
ally expensive (i.e., grows exponentially) as the number of

epochs to (re)generate increases.16 With threshold BLS, it
is possible to create a unique chain of randomness, and
with threshold RSA, it is possible to have continual back
and forth on such a chain.

Insight 14. In a (plain) secret sharing, the shares
do not carry any self-verifying information. But, in
STROBE [22] this is the case thanks to the underlying
chain of RSA decryption.

Insight 15. As a trade-off, the history generation prop-
erty diminishes randomness quality from being truly
random or pseudorandom to just being unpredictable
as it is not possible to get the full history from a fresh
(truly/pseudo)random value.

Cryptographic Assumption. Cryptographic assumptions
are crucial in analyzing the security of the DRB protocols.
One well-known assumption used in a range of random-
ness beacon protocols is random oracle [24]. Particularly,
the beacons with pseudorandom outputs [4], [49], [65],
[77], [92], [134] make use of such assumption to turn the
unpredictable beacon values to the pseudorandom ones
that are indistinguishable from a uniform distribution. This
assumption is also used in PVSS schemes [47], [137],
allowing more efficient constructions. Another popular
assumption in the context of randomness beacons is de-
cisional Diffie-Hellman (DDH) [37] commonly served as
the standard assumption for underlying PVSS and DKG
schemes [47]–[49], [53]. Some protocols may also rely
on stronger assumptions that are less standard and their
security properties are not studied substantially. For in-
stance, SCRAPE in the plain model uses pairings, relying
on the hardness assumption of decisional bilinear squar-

16. It is possible to deploy some techniques to decrease the proof size
and the running time. For more details see [22].



ing (DBS) [93].17 SPURT [61] makes modifications to
the pairing-based PVSS of SCRAPE to turn its security
assumption to the more standard decisional bilinear Diffie-
Hellman (DBDH) assumption [37]. Also, repeated squar-
ing (RSW) [132] is the common hardness assumption for
DRB protocols using VDF.

Gap 10. Although the leaderless DRB of [47] works
with a version of PVSS in the random oracle model, all
the existing leader-based protocols using PVSS need
to rely on pairings. Designing a leader-based protocol
without pairings may considerably boost performance.

Post-quantum Security. The emergence of quantum com-
puters could be a real threat to the existing protocols due
to their cryptographic hardness assumptions. In particu-
lar, bilinear-map-based PVSS is susceptible to quantum
attacks [139], making the corresponding DRB protocols
insecure. Gentry, Halevi, and Lyubashevsky [84] recently
proposed a proactive and non-interactive PVSS scheme in
which the underlying encryption scheme is based on the
learning with errors (LWE) problem [125]. Although the
adoption of LWE encryption in their lattice-based scheme
is primarily motivated by scaling PVSS in large-scale
systems (e.g., where committees may scale to hundreds
or thousands of parties), the secrecy of their PVSS is
preserved even against quantum attackers. HERB [53]
builds a randomness beacon protocol with additive ho-
momorphic threshold encryption where a group of parties
encrypt their local randomness and any threshold of par-
ties can retrieve the aggregated beacon value. A potential
advantage of this construction is its ability to resist quan-
tum attacks by replacing fully homomorphic lattice-based
schemes, supporting DKG and threshold decryption [25].
HashRand [20] is a recent effort to design a post-quantum
randomness beacon using hash-based VSS [68], where
a Merkle tree of shares is used as a commitment to a
(sharing) polynomial instead of conventional discrete log
cryptography. To prove security against a polynomial-time
quantum adversary the hash function is assumed to be a
quantum random oracle [33].

10. Conclusion

In this paper we provide a comprehensive overview on
the topic of public randomness and discuss its manifold as-
pects critically, presenting concrete insights and potential
gaps using a modular categorization. We conclude with a
summary of our analysis on each line of works considered
in the paper.

Protocols Using PVSS. These protocols provide the high-
est quality of uniform randomness due to their commit-
reveal structure and the fact that there exists at least one
honest contribution in the outcome. However, they do not
scale well due to the complexity of performing PVSS
and the size of the transcript that has to be exchanged
and verified. Adopting leader-based and/or aggregation
techniques improve scalability but are often nevertheless

17. SCRAPE PVSS scheme is proposed in two versions, one in the
random oracle model under DDH assumption and one in the plain model
under DBS assumption.

insufficient for practical purposes [54]. Deploying batch-
ing techniques could be another venue to explore for scala-
bility but requires further analysis to preserve the security
of sub-batches (Gap 1). These protocols usually require
some form of consensus to agree on the output, making
their deployment in permissionless settings challenging.
Another interesting direction to explore is weighted PVSS
protocols in which contributions from participants might
have different weights according to some predefined met-
ric which would enable their integration with proof-of-
stake blockchains [62].

Protocols Using VRF. These protocols do not provide
uniform randomness, but pseudorandomness. However,
this level of quality is suitable for many applications like
the ones mentioned in Section 1.1. They are quite effi-
cient and scale well when used in a leader-based fashion
but may suffer from biasing. Using a setup phase (i.e.,
DKG) eliminates this issue but impedes efficient dynamic
participation. Utilizing a silent setup [80] or time-based
cryptography [3] are two promising approaches to address
this challenge while remaining compatible with permis-
sionless settings. Further approaches to explore include
using VRFs with key extraction (Gap 3) and supporting
flexible thresholds (Gap 4).

Protocols Using VDF. These protocols provide pseudo-
randomness, similar to VRF-based ones. However, unlike
VRF protocols adopting a leader-based approach with
VDFs does not violate unbiasability due to the VDF
properties but may affect the unpredictability (Gap 7). As
discussed in [54], an important aspect to explore is the
security considerations of VDFs and their correspondence
to the wall clock and hardware speeds. Furthermore, due
to the similarities between VRFs and VDFs, one could
explore their combination in a modular fashion to produce
randomness with different qualities similarly to [49].

Protocols Using Public Blockchain. These protocols
utilize the inherent randomness in the process of block
construction that could be verified publicly. However, they
cannot ensure unbiasability due to various possible attack
vectors such as withholding the proposal or occurring fork.
The use of shared randomness is of paramount importance
for blockchain systems either for security reasons (e.g.,
leader election) or running applications (e.g., online gam-
ing). Reliance on threshold security seems to be crucial
to obtain secure and efficient randomness, either using
off-chain committees (e.g., randomness services) or on-
chain committees (e.g., validators) both of which have
been explored recently in [97] and [62], respectively.
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zero-knowledge proofs for lattice-based cryptosystems. In Theory
of Cryptography: 7th Theory of Cryptography Conference, TCC
2010, Zurich, Switzerland, February 9-11, 2010. Proceedings 7,
pages 201–218. Springer, 2010.

[26] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai
Halevi, Hugo Krawczyk, Chengyu Lin, Tal Rabin, and Leonid
Reyzin. Can a public blockchain keep a secret? In Theory of Cryp-
tography: 18th International Conference, TCC 2020, Durham,
NC, USA, November 16–19, 2020, Proceedings, Part I 18, pages
260–290. Springer, 2020.

[27] Iddo Bentov, Ariel Gabizon, and David Zuckerman. Bitcoin
beacon. arXiv preprint arXiv:1605.04559, 2016.

[28] Adithya Bhat, Nibesh Shrestha, Aniket Kate, and Kartik Nayak.
Optrand: Optimistically responsive reconfigurable distributed ran-
domness. In NDSS, 2023.

[29] Adithya Bhat, Nibesh Shrestha, Zhongtang Luo, Aniket Kate,
and Kartik Nayak. Randpiper–reconfiguration-friendly random
beacons with quadratic communication. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 3502–3524, 2021.

[30] George Robert Blakley and Catherine Meadows. Security of
ramp schemes. In Workshop on the Theory and Application of
Cryptographic Techniques, pages 242–268. Springer, 1984.

[31] Manuel Blum. Coin flipping by telephone a protocol for solving
impossible problems. ACM SIGACT News, 15(1):23–27, 1983.

[32] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch.
Verifiable delay functions. In Annual international cryptology
conference, pages 757–788. Springer, 2018.
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A. Further Discussion

Setup Assumption. DRB protocols typically need to use
some form of setup assumption for initializing the process.
This can be either for efficiency purposes (e.g., boot-
strapping) or to enable the implementation of elaborate
operations. One well-known example of such a setup is



PKI which is a functionality F whose responsibility is to
relay parties’ public keys to others. Depending on whether
functionality F outputs public or private values to parties,
we can refer to it as a public or private setup. In settings
with a public setup, all parties receive the same value from
the functionality. This can be some group specification
(e.g., group generator) or an initial seed, known as a com-
mon reference string (CRS). DRB protocols using PVSS
and VDF can be implemented with such a public setup.
We remark that deploying VDF also needs a setup phase
for its underlying group of unknown order. However, a
sidestep would be either using class groups of imaginary
quadratic fields [39] or trapdoor VDF augmented with a
NIZK [134]. On the other hand, protocols with a private
setup need to either rely on a trusted party or run an MPC
protocol (e.g., DKG) to generate secret values that must
be kept hidden during the protocol execution. This process
is an efficiency bottleneck and makes the re-configuration
problematic [29], i.e., parties cannot be replaced easily
once the setup gets executed.

Simulation-based Security. It is not difficult to see that a
DRB protocol is actually a secure multi-party computation
(MPC) [86], [110]. Treating protocols based on some
specific properties, like the majority of existing works,
poses the threat of not covering all the required ones.
This consequently demands paying more attention to the
grounded paradigm of real/ideal simulation which is a
well-known security formulation in the context of secure
computation. By defining an ideal functionality that acts as
a trusted entity faithfully carrying out the computations,
a secure system is defined by comparing the real-world
execution of the protocol and the execution within the
presence of the ideal functionality. This approach apart
from having the advantage of capturing the security con-
cerns, allows moving towards composable security [44],
[45] which is an important but overlooked necessity for
protocols producing public randomness. Such protocols,
even when designed in a stand-alone manner, often are
deployed within a larger system and may have interac-
tions with other sub-protocols to provide required fresh
randomness. To our knowledge, only recently a few rare
attempts have been made in this direction [21], [48].

Insight 16. Looking at DRB as a type of secure
multiparty computation together with its resemblance
to SMR, allows arguing about its properties formally
by adopting a security definition from the former and
a liveness definition from the latter.
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