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Abstract. Profiling side-channel analysis is an essential technique to assess the security
of protected cryptographic implementations by subjecting them to the worst-case
security analysis. This approach assumes the presence of a highly capable adversary
with knowledge of countermeasures and randomness employed by the target device.
However, black-box profiling attacks are commonly employed when aiming to emulate
real-world scenarios. These attacks leverage deep learning as a prominent alternative
since deep neural networks can automatically select points of interest, eliminating
the need for secret mask knowledge. Nevertheless, black-box profiling attacks often
result in non-worst-case security evaluations, leading to suboptimal profiling models.
In this study, we propose modifying the conventional black-box threat model by
incorporating a new assumption: the adversary possesses a similar implementation
that can be used as a white-box reference design. We create an adversarial dataset by
extracting features or points of interest from this reference design. These features are
then utilized for training a novel conditional generative adversarial network (CGAN)
framework, enabling a generative model to extract features from high-order leakages
in protected implementation without any assumptions about the masking scheme
or secret masks. Our framework empowers attackers to perform efficient black-box
profiling attack that achieves (and even surpasses) the performance of the worst-case
security assessments.
Keywords: Side-channel Analysis · Deep learning · Generative AI

1 Introduction
Commonly deployed cryptographic algorithms are widely regarded as mathematically
secure, as simply knowing the input and output data along with the details of the algo-
rithm is insufficient to recover the key within a reasonable computation time. However,
when cryptographic implementations run on electronic devices, unintentional and unavoid-
able information leakages occur, primarily through power consumption, electromagnetic
emission, execution time, temperature, and acoustics. These side-channel information
leaks can be exploited by attackers who measure and analyze them during encryption or
decryption operations. This enables them to extract the key through statistical analysis of
the side-channel measurements.

The research on the side-channel analysis (SCA) domain has mainly concentrated on
two main approaches. On one side, there are statistical methods, distinguishers, and
leakage assessment techniques for direct side-channel attacks. Examples of such attacks
include Differential Power Analysis [KJJ99], Correlation Power Analysis [BCO04], and
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Mutual Information Analysis [GBTP08]. On the other hand, research on profiling SCA (all
of them derived from the classic template attack [CRR02]) has largely aimed at enabling
worst-case security assessments [BDMS22]. In the first category, attack methods are
implicitly treated as real-world security threats, mainly because a side-channel attack can
be directly mounted on the victim’s device, in which the access to the target, together
with the ability to query encryption or decryption executions, are the only requirements to
deploy the attack itself. Profiling SCA, although also realistic, involves more assumptions
within a well-defined threat model. Its primary research objective is to assess the security
of a cryptographic implementation when an adversary possesses an identical and open
(i.e., programmable) copy of the victim’s device. A conventional threat model for worst-
case security assumes the attacker has sufficient information about the countermeasures,
including the random values generated during cryptographic executions [PPM+22].

Profiling SCA follows two main phases. In the first (or profiling) phase, a set of
side-channel measurements (with varying keys and varying input data), usually very large,
is collected from the open device to learn a statistical function that can describe the
probability distribution of measurements. In the second (or attack) phase, a separate set
of side-channel measurements (with a fixed key and varying input data) is collected from
the target device and matched on the computed statistical function. A worst-case security
assessment is not always possible in security evaluations, especially following certification
schemes. If the profiling phase has some limitations concerning access to secret random
values (which are normally written in protected registers and not accessible from outside),
the implementation of feature selection or dimensionality reduction becomes highly limited,
and the profiling phase has to learn from large side-channel measurement intervals, with
massive amounts of noisy data points. This means a security evaluation must follow
non-worst case assumptions, which is assumed to be hard as building an optimal profiling
model requires more computation efforts [PWP22].

Nevertheless, the target device is usually similar or shares several implementation
details with other targets. For instance, if the security assessment is performed on a
first-order masked AES implementation, the evaluator may have access to similar AES
designs running on different devices from other manufacturers. Therefore, we propose the
following scenario:

How much would the security of a cryptographic implementation be compromised
when an adversary possesses an open and fully-controlled similar implementa-
tion?

This work introduces another ingredient to the classic (non-worst case) profiling attack
threat model. Specifically, we assume that the adversary possesses access to a comparable
(i.e., different) and openly available implementation where the randomness elements (such
as masks) are known and the implementation of feature selection is straightforward. We
implement a novel conditional generative adversarial network (CGAN)-based structure
that learns to efficiently extract features from a target implementation with unknown masks
by learning the same process from a reference implementation with known masks. In
the CGAN training, the adversarial dataset is given by the features selected from the
reference dataset. The only requirement for our framework is that both implementations
are similar (e.g., two software AES implementations with first-order Boolean masking
countermeasures). Our results indicate that our CGAN-based framework can convert a
black-box profiling attack into a profiling attack with similar (and eventually better) attack
performance than white-box profiling attacks.

The proposed framework incorporates side-channel measurements from two distinct de-
vices or measurement setups, but it does not specifically address portability issues [BCH+20],
which are typically addressed through the utilization of transfer learning techniques in
deep learning-based solutions [CZLG21, CZG+22]. Instead, it focuses on efficient feature
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extraction from a target device with unknown masks using a black-box profiling approach,
leveraging measurements from an open and different device with known masks. This
approach improves the interpretability of the attack on the target dataset compared to
conventional black-box deep learning-based profiling attacks.

In summary, our main contributions are:
• We propose a novel conditional generative adversarial network-based SCA framework

that allows an adversary to leverage the knowledge from a reference implementation
to extract features from a target implementation. This modified threat model and
corresponding CGAN-based framework demonstrate the potential risks that arise
when an adversary has full control over an implementation similar to the target one.

• The proposed framework allows an adversary to convert a black-box profiling attack
towards a white-box profiling attack capability, which drastically improves the
black-box profiling attack performance. Our results demonstrate that applying our
framework reduces the difficulties of finding an optimal profiling model in a non-
worst-case security evaluation significantly (we refer to the Section 6 of [MCLS23]
for a discussion about difficulties in finding deep learning-based profiling models in
worst and non-worst case security evaluations). For some of the tested scenarios,
after applying our proposed CGAN-SCA framework, the chances to find a successful
profiling attack increase from 8.92% to 90.47% and from 12.14% to 99.55% in a
hyperparameter search process. We skip any feature selection process for datasets
considered target devices, commonly done in the related deep learning-based SCA
(DLSCA) literature [PPM+22].

• The proposed CGAN-SCA framework can precisely extract features from high-order
leakages, such as first-order masking schemes. We provide a detailed analysis to
demonstrate how the generator in a CGAN architecture precisely mimics the features
selected from a reference implementation.

2 Background
2.1 Datasets
To demonstrate the performance of our proposed framework, we consider five publicly
available datasets, all containing side-channel measurements from first-order masked AES
software implementations. Four of these datasets, namely ASCADr, ASCADf, DPAv4.2,
and CHES CTF 2018 are the same as adopted for the NOPOI scenario in [PWP22] (see
Section 2.3 for specific details and Table 2 for information about the selected intervals from
raw measurements of DPAv4.2 and CHES CTF 2018). The raw side-channel measurements
from ASCADr, ASCADf, DPAv4.2, and CHES CTF 2018 contain large traces with
100 000, 250 000, 150 000, and 150 000 sample points per trace, respectively. Working
with such large intervals is computationally intensive, and in this paper, we also consider
window resampling with a window of 20 and step of 10. The resampled datasets result in
preprocessed side-channel measurements with 25 000, 10 000, 15 000, and 15 000 samples
per trace, and we consider 200 000, 50 000, 70 000 and 30 000 measurements as profiling
sets for ASCADr, ASCADf, DPAv4.2, and CHES CTF 2018, respectively. For all datasets,
we consider 5 000 measurements as validation sets and another 5 000 as attack sets.

The fifth dataset is ESHARD-AES128, and it consists of side-channel measurements
collected from a software-masked AES-128 implementation running on an ARM Cortex-M4
device. The AES implementation is protected with a first-order Boolean masking scheme
and shuffling of the S-box operations. In this work, we consider a trimmed version of
the dataset that is publicly available 1 and includes the processing of the masks and all

1https://gitlab.com/eshard/nucleo_sw_aes_masked_shuffled

https://gitlab.com/eshard/nucleo_sw_aes_masked_shuffled
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S-box operations in the first encryption round without shuffling. This dataset contains
100 000 measurements, which are split into groups of 90 000, 5 000, and 5 000 for profiling,
validation, and attack sets, respectively.

2.2 GANs and CGANs

Generative models are machine learning models that learn the underlying probability
distribution of a given dataset. The primary objective of generative models is to generate
new samples that resemble the training data in terms of statistical properties and structure.
While discriminative models focus on learning the decision boundary between different
classes or categories of data, generative models aim to understand and capture the
characteristics and patterns of the entire dataset.

Generative adversarial networks proposed a novel way to train generative models [GPM+14].
The structure consists of two adversarial models competing against each other: a generator
G, with parameters θg, and a discriminator D, with parameters θd. The main goal of the
generator is to take input noise distribution p(z) and to produce synthetic or fake output
data G(z, θg) that follows a data distribution present in real data. The discriminator is
trained to provide the probability D(x, θd) that an input data x comes from a real training
set or from the generator. Both generator and discriminator are trained simultaneously
in a way that θg is trained to minimize log(1 − D(G(z))) and θd is trained to minimize
log D(x), as following a min-max game with value function:

min
G

max
D

V (G, D) = Ex∼p(x)[log D(x)] + Ez∼p(z)[log(1 − D(G(z)))]. (1)

Conditional Generative Adversarial Networks (CGANs) [MO14] are a variant of the
traditional GAN architecture incorporating additional information to guide the generation
process. In CGANs, the generator and discriminator receive extra input in the form of
conditional variables, which can be class labels, attribute vectors, or any other auxiliary
information. This conditioning allows for the generation of more targeted and controlled
outputs. By providing specific conditions, such as a particular class label, a CGAN can
produce images or data samples that conform to desired characteristics. This capability
makes such models particularly useful in various applications, such as image synthesis,
style transfer, text-to-image generation, and data augmentation. By feeding the generator
and discriminator networks with conditional variables, these models enable more precise
control over the generated outputs. Figure 1 shows the structure of GAN and CGAN
structures.

(a) GAN (b) CGAN

Figure 1: GAN and CGAN structures.
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3 Related Works
The usage of generative models in side-channel analysis has been limited to a few appli-
cations. In [WCL+20], the authors considered generative adversarial networks for data
augmentation. Later, a more elaborated analysis with conditional generative adversarial
networks also considered data augmentation [MBPK22]. Both analyses were applied to
protected AES implementations. In [ZBC+23], the authors considered Variational Au-
toEncoders (VAE) to generate reconstructed and synthetic traces that model the true
conditional probability distribution of real side-channel traces. In [CLM23], the authors
proposed the EVIL-machine, a framework using a GAN-like structure to find a suitable
leakage model for the target device, replacing the need for prior knowledge of the leakage
characteristics. The structure is extended to mount non-profiled attacks that exploit the
learned leakage model. In [CZG+22], the authors presented an approach using a GAN-
based structure to mitigate the issues related to the portability of profiling models. Similar
to our framework, the authors extracted an intermediate representation of the leakages
from a profiling device and then trained a generator to extract a similar representation
from unlabeled attack traces measured on another device of the same model. They consider
only unprotected implementations running on the same device model.

The CGAN-SCA framework that we propose in the next section acts as a feature
extractor from raw datasets, and therefore our work can also be seen as a preprocessing
method. Regarding the application of deep neural networks for preprocessing side-channel
traces specifically, we refer to Section 4.2 from [PPM+22]. We emphasize that none of the
related works consider a generative adversarial architecture to efficiently extract features
from a target dataset by learning the probability distribution from an adversarial dataset,
as detailed next.

4 CGAN-SCA Framework
This section proposes a novel profiling attack framework based on conditional generative
adversarial networks for side-channel analysis (CGAN-SCA). To this end, we propose an
extended profiling SCA threat model, as described next.

4.1 Extended Threat Model
The classic threat model commonly adopted in profiling SCA assumes that an adversary
possesses an open (i.e., programmable) and identical version of the target device. Thus,
the adversary collects a set of profiling measurements from the open device by setting
the input (i.e., plaintexts or ciphertexts) and keys. In [PPM+22], this threat model is
defined as a portability threat model, while the case when the same device is used for both
profiling and attack phases is defined as a classic threat model.

We modify both classic and portability threat models for profiling attacks by adding
one more assumption: the adversary has a second and similar implementation running on
another and different device (we denote it as reference implementation or dataset) that
runs an implementation similar to the target one (we denote it as target implementation
or dataset). In our extended threat model, the adversary can implement a feature or
points-of-interest selection from the reference implementation. We assume that all secret
randomnesses are known concerning this reference implementation (i.e., a conventional
white-box approach). For the target implementation, the adversary has no access to secret
randomness and needs to perform a classical black-box profiling attack.

This threat model is realistic, as even public datasets could be used as a reference
set. Since the public datasets have known secret information, if the target is similar, e.g.,
running AES with Boolean masking, we could utilize the public information with the
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proposed CGAN framework. On the other hand, if information about the target device
is known, such as countermeasures or low-level implementation details (e.g., information
from documentation, masking scheme based on public literature, etc.), the adversary could
potentially produce a customized reference implementation.

Throughout this paper, we refer to two categories of trace sets. When the trace set is
placed as a reference dataset, we refer to it as Xref . The trace set Xtarget is always referred
to as the target dataset. A feature selection process over Xref results in an adversarial
dataset2 for the proposed CGAN, also referred to as reference features fref . The features
extracted with the proposed CGAN-based architecture, ftarget, from Xtarget are referred
to as target or generated features. Nf , is the number of features in each element of fref or
ftarget sets.

4.2 A Novel Conditional GAN Framework
The proposed Conditional GAN-based framework, referred to as CGAN-SCA, is illustrated
in Figure 2. The structure consists of three main blocks:

1. Feature selection: this block receives at its inputs the set of reference side-channel
measurements Xref and the masks (randomness) associated with this dataset. This
block outputs the features fref (i.e., the adversarial dataset), which should contain
the most leaky samples from Xref , similar to the points-of-interest selection.

2. Generator G: this block receives the side-channel measurements from the target
implementation at its inputs, Xtarget. The generator’s output is the set of extracted
features, ftarget, also a latent representation of Xtarget.

3. Discriminator D: this block receives at its input the set of features (fref or ftarget)
and the corresponding set of labels (Yref or Ytarget). The output of the discriminator
is a value representation of the loss function.

Figure 2: Proposed CGAN-SCA framework.

The main goal of training the proposed CGAN model is to generate ftarget outputs
with the same dimension as given by fref and with most of its features containing main
side-channel leakages from Xtarget. Thus, the generator acts as a feature extraction or
dimensionality reduction mechanism. Different from a classic CGAN structure where
the generator receives at its inputs a random source and a label, our generator receives
only the original traces Xtarget from the target implementation. We emphasize that this
architecture is a new concept introduced in this paper.

The main goal in training the generator G is to learn parameters θG such that new
samples ftarget are statistically indistinguishable from samples from reference fref . In other

2Note that the term adversarial is not connected with the domain of security of AI, e.g., adversarial
examples but with the fact that it is a dataset used by an adversary and produced by GAN.
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words, we train θG to transform input target traces Xtarget to the probability distribution
of fref . Determining the distance between two distributions is a two-sample hypothesis test
problem, which is difficult for complicated distributions with high dimensions. Therefore,
we will also judge the quality of the generator by computing the SNR between ftarget

(i.e., the output of the generator) and the high-order secret shares (i.e., mask shares and
masked S-box output bytes) from the target device. In our threat model, an attacker does
not know these high-order secret shares from Xtarget, and these values will not interfere
with the training of generator and discriminator models. Here, we consider them only to
visually confirm that the generator extracts meaningful representations from Xtarget. It is
important to note that, during the CGAN training, Xtarget should contain only profiling
measurements, as the structure requires the knowledge of its labels Ytarget. In this paper,
the labels Yref and Ytarget are always the value of the S-box output byte from the first
AES encryption round, without assuming the knowledge of any mask value. Only when
the ESHARD-AES128 dataset is involved, labels Yref and Ytarget are the Hamming weight
values of this S-box output byte as this dataset leaks more on Hamming weight.

After training the CGAN structure, the generator is isolated and predicted with
profiling, validation, and attack sets from Xtarget, as shown in Figure 3. Note how this
feature extraction process does not involve any label. Next, a profiling attack is built
from extracted features from these sets. In the attack phase, we obtain the probability
P (k) for each key candidate k, which allows us to derive the guessing entropy or success
rate [SMY09] of the correct key.

Figure 3: Profiling and attack phases.

4.3 Model Architectures in the Proposed CGAN Structure
To implement the CGAN-SCA framework, it is necessary to construct both the generator
and discriminator neural networks. Thus, to define an efficient group of hyperparameters
for generator and discriminator architectures, a new hyperparameter search process is
necessary for every combination of reference and target datasets. In this paper, for the
evaluated datasets described in Section 2.1, we performed a hyperparameter search with
details given in this section, and we verified that finding efficient hyperparameters requires
relatively low effort. More precisely, running up to 100 search attempts for both generator
and discriminator always ends up in a highly efficient CGAN structure. However, we
acknowledge that different ciphers or AES implementations with distinct countermeasures
would likely require a more complex hyperparameter search process.

According to [SC22], tuning generative adversarial networks is challenging due to its
inherent complexity. It is important to note that a well-performing generator does not
necessarily imply a strong discriminator, and vice versa. The primary difficulty lies in
establishing a reliable objective metric for hyperparameter tuning. One straightforward
objective is to achieve a discriminator accuracy of 0.5 when classifying both real and fake
data. Alternatively, a context-oriented approach can be employed, where the generated
data is evaluated in a secondary task. In our specific case, this secondary approach follows
the approach illustrated in Figure 3, which involves splitting Xtarget into profiling and
validation traces. Therefore, a profiling attack metric, such as guessing entropy, success
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rate, or perceived information [BHM+19], could be adopted as the reference metric to
assess the quality of the CGAN architecture.

During the training of the CGAN model, the objective of the discriminator is to
distinguish between fref and ftarget. Conversely, the objective of the generator is to
generate ftarget that is similar to fref . While these objectives will result in realistic looking
ftarget, the generator is not forced to extract the side-channel leakages from Xtarget in any
way as it is not conditioned. While a conventional CGAN model, where labels Ytarget are
provided to both the generator and the discriminator, seems like a straightforward solution
to alleviate this problem, the labels are unavailable during the attack phase. In other
words, the generator needs to convert Xtarget into ftarget when Xtarget is the profiling, the
validation, or the attack set. As labels are only known when Xtarget is either the profiling
or the validation set, the generator cannot receive labels when Xtarget is the attack set, as
these labels are unknown. As such, we provide labels only to the discriminator, which only
received ftarget that is generated when Xtarget is the profiling set, and therefore, labels
are known. This choice allows the discriminator to check whether the provided leakages
in ftarget correspond to the label Ytarget. This will then force the generator to use the
side-channel leakages in Xtarget in its generated ftarget as otherwise, the discriminator can
easily classify the features as fake.

4.3.1 Discriminator Architecture

We first look at how to construct the discriminator model as a poorly configured discrimi-
nator will always result in the CGAN model failing to generate useful ftarget. Our main
goal in constructing the discriminator is to ensure it uses the leakages in fref and ftarget

and does not ’memorize’ the correct fref . As several works have shown the capability
of MLPs to learn to classify first-order protected datasets from relatively small intervals
containing leaky samples [BPS+20] or even raw traces [PWP22], it should be relatively
easy for an MLP-based discriminator to learn to combine leakages when its inputs contain
only leaky samples. Developing architectures for other schemes should also be relatively
straightforward, as full access to secret shares of the reference implementation is available.
Pre-training (part of) the discriminator in a classification task, as is done in [CZG+22],
can also be an option. Learning higher-order schemes can then be accomplished using
knowledge of secret shares during training [MS21, DNG22].

The discriminator serves two primary purposes: (1) classifying the input, which
comprises a combination of labels and features, into two classes (0 or ‘fake’ and 1 or ‘real’),
and (2) comprehending the relationship between labels and features. In the second case,
we expect the discriminator to recognize an input combination of labels and features as
‘real’ if the features represent the corresponding label class. Suppose the discriminator
cannot classify whether a given combination of features and labels is real or fake. In that
case, we assume that the generated features, denoted as ftarget, are as realistic as the
reference features fref . The discriminator model is set with a binary cross-entropy loss
function.

The number of features in fref and ftarget is limited to Nf = 100, as the evaluated
datasets contain a limited number of leaky points-of-interest to what concerns the processing
of high-order leakages (e.g., masks and masked S-box output bytes). In the first experiments
from Section 5, we define Nf = 100 for ASCADr, ASCADf, and DPAv4.2. For CHES CTF
2018 and ESHARD-AES128, we consider Nf = 20, as these two datasets are less leaky
than previous ones. A more detailed analysis of the impact of Nf on the whole framework
performance is provided in Section 6.2.

Figure 4 illustrates the generic structure of the MLP-based discriminator architecture.
The input label (due to the conditioned fashion of the CGAN structure) is concatenated
with the input features that can be either fref or ftarget. For this architecture, we use
relatively large fully-connected layers after the embedding layer of the class label. Later, in
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Section 5, we refer to the number of dense layers after the embedding layer as dense layers
embedding, in which the number of neurons in these layers will be referred to as neurons
embedding. After the concatenation layer, we consider dense layers, and each one of them
is followed by a dropout layer. Similarly to the embedding layers, the number of dense
layers after the concatenation, whose are always interleaved with a dropout layer, will be
referred as dense layers dropout, each one with a number of neurons referred to as neurons
dropout. The output layer of the discriminator always employs the sigmoid activation
function. Dropout layers are included in the discriminator as a means of regularization.
To determine the optimal number of dense layers, their activation functions, and the
corresponding number of neurons, it is recommended to perform hyperparameter tuning.
To reduce the search space, this model utilizes the Adam optimizer with a learning rate of
0.0025 and a β value of 0.5. These hyperparameters are commonly employed in MLP-based
profiling attacks [BPS+20, PPM+22], and we assume they will also yield favorable results
in this case. We emphasize that tuning is performed for the rest of the hyperparameters.

Figure 4: Generic architecture for the discriminator.

4.3.2 Generator Architecture

Different from the originally proposed CGAN structure [MO14] and its variants [ZPIE17,
CDH+16], our generator receives at its input real data Xtarget rather than a noise distri-
bution p(z). The generator architecture is a simple MLP structure without any regular-
ization mechanism. What is expected from the generator is to learn a mapping function
f(x, θG) : Xtarget −→ ftarget representing a feature extraction process. When Xtarget is a
set of side-channel traces collected from a first-order masked AES implementation, the
generator is expected to transfer from the input to the output the features from Xtarget

that contain the highest SNR values with respect to two secret shares (e.g., leaky points
when the mask and a masked S-box output are processed).

While the task the generator needs to perform is conceptually fairly simple, in practice
learning to extract leaky points-of-interest can be difficult. This is especially the case when
attacks against the (resampled) full-length traces are considered. In Table 9 of [PWP22],
we see that only between 0% and 5% of random models result in successful attacks against
full-length traces, while when features are selected based on SNR values in the RPOI
scenario, almost all of them can successfully recover the target key byte. As such, finding
an architecture that is well-tuned to the task of extracting these features also requires
hyperparameter tuning effort.

4.4 Assessing CGAN Efficiency
In the previous section, we discussed the primary objective of training the proposed CGAN
architecture, which is to achieve automated feature extraction from the target dataset,
Xtarget, using selected features, fref (manually selected from the reference dataset, Xref ),
as adversarial examples. Our CGAN-based attack framework assumes that only the
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reference device is fully controlled and that its secret shares are known. On the other hand,
the secret shares of the target dataset, Xtarget, are unknown. This creates a challenging
situation where accurately verifying the quality of the extracted features, denoted as
ftarget, from Xtarget becomes difficult. In simpler terms, we aim to measure the extent to
which ftarget represents the extracted high-order leakages from Xtarget when the target
is an n-order masked implementation. To demonstrate the effectiveness of our CGAN
solution, we utilize publicly available AES-128 datasets that also provide secret masks.
Consequently, we calculate the Signal-to-Noise Ratio (SNR) of the secret shares derived
from the extracted features, ftarget, which comes from the generator’s output. These SNR
values are computed solely to confirm that the trained generator can automatically extract
leakages from Xtarget. It is important to note that the CGAN model is neither trained nor
validated using any information regarding the masks associated with the target dataset.

At the end of each CGAN training epoch, we predict the generator with the profiling
set from the target dataset Xtarget, and we compute the SNR between extracted features
ftarget and the secret shares. This gives us two vectors with the same number of features
from ftarget. From these SNR vectors, we store the maximum SNR value. As results from
Section 5 confirm, the generator can extract features from Xtarget, and the SNR values of
secret masks from ftarget are very high.

5 Experimental Results
This section presents the experimental results obtained using the publicly available datasets
described in Section 2.1. The main goal is to run a hyperparameter search to find generator
and discriminator architectures for different reference and target datasets combinations. In
Section 8, we take the best CGAN architectures found in this section to conduct profiling
attacks and compare them with the state-of-the-art. For each scenario using a different
reference dataset, we apply the SNR-based approach described in Section 4.4 to assess the
feature extraction quality of the corresponding best CGAN architecture against multiple
target datasets.

5.1 CGAN Hyperparameter Search
A hyperparameter search is necessary to find an efficient CGAN architecture for each
combination of reference and target datasets. Through preliminary experiments, we have
already confirmed that identifying effective generator and discriminator architectures
is a cost-effective process, as most of the hyperparameter combinations we have tested
yield satisfactory results, but better groups of hyperparameters can be found. For this
purpose, we employ a random search approach with predefined hyperparameter ranges, as
outlined in Table 1. Dense layers may have different numbers of neurons for the generator,
and the subsequent layer never has more neurons than the previous layer. This design
choice reduces the search space. Due to the limited options available for each specific
hyperparameter, the number of potential generator architectures is capped at 744, while
the number of potential discriminator architectures is limited to 324. Consequently, there
exists a total of 241 056 possible CGAN hyperparameter selections. In addition, the
generator and discriminator employ the Adam optimizer with fixed learning rates. For
the discriminator, we set the learning rate to 0.0025, while for the generator, the learning
rate is set to 0.002. These values are selected arbitrarily, and after all the experiments, we
confirmed that they could deliver good performances without necessarily being included
as part of the search space. Similar to other neural network training procedures, the
CGAN training process is conducted in batches, with a fixed batch size of 400 across all
hyperparameter configurations and experiments from this paper.

The guessing entropy is computed from the validation set, which constitutes a fraction



Sengim Karayalcin, Marina Krcek, Lichao Wu, Stjepan Picek and Guilherme Perin 11

Table 1: Hyperparameter search ranges for generator and discriminator architectures.

Generator Discriminator
Hyperparameter Options Hyperparameter Options
Dense layers 1, 2, 3, 4 Dense layers Embedding 1, 2, 3
Neurons 100, 200, 300, 400, 500 Neurons Embedding 100, 200, 500
Activation Function linear, relu, selu, Dense layers Dropout 1, 2, 3

elu, leakyrelu, tanh Neurons Dropout 100, 200, 500
Dropout Rate 0.5, 0.6, 0.7, 0.8
Activation Function leakyrelu

of ftarget and is not used for profiling purposes. In essence, for every hyperparameter search
attempt, we perform a profiling attack on the target dataset to evaluate the effectiveness
of the trained CGAN model. The CGAN model that generates an ftarget output resulting
in the most successful profiling attack is considered the optimal solution.

For each hyperparameter search attempt, which results in a trained CGAN architecture,
we take the trained generator to convert Xtarget into ftarget for profiling and validation sets
from the target dataset. This procedure produces two preprocessed trace sets ftarget_prof

and ftarget_val from profiling and validation sets, respectively. Next, we implement a
profiling attack by training a 4-layer MLP (each layer with 100 neurons and elu activation
function) for 100 epochs with ftarget_prof and obtain attack results, which are guessing
entropy and the corresponding number of validation traces ftarget_val to reduce it to 1. We
decided to compare to both ASCAD and DPAv4.2 datasets, which makes the CGAN-SCA
framework inefficient, and it provided consistent key recovery results for the experiments
conducted in this paper. The best CGAN architectures will be the ones that require the
minimum number of validation traces ftarget_val to recover the target key byte.

For labeling, results described in the next section always consider S-box(di,j ⊕ ki,j)
where di,j (resp. ki,j) denote the j-th plaintext byte (resp. j-th key byte) from the i-th
side-channel measurements. Only when ESHARD-AES128 is involved the datasets labeled
according to the Hamming weight of S-box output bytes, i.e., HW (S-box(di,j ⊕ ki,j)),
as this dataset leaks in this leakage model and no successful attack results were found
otherwise. It is important to keep in mind that both reference and target datasets need to
be labeled with same leakage model.

Next, we provide results for ASCADr, ASCADf, and DPAv4.2 as reference datasets.
ESHARD-AES128 is not considered a reference dataset because it provides significantly
fewer leakages in comparison to both ASCAD and DPAv4.2 datasets, which makes the
CGAN-SCA framework not very efficient. We provide a more elaborate discussion in
Section 8.

5.2 ASCADr as the Reference Dataset
In our first analysis, ASCADr is considered as the reference dataset. We deploy a random
hyperparameter search process for each target dataset with 100 search attempts. The
CGAN is trained for 200 epochs for each of these search attempts. At the end of each
training epoch, we compute SNR between generated features ftarget and secret shares,
specifically the masks and masked S-box output, available with the target dataset. It is
important to note that, as mentioned in Section 4.4, these secret shares are assumed to be
unknown to the attacker. However, in this context, we utilize their knowledge to provide
evidence of our results.

Table 2 lists the best-found CGAN hyperparameters when ASCADf, DPAV4.2, ESHARD-
AES128, and CHES CTF 2018 are considered as target datasets. Each profiling attack
conducted after each hyperparameter search attempt is applied only to the target key byte.
When the target dataset is ASCADf, the target key byte is 2, the first masked key byte
in this dataset. For the DPAv4.2, ESHARD-AES128, and CHES CTF 2018 datasets, the
target key byte during a random search is 0.
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Table 2: Best CGAN hyperparameter for different target datasets when ASCADr as a
reference dataset.

Generator Network
Hyperparameter ASCADf DPAv4.2 ESHARD-AES128 CHES CTF 2018
Dense layers 1 4 3 4
Neurons 300 200-200-200-100 500-500-500 100-100-100-100
Activation Function linear linear leakyrelu linear

Discriminator Network
Hyperparameter ASCADf DPAv4.2 ESHARD-AES128 CHES CTF 2018
Dense layers Embedding 2 1 1 2
Neurons Embedding 100 100 200 200
Dense layers Dropout 3 1 1 1
Neurons Dropout 200 200 200 200
Dropout Rate 0.7 0.8 0.7 0.5
Activation Function leakyrelu leakyrelu leakyrelu leakyrelu

After finding the best GGAN architecture for each target dataset, we repeat the CGAN
training plus the profiling attack for the rest of the key bytes from the validation set.
Figure 5 shows the evolution of the maximum SNR values for each secret share during
CGAN training. This plot illustrates the results for all target key bytes, and the average
SNR is illustrated in blue for share 1 and in orange for share 2. Results are provided for
ASCADf, DPAv4.2, and ESHARD-AES128 as target datasets. We cannot produce SNR
results for CHES CTF 2018 as this analysis requires the knowledge of secret masks for
each separate trace. Note that these figures also show the maximum SNR values from
the fref (in dashed green line) and Xtarget (dashed red line), which are averaged over
SNR obtained from secret shares associated to each key byte. As we can see, for all target
key bytes, the generator can extract features ftarget from Xtarget, which results in high
SNR values. This confirms that our proposed CGAN structure can efficiently extract
features from high-order leaky points. In Section 7, a visualization analysis is applied to
the generator to express in more detail what features are extracted from Xtarget.

(a) ASCADf. (b) DPAv4.2. (c) ESHARD-AES128

Figure 5: Performance of CGAN architecture against different target datasets, Xtarget,
when ASCADr is the reference dataset.

5.3 ASCADf as the Reference Dataset
Table 3 lists the best-found CGAN architectures when ASCADf is set as the reference
dataset and ASCADr, DPAv4.2, ESHARD-AES128, and CHES CTF 2018 are set as target
datasets.

Similar to ASCADr, the ASCADf dataset provides side-channel measurements with
high SNR levels with respect to high-order secret shares. Thus, in this case, the generator
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Table 3: Best CGAN hyperparameter for different target datasets when ASCADf as a
reference dataset.

Generator Network
Hyperparameter ASCADr DPAv4.2 ESHARD-AES128 CHES CTF 2018
Dense layers 3 2 2 4
Neurons 200-200-100 300-100 500-400 100-100-100-100
Activation Function leakyrelu linear selu linear

Discriminator Network
Hyperparameter ASCADr DPAv4.2 ESHARD-AES128 CHES CTF 2018
Dense layers Embedding 2 2 1 2
Neurons Embedding 200 200 500 200
Dense layers Dropout 1 2 1 1
Neurons Dropout 200 100 200 200
Dropout Rate 0.6 0.8 0.7 0.5
Activation Function leakyrelu leakyrelu leakyrelu leakyrelu

can also extract high-SNR features from target datasets, as shown in Figure 6. Again,
the SNR values are always an average over the results obtained from all target key bytes.
Note how the CGAN model converges relatively quickly during the CGAN training process
when ESHARD-AES128 is set as the target dataset.

(a) ASCADr (b) DPAv4.2 (c) ESHARD-AES128

Figure 6: Performance of CGAN architecture against different target datasets, Xtarget,
when ASCADf is the reference dataset.

The evolution of the SNR values from Figure 6 indicates that the CGAN architecture,
when DPAv4.2 is the target dataset, needs considerably more epochs to start converging.
One potential reason could be the relatively high dropout rate in the discriminator model,
which aggressively regularizes this model. Another reason could be because ASCADf and
DPAV4.2 contain a reduced number of profiling traces (50 000 and 70 000, respectively),
which also limits the capacity of the generator. Still, a CGAN model that converges faster
could be found with a more sophisticated hyperparameter search strategy.

5.4 DPAv4.2 as the Reference Dataset
Next, the DPAV4.2 dataset is taken as the reference dataset for the CGAN-SCA framework.
After running a random hyperparameter search for each target dataset, we select the best
CGAN hyperparameters, as listed in Table 4.

Results provided in Figure 7 show that taking DPAv4.2 as the reference dataset
also allows us to extract high SNR features from Xtarget when ASCADr, ASCADf, and
ESHARD-AES128 are set as target datasets. It is also interesting to realize how the
CGAN-based architecture converges relatively soon for all target datasets, which provides
evidence that our proposed framework may not be very time-consuming.
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Table 4: Best CGAN hyperparameter for different target datasets when DPAV4.2 as a
reference dataset.

Generator Network
Hyperparameter ASCADr ASCADf ESHARD-AES128 CHES CTF 2018
Dense layers 1 2 2 1
Neurons 100 500-100-100-100 400-300 100
Activation Function elu linear selu linear

Discriminator Network
Hyperparameter ASCADr ASCADf ESHARD-AES128 CHES CTF 2018
Dense layers Embedding 1 1 1 1
Neurons Embedding 500 200 500 500
Dense layers Dropout 1 1 1 1
Neurons Dropout 100 100 500 500
Dropout Rate 0.6 0.7 0.6 0.8
Activation Function leakyrelu leakyrelu leakyrelu leakyrelu

(a) ASCADr. (b) ASCADf. (c) ESHARD-AES128

Figure 7: Performance of CGAN architecture against different target datasets, Xtarget,
when DPAv4.2 is the reference dataset.

6 The Analysis of the Latent Space
In this section, we analyze how variations in the construction of fref can impact how the
network performs at extracting features. We first look at what the effect is of organizing
leaky features in fref in various ways and whether the generator network can mimic these
patterns accurately. Then, we look at varying the number of features, Nf .

6.1 Varying fref Leakage Pattern
Here, we analyze whether the generator network in the CGAN framework can mimic the
leakage patterns present in the adversarial set fref . This analysis provides more insights
into the relationship between the generator and discriminator. As explained before, the
generator needs to extract main features from Xtarget, and it is important to confirm
if these extracted features ftarget follow the pattern from reference features fref . This
analysis considers ASCADr as the reference dataset and ASCADf as the target dataset.
This scenario was chosen as these datasets both have very high SNR peaks with respect to
their secret shares (i.e., random masks and masked S-box output bytes) and are of the
same implementation and device model, which simplifies the analysis without expensive
hyperparameter tuning efforts. Note, however, that these datasets were acquired with
distinct acquisition settings.

From the SNR-based feature selection process on ASCADr, we select 50 features for
each secret share to have a total of Nf = 100. Thus, we organize these features in three
different patterns, as shown in Figures 8a and 8c. During the training of the CGAN
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architecture, at the end of each epoch, we compute the SNR levels for the secret shares
on ftarget, provided by the generator. Note in results given in Figures 8b and 8d how
the generator learns to mimic precisely the leakage distributions from fref . These plots
represent the range of minimum and maximum SNR values obtained during CGAN training.
The solid lines represent the mean SNR values. These results confirm that our generator,
even not being conditioned with labels, can generate feature extraction from the input
target traces Xtarget. An essential insight derived from this analysis is the significant role
played by the feature selection process in transforming Xref into fref for the generator’s
feature extraction task. The number and distribution of leaky points of interest in fref

directly impact the generator’s performance on its task.

(a) fref (ASCADr). (b) ftarget (ASCADf). (c) fref (ASCADr). (d) ftarget (ASCADf).

Figure 8: SNRs of fref (left) with the corresponding ftarget (right).

6.2 Varying the Number of Features Nf

We analyze the performance of the CGAN-SCA framework for varying sizes of the feature
space. We explore two scenarios: (1) ASCADr vs. DPAv42, in which the reference dataset
(ASCADr) shows higher SNR peaks, with respect to the processing of two secret shares,
than the target dataset (DPAv42) and (2) ESHARD-AES128 vs. ASCADf, in which the
reference dataset (ESHARD-AES128) presents lower SNR peaks compared to the target
dataset (ASCADf). The generator architecture we use in both scenarios is a 4-layer MLP
with 100 neurons in the first 3 layers and Nf in its last layer with linear activations. For
the discriminator, we set one embedding dense layer and one dropout dense layer, with
100 neurons. The dropout rate is 0.5. We average the results over 10 CGAN training runs.

In Figure 9a, we can see that reducing the size of the latent space from 100 does not
significantly harm the attack performance when Xref has higher SNR levels than Xtarget.
When we consider lower Nf , the generator still seems to produce fref that contains the
same amount of information as in cases with higher Nf . In cases where we consider Nf

higher than 100 and lower SNR features are included in fref , the framework’s performance
is significantly degraded.

In Figure 9b, we can see that for much lower SNR fref , the performance can suffer for
low Nf . We attribute this to the leakages included in fref being insufficient for effectively
comparing leakages to Yref to classify whether the features are real. Another observation
from Figure 9b is that successful attacks are possible here with Nf higher than 100. This
is because ASCADf is a relatively easy dataset to attack, which mitigates the downsides of
adding non-leaky features to fref .

These results indicate that when the SNR levels in fref are sufficient, the feature
dimensions need to be set to a number that is not too large. Intuitively, we want to
limit the number of lower SNR features included in fref and generate a ’cleaner’ set of
reference features. This way, the generator learns only to include leaky features and does
not also need to mimic noisy features. Furthermore, reducing Nf too far can result in
the discriminator being unable to utilize leakages in fref . This effect does not seem to
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be present when the SNR levels of the fref are higher, but some careful consideration is
required here.

(a) ASCADr vs. DPAv4.2 (b) ESHARD-AES128 vs. ASCADf

Figure 9: Training results for different Nf .

7 Visualizing Generator’s Feature Extraction with LRP
Attribution Method

In the previous section, we demonstrated that the generator effectively extracts features
from Xtarget by mimicking the pattern observed in fref . Moreover, we verified how the
size of the latent space, Nf , impacts the performance of the whole CGAN-SCA framework.
This section applies the Layer-wise Relevance Propagation (LRP) [BBM+15] method to
analyze the generator further. LRP is a cost-effective solution that provides interpretability
and, for our case, confirms that the generator accurately captures leakage from actual
leaky points-of-interest from Xtarget. The primary objective of this section is to present
evidence that the generator, although not conditioned with labels, possesses the ability
to extract features from the high-order leaky points-of-interests, rather than functioning
solely as a preprocessing step that leads to dimensionality reduction.

In Figure 10, we provide two scenarios. The figure on the top-left shows the LRP
values obtained from the trained generator when the reference dataset is ASCADr, and
the target dataset is ASCADf. The generator’s output produces ftarget with Nf = 100
features per trace. For this case, the selected pattern for fref is exactly what is shown
in Figure 8a. Thus, as the generated features ftarget have the same shape as shown in
Figure 8b, we compute LRP for the first 50 features for share 1 and the other 50 features
for share 2. Comparing with the SNR values obtained from the same target key byte of
ASCADf (plot on the bottom-left of Figure 10), we see that the generator extracts the
correct features from Xtarget.

Furthermore, we present an example using the ESHARD-128 dataset. The generator is
trained with ASCADf as the reference dataset in this case. Following the same process
as in the previous example, we obtain the results depicted on the right side of Figure 10.
It is noteworthy how the generator can extract features that align with the location of
SNR peaks in relation to the processing of high-order leakages. This interpretability
analysis confirms the generator’s effectiveness in extracting high-order leakages from a
target dataset when it is not even conditioned to any label class. Indeed, only conditioning
the discriminator in our proposed CGAN structure is enough to implement efficient feature
extraction from masked datasets. This discriminator receives labels from the Xtarget

profiling set. However, as the CGAN structure never sees the labels from the target
attack set and is still able to extract features from this attack set efficiently, we may
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Figure 10: Comparison between LRP magnitude and SNR values from secret shares
obtained for a single target key byte.

intuitively conclude that generator learns to extract input features from specific positions.
The results in this section provide conditions to make the application of CGAN-SCA
framework to black-box profiling attacks more interpretable. It points out the locations in
the target dataset Xtarget where feature extraction can expose potential vulnerabilities in
the implemented countermeasures.

8 Profiling Attacks and Comparison with State-of-the-Art
We employ state-of-the-art profiling attack methods as a benchmark to compare against
our results. More precisely, we compare the number of attack traces that are necessary to
achieve guessing entropy equal to 1 when the attack considers up to 2 000 traces. Also we
compare the search success of an hyperparameters search process. The following analysis
is conducted for each dataset:

- CGAN-SCA with DL-based profiling attack (CGAN-SCA): this attack is
implemented with the CGAN-SCA framework presented in Section 4.2. The CGAN-SCA
architecture is trained to achieve an efficient generator model that converts Xtarget traces
into ftarget. After obtaining ftarget for both profiling and attack sets, we apply a DL-based
profiling attack.

- DL-based black-box profiling attack (BBDL): in this case, we apply DL-based
profiling SCA on datasets without feature selection. The attack is considered black-box
as the profiling phase does not consider any knowledge about countermeasures or secret
randomness.

- DL-based white-box profiling attack (WBDL): this profiling attack assumes
that during profiling, an adversary can implement feature selection as countermeasures
(i.e., the masking scheme) and secret randomness (i.e., secret masks) are known. Therefore,
feature or points-of-interest selection can be applied to profiling and attack traces.

- White-box Gaussian Template Attack (WBTA): this process follows a white-
box profiling attack in which points-of-interest are selected based on the set of highest SNR
peaks obtained with the knowledge of secret masks. For all scenarios, we select 1 000 points-
of-interest by targeting a second-order leakage function (500 points-of interest for each
share), which are reduced with linear discriminant analysis (LDA) to 10 points-of-interest.
Afterward, we build Gaussian templates with them.

- White-box Gaussian Template Attack with WBTA-SASCA: in this case, we
apply Soft-Analytical SCA (SASCA)-based profiling attacks by following the white-box
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approach proposed in [BCS21].

The first three profiling methods, which consist of deep learning-based profiling models,
include a hyperparameter tuning process for a small MLP model. As the main idea here
is to focus on the process that is efficient with less hyperparameter tuning efforts with
respect to finding a good profiling model, we decided to limit the profiling model size
to small MLP networks with up to four hidden layers. During this search, we vary the
number of hidden layers, the number of neurons, activation function, learning rate, and
training batch-size. For each of the 16 target key bytes from the full AES 128-bit key,
we search for 100 random MLP architectures. Each of these MLP architectures is then
trained, validated, and tested separately with:

1. ftarget_prof , ftarget_attack, and ftarget_val sets, respectively, obtained by predicting
the generator G with the profiling, validation and attack sets from the target de-
vice. This way, we implement the aforementioned CGAN-SCA with DL-based
profiling attack;

2. original Xtarget, split into profiling, validation, and attack traces, to implement the
aforementioned DL-based black-box profiling attack: BBDL.

3. SNR-based selected features from Xtarget profiling, validation, and attack traces, to
implement the aforementioned DL-based white-box profiling attack: WBDL.

Table 5: The minimum number of attack traces to obtain guessing entropy equal to 1. The
symbol x indicates that the target key byte is not recovered with 2 000 attack traces. The
NA indicates that the attack is not applicable because the target key bytes are unprotected.

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15

Method
Target ASCADr

CGAN-SCA (ref: ASCADf) NA NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CGAN-SCA (ref: DPAv4.2) NA NA 4 2 2 2 5 11 10 2 6 8 5 2 2 2
White-Box DL NA NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Black-Box DL NA NA 1 2 3 1 29 5 1 16 9 9 9 6 1 1
White-Box TA NA NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1
White-Box TA-SASCA NA NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ASCADf
CGAN-SCA (ref: ASCADr) NA NA 1 1 1 1 1 1 4 1 5 1 15 5 1 5
CGAN-SCA (ref: DPAv4.2) NA NA 3 3 2 2 2 3 7 2 5 2 7 5 2 5
White-Box DL NA NA 1 1 1 1 1 1 4 1 2 1 3 3 1 1
Black-Box DL NA NA 9 6 9 8 18 x 27 6 20 6 x 34 17 7
White-Box TA NA NA 1 1 1 1 1 1 4 1 2 1 8 4 1 5
White-Box TA-SASCA NA NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DPAv4.2
CGAN-SCA (ref: ASCADr) 1 3 2 5 3 2 4 2 7 2 3 3 2 2 5 2
CGAN-SCA (ref: ASCADf) 5 2 3 12 3 6 5 9 4 3 7 6 3 2 5 8
White-Box DL 1 1 1 2 3 1 2 1 3 1 2 2 1 1 2 1
Black-Box DL x 315 140 x x x 1454 x x x x x x x x x
White-Box TA 3 2 2 3 2 3 3 2 5 3 4 3 2 2 3 2
White-Box TA-SASCA 131 158 174 190 210 125 203 95 240 163 244 170 145 147 186 220

CHES CTF 2018
CGAN-SCA (ref: ASCADr) 36 24 22 20 51 19 21 36 34 18 25 23 24 22 22 19
CGAN-SCA (ref: ASCADf) 19 39 27 30 19 14 22 25 32 15 29 30 33 18 27 18
CGAN-SCA (ref: DPAv4.2) 91 47 36 115 159 200 73 138 858 56 136 50 557 78 124 52
Black-Box DL x 471 367 77 668 1327 304 1216 1369 957 83 662 x 459 413 380

ESHARD-AES128
CGAN-SCA (ref: ASCADr) 556 1105 312 224 709 257 396 206 967 385 244 272 309 294 292 299
CGAN-SCA (ref: ASCADf) 491 1248 528 357 1539 532 641 493 622 552 373 513 732 406 454 572
CGAN-SCA (ref: DPAv4.2) 1353 x x 1242 x x x 1051 x 1787 1643 x x x x x
White-Box DL 640 1546 875 727 x 774 799 667 x 846 487 745 1162 649 818 1037
Black-Box DL 758 748 625 616 1957 950 536 700 x 769 846 479 1527 769 572 462
White-Box TA 67 81 97 89 110 75 123 107 152 100 100 89 127 87 111 111
White-Box TA-SASCA 119 120 107 144 234 131 142 135 267 121 116 125 164 132 105 112

Through this comparison, we emphasize the significantly reduced effort from the CGAN-
SCA approach in finding an efficient profiling model that shows performance comparable to
optimal profiling models, as is expected for WBDL, WBTA, and SASCA. Table 5 provides
the performance of the five aforementioned profiling attack methods on datasets listed in
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Section 2.1. For the case of CGAN-SCA methods, we provide results for different reference
datasets. This table shows results with different colors to differentiate among profiling
attack categories for better readability.

Table 6: Search success for MLP-based profiling attack with random hyperparameter
search. The percentage indicates the number of successful MLP models out of 100, and it
is averaged for all target key bytes.

Target
Method CGAN-SCA CGAN-SCA CGAN-SCA White-Box Black-Box

(ref: ASCADr) (ref: ASCADf) (ref: DPAv4.2) DL DL
ASCADr NA 72.80% 90.47% 99.88% 8.92%
ASCADf 64.22% NA 68.25% 70.58% 9.24%
DPAv4.2 65.07% 62.16% NA 63.68% 0.74%

CHES CTF 2018 61.10% 99.55% 33.15% NA 12.14%
ESHARD-AES128 94.56% 54.48% 10.17% 63.68% 35.60%

The most remarkable results obtained with the CGAN-SCA framework are for the
DPAv4.2 and CHES CTF 2018 datasets. Attack results obtained for CGAN-SCA are
comparable to (and in some cases superior to) profiling attacks following worst-case
assumptions, as is the case of WBDL, WBTA, and SASCA approaches. However, CGAN-
SCA is a non-worst-case profiling attack, and results obtained for these two datasets
indicate that our framework can deliver results that are close to white-box analyses. The
results obtained with BBDL are inferior, especially for the DPAv4.2 dataset. As we explore
various reference datasets for different target datasets, it becomes evident that certain
reference datasets are more effective than others. This became apparent when comparing
DPAv4.2 as a reference dataset with ESHARD-AES128 or CHES CTF 2018 as target
datasets. One potential explanation is that DPAv4.2 does not exhibit the same level
of leakage as the ASCAD datasets for high-order leakages. These findings serve as a
cautionary reminder that the reference dataset should offer a minimum acceptable SNR
level concerning the high-order intermediate variables of the target dataset.

Table 6 shows the search success from the hyperparameter search part of DL-based
profiling attacks methods. The search success indicates the percentage of times a profiling
model has reached the guessing entropy of 1 with less than 2 000 attack traces. The
percentages are the average of all target key bytes. CGAN-SCA and WBDL present similar
performances and are significantly superior to black-box DL. This is an impressive finding
if we keep in mind that CGAN-SCA is a black-box (i.e., non-worst case) profiling approach.
The results from Table 6 corroborate what was already shown in [PWP22]: spending
significant effort on hyperparameter search process eventually results in a high-performing
deep neural network against first-order masking in AES implementations. However, what
matters in this table is the search success, which informs more about the chances of finding
a good group of hyperparameters and training settings. Although black-box DL-based
profiling attack result in successful attacks with (in some cases) very few required attack
traces, the search success with CGAN-SCA framework and white-box DL approaches are
significantly higher. For instance, when ASCADr is set as reference and DPAv4.2 is set as
target, the search success for a Bback-box DL is 8.92% while for CGAN-SCA is 90.47%.
For the case when ASCADf is the reference and CHES CTF 2018 is the target, the search
success increases from 12.14% for a black-box approach to 99.55% with out CGAN-SCA
framework. This justifies the need for feature selection (in the case of white-box) or feature
extraction (in the case of CGAN-SCA framework) to speed up security evaluations. Since
our proposed solution is also black-box, it becomes very attractive for efficiently assessing
the security of masked implementations.
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9 Discussion
Profiling attack results presented in this paper are aligned with the state-of-the-art for the
evaluated datasets (see [PWP22] for the ASCAD, CHES CTF 2018, and DPAv4.2 datasets.
To the authors’ knowledge, there are no published ESHARD-AES128 dataset results for
profiling attacks.). Such results were possible due to the following extra ingredients in a
security assessment process:

1. The usage of a (white-box) reference dataset. The CGAN-SCA structure
requires a reference device with similar implementation specifications to the target one.
This paper shows that reference and target datasets can be gathered from different
devices, cryptographic designs (with at least the same cryptographic algorithm with
a similar masking scheme), varying source codes, and different acquisition setups. For
some experimental examples, reference and target datasets also come from different
side-channel types (e.g., power and electromagnetic analysis). Together with the
availability of a reference implementation, it should also be possible to implement
feature selection from this same implementation. This paper assumes that secret
masks from the reference implementation are known to compute feature selection.

2. The employment of a generative model for feature extraction from tar-
get side-channel measurements. As specified in Section 4.2, the CGAN-SCA
framework can implement feature extraction from a target dataset, and a reference
dataset is used as an adversarial dataset. We are aware that this whole process
increases the complexity of the analysis because a CGAN architecture (i.e., generator
and discriminator neural networks) needs to be trained before applying a profiling
attack on the extracted features from the target dataset. However, our experimental
analysis demonstrated that when an efficient CGAN architecture is found, and the
extracted features contain high SNR levels concerning the leakage of intermediate
variable (e.g., masks and masked S-Box outputs), defining a profiling model becomes
relatively easy. Therefore, in practice, the efforts to find an efficient profiling model
(see [PWP22] where authors performed very costly hyperparameter tuning processes)
are transferred to defining an efficient CGAN architecture.

3. Hyperparameter tuning for generator and discriminator models. An efficient
CGAN architecture requires some carefully tuned generator and discriminator models.
Overall, this is the only time-consuming part of the proposed CGAN-SCA framework.
However, this whole process brings clear benefits, as a feature extraction process from
raw side-channel measurements becomes possible without assuming any knowledge
about low-level countermeasure details and secret randomness.

10 Conclusions and Future Work
This paper proposes a novel CGAN-based framework to automatically extract features
from a target dataset when the adversarial dataset comes from a similar, open, and fully-
controlled implementation. Our solution differs from conventional CGAN architectures
from the literature: the generator receives real (target) traces instead of noise, and it
is not conditioned with label class, allowing it to extract features from an unlabeled
attack set. By applying our framework to five publicly available masked AES datasets, we
obtain profiling attack results that significantly surpass the state-of-the-art in black-box
security assessment and rival the performance of worst-case security evaluations. The
proposed CGAN-SCA framework can precisely extract features from high-order leakages
by mimicking the feature distribution present in a reference dataset. Our method makes
hyperparameter tuning in a deep-learning-based profiling attack almost negligible, similar
to white-box deep learning-based security evaluations.

For future work, we plan to investigate the effectiveness of CGAN architectures to
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extract features from high-order masking schemes. Moreover, we plan to implement more
complex generator and discriminator models, such as CNN-based architectures, which
could extract features from desynchronized datasets. More complex CGAN structures
could perhaps reduce some of our framework’s limitations, such as using a reference dataset
with a minimum acceptable SNR level regarding the n secret shares. A way to define a
cost-efficient early stopping metric during CGAN training could also be an interesting
research direction. Finally, we plan to explore whether the proposed structure can be
adapted to non-profiling settings.
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