
An Efficient Unicode encoded in UTF-16 text
cryptography based on the AES algorithm

Sushmit Jahan Rose
Computer Science and Engineering
Varendra University, Bangladesh

sushmitrose@gmail.com

Umut Ozkaya
Electrical Electronics Engineering

Konya Technical University, Turkiye
uozkaya@ktun.edu.tr

Sabina Yasmin
Computer Science and Engineering
Varendra University, Bangladesh

sabina@vu.edu.bd

Suraiya Jabin
Computer Science and Engineering
Varendra University, Bangladesh

suraiyajabin765@gmail.com

Robiul Hasan
Computer Science and Engineering

Varendra University,Bangladesh
mdshantocse@gmail.com

Elias Kabir
Computer Science and Engineering
Varendra University, Bangladesh

anujkabir777@gmail.com

July 14, 2023

Abstract

Data security and secrecy from unwanted applications are the subjects of the science known
as cryptography. The advanced encryption standard algorithm is the most used and secure
algorithm to encrypt data. The AES algorithm is based on the symmetric algorithm and
uses a single key to encrypt and decrypt data. The AES algorithm uses 128 bits length
of plain text with 128 bits, 192 bits, or 256 bits key size to encrypt data. Latin script
uses ASCII codes, and a single byte represents each alphabet. Therefore, in 128 bits AES
encryption, 16 characters can be encrypted each time. The other language script used the
Unicode standard to represent their alphabets. In Unicode, at least 2 bytes are required to
represent a character. Therefore, eight characters can be encrypted at a time. Also, there is
no available S-box for Unicode characters. Therefore, a modified algorithm is proposed for
Unicode to encrypt data. To use the AES algorithm in Unicode data, we need to convert the
Unicode into character encoding, such as UTF-16. Nevertheless, In UTF-16, some Unicode
characters have similar recurrent values. This paper demonstrates a modified AES algorithm
to encrypt the Unicode script to reduce time complexity.

Keywords Cryptography · Unicode · AES algorithm · Galois Field

1 Introduction

Internet communication plays an enormous role in transferring data in various fields. Data might be transmit-
ted through insecure channels and can be hacked by unauthorized persons. Securing the data by encrypting
it with the best possible cryptography algorithm is essential. Advanced encryption standard is so far the
most secure algorithm to encrypt data. The AES algorithm performs on 128 bits of plain text data, repre-
sented in the ASCII code or single byte Unicode of Latin script. However, other language scripts such as
Bengali, Arabic, and Mandarin use their script. This script represents by the system in Unicode with at
least 2 bytes. The Unicode is needed at least 2 bytes to represent a character. This paper uses the AES

A preprint - July 14, 2023

algorithm to encrypt the Unicode script efficiently. In the AES, there can be 128 bits, 192 bits, or 256
bits blocks of key size to encrypt 128 bits of plain text [1]. In the AES, 16 characters can be encrypted as
Latin characters are represented with ASCII code or single-byte Unicode, with one byte for each character.
Nevertheless, to represent other scripts, Unicode encoded in UTF-16 needs at least 2 bytes to represent each
character. To encrypt Unicode in AES, we need to encode the character in UTF-16. After the encoding,
eight characters can be represented as 128 bits. Therefore, 8 Unicode characters can be encrypted each time
using the AES algorithm. In the Unicode 2 bytes range, all the characters have one thing in common, and
they start with an identical hexadecimal value. As in the AES algorithm, the plain text block is divided into
one byte. So each character of Unicode will be represented in 2 blocks. The identical hexadecimal number
will be repeated 8 times. The proposed algorithm reduces the repeated values and efficiently encrypts the
text. The proposed algorithm reduced the first two hexadecimal values of the Unicode. So the total number
of bits was reduced and made possible to encrypt a total of 16 alphabets of the Unicode (2 bytes range)
script at a time in the AES algorithm. Finally, the identical byte is stored. After the decryption procedure,
the stored identical bytes are added after each byte of the decrypted data.

2 Literature Survey

Unicode is a standard method used to encode symbols and characters from diverse languages and scripts
to be processed by computers. It conforms to ISO/IEC 10646-1:2000 and permits the definition of 65536
characters utilizing 16-bit encoding. This standard encompasses a wide variety of forms including letters,
digits, symbols, and characters from various languages spoken worldwide, and it also includes technical and
mathematical symbols, punctuation marks, arrows, and numerous other symbols. Moreover, Unicode has
enough capacity to accommodate the characters required for high-quality typesetting [1]. The Advanced
Encryption Standard (AES) is a widely used cryptographic algorithm that effectively secures digital infor-
mation. It became the encryption standard in 2000 and has since gained global popularity. The AES’s
main objective is to provide a strong encryption algorithm that can protect US government documents for
at least two decades. Furthermore, it is ideal for securely transmitting large amounts of data [2]. The US
Federal Information Processing Standards (FIPS) approved the Advanced Encryption Standard (AES) as a
cryptographic algorithm to protect digital data. AES uses a symmetric block cipher that allows for both
encryption and decryption of data. When encrypting data, it is converted into ciphertext, while decryption
reverses the process by converting the encrypted message back into plaintext. AES utilizes cryptographic
keys of 128, 192, and 256 bits to encrypt and decrypt data in 128-bit blocks. [1] Encryption algorithms can be
broadly classified into two categories, symmetric and asymmetric. In symmetric algorithms, the same key is
used for both encryption and decryption, and it can be shared between multiple parties to maintain secrecy.
However, a significant drawback of this approach is that both parties have access to the same secret key. AES
is a well-known example of a symmetric encryption algorithm. To encrypt Arabic words more effectively,
multiple cipher methods are employed in combination. This approach generates more intricate outputs com-
pared to those obtained from using individual cipher methods. The proposed encryption technique consists
of five stages, including setup, controlling, encryption, moving, and decryption [3]. By combining Tamil
alphabet letters with digits 1 to 9, a Galois field of 28 with an irreducible polynomial of degree 8 is formed.
This encoding method can be used to implement the AES algorithm, replacing its pre-round transformation
module, by converting Tamil texts into hexadecimal states. According to empirical evidence, this encoder
enhances the cryptographic strength of the AES algorithm at every stage of the encryption process. To
measure the strength of the AES ciphers, the run test scores of the bit sequences are compared to those of
the English language [4]. To store a character, the amount of data required depends on its encoding, as not
all languages can be represented using a straightforward one-to-one mapping. If a language requires more
options, additional data is necessary to encode a character. In most encodings, the first 7 bits are reserved
for ASCII characters, providing 128 values. The remaining 8th bit or an additional 128 values is reserved for
representing other characters such as accented characters, Asian languages, Cyrillic, and more. Due to the
vast array of characters that need to be represented, it becomes apparent that a single byte is insufficient
to encode them all. The ASCII encoding used to represent Armenian letters with a single byte is no longer
considered the best encoding method. Instead, UTF-8, a Unicode transfer encoding, is preferred as it uses
a variable number of bytes to represent characters. For instance, the English letter ”a” is represented by a
single byte, whereas accented characters like ”á” require two bytes. Similarly, the Armenian letter ayb ”�”
requires two bytes in UTF-8. However, there are some characters, such as the Bengali letter ”�”, that need
4 bytes in UTF-16, which may cause issues in certain situations.

2

A preprint - July 14, 2023

3 Methodology

3.1 Key Generation

The AES algorithm is a symmetric block cipher algorithm, 128 bits of data at a time using a 128, 192, or
256-bit key. The ASCII or single-byte Unicode is used to represent the Latin alphabet. The Latin alphabet
is represented using 8 bits or two hexadecimal values. Therefore, 16 alphabets of Latin are encrypted at a
time in AES. Bengali, Syriac, Oriya, Arabic, and other languages use their script as written form, and it is
represented in computer codes of Unicode. In Unicode, at least 16 bits are used to represent an alphabet.
The UTF-16 can define different script ranges from 0xD800 to 0xDBFF [5]. In Unicode, the alphabet is
represented by 2 to 4 bytes or 16 bits to 32 bits. When a conventional AES algorithm is implemented to
encrypt, Unicode’s script is encoded in UTF-16 or UTF-16, and 8 or 4 alphabets can be encrypted at a time.
The same message in other languages needs double or multiple times to be encrypted then the Latin script.
As in AES encryption, 128-bit plain text is split into 16 bits to be represented in a 4-times-4 2-D matrix.
The script is represented in Unicode with at least 2 bytes. Most have a common byte 0x or (0x=hexadecimal
identical value) for each character. Such as the Unicode of Bengali script has 128 points [5], all starting with
hexadecimal point 09. Also, the Unicode of the Arabic script has 256 points, and all of them are started
with hexadecimal point 06 [5]. In the proposed algorithm, some values are identical in the hexadecimal code
and can be subtracted to reduce the time to encrypt the message in AES. Later the values can be added to
the encrypted text. Furthermore, the encrypted message may not be in the range of the expected languages
Unicode. The algorithm proposed to create the encrypted message into the perimeter of the desired language,
Unicode. It will give an extra layer of safety while encrypting a message in Unicode.

3.2 Key expansion in Unicode

In AES, the number of rounds (Nr) depends on the key size K; for every 128 bits, 192 bits, and 256 bits key,
the Nr is 10, 12, or 14, respectively [6]. Therefore the key expansion must take place to generate Nb(Nr+1)
words as the algorithm requires. The initial key w[i] contains an array of bytes or 32 bits words, and the
value of i is the number of columns Nk. The array of bytes is represented by a0, a1, a2,….., a15. The w[i] can
be represented as w[0] = a0, a1, a2, a3
w[1] = a4, a5, a6, a7
w[2] = a8, a9, a10, a11
w[3] = a12, a13, a14, a15.

A cyclic permutation performs on the last column of w[i] by the function RotWord(), the function takes
words a12, a13, a14, a15 and gives an output a13, a14, a15, a12. After RotWord(), the output is given
to SubWord() function to apply S-box operations (g(w[i])). The round constant word array, Rcon[i],
contains the values given by [x{i-1}, {00}, {00}, {00}], with x{i-1} being powers of x (x is denoted
as 02) in the field GF (28)(note that i starts at 1, not 0). To get the column of the first round key, an
XOR operation performs on Rcon[i], w[0], and the output of the S-box operations. Each subsequent
word, w[i], is obtained by performing an XOR operation on the previous word, w[i-1], and the word that
appears Nk positions earlier, w[i-Nk]. There are two ways to generate the initial key and expand the key
by using Unicode values. Where Nk is 4, 128 bits of the key can be represented by 8 alphabets as each
alphabet represent 2 bytes. The array of bytes a[i]is the initial key where a0 and a[i%2==0] is identical values
(Unicode 0x). In UTF-16, the script, which consists of 2 bytes for each character with the 0x identical
value, can be written as 0xa0, 0xa1, 0xa3,…., 0xa[i] (Algorithm 1). Such as, the Bengali alphabets consist
of 2 bytes represented by Unicode can be written as 09a0, 09a1, 09a3,…., a[i] ranges from 0980 to 09FF
in hexadecimal. Also, Syriac alphabets consist of 2 bytes represented by Unicode and can be written as
07a0, 07a1, 07a3,…., 07a[i] ranging from 0700 to 074F in hexadecimal. The other way is the identical value
a[i+1] needs to remove and replace the value with a subsequent value (Algorithm 2). These two types of
keys later work as the function AddRoundKey of the algorithm.

Algorithm 1
Step 1: Start.
Step 2: Insert Unicode with 2 bytes for each character (128 bits, 192 bits, or 256 bits.)
Step 3: Split 2-byte Unicode into 1 byte a[i]

3

A preprint - July 14, 2023

• a[i] = a0, a1, a2,….., a15(Nk=4)
• a[i%2==0] = 0x (identical value)

Step 4: Cyclic permutation RotWord()

• RotWord(): For every initial 32 bit word w[i]
• If w[i] = a12, a13, a14, a15 then w[i] = a13, a14, a15, a12(Nk=4).

Step 5: w[i]input into SubWord() function of S-box (g(w[i])).
Step 6: To generate the first column of the round key (w[i]). XOR on Rcon[i], w[0] and (g(w[i])).

• Rcon[i]= [x i-1,00,00,00] of GF (28)

Step 7: The subsequence w[i], is equal to the XOR w[i-1], and the word Nk positions earlier, w[i-Nk].
Step 8: End.

Algorithm 2
Step 1: Start.
Step 2: Insert Unicode with 2 bytes for each character (256 bits, 384 bits, or 512 bits.)
Step 3: Remove identical value and replace every a[i] = a[i+1].

• Round 256 bits, 384 bits, or 512 bits into 128 bits, 192 bits, or 256 bits, respectively.
• a[i] = a0, a1, a3,….., a15 (Nk=4)

Step 4: Cyclic permutation RotWord()

• RotWord(): For every initial 32 bit word w[i]
• If w[i] = a12, a13, a14, a15 then w[i] = a13, a12, a14, a15 (Nk=4).

Step 5: w[i] input into SubWord() function of S-box (g(w[i])).
Step 6: To generate the first column of the round key (w[i]). XOR on Rcon[i], w[0] and (g(w[i])).

• Rcon[i]= [x i-1,00,00,00] of GF (28)

Step 7: The subsequence w[i], is equal to the XOR w[i-1], and the word Nk positions earlier, w[i- Nk].
Step 8: End.

3.3 AES Encryption on Unicode

The AES algorithm processes 128 bits of data blocks with a key length of 128 bits, 192 bits, or 256 bits.
The AES algorithm is performed in 4-times-4 bytes arrays called states. This 4-times-4 array is added to
the initial key, called the initial round. Depending on the key length, the round of encryption varies from
10, 12, and 14 rounds. After the initial round, each round contains four primary operations SubBytes,
ShiftRows, MixColumns, and AddRoundKeys [6]. As in the Latin script, ASCII or single-byte Unicode has
been used to interpret a character. Unicode represents other language scripts; it takes more than a byte to
implement them in the computer system. Therefore Unicode uses 2 or 4 bytes to execute different language
scripts worldwide. If Latin alphabets are encrypted using the AES algorithm at a time, 16 characters can be
encrypted, as 16 characters can be interpreted as 128 bits or 4 words. Nevertheless, in Unicode, if the script
is represented by 2 bytes, only 8 characters, and for the script which has been described by 4 bytes, only 4
characters can be encrypted at a time. Therefore processing time of encryption in Unicode is slower than in
ASCII representation. It is needed double or multiple times to encrypt in Unicode than ASCII. Also, while
encrypting a message in Unicode using the AES algorithm, the encrypted message sometimes crosses the
boundary of the range given to a specific language’s script in Unicode. In this paper, a modified approach
is presented to encrypt Unicode efficiently.

3.4 The Main Algorithm

The AES algorithm process in bytes (b7, b6, b5, b4, b3, b2, b1, b0),and these bits are interpreted as finite field
elements of GF (28) as b7x

7 + b6x
6 + b5x

5 + b4x
4 + b3x

3 + b2x
2 + b1x+ b0 [6]. These bytes are represented

4

A preprint - July 14, 2023

in an array of bytes (a0, a1, a2…a15). The AES algorithm can encrypt 128 bits at a time. Therefore 128 bits
are represented in a 2-D array 4-times-4 array as the input array (Table. 1). This input array is then given
to a state called state array (Table. 2) to be processed in the AES.

in0 in4 in8 in12
in1 in5 in9 in13
in2 in6 in0 in4
in3 in7 in1 in5
Table 1: Input bytes

s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,2
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

Table 2: State array

out0 out 4 out8 out12
out1 out5 out9 out13
out2 out6 out0 out4
out3 out7 out1 out5

Table 3: Output bytes

Each state array contains 4 words interpreted as,
w0 = s0,0s1,0s2,0s3,0
w2 = s0,2s1,2 s2,2s3,2
w1 = s0,1s1,1s2,1s3,1
w3 = s0,3s1,3s2,3s3,3
In Unicode, if 128 bits are given as input bytes, the number of characters may vary from 4 to 8 characters.
So each character given as input is needed to be split into a single byte. If the characters use 2 bytes in
Unicode, then one character is divided into two boxes of the input array (Table. 1). In Unicode, given input
bytes contain identical bytes in0 and inth

[i%==0]
positions (Table. 4). Let these bytes be called τ . Therefore,

the input array is in (Table. 4) (Table.5).

τ τ τ τ
in1 in5 in9 in13
τ τ τ τ

in3 in7 in11 in15
Table 4: Input bytes with τ

τ τ τ τ
s1,0 s1,1 s1,2 s1,2
τ τ τ τ

s3,0 s3,1 s3,2 s3,3
Table 5: State array with τ

This state array is given to four different functions of AES called SubBytes, ShiftRows, MixColumns, and
AddRoundKeys, respectively. However, in this case, the time dependency is more significant than encrypting
the message in ASCII code. Therefore in this modified algorithm, the input bytes are given to a function
called ReduceByte() function before entering the main AES algorithm. The main AES functions encrypt
the message, but the message is reduced in bit size. Therefore a function called RecoverBytes() is used to
add the identical bytes τ into the encrypted message.

3.4.1 SpaceSubstitute function

Even though every language has its script but some of the UTF-16 values are the same in all languages.
Such as, space has the UTF-16 value of ”0020” for all languages. Also comma sign “002C” does not appear
in the Bengali Unicode range [5]. To obtain identical bytes τ , we need to substitute the space, comma, and
other bytes with a corresponding byte that is in the Unicode range of the language that we are working
with. The substitute byte should not be a common Unicode to the language. Rather, the unused Unicode
can be used to substitute the space and comma. For example, In Bengali "ঌ" UTF-16 encoded ”09BC” and
"৶" encoded “09F6” does not have any use in the Bengali language [5][7][8]. For Hindi script, the space
also can be converted to "ঌ" UTF-16 encoded ”09BC” as they are in a similar range. Also, the comma
can be converted to "৶" encoded “09F6”. To obtain τ value for Tamil and Oriya, Tamilian space can be
substituted by Oriya ”0B71”, and Oriya space can be substituted by Tamilian month sign ”0BF3” as these
two languages’ Unicode start with the same τ value ”0B” [5]. Similarly, SapceSubstitute() can be used
for Syriac and Thaana, Gurumukhi and Gujarati, Telegu and Kannada, Hiragana and Katakana, and other
pairs.

3.4.2 SpaceSubstitute() algorithm (Bengali)

Algorithm
Step 1: Start
Step 2: Input a character (2 bytes in Unicode) into a variable (Sp)
Step 3: If Sp=”0020” then

5

A preprint - July 14, 2023

Step 4: Set Sp= “09BC” in hexadecimal
Step 5: Else if Sp=”002C” then
Step 6: Set Sp= “09F6” in hexadecimal
Step 7: Else set Sp=Sp
Step 8: End.

3.4.3 ReduceByte function

In ASCII codes, 16 alphabets can be represented by 128 bits. Unicode is needed 2 or more bytes to represent
an alphabet, so 16 alphabets in Unicode means at least 256 bits or more. The ReduceByte transformation
function takes 16 alphabets of Unicode, regardless of bits, to represent those alphabets. The ReduceByte()
identifies the identical byte τ of each character and subtracts the value from τ00 in hexadecimal. If any
alphabet in Unicode has 2 bytes to represent, 256 bits are needed for 16 alphabets also represented as
a0, a1, a2, a3,……a31 (Table. 6) where a0 and a[i%2=0] = τ or identical bytes. So this can be represented as
τ , a1, τ, a3,……, τ, a31 (Table. 7). Therefore, these 256 bits are given to ReduceByte(), which reduces τ (128
bits) and gives 128 bits (Table. 8) output as the input array (Table. 9).

a0 a8 a16 a24
a1 a9 a17 a25
a2 a10 a18 a26
a3 a11 a19 a27
a4 a12 a20 a28
a5 a13 a21 a29
a6 a14 a22 a30
a7 a15 a23 a31

Table 6: Initial array of bytes

τ τ τ τ
a1 a9 a17 a25
τ τ τ τ
a3 a11 a19 a27
τ τ τ τ
a5 a13 a21 a29
τ τ τ τ
a7 a15 a23 a31

Table 7: Common bytes a0 and
a[i%2==0] = τ

a0 a4 a8 a16
a1 a5 a9 a17
a2 a6 a10 a18
a3 a7 a11 a19

Table 8: ReduceByte() applied

3.4.4 ReduceByte() algorithm

Algorithm
Step 1: Start
Step 2: Input a character (2 bytes in Unicode)
Step 3: Split the bytes into individual single-byte units (a[i] and a[i+1])
Step 4: Set a0= τ00 in hexadecimal
Step 5: Subtract the input with τ00 in hexadecimal
Step 6: Remove a[i] and set a[i+1] as a[i]
Step 7: Store a[i] into the stack
Step 8: End.

3.4.5 SubBytes function

The input bytes from ReduceByte() are given to SubByte() of the AES algorithm based on a non-linear
S-box to substitute a byte in the state for another byte. This stage fulfilled Shannon’s principle of confusion
and diffusion. The S-box has been calculated over Galois Field (28).

in0 in4 in8 in12
in1 in5 in9 in13
in2 in6 in10 in14
in3 in7 in11 in15

Table 9: Array of bytes as in[i]

6

A preprint - July 14, 2023

3.4.6 ShiftRows function

During the ShiftRows() transformation, the bytes in the last three rows of the State are shifted cyclically by
varying numbers of bytes (or offsets). The first row, r = 0, remains unshifted. The procedure for this step
is as follows:
S’r,c = Sr,(c+shift(r,Nb))modNb for 0 < r < 4 and 0 <= c < Nb

3.4.7 MixColumns function

In the MixColumns() transformation, the state array is considered as a matrix of columns, with each column
represented as a four-term polynomial that is multiplied by a fixed polynomial, denoted as a(x). The 9th bit
of the output is reduced by using the irreducible polynomial of the GF (28), which is x8 + x4 + x3 + x+ 1.

3.4.8 MixColumns function

During the AddRoundKeys() transformation, a round key that’s generated by the key generation algorithm is
added to the State using a bitwise XOR operation. The round keys generated using Unicode contain two types
of data, and as such, these two data types have been used separately as round keys. The AddRoundKeys()
can be driven as,
[s0,c', s1,c', s2,c', s3,c'] = [s0,c, s1,c, s2,c, s3,c]�[wround∗Nb+c] for 0 <= c < Nb

3.4.9 Methodology 1: RecoverBytes function

The RecoverBytes function took the encrypted message after AES and added the τ before each output byte
out[i]. The function takes each of theout[i] bytes one by one and add τ00 with the given byte.

3.4.10 RecoverBytes() algorithm

Algorithm
Step 1: Start
Step 2: Input an output byte out[i]
Step 3: Add τ00 with each out[i]
Step 5: Store out[i] into the stack
Step 6: End.

3.4.11 Methodology 2: StoreidenticalByte() function

The StoreidenticalByte function took the identical value τ and stored it. The function takes the identical
value and adds the value only one-time in front of the whole encrypted message.

3.4.12 StoreidenticalByte algorithm

Algorithm
Step 1: Start
Step 2: Input an output byte out[i]
Step 3: Add 00 from each out[i] = τ00
Step 5: Store out[i] into the stack
Step 6: End.

3.5 AES decryption on Unicode

The decryption process for the encrypted data of Unicode is followed by the ReduceByte(), Inverse of
AES, and the RecoverBytes() functions. The encrypted message of Unicode has 256 bits if the Unicode
has been represented by 2 bytes for each character. Therefore, ReduceByte() is applied to the encrypted
message and round the encrypted message into 128 bits by removing the τ value. The state then given to
InvShiftRows(), InvSubBytes(),InvMixColumns(), AddRoundKey(), and RecoverBytes() for decryption [1].
After the decryption procedure, RecoverSpace() is used to add the spaces and other symbols which has been
substituted.

7

A preprint - July 14, 2023

3.5.1 InvShiftRows() function

In decryption, InvShiftRows() is the inverse of the ShiftRows() method. The bytes in the last three
rows of the State are shifted cyclically over a range of bytes (offsets). The equation is as follows:
S’r,(c+shift(r,Nb))modNb = Sr,c for 0 < r < 4 and 0 <= c < Nb

3.5.2 InvSubBytes() function

The inverse S-box is applied to each of the bytes of the state to substitute the bytes by the value of the
inverse S-box.

3.5.3 InvMixColumns() function

The InvMixColumns() considers the state array as a column-by-column matrix that is treated as four-term
polynomials multiplied with a fixed inverse polynomial a-1(x)

3.5.4 RecoverSpace() function

RecoverSpace() is the opposite of the SpaceSubstitute() function. As the SpaceSubstitute() function is called
to substitute space and other characters which are not in the range of the given language, therefore these
should be recovered to obtain the desired output. Hence the RecoverSapce() function is called to obtain the
space and other symbols.

3.5.5 RecoverSpace() Algorithm (Bengali)

Algorithm
Step 1: Start
Step 2: Input a character (2 bytes in Unicode) into a variable (Sp)
Step 3: If Sp=“09BC” then
Step 4: Set Sp=”0020” in hexadecimal
Step 5: Else if Sp=“09F6” then
Step 6: Set Sp=”002C” in hexadecimal
Step 7: Else set Sp=Sp
Step 8: End.

4 Results

4.1 Key Generation Algorithm 1 and Method 1

To encrypt Unicode encoded in UTF-16, we need a 16-byte long key. If we use a key expansion algorithm
where we split the single character to form a 4-by-4 matrix then we need to choose a word with 8 characters.
The key used was "ধূমেকতু।" . To remove space “0020” we need to call SpaceSubstitute(). As the chosen key
does not have any space it forms a 4-by-4 matrix shown in Table 10.

09 09 09 09
A7 AE C7 C1
09 09 09 09
C2 95 A4 64

Table 10: 4-by-4 matrix key as
in[i]

a8 c7 ad 8c
c0 8c c3 a8
b0 a8 a4 c0
ac bf c7 b0

Table 11: The first 16 characters
of the plain text
after applying ReduceByte() as
in[i]

aa cd a4 a8
cd 9c 8c 8c
b0 b2 a6 64
9c bf bf 64

Table 12: Example Matrix of the
first 16 bytes of the
key after applying ReduceByte()
as in[i]

These split bytes form expanded keys to perform the AES to the text. In the main algorithm, a Space-
Substitute() function is called to remove space and substitute the byte with the correspondence byte of the
algorithm so that τ value can be obtained. Then a function called ReduceByte() is applied to remove the
identical bytes from the plaintext so that 16 characters can be encrypted at a time. The plaintext (Table. 12)

8

A preprint - July 14, 2023

has 112 characters with space. Therefore, total of 7 rounds will require to encrypt the text. After running
the SpaceSubstitute() function the space will be replaced (Table.12). Now all of the characters are in the
same range of Unicode so that we can easily calculate the τ value. To calculate the τ value ReduceByte()
function has been called and it forms the following 4-by-4 matrix for the first 16 characters (Table.11).
To generate the cipher text, convert the key’s Unicode character to a hex value and then store the first byte
in the τ variable. In the following step, encrypt the hexadecimal value using the remaining byte of each
character. Finally, RecoverBytes() function has been called to add τ value to the cipher data to obtain
the desired output. For the decryption procedure, ReduceByte() function has been called to obtain τ value
and the AES decryption procedure has been used. After the decryption procedure RecoverSpace() function
is used to recover the spaces and the other symbols (Table 13).

Key ধূমেকতু।
Plaintext নীরেব িনভৃেত নীরব সব্েপ্ন।আিম বেস থািক আঁিখ বন্ধ কের।।পািখর িচৎকার পৰ্জ্জিলত িদন।

পৰ্কৃিতর ওপার েসৗন্দযর্ িঘের ।।।
Space Substitute নীরেবঌিনভৃেতঌনীরবঌসব্েপ্ন।আিমঌবেসঌথািকঌআঁিখঌবন্ধঌকের।।পািখরঌিচৎকারঌপৰ্জ্জিলতঌিদন।

পৰ্কৃিতরঌওপারঌেসৗন্দযর্ঌিঘেরঌ।।।
Encrypted text ◌॔◌ो���◌���क़�झ१॓च�ढ़�ईेव��ऴ�त�व���२ऑऱछॅ�ळु�झ◌॓���◌ू���य़����क़ध०ॊॅ�शौत॥��◌��◌�����◌�

िण���ऽ��◌ु�ॊ७��फँ��द��८��१������◌ॅब����्�
Decrypted text নীরেব িনভৃেত নীরব সব্েপ্ন।আিম বেস থািক আঁিখ বন্ধ কের।।পািখর িচৎকার পৰ্জ্জিলত িদন।

পৰ্কৃিতর ওপার েসৗন্দযর্ িঘের ।।।
Table 13: Result of Key generation algorithm 1 and Method 1

4.2 The key Generation Algorithm 2 and Method 1

The key generation algorithm 2 generated round keys for the encryption process using 128 bits of text. We
have not removed the τ value in the key in the earlier algorithm, whereas in this algorithm, we converted the
Unicode character of the key to a hex value and removed the first-byte τ of each character. After removing
the first identical byte τ , we seemed to have our desired key. Using that key on the plaintext, we obtained
the secure cipher text. For this example, we need a 16-byte word "পৰ্জ্জিলত িদন ।।". To remove the spaces
from the key the SpaceSubstitute() function has been called and the key will be "পৰ্জ্জিলতঌিদনঌ।।". Due to
SpaceSubstitute() function, all of the characters are in the same range, therefore the identical value τ can
be easily calculated. The τ value has been reduced by the ReduceByte() and it forms a 16-byte key (Table.
12). Now the same plaintext will be used for the encryption procedure (Table 14).

Key পৰ্জ্জিলত িদন ।।
Key without space পৰ্জ্জিলতঌিদনঌ।।

Plaintext নীরেব িনভৃেত নীরব সব্েপ্ন।আিম বেস থািক আঁিখ বন্ধ কের।।পািখর িচৎকার পৰ্জ্জিলত িদন।
পৰ্কৃিতর ওপার েসৗন্দযর্ িঘের ।।।

Space Substitute নীরেবঌিনভৃেতঌনীরবঌসব্েপ্ন।আিমঌবেসঌথািকঌআঁিখঌবন্ধঌকের।।পািখরঌিচৎকারঌপৰ্জ্জিলতঌিদন।
পৰ্কৃিতরঌওপারঌেসৗন্দযর্ঌিঘেরঌ।।।

Encrypted text ◌ीड़७ः�झ�◌ो�ऑ�ग़ऩ�ट�ढ���५�ळ�क़�ॡ�����ो�औ़�धऩं���३ऍ�����ओ���ज़������ढ���ड़छद�◌�
ढ़���◌ृ़��ध��४ःऒढ��डु��जऩ�ॣय�ऊयप���छ����७स�ख

Decrypted text নীরেব িনভৃেত নীরব সব্েপ্ন।আিম বেস থািক আঁিখ বন্ধ কের।।পািখর িচৎকার পৰ্জ্জিলত িদন।
পৰ্কৃিতর ওপার েসৗন্দযর্ িঘের ।।।

Table 14: Result of Key generation algorithm 1 and Method 1

5 Conclusion

In this research, we introduced an effective method for implementing advanced encryption standards for long-
byte Unicode data encoded in UTF-16. There are different Unicode code points for different language scripts.

9

A preprint - July 14, 2023

Most of the Unicode code points require a minimum of 2 bytes to represent a character. In most languages,
the first byte of all the characters has an identical value. As the AES algorithm has 10, 12, or 14 rounds
depending on the key length, it is herculean to encrypt extra bytes and is a tedious job. We have introduced
ReduceByte(), SpaceSubstitute(), StoreIdenticalByte(), RecoverSpace(), and RecoverBytes() functions to
reduce the identical byte and run AES without the identical byte. After the AES procedure, the identical
byte is added to the encrypted text. For the decryption procedure, again the identical byte was removed from
the encrypted message and decrypted, and again the identical byte was added to get the message. Hence,
some of the characters are universal, such as the Unicode of space, so these values were substituted with
the value of the desired Unicode range. In conclusion, the proposed algorithm provides a simpler and more
efficient approach for implementing the AES algorithm for Unicode code points.

References
[1] Aliea Sabir and Wid Akeel. A new text steganography method by using non-printing unicode characters

and unicode system characteristics in english/arabic documents . 3, 08 2012.
[2] Chunxia Tu. Design of an improved method of rijndael s-box. In Minli Dai, editor, Innovative Computing

and Information, pages 46–51, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
[3] A.S.H. Altamimi and A.M. Kaittan. A proposed arabic text encryption method using multiple ciphers.

management. Computing Technology and Information Management, pages 319–326, 2021.
[4] Shan. Suthaharan. Scientific tamil lexicon: The revelation of cryptographic connection between tamil

language and galois field. https://doi.org/10.31219/osf.io/vb843, 2022.
[5] The Unicode Consortium. The Unicode Standard, Version 13.0. Unicode Consortium, Mountain View,

CA, USA, 15 edition, 2022.
[6] James R. Nechvatal James Foti Lawrence E. Bassham E. Roback James F. Dray Jr. Morris J. Dworkin,

Elaine B. Barker. Advanced encryption standard (aes), federal inf. process. stds. (nist fips). National
Institute of Standards and Technology, Gaithersburg, MD, 2001.

[7] Md Khairullah. A novel steganography method using transliteration of bengali text. Journal of King
Saud University - Computer and Information Sciences., 31:348–366, 2019.

[8] Mohammad Shahidur Rahman Md. Mamun Hossain, Ahsan Habib. Performance improvement of ben-
gali text compression using transliteration and huffman principle. International Journal of Engineering
Research and Application, 6:88–97, 2016.

10

https://doi.org/10.31219/osf.io/vb843

	Introduction
	Literature Survey
	Methodology
	Key Generation
	Key expansion in Unicode
	AES Encryption on Unicode
	The Main Algorithm
	SpaceSubstitute function
	SpaceSubstitute() algorithm (Bengali)
	ReduceByte function
	ReduceByte() algorithm
	SubBytes function
	ShiftRows function
	MixColumns function
	MixColumns function
	Methodology 1: RecoverBytes function
	RecoverBytes() algorithm
	Methodology 2: StoreidenticalByte() function
	StoreidenticalByte algorithm

	AES decryption on Unicode
	InvShiftRows() function
	InvSubBytes() function
	InvMixColumns() function
	RecoverSpace() function
	RecoverSpace() Algorithm (Bengali)

	Results
	Key Generation Algorithm 1 and Method 1
	The key Generation Algorithm 2 and Method 1

	Conclusion

