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Abstract. At CRYPTO 2020, Liu et al. find that many differentials on
Gimli are actually incompatible. On the related-key differential of AES,
the incompatibilities also exist and are handled in different ad-hoc ways
by adding respective constraints into the searching models. However,
such an ad-hoc method is insufficient to rule out all the incompatibilities
and may still output false positive related-key differentials. At CRYPTO
2022, a new approach combining a Constraint Programming (CP) tool
and a triangulation algorithm to search for rebound attacks against AES-
like hashing was proposed. In this paper, we combine and extend these
techniques to create a uniform related-key differential search model,
which can not only generate the related-key differentials on AES and
similar ciphers but also immediately verify the existence of at least one
key pair fulfilling the differentials. With the innovative automatic tool,
we find new related-key differentials on full-round AES-192, AES-256,
Kiasu-BC, and round-reduced Deoxys-BC. Based on these findings, full-
round limited-birthday chosen-key distinguishing attacks on AES-192,
AES-256, and Kiasu-BC are presented, as well as the first chosen-key dis-
tinguisher on reduced Deoxys-BC. Furthermore, a limited-birthday dis-
tinguisher on 9-round Kiasu-BC with practical complexities is found for
the first time.

Keywords: Related-key · Chosen-key · Triangulation algorithm · Con-
straint Programming · Rebound techniques

1 Introduction

Block ciphers and hash functions play a crucial role as foundational primitives
in the field of cryptography. Conventionally, a hash function can be constructed
through repetitive iterations of compression functions utilizing the Merkle-Damg̊ard
[52,19] domain extender, where the compression function is typically built from a
block cipher and PGV hashing modes [60], such as Davies-Meyer (DM), Matyas-
Meyer-Oseas (MMO), and Miyaguchi-Preneel (MP). When attempting to breach
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the security of block ciphers, the attacker lacks the knowledge and control over
the key material. However, when attacking hash function, particularly its block
cipher-based compression function, the attackers holds the advantage of being in
control of the key material, which is usually the message block to be hashed. The
study of known-key attacks on block ciphers was first explored by Knudsen and
Rijmen [42], who aimed to demonstrate non-ideal property of these primitives
through distinguishers for 7-round AES and some Feistel structures, given that
the key information was known to the attacker. This concept was further ad-
vanced by Mendel et al. [49] at SAC 2009, who improved the 7-round known-key
distinguisher on AES with rebound attacks [50]. At FSE 2010, Gilbert and Peyrin
[32] presented a known-key distinguisher on 8-round AES through the innovative
application of the Super-Sbox technique in the context of a rebound attack. At
ASICRYPT 2014, Gilbert [31] proposed the first known-key distinguisher for
the full AES-128. At ACISP 2017, Cui et al. [17] distinguished the full AES-128
again with a statistical integral approach. Recently, Grassi and Rechberger [33]
revisited Gilbert’s known-key distinguisher and extended it to even 12 rounds
on AES-128. The known-key distinguishers are also applied to PRESENT [45,11]
and other important primitives [54,63,67,65,58,2] during the last decade. Fur-
thermore, the known-key setting has also been explored from a perspective of
provable security [2,15,51,16].

In addition to the known-key setting, at CRYPTO 2009, the chosen-key
setting was first introduced by Biryukov, Khovratovich, and Nikolic [9], where the
focus was on the distinguishing attacks performed with specially selected keys.
They distingushed the full AES-256 by constructing q-multicollision in time q·267,

which is much lower than the ideal case q · 2
q−1
q+1 128. At ASIACRYPT 2009 [44],

Lamberger et al. built limited-birthday distinguisher on full Whirlpool through
connecting multiple inbound phases with chosen key. At INDOCRYPT 2012,
Derbez et al. [21] introduced practical chosen-key distinguishers for AES-128 up
to 8 rounds and AES-256 with 9 rounds, which were later enhanced through the
application of multiple limited-birthday distinguisher [37]. At ASICRYPT 2013,
Iwamoto et al. [35] introduced the concept of a limited birthday distinguisher and
built several distinguishing attacks on reduced AES in the chosen-key setting. At
CRYPTO 2013, Fouque et al. [27] successfully distinguished 9-round AES-128

in the chosen-key setting by proposing a graph-based related-key differential
searching algorithm. At ACISP 2019, Zhu et al. [75] proposed practical chosen-
key distinguishers on 9-round AES-192.

In general, a block cipher with n-bit block size is a family of permutations
that operates on two inputs: a secret key, randomly generated, and an n-bit
string message, producing an output string of equal length that appears ran-
dom. In some implementations, changing a key can be costly, which led to the
proposal of tweakable block ciphers [68,47] as an alternative. These ciphers have
the advantage of being less expensive to change the tweak, compared to changing
the key. With a tweakable block cipher, both key and tweak are used to form a
permutation. Nowadays, tweakable block ciphers show their flexibility with vari-
ous applications in cryptographic schemes, such as message-authentication codes
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[56], compression functions [26], (authenticated) encryption schemes [59,43], or
variable-input-length ciphers [53]. At ASIACRYPT 2014, Jean et al. [39] pro-
posed the TWEAKEY framework with the purposes of unifying the vision of key
and tweak inputs of a cipher. Based on TWEAKEY framework, various tweakable
block ciphers are constructed, such as Deoxys-BC, Kiasu-BC, and Joltik-BC

and SKINNY [5], where Deoxys-BC and SKINNY have been standarized by ISO [1].
The investigations on these block ciphers are still going on, with a lot of new at-
tacks and techniques have been deployed. The open-key settings (i.e., known-key
and chosen-key attacks) are naturally available for tweakable block ciphers but
rarely studied by the communities.

1.1 Related-Key Differentials on AES

In our paper, we mainly leverage related-key differentials on AES and related
ciphers to build our chosen-key distinguishers. The so-called related-key attacks
are first introduced by Biham [6] at EUROCRYPT 1993, which allows the at-
tacker to insert differences in both the plaintext and the key. Although the
related-key setting is somewhat less relevant for block cipher, it is important and
practical when considering block-cipher based hash functions. There have been
quite a few papers searching related-key differentials on AES. At EUROCRYPT
2010, Biryukov and Nikolic [10] introduced the branch-and-bound method to
search the related-key differentials of AES and others. At CRYPTO 2013, Fouque
et al. [27] proposed the graph-based method to search the related-key differen-
tials and proposed the first 9-round chosen-key distinguisher on AES-128. Besides
various ad-hoc methods [12,41] incorporating the key of AES, there are several
tool-based automatic models on searching related-key differentials of AES. In
2014, Minier et al. [55] searched the truncated differentials of AES with con-
straint programming (CP). In 2016, Gérault et al. [30] proposed CP-based model
to search the chosen-key differential attacks on AES. Due the efficiency, CP tools
have widely used to search (related-key) differentials [28,69,29] recently.

At CRYPTO 2020, Liu et al. [48] discovered that many differentials on Gimli

turn out to be incompatible due to inner incompatibilities. The incompatibility
also appears in the related-key differentials of AES, which has been noted in
many works [10,27]. To deal with the incompatibilities, most of the previous
works use ad-hoc method [27] or add constraints [29] in the model to bypass
the incompatible characteristics. However, it is hard to avoid all the incom-
patibilities when modelling the search. For example, the 10-round related-key
differential on AES-128 given in [27] turns out to be incompatible, and one can
not find a key pair for the differential of the key. To assign compatible key val-
ues, Biryukov et al. [41] introduced the triangulating algorithm (TA) to derive
collisions of Rijndael-based compression function. At CRYPTO 2022, Dong et
al. [24] combined the triangulating algorithm and the rebound attacks to assign
compatible key values to bridge multiple inbound phases, which is named as the
triangulating rebound attack.
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1.2 Our Contributions

Our research begin with the observation that the differential trail in AES-like
cipher may be incompatible, or unlikely to transform into a limited-birthday dis-
tinguisher trivially, primarily due to the lack of degree of freedom in the states,
and the unsuitable input/output differentials, the small probabilities of the key
and state differentials, etc. To overcome these limitations, we utilize the key and
tweak (if exist) to enhance the degree of freedom for generating conforming pairs.
To facilitate the search for the limited-birthday distinguisher, we proposed a uni-
form automatic search model that integrates the key and tweak, as well as every
parameter affecting the attack, like input/output differentials, probabilities, etc.
In order to validate the attack, it is essential to find at least one key pair for the
key differential. To achieve this, we improve a technique that enables immediate
verification of the existence of key pairs, using the triangulation algorithm by
Biryukov et al. [41] and Leurent-Pernot’s new key schedule representation [46].
Therefore, our model can avoid the incompatibilities due to inner incompatibil-
ities of the key differential. We discover a new property of key bridging for AES

with Leurent and Pernot’s new key schedule representation [46], which helps to
significantly reduce the time to find the key pair given related-key differentials.
A direct application is that we find a new and valid 10-round related-key differ-
ential on Kiasu-BC with concrete key pairs fulfilling the key differentials (Table
5). Based on our uniform search model, we derive new full-round distinguishing
attacks on AES-192, AES-256, and Kiasu-BC, as well as round-reduced attacks
on Deoxys-BC.

AES-192 and AES-256. Since Biryukov et al. [9] proposed the full-round chosen-
key distinguisher on AES-256 at CRYPTO 2009, the full-round chosen-key dis-
tinguishers on AES-128 and AES-192 are opening for more than 10 years. At
CRYPTO 2013, Fouque et al. [27] introduced a 9-round chosen-key distinguisher
on AES-128 and left a one-round gap to the full round. For AES-192, the longest
chosen-key distinguisher only reaches 9 rounds [75]. In this paper, we fill the
10-year gap for AES-192 by introducing the first full 12-round limited birth-
day chosen-key distinguishing attack. In addition, the full 14-round AES-256 is
distinguished again in chosen-key setting since Biryukov et al. [9].

Kiasu-BC strictly follows AES-128 by adding 64-bit tweak XORed to the first
two rows of the state after the adding round key action. In the open-key setting,
the designers stated that

“A possible increment in the number of attacked rounds might happen in
the framework of open-key distinguishers (even though we have not been
able to improve the known attacks using this extra tweak input).”

In this paper, we fill the gap by considering the extra tweak and introduce chosen-
key distinguishing attacks on (practical) 9-round and full 10-round Kiasu-BC.
The 10-round attack is based on our new discovered 10-round related-key dif-
ferential on Kiasu-BC. Although the 10-round differential can not lead to valid
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attacks on full AES-128, we succeed to distinguish full 10-round Kiasu-BC with
aids of the additional degrees of freedom of its tweak.

Deoxys-BC has been selected as an ISO standard [1]. We for the first time con-
sider Deoxys-BC against open-key attacks by proposing chosen-key distinguishers
on 10-round Deoxys-BC-256 and 13-round Deoxys-BC-384. Our attacks can be
another proof that Deoxys-BC is more secure than AES in related-key settings
due to the new key schedule, which is claimed by the designers [40]. Note that
the full 14-round AES-256 has been distinguished by Biryukov et al. [9] and our
paper. Our source code is given at

https://www.dropbox.com/s/ghhqxmx3pmb0kae/experiment.zip?dl=0

Comparing our related-key attacks in chosen-key setting to previ-
ous known-key attacks. The known-key and chosen-key settings [42,9] are
proposed when considering security issues on hash functions built from block
ciphers, where the key material becomes public or changeable by the attackers.
For a hash function, the three basic secure properties should be ensured, i.e., the
resistance of collision attacks, preimage attacks, and second preimage attacks.
For AES, the known-key attacks already reaches full round AES-128 [17,31,33]
by expoiting statistical non-random properties, which can also be extended into
known-key distinguishers on Kiasu-BC. However, those non-random properties
on block ciphers can hardly threat the three basic secure properties of corre-
sponding hash functions.

Comparing with previous related-key attacks In [72], the authors identi-
fied an 11-round related-key rectangle distinguisher on Deoxys-BC-384. Building
upon it, they extended the distinguisher by adding one round at the begin-
ning and two rounds at the end. This advancement allowed them to execute a
key-recovery attack on the 14-round version of Deoxys-BC-384. As far as our
knowledge extends, the conversion of the 11-round related-key distinguisher into
a chosen-key distinguisher seems straightforward. However, the same cannot be
said for the 14-round key-recovery attack on Deoxsys-BC-384, as it does not read-
ily convert into a chosen-key distinguisher. Similar instances can be observed in
the full key-recovery attack on AES-192 [8] and the 11/14-round key-recovery
attack on Deoxys-BC-256 [72].

In this paper, we introduce a few chosen-key distinguishers based on related-
key (truncated) differentials on AES-like block ciphers. Since we exploit the
related-key (truncated) differentials, our chosen-key distinguishing attacks are
more likely to be converted into real attacks on the hash functions, i.e., collision
attacks. The only differences between the related-key (truncated) differentials
used in our chosen-key distinguishers and the collision attacks is whether the
input and output truncated differential of the underlined block cipher are equal
or not. In fact, our tool also finds a practical collision attack on 6-round AES-
128, but previous known-key distinguishers can not build such real threat. In

https://www.dropbox.com/s/ghhqxmx3pmb0kae/experiment.zip?dl=0
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this point of view, it is still meaningful to find chosen-key attacks based on
related-key (truncated) differentials, although there are already known-key at-
tacks. Therefore, we bring in the first full chosen-key attack on Kiasu-BC based
on a novel 10-round related-key (truncated) differentials, although known-key
distinguishers on full Kiasu-BC are trivially derived with previous known-key
distinguishers on full round AES-128 [17,31,33].

Table 1: A summary of the distinguishing attacks on AES and others, [8] and [72]
contain related-key attacks converted from the corresponding distinguishers.

Target Settings Rounds Time Memory Ideal Ref.

AES-128

MMO Collision
6/10 256 232 264 [32]
6/10 248 232 - Sect. 4

Known-Key

7/10 256 - 258 [42]
7/10 224 216 264 [49]
8/10 248 232 264 [32]

10/10 264 264 - [31]
10/10 259.6 258.8 - [17]
10/10 250 232 265.6 [33]
12/10 266 264 - [33]

Chosen-Key
7/10 28 28 264 [21]
8/10 213.4 216 231.7 [37]
9/10 255 232 268 [27]

AES-192 Chosen-Key

8/12 1 216 - [75]
9/12 - - - [8]?

9/12 1 216 - [75]
12/12 2100 232 2108 Sect. 4

AES-256 Chosen-Key

7/14 28 28 264 [21]
8/14 28 28 264 [21]
9/14 224 216 264 [21]
9/14 249 233 2128 [7]

14/14 2119 - 2128 [9]

14/14 q · 267 - q · 2
q−1
q+1

128
[9]

14/14 288 232 294 Sect. 4

Kiasu-BC
Secret-Key

3.5/10 - - - [23]
4/10 232 - - [22]
6/10 - - - [23]

Chosen-Key
9/10 236 214 268 Sect. 5

10/10 267 214 296 Sect. 5

Deoxys-BC-256
Secret-Key

9/14 2122 - 2128 [14]
9/14 2120.4 - 2128 [71,72]?

Chosen-Key 10/14 269 - 2101 Sect. 6

Deoxys-BC-384
Secret-Key

11/16 2120 - 2128 [14]
11/16 2118.4 - 2128 [73]

Chosen-Key 13/16 242 - 258 Sect. 6
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2 Preliminaries

2.1 AES

AES [18] is a 4 × 4 cell block ciphers that operates on 128-bit state, with three
different key sizes of 128, 192, and 256 bits, creating three corresponding versions:
AES-128, AES-192, and AES-256. Although the round functions of all versions are
the same, the number of execution rounds differ and are 10 rounds for AES-128,
12 rounds for AES-192, and 14 rounds for AES-256. Each round consists of four
major transformations as illustrated in Figure 1:

– SubBytes (SB): applies a non-linear 8-bit substitution-box operation to each
cell.

– ShiftRows (SR): shifts the i-th row left by i bytes cyclically.

– MixColumns (MC): mixes every column by multiplying a diffusion matrix over
GF(28).

– AddRoundKey (AK): adds a 128-bit round key to the internal state.

xi

SB

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

SR

yi

MC

zi

AK

wi

Fig. 1: The round function of AES.

The 128-bit round keys for each round function are generated from the initial
key by the KeySchedule (KS) operation. Note that an extra AddRoundKey is add
at the beginning of the first round, and a MixColumns operation is removed at
the last round.

2.2 Kiasu-BC and Deoxys-BC

The concept of tweakable block ciphers (TBC) was introduced by Liskov et.
al. [47] in 2002. At ASIACRYPT 2014, Jean et. al [39] introduced the TWEAKEY

framework with the aim of unifying the design of TBCs and enabling the creation
of primitives with arbitrary key and tweak sizes. The TWEAKEY framework
treats the key and tweak inputs similarly through a tweakey schedule algorithm.
To simplify security analysis when the tweakey size is large, Jean et al. identified
a subclass of TWEAKEY named the STK construction (Figure 2). In this paper, we
focus on two important TBCs, i.e., Kiasu-BC [38] and Deoxys-BC [40].



8 X. Dong et al.

P

P

...

P

α1

α2

αz

XOR C0

ART

f

P

P

...

P

α1

α2

αz

XOR C1

ART

f

P

P

...

P

. . .

. . .

. . .

XOR C2

ART

. . .

XOR Cr−1

ART

f

P

P

...

P

α1

α2

αz

XOR Cr

ART

Fig. 2: The STK construction [36]

Kiasu-BC [38] was proposed by Jean et al. in 2014. Its design strictly follows
AES-128, with an additional 64-bit tweak XORed to the first two rows of the
state after the add round key action. As a result, when the tweak is equal to zero,
Kiasu-BC is identical to AES-128. Consequently, the security of Kiasu-BC can be
inferred from existing and new analyses of AES-128. However, the addition of
the tweak might increase the degrees of freedom for attacks, since the tweak is
now freely chosen by attackers. This is why a comprehensive investigation into
Kiasu-BC is important to determine any potential negative effects. Previous
cryptanalysis of Kiasu-BC includes square attack [22], impossible differential
attack [23], meet-in-the-middle attack [70], and boomerang attack [23,4]. In the
open-key setting, Bao et al. [3] introduced a MITM preimage attack on 8-round
Kiasu-BC in hashing modes. Although the designers claimed that the extra tweak
input could improve open-key distinguishers, this was not achieved [38]. In this
paper, we fill this gap in the cryptanalysis in open-key setting.

Deoxys-BC [40] has been standardized by ISO [1]. It follows the STK construc-
tion in Figure 2, with the use of P to permute each tweakey byte and the
replacement of αi with LFSRs to update each byte. The internal round function
f is simply the round function of AES. Deoxys-BC comes in two versions, i.e.,
Deoxys-BC-256 (14 rounds) and Deoxys-BC-384 (16 rounds). Deoxys-BC has re-
ceived a lot of attention since its first thirt-party analysis by Cid et al. at ToSC
2017 [14]. By using Mixed Integer Linear Programming (MILP) to automatically
search for related-key boomerang differential trails with the aids of incorporating
linear incompatibility, they obtained the 8-round and 9-round related-tweakey
boomerang distinguishers for Deoxys-BC-256 with a probability 2−72 and 2−122,
respectively, and 10-round and 11-round related-tweakey boomerang distinguish-
ers for Deoxys-BC-384 with a probability 2−84 and 2−120, respectively. Later,
based on the Boomerang Connectivity Table (BCT) technique [13,71], these
distinguishers were improved. There have been various key-recovery attacks on
Deoxys-BC, including boomerang attacks [14,64] and rectangle attacks [72,25,4].

2.3 Limited birthday Distinguisher

At ASICRYPT 2013, the limited birthday distinguisher (LBD) was formally
introduced by Iwamoto et al. [35], although it has been used to distinguish
Whirlpool [44], AES [32]. At SAC 2013, Jean et al. further developed the LBD
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into a multiple limited birthday distinguisher [37]. In this section,the definition
and solution of the limited birthday problem and distinguisher are discussed.

Definition 1. (Limited birthday problem). Let f : {0, 1}n → {0, 1}n be a per-
mutation, and let ∆IN , ∆OUT ∈ {0, 1}n are two vector spaces of dimensions din
and dout respectively. Find a pair of inputs (x, x′) to f such that x ⊕ x′ ∈ ∆IN

and f(x)⊕ f(x′) ∈ ∆OUT .

Note that both f and f−1 are accessible, and the complexity of finding a
solution will depend on the values of din and dout. The algorithm proposed
in [32] has been proven to match the lower bound complexity for the limited
birthday problem in [35] for a black-box function and in [34] for a black-box
permutation. We refer to [32] for optimal algorithm and Theorem 1 for its time
complexity.

Theorem 1. There exists an algorithm for finding a limited birthday pair by
querying to f and f−1 in time:

max{2
n+1−max{din,dout}

2 , 2n+1−(din+dout)},

and using
min{2din , 2dout}

classical random access memory.

Definition 2. (Limited birthday distinguisher in related-key model). Let EK :
{0, 1}n → {0, 1}n be a block cipher with key K ∈ {0, 1}m. Given two trun-
cated difference vector spaces ∆IN of dimension din, ∆OUT of dimension dout
and a differential characteristic for the related-key K ⊕∆K , a limited birthday
distinguisher against EK is generated to find a pair of input (x, x′) such that
x⊕ x′ ∈ ∆IN and EK(x)⊕EK⊕∆K

(x′) ∈ ∆OUT with an algorithm solved faster
than the complexity of the generic algorithm in Theorem 1.

2.4 The Rebound Attacks

Fbw Fin Ffw

InboundOutbound Outbound

Fig. 3: The Rebound Attack

The rebound attack was first introduced by Mendel et al. in [50]. The attack
consists of two phases: an inbound phase and an outbound phase, as illustrated
in Figure 3. The internal block cipher or permutation F is split into three sub-
parts: F = Ffw ◦ Fin ◦ Fbw.
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– Inbound phase. In the inbound phase, the attackers use the meet-in-the-
middle technique to efficiently fulfill the low probability part in the middle
of the differential trail. The number of matched pairs in the inbound phase
determines the degree of freedom and acts as the starting point for the
outbound phase.

– Outbound phase. In the outbound phase, the matched values from the
inbound phase are computed backward and forward through Fbw and Ffw
to find a pair of values that satisfies the outbound differential trail through
a brute-force approach.

Generally speaking, the rebound attack is a technique for efficiently generating a
message pair that fulfills the inbound phase by utilizing a truncated differential
instead of a single differential characteristic. If the probability of the outbound
phase is p, then 1/p starting points must be prepared in the inbound phase to
expect one pair conforming to the differential trail of the outbound phase. Thus,
the degree of freedom should be larger than 1/p.

The Super-Sbox Technique The Super-Sbox technique was proposed simul-
taneously by Gilbert and Peyrin [32] and Lamberger et al. [44] with the goal
of fulfilling two heavy round S-box layers, as shown in Figure 4 (a), but with
low complexity. In [66], Sasaki et al. further reduced the memory complexity
by considering non-full-active Super-Sboxes, as shown in Figure 4 (b). As these
techniques are applied to hash functions, the master key is fixed and does not
provide any degree of freedom. The Super-Sbox technique is then used in the
rebound attack to reduce the cost of the two most heavy rounds (inbound part)
and to generate sufficient pairs to conform to the probability of the remaining
rounds (outbound part).

xi

SB,SR

zi

MC

wi

AK,SB

yi+1

(a) Super-Sbox

xi

SB,SR

zi

MC

wi

AK,SB

yi+1

(b) Non-full-active Super-Sbox

Fig. 4: The Two-Round Differential

Super-Sbox Technique. For the jth Super-Sbox SSBj and given input dif-

ference ∆x
(j)
i (j = 0 in Figure 4 (a)), compute all possible ∆y

(j)
i+1 = SSBj(x ⊕

∆x
(j)
i ) ⊕ SSBj(x) for all x ∈ {0, 1}32. Store the pair (x, x ⊕ ∆x(j)i ) in a table

L(j)[∆y
(j)
i+1]. With the given ∆y

(j)
i+1, we find a pair conforming the two-round

differential with (∆x
(j)
i , ∆y

(j)
i+1) by assessing L(j)[∆y

(j)
i+1]. The memory cost is

about 232.

Non-full-active Super-Sbox. The Property 1 of MDS in MC is utilised to con-
nect the differences. Take Figure 4 (b) as an example, by guessing the differences
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of one active byte of ∆zi or ∆wi, we can determine other differences according
to Property 1 as ∆wi = MC(∆zi). Then, for a fixed input-output differences

(∆x
(j)
i , ∆y

(j)
i+1) of SSBj , we deduce all the input-output differences for the active

cells of two S-box layers for each guess and then obtain their cell values by ac-
cessing the differential distribution table (DDT) of the S-box. 1 out of 5 active
value bytes in zi and wi is act as a filter of 2−8, and about 25 pairs are found.

Property 1. Suppose MC is an n × n MDS matrix and MC · (z[1], . . . , z[n])T =
(w[1], . . . , w[n])T , the knowledge of any n out of 2n bytes of (z, w) is necessary
and sufficient to determine the rest. (z, w) here can be either value or difference.

2.5 Triangulation Algorithm

The Triangulation Algorithm tool is an efficient Gaussian-based algorithm that
was introduced in 2009 by Khovratovich et. al. [41]. It is used to solve systems of
bijective equations and automatically detect the solution to nonlinear systems.
The algorithm models an AES-like block cipher as a system of round function
and key schedule equations, where the state bytes and key bytes are considered
variables. Initially, all the values of the system are determined by n initial state
bytes and k initial key bytes. By fixing m bytes with some constraints, the
algorithm returns n+k−m ”free variables”, which form the basis of the system.
The steps of the triangulation algorithm are as follows:

1. Generate a system of equations, where each cell is a variable and the prede-
fined values are fixed as constants.

2. Mark all variables and equations as non-processed.
3. Mark all variables involved in only one non-processed equation as processed,

and also mark the equation as processed. If there are no such variables, exit.
4. Repeat step 3 until there are no more non-processed equations.
5. Return all non-processed variables as “free variables”.

After the “free variables” are returned, random values can be assigned to them
and the other cells can be deduced based on the relationships in the equations.

3 Automatic Tool for finding Differential Distinguishers

In this section, constraint programming is introduced as the main automatic tool
for finding truncated differential trails on all targets and differential character-
istics in most cases.

Generic solver Constraint Programming (CP) is used to solve Constraint
Satisfaction Problems (CSPs). A CSP is defined by a triple (X ,D, C) where
X is a finite set of variables; D refers to the domain, i.e., the set of values
each xi ∈ X can have; C is a set of constraints including relations between
variables. Once an objective function is defined, the CSP becomes a Constrained-
Optimization Problem (COP). A solution of a COP is an assignment of values
to all the variables in X = {x0, · · · , xn−1} such that all constraints from C =
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{c0, · · · , cm−1} are satisfied and the objective function achieves its maximum or
minimum.

/* This model specifically pertains to AES-128, with the variables being {0,1} */

1. Objective function: /* to minimize the total number of active Sboxes, i, j ∈ [0, . . . , n− 1] */

obj =
∑
∆xr[i, j] +

∑
∆kr[i, n− 1]

2. Constraints on SB in both states and subkeys: /* SKr[i] indicates whether

the key byte of the last column is active or not in the r-th round. */

∆xr[i, j] = ∆yr[i, j]

∆SKr[i] = ∆kr[i, n− 1]

3. Constraints on AK:

∆wr[i, j] +∆kr+1[i, j] +∆xr+1[i, j] 6= 1

4. Constraints on SR:

∆yr[i, (i+ j) mod n] = ∆zr[i, j]

5. Constraints on MC: /* the total number of active bytes before and after

the MC should fulfill the MDS property */

(
∑n−1
i=0 ∆zr[i, j] +

∑n−1
i=0 ∆wr[i, j]) ∈ {0, n+ 1, n+ 2, . . . , 2n}

6. Constraints on KeySchedule:

∆kr+1[i, 0] +∆kr[i, 0] +∆SKr[(i+ 1) mod 4] 6= 1

∆kr+1[i, j] +∆kr+1[i, j − 1] +∆kr[i, j] 6= 1

(1)
Finding an optimal related-key differential trail is a highly combinatorial

problem that hardly scales. To simplify this problem, a usual and efficient way
is to divide it into two steps [10,27]. Step 1 searches for all truncated differen-
tial trails under a given bound on the number of rounds and active S-Boxes.
It may happen that no actual differential characteristic follows the truncated
differential trail found in Step 1. Hence, Step 2 examines and decides whether
the truncated differential characteristics are valid, and finds the actual differen-
tial characteristic that maximizes the probability. Both steps can be approached
through CP. Such a CP strategy has been successful in finding related-key dif-
ferential characteristics for AES [30], Midori [28], and SKINNY [20], in the sense
that the truncated differentials match the lower bound on the number of active
S-boxes (a.k.a. optimal truncated differentials).

In 2014, Minier et al. [55] proposed to use tools to automate Step 1 for
finding the best truncated differentials. In 2020, Gérault et al. [29] added more
constraints to describe the KeySchedule and MixColumn more precisely to filter
out those truncated differentials without valid differential characteristics follow-
ing them, which in turn also reduced the search space and improved efficiency
of the tool. Within the space of valid truncated differentials, Step 2 follows the
same CP program used in Step 1, but considers the exact byte differences for the
entire differential characteristics instead of a binary value of 0/1 in truncated dif-
ferentials. Following these significant developments in [55,29], the search model
of related-key differentials on AES-like primitives can be described as 1. The
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Constraints 1 consists of the 5 steps of the round function in a AES-like cipher
of a n× n bytes state, i.e., SubBytes (SB), AddroundKey (AK), ShiftRow (SR),
MixColumn (MC), and KeySchedule, and the objective function to minimize the
number of active S-boxes and to maximize the overall differential probability.
Hereinafter, x, y, z, w represent the states after AK, SB, SR, and MC respectively,
xr[i, j] (or xr[l] with l = i + n · j) for the byte at row i and column j of round
r for i, j, r = 0, 1, · · · , and ∆xri,j = 1 if there is a non-zero difference in byte xri,j
and 0 otherwise. These constraints together describe the underlying cipher in
the language of CP, which ensures the differential characteristics found by the
program will follow exactly the cipher, as presented in Equation 1.

Technically, the truncated differential search of Step 1 is implemented by
MiniZinc [57] language, which is subsequently solved by Picat-SAT [74]. Then
the search of actual differential characteristics in Step 2 is defined and solved by
Choco solver [61].

3.1 Differences of the Constraints and Extended Techniques

The automatic tools from [29] have been modified. The constraints of the Step
1 searching algorithm are slightly different for AES and Kiasu-BC since we in-
cluded the following 3 constraints in Equation 2. The value of LenKey is 192,
256, and 192, respectively for AES-192, AES-256, and Kiasu-BC. The constraints
of step 2 searching code are changed adaptively with Step 1.

For Deoxys-BC, constraints on KeySchedule should be changed accordingly.
The positions where the XOR addition of two or three tweakeys makes a differ-
ence in some rounds are designated with lanes in Equation 3, where function
f is deduced from the tweakey byte permutation h and the regime is 2 for
Deoxys-BC-256 and 3 for Deoxys-BC-384.



1?. Objective function:

obj =
∑Nr−2
r=4 ∆xr[i, j] + fixed bytes in round 2 = Outbound Active Bytes

7. Constraints on KeySchedule:∑
∆kr[i, n− 1] ≤ LenKey

8. Constraints of ideal case complexity greater than attacking complexity gene-

rated from limited birthday attack [32]:

max(64−max(8 ·
∑
∆x0[i, j], 7 ·

∑
∆xNr−1[i, j])/2,

129− 8 ·
∑
∆x0[i, j]− 7 ·

∑
∆xNr−1[i, j])

≥
∑Nr−1
r=4 ∆xr[i, j] + 7 · fixed bytes in round 2

9. Inbound freedom is enough:

LenKey −
∑
∆kr[i, n− 1]

+Starting Points freedom from ∆z1

+Ending Points freedom from ∆x4

≥
∑Nr−1
r=4 ∆xr[i, j] + 7 · fixed bytes in round 2

(2)
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
6?. Constraints on TweakeySchedule:

∆TKr[f(r,m) mod 4, f(r,m) div 4] ≤ lanem∑Nr−1
r=0 ∆TKr[f(r,m) mod 4, f(r,m) div 4] ≥ lanem · (Nr + 1− regime)

(3)

We conducted a thorough search using the aforementioned constraint model
above. Our approach is different from the methodology provided by [27] for 9-
round AES-128 LBD distinguisher in which they looked for a 5-round related-key
differential characteristic with a higher probability and built 4 rounds backwards.
Another strategy used in the search is utilizing more freedom expanded from end
points i.e., ∆x4, which is so efficient that just one key pair is required when the
same 9-round LBD distinguisher as [27] is used.

3.2 From Differential Characteristics to Conformable Value Pairs
with the New AES Key Schedule Representation

The presence of a truncated differential does not necessarily indicate the ex-
istence of differential characteristics, and similarly, the presence of differential
characteristics does not guarantee the presence of a conforming pair. The first
issue can be efficiently validated using CP/MILP automated tools, but the sec-
ond issue remains an unresolved problem for AES. Recently, techniques based on
MILP method are proposed to the experimental verify the difference trails and
successfully apply to Speck, Simek and Gimli [48,62]. In this work, we propose
an efficient way to generate a pair that conforms to the low-probability differ-
ential characteristics of AES-like ciphers using the triangulation algorithm. By
following the ideas from [41,24], we can hasten the process of finding a key pair
conforming to the key differential trails, regardless of the low probability of the
trial. For instance, one key pair of AES-128 key trail in Figure 10 and given in
Table 5 can be found in roughly 230 time complexity, despite the original prob-
ability being 2−126. This is achieved by fixing the values of 16 active S-boxes in
k6, k7, k8, and k9. By following the steps in Table 2, about 232 subkeys k9 can be
recovered from all possible choices of admissible active S-box values in k6, k7, k8,
and k9, an thus, at least one subkey can pass through the remaining five active
S-boxes at k5, k2, and k1.

1. k7[8, 9, 10, 11] = k6[12, 13, 14, 15]⊕ k7[12, 13, 14, 15]
2. k8[8, 9, 10, 11] = k7[12, 13, 14, 15]⊕ k8[12, 13, 14, 15]
3. k8[4, 5, 6, 7] = k7[8, 9, 10, 11]⊕ k8[8, 9, 10, 11]
4. k9[8, 9, 10, 11] = k8[12, 13, 14, 15]⊕ k9[12, 13, 14, 15]
5. k9[4, 5, 6, 7] = k8[8, 9, 10, 11]⊕ k9[8, 9, 10, 11]
6. k9[0, 1, 2, 3] = k8[4, 5, 6, 7]⊕ k9[4, 5, 6, 7]

Table 2: Steps to recover the subkey k9 from known key bytes
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Furthermore, by utilizing the new key schedule representation proposed by
Leurent and Pernot in [46], we can further reduce the complexity of finding key
pairs to roughly 28 by carefully choosing the admissible values for active S-boxes
bytes in the key states. In this new representation, the bytes of round key k are
transformed into a new basis s[0], s[1], ..., s[15] through these transitions:

s[0] = k[15], s[1] = k[14]⊕ k[10]⊕ k[6]⊕ k[2], s[2] = k[13]⊕ k[5], s[3] = k[12]⊕ k[8],

s[4] = k[14], s[5] = k[13]⊕ k[9]⊕ k[5]⊕ k[1], s[6] = k[12]⊕ k[4], s[7] = k[15]⊕ k[11],

s[8] = k[13], s[9] = k[12]⊕ k[8]⊕ k[4]⊕ k[0], s[10] = k[15]⊕ k[7], s[11] = k[14]⊕ k[10],

s[12] = k[12], s[13] = k[15]⊕ k[11]⊕ k[7]⊕ k[3], s[14] = k[14]⊕ k[6], s[15] = k[13]⊕ k[9].

Denote k′ and s′ are the state after one round of key schedule and new repre-
sentation of key schedule (s′′ is the state after two rounds, etc.), then:

s′[0] = k′[15] = k[15]⊕ k[11]⊕ k[7]⊕ k[3]⊕ SB(k[12]) =s[13]⊕ SB(s[12]),

s′[1] = k′[14]⊕ k′[10]⊕ k′[6]⊕ k′[2] = k[14]⊕ k[6] =s[14],

s′[2] = k′[13]⊕ k′[5] = k[13]⊕ k[9] =s[15],

s′[3] = k′[12]⊕ k′[8] = k[12] =s[12],

s′[4] = k′[14] = k[14]⊕ k[10]⊕ k[6]⊕ k[2]⊕ SB(k[15]) =s[1]⊕ SB(s[0]),

s′[5] = k′[13]⊕ k′[9]⊕ k′[5]⊕ k′[1] = k[13]⊕ k[5] =s[2],

s′[6] = k′[12]⊕ k′[4] = k[12]⊕ k[8] =s[3],

s′[7] = k′[15]⊕ k′[11] = k[15] =s[0],

s′[8] = k′[13]⊕ k[13]⊕ k[9]⊕ k[5]⊕ k[1]⊕ SB(k[14]) =s[5]⊕ SB(s[4]),

s′[9] = k′[12]⊕ k′[8]⊕ k′[4]⊕ k′[0] = k[12]⊕ k[4] =s[6],

s′[10] = k′[15]⊕ k′[7] = k[15]⊕ k[11] =s[7],

s′[11] = k′[14]⊕ k′[10] = k[14] =s[4],

s′[12] = k′[12] = k[12]⊕ k[8]⊕ k[4]⊕ k[0]⊕ SB(k[13])⊕ ci =s[9]⊕ SB(s[8])⊕ ci,
s′[13] = k′[15]⊕ k′[11]⊕ k′7 ⊕ k′[3] = k[15]⊕ k[7] =s[10],

s′[14] = k′[14]⊕ k′[6] = k[14]⊕ k[10] =s[11],

s′[15] = k′[13]⊕ k′9 = k[13] =s[8].

Following the new key-schedule representation, the key bytes k[12], k[13], k[14],
and k[15], where the SubBytes operator acts on, will not be affected after the
transformation since they are converted to s[12], s[8], s[4] and s[0], respectively.
Furthermore, the following relationships exist between these bytes:

s[8] = s′[15] = s′′[2] = s′′′[5] = SB(s′′′[4])⊕ s′′′′[8],

s[0] = s′[7] = s′′[10] = s′′′[13] = SB(s′′′[12])⊕ s′′′′[0],

s[4] = s′[11] = s′′[14] = s′′′[1] = SB(s′′′[0])⊕ s′′′′[4],

s[12] = s′[3] = s′′[6] = s′′′[9] = SB(s′′′[8])⊕ s′′′′[12]⊕ ci.
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These relations result in the following observation on AES-128 key schedule.
Proportion 1 (Key bridging). By the new representation of key schedule of
AES-128, the knowledge of the fourth columns of the subkeys at round 4 k4 and
round 5 k5 allows to deduce the fourth columns of the subkey at round 1 k1.

Returning to the preceding example, the admissible active S-box values of
k6, k7, k8, and k9 are chosen sequentially so that four active S-boxes at k2 and
k1 are fulfilled in roughly 28 time complexity by the constraints:

k5[13] = s5[8] = SB(s8[4])⊕ s9[8] = SB(k8[14])⊕ k9[13],

k2[13] = s2[8] = SB(s5[4])⊕ s6[8] = SB(SB(s8[0])⊕ s9[4])⊕ k6[13]

= SB(SB(k8[15])⊕ k9[14])⊕ k6[13],

k2[14] = s2[4] = SB(s5[0])⊕ s6[4] = SB(SB(s8[12]⊕ s9[0])⊕ k6[14]

= SB(SB(k8[12])⊕ k9[15])⊕ k6[14],

k2[15] = s2[0] = SB(s5[12])⊕ s6[0] = SB(SB(s8[8])⊕ s9[12]⊕ ci)⊕ k6[15]

= SB(SB(k8[13])⊕ k9[12]⊕ ci)⊕ k6[15],

k1[13] = s1[8] = SB(s4[4])⊕ s5[8] = SB(SB(s7[0])⊕ s8[4])⊕ k5[13]

= SB(SB(k7[15])⊕ k8[14])⊕ k5[13].

The new key bridging observation helps reduce the complexity of finding key
pairs by tracking the validity of the relationship between distant active S-boxes.
With these properties, the complexity of finding differential characteristics can
even be reduced by filtering out trails that do not meet these above constraints.

4 Improved attacks on AES

This section presents several attacks on AES and AES-like hash functions. To be-
gin, we introduce a new collision attack on 6-round AES-128-MMO/MP with a
time complexity of only 248, achieved through the use of a new truncated differen-
tial trail. Compared to the best concurrent collision attack on 6-round AES-128,
as presented in [32], our new attack has reduced the complexity by 28 times. Ad-
ditionally, two new distinguisher attacks on full-round AES-192 and AES-256 have
been obtained through the improvement of an automatic tool search specialized
in limited birthday distinguisher.

4.1 Collision attacks on 6-round AES-128-MMO/MP

As depicted in Figure 5, focusing on the first Super-Sbox SSB(0) marked by
red box, for the fixed chosen difference ∆w3 and a given k3 computed by the
initial value for the input key, we derive SSB(0) in ∆y3 and apply the Super-Sbox
technique following these steps.

1. Brute-force all the 232 values of y
(0)
3 , compute and store (x

(0)
3 , ∆x

(0)
3 ) in the

list L0.
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Fig. 5: Collision attack on 6-round AES-128.

2. Store the value of (x
(0)
2 , ∆x

(0)
2 ) with the corresponding entry (x

(0)
3 , ∆x

(0)
3 )

after passing through AK, MC, SR, and SB operators.

3. For each difference ∆z1, compute the difference x
(0)
2 marked by red box and

find the corresponding entry ∆x
(0)
2 and the value x

(0)
2 in the list L0.

The Super-Sboxes can be computed in parallel with complexity 232 with the
expectation that one pair is obtained for each difference pair (∆w3, ∆z1). There-
fore, we could construct enough 248 pairs in the inbound phase and compute
backward and forward with a total 248 time complexity because the outbound
probability is 248.

4.2 Distinguisher on Full round AES-192 and AES-256

We investigated the distinguishing characteristics of limited birthday distinguish-
ers on full round AES-192 and AES-256. The search is specifically focused on the 12
round AES-192 (resp. the 14 round AES-256), where the objective function of the
truncated trail search on Step 1 is number of active bytes in round 4, . . . , R− 2
(R is 12 for AES-192 and 14 for AES-256, round counter starts from 0). The ex-
periment’s results indicate that AES-192 has at least 11 active bytes in its state
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before SubByte operation from round 4 to round 10, and AES-256 has at least 10
active bytes in its state prior to SubByte operation from round 4 to round 12.
Both of these truncated trails with minimum active bytes can be instantiated
to be differential characteristics in the search of Step 2. Step 2 is determined
with an objective function of total time complexity, which includes the forward
and backward outbound phases through the remaining active S-boxes under the
following constraints:

– keyschedule differential is solvable, i.e., keyschedule part has probability
higher than 2−192 for AES-192 (resp. 2−256 for AES-256),

– inbound freedom is enough, i.e., available key pairs and starting points are
enough for the pair of value for outbound phase,

– ideal case is higher than attack complexity, i.e., the critical part, ideal case
time complexity calculating from the input and output differential space
must be higher than the total attack time complexity of inbound phase and
outbound phase.

These 3 criteria are both coded into the constraints in Step 1 and Step 2 searches.
Finally, using rebound techniques, a full round LBD on AES-192 with an attack-
ing complexity of 2100 was obtained in Figure 7, while a full round LBD on
AES-256 with attacking complexity of 288 was obtained in Figure 12. The in-
bound phase covers y1 to x4.

The LBD Attack on Full AES-192. The attack procedures for AES-192 are
described following:

1. Find a key pair (k, k⊕∆K) conforming to the key differential characteristic.

2. Random assign a compatible difference for ∆x4[8] and compute ∆y3 =
SR−1(MC−1(∆x4 ⊕∆k4)).

3. Follow the Super-Sbox technique in Section 2.4, we construct the table

L(i)[∆y
(i)
3 ] that corresponds to the difference ∆y

(i)
3 by iterating 232 values of

y
(i)
3 and propagate the values backwards until w

(i)
1 .

4. Random choose a compatible difference for∆y1 and compute∆w1 = MC(SR(∆y1)).
Deduce the values of w1 by assessing the precomputation table in Step 3.

5. After obtaining all the cell values of w1 and ∆w1, the pairs are computed
backward and forward to filter the one passing through all the remaining
active S-boxes in the rest differential characteristic given in Table 4.

6. Return to Step 1 if no pair is obtained.

As shown in Table 4, the key differential (i.e., Key differences in Table 4) is
of probability 2−96, which contains 16 active S-boxes (each with a probability
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of 2−6). Given a key pair satisfying the key differential, the probability of the
outbound phase in the internal states (i.e., State differences in Table 4) is 2−100,
which consists of two parts

– the probability 2−72 to pass the active S-boxes from Round 4 to Round 10
in Figure 7,

– the probability 2−28 to pass the active S-boxes in Round 1 in Figure 7.

With the help the triangulation algorithm, it is possible to derive a key pair with
a time complexity of 224 although the probability of the key differential trail is
2−96.

Computing the conforming key pair with the triangulation algorithm. The key
differential characteristic has 16 active S-boxes, each having a probability of
2−6. Out of these, 12 active S-boxes (highlighted in blue in Figure 6) of K0,
K2, and K4 have been fixed to their admissible values individually. We input
the system of equations of all subkeys to the triangulation algorithm with the
12 known bytes, and receive the output of 12 free bytes marked by dots in K2,
K3, and K4 in Figure 6. We then choose random values for these free bytes, and
subsequently, all the remaining bytes of K4 have been computed using Table 3.
However, since the key values still need to pass through the 4 remaining active
S-boxes, each with a probability of 2−6, it takes a total of 224 time to uncover a
single conforming key pair.

K0

KS

K1

KS

•
•
•
•

K2

KS

•
•
•
•
K3

KS

•
•
•
•

K4

Fig. 6: The selection of fixed and free bytes in the AES-192 subkeys.

1. K3[20, 21, 22, 23] = K4[16, 17, 18, 19]⊕K4[20, 21, 22, 23]

2. K3[16, 17, 18, 19] = K2[20, 21, 22, 23]⊕K3[20, 21, 22, 23]

3. K3[12, 13, 14, 15] = K2[16, 17, 18, 19]⊕K3[16, 17, 18, 19]

4. K1[20, 21, 22, 23] = K2[16, 17, 18, 19]⊕K2[20, 21, 22, 23]

5. K1[16, 17, 18, 19] = K0[20, 21, 22, 23]⊕K1[20, 21, 22, 23]

6. K2[12, 13, 14, 15] = K1[16, 17, 18, 19]⊕K2[16, 17, 18, 19]

7. K3[8, 9, 10, 11] = K2[12, 13, 14, 15]⊕K3[12, 13, 14, 15]

8. K4[12, 13, 14, 15] = K3[16, 17, 18, 19]⊕K4[16, 17, 18, 19]

9. K4[8, 9, 10, 11] = K3[12, 13, 14, 15]⊕K4[12, 13, 14, 15]

10. K4[4, 5, 6, 7] = K3[8, 9, 10, 11]⊕K4[8, 9, 10, 11]

11. K4[0, 1, 2, 3] = K3[4, 5, 6, 7]⊕K4[4, 5, 6, 7]

Table 3: Steps to recover the subkey K4 from known key bytes
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Analysis of the Inbound Phase: Step 2 and Step 4 contribute 27 and 232 degrees
of freedom, respectively, resulting in 27+32 = 239 starting points. In order to
obtain one pair passing through the outbound phase, whose probability is 2−100,
2100−39 key pairs need to be prepared in Step 1 by changing the 12 free bytes
marked by dots in Figure 6. The time complexity of Step 1 is 261+24 = 285.
Totally, 261+7+32 = 2100 starting points are generated.

The total time complexity of the attack is approximately 285 + 2100 ≈ 2100

with a memory requirement of 232 to store the Super-Sboxes. In the ideal case,
with three unknown bytes in ∆IN and ∆OUT deduced from three known differ-
ence active S-boxes, the attacker can expect to find a solution that verifies the

required property in a time equivalent to max{2
128+1−max{7,14}

2 , 2128+1−(7+14)},
which gives a time complexity equivalent to 2108 encryption queries.

Table 4: Differential characteristic used in the distinguisher of 12 rounds of AES-
192. The two lines of state differences are the respectively the state difference
after AddRoundKey and after MixColumn. The last line state difference is the state
difference after ShiftRow.

Round State differences Key differences
Plaintext 2D3D06BB ??000000 3D9D9DBC 00000000

0
00000000 ??000000 00000000 00000000

2D3D06BB 0C000000 3D9D9DBC 00000000
00000000 219D9DBC 00000000 00000000

1
0C000000 0C000000 10000000 1C000000

0C000000 2D9D9DBC 10000000 1C000000
???????? ???????? ???????? ????????

2
???????? ???????? ???????? ????????

219D9DBC 219D9DBC 2D9D9DBC 00000000
??000000 ??000000 ??9D9DBC ??000000

3
??000000 ??000000 ??000000 ??000000

10000000 0C000000 2D9D9DBC 0C000000
219D9DBC 219D9DBC 219D9DBC 219D9DBC

4
00000000 00000000 0C000000 00000000

219D9DBC 219D9DBC 2D9D9DBC 219D9DBC
00000000 00000000 219D9DBC 00000000

5
0C000000 00000000 00000000 00000000

0C000000 00000000 219D9DBC 00000000
219D9DBC 00000000 00000000 00000000

6
0C000000 0C000000 00000000 00000000

2D9D9DBC 0C000000 00000000 00000000
219D9DBC 219D9DBC 00000000 00000000

7
00000000 00000000 0C000000 00000000

219D9DBC 219D9DBC 0C000000 00000000
00000000 00000000 219D9D9D 00000000

8
00000000 00000000 00000000 00000000

00000000 00000000 219D9DBC 00000000
00000000 00000000 00000000 00000000

9
0C000000 0C000000 0C000000 0C000000

0C000000 0C000000 0C000000 0C000000
219D9DBC 219D9DBC 219D9DBC 219D9DBC

10
0C000000 0C000000 00000000 0C000000

2D9D9DBC 2D9D9DBC 219D9DBC 2D9D9DBC
219D9DBC 219D9DBC 00000000 219D9DBC

11
00000000 0C000000 00000000 0C000000

219D9DBC 2D9D9DBC 00000000 2D9D9DBC
00000000 ??000000 00000000 ??000000

Ciphertext 0C000000 ??9D9DBC 00000000 ??9D9DBC 0C000000 219D9DBC 00000000 2D9D9DBC

Analysis of the AES-256 distinguisher. The procedure of AES-256 distin-
guisher attack is similar to AES-192, using the concrete differential characteristic
specified in Table 6. The degrees of freedom are calculated from the number
of possible key pairs and state pairs conforming the truncated round Inbound
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Fig. 7: Differential characteristic of 12-round AES-192 used in the distinguisher.
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part. It is estimated that 232 starting points are generated for each key pair, and
around 256 key pairs need to be found. The time to find one key pair is about
28 with triangulation algorithm. The total complexity for finding one key pair
and message pairs that satisfy the entire differential trail is 256+8 + 288 ≈ 288,
while it is 294 in the ideal case.

5 Distinguisher on Full round Kiasu-BC

The tweakable block cipher Kiasu-BC was introduced by Jean et al. [38] as a
candidate in the CAESAR competition for authenticated encryption. The design
of Kiasu-BC is crucially similar to AES cipher, except for the appearance of a
64-bit tweak value which is XORed to the two first rows of the state in each
round after adding the round-key. Thus, it can be seen as the simplest instance
of the TWEAKEY framework [39], where an identical tweak is used for all round
functions. The tweak T is described in Figure 8.

T =

T0

T1

T2

T3

T4

T5

T6

T7

0

0

0

0

0

0

0

0

Fig. 8: 64-bit tweak in Kiasu-BC: T = T0‖T1...‖T7.

5.1 Practical 9-round Distinguisher

In this section, by using the degree of freedom from the tweak, we enhance
the 9-round distinguisher of AES-128 in [27] to be consistent with Kiasu-BC

distinguisher and reduce the time complexity of the distinguisher from 255 to
236. The same characteristic in Figure 9 and the key pair found in [27] are
utilised, and three S-boxes which include 2 S-boxes in Round 4 and 1 S-box in
Round 1 are fulfilled by the tweak cells. One pair found is shown in Figure 13
in Supplementary Material.

The Inbound Phase: As shown in Figure 9, the Inbound phase marked with
dash lines starts from z1 to z3 and now extends to x1 to x4 so that the S-box
in x1 and 2 S-boxes in x4[1] and x4[13] are covered. To generate data pairs and
a tweak conforming a given difference (∆z1, ∆z3) and the truncated differential
in Figure 9, the following steps are performed:

1. Compute ∆x2 = MC(∆z1)⊕∆k2 and ∆y3 = SR−1(∆z3).



Chosen-Key Distinguishing Attacks 23

2. Assign compatible differences for (∆x3[0], ∆x3[3]) and compute (∆w2[0], ∆w2[3]) =

(∆x3[0], ∆x3[3])⊕(∆k3[0], ∆k3[3]),∆z
(0)
2 = MC−1(∆w

(0)
2 ), and check whether

the difference of ∆z
(0)
2 is compatible with the Super-Sboxes tuple difference

(∆x2[0], ∆x2[5], ∆x2[10], ∆x2[15]). If yes, deduce the value of these cells

by assessing DDT, and compute w
(0)
2 . Build the list L0 to store the tuples

(w
(0)
2 , ∆w

(0)
2 ) satisfied the condition: SB(w2[3]⊕k3[3])⊕SB(w2[3]⊕∆w2[3]⊕

k′3[3]) = ∆y3[3].

3. Similar to step 2, build the lists L1, L2, and L3 to store the tuples (w
(1)
2 , ∆w

(1)
2 ), (w

(2)
2 , ∆w

(2)
2 ),

and (w
(3)
2 , ∆w

(3)
2 ) by the corresponding differences∆x3[4, 5],∆x3[9, 10],∆x3[14, 15]

and the Super-Sboxes tuples∆x2[4, 9, 14, 3],∆x2[8, 13, 2, 7], and∆x2[12, 1, 6, 11].

4. For all possible tuples in L0, L1, L2, L3:
– Deduce x3[0, 4, 5, 9], y3[0, 4, 5, 9] by assessing the DDT, and tw[0, 2, 3, 5] =
w2[0, 4, 5, 9]⊕k3[0, 4, 5, 9]⊕x3[0, 4, 5, 9]. Compute bytes x3[3, 10, 14, 15] =
w2[3, 10, 14, 15]⊕k3[3, 10, 14, 15] and the corresponding y3 cells. Compute
w3[0, 1, 2, 3] = MC(SR(y3[0, 5, 10, 15])) and tw[1] = w3[1] ⊕ k4[1] ⊕ x4[1]
for x4[1] deduced from DDT.

– With full state of w2 are known, compute backward to x2. Compute
w1[9] = x2[9]⊕k2[9]⊕ tw[5] and w1[10, 11] = x2[10, 11]⊕k2[10, 11]. With
z1[8] deduced from DDT, w1[8] = MC−1(z1[8], w1[9, 10, 11]) and tw[4] =
w1[8]⊕ k2[8]⊕ x2[8].

– Assign random value to x3[12] and deduce tw[6] = w2[12]⊕k3[12]⊕x3[12].
Compute x3[1] = w2[1] ⊕ k3[1] ⊕ tw[1], x3[6, 11] = w2[6, 11] ⊕ k3[6, 11]
and the corresponding w3[12, 13, 14, 15] = MC(SR(SB([x3[12, 1, 6, 11]))).
Obtain tw[7] = w3[13]⊕ x4[13]⊕ k4[13] with x4[13] deduces from DDT.

– After generating enough 236 pairs of full states (w2, w
′
2) and the tweak

tw for the starting points, stop.

Analysis of the Inbound Phase: In Step 2, 214 pairs of difference (∆x3[0], ∆x3[3])
are sampled. Only the condition for w2[3] acts as a filter of probability 2−7 for
one byte to hit the difference ∆y3[3], even though the matching difference for

∆z
(0)
2 is 2−4 but also leads to 24 assembled values passing through S-boxes.

Therefore, about 27 tuples are stored in list L0. Similar evaluations are applied
for L1, L2, and L3, resulting in corresponding 214, 27, and 2 tuples being counted.
Since x3[12] are chosen randomly in step 4 and at least 2 assembled values are
found for each x4[1] and x4[13], we expect about 27+14+7+1−1+8+2 = 238 (−1
for the same pair with different sequences) starting points are found for a given
difference (∆z1, ∆z3), which leads to an ample number of starting points for the
outbound phase despite using only one random difference of z1. The memory
complexity has been diminished to 214, as opposed to the 232 memory storage
required by the Super-Sboxes technique [32].

The Outbound Phase: Since the probability of the forward differential char-
acteristic is 236 for the remaining 6 active S-boxes at x4[9], x5, x6, and x7, and
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no active S-box left in the backward trail, we expect to find a pair satisfying the
whole 9-round trail in 236 time complexity.

Generic Time Complexity: The differential trail has 5 unknown difference
bytes in the ∆IN and 3 unknown difference bytes in the ∆OUT , giving space
vectors of din = 39 and dout = 21. Following Theorem 1, a generic algorithm
takes around 268 querying time to find a pair conforming to the input and output
differences of an ideal permutation on n = 128, and uses 221 of memory storage.
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Fig. 9: Differential characteristic of 9-round Kiasu-BC used in the distinguisher.

5.2 The First 10-round Distinguisher

The 7-round AES-128 Related-key Differential Trail. As shown in Figure
10, the new 7-round differential trail is marked with gray color from round 3 to
round 9, which consists of 11 active S-boxes in states with probability 2−67 and
active S-boxes in subkeys. We note that while this characteristic trail may not
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be the best fit for 7-round related-key AES-128, it aligns better with the degrees
of freedom from the tweak, thus providing a more advantageous limited birthday
distinguisher for Kiasu-BC. By extending 3 rounds backward, a 10-round trail is
formed with 3 rounds in the Inbound part and 2−67 probability in the Outbound
part.

The Inbound phase: Compared to the previous 9-round distinguisher, an ad-
ditional round has been added to the Inbound part of the 10-round attack, en-
compassing rounds 1 to 3. However, the attack still starts at z1, which is marked
as Sstart, and uses the degrees of freedom from the tweak to fulfill the active
S-boxes in x1. Given a difference ∆z1 compatible with the fixed differences in
x1, we find the pairs of states and a tweak conforming to the Inbound trail with
fixed differences (∆z1, ∆y3) by the following steps:

1. Deduce ∆x2 = MC(∆z1)⊕∆k2.

2. Assign compatible differences to ∆x3[0, 1, 3] and compute backward ∆w
(0)
2 =

∆x
(0)
3 ⊕ k

(0)
3 and ∆z

(0)
2 = MC−1(∆w

(0)
2 ). Next, check the compatibility of

∆x2[0, 5, 10, 15] and ∆z
(0)
2 and deduce the corresponding cells if all dif-

ferences are compatible. After that, w
(0)
2 is computed and store the pair

(w
(0)
2 , ∆w

(0)
2 ) in to list L0 if the condition SB(w2[3] ⊕ k3[3]) ⊕ SB(w2[3] ⊕

∆w2[3]⊕ k′3[3]) = ∆y3[3] is passed.

3. Similar to step 2, build the lists L1, L2, and L3 to store the pairs (w
(1)
2 , ∆w

(1)
2 ), (w

(2)
2 , ∆w

(2)
2 ),

and (w
(3)
2 , ∆w

(3)
2 ) by the corresponding differences ∆x3[4, 5, 6], ∆x3[9, 11],

and ∆x3[12, 14, 15].

4. Deduce z1[0, 5, 7, 9] by assessing the DDT.

5. For all possible tuples in L0, L1, L2, L3:

– Deduce x3[0, 9, 12] by assessing the DDT, and compute tw[0, 5, 6] = w2[0, 9, 12]⊕
k3[0, 9, 12]⊕ x3[0, 9, 12].

– Since the full state of w2 are known, we compute backward to obtain
full state of x2, and the bottom two rows of w1 by XORing x2 with k2
in the respected cells. Extra cells w1[0, 9, 12] = x2[0, 9, 12]⊕k2[0, 9, 12]⊕
tw[0, 5, 6] are also computed. Obtain w1[1] = MC−1(z1[0], w1[0, 2, 3]), w1[4, 5] =
MC−1(z1[5, 7], w1[6, 7]), w1[8] = MC−1(z1[9], w1[9, 10, 11]) and tw[1, 2, 3, 4] =
w1[1, 4, 5, 8]⊕ x2[1, 4, 5, 8]⊕ k2[1, 4, 5, 8].

– Filter the tuples satisfied the following conditions:

(a) SB(w2[1]⊕k3[1]⊕tw[1])⊕SB(w2[1]⊕∆w2[1]⊕k′3[1]⊕tw[1]) = ∆y3[1].
(b) SB(w2[4]⊕k3[4]⊕tw[2])⊕SB(w2[4]⊕∆w2[4]⊕k′3[4]⊕tw[2]) = ∆y3[4].
(c) SB(w2[5]⊕k3[5]⊕tw[3])⊕SB(w2[5]⊕∆w2[5]⊕k′3[5]⊕tw[3]) = ∆y3[5].

6. Randomly choose tw[7] and form the starting points for the Outbound phase.
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Analysis of the Inbound Phase: The list L0 has approximately 214 elements
since 221 differences of x3[0, 1, 3] are sampled and about 214 tuples are passed
through a filter of 2−7 in Step 2. Estimating with a similar computation, we
anticipate that 214 tuples are stored in list L1, 27 tuples in list L2, and an equal
number, 27 tuples, in list L3. Among the 242 list combinations formed in Step
5, about 221 tuples are passed through 3 conditions. Since the tw[7] is freely
chosen, we can form approximately 229 solutions for each choice of difference
∆z1. Consequently, in order to acquire the necessary 267 pairs for the Outbound
phase, 238 iterations of ∆z1 differences are performed, resulting in a total time
complexity of 267 and memory complexity of 214 for the entire attack. While
the generic algorithm incurs a time complexity of 296, given the 4 free difference
cells in ∆IN and no differences in ∆OUT .
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Fig. 10: Differential characteristic of 10-round Kiasu-BC used in the distin-
guisher.
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Table 5: The key pair conforming to differential characteristic used in the 10-
round Kiasu-BC distinguisher.

Round k k′ k ⊕ k′
0 1C709357 CDF3E375 6A486781 D3D9E8D5 8E7093B7 64280395 51CD8781 D3D9E8D5 920000E0 A9DBE0E0 3B85E000 00000000
1 28EB9031 E5187344 8F5014C5 5C89FC10 BAEB90D1 DEC39344 8F0E14C5 5CD7FC10 920000E0 3BDBE000 005E0000 005E0000
2 8D5B5A7B 6843293F E7133DFA BB9AC1EA B65B5A9B 6898C9DF E796DD1A BB41210A 3B0000E0 00DBE0E0 0085E0E0 00DBE0E0
3 3123DD91 5960F4AE BE73C954 05E908BE 31A63D71 593EF4AE BEA829B4 05E908BE 0085E0E0 005E0000 00DBE0E0 00000000
4 271373FA 7E738754 C0004E00 C5E946BE 2796931A 7EA867B4 C0004E00 C5E946BE 0085E0E0 00DBE0E0 00000000 00000000
5 2949DD5C 573A5A08 973A1408 52D352B6 29CC3DBC 57645A08 97641408 528D52B6 0085E0E0 005E0000 005E0000 005E0000
6 6F49935C 3873C954 AF49DD5C FD9A8FEA 54CC73BC 03A829B4 94CC3DBC C6416F0A 3B85E0E0 3BDBE0E0 3B85E0E0 3BDBE0E0
7 973A1408 AF49DD5C 00000000 FD9A8FEA 97641408 94CC3DBC 00000000 C6416F0A 005E0000 3B85E0E0 00000000 3BDBE0E0
8 AF49935C 00004E00 00004E00 FD9AC1EA 94CC73BC 00004E00 00004E00 C641210A 3B85E0E0 00000000 00000000 3BDBE0E0
9 0C311408 0C315A08 0C311408 F1ABD5E2 0C311408 0C315A08 0C311408 CA703502 00000000 00000000 00000000 3BDBE0E0
10 58328CA9 5403D6A1 5832C2A9 A999174B 6BA7637C 67963974 6BA72D7C A1D7187E 3395EFD5 3395EFD5 3395EFD5 084E0F35

6 Distinguisher on Deoxys-BC

Deoxys-BC adopts the same round function of AES. The distinction lies in the
KeySchedule part, where the subtweakeys STKi are generated from both the
key and the tweak, replacing the subkeys that were previously derived solely
from the master key. These subtweakeys are then XORed with the state in the
AddRoundTweakey operation.

Description of the Tweakey Schedule. In the tweakey schedule of Deoxys-BC,
the key K and the tweak T are concatenated as KT = K‖T to form the sub-
tweakey state. Depending on the size of the tweak, KT is divided into two
128-bit words TK1

0 , TK
2
0 or three 128-bit words TK1

0 , TK
2
0 , and TK3

0 corre-
sponding to Deoxys-BC-256 or Deoxys-BC-384. We denote STKi (i ≥ 0) as the
128-bit subtweakey added to the state at round i during the AddRoundTweakey

operation. Then the subtweakey is constructed as STKi = TK1
i ⊕ TK2

i ⊕ RCi
for Deoxys-BC-256 and STKi = TK1

i ⊕ TK2
i ⊕ TK3

i ⊕RCi for Deoxys-BC-384,
where RCi is the round constant. The values of TK1

i , TK
2
i , TK

3
i are defined by

the following linear transformation:

TK1
i+1 = h(TK1

i ), TK2
i+1 = h(LFSR2(TK2

i )), TK3
i+1 = h(LFSR3(TK3

i ))

where h is a linear byte permutation on 16 bytes defined by:

h(x0‖x1‖...‖x15) = x1‖x6‖x11‖x12‖x5‖x10‖x15‖x0‖x9‖x14‖x3‖x4‖x13‖x2‖x7‖x8.

6.1 New Deoxys-BC Differential Characteristics

We have searched for the differential characteristics of limited birthday distin-
guishers on 10-round Deoxys-BC-256 and 13-round Deoxys-BC-384 with the CP
automatic tool. Specifically, the Step 1 search is similar to the truncated dif-
ferential search on full-round AES-192/256 in Section 4.2, but the varying linear
tweakey results in varying constraints on the tweakey part. For Step 1 of the
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truncated trail search, we add the constraints of the linear incompatibility [14]
between differential propagations in the tweakey and the state. We also im-
pose additional requirements that the freedom from tweakey differences must
be greater than 1, allowing us to utilize these freedoms to search for better
differential characteristics in Step 2. For Step 2 search, we do not use the au-
tomatic tool like Choco-solver used in AES LBD search. With greater freedom
from the tweakey, we can directly search for the rear partial differential charac-
teristic and go backward 4 rounds using the same method as outlined in [27]. We
found a 10-round LBD on Deoxys-BC-256 in Figure 11 and an 13-round LBD on
Deoxys-BC-384 in Figure 14 with a probability of 2−69 and 2−42 respectively.

6.2 Deoxys-BC Limited Birthday Distinguisher Attacks

In Figure 11, attacking complexity is forward outbound complexity times back-
ward outbound complexity. The forward outbound phase has 10 active bytes
from rounds 5 to 9 with a probability of 2−69, and the backward outbound
phase has no remaining active byte, resulting in a total attacking complexity of
269. In the ideal case, the time complexity, as calculated by Theorem 1, would
be 2129−din−dout = 2129−0−28 = 2101.

In Figure 14, the backward outbound phase has 6 active bytes from round
1 to round 6 with a probability of 2−42 and no active bytes in the forward
rounds, hence total attacking complexity is also 242. While the time complexity,
as determined by Theorem 1, would be 2129−din−dout = 2129−32−39 = 258 in
the ideal scenario. We take advantage of the fact that the tweakeys are freely
chosen by the attacker in both Deoxys-BC-256 and Deoxys-BC-384 to connect the
active S-boxes in the heavy Inbound phases. For example, STK2 and STK3 are
carefully chosen to connect the active bytes between round 2 and round 3, and
between round 3 and round 4, respectively. In this way, the first distinguishing
attack on 10-round Deoxys-BC-256 and 13-round Deoxys-BC-384 can be done
with a time complexity of 269 and 242 respectively. We only outline the procedure
in the distinguisher of 10-round Deoxys-BC-256, and the procedure for 13-round
Deoxys-BC-384 is given in Supplementary Material C. The Inbound part, starting
from Round 2 to Round 4, executes the following steps to produce a pair that
conforms to the given differences (∆z2, ∆x4):

1. Deduce all the active bytes in x2, x3, and x4 by assessing DDT. The corre-
sponding active bytes in z2, z3, and z4 are all acquired.

2. Randomly assign values to STK2[4, 5, 6] and STK2[12]. Compute w2[4, 5, 6, 12] =
x3[4, 5, 6, 12]⊕STK2[4, 5, 6, 12]. From the Property 1, obtain w2[7] = MC−1(z2[6], w2[4, 5, 6]),
w2[13, 14, 15] = MC−1(z2[12, 13, 15], w2[12]) and the corresponding tweakey
cells STK2[7] = w2[7]⊕x3[7], STK2[13, 14, 15] = w2[13, 14, 15]⊕x3[13, 14, 15].

3. Compute w3[4, 5, 6, 7] = MC(z3[4, 5, 6, 7]) and deduce STK3[4, 6] = w3[4, 6]⊕
x4[4, 6]. Randomly choose STK3[1, 9] and deduce STK3[3, 11] by Property 1.
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4. Solve the system of linear equations of the STK2 and STK3. 14 out of 32
bytes of two tweakeys are fixed, 18 bytes in tweakeys can be freely chosen,
which contributes enough degrees of freedom for needed starting point pairs.

7 Discussion and Conclusion

7.1 Possible Increment in the Number of Attacked Rounds

The full-round partial truncated differential characteristics of AES-192 and AES-
256 are successfully obtained by the Constraint Programming automatic search
tool. However, no 10-round trail for AES-128 limited birthday distinguisher has
been found. The 10-round trail illustrated in Figure 10 works for the Kiasu-BC

attack, however, it is unsuitable for AES-128 as there are not enough degrees of
freedom for generating starting point pairs for the Outbound phases. Therefore,
searching for a full-round distinguishing attack on AES-128 remains a potential
future work.

The attacks on full-round Deoxys-BC-256 and Deoxys-BC-384 have not been
deployed. Actually, we only use two and three subtweakeys to connect several
rounds in both 10-round Deoxys-BC-256 and 13-round Deoxys-BC-384 attacks,
respectively, despite the large degrees of freedom in the tweakeys. Therefore, a
similar investigation could be done on more rounds by extending the Inbound
part to 3 rounds for Deoxys-BC-256 and to 5 rounds for Deoxys-BC-384.

7.2 Conclusion

In this paper, we investigate the security of AES and two tweakable block ciphers
Kiasu-BC and Deoxys-BC against related-key distinguishing attacks. With the
aid of Constraint Programming automatic search tool, we successfully found the
full-round related-key differential characteristics for AES-192, AES-256, Kiasu-BC,
a 10-round related-key differential characteristic for Deoxys-BC-256, and an 13-
round related-key differential characteristic for Deoxys-BC-384, with acceptable
probabilities for limited birthday attacks. For tweakable block ciphers, the in-
bound phase is extended to 4 rounds by taking advantage of the available degrees
of freedom from the tweaks. These tweaks’ free bytes also contribute to reduce
both the time and memory complexities. As a consequence, some practical dis-
tinguishing attacks on Kiasu-BC were presented. Applying our method to other
tweakable block ciphers is a potential future avenue of exploration.
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37. Jérémy Jean, Maŕıa Naya-Plasencia, and Thomas Peyrin. Multiple limited-
birthday distinguishers and applications. In SAC 2013, pages 533–550. Springer,
2013.

https://www.iacr.org/authors/tikz/


Chosen-Key Distinguishing Attacks 33
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Supplementary Material

A AES Differential Characteristics

Table 6: Differential characteristic used in the distinguisher of 14 rounds of AES-
256.

Round State differences Key differences
Plaintext 8E474700 00000000 8E474700 00??0000

0
00000000 00000000 00000000 00??0000

8E474700 0C000000 8E474700 00000000
00000000 00000000 A6C46262 00000000

1
00C46262 A6000000 00000000 00000000

00C46262 A6000000 A6C46262 00000000
00000000 ???????? ???????? ????????

2
???????? ???????? ???????? ????????

8E474700 8E474700 00000000 00000000
??C462?? ????6262 00????00 0000????

3
??0000?? ????0000 00????00 0000????

00C46262 A6C46262 00000000 00000000
8E474700 00090000 00000000 00000000

4
00000000 00090000 00000000 00000000

8E474700 00000000 00000000 00000000
A6C46262 00000000 00000000 00000000

5
A6000000 A6000000 A6000000 A6000000

00C46262 A6000000 A6000000 A6000000
8E4747C9 8E4747C9 8E4747C9 8E4747C9

6
00000000 00000000 00000000 00000000

8E4747C9 8E4747C9 8E4747C9 8E4747C9
00000000 00000000 00000000 00000000

7
A6000000 00000000 A6000000 00000000

A6000000 00000000 A6000000 00000000
8E4747C9 00000000 8E4747C9 00000000

8
00000000 00000000 00000000 00000000

8E4747C9 00000000 8E4747C9 00000000
00000000 00000000 00000000 00000000

9
A6000000 A6000000 00000000 00000000

A6000000 A6000000 00000000 00000000
8E4747C9 8E4747C9 00000000 00000000

10
00000000 00000000 00000000 00000000

8E4747C9 8E4747C9 00000000 00000000
00000000 00000000 00000000 00000000

11
A6000000 00000000 00000000 00000000

A6000000 00000000 00000000 00000000
8E4747C9 00000000 00000000 00000000

12
00000000 00000000 00000000 00000000

8E4747C9 00000000 00000000 00000000
00000000 00000000 00000000 00000000

13
A6000000 A6000000 A6000000 A6000000

A6000000 A6000000 A6000000 A6000000
??000000 ??000000 ??000000 ??000000

Ciphertext ??4747C9 ??000000 ??000000 ??000000 C94747C9 00000000 00000000 00000000
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Fig. 12: Differential characteristic of 14-round AES-256 used in the distinguisher.
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B Kiasu-BC Differential Characteristics

Table 7: Differential characteristics used in the distinguisher of 9 rounds of
Kiasu-BC [27].

Round State differences Key differences
Plaintext B3??0000 0000??00 28F47A?? ????0000

0
00??0000 0000??00 000000?? ????0000

B3000000 00000000 A6F47A7A 008E0000
00000000 00000000 8EF47A7A ????????

1
00000000 00000000 28000000 ????????

00000000 00000000 A6F47A7A A67A7A7A
???????? ???????? ???????? ????????

2
???????? ???????? ???????? ????????

8E7A7A7A 8E7A7A7A 288E0000 8EF47A7A
??0000?? ????7A7A 8E????7A 0000????

3
??0000?? ????0000 00????00 0000????

28000000 A67A7A7A 8EF47A7A 00000000
288E0000 8E7A7A7A 00000000 00000000

4
008E0000 00000000 008E0000 008E0000

28000000 8E7A7A7A 008E0000 008E0000
00000000 8EF47A7A 8EF47A7A 8EF47A7A

5
00000000 008E0000 00000000 008E0000

00000000 8E7A7A7A 8EF47A7A 8E7A7A7A
8EF47A7A 00000000 8EF47A7A 00000000

6
00000000 008E0000 008E0000 00000000

8EF47A7A 008E0000 8E7A7A7A 00000000
8EF47A7A 8EF47A7A 00000000 00000000

7
00000000 008E0000 00000000 00000000

8EF47A7A 8E7A7A7A 00000000 00000000
8EF47A7A 00000000 00000000 00000000

8
00000000 008E0000 008E0000 008E0000

38EF47A7A 008E0000 008E0000 008E0000
???????? ???????? ???????? 00000000

Ciphertext ???????? ???????? ???????? 787A7A7A 78F47A7A 787A7A7A 78F47A7A 787A7A7A

Table 8: The key pair conforming to differential characteristic used in the 9-
round Kiasu-BC distinguisher Kiasu-BC [27].

Round k k′ k ⊕ k′
0 BD219F91 37EBDD3C 623F76DB 34AD0BBB 0E219F91 37EBDD3C C4CB0CA1 34230BBB B3000000 00000000 A6F47A7A 008E0000
1 290A7589 1EE1A8B5 7CDEDE6E 4873D5D5 290A7589 1EE1A8B5 DA2AA414 EE09AFAF 00000000 00000000 A6F47A7A A67A7A7A
2 A40976DB BAE8DE6E C6360000 8E45D5D5 2A730CA1 3492A414 EEB80000 00B1AFAF 8E7A7A7A 8E7A7A7A 288E0000 8EF47A7A
3 CE0A75C2 74E2ABAC B2D4ABAC 3C917E79 E60A75C2 D298D1D6 3C20D1D6 3C917E79 28000000 A67A7A7A 8EF47A7A 00000000
4 47F9C329 331B6885 81CFC329 BD5EBD50 6FF9C329 BD6112FF 8141C329 BDD0BD50 28000000 8E7A7A7A 008E0000 008E0000
5 0F839053 3C98F8D6 BD573BFF 000986AF 0F839053 B2E282AC 33A34185 8E73FCD5 00000000 8E7A7A7A 8EF47A7A 8E7A7A7A
6 2EC7E930 125F11E6 AF082A19 AF01ACB6 A033934A 12D111E6 21725063 AF01ACB6 8EF47A7A 008E0000 8E7A7A7A 00000000
7 1256A749 0009B6AF AF019CB6 00003000 9CA2DD33 8E73CCD5 AF019CB6 00003000 8EF47A7A 8E7A7A7A 00000000 00000000
8 F152C42A F15B7285 5E5AEE33 5E5ADE33 7FA6BE50 F1D57285 5ED4EE33 5ED4DE33 8EF47A7A 008E0000 008E0000 008E0000
9 544F0772 A51475F7 FB4E9BC4 A51445F7 2CBB7D08 DD6E0F8D 83BAE1BE DD6E3F8D 78F47A7A 787A7A7A 78F47A7A 787A7A7A
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Fig. 13: A pair conforming to the 9-round Kiasu-BC distinguisher.
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Table 9: Differential characteristics used in the distinguisher of 10 rounds of
Kiasu-BC. The two lines of state differences are the respectively the state differ-
ence after AddRoundKey and after MixColumn.

Round State differences Key differences
Plaintext 920000?? ??DBE0E0 3B??E000 0000??00

0
000000?? ??000000 00??0000 0000??00

920000E0 A9DBE0E0 3B85E000 00000000
00000000 ???????? 00000000 00000000

1
920000E0 ???????? 005E0000 005E0000

920000E0 3BDBE000 005E0000 005E0000
???????? ???????? ???????? ????????

2
???????? ???????? ???????? ????????

3B0000E0 00DBE0E0 0085E0E0 00DBE0E0
????E0?? ??????00 00??E0?? ??00????

3
????E0?? ??????00 00??00?? ??00????

0085E0E0 005E0000 00DBE0E0 00000000
1C85E0E0 00DBE0E0 00000000 00000032

4
1C000000 00000000 00000000 00000032

0085E0E0 00DBE0E0 00000000 00000000
0060E0E0 00000000 00000000 00000000

5
00E50000 005E0000 005E0000 005E0000

0085E0E0 005E0000 005E0000 005E0000
3BDBE0E0 3BDBE0E0 3BDBE0E0 3BDBE0E0

6
005E0000 00000000 005E0000 00000000

3B85E0E0 3BDBE0E0 3B85E0E0 3BDBE0E0
00000000 3BDBE0E0 00000000 3BDBE0E0

7
005E0000 005E0000 00000000 00000000

005E0000 3B85E0E0 00000000 3BDBE0E0
3BDBE0E0 00000000 00000000 3BDBE0E0

8
005E0000 00000000 00000000 00000000

3B85E0E0 00000000 00000000 3BDBE0E0
00000000 00000000 00000000 3BDBE0E0

9
00000000 00000000 00000000 00000000

00000000 00000000 00000000 3BDBE0E0
00000000 00000000 00000000 00000000

Plaintext 3395EFD5 3395EFD5 3395EFD5 084E0F35 3395EFD5 3395EFD5 3395EFD5 084E0F35
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C 13-round Deoxys-BC-384 LBD Attack

The Inbound part starts from Round 7 to Round 10 of Figure 14 that executes
the following steps:

1. Deduce all the values of active bytes in x7, x8, x9, and x10 by assessing DDT.
Also acquire the active bytes in z7, z8, z9, and z10.

2. Assign a random value to x9[6] and compute all bytes of w9. Obtain STK9[3, 4, 9, 14] =
w9[3, 4, 9, 14]⊕ x10[3, 4, 9, 14].

3. Obtain STK7[1] = w7[1] ⊕ x8[1]. Assign random values to STK7[4, 14] and
obtain the corresponding STK7[7, 15].

4. Randomly choose STK8[1, 2, 3, 4, 5, 9, 10, 11, 13, 14, 15] and deduce the val-
ues of STK8[0, 6, 7, 8, 12] respectively.

5. Deduce the remaining key bytes STK7 after full w7 and x8 are computed.
6. Solve the system of linear equations of STK7, STK8, and STK9. With 36

out of 48 bytes are known, TA can find the 12 free bytes from the system,
which gives enough degrees of freedom for the outbound phase.

D Deoxys-BC Differential Characteristics
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