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Abstract. The celebrated result of Yao (FOCS'82) shows that concatenating n·p(n) copies of a
weak one-way function (OWF) f , which can be inverted with probability 1− 1

p(n)
, yields a strong

OWF g, showing that weak and strong OWFs are black-box equivalent. Yao's transformation
is not security-preserving, i.e., the input to g needs to be much larger than the input to f .
Understanding whether a larger input is inherent is a long-standing open question.

In this work, we explore necessary features of constructions which achieve short input length by
proving the following: for any direct product construction of a strong OWF g from a weak OWF
f , which can be inverted with probability 1 − 1

p(n)
, the input size of g must grow as Ω(p(n)).

Here, direct product refers to the following structure: the construction g executes some arbitrary
pre-processing function (independent of f) on its input s, obtaining a vector (x1, · · · , xl), and
outputs f(x1), · · · , f(xl). When setting the pre-processing to be the identity, one recovers thus
Yao's construction.

Our result generalizes to functions g with post-processing, as long as the post-processing func-
tion is not too lossy. Thus, in essence, any weak-to-strong OWF hardness ampli�cation must
either (1) be very far from security-preserving, (2) use adaptivity, or (3) must be very far from
a direct-product structure (in the sense that post-processing of the outputs of f is very lossy).

On a technical level, we use ideas from lower bounds for secret-sharing to prove the impossibility
of derandomizing Yao in a black-box way. Our results are in line with Goldreich, Impagliazzo,
Levin, Venkatesan, and Zuckerman (FOCS 1990) who derandomize Yao's construction for reg-
ular weak OWFs by evaluating the OWF along a random walk on an expander graph�the
construction is adaptive, since it alternates steps on the expander graph with evaluations of the
weak OWF.

1 Introduction

In this work, we continue the study of constructions of strong one-way functions (OWFs) from weak
OWFs. The classical weak-to-strong hardness ampli�cation technique, due to Yao [Yao82], uses direct
product ampli�cation which is not security preserving4. Our main result shows that the increase
in the input size is inherent for direct product constructions. Namely, any direct product black-box
construction of a strong OWF from a (1−1/p(n))-weak OWF must have input length at least Ω(p(n)).

Weak and strong OWFs. An α(n)-secure OWF f : {0, 1}n 7→ {0, 1}n is an e�ciently computable
function such that any probabilistic polynomial-time adversary A can invert f with probability at
most α(n). When α is a negligible function, we say that f is a strong OWF; when α(n) = 1− 1/p(n)
for a polynomial p, we say that f is a weak OWF. The seminal work of Yao [Yao82] shows that weak
OWFs imply strong OWFs, via a standard direct product hardness ampli�cation: given a weak OWF
f , de�ne g(x1, ..., xl) = f(x1)||...||f(xl). Then, Yao proved that g is a strong OWF for l > |xi|p(|xi|).

Adaptive vs. non-adaptive construction. In this paper we study non-adaptive weak-to-strong
OWF constructions, that is, constructions where the calls to the weak OWF can be made in parallel.
I.e., a strong OWF construction g that makes calls to a weak OWF f is called non-adaptive if g's calls
to f only depend on g's input, but not on the output of f on any of these inputs. Yao's construction
is a simple, non-adaptive construction where each call to f uses an independent chunk of the input.
In general, non-adaptive constructions can make correlated calls to f though.

4 In a security-preserving construction, the input length of the strong OWF is linear in that of the weak
OWF.
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g1(x) := f(x)||f(x+ 1)

g2(x) := f(f(x))

We say that a construction is adaptive, if the output of (at least) one call
to f is used to determine the input to another f call. That is, adaptive con-
structions cannot compute all calls to f in parallel. For the toy constructions
on the right, g1 is non-adaptive (it does not matter whether g1 computes f(x) or f(x+ 1) �rst) and
g2 is adaptive (g2 must make the inner f call �rst).

On the (in)e�ciency of Yao's construction. The construction of Yao is generic: it turns an
arbitrary weak OWF f into a strong OWF g and just depends on the hardness of f . In addition, g
has an appealing simple direct-product structure. In turn, g is suboptimal w.r.t. its computational
complexity:

1. g makes a large number of calls to the underlying weak OWF, and
2. g is not security preserving : g's input length is polynomially larger than the input length of f .

Many celebrated cryptographic reductions are similarly not security-preserving and have a high num-
ber of calls�the HILL construction of pseudorandom generator from any OWF being perhaps one
of the most well-known examples [HILL99]. In beautiful works, a decade ago, Haitner, Reingold,
Vadhan and Zheng [HRV10,VZ12] developed rich tools for computational entropy, and improved the
original n8 seed length by HILL to O(n3), where n is the input length of the OWF�since further
improvements seem extremely hard to obtain, it is natural to ask whether large lower bounds on the
input size are inherent.

In a seminal result [IR89], Impagliazzo and Rudich formalize the notions of black-box construc-
tions/reductions, and develop methods to establish their limitations. Informally, a (fully) black-box
construction of a primitive C from a primitive P treats both P and any adversary A against P in a
black-box way. Following this breakthrough result, a long line of work (see [KST99,GT00,GGK03,
LTW05, Lu06, CRS+07,Wee07, Lu09]) has been devoted to proving limitations on the e�ciency of
black-box reductions. Our work continues this successful line of work.

To our knowledge, three previous works study black-box limitations on the e�ciency of Yao's
construction. Lin, Trevisan, and Wee [LTW05] address the �rst of the two limitations above: they
show that any fully black-box construction of an ε(n)-secure OWF from a (1− δ(n))-secure OWF f
must make at least q = Ω((1/δ)·log(1/ε)) calls to f . They also show that fully black-box constructions
cannot be perfectly security-preserving: if f has input size n, the input size of the strong OWF must
be at least n+Ω(log 1/ε)−O(log q). Later, Lu [Lu09] extends the results of [LTW05] to the weakly
black-box setting with bounded non-uniformity. Moreover, Lu [Lu06] shows that a non-adaptive fully
black-box construction (i.e., a construction where all the calls to f are made in parallel) cannot
amplify security beyond poly(n) if the algorithm implementing the reduction has constant depth, and
its size is below 2poly(n).

1.1 On Security-Preserving Ampli�cation of Weak OWFs

The above result leaves open one of the most intriguing limitations of Yao's construction: the fact
that it causes a polynomial blowup in the input size. While [LTW05] shows that some blowup in
the input size is unavoidable, it leaves a huge gap: starting with a (1 − 1/p(n))-secure OWF f with
input length n, Yao's construction requires an input size n2 · p(n) to build any strong OWF, while
the result of [LTW05] only shows that to build an extremely strong OWF, say a 2−µ·n-secure OWF
(for some constant µ), one needs input size at least (1 + µ) · n− log p.

In a sense, the proof of [LTW05] cannot do much better, because it rules out even adaptive fully
black-box reductions. However, in this setting, it is actually known that we can do much better than
Yao's construction and obtain an almost security-preserving construction, if we start from a regular
(i.e. outputs have the same number of preimages) weak OWF, and use adaptivity. Indeed, the work
of Goldreich, Impagliazzo, Levin, Venkatesan, and Zuckerman [GIL+90] provides precisely such a
construction, using random walks on expander graphs. Following that, Haitner, Harnik and Rein-
gold [HHR06] present another almost security-preserving adaptive construction using hash function
calls instead of expander steps; and their construction is secure even when the regularity parameters
is not known.

This leaves us in between two extremes: on the one hand, Yao's construction is non-adaptive (hence
optimally parallelizable: if one starts with a parallelizable weak OWF, one ends up with a parallelizable
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strong OWF), extremely simple (it has a straightforward direct product structure) and works for
arbitrary OWFs; however, it is not security-preserving. On the other hand, the constructions [GIL+90]
and [HHR06] are almost security-preserving, but are considerably more involved, require adaptive
calls, and work only for regular OWFs. Improving this state of a�airs is a long-standing and intriguing
open problem.

1.2 Our Contribution

In this work, we make progress on understanding the limits of non-adaptive constructions. Speci�cally,
we show that any direct product black-box construction of strong OWF from a (1 − 1/p(n))-secure
OWF cannot be security preserving, in a strong sense: it requires an input length of at least Ω(p(n)).
While this still leaves a gap with respect to Yao's construction, which has input length O(n2·p(n)), this
gap vanishes asymptotically when p grows. By direct product construction, we mean a construction
g of strong OWF with the following structure: on input s, g(s) outputs (f(x1), · · · , f(xℓ)), where
f is the weak OWF, and (x1, · · · , xℓ) are computed from s arbitrarily, but without calling f (we
call the mapping from s to (x1, · · · , xℓ) the pre-processing). This is a natural generalization of Yao-
style constructions of strong OWFs (we recover Yao's construction by letting the pre-processing be
the identity function). Furthermore, our result generalizes to the setting where some post-processing
(independent of f) is applied to the outputs (f(x1), · · · , f(xℓ)), whenever this post-processing is not
too lossy : we prove that whenever each output of the post-processing has at most polynomially many
preimages, the same Ω(p(n)) input length bound holds. We summarize the results in the following
theorem:

Theorem 1 (Informal). Let f be a (1 − 1/p(n))-secure OWF (a weak OWF). Let g be any non-
adaptive construction, with not-too-compressing post-processing, of input length < cp(n) for any con-
stant c. Then, it is impossible to prove, in a fully black-box way, that g is a strong OWF.

Observe that if we could generalize our result to arbitrary (f -independent) post-processing func-
tions, the above would capture all non-adaptive constructions. Hence, in essence, our result says the
following: any (fully black-box) construction of strong OWF from a weak OWF must either (1) be
very far from security preserving, or (2) use adaptivity, or (3) compute a highly non-injective function
of the outputs of the non-adaptive calls (i.e., be very far from a �direct product� structure).

1.3 Relation to Correlated-Product and Correlated-Input Security

Usually, parallel concatenation of cryptographic primitives on independent inputs preserves secu-
rity. For example, if f and g are one-way functions, then so is (x1, x2) 7→ (f(x1), g(x2)). However,
things might change signi�cantly when x1 and x2 are correlated, e.g., sampled jointly from a high
min-entropy source. Variants of this problem have been studied on many occasions in cryptography,
and have profound connections to the feasibility of cryptography with weak sources of randomness,
leakage-resilient cryptography, related-key attacks, or deterministic encryption (to name a few); see
e.g. Wichs [Wic13] for discussions on cryptography with correlated sources. In addition, security for
correlated inputs has proven to be a very useful assumption by itself: one-wayness under correlated
product (i.e., one-wayness of f(x1), · · · , f(xk) for (x1, · · · , xk) sampled from a joint distribution)
has been used to build CCA secure cryptosystems [RS09,HLO12], and correlated-input secure hash
functions have found numerous applications such as OT extension [IKNP03], trapdoor hash func-
tion [DGI+19], constrained pseudorandom functions [AMN+18], password-based login [GOR11], and
many more.

A general and natural question to ask is: which type of constructions preserve hardness, when
the inputs are jointly sampled from a high min-entropy source, rather than being sampled indepen-
dently? This is a fundamental question in itself, because this setting occurs in real-life use of standard
cryptographic construction (when they are misused, when the source of randomness is imperfect, or
when the adversary has access to some leakage on the inputs), but also due to the many applications
outlined above.

It is well-known that not all constructions will preserve security under correlated inputs. For
example, even though the map x 7→ xe mod n is believed to be one-way when n is a product of
two large safe primes (this is the RSA assumption), the extended euclidean algorithm provides an
e�cient inverter for the map x 7→ (xe1 , xe2) mod n whenever gcd(e1, e2) = 1 (this example is taken
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from [HLO12]). Hence, there are speci�c functions fi (here, fi : x 7→ xei) and speci�c correlations
of the inputs (here, the equality correlation: the same input x is used for all functions) such that
correlated-product security breaks down. However, this leaves open the possibility that some spe-
ci�c input correlations preserve correlated-product security (for example, this is the case when the
correlated-inputs are indistinguishable from random, e.g. when sampled as the output of a PRG), or
that some speci�c functions maintain correlated-product security for general correlations.

Our results can be cast in the context of correlated-product security: we show that even though
Yao's construction of OWF, which is a very natural and seminal construction, is provably secure (with
a black-box proof) when used with random and independent inputs, it breaks down for any possible
correlated source, whenever the entropy of the source is below p(n). This provides a natural example of
a construction, from a weak OWF f , where correlated-product security cannot be generically shown to
hold (in a black-box way) for arbitrary sources, unless they contain enough entropy such that all of the
correlated inputs can have independent entropy. In contrast, [RS09] shows that when f is instantiated
as a lossy trapdoor function, then f(x1), · · · , f(xk) is one-way for correlated inputs (x1, · · · , xk),
and [HLO12] shows that assuming OWFs, there exists a correlated-product secure function. Our
results provide a partial complementary perspective to this line of work.

Comparison to [Wic13]. Wichs [Wic13] also studies, among other questions, the one-wayness of con-
structions of the form (f(x1), · · · , f(xk)) for inputs (x1, · · · , xk) sampled from a correlated source.
Our results are incomparable: we show that for a generic weak OWF f , and for any �xed distri-
bution over the inputs (x1, · · · , xk) with o(k) bits of entropy, the one-wayness of f(x1), · · · , f(xk)
does not follow from that of f in a black-box way. In contrast, [Wic13] shows that for an arbitrary
function f , there is no black-box reduction (to any standard hardness assumption) of one-wayness
of (f(x1), · · · , f(xk)) when the xi can come from arbitrarily correlated distributions, even with high
per-input entropy. That is, [Wic13] handles a considerably larger class of constructions and reduc-
tions to many possible assumptions, but only rules out a much more stringent security notion (where
one-wayness must hold even when the input distributions are not �xed a priori and can be correlated
arbitrarily). To state the di�erence using quanti�ers (we omit the hardness parameter of the weak
OWF for simplicity), we show that

∃ weakOWF f ∀ pre-proc: g(x) := f(pre-proc(x)1), ..., f(pre-proc(x)l) is not a strong OWF

while Wichs [Wic13] shows that

∃ corr-srce∀f : g(x) := f(corr-srce(x)1), ..., f(corr-srce(x)l) is not a strong OWF

that is, the quanti�cation is in di�erent order, as is highlighted in pink. To put it di�erently, we rule
out fully black-box constructions of the form

∀ weakOWF f ∃ pre-proc: g(x) := f(pre-proc(x)1), ..., f(pre-proc(x)l) is a strong OWF

and Wichs rules out fully black-box constructions of the form

∀ corr-srce∃f : g(x) := f(corr-srce(x)1), ..., f(corr-srce(x)l) is a strong OWF.

1.4 Related Work

We already discussed several works on bounding the e�ciency of black-box reductions [KST99,GT00,
GGK03,LTW05,Lu06,CRS+07,Wee07,Lu09], including some speci�cally targeting hardness ampli�-
cations of one-way functions, and related work on correlated-product security. Besides, our black-box
separations use some established tools (in addition to key new technical insights, which we cover
afterwards) such as the two-oracle technique of [Sim98,HR04] where one oracle implements the base
primitive and the second oracle breaks all constructions built from this primitive. We use the Borel-
Cantelli style technique from [MMN+16] to extract a single oracle from a distribution of random
oracles analogously to the seminal work on black-box separations by Impagliazzo and Rudich [IR89].

Hardness ampli�cation of functions, via direct products and related constructions, have a rich
history, which goes well beyond one-way functions and is too vast to be covered here. In particular,
amplifying the hardness of computing boolean functions (rather than inverting functions) using direct
product constructions is at the heart of major lines of work on worst-case to average-case reductions,
constructions of non-cryptographic pseudorandom generators, circuit lower bounds, and many more
� see e.g. [Lip91,BFL91,BFNW93, Imp95,GNW95, IW97,STV01,Tre03,HVV04,Tre05,Vio05, SV08]
and references therein.
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1.5 Technical Overview

To prove our black-box separations, we exhibit an oracle relative to which there is a weak one-way
function, yet all strong one-way functions with an appropriate structure can be inverted e�ciently
with constant probability. The standard method to do so is to design oracles relative to which the
starting primitive (here, the weak one-way function) clearly exists and is the only possible source of
hardness. For example, in the seminal work by Impagliazzo and Rudich (IR) on the separation of
key exchange from OWFs [IR90], IR introduce a random oracle, which is a strong OWF with high
probability, as well as assuming P = NP, thereby ruling out most other (stronger) cryptographic
primitives. In our setting, we instantiate this intuition by choosing three oracles:

(1) A PSPACE oracle, which destroys all possible sources of hardness,
(2) a random oracle F, which instantiates the weak OWF, and
(3) an inverter INV, which inverts F on a (roughly) 1− 1/p fraction of its inputs, e�ectively turning

it into a weak OWF. Note that a random oracle F alone would already be a strong OWF, if we
did not weaken it by adding INV.

pre

post

F

x1

s

y1

z

F

xℓ

yℓ

... d

g(s)

x1, ..., xℓ, d← pre(s)

for i = 1..ℓ

yi ← F(xi)

z ← post(y1, ..., yℓ, d)

return z

Fig. 1: (n,m)-non-adaptive con-
struction. F is the weak OWF.
Length of d can be arbitrary,
|xi| = |yi| = m and |s| = n.

In this oracle world, we consider non-adaptive constructions of
strong OWFs g from the weak OWF F. Since we wish to rule out
(relativizing) fully black-box reductions (as de�ned by Reingold,
Trevisan and Vadhan [RTV04]), we do not give g access to INV.
In fact, this is inherent in our setting: observe that given access
to INV, it is not too hard to build a strong OWF (e.g. the strong
OWF can perform a random walk starting from the input x, until
it lands on a hard input y � which can be tested using INV � and
outputs F(y)). In general, whenever one can e�ciently test which
inputs are hard, constructing a security-preserving OWF becomes
feasible � and it is precisely the lack of any such tester that makes
it highly nontrivial to improve over Yao's seminal construction.
Since we rule out fully black-box reductions, we do not let g access
INV and thus, g does not know where the easy inputs are.

Modeling non-adaptive constructions. A non-adaptive con-
struction can be thought of as a circuit which �rst has a pre-
processing layer, followed by a layer of parallel calls to a weak
OWFs and then some post-processing, see Figure 1. When the con-
struction omits the post-processing layer, as in Yao's construction,
this corresponds to a direct product construction. The input size
n of the construction might be di�erent from the input size m of
the weak OWF. As a starting point, we consider what happens
when the construction does not use any post-processing, as is the
case in Yao's construction. When there is no post-processing, the
additional data d in Figure 1 only reduces the input domain and
does not add security. Thus, w.l.o.g., we assume that there is no d.

Inverting direct product constructions. Considering the simple case with no post-processing
and no d, the �rst observation is that g must make more than p(m) calls to the weak OWF, since
otherwise all the calls will be easy to invert with constant probability. In that case the adversary
could simply invert all the weak OWF calls and then use PSPACE to invert the pre-processing layer,
thus inverting g with constant probability.

Now that g makes at least p(m) calls to the weak OWF, we can make the main observation of the
paper: if we can invert a 1−1/p(m) fraction of the weak OWF calls and n is about the same as p(m),
then the remaining entropy of the input s cannot be very high, on the average. This is formalized
in Lemma 19. This is because the number of calls to the weak OWF is at least the same order of
magnitude as the length of the input to the strong OWF. Hence, there is not enough entropy in the
strong OWF input to distribute among all the weak OWF calls, so most of the calls will end up
having very little entropy of their own, i.e. entropy that is not shared with other calls.
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Now the probability that an adversary can indeed invert a 1− 1/p(m) fraction of the weak OWF
calls is high, since that is the expected fraction of easy calls. Since the entropy of the input s is low,
given the easy calls, and the adversary has the PSPACE oracle, the adversary can guess s with high
probability. Note that low entropy alone is not enough to guess s, since inverting pre-processing might
be ine�cient, hence we also need PSPACE.

To summarize, we know that there must be many calls to the underlying weak one-way function�
and since we can also show that each of them must have a non-trivial amount of entropy (i.e.,
information about the input)�we can show that we can invert all non-adaptive constructions without
post-processing, unless n is larger than any constant times p(m), establishing the �rst lower bound
on the randomness e�ciency of non-adaptive constructions. Note that Yao's construction consumes
n = m2p(m) many bits.

On strong OWFs with injectiveish post-processing. We sketched above why constructions
without post-processing (direct product constructions) cannot be strongly one-way. It is relatively easy
to extend the above argument to constructions with not too lossy post-processing, i.e., constructions
where any output of the post-processing has at most polynomially many preimages: the inverter
chooses a uniformly random value amongst the (polynomial size) list of all possible preimages of the
post-processing, and applies the previous inversion attack on the candidate. It then succeeds with
probability 1

poly times the success probability of the previous attack.

Relation to Threshold Secret Sharing. The pre-processing pre in Figure 1 is somewhat analogous
to a threshold secret sharing scheme, where the participants' shares correspond to the values xi and
the secret together with the dealer's randomness corresponds to the strong OWF input s. On average,
we learn the `shares' of all but a 1

p(m) fraction of the `participants'.

The analogy is somewhat weak though, since the OWF inverter needs to �nd one (whole) pre-
image s, while a secret sharing scheme is broken if the adversary �nds the secret which is a (known)
function of s (even if they cannot recover the dealer's randomness, that is, all of s). Also, computational
security su�ces for OWFs while secret sharing schemes usually aim for information-theoretic security.

Interestingly, in the proof of our negative result, the adversary has a PSPACE oracle, and hence,
in the proof we care about the information theoretic security. This is because PSPACE can invert
computationally hard pre-processing, as long as it is not information theoretically impossible, i.e. the
input does not have too high entropy conditioned on the adversary's knowledge. Hence, even though
the object we study is not formally related to secret sharing, our proof is inspired by previous work
on secret sharing by Blundo, Santis, and Vaccaro (BSV [BSV96]).

BSV discuss the minimum amount of randomness needed by an information-theoretically secure
secret sharing scheme. BSV prove that if the secret length is m and there are l participants, then the
dealer needs to use l ·m bits of randomness (to choose both the secret and the participants' shares).
The length of this randomness corresponds to the analogous number in Yao's weak to strong OWF
construction (when number of weak OWF calls is l > mp(m), we use lm input length) and it is close
to the analogous number that we get in this paper (input length to strong OWF needs to be O(p(m)),
i.e. there is an m2 gap between our lower bound and Yao's upper bound).

It is intuitive that some gap should exist between the information theoretically secure secret
sharing scheme and our more relaxed �mostly secure secret sharing scheme�, where the adversary is
allowed to learn a function of the input as long as they cannot learn the entire input. However, the
OWF construction and secret sharing schemes are not formally related and a better lower bound than
ours might be possible to obtain.

2 Preliminaries

We use x←$ S for sampling x uniformly from set S, and y ←$A(x) for running randomized algorithm
A on x with uniformly random coins and assigning the result to y. We write PrA[1 = A(x)] for the
probability over the randomness of A that A, on input x, returns 1. We now introduce weak and
strong one-way functions, oracle algorithms, relativization, black-box reductions and entropy.

De�nition 2 (One-Way Functions). Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable
function. f is called a (strong) one-way function (OWF), if for every probabilistic polynomial-time
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algorithm A there exists a negligible function ϵ : N→ [0, 1] such that for every n,

PrA,x←{0,1}n
[
A(1n, f(x)) ∈ f−1(f(x))

]
≤ ϵ(n).

Further, f is called a weak one-way function, if there exists a polynomial p(n) such that for every
probabilistic polynomial-time algorithm A there exists a N0 ∈ N such that for all n ≥ N0:

PrA,x←{0,1}n
[
A(1n, f(x)) ∈ f−1(f(x))

]
≤ 1− 1

p(n)
.

In this case we sometimes say that f is a p-weak OWF.

De�nition 3 (Oracle Algorithms). The complexity of an oracle algorithm (e.g., Turing Machine)
is the number of steps it makes, where an oracle query is counted as a single step.

In particular, a probabilistic polynomial-time (PPT) oracle algorithm makes at most a polynomial
number of queries. Since our oracle algorithms have access to a PSPACE oracle, our runtime discussions
only consider the number of oracle calls the algorithm makes.

De�nition 4 (Relativizing Statements). We say that a statement about algorithms relativizes if
it also holds whenever all algorithms are given oracle access to an arbitrary (deterministic) function
O.

To rule out a relativizing statement, we �rst argue about distributions of oracles and then show
the existence of a single oracle using the following Borel-Cantelli style theorem.

Theorem 5 ( [MMN+16], Lemma 2.9). Let (E1, E2, ...) be a sequence of events such that ∃c∀m ∈
N : Pr[Em] ≥ c, where constant c is 0 < c < 1. Then,

Pr

[ ∞∧
k=1

∨
m>k

Em

]
≥ c (1)

Intuitively, Theorem 5 says that if an event happens with constant probability for all m, then,
with constant probability, the event happens in�nitely often.

Entropy. Throughout this paper, the term entropy refers to Shannon entropy which satis�es a chain
rule.

De�nition 6 (Shannon Entropy). Let X be a random variable and let dom(X) be its domain,
then

H(X) := −
∑

z∈dom(X)

Pr[X = z] · log2(Pr[X = z]),

is the Shannon entropy of X.

Lemma 7 (Chain Rule for Entropy). Let X1, . . . , Xn be random variables. Then the following
holds

H(X1, . . . , Xn) = H(X1) +H(X2|X1) + · · ·+H(Xn|X1, . . . , Xn−1).

We use also other simple but useful properties of entropy. In particular, De�nition 6 implies that
entropy is non-negative. Also, the entropy H(X) of a random variable X is always more or equal to
the entropy H(f(X)) of the random variable f(X) for any deterministic function f�if f is injective,
the entropy is preserved, if f is not injective, it decreases. Finally, for any three random variables
X,Y, Z, we have that H(X|Y ) ≥ H(X|Y, Z), i.e., conditioning on additional information maintains
or decreases the entropy of a random variable.

3 Main Results

In this section, we introduce di�erent types of constructions of strong OWF from weak OWF which
we study in this paper (Section 3.1) and state our main theorems (Section 3.2). In particular, we
introduce non-adaptive constructions, non-adaptive constructions without post-processing and non-
adaptive constructions with injectiveish post-processing.
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3.1 Black-box constructions and reductions

De�nition 8 (Non-adaptive). A construction g = (pre, post) from a weak one-way function F is
non-adaptive, if it computes its output as post(F(pre(s))) (see Fig 1). The number of queries ℓ is
induced by pre. (n,m)-NA denotes a non-adaptive construction with input length n based on a weak
OWF F whose input length is m.

De�nition 9 (Non-adaptive, no post-processing construction). We say that a construction
g = (pre, post) is a (n,m)-NANPP, if it is (n,m)-NA and the post-processing function is the identity
function, i.e., post(y1, ..., yℓ, d) := y1||..||yℓ||d.

De�nition 10 (Non-adaptive, injectiveish post-processing constr.). We say that a construc-
tion g = (pre, post) is a (n,m)-NAIPP, if it is (n,m)-NA and the post-processing function is almost
injective, that is, every image of post has at most a polynomial (in n) number of preimages.

Note that the identity function is injective and thus, in particular, is injectiveish. Therefore, every
NANPP is also a NAIPP, but the converse does not hold. Likewise, both NANPP and NAIPP are
NA constructions, but the converse does not hold. Since we are interested in ruling out constructions,
whenever we rule out NAIPP, we also rule out NANPP.

We formalized the kind of constructions our negative results capture, and now specify which type
of reduction proofs our theorems rule out. Namely, our results concern BBB-style proofs following the
notation of [BBF13] or fully black-box proofs following the notation of [RTV04]. Since we consider
parametrized de�nitions, we here state a customized version of fully black-box security which precisely
captures the quanti�ers our negative results capture.

De�nition 11 (Fully Black-Box Proof). We say that a proof that weak OWF implies strong
OWF is fully black-box if it establishes a relativizing statement of the following type:

∀poly p,∃ poly-time computable gp,∀poly q,∃PPT Rq ∀p-weak OWF F,A :(
Pr

x←${0,1}n

[
gFp(A(1n, gFp(x))) = gFp(x)

]
> 1

q(n) for in�nitely many n ∈ N
)

(2)

⇒
(

Pr
x←${0,1}n

[
F(RA,F

q (1n,F(x))) = F(x)
]
> 1− 1

p(n) for inf. many n

)
(3)

In this case, we also refer to the construction g as fully black-box.

Intuitively, line (2) says that an adversary A breaks the strong OWF gF and line (3) says that the
reduction RA breaks the weak-OWF F.

Remark. Typically, in the de�nition of fully black-box, the pink parts are omitted. That is, the
polynomial p is considered part of the de�nition of F and the polynomial q is considered as part
of the de�nition of the adversary A, namely its success probability. We allow the construction g to
depend on the polynomial p and the reduction R to depend on q, since we seek to cover a larger and
meaningful class of proofs. In particular, Yao's original proof building strong OWFs from weak OWFs
is fully black-box in the sense of De�nition 11, but would not be covered if the construction were not
allowed to depend on p or if the reduction was not allowed to depend on q.

3.2 Theorems

We now state our main theorems, all of which rely on the two-oracle technique. Namely, we construct
a distribution over oracles (O1,O2) such that O1 is a weak one-way function and O2 helps to invert
the strong one-way function and is part of the adversary. Since we rule out black-box reductions
rather than provide an oracle separation, only the reduction has access to the (adversary) oracle
O2 while the construction does not (cf. Section 1.5). Corollary 14 extracts a single oracle from the
oracle distribution, using the Borel-Cantelli style argument Theorem 5. However, we prefer to state
our theorem in terms of oracle distributions since this matches the technical core arguments of our
separation results more closely.
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Theorem 12 (NANPP Impossibility). ∀ constant d,∀poly p, ∀(n,m)-NANPP g with input length
n ≤ d·p(m), ∃ poly-query A, ∃poly q(n) = nc, c ∈ N+, ∀PPT R, ∃ distribution D over pairs of oracles
(O1,O2):

Pr(O1,O2)←$D

[
BadR,A,g

m

]
= constant < 1

where BadR,A,g
m is an indicator variable that is 1 i� at least one of the following is true:

1. Weak OWF breaks:

Prx←${0,1}m,R

[
RAO1,O2 ,O1,O2(1m,O1(x)) ∈ O−11 (O1(x))

]
≥ 1− 1

p(m) .

2. Strong OWF is secure-ish:

Prs←${0,1}n,A
[
AO1,O2(1n, gO1(s)) ∈ (gO1)−1(gO1(s))

]
≤ 1

q(n) .

Remark. In the de�nition of the bad event, the oracles are �xed and the randomness is taken only
over the sampling of x as well as the internal randomness of A and R, respectively. Thus, BadR,A,g

m

is indeed a well-de�ned event once the oracles (O1,O2) have been sampled from D.

Theorem 13 (NAIPP Impossibility). ∀ constant d,∀poly p, ∀(n,m)-NAIPP g with input length
n ≤ d · p(m), ∃ poly-query A, ∃poly q(n) = nc, c ∈ N+, ∀PPT R, ∃ distribution D over pairs of
oracles (O1,O2):

Pr(O1,O2)←$D

[
BadR,A,g

m

]
= constant < 1

where BadR,A,g
m is the same indicator variable as in Theorem 12.

We use the same oracle distribution for Theorem 13 and Theorem 12, see Section 4 for its de�ni-
tion. Theorem 13 implies Theorem 12, so it would su�ce to prove Theorem 13. However, we found
the presentation to be easier to follow when presenting the proof of the weaker Theorem 12 �rst
(Section 5.2) and then discussing the generalization to the proof of Theorem 13 (Section 6). For both
theorems, we prove that relative to O1,O2, oracle O1 is a weak OWF. Before proving the theorems
for oracle distributions, we now extract a single oracle from the distribution where the bad event
happens with constant probability. Since the standard Borel-Cantelli lemma requires the probability
to be less than 1/m2, we here use the strengthened version by Mahmoody, Mohammed, Nematihaji,
Pass and Shelat [MMN+16].

Corollary 14 (Main). Let d be any constant. There is no fully black-box (n,m)-NAIPP construc-
tion of a OWF from a p(m)-weak OWF with n ≤ d · p(m).

Proof. Recall that a black-box proof means the following:

∀poly p,∃ poly-time computable g,∀poly q,∃PPTR∀p-weak OWF F,A :

(A inverts g)⇒ (RA inverts F) Formally:(
Prx←${0,1}n

[
gF(A(1n, gF(x))) = gF(x)

]
> 1

q(n) for in�nitely many n ∈ N
)

⇒
(
Prx←${0,1}n

[
F(RA,F(1n,F(x))) = F(x)

]
> 1− 1

p (n) for in�. many n ∈ N
)

In order to rule out a black-box proof, we thus de�ne an oracle O1 (and an oracle O2 helping the
adversary) such that the following holds:

∀poly p,∀ poly-time gO1 ,∃poly q,∀PPTRO1,O2 ∃AO1,O2 ,∃O1,O2 :

A breaks gO1 , but R does not p-invert O1. Formally:

(1) Prx←${0,1}n
[
gO1(AO1,O2(1n, gO1(x))) = gO1(x)

]
> 1

q(n) for inf. many n ∈ N

(2) Prx←${0,1}n
[
O1(RA,O1,O2(1n,O1(x))) = O1(x)

]
< 1− 1

p (n)

for all but �nitely many n ∈ N

Strictly speaking, we only need to prove the above for some polynomial p, but since our proof
establishes (1) and (2) for all polynomial p anyways, we prefer to state this stronger statement here.
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Now, let us �x a polynomial p, a candidate NAIPP g, a polynomial q (s.t. it satis�es Theorem 13)
and a candidate reduction R and show the existence of an adversary and a p-weak OWF F.

By Theorem 13, there is an oracle distribution over pairs (O1,O2), and an adversary A such that
the probability of the bad event BadR,A,g

m is constant in m. We show that there exists a �xed oracle
pair (O1,O2) for which the bad event BadR,A,g

m in Theorem 13 happens only for �nitely many m.
From that it follows that there is a �xed oracle pair for which AO1,O2 breaks the candidate strong

OWF gO1 in�nitely many often, but the reduction RAO1,O2
inverts the weak OWF O1 well enough

at most on �nitely many m. Thus, it su�ces to show via Theorem 5, that Theorem 13 implies that
there is an oracle relative to which BadR,A,g

m happens only for �nitely many m.
By Theorem 13, we have

Pr(O1,O2)←$D

[
BadR,A,g

m

]
= constant < 1.

Hence, the constant probability version of Borel-Cantelli (Theorem 5) yields

Pr(O1,O2)←$D

[ ∞∧
m=1

∨
m>k

BadR,A,g
m

]
= constant < 1,

which means that, with constant probability, there is a k for which no m > k satis�es BadR,A,g
m .

Taking such an oracle pair (O1,O2) concludes the proof of Corollary 14.

4 Oracle Distributions

In this section, we de�ne the oracle (distribution)s we rely on. Firstly, a PSPACE creates a world
where no one-way functions exist. Then, we add an oracle (distribution) F in order to create a world
where weak one-way functions exist, and �nally, we add an oracle (distribution) O2 which breaks
NANPP and NAIPP constructions. The adversary will have access to O2, PSPACE and F while the
candidate strong OWF construction only has access to PSPACE and F, but not to O2. We recall from
Section 1.5 that it is necessary to not give the construction access to the information which parts
of F are easy and which parts are hard, and not giving the construction access to O2 is related to
this necessary restriction, since the adversary (modeled by O2) uses the information of which parts
are easy. On a technical-conceptual level, it is meaningful to not give the construction access to the
adversary (modeled by O2), since the adversary is ine�cient, while the construction is e�cient (in
this (oracle) world where all algorithms have access to PSPACE and F). We consider an ine�cient
adversary since we rule out black-box reduction which work for any black-box adversary that breaks
the strong OWF, including ine�cient ones.

As mentioned before, we denote our adversary by O2. We encode the pair of oracles PSPACE and
F into a single oracle O1 so that we are aligned with the terminology of a two-oracle separation result
(and this is also convenient notation in the proof).

De�nition 15 (Oracle Distributions). Let p be any �xed polynomial. The oracle distribution Dp

over oracles O1 and O2 samples permutations Πm of the elements in {0, 1}m for every m ∈ N and a
random subset EASYm

in of {0, 1}m s.t. |EASYm
in | = ⌈(1− 1/p(m))2m⌉. We de�ne

O1 := (PSPACE,F) and O2 := INV,

where F and INV behave as follows:

F(x)

m← |x|
y ← Πm(x)

return y

INV(y)

m← |y|
if y ∈ EASYm

out

return F−1(y)

else return ⊥

Here, we use EASYm
out := Πm(EASYm

in ).
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Remark. Throughout this paper we treat (1 − 1/p(m))2m as an integer, omitting the ceil function
since the di�erence does not a�ect our proofs.

5 Proof of Theorem 12

We split the proof of Theorem 12 into two parts. We �rst show that the probability of Case 1 (weak
OWF breaks) of the bad event introduced in Theorem 12 is smaller than any constant (Section 5.1),
and then we show that the probability of Case 2 (strong OWF is secure-ish) of the bad event introduced
in Theorem 12 is a small constant (Section 5.2). Recall that both probabilities are (only) over the
sampling of the oracles O1 and O2.

5.1 RA is not a successful weak OWF inverter

In this section, we show that the probability (over the oracle distributions) that F is not a 2p(m)-weak
OWF is small.

Theorem 16 (F is Weak OWF). For all constants c, for all polynomials p, for all poly-query
AF,PSPACE,INV, for all adversaries R making polynomially many (in m) queries to the oracles F,
PSPACE, INV, AF,PSPACE,INV,

PrF,PSPACE,INV←$Dp

[
SuccInvF,PSPACE,INVA,R ≥ 1− 1

2p(m)

]
≤ 1/c

where SuccInvF,PSPACE,INVA,R is de�ned as

Prx←${0,1}m,R

[
RF,PSPACE,INV,AF,PSPACE,INV

(1m,F(x)) ∈ F−1(F(x))
]
.

When we de�ne p(m) := 1
2p(m), the above is equivalent to

Pr(O1,O2)←$D

[
Case 1 of BadR,A,g

m

]
≤ 1/c,

where D := Dp, O1 := F,PSPACE, O2 := INV and BadR,A,g
m is de�ned as in Theorem 12.

The proof of Theorem 16 uses standard techniques for arguing one-wayness of a random oracle.
We include the proof in Appendix B for completeness.

5.2 A is a successful strong OWF inverter

We prove that an adversary with access to the oracles F, INV and PSPACE (cf. Section 4), can break
all short input NANPP constructions which have access to F and PSPACE only.

Theorem 17 (Inverting OWF Candidate). ∀ constant d,∀ poly p, ∀(n,m)-NANPP g with
input length n ≤ dp(m), ∃ poly-query AF,INV,PSPACE, ∃constant c > 0 s.t.

Pr(F,INV)←$Dp

[
Prs,A

[
AF,INV,PSPACE inverts g(s)

]
≤ c

]
= constant < 1

This implies that

Pr(O1,O2)←$D

[
Case 2 of BadR,A,g

m

]
= constant < 1

where D := Dp, O1 := F,PSPACE, O2 := INV and BadR,A,g
m is de�ned as in Theorem 12.

Interestingly, Theorem 17 does not depend on the number of calls to F in the strong OWF
construction g. That is, if the input length of the construction g is too short, then no number of
calls to F can make it a strong OWF. Now, let p(m) be a �xed polynomial. We now start by proving
Theorem 17 for constructions which make few F-queries, and later, we prove the theorem for larger
number of queries. More precisely, we show that no matter what the input length to g is, for every
constant c, g must make at least l > c ·p(m) calls to F, otherwise all the F calls are easy with constant
probability, which makes inverting g trivial.
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Proposition 18 (Easy inversion if few F-Calls). Consider a NANPP g = (pre, post) with
post(y1, .., yl, d) = y1||..||yl||d. For all constants c, if pre(s) = (x1, .., xl, d) induces at most l ≤ cp(m)
(parallel) calls to F, then all yi := F(xi) are in EASYm

out with constant probability, more precisely,
∃constant > 0 s.t.

PrF←$Dp [Prs[∀yi ∈ g(s) : yi ∈ EASYm
out] > constant] > constant > 0 (4)

In particular, with constant probability over the choice of the oracle F, g can be inverted with non-
negligible (constant) probability by a poly-query adversary.

Proof. Suppose there are l ≤ cp(m) parallel calls to F. Denote by y1, ..., yl the outputs of the parallel
calls to F. Now, when considering the randomness of choosing EASYm

in , we have

PrF←$Dp,s[y1, ..., yl ∈ EASYm
out]

≥
∑
s

2−|s|︸ ︷︷ ︸
=1

PrF←$Dp [y1 ∈ EASYm
out | s ] · ... · PrF←$Dp [yl ∈ EASYm

out | s ]

=

(
1− 1

p(m)

)l

≥
(
1− 1

p(m)

)cp(m)

≥
(
1

4

)c

∀p(m) > 2.

where the �rst inequality is an equality i� yi ̸= yj∀i ̸= j and the second inequality follows since
(1 − 1

x )
x converges monotonously to 1

e and is greater than 1
4 whenever x ≥ 2. Now since

(
1
4

)c
is

constant, we can use a simple averaging argument to prove (4): namely, we show

PrF←$Dp

[
Prs[y1, ..., yl ∈ EASYm

out] > 1/4c+1
]
> 1/4c − 1/4c+1 (5)

as follows:

1/4c ≤ PrF←$Dp,s[y1, ..., yl ∈ EASYm
out]

=
∑
F

PrF←$Dp [F] Prs[y1, ..., yl ∈ EASYm
out|F]︸ ︷︷ ︸

:=aF

≤
∑

F s.t. aF>1/4c+1

PrF←$Dp [F] +
∑

F s.t. aF≤1/4c+1

PrF←$Dp [F]1/4
c+1

≤ PrF←$Dp

[
F s.t. aF > 1/4c+1

]
+ 1/4c+1

which proves (5).
In the case where all y1, ..., yl are all easy, A can invert y1, ..., yl using INV oracle. Note that there

is only a single pre-image xi per yi and thus, given the list x1, ..., xl, A can use the PSPACE oracle to
�nd an s such that pre(s) = x1, ..., xl.

Due to Proposition 18, for the remainder of this section, we can focus on constructions where pre
makes more than c · p(m) calls. Also in the case where g makes many queries, we can always invert
the easy fraction of (y1, .., yl). However, if many queries are made, then (with high probability) some
yi will also be hard. Of course, if pre-processing pre(s) = (x1, .., xl) distributes the entropy well, then
knowing some of the xi might su�ce to restrict the set of suitable candidate values s to a polynomial-
sized set, and once a polynomial-sized set of candidates is obtained, a random candidate s is a suitable
pre-image with high enough probability. How well does this strategy work when considering arbitrary
pre-processing pre?

To analyze this strategy, we study the entropy of the hard values xi given (1− 1
p(m) )ℓ many easy

values xi (note that in expectation, (1 − 1
p(m) )ℓ many values are easy) and seek to prove that their

entropy is low. Towards that goal, we look at the entropy of the 1
p(m)ℓ many �rst xi under a �xed

permutation π and given the ℓ− 1
p(m)ℓ many last xi under that permutation. That is, we are interested

in the entropy

h(π) := H(Xπ(1), . . . , Xπ( ℓ
p(m) )

|Xπ( ℓ
p(m)

+1), . . . , Xπ(ℓ)),



On Derandomizing Yao's Weak-to-Strong OWF Construction 13

where Xi is the random variable de�ned as follows: sample a uniformly random s from {0, 1}n,
compute pre(s) and take the ith output (i.e. the input to the ith F-call in g). We now prove that the
expectation of entropy h(π) is small. Lemma 19 (Small Entropy Expectation) is our main conceptual
lemma.

Lemma 19 (Small Entropy Expectation). Suppose p(m) divides ℓ. Then,

Eπ←$Π(ℓ)[h(π)] ≤
n

p(m)
,

which is equivalent to

Eπ←$Π(ℓ)

[
H(Xπ(1), . . . , Xπ( ℓ

p(m) )
|Xπ( ℓ

p(m)
+1), . . . , Xπ(ℓ))

]
≤ n

p(m)
. (6)

Proof. Let's consider a permutation π of the weak OWF inputs xπ(1), ..., xπ(ℓ). Let's divide the inputs
xi into p(m) equal-sized blocks as follows:

xπ(1), ..., xπ( ℓ
p(m) )︸ ︷︷ ︸

one block

, xπ( ℓ
p(m)

+1), ..., xπ(2 ℓ
p(m) )︸ ︷︷ ︸

one block

, xπ(2 ℓ
p(m)

+1), ..., xπ(ℓ)

Each pink index starts a new block. Let's denote the set of the pink indices by

J :=
{
1, ℓ

p(m) + 1, 2 ℓ
p(m) + 1, ..., (p(m)− 1) ℓ

p(m) + 1
}
.

Now, let S denote the seed random variable of length n and consider the following sum

∑
j∈J

Eπ←$Π(ℓ)

H
Xπ(j), . . . , Xπ(j+ ℓ

p(m)
−1)︸ ︷︷ ︸

j-th block

|Xπ(j+ ℓ
p(m) )

, . . . , Xπ(ℓ)︸ ︷︷ ︸
all Xi after the j-th block


 (7)

=Eπ←$Π(ℓ)

∑
j∈J

H
(
Xπ(j), . . . , Xπ(j+ ℓ

p(m)
−1)|Xπ(j+ ℓ

p(m) )
, . . . , Xπ(ℓ)

) (8)

=Eπ←$Π(ℓ)

[
H

(
Xπ(1), . . . , Xπ(ℓ)

)]
(9)

≤Eπ←$Π(ℓ)[H (S)] (10)

=n (11)

where (8) holds by linearity of expectation, (9) holds by the chain rule for entropy (Lemma 7) and
Inequality (10) holds because (X1, .., Xℓ) are computed by applying the deterministic function pre on
S, and applying a deterministic function cannot increase entropy�the Inequality becomes equality if
and only if pre is injective. Finally, Equality (11) follows since H(S) = |S| = n.

Now, from (7)-(11), we have

n ≥
∑
j∈J

Eπ←$Π(ℓ)

[
H

(
Xπ(j), .., Xπ(j+ ℓ

p(m)
−1)|Xπ(j+ ℓ

p(m) )
, .., Xπ(ℓ)

)]
≥

∑
j∈J

Eπ←$Π(ℓ)

[
H

(
Xπ(j), .., Xπ(j+ ℓ

p(m)
−1)|Xπ(i), i = 1, .., j − 1, j + ℓ

p(m) , .., ℓ
)]

(12)

=
∑
j∈J

Eπ′←$Π(ℓ)

[
H

(
Xπ′(1), .., Xπ′( ℓ

p(m) )
|Xπ′( ℓ

p(m)
+1), .., Xπ′(ℓ)

)]
(13)

= p(m)Eπ′←$Π(ℓ)

[
H

(
Xπ′(1), .., Xπ′( ℓ

p(m) )
|Xπ′( ℓ

p(m)
+1), .., Xπ′(ℓ)

)]
(14)

where (12) follows since conditioning on more random variables can only decrease entropy. Here, we
additionally condition on all Xπ(i) for i < j and not only on those for i ≥ j + l

p(m) . In Equation (13)

we change to a more convenient indexing where we perform a bijective mapping on all permutations
π′(1) = π(j),...,π′( l

p(m) ) = π(j + l
p(m) − 1) thus maintaining the same distribution over all permuta-

tions. Since the summands do not depend on j anymore and |J | = p(m), Equation (14) follows which
concludes the proof of Lemma 19.

With Lemma 19 at hand, we now turn to the proof of Theorem 17.
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A(y1||...||yℓ||d)
for i ∈ 1, ..., ℓ

xi ← INV(yi)

s←$ pre−1(x1, ..., xℓ, d)

return s

Proof of Theorem 17. Let g be a (n,m)-NANPP g with input length n ≤
dp(m) and let ℓ be the number of queries to F which g makes. The adversary
A (described on the right) now tries to invert all y1,..,yℓ using INV and puts
a placeholder ⊥ as xi when inversion fails. A then computes a random pre-
image of the pre-processing that matches the known xis and d, which is
possible in polynomial-time using the PSPACE oracle. We now argue that
a random pre-image of the pre-processing, that matches the known xis and
d, is an actual preimage of y1||...||yℓ||d under g with constant probability.

From now on, we assume that |d| = 0. This is w.l.o.g. because the data d is known to the adversary,
so it cannot add entropy. Further and also w.l.o.g., we assume that p(m) divides ℓ for all m,n (if
there was a remainder, we could add constant dummy F-calls until there is no remainder. Such F-calls
would not make g weaker nor stronger, so our result would still hold.) Note that if ℓ ≤ p(m), then
with constant probability all xi are easy and INV inverts all of them (cf. Theorem 18). In that case
A can use the PSPACE oracle to �nd a correct preimage s with probability 1. Hence, we can assume
that ℓ > p(m).

First, recall that h(π) denotes the entropy of the hard values conditioned on knowing the easy
values, i.e., h(π) is equal to

H(Xπ(1), . . . , Xπ( ℓ
p(m) )

|Xπ( ℓ
p(m)

+1), . . . , Xπ(ℓ)).

Now, Lemma 19 (Small Entropy Expectation) established that the expectation of entropy h(π) is
small:

Eπ←$Π(ℓ)[h(π)] ≤
n

p(m)
< d, (15)

where we use that Theorem 17 assumes that dp(m) ≥ n. We now want to lower bound the probability
that the remaining entropy h(π) is less than 2n

p(m) . We call such a permutation π good and next we

lower bound the probability of permutation π being good. By Markov's inequality

Eπ←$Π(ℓ)[h(π)] ≥
2n

p(m)
· Prπ←$Π(ℓ)

[
h(π) ≥ 2n

p(m)

]
.

Equivalently,

Prπ←$Π(ℓ)

[
h(π) ≥ 2n

p(m)

]
≤ p(m)

2n
· Eπ←$Π(ℓ)[h(π)]

(15)

≤ p(m)

2n
· n

p(m)
=

1

2
.

Hence,

Prπ∈Π(ℓ)

[
h(π) <

2n

p(m)

]
≥ 1

2
. (16)

Now we know that a permutation π is good with probability at least 1
2 . If the permutation π is good,

then the remaining entropy of the input is small and thus, some inputs are very likely (cf. Lemma 21
(Predictable Inputs) in Appendix A) and thus likely chosen by adversary A which chooses a random
pre-image amongst the possible candidates. With this intuition of the proof in mind, we can now
lower-bound the probability of A's success formally.

PrF,s[A inverts g(s)]

≥ PrF

[
∃π : xπ(1), ..., xπ((1− 1

p(m) )ℓ)
∈ EASYm

in

]
· Prs

[
A inverts g(s)

∣∣∣∃π : xπ(1), ..., xπ((1− 1
p(m) )ℓ)

∈ EASYm
in

]

≥ 1

2
Prs

A inverts g(s)

∣∣∣∣∣∣∣∣∃π : xπ(1), ..., xπ((1− 1
p(m) )ℓ)

∈ EASYm
in︸ ︷︷ ︸

:=B

 (17)
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≥ 1

2
Prs

H(
Xπ(1), . . . , Xπ( ℓ

p(m) )

∣∣∣Xπ( ℓ
p(m)

+1), . . . , Xπ(ℓ)

)
<

2n

p(m)︸ ︷︷ ︸
=:C

|B

 (18)

· Prs

Prs′
∀k ∈ π(1),...,π(ℓ/p(m)):
pre(s′)k = pre(s)k

∣∣∣∣∣∣
∀j ∈
π(ℓ/p(m)+1),...,π(ℓ):
pre(s′)j = pre(s)j

 >
1

22d+1
|C,B

 (19)

· Prs

A inverts g(s)

∣∣∣∣∣∣Prs′
∀k ∈ π(1),...,π(ℓ/p(m)):
pre(s′)k = pre(s)k

∣∣∣∣∣∣
∀j ∈
π(ℓ/p(m)+1),...,π(ℓ):
pre(s′)j = pre(s)j

 >
1

22d+1
∧ C,B


(20)

≥ 1

2
· 1
2
·
(
1− 2 · d

2d+ 1

)
· 1

22d+1
= constant (21)

where (17) follows from the fact that whether xi is easy or not follows binomial distribution with
(1 − 1

p(m) )ℓ many easy values in expectation. Inequality (18) uses chain rule of probability. The

fractions at (21) follow from the lemmas, namely, the probability on line (18) is less than 1/2 by
Lemma 19 (Small Entropy Expectation) and probability on line (19) is less than 1− 2·d

2d+1 by Lemma 21
(Predictable Inputs). The last fraction follows from the de�nition of adversary A and the probability
statement at (20). Namely, if adversary guesses a random s′ which is consistent with the known xi,
and we condition the probability on such s′ being correct 1

22d+1 of the time, adversary must be right
1

22d+1 of the time.
Now that we know that

PrF,s[A inverts g(s)] ≥ const > 0,

we can use an averaging argument to show that PrF[Prs[A inverts g(s)] > const > 0] ≥ const > 0:
Suppose PrF,s[A inverts g(s)] ≥ c1 > 0. Now

c1 ≤ PrF,s[A inverts g(s)] =
∑
F

PrF[F] Prs[A inverts g(s) |F ]︸ ︷︷ ︸
=:aF

=
∑

F s.t. aF>c1/2

PrF[F] Prs[A inverts g(s) |F ]︸ ︷︷ ︸
≤1

+
∑

F s.t. aF≤c1/2

PrF[F]︸ ︷︷ ︸
≤1

Prs[A inverts g(s) |F ]

≤ PrF[aF > c1/2] + c1/2

Since we established that indeed, PrF[Prs[A inverts g(s)] > c1/2] ≥ c1/2, where c1 is a constant >0,
this conclude the proof of Theorem 17.

Theorem 12 follows from the Theorems 17 and 16 by union bound, namely

Pr(O1,O2)←$D

[
BadR,A,g

m

]
= Pr

[
Case 1 of BadR,A,g

m or Case 2 of BadR,A,g
m

]
≤ 1/c+ constant from Theorem 17︸ ︷︷ ︸

≤1−c1/2 i.e. prob. that g is secure-ish

< 1

Note that since the constant c in Theorem 16 can be made arbitrarily large, in particular, it can be
chosen s.t. 1/c+ constant from Theorem 17 is < 1.

6 Constructions with post-processing

In this section, we prove Theorem 13. Towards this goal, we use the oracles F, INV and PSPACE (cf.
Section 4), and show that there are no short input NAIPP constructions under the oracles.

Theorem 20 (No Strong OWFs with Injectiveish Post-Processing). ∀ poly p, ∀(n,m)-NAIPP
g with input length n ≤ 1

4p(m), ∃poly q(n) = nc, c ∈ N+, ∃ poly-query AF,INV,PSPACE such that

Pr(F,INV)←$Dp

[
Prs, coins of A

[
AF,INV,PSPACE inverts g(s)

]
≤ q(n)

]
= constant < 1
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and thus Pr(O1,O2)←$D

[
Case 2 of BadR,A,g

m

]
= constant < 1

where BadR,A,g
m is de�ned as in Theorem 13.

Theorems 16 and 20 together imply Theorem 13 by union bound analogously to the NANPP case.
It thus remains to prove Theorem 20.

A(z)
y1, ..., yℓ, d← post−1(z)

for i ∈ 1, ..., ℓ

xi ← INV(yi)

s←$ pre−1(x1, ..., xℓ, d)

return s

Proof. Let g be (n,m)-NAIPP which makes ℓ queries to F and let A be
the adversary on the right which samples a uniformly random pre-image
of z under post, then inverts the easy queries and returns a seed s which
is consistent with the pre-image of the easy values. Firstly observe that A
runs in polynomial-time since it can use the PSPACE oracle for inverting
post. Moreover, it makes only a polynomial number of queries since ℓ is a
polynomial.

As the post-processing of g is almost injective, y1, ..., yℓ, d←$ post−1(z)
returns the values y1, ..., yℓ, d which the one-wayness experiment used to compute z with probability

1
poly(n) . This probability is independent of F. If y1, ..., yℓ, d are indeed the correct values, then adversary

A also �nds a pre-image s with constant probability by the same arguments as in Theorem 17. Thus,
the overall success of A is 1

poly(n) ·constant which is inverse polynomial as required by Theorem 20.
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A Additional Lemmas and Proofs

Lemma 21 (Predictable Inputs). Consider (X1, .., Xℓ) = pre(s) for uniformly random s. If (a
�xed) permutation π is good, i.e. such that the entropy of the Xπ(i) satis�es

H
(
Xπ(1), . . . , Xπ( ℓ

p(m) )

∣∣∣Xπ( ℓ
p(m)

+1), . . . , Xπ(ℓ)

)
<

2n

p(m)

then

Prs

Prs′
∀k = π (i) , i = 1, .., ℓ

p(m) :

pre(s′)k = pre(s)k

∣∣∣∣∣∣∣∀j = π (i) , i = ℓ
p(m) + 1, .., ℓ :

pre(s′)j = pre(s)j

 >
1

22d+1

 ≥ 1− 2 · d
2d+ 1

Proof. Since n ≤ dp(m), we get that

H
(
Xπ(1), . . . , Xπ( ℓ

p(m) )

∣∣∣Xπ( ℓ
p(m)

+1), . . . , Xπ(ℓ)

)
<

2n

p(m)
≤ 2 · d (22)

https://eprint.iacr.org/2016/316
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Let Sh,e ⊆ {0, 1}m be de�ned as

Sh,e = {s : Prs′ [ph(s′) = ph(s) | pe(s′) = pe(s) ] <
1

22d+1
},

where
pe(s) := pre(s)π( ℓ

p(m)
+1), ..., pre(s)π(ℓ)

and
ph(s) := pre(s)π(1), . . . , pre(s)π( ℓ

p(m) )
.

Using (22) and the de�nition of conditional Shannon entropy, we get that

2 · d > H

Xπ(1), . . . , Xπ( ℓ
p(m) )︸ ︷︷ ︸

=:ph(s)

∣∣∣∣∣∣∣∣Xπ( ℓ
p(m)

+1), . . . , Xπ(ℓ)︸ ︷︷ ︸
=:pe(s)


=

∑
s∈{0,1}m

Prs′ [ph(s
′) = ph(s) and pe(s

′) = pe(s)] · |log Prs′ [ph(s′) = ph(s) | pe(s′) = pe(s) ]|

=
∑

s∈Sh,e

Prs′ [ph(s
′) = ph(s) and pe(s

′) = pe(s)] · |log Prs′ [ph(s′) = ph(s) | pe(s′) = pe(s) ]|

+
∑

s̸∈Sh,e

Prs′ [ph(s
′) = ph(s) and pe(s

′) = pe(s)] · |log Prs′ [ph(s′) = ph(s) | pe(s′) = pe(s) ]|

≥

 ∑
s∈Sh,e

Prs′ [ph(s
′) = ph(s) and pe(s

′) = pe(s)]

 · ∣∣∣∣log 1

22d+1

∣∣∣∣
+

 ∑
s̸∈Sh,e

Prs′ [ph(s
′) = ph(s) and pe(s

′) = pe(s)]

 · |log 1|
≥ Prs

[
Prs′ [ph(s

′) = ph(s) | pe(s′) = pe(s) ] <
1

22d+1

]
· (2d+ 1) + 0

where log is the base-2 logarithm and the last inequality is equality exactly when pre-processing
is injective. Now

2 · d ≥ Prs

[
Prs′ [ph(s

′) = ph(s) | pe(s′) = pe(s) ] <
1

22d+1

]
· (2d+ 1)

⇔ 2 · d
2d+ 1

≥ Prs

[
Prs′ [ph(s

′) = ph(s) | pe(s′) = pe(s) ] <
1

22d+1

]
⇒Prs

[
Prs′ [ph(s

′) = ph(s) | pe(s′) = pe(s) ] ≥
1

22d+1

]
= 1− Prs

[
Prs′ [ph(s

′) = ph(s) | pe(s′) = pe(s) ] <
1

22d+1

]
> 1− 2 · d

2d+ 1

which proves the statement.

B Proof of Theorem 16 (F is a weak OWF)

In order to prove Theorem 16, we show that F is a weak OWF with inversion probability 1−1/2p(m)
with all but small constant probability over Dp. Namely, we show that for all polynomials p, for
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all poly-query AF,PSPACE,INV, for all adversaries R making polynomially many (in m) queries to the
oracles F,PSPACE, INV,AF,PSPACE,INV, the probability

PrF,PSPACE,INV←$Dp

[
SuccInvF,INVA,R ≥ 1− 1

2p(m)

]
≤ 1/c, (23)

where SuccInvF,INVA,R is de�ned as

Prx←${0,1}m,R,A

[
RF,PSPACE,INV,AF,PSPACE,INV

(1m,F(x)) ∈ F−1(F(x))
]
.

Proof of Theorem 16. Fix p, R and A. Since A and R both make polynomially many queries to the
same oracles, R can simply simulate A. Thus, w.l.o.g., we can assume that R only makes queries to
F, PSPACE and INV. Additionally, we consider R to be a computationally unbounded algorithm so
that w.l.o.g., we can assume that it does not make queries to the PSPACE oracle.

Let q be a polynomial such that adversary R makes exactly q(m) queries to the oracle F and an
arbitrary number of queries to INV. Since we let the adversary R make an arbitrary number of queries
to INV, that is, the adversary can be assumed to know the sets EASYm

in and EASYm
out and how F maps

EASYm
in to EASYm

out completely. This only makes the adversary stronger. Importantly, using INV does
not give the adversary any information on F on the hard values (only the fact that the values are
hard, but no information on how HARDm

in maps to HARDm
out).

For conciseness, we now denote R := RF,PSPACE,INV,AF,PSPACE,INV

and we omit the PSPACE oracle
everywhere�the PSPACE oracle is deterministic anyway. Moreover, we denote R's queries to F by
x1, ..., xq(m) and the R's guess for the pre-image of its input y by xq(m)+1.

Eventually we want to bound the following:

PrF,INV

[
SuccInvF,INVA,R ≥ 1− 1

2p(m)

]
=PrF,INV

[
Prx,R

[
R(F(x)) ∈ F−1(F(x))

]
≥ 1− 1

2p(m)

]
≤PrF,INV

[
Prx,R

[
R(F(x)) ∈ F−1(F(x)) |x ̸∈ EASYm

in

]
≥ 1

2p(m)

]
(24)

where the last inequality follows from

Prx,R
[
R(F(x)) ∈ F−1(F(x))

]
= Prx,R

[
R(F(x)) ∈ F−1(F(x)) |x ̸∈ EASYm

in

]
Prx,R[x ̸∈ EASYm

in ]︸ ︷︷ ︸
<1

+ Prx,R
[
R(F(x)) ∈ F−1(F(x)) |x ∈ EASYm

in

]︸ ︷︷ ︸
≤1

Prx,R[x ∈ EASYm
in ]︸ ︷︷ ︸

=1−1/p(m)

.

We �rst compute a bound when sampling oracles F, INV, input x and randomness for R together
and then deduce (24) via averaging. In order to bound the probability of R successfully inverting,
given that x is not in the easy set, we �rst bound the successful inversion event by the event that for
any i ≤ q + 1, F(xi) = F(x) (and not just for xq+1). Equation (+) then splits the big OR into q + 1
disjoint events.

PrF,INV,x,R
[
R(F(x)) ∈ F−1(F(x)) |x ̸∈ EASYm

in

]
≤PrF,INV,x,R

 ∨
1≤i≤q+1

F(xi) = F(x) |x ̸∈ EASYm
in


(+)
=

q(m)+1∑
i=1

PrF,INV,x,R

[
F(xi) = F(x)

∣∣∣∣ F(x1), ...,F(xi−1) ̸= F(x) ∧
x ̸∈ EASYm

in

]
· PrF,INV,x,R[F(x1), ...,F(xi−1) ̸= F(x) |x ̸∈ EASYm

in ]

≤
q(m)+1∑

i=1

PrF,INV,x,R

[
F(xi) = F(x)

∣∣∣∣ F(x1), ...,F(xi−1) ̸= F(x) ∧
x ̸∈ EASYm

in

]
(25)
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Finally, the probabilities are maximized when all the xi are distinct and happen to lie in {0, 1}m \
EASYm

in which is a set of size 1
p(m)2

m. The function F induces a bijection from {0, 1}m \ EASYm
in to

{0, 1}m \ EASYm
out and thus, for the i+1-th query, we need to reduce the set size of {0, 1}m \ EASYm

in

by i, since�in the worst case�we already know i values�note that the sum now goes from 0 to q
instead of 1 to q + 1. Hence, the probability that F(xi+1) = F(x) is upper bounded by 1 divided by

1
p(m)2

m − i. Thus, we can upper bound (25) by the sum

PrF,INV,x,R
[
R(F(x)) ∈ F−1(F(x)) |x ̸∈ EASYm

in

]
≤

q(m)∑
i=0

1
1

p(m)2
m − i

. (26)

In order to derive an upper bound for (24), we need to split the probability into sampling F, INV
and sampling x,R.

By Markov's inequality, for any real number r,

PrF,INV
[
Prx,R

[
R(F(x)) ∈ F−1(F(x)) |x ̸∈ EASYm

in

]
≥ r

]
≤
EF,INV

[
Prx,R

[
R(F(x)) ∈ F−1(F(x)) |x ̸∈ EASYm

in

]]
r

=
PrF,INV,x,R

[
R(F(x)) ∈ F−1(F(x)) |x ̸∈ EASYm

in

]
r

∣∣by def of expectation

≤

∑q(m)
i=0

1
1

p(m)
2m−i

r

∣∣by (26)

Now we plug in the correct value r = 1
2p(m) from (24) and get

∑q(m)
i=0

1
1

p(m)
2m−i

1
2p(m)

=

q(m)∑
i=0

2p(m)
1

p(m)2
m − i

≤
q(m)∑
i=0

2m/4

2m/2
= q(m)2m/4 = negl(m) <

1

c

where the �rst inequality holds for any big enough m and the last inequality holds for any big enough
m since c is a constant.
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