
Building Hard Problems by Combining Easy Ones

Riddhi Ghosal‹ and Amit Sahai‹‹

UCLA

Abstract. In this work, we initiate a new conceptual line of attack on the fundamental question of how
to generate hard problems. Motivated by the need for one-way functions in cryptography, we propose
an information-theoretic framework to study the question of generating new provably hard one-way
functions by composing functions that are easy to invert and evaluate, where each such easy function
is modeled as a random oracles paired with another oracle that implements an inverse function.

1 Introduction

The search for computational hardness. The abundance of hard problems has been well-known to us since
the seminal work of Shannon [Sha49] which proved that almost all boolean functions have exponential circuit
complexity. However, not much progress has been made in answering the fundamental question of proving
that a particular boolean function requires exponentially large circuits. In fact, we have not even succeeded
in identifying concrete families of functions that require super-linear circuit complexity. At the same time,
the conjectured hardness of computing specific functions (or satisfying certain relations) is necessary for the
field of cryptography for the construction of primitives ranging from psueodo-random generators [BM19]
and public-key encryption [GM19] to secure two-party computation [Yao82] and indistinguishability obfus-
cation [BGI`01,JLS21].

The most basic form of hardness that is necessary and useful for cryptography is called a one-way
function [Gol01]: a function f such that: (1) Given any valid input x, it is easy to compute fpxq; and (2) Given
fpxq for a randomly chosen x in the domain of f , it is hard to compute any x1 such that fpx1q “ fpxq. Since
hard problems are of great importance in cryptography (see later in this introduction for more elaboration
on this), the lack of techniques or “recipes” to build such objects is a major over-arching concern.

Can we make hard one-way functions by combining easy functions? How might we build such a recipe for
constructing one-way functions, when we don’t even know how to prove super-linear circuit lower bounds?
In our work, we propose an information-theoretic framework in which to begin to investigate this question.
The basic hypothesis we would like to model and test is the following:

A good way to make hard one-way functions is to combine “unrelated” easy functions.

Why start with “easy” functions? Well, the basic mathematical building blocks we typically encounter
are easy in both directions: For example, given a linear transformation T , it is easy to both: (1) Given a
vector x, compute y “ Tx; and (2) Given y “ Tx, find a vector x1 such that Tx1 “ y. The same is true for
the “add a constant” function or the “multiply modulo a prime p” function. Since these are ingredients we
are familiar with, it makes sense to try to start by building a “generic” model for an easy function.

We abstract such an easy function by considering our computational entities as having access to certain
functions given as an oracle [Tur39,Pos44,Soa99]. Namely, we provide: (1) a random function O : t0, 1un Ñ
t0, 1um as one oracle, and (2) the inverse function O´1 : t0, 1um Ñ t0, 1un Y tKu as an oracle as well1. Since
we provide both O and O´1 as oracles, they are easy to compute in both directions – just by asking the

‹ Email: riddhi@cs.ucla.edu.
‹‹ Email: sahai@cs.ucla.edu.
1 For simplicity in this initial work, we restrict our attention to the case where m is significantly larger than n, as

this makes O return responses which have a unique pre-image with overwhelming probability.

oracle to do so. However, by leaving the rest of their structure random, we model the idea that the internal
mathematical structure of this “easy” function is unrelated to any other easy function that we might want
to use. We stress that the purpose of this paper is to initiate this line of study with a simple formalization
of “easiness” – we hope future work will explore other formalizations.

Our Results. In this paper, we initiate this investigation by studying two of perhaps the most natural
“recipes” that come to mind.

– Adding two easy functions: Our first result, informally speaking, is a demonstration that if f1, f2 :
t0, 1un Ñ t0, 1un`t are two easily invertible and unrelated functions, then the map x ÞÑ f1pxq ` f2pxq is
a one-way function2. More specifically, we show that for large enough values of t, then x ÞÑ f1pxq`f2pxq
is almost as hard to invert as a truly random function R : t0, 1un Ñ t0, 1un`t.

– Injecting linear noise to an easy function: Observe that the result above requires two independent
unrelated “easy” functions modeled as pairs of oracles. Can we use just one such “easy” function, and
combine it with an extremely simple function – like adding a fixed constant over a finite field – and
still create a hard-to-invert function? Note that if we were to compose our easy-to-invert function with
the function that adds a known constant, then the resulting function would also necessarily be easy
to invert. Taking inspiration from the hardness of decoding random linear codes [BFKL94,Reg09], we
instead introduce randomness in a very simple way to help avoid this roadblock: we will apply the
simple add-a-constant function to each portion of the output of the “easy” function, but only with some
independent probability for each portion of the output.
More precisely, we interpret the output of the “easy” function as a k-dimensional vector over F2m ,
that is, f : t0, 1un Ñ t0, 1ukm“n`t “ Fk

2m for appropriate k P N, i.e., if fpxq “ y, then we re-write
y “ py1, . . . , ykq, such that each yi P F2m .
‚ The resultant function is constructed by adding a fixed error e P F2m where e ‰ 0 to every component

with some probability p ą 0. In other words every yi gets transformed to yi ` e with probability
p and is unaltered with probability 1 ´ p. We show that for appropriate values of k, t and p, this
function is one-way.

‚ We also extend this to the case where there is fixed error list E Ă F2m not containing 0, of size L.
To generate the function, we pick k many error terms randomly from E with replacement and add
it to each of the components. Thus, yi becomes yi ` ei,@i, where ei P E. In this case, an error list
of size 2, i.e., L “ 2 suffices to prove one-wayness of the resulting function for appropriate choices of
parameters.

In the above constructions, one-wayness holds even if the errors are adversarially chosen.

A more formal description of our results have been presented in Section 2.

Background on the usefulness of hardness in cryptography. Hardness conjectures (typically called assump-
tions in the cryptographic literature) are ubiquitous in cryptography. Several well-founded assumptions like
factoring and RSA [RSA78,Rab79], discrete-log (DLog) [DH22], Decisional linear (DLin) [BBS04], learning
parity with noise (LPN) [Ajt96], learning with errors (LWE) [Reg09], multivariate quadratic (MQ) [FY80],
quadratic residuosity [GM19] etc. have been proposed. All of these have led to the construction of several
primitives like pseudorandom generators [Reg09,PS98], public key encryption schemes [GM19,GSW13,Ale03],
signatures [KPG99,BR93,Lyu12,GPV08], zero-knowledge protocols [GMW87,PS19], functional encryption
[ABDCP15,Wee20,BSW11], indistinguishability obfuscation [JLS21], and many more.

However, the number of such well-studied hardness assumptions remain limited, and it seems that re-
markably many natural mathematical problems which we encounter are easy to solve in polynomial time.
Several proposals of new assumptions have either been broken or their hardness have not been sufficiently
scrutinised which makes them undesirable candidates to construct secure schemes, especially with quantum
computing [Sho94]. This causes a major bottle-neck, thereby making it further challenging to produce novel
protocols whose security rests on solid foundations. This naturally motivates the question of whether it is

2 Here we can interpret ` as addition modulo 2n`t or as addition in F2n`t .

2

possible to prepare some recipes which could be used as toolkits to produce new problems which will be
provably hard. Such a technique combined with some well-known hardness assumptions could provide us
with ways to generate novel hard problems from readily available mathematical problems which are better
suited to prove security of a particular construction. In this work, we take some first steps towards attacking
this fundamental question from an information-theoretic point of view.

The intuition behind the existence of such a technique has been inspired from the Learning With Errors
(LWE) assumption. Recall the search LWE assumption states that no polynomial time adversary can extract
x upon given access to pA, fpxq “ Ax` eq for a uniformly chosen matrix A P Fmˆn

q , uniformly chosen fixed
and secret vector x P Fn

q , and a noise vector e P Fm
q from an appropriate discrete gaussian distribution. Now,

observe that when m ě n, search LWE is essentially a composition of an easy to invert problem with another
extremely simple function, namely, fpxq “ gphpxqq, where gpxq “ x ` e and hpxq “ Ax. The system of
equations generated in hpxq can be solved efficiently using Gaussian Elimination and gpxq is just an addition
function which injects some bounded randomness. However, combining these operations somehow yields a
pseudorandom generator which has been a basis for numerous post-quantum public key schemes.

2 Technical Overview

A natural way of proving one-wayness of f is to show that the constructed function f is essentially as hard to
invert as a random function R. One way of formally capturing this would be to show that any computationally
unbounded distinguisher D with oracle acccess to either f or R cannot distinguish between the two cases by
making at-most polynomially many oracle queries. Formally, this is denoted by the following statement:

ˇ

ˇPrrDf p1nq “ 1s ´ PrrDRp1nq “ 1s
ˇ

ˇ ď neglpnq.

In our case f is constructed by combining multiple easy problems pO1,O2, . . .q and the “easiness” of
these “building blocks” is then abstracted by assuming that everyone has oracle access to the function pairs
pO1,O

´1
1 ,O2,O

´1
2 , . . .q as mentioned above. We now take a step forward and provide a stronger form of

the above indisguishability notion. Here, D will have oracle access to pf, pO1,O
´1
1 ,O2,O

´1
2 , . . .qq in the real

world. In the ideal world, we introduce an efficient algorithm Sim that interacts with R (denoted by SimR)
to “simulate” the “easy problems” and provide D with oracle access to pR,SimR

q. In particular, we show
that for any distinguisher D making polynomial many queries the following must hold,

ˇ

ˇ

ˇ
PrrDpf,pO1,O

´1
1 ,O2,O

´1
2 ,...qqp1nq “ 1s ´ PrrDR,SimR

p1nq “ 1s
ˇ

ˇ

ˇ
ď neglpnq.

This is the notion of indifferentiability introduced in [MRH04].

1. Sum of two invertible ideal functions. fpxq “ ppO1pxq ` O2pxqq mod 2mq with O1 and O2 being
random functions from n to m “ n` tpnq bits. We show that there exists an efficient and deterministic
simulator Sim with oracle access to a random function R : t0, 1un Ñ t0, 1um (denoted by SimR) such that
for all distinguishers D making at-most polynomial many oracle queries, the following two worlds where
D has oracle access to (1) pf, pO1,O

´1
1 ,O2,O

´1
2 qq vs. (2) pR,SimR

q are distinguishable with a negligible
probability. Here is the formal theorem statement:

Theorem 1. Let O1,O2,R are random functions from t0, 1un to t0, 1um, m “ n` tpnq, m, n, t P N. For
all polynomial-query-bounded distinguishers D making at most q “ polypnq queries to each oracle, there

exists a poly-time oracle simulator Simp¨q and a positive constant c such that

ˇ

ˇ

ˇ
Pr

”

DpO1`O2q,pO1,O2,O
´1
1 ,O´1

2 qp1nq “ 1
ı

´ Pr
”

DR,SimR

p1nq “ 1
ı
ˇ

ˇ

ˇ
ď
cq

2t
`

6q2

2n`t
.

Theorem 4 shows this result can also be extended to the case where O1 and O2 are random permutations,
i.e., Oi : t0, 1un Ñ t0, 1un is a random bijective function and O´1

i : t0, 1un Ñ t0, 1un, for all i P t1, 2u.
Refer to Section 4.2 for details.

3

2. Injecting Additive Noise.

– We assume the existence of a fixed and public (possibly chosen adversarially) list of errors E of length
L ě 2 where every element of E belongs to F2m . This is added to the output of an easy to invert
function. Assume O : F2n Ñ Fk

2m for some k P N and km “ n` t. Our construction works as follows:
Sample e1, . . . , ek uniformly at random from E and interpret Opxq as pOpxqp1q, . . . ,Opxqpkqq, where
Opxqpiq P F2m . Define fpxq “

`

pOpxqp1q ` e1q mod 2m
˘

, . . . ,
`

pOpxqpkq ` ekq mod 2m
˘

.
– Here we assume that there exists an adversarially chosen error e P F2m . O : F2n Ñ Fk

2m for some
k P N and km “ n ` t. To construct our function, we first sample bits b1, . . . , bk from a bernoulli
distribution with parameter p. Interpret Opxq as pOpxqp1q, . . . ,Opxqpkq, where Opxqpiq P F2m and
define fpxq “

`

pOpxqp1q ` bi ¨ eq mod 2m
˘

, . . . ,
`

pOpxqpkq ` bk ¨ eq mod 2m
˘

.

In both the above, we show that there exists an efficient simulator Sim such that any distinguisher D
making polynomially many queries cannot distinguish between pf, pO,O´1qq and pR,SimR

q where R is
a random function from n to km bits. Below, we present a general theorem which captures both the
constructions mentioned above.

Theorem 2. Let p be the parameter of a Bernoulli random variable, kpnq P N,mpnq, tpnq be functions
of n. Let O : F2n Ñ Fk

2m and R : F2n Ñ Fk
2m be random functions such that km “ n ` t, kp ě c1t

and k ´ kp ě c2t, for some constants c, c1, c2 ą 0. For all distinguishers D – pD1,D2q making at most

q “ polypnq queries to each oracle, there exists a poly-time oracle simulator Simp¨q and constant α ą 0,
such that

– when L ě 2, p “ 1, we have

ˇ

ˇ

ˇ
Pr

”

D
f,pO,O´1

q

2 p1n,Eq “ 1
ˇ

ˇE Ð D1p1
n, Lq

ı

´ Pr
”

DR,SimR

2 p1n,Eq “ 1
ˇ

ˇE Ð D1p1
n, Lq

ı
ˇ

ˇ

ˇ
ď
cq

2t
`

q

Lc1t
,

– and when L ě 1, 0 ă p ă 1, we have

ˇ

ˇ

ˇ
Pr

”

D
f,pO,O´1

q

2 p1n,Eq “ 1
ˇ

ˇE Ð D1p1
n, Lq

ı

´ Pr
”

DR,SimR

2 p1n,Eq “ 1
ˇ

ˇE Ð D1p1
n, Lq

ı
ˇ

ˇ

ˇ
ď
cq

2t
`
αqpk ` 1q

ec2t
.

Here f is the function defined above.

In the above constructions, we note that the distinguishing probability becomes negligible when t “ Ωplog1`ε nq.

3 Preliminaries

3.1 Definitions

Definition 1 (Polynomial-Query-Bounded Oracle Turing Machine). We say that an oracle Turing
machine Tp¨q is polynomial-query-bounded if there exists a polynomial pp¨q : N Ñ N such that for any input
x P t0, 1u˚ and for any oracle O, the execution of TOpxq makes at most pp|x|q many queries to O.

Definition 2 (Indifferentiability [MRH04,DKT16]). Let C : t0, 1un Ñ t0, 1umpnq be a construction
which has access to an ideal primitive F : t0, 1uppnq Ñ t0, 1uqpnq and implements a functionality based on F,
where ppnq, qpnq,mpnq “ polypnq. We say that C is indifferentiable from a random function RO : t0, 1un Ñ
t0, 1um, if there exists a poly-time simulator Sim with oracle access to RO such that for all polynomial-query-
bounded distinguishers D ,

ˇ

ˇ

ˇ
Pr

”

DCF,Fp1nq “ 1
ı

´ Pr
”

DRO,SimRO

p1nq “ 1
ı
ˇ

ˇ

ˇ

is negligible.

4

4 Construction based on Sum of Random Oracles

Let O1 : t0, 1un Ñ t0, 1um and O2 : t0, 1un Ñ t0, 1um, m “ n ` t be two random oracles. We claim that
the function ppO1 ` O2q mod 2mq is indifferentiable from a random function upon giving oracle access to
pO1,O2,O

´1
1 ,O´1

2 q, where O´1
1 and O´1

2 denote the corresponding inverse oracles. We split our results into
two cases, (1) O1 and O2 are random functions, and (2) O1 and O2 are random permutations. In the former
scenario, the inverse oracle returns a K if queried on an instance which does not have a defined pre-image.
For notational simplicity, we drop the modulus operation when it is clear from context.

Notation: Let Reg be a data-structure that stores a list of tuples pa P t0, 1un, b P t0, 1umq which is dynamically
built on the fly. From here on, in the entire paper, we use Regpaq “ b to denote pa, bq P Reg. Similarly, “ set
Regpxq “ y” simply means adding the pair px, yq to Reg. This is just for notational simplicity and does not
imply that Reg has a space-complexity of 2n. BotList denotes the list of all inverse queries that receive a K
response. ImList denotes another list of all responses sent as response to a forward query of the form Opaq.

4.1 Adding Random Functions

Formally, the inverse oracles are defined as O´1
1 : t0, 1um Ñ t0, 1unYtKu, and O´1

2 : t0, 1um Ñ t0, 1unYtKu.

Theorem 3. Let O1,O2,R are random functions from t0, 1un to t0, 1um, m “ n` tpnq, m, n, t P N. For all
polynomial-query-bounded distinguishers D making at most q “ polypnq queries to each oracle, there exists a

poly-time oracle simulator Simp¨q and a constant c ą 0 such that

ˇ

ˇ

ˇ
Pr

”

DpO1`O2q,pO1,O2,O
´1
1 ,O´1

2 qp1nq “ 1
ı

´ Pr
”

DR,SimR

p1nq “ 1
ı
ˇ

ˇ

ˇ
ď
cq

2t
`

6q2

2n`t
.

Note that D’s advantage becomes negligible when t “ Ωplog1`ε nq, ε ą 0

Proof. We prove the result using a sequence of intermediate indifferentiable hybrids. For notational simplicity,
we use pLOrai,ROraiq to denote the two oracles accessed by D in Hybrid i.

– Hybrid H1: This represents the case where D interacts with oracles pR,SimR
q. Hence,

‚ LOra1 is simply R which on input an n bit binary string outputs a random element from t0, 1un.
‚ ROra1 is identical to SimR and is defined as follows:

∗ On queries of the form O1paq
· if Reg1paq is undefined

1. Reg1paq
$
ÐÝ t0, 1umzBotList1.

2. if Reg1paq P ImList1, then abort
3. ImList1 “ ImList1 Y tReg1paqu
4. Send a as a query to R.
5. if Rpaq ´ Reg1paq P ImList2, then abort
6. Set Reg2paq “ Rpaq ´ Reg1paq.
7. ImList2 “ ImList2 Y tReg2paqu

· return Reg1paq.

∗ On queries of the form O2paq
· if Reg2paq is undefined

1. Reg2paq
$
ÐÝ t0, 1umzBotList2.

2. if Reg2paq P ImList2, then abort
3. ImList2 “ ImList2 Y tReg2paqu
4. Send a as a query to R.
5. if Rpaq ´ Reg2paq P ImList1, then abort
6. Set Reg1paq “ Rpaq ´ Reg2paq.
7. ImList1 “ ImList1 Y tReg1paqu

· return Reg2paq.

∗ On queries of the form O´1
1 pbq

1. if Ex st Reg1pxq “ b.
(a) BotList1 Ð BotList1 Y tbu.
(b) return K

2. return x such that Reg1pxq “ b.

∗ On queries of the form O´1
2 pbq

1. if Ex st Reg2pxq “ b.
(a) BotList2 Ð BotList2 Y tbu.
(b) return K

2. return x such that Reg1pxq “ b.

5

By definition, we have that

Pr
”

DR,SimR

“ 1
ı

“ Pr
“

DH1 “ 1
‰

– Hybrid H2:
‚ LOra2 acts as a forwarding polynomial time-oracle Turing Machine which upon input a P t0, 1un

forwards queries to R and outputs its response.
‚ ROra2 remains identical to ROra1.

Thus,
Pr

“

DH2 “ 1
‰

“ Pr
“

DH1 “ 1
‰

.
– Hybrid H3:

‚ LOra3 has oracle access to ROra3 and upon queried a P t0, 1un:
1. Forward any query a as a forward oracle queries for both O1 and O2 to ROra3. Say the responses

are b1, b2 respectively.
2. Return b1 ` b2.

‚ ROra3 remains identical as ROra2.

Note that the view of D remains unchanged from outcomes of LOra2 and LOra3 as the outputs are
identically distributed given the abort conditions in Hybrid H2 are not triggered. Now, the probability

that any aborts happens is at most q2

2m . This is because, at any time there are no more than q items in
ImListi, and the probability that a randomly chosen element in t0, 1um collides with a fixed element in
the image list is exactly 1

2m .
Hence,

ˇ

ˇPr
“

DH3 “ 1
‰

´ Pr
“

DH2 “ 1
‰
ˇ

ˇ ď
4q2

2m
.

– Hybrid H4:
‚ LOra4 remains identical as LOra3.
‚ ROra4 stores an additional register OS and no longer has oracle access to R. Rather, it lazy-samples

values uniformly at random from t0, 1um locally as responses to the forward oracle queries. Formally
it is defined as follows:

∗ On queries of the form O1paq
· if Reg1paq is undefined

1. Reg1paq
$
ÐÝ t0, 1umzBotList1.

2. if Reg1paq P ImList1, then abort
3. ImList1 “ ImList1 Y tReg1paqu
4. If pa, b1q P OS then set v “ b1, else

sample b
$
ÐÝ t0, 1um and set v “ b. Set

OS “ OS Y tpa, bqu.
5. if v ´ Reg1paq P ImList2, then abort
6. Set Reg2paq “ v ´ Reg1paq.
7. ImList2 “ ImList2 Y tReg2paqu

· return Reg1paq.

∗ On queries of the form O2paq
· if Reg2paq is undefined

1. Reg2paq
$
ÐÝ t0, 1umzBotList2.

2. if Reg2paq P ImList2, then abort
3. ImList2 “ ImList2 Y tReg2paqu
4. If pa, b1q P OS then set v “ b1, else

sample b
$
ÐÝ t0, 1um and set v “ b. Set

OS “ OS Y tpa, bqu.
5. if v ´ Reg2paq P ImList1, then abort
6. Set Reg1paq “ v ´ Reg2paq.
7. ImList1 “ ImList1 Y tReg1paqu

· return Reg2paq.

∗ On queries of the form O´1
1 pbq

1. if Ex st Reg1pxq ‰ b.
(a) BotListÐ BotList1 Y tbu.
(b) return K

2. return x such that Reg1pxq “ b.

∗ On queries of the form O´1
2 pbq

1. if Ex st Reg2pxq ‰ b.
(a) BotListÐ BotList2 Y tbu.
(b) return K

2. return x such that Reg1pxq “ b.

Since the distribution of outputs in ROra3 and ROra4 remains identical,

Pr
“

DH4 “ 1
‰

“ Pr
“

DH3 “ 1
‰

.

6

– Hybrid H5:

‚ LOra5 remains identical as LOra4.
‚ ROra5 is identical to ROra4 except here we abort if a value programmed in Reg2paq during an

invocation of a Opaq already belongs to BotList2. Formally it is defined as follows:

∗ On queries of the form O1paq
· if Reg1paq is undefined

1. Reg1paq
$
ÐÝ t0, 1umzBotList1.

2. if Reg1paq P ImList1, then abort
3. ImList1 “ ImList1 Y tReg1paqu
4. If pa, b1q P OS then set v “ b1, else

sample b
$
ÐÝ t0, 1um and set v “ b. Set

OS “ OS Y tpa, bqu.
5. if v ´ Reg1paq P ImList2, then abort
6. Set Reg2paq “ v ´ Reg1paq.
7. If Reg2paq P BotList2, then abort.
8. ImList2 “ ImList2 Y tReg2paqu

· return Reg1paq.

∗ On queries of the form O2paq
· if Reg2paq is undefined

1. Reg2paq
$
ÐÝ t0, 1umzBotList2.

2. if Reg2paq P ImList2, then abort
3. ImList2 “ ImList2 Y tReg2paqu
4. If pa, b1q P OS then set v “ b1, else

sample b
$
ÐÝ t0, 1um and set v “ b. Set

OS “ OS Y tpa, bqu.
5. if v ´ Reg2paq P ImList1, then abort
6. Set Reg1paq “ v ´ Reg2paq.
7. If Reg1paq P BotList1, then abort.
8. ImList1 “ ImList1 Y tReg1paqu

· return Reg2paq.

∗ On queries of the form O´1
1 pbq

1. if Ex st Reg1pxq ‰ b.
(a) BotListÐ BotListY tbu.
(b) return K

2. return x such that Reg1pxq “ b.

∗ On queries of the form O´1
2 pbq

1. if Ex st Reg2pxq ‰ b.
(a) BotListÐ BotListY tbu.
(b) return K

2. return x such that Reg1pxq “ b.

Hybrids H5 and H4 are identical given the aborts do not occur. Now, each abort statement can be

triggered with probability at-most q2

2m . This is because for the any oracle query, at most q elements can
be present in BotListi and the probability that for some a, Regipaq “ b for a fixed b P BotListi is 1

2m .

Taking union bound, we get that at-least one abort statement occurs with probability at-most 2q2

2m . Thus,

ˇ

ˇPr
“

DH5 “ 1
‰

´ Pr
“

DH4 “ 1
‰
ˇ

ˇ ď
2q2

2m
.

– Hybrid H6:

‚ LOra6 remains identical as LOra5.
‚ In ROra6 forward queries are forwarded to oracles O˚1 ,O

˚
2 .

Here O˚i paq, i P r2s behaves exactly like oracle Oi except it checks the following: Say b “ Oipaq. If there
exists any x ‰ a such that Oipxq “ b, then it aborts. Note that this condition forces the oracles to behave
like an injective random function on the queries received.
The inverse queries are handled identically as ROra6.
Observe the output distribution of the oracles here is identical to that of the previous hybrid. Therefore,

Pr
“

DH6 “ 1
‰

“ Pr
“

DH5 “ 1
‰

.

– Hybrid H7:

‚ LOra7 remains identical as LOra6.
‚ In ROra6 we replace all simulators and oracle with the real world oracles, i.e., pO1,O2,O

´1
1 ,O´1

2 q.

This differs from the previous hybrid in 2 ways:

‚ The response to new inverse queries need not be a K. Now, the probability of a non-bot response by
an inverse oracle is upper-bounded by 1

2t .

7

‚ The abort statement introduced in Hybrid H6 gets triggered. Let us calculate the probability of this
event occurring.
Let O1paq “ b. The probability that does not exists any x ‰ a such that O1pxq “ b is exactly

ˆ

1´
1

2n`t

˙2n´1

ď

ˆ

1´
1

2n`t

˙2n´1

ď
c

e
1

2t`1

.

where c is some constant greater than 0. Thus, the probability that the abort conditions do get

triggered is at-most 2q ¨
´

1´ 1

e
c

2t`1

¯

.

Let c
2t`1 be denoted by x, then we get

´

1´ 1

e
c

2t`1

¯

“
`

1´ 1
ex

˘

, where x becomes smaller as t grows. For

x ă 1.79, we have that ex ď 1 ` x ` x2, thus 1 ´ 1
ex ď 1 ´ 1

1`x`x2 “
x`x2

1`x`x2 ď x ` x2 ď 10x. x will

certainly be less than 1.79 for large enough value of t. This implies 1´ 1

e
c

2t`1
ď 10c

2t`1 .

Therefore the total distinguishing probability is

ˇ

ˇPr
“

DH6 “ 1
‰

´ Pr
“

DH7 “ 1
‰
ˇ

ˇ ď
2q

2t
`

qc

2t`1
ď
cq

2t
.

Combining all the hybrids completes the proof.

4.2 Adding Random Permutations

Theorem 4. Let O1,O2 be random permutations from t0, 1un to t0, 1un, n P N and R : t0, 1un Ñ t0, 1un be
a random function. For all polynomial-query-bounded distinguishers D making at most q “ polypnq queries

to each oracle, there exists a poly-time oracle simulator Simp¨q such that

ˇ

ˇ

ˇ
Pr

”

DpO1`O2q,pO1,O2,O
´1
1 ,O´1

2 qp1nq “ 1
ı

´ Pr
”

DR,SimR

p1nq “ 1
ı
ˇ

ˇ

ˇ
ď

8q2

2n ´ q
`

2qp2q ` 1q

2n
.

Proof. This proof also follows the same hybrid structure as above.

– Hybrid H1: This represents the case where D interacts with oracles pR,SimR
q.

‚ LOra1 is simply R which on input an n bit binary string outputs a random element from t0, 1um.
‚ ROra1 is identical to SimR and is defined as follows:

∗ On queries of the form O1paq
· if Reg1paq is undefined

1. Reg1paq
$
ÐÝ t0, 1unzImList1.

2. A1 Ð A1 Y tau.
3. ImList1 “ ImList1 Y tReg1paqu
4. Send a as a query to R.
5. Set Reg2paq “ Rpaq ´ Reg1paq.

· return Reg1paq.

∗ On queries of the form O2paq
· if Reg2paq is undefined

1. Reg2paq
$
ÐÝ t0, 1unzImList2.

2. A2 Ð A2 Y tau.
3. ImList2 “ ImList2 Y tReg2paqu
4. Send a as a query to R.
5. Set Reg1paq “ Rpaq ´ Reg2paq.

· return Reg2paq.

∗ On queries of the form O´1
1 pbq

1. if Ex st Reg1pxq ‰ b.

(a) a
$
ÐÝ t0, 1unzA1.

(b) Set Reg1paq “ b
(c) A1 “ A1 Y tau.
(d) ImList1 “ ImList1 Y b.
(e) Send a as a query to R.
(f) Set Reg2paq “ Rpaq ´ Reg1paq.

2. return a.

∗ On queries of the form O´1
2 pbq

1. if Ex st Reg2pxq ‰ b.

(a) a
$
ÐÝ t0, 1unzA2.

(b) Set Reg2paq “ b
(c) A2 “ A2 Y tau.
(d) ImList2 “ ImList2 Y b.
(e) Send a as a query to R.
(f) Set Reg1paq “ Rpaq ´ Reg2paq.

2. return a.

8

By definition, we have that

Pr
”

DR,SimR

“ 1
ı

“ Pr
“

DH1 “ 1
‰

After this, the same hybrid arguments follow as H2 to H4 from the proof of Theorem 3.
– Hybrid H5:

‚ LOra5 remains same as LOra4.
‚ ROra5 is identical to ROra4 except an additional abort condition collisions occur:

∗ On queries of the form O1paq
· if Reg1paq is undefined

1. b˚
$
ÐÝ t0, 1unzImList1.

2. If Dx such that Reg1pxq “ b˚, then
abort else set Reg1paq “ b˚

3. If pa, b1q P OS then set v “ b1,
4. else

sample b
$
ÐÝ t0, 1un and set v “ b. Set

OS “ OS Y tpa, bqu.
5. A1 Ð A1 Y tau.
6. ImList1 “ ImList1 Y tReg1paqu
7. Set Reg2paq “ v ´ Reg1paq.

· return Reg1paq.

∗ On queries of the form O2paq

· if Reg2paq is undefined

1. b˚
$
ÐÝ t0, 1unzImList2.

2. If Dx such that Reg2pxq “ b˚, then
abort else set Reg2paq “ b˚

3. If pa, b1q P OS then set v “ b1,

4. else sample b
$
ÐÝ t0, 1un and set v “ b.

Set OS “ OS Y tpa, bqu.
5. A2 Ð A2 Y tau.
6. ImList2 “ ImList2 Y tReg2paqu
7. Set Reg1paq “ v ´ Reg2paq.

· return Reg2paq.

∗ On queries of the form O´1
1 pbq

1. if Ex st Reg1pxq ‰ b.

(a) a
$
ÐÝ t0, 1unzA1.

(b) if Reg1paq is defined then abort
(c) If pa, b1q P OS then set v “ b1,

(d) else sample b
$
ÐÝ t0, 1un and set v “ b.

Set OS “ OS Y tpa, bqu.
(e) Set Reg1paq “ b
(f) A1 “ A1 Y tau.
(g) ImList1 “ ImList1 Y b.
(h) Set Reg2paq “ Rpaq ´ Reg1paq.

2. return a.

∗ On queries of the form O´1
2 pbq

1. if Ex st Reg2pxq ‰ b.

(a) a
$
ÐÝ t0, 1unzA2.

(b) if Reg1paq is defined then abort
(c) If pa, b1q P OS then set v “ b1,

(d) else sample b
$
ÐÝ t0, 1un and set v “ b.

Set OS “ OS Y tpa, bqu.
(e) Set Reg2paq “ b
(f) A2 “ A2 Y tau.
(g) ImList2 “ ImList2 Y b.
(h) Set Reg1paq “ Rpaq ´ Reg2paq.

2. return a.

Conditioned on the fact that the aborts do not occur, hybrids H3 and H4 are identical. The probability

that the aborts occur is at-most 8q2

2n´q . This is because at any point, the probability that a forward and

inverse query will collide is upper bounded by 2q
2n´q and 2q

2n´q respectively. Thus, we get

ˇ

ˇPr
“

DH5 “ 1
‰

´ Pr
“

DH4 “ 1
‰
ˇ

ˇ ď
8q2

2n ´ q
.

– Hybrid H6: Let us assume two forward queries a1, a2 for O1 sent by D. Reg2pa1q gets programmed as
OSpa1q ´ Reg1pa1q and Reg2pa2q “ OSpa2q ´ Reg1pa2q. Although, OSpa1q ‰ OSpa2q and Reg1pa1q ‰
Reg1pa2q, there is a non zero probability that OSpa1q´Reg1pa1q “ OSpa2q´Reg1pa2q, which violates the
fact that O2 is a random permutation. Such an inconsistency will also be thrown in during the simulation
of the inverses. In order to handle this, we abort whenever such a collision occurs.
‚ LOra6 remains same as LOra5.
‚ ROra6 is identical to ROra5 except some additional abort conditions.

9

∗ On queries of the form O1paq
· if Reg1paq is undefined
1. If pa, b1q P OS then set v “ b1, else

sample b
$
ÐÝ t0, 1un and set v “ b. Set

OS “ OS Y tpa, bqu

2. b˚
$
ÐÝ t0, 1unzImList1.

3. If Dx such that Reg1pxq “ b˚, then
abort else set Reg1paq “ b˚

4. A1 Ð A1 Y tau.
5. ImList1 “ ImList1 Y tReg1paqu
6. if Dx such that Reg2pxq “ OSpaq ´

Reg1paq, then abort
7. Set Reg2paq “ OSpaq ´ Reg1paq.

· return Reg1paq.

∗ On queries of the form O2paq
· if Reg2paq is undefined
1. If pa, b1q P OS then set v “ b1, else

sample b
$
ÐÝ t0, 1un and set v “ b. Set

OS “ OS Y tpa, bqu

2. b˚
$
ÐÝ t0, 1unzImList2.

3. If Dx such that Reg2pxq “ b˚, then
abort else set Reg2paq “ b˚

4. A2 Ð A2 Y tau.
5. ImList2 “ ImList2 Y tReg2paqu
6. if Dx such that Reg1pxq “ OSpaq ´

Reg2paq, then abort
7. Set Reg1paq “ OSpaq ´ Reg2paq.

· return Reg2paq.

∗ On queries of the form O´1
1 pbq

1. if Ex st Reg1pxq ‰ b.

(a) a
$
ÐÝ t0, 1unzA1.

(b) if Reg1paq is defined then abort
(c) If pa, b1q P OS then set v “ b1, else

sample b
$
ÐÝ t0, 1un and set v “ b. Set

OS “ OS Y tpa, bqu
(d) Set Reg1paq “ b
(e) A1 “ A1 Y tau.
(f) ImList1 “ ImList1 Y b.
(g) if Dx such that Reg2pxq “ OSpaq ´

Reg1paq, then abort
(h) Set Reg2paq “ OSpaq ´ Reg1paq.

2. return a.

∗ On queries of the form O´1
2 pbq

1. if Ex st Reg2pxq ‰ b.

(a) a
$
ÐÝ t0, 1unzA2.

(b) if Reg1paq is defined then abort
(c) If pa, b1q P OS then set v “ b1, else

sample b
$
ÐÝ t0, 1un and set v “ b. Set

OS “ OS Y tpa, bqu
(d) Set Reg2paq “ b
(e) A2 “ A2 Y tau.
(f) ImList2 “ ImList2 Y b.
(g) if Dx such that Reg1pxq “ OSpaq ´

Reg2paq, then abort
(h) Set Reg1paq “ OSpaq ´ Reg2paq.

2. return a.

We argue that the chances that abort occurs is negligible. Since, we are dealing with random permuta-
tions, the probability of such collisions is at most 1

2n . Since the number of entries in Reg1 and Reg2 each

are at-most 2q, the total probability of such collision for all the queries is upper bounded by 2qp2q`1q
2n`1 .

This can happen in the simulation of either of the four oracles, hence the probability of bad occurring is

at most 2qp2q`1q
2n .

ˇ

ˇPr
“

DH6 “ 1
‰

Pr
“

DH5 “ 1
‰
ˇ

ˇ ď
2qp2q ` 1q

2n
.

– Hybrid H7:

‚ LOra7 remains same as LOra6.

‚ ROra7 responds using true oracle O1,O
´1
1 ,O2,O

´1
2 .

Observe that since there are no collisions and each query is responded with the correct distribution, the
output of ROra6 is indistinguishable from that of true oracle responses. Hence,

Pr
“

DH6 “ 1
‰

“ Pr
“

DH7 “ 1
‰

.

Combining, we have

ˇ

ˇ

ˇ
Pr

”

DpO1`O2q,pO1,O2,O
´1
1 ,O´1

2 qp1nq “ 1
ı

´ Pr
”

DR,SimR

p1nq “ 1
ı
ˇ

ˇ

ˇ
ď

8q2

2n ´ q
`

2qp2q ` 1q

2n
.

10

5 Constructions from Expanding Oracles with Random Noise

We explore the setup where we add independent random noise to the output of an expanding oracle. Our
result concentrates on expanding oracles and we show that our construction achieves indifferentiability from
a random function.

Let O : F2n Ñ Fk
2m be a random oracle. Analogously define its inverse O´1 : Fk

2m Ñ F2n Y tKu. Here
kpnq P N and mpnq are functions of n. Let E “ te1, . . . , eLu be a publicly known fixed list of length (possibly
adversarially generated) L where ei P F2m , @ i P rLs. Let p be a parameter to a Bernoulli random variable.
We define a function f : F2n Ñ Fk

2m as follows:

1. y Ð Opxq.
2. Let y “ py1, y2, . . . , ykq, yi P F2m .

3. for i P 1 : k, bi
$
ÐÝ Berppq.

4. for i P 1 : k, εi
$
ÐÝ E, y1i Ð pyi ` bi ¨ εiq mod 2m.

5. Merge the new m bit stings as y1 “ py11, y
1
2, . . . , y

1
kq.

6. Return y1.

We claim that f is indifferentiable from a random function R : F2n Ñ Fk
2m .

Theorem 5. Let p ą 0 be the parameter of a Bernoulli random variable, kpnq P N,mpnq, tpnq be functions
of n. Let O : F2n Ñ Fk

2m and R : F2n Ñ Fk
2m be random functions such that km “ n ` t, kp ě c1t and

k´ kp ě c2t, for some constants c, c1, c2,ą 0. For all polynomial-query-bounded distinguishers D – pD1,D2q

making at most q “ polypnq queries to each oracle, there exists a poly-time oracle simulator Simp¨q and
constant α ą 0, such that

– when L ě 2, p “ 1, we have

ˇ

ˇ

ˇ
Pr

”

D
f,pO,O´1

q

2 p1n,Eq “ 1
ˇ

ˇE Ð D1p1
n, 1Lq

ı

´ Pr
”

DR,SimR

2 p1n,Eq “ 1
ˇ

ˇE Ð D1p1
n, 1Lq

ı
ˇ

ˇ

ˇ
ď
cq

2t
`

q

Lc1t
,

– and when L ě 1, 0 ă p ă 1, we have

ˇ

ˇ

ˇ
Pr

”

D
f,pO,O´1

q

2 p1n,Eq “ 1
ˇ

ˇE Ð D1p1
n, 1Lq

ı

´ Pr
”

DR,SimR

2 p1n,Eq “ 1
ˇ

ˇE Ð D1p1
n, 1Lq

ı
ˇ

ˇ

ˇ
ď
pc` 1qq

2t
`
αqpk ` 1q

ec2t
.

Here f is the function defined above. The above bounds are negligible when t P Ωplog1`ε nq.

Proof. This follows the same structure as the previous indifferentiability proofs in the writeup.

– Hybrid H1: Simulated World.
‚ LOra1 is simply R.
‚ ROra1 is the necessary simulator with oracle access to R that does the following: Let Reg be a data-

structure for book-keeping. If Regpaq is defined, return Regpaq. Else, on queries of the form Opaq,
a P t0, 1un forward a to R and store the response as r P Fk

2m . Record the response as pr1, . . . , rkq.

Sample n bits b1, . . . , bk such that bi
$
ÐÝ Berppq. Sample n elements e1, . . . , ek uniformly at random

from the fixed error set E. Set Regpaq “ pr1 ´ b1 ¨ e1, . . . , rk ´ bk ¨ ekq . If Dx ‰ a such that Regpxq “
pr1 ´ b1 ¨ e1, . . . , rk ´ bk ¨ ekq, then abort, else Return Regpaq.
On queries of the form O´1pbq, b P Fk

2m , check if b “ Regpxq for some x P t0, 1un. If yes, then return
one of the corresponding pre-images, else return K.
By definition of the game, we have,

Pr
”

DR,SimR

2 “ 1
ı

“ Pr
”

DH1
2 “ 1

ı

.

– Hybrid H2:

11

‚ LOra2 acts as a forwarding polynomial time oracle Turing Machine which upon input a P t0, 1un

forwards queries to R and outputs its response.
‚ ROra2 remains identical to ROra1.

Clearly,

Pr
”

DH2
2 “ 1

ı

“ Pr
”

DH1
2 “ 1

ı

.

– Hybrid H3:

‚ LOra3 has oracle access to ROra3 and upon queried a P F2n :
1. Forward any query a as a forward oracle query to ROra3, and store the response (call it y P Fk

2m).
2. Let y “ py1, y2, . . . , ykq, yi P F2m .

3. for i P 1 : k, bi
$
ÐÝ Berppq.

4. for i P 1 : k, εi
$
ÐÝ E, y1i Ð pyi ` bi ¨ εiq mod 2m.

5. y1 “ py11, y
1
2 . . . y

1
nq.

6. Return y1.
‚ ROra3 remains identical as ROra2.

Note that the outcomes of LOra2 and LOra3 are identically distributed since Rpaq is not revealed and is
uniformly distributed.
Hence,

Pr
”

DH3
2 “ 1

ı

“ Pr
”

DH2
2 “ 1

ı

.

– Hybrid H4:
‚ LOra4 remains identical as LOra3.
‚ ROra4 no longer forwards its oracle queries to R. Rather, simply it lazy-samples the responses locally

while maintaining consistency in the responses.
The distribution of outputs in ROra3 and ROra4 remains identical.

Pr
”

DH4
2 “ 1

ı

“ Pr
”

DH3
2 “ 1

ı

.

– Hybrid H5:
‚ LOra5 remains identical as LOra4.
‚ In ROra5 forward queries are forwarded to oracles O˚1 ,O

˚
2 . Here O˚1 ,O

˚
2 are exactly as defined in

Hybrid H6 in the proof of theorem 3. The inverse queries are handled exactly as ROra4.
The distribution of outputs in ROra4 and ROra5 remains identical. Thus

Pr
”

DH5
2 “ 1

ı

“ Pr
”

DH4
2 “ 1

ı

.

– Hybrid H6: Finally, we replace the simulation of inverse and forward queries in ROra5 with the ac-
tual oracles. In other words, H6 is essentially the case where D has been given access to the oracles
ppfO, pO,O´1qqq.
We first take a look at the case when L ě 2 and p “ 1.
The views of H5 and H6 remain identical unless the following events occur: (a) D sends an arbitrary
inverse query and receives a non K response. (b) D guesses the list of k errors which were sampled to
produce the output for f , in which case, D can manufacture a query which would give a non K response
upon querying for its inverse. (c) O˚ never aborts in the previous hybrids. From the proof of theorem 3,
we saw that abort happens with probability cq

2t`1 .
Now, the probability that an arbitrary inverse query has a non K response is at-most 1

2km´n . The

probability that D guesses ei correctly is upper bounded by 1
Lk .

Thus, the upper bound of D’s advantage which makes at-most q queries to each oracle is,

q

2km´n
`

q

Lk
`

cq

2t`1
ď
cq

2t
`

q

Lk

12

Observe that kp “ Ωptq implies that there exists positive constant c1 such that k ě c1t. This gives us
the necessary bound.
If 0 ă p ă 1, the same three cases above hold. Here, the probability that a random inverse query will
receive a non K responses remains identical to the previous case. In order to guess the errors ei correctly,
D must guess the bi correctly for all i P rks. Assuming that that number of places where bi “ 1 is `, the
probability of D correctly guessing is 1

L` p
`p1 ´ pqk´`. Now, summing over all possible values of `, the

total probability of guessing becomes

ď

k
ÿ

`“0

1

L`
p`p1´ pqk´`

ď

k
ÿ

`“0

p`p1´ pqk´`

When p ď 1
2 , the above expression can be written as p1´ pqk

řk
`“0

p`

p1´pq`
which can be upper bounded

by pk ` 1qp1 ´ pqk. Similarly, when p ą 0.5, the upper bound will be pk ` 1qpk. Combining these two
bounds, we get that the probability of guessing the errors correctly is upper bounded by

pk ` 1q ¨max
`

p1´ pqk, pk
˘

.

Since kp P Ωptq and pk´ kpq P Ωptq, then there exists a positive constant c2 such that c2t ď minpkp, k´
kpq, we have that for large enough values of n,

pk ` 1qmax
`

p1´ pqk, pk
˘

ď pk ` 1qmax
´

c1e´kp, c2e´p1´pqk
¯

ď
αpk ` 1q

ec2t
.

, where c1, c2 ě 0 are constants and α “ maxpc1, c2q. Thus the distinguisher D’s advantage is upper
bounded by

q

2t
`
αqpk ` 1q

ec2t
`

cq

2t`1
ď
pc` 1qq

2t
`
αqpk ` 1q

ec2t
.

Combining these, we get the necessary result.

Remark. Note that if we allow L “ superpolypnq, then k can be any arbitrary integer.

6 Acknowledgements

This research began in a conversation between AS and his brother, Anant Sahai; we are grateful to him
for his role in sparking our inquiry into this question. We are grateful to Alexis Korb for pointing out a
bug in an earlier version of one of the proofs. We would also like to thank Paul Lou and Yael Eisenberg
for several insightful discussions. This research was supported in part from a Simons Investigator Award,
DARPA SIEVE award, NTT Research, BSF grant 2012378, a Xerox Faculty Research Award, a Google
Faculty Research Award, and an Okawa Foundation Research Grant. This material is based upon work
supported by the Defense Advanced Research Projects Agency through Award HR00112020024.

References

ABDCP15. Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple functional encryption
schemes for inner products. Cryptology ePrint Archive, 2015.

Ajt96. Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing, pages 99–108, 1996.

13

Ale03. Michael Alekhnovich. More on average case vs approximation complexity. In 44th Annual Symposium
on Foundations of Computer Science, pages 298–307, Cambridge, MA, USA, October 11–14, 2003. IEEE
Computer Society Press.

BBS04. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Crypto, volume 3152, pages
41–55. Springer, 2004.

BFKL94. Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryptographic primitives based
on hard learning problems. In Douglas R. Stinson, editor, Advances in Cryptology – CRYPTO’93, volume
773 of Lecture Notes in Computer Science, pages 278–291, Santa Barbara, CA, USA, August 22–26, 1994.
Springer, Heidelberg, Germany.

BGI`01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and
Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian, editor, Advances in Cryptology
– CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 1–18, Santa Barbara, CA,
USA, August 19–23, 2001. Springer, Heidelberg, Germany.

BM19. Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of pseudo random
bits. In Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio
Micali, pages 227–240. 2019.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In Proceedings of the 1st ACM Conference on Computer and Communications Security, pages
62–73, 1993.

BSW11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In Theory
of Cryptography: 8th Theory of Cryptography Conference, TCC 2011, Providence, RI, USA, March 28-30,
2011. Proceedings 8, pages 253–273. Springer, 2011.

DH22. Whitfield Diffie and Martin E Hellman. New directions in cryptography. In Democratizing Cryptography:
The Work of Whitfield Diffie and Martin Hellman, pages 365–390. 2022.

DKT16. Dana Dachman-Soled, Jonathan Katz, and Aishwarya Thiruvengadam. 10-round Feistel is indifferentiable
from an ideal cipher. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology –
EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes in Computer Science, pages 649–678, Vienna,
Austria, May 8–12, 2016. Springer, Heidelberg, Germany.

FY80. Aviezri S. Fraenkel and Yaacov Yesha. Complexity of solving algebraic equations. Information Processing
Letters, 10(5-Apr):178–179, 1980.

GM19. Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental poker keeping secret
all partial information. In Providing sound foundations for cryptography: on the work of Shafi Goldwasser
and Silvio Micali, pages 173–201. 2019.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP-statements in zero-knowledge,
and a methodology of cryptographic protocol design. In Andrew M. Odlyzko, editor, Advances in Cryp-
tology – CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages 171–185, Santa Barbara,
CA, USA, August 1987. Springer, Heidelberg, Germany.

Gol01. Oded Goldreich. Foundations of Cryptology: Basic Tools. Cambridge, 2001.

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th Annual ACM Symposium
on Theory of Computing, pages 197–206, Victoria, BC, Canada, May 17–20, 2008. ACM Press.

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science,
pages 75–92, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany.

JLS21. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded assump-
tions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages
60–73, 2021.

KPG99. Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar signature schemes. In
Jacques Stern, editor, Advances in Cryptology – EUROCRYPT’99, volume 1592 of Lecture Notes in Com-
puter Science, pages 206–222, Prague, Czech Republic, May 2–6, 1999. Springer, Heidelberg, Germany.

Lyu12. Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval and Thomas Johans-
son, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer
Science, pages 738–755, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany.

MRH04. Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In Moni Naor, editor, TCC 2004: 1st

14

Theory of Cryptography Conference, volume 2951 of Lecture Notes in Computer Science, pages 21–39,
Cambridge, MA, USA, February 19–21, 2004. Springer, Heidelberg, Germany.

Pos44. Emil L Post. Recursively enumerable sets of positive integers and their decision problems. 1944.
PS98. Sarvar Patel and Ganapathy S. Sundaram. An efficient discrete log pseudo random generator. In Hugo

Krawczyk, editor, Advances in Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in Computer
Science, pages 304–317, Santa Barbara, CA, USA, August 23–27, 1998. Springer, Heidelberg, Germany.

PS19. Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning with errors.
In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019,
Part I, volume 11692 of Lecture Notes in Computer Science, pages 89–114, Santa Barbara, CA, USA,
August 18–22, 2019. Springer, Heidelberg, Germany.

Rab79. Michael O Rabin. Digitalized signatures and public-key functions as intractable as factorization. Technical
report, Massachusetts Inst of Tech Cambridge Lab for Computer Science, 1979.

Reg09. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of the
ACM (JACM), 56(6):1–40, 2009.

RSA78. Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

Sha49. Claude E Shannon. The synthesis of two-terminal switching circuits. The Bell System Technical Journal,
28(1):59–98, 1949.

Sho94. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In 35th Annual
Symposium on Foundations of Computer Science, pages 124–134, Santa Fe, NM, USA, November 20–22,
1994. IEEE Computer Society Press.

Soa99. Robert I Soare. Recursively enumerable sets and degrees: A study of computable functions and computably
generated sets. Springer Science & Business Media, 1999.

Tur39. Alan Mathison Turing. Systems of logic based on ordinals. Proceedings of the London Mathematical
Society, Series 2, 45:161–228, 1939.

Wee20. Hoeteck Wee. Functional encryption for quadratic functions from k-lin, revisited. In Theory of Cryptogra-
phy: 18th International Conference, TCC 2020, Durham, NC, USA, November 16–19, 2020, Proceedings,
Part I 18, pages 210–228. Springer, 2020.

Yao82. Andrew C Yao. Protocols for secure computations. In 23rd annual symposium on foundations of computer
science (sfcs 1982), pages 160–164. IEEE, 1982.

15

	Building Hard Problems by Combining Easy Ones

