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Abstract. Public data can be authenticated by obtaining from a trustworthy website with
TLS. Private data, such as user profile, are usually restricted from public access. If a user
wants to authenticate his private data (e.g., address) provided by a restricted website (e.g.,
user profile page of a utility company website) to a verifier, he cannot simply give his user-
name and password to the verifier. DECO (CCS 2020) provides a solution for liberating
these data without introducing undesirable trust assumption, nor requiring server-side mod-
ification. Their implementation is mainly based on TLS 1.2.
In this paper, we propose an optimized solution for TLS 1.3 websites. We tackle a number
of open problems, including the support of X25519 key exchange in TLS 1.3, the design
of round-optimal three-party key exchange, the architecture of two-party computation of
TLS 1.3 key scheduling, and circuit design optimized for two-party computation. We test
our implementation with real world website and show that our optimization is necessary to
avoid timeout in TLS handshake.

Keywords: TLS1.3, two-party computation, decentralized identification oracle

1 Introduction

Fact-checking over public information can be done by verifying the data from a trustworthy website.
By retrieving a news article from a trusted news website with TLS, one can ensure that the
information comes from a legitimate source and it is not altered. However, it is not easy to obtain
the same security guarantee for data with restricted access. Suppose Alice wants to apply for a
deposit account in an online bank (which does not have any physical branch) and she needs to
provide an address proof. The photo of her letter or the PDF of her utility bill may be digitally
edited. It is also not feasible to ask Alice to provide her username and password of her online utility
account for validating her address. If Alice logins to her online utility account and then forwards
the encrypted HTML page returned by the server to the bank, the bank will not accept this proof.
It is because TLS only provides authenticity and data integrity to the client only, but not towards
any third party. The session key (derived from TLS handshake) used to authenticate the HTML
page is known to Alice and hence she is able to modify it.

In general, user’s private data is often locked up by data owner. There is a strong demand
for providing data provenance over such restricted information. There are a number of existing
solutions with different limitations. Some of them rely on trusted hardware [26], but there are
various attacks on these hardware [15]. Some solutions require the change of the server setup, such
as requiring the server to install TLS extension [18], or changing the application-layer logic [6,25].
These solutions are not compatible with existing TLS websites. In order to provide a generic
solution with backward compatibility, the ideal case is to propose a method that does not require
any modification from the server side nor any hardware requirement.

1.1 Decentralized Oracles for TLS

TLSNotary [1] proposed an architecture that allows a prover to provide irrefutable evidence to a
third party (the verifier) that certain web traffic occurred between himself and a server. As shown
in Fig. 1, the prover and the verifier jointly acts as a client and the process is transparent to the
server. TLSNotary works with the depreciated TLS 1.0 and 1.1. In the key exchange phase, the
prover and the verifier jointly run the RSA key exchange algorithm and obtain a share of key
kP and kV respectively. By using two-party computation (2PC), they can be used to derive the
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Fig. 1: Overview of the system architecture in TLSNotary. || stands for bit-wise concatenation, ⊕
stands for XOR, and {m}ek,mk stands for the encryption of m using the symmetric key ek and mac
key mk.

encryption key ek and the client MAC key mkC for the prover. The prover and the verifier also
get their own shares of the server MAC key mkP and mkV , such that the final server MAC key
mkS = mkP ⊕ mkV . The prover sends his encrypted data request by using ek and mkC . When
the server returns an encrypted response R, the prover commits it to the verifier, and the verifier
returns mkV to the prover. The prover reconstructs the final server MAC key mkS = mkP ⊕mkV
and decrypts the traffic. The prover passes the decrypted traffic to the verifier for validation. Since
the prover does not process the entire mkS before commitment, the verifier can be sure that the
traffic data is authentic.

Zhang et al. [27] formalized the notion of decentralized oracle, which provide authenticity and
privacy assurances to Internet data from any website running standard TLS. They proposed a
decentralized oracle protocol DECO, which used TLSNotary’s high-level architecture with the
adoption of TLS 1.2 for data authenticity, and also provided privacy protection for the decrypted
traffic with the use of zero-knowledge proof, as shown in Fig. 2. Firstly, DECO used a three-party
handshake for Elliptic-Curve Diffie-Hellman Ephemeral (ECDHE) using the curve secp256r1. The
prover and the verifier compute additive shares of the ECDHE session key k (by a protocol called
ECtF). Then, they derive secret-shared session keys (master secret, encryption keys, mac keys) by
securely evaluating the HMAC-SHA256 function by using 2PC-SHA256. In particular, the master
secret and the mac keys are shared while the prover holds the encryption keys. Afterwards, the
prover prepares an encrypted request Q′, runs a 2PC-HMAC with the verifier to compute an
HMAC tag τ with the client mac key, and sends the request Q = Q′||τ to the server. Finally, the
prover receives an encrypted response from the server and commits it to the verifier. The verifier
returns his share of the server mac key. The prover decrypts the response to obtain R and a tag
τ ′. The tag τ ′ is verified with the reconstructed server mac key mkS . Finally, the prover uses a
zero-knowledge proof SNARK [3] to show that the response R is correctly decrypted and verified
by τ ′, and it satisfies some relation. The prover can also selectively open partial information of R.

1.2 Motivation: Compatibility with TLS 1.3

TLS 1.2 was standardized in 2008. Many of the major vulnerabilities in TLS 1.2 is caused by
the use of older cryptographic algorithms that were still supported. For example, the CBC mode
ciphers suffer from the BEAST [9] and Lucky13 [2] attacks. TLS 1.3 was published in 2018. It drops
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Fig. 2: Overview of the system architecture in DECO. ⊕ stands for XOR, and {m}wk,mk stands for
the encryption of m using the symmetric key wk and mac key mk.

support for these vulnerable cryptographic algorithms, simplifies the selection of cipher suites, and
is faster than TLS 1.2. According to a recent survey1, TLS 1.3 becomes the preferred TLS protocol
for 63% of the top one million web servers on the Internet in 2021.

During the TLS handshake stage, the hello messages and the key shares are sent in plaintext,
while the finish messages (including the HMAC value) are encrypted by the derived keys (as shown
in Fig. 1, 2 and 3). Most servers have a specific timeout value on the TLS handshake timeout. The
default value is usually around 10-15 seconds2. It is challenging to finish the 2PC within the time
limit, due to the complexity of the key derivation.

There are some changes in TLS 1.3 that makes it difficult to build a decentralized oracle for
TLS 1.3, namely the changes in TLS 1.3 key scheduling and the X25519 key exchange protocols.

TLS 1.3 Key Scheduling. In TLS 1.2, the DHE key is taken as the input key of the HMAC-
SHA256 function to derive a master secret. The master secret is then used to (1) compute the
HMAC for the client and server finish messages, and (2) derive all encryption keys (called write
keys in the RFC 5246 [7]) and mac keys using one HMAC. Hence, a total of four 2PC-HMAC
is needed. In DECO, a 2PC-HMAC is computed by one invocation of 2PC-SHA256 and it takes
around 2.5 seconds for the WAN setting [27]. Hence, the 2PC-HMAC part already uses 10 seconds
in the TLS 1.2 handshake.

In TLS 1.3, the key scheduling is much more complicated (as shown in Fig. 5) than the TLS 1.2
version (Fig. 6). Starting from the DHE key, it requires five HMAC-SHA256 (used in HKDF.Extract
and HKDF.Expand) to generate the handshake keys tkchs and tkshs, and an extra six HMAC-SHA256
to generate the application encryption keys tkcapp and tksapp. Hence, the 2PC of the TLS 1.3 key
scheduling is much more complicated and time consuming.

X25519 Key Exchange. TLS 1.2 supports a number of different elliptic curves for ECDHE.
TLS 1.3 simplified that to five curves, in which X25519 and X448 (ECDHE over Curve25519
and Curve448) are newly added to the standard. They provide better protection against side-
channel attacks, and have clear explanation on the choice of their parameters. It is not easy to
integrate DECO with these new curves for two reasons. Firstly, DECO [27] was designed to support

1https://www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report
2E.g., https://www.ibm.com/docs/en/zos/2.5.0?topic=considerations-handshake-timer
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Fig. 3: Modified system architecture for TLS 1.3 (without selective opening). The symbol {m}k
stands for the symmetric key authenticated encryption of m using the key k.

ECDHE over the elliptic curve of the form Y 2 = X3 + a1X + a0 mod p (e.g., secp256r1, secp384r1
and secp521r1 in TLS 1.3). Their ECtF does not support the Montgomery curve of the form
Y 2 = X3 + a2X

2 + a1X mod p (e.g., Curve25519 and Curve448 in TLS 1.3), which is also widely
used in practice. Secondly, the API for X25519 and X448 defined in RFC 7748 only performs a
masked scalar multiplication and returns the x-coordinate. Only the x-coordinate is sent during the
TLS 1.3 handshake for X25519 and X448. Hence, existing TLS libraries may not have the API for
accessing the y-coordinate, computing point addition and scalar multiplication, which are required
for running the three-party handshake protocol in DECO. Rewriting the underlying elliptic curve
library can be error-prone.

1.3 Our Contributions

In this work, we construct a practical decentralized oracle for TLS 1.3. In particular, we work on
improving the three-party handshake protocol, and design our own 2PC key scheduling for TLS
1.3.

For three-party handshake using ECDHE, we first modify the ECtF protocol to support the
Curve25519 and Curve448. The original ECtF protocol in DECO has 8 rounds of communication
between the prover and the verifier. The total round-trip time of ECtF (4× 67ms = 268ms in [27])
already contributes to 9.4% of the online running time of the handshake in DECO. We propose a
round-optimal ECtF protocol to reduce the total round complexity from 8 to 3. We achieve this
by designing our dedicated multiplicative-to-additive (MtA) protocol, instead of using the existing
MtA protocol as in DECO [27]. Details can be found in section 4.1.

During our implementation, we solved the API problem for running the ECtF protocol with
X25519. In particular, we make use of the API for EdDSA in TLS 1.3. We observe that the twisted
Edward curve for Ed25519 is equivalent to the Curve25519. Hence, we need to do a coordinate
conversion and use the elliptic curve arithmetic API provided in the Ed25519 library. Some other
API techniques can be found in section 4.2.

In TLS 1.3, the two-party computation on key scheduling becomes the bottleneck of the entire
protocol. In [27], it is estimated that the 2PC circuit involves roughly 30 invocations of 2PC-
SHA256 (around 75.6s using the running time over WAN in [27]). In this paper, we investigate
how to efficiently design two different types of 2PC-HMAC: shared message and shared key ( [27]
only works on 2PC-HMAC with shared message for TLS 1.2). We also design our own optimized
2PC for modular addition over the finite field of Curve25519. We saved around 50% of AND gates
as compared to the traditional method. Details can be found in section 5.
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We relax the privacy requirement from DECO, so that we only consider the privacy of the
prover’s input only. As a result, a number of invocations to 2PC-HMAC and 2PC-AES are saved.

Finally, we apply our techniques and build our solution for decentralized oracles over TLS 1.3
as Decentralized IDentification Oracles (DIDO). We demonstrate that DIDO can access restricted
information from some utility webpages within 10 seconds.

2 Background

2.1 TLS 1.3

Transportation Layer Security (TLS) provides secure communication between web browsers and
servers. Symmetric key encryption is used to encrypt the data transmitted. The keys are uniquely
generated for each connection and are based on a shared secret negotiated at the beginning of the
session, also known as a TLS handshake.

TLS 1.3 protocol includes a lot of security and performance improvements as compared to TLS
1.2. Two round-trips have been needed to complete the TLS 1.2 handshake. With TLS 1.3, it
requires only one round-trip. TLS 1.3 removes obsolete and insecure features from TLS 1.2, such
as SHA-1, RC4, DES, 3DES, AES-CBC, MD5, etc.

Key Exchange. TLS 1.3 supports Diffie-Hellman Ephemeral key exchange over finite field (DHE)
and elliptic curve (ECDHE). Most servers support ECDHE because of its efficiency. TLS 1.3
currently supports ECDHE over five elliptic curves: secp256r1, secp384r1, secp521r1, Curve25519,
Curve448.

TLS 1.3 defines a group generator G for each curve. In ECDHE, the client picks a random
point xG and the server picks a random point yG. The secret generated after the key exchange is
the x-coordinate of xyG.

2.2 Two-Party Computation

Two-Party Computation (2PC) allows two parties to jointly compute an arbitrary function on
their inputs without sharing the value of their inputs with the other party.

There are two major types of 2PC protocols. Garbled-circuit protocols based on Yao [24] can be
used for 2PC over symmetric key cryptosystem such as AES or SHA256. For arithmetic operations,
one can design a specific 2PC protocol to achieve better efficiency. For example, the Multiplicative-
to-additive (MtA) [10] allows Alice (holding a secret α) and Bob (holding a secret β) to obtains
shares x and y respectively, such that αβ = x+ y.

2.3 Zero-knowledge Proof

Zero-knowledge proof is a protocol allowing a prover P to convince a verifier V that a statement
is true without disclosing any other information. We mainly consider zero-knowledge proof for NP
language here. Denote R a polynomial time decidable binary relation and LR the NP language:
LR = {x|∃w s.t. (x,w) ∈ R} where w is the witness for statement x. In this paper, we consider the
classical 3-move Σ-protocol, including commit, challenge and response, between P and V . This
protocol satisfies the following three properties:

1. Completeness: With auxiliary input w, the prover can convince the verifier with overwhelming
probability if x ∈ LR.

2. Special soundness: Given two given transcripts (a, c, z) and (a, c′, z′) for statement x by
rewinding, and keep the same commit a for both transcripts, and the challenge c and the
response z are changed. With this setting, there exists a PPT extractor which can compute
witness w s.t. (x,w) ∈ R in polynomial time with non-negligible probability.

3. Zero-Knowledge: For language LR, for every PPT verifier V ∗, there exists PPT simulator S
s.t. the two ensembles {V iewP

V (x)}x∈LR
and S(x)x∈LR

are identical.

Additionally, we note that Σ protocol can be converted to non-interactive zero-knowledge
(NIZK) by using Fiat-Shamir transformation in the random oracle model.
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3 Data Provenance with TLS 1.3

DECO [27] allows users to prove that a piece of data accessed via TLS came from a particular web-
site. Their framework works for both TLS 1.2 and 1.3. However, a straightforward implementation
of [27] in TLS 1.3 cannot access a real-world TLS 1.3 website before time-out. In this paper, we use
the DECO framework as the basic system architecture, and propose optimization for supporting
the real-world TLS 1.3 website.

DECO [27] also supports (optionally) proving statements about the TLS-encrypted data in
zero-knowledge. The similar technique can also be applied to our scheme. We will not further
discuss the selective opening since it is out of the scope of the paper. We consider the simple case
that the verifier obtains the entire message sent from the server. As a result, we modify the system
requirements and security definitions of decentralized oracles in [27] for this relaxed definition.

3.1 Notations and Definitions

We denote by P the prover, V the verifier and S the TLS server. We use the ideal protocol
execution [4] and model the essential properties (with relaxed privacy) using a functionality F in
Fig. 4. Messages are tagged with a unique session identifier sid to separate parallel execution of F .
F takes θs for P as private input, and take a query template Query and a statement Stmt for V

as input. For example, θs = (username, password) is the private input of P, and Q = Query(θs) is
the data request sent to the gas company user account webpage using the username and password in
θs. Denote the honest response from the server by R = S(Q). Finally, V obtains some information
Stmt(R). For example, if V is allowed to obtain the complete response from S, the Stmt is an
identity function; if V only wants to learn partial information (e.g., the 8-th to the 10-th byte of
R), then Stmt(R) ⊂ R.

Input. The prover P takes θs as a private input. The verifier V holds a query template Query and a
statement Stmt. The server S has no input.

Functionality F .

– At any moment during the session, for a message (sid, receiver,m) in which receiver ∈ {P,V,S} is
received from A, forward (sid,m) to receiver and forward any responses to A.

– Upon receiving (sid,Query, Stmt) as input from V, send (sid,Query, Stmt) to P. Wait for P reply with
message “ok” and θs.

– Compute Q = Query(θs) and send (sid, Q) to S, then record S’s response (sid, R). Send (sid, |Q|, |R|)
to A.

– Send (sid, Q) to P and (sid, Stmt(R),S) to V.

Fig. 4: The functionality F of decentralized oracles.

We define the decentralizaed oracles as the protocol that does not require any server-side
collaboration.

Definition 1. A decentralized oracle protocol for TLS is a three party protocol P = (PS ,PP ,PV)
such that P realizes F and PS is the standard TLS with an application-layer protocol.

Adversarial Model. We consider a static network adversary A. There are two possible models
for corrupting P or V.

– Semi-honest: P or V may reveal their states to A, but it still follows the protocol.
– Malicious: P or V may deviate arbitrarily from the protocol and reveal their states to A.

Security Properties. The security holds when either P or V is corrupted. There are two security
guarantees for the functionality F in the malicious adversarial model.
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– Prover-integrity: An adversarial P cannot cause S to accept invalid queries, or incorrectly
answer to valid ones, nor she forges content provenance. If V outputs (Stmt(R),S) with the
input (Query,Stmt), we must have R = S(Q) after P sending Q = Query(θs) to S in a TLS
session.

– Privacy: An adversarial V only learns public information (Query,S) and obtains Stmt(R).

We do not consider verifier integrity as in [27]. It is because the prover who has the private
input θs can always make a query to the server by himself and obtains R = S(Q). Here, we assume
that the server will not reply a randomized response. Hence, we do not need verifier-integrity under
this assumption.

In this paper, we can achieve security against malicious adversary if the underlying building
blocks are also secure against malicious adversary. However due to the performance issue (to be dis-
cussed in the next section), we can only select building blocks secure against semi-honest adversary
in our implementation. Hence, the final implementation is secure against semi-honest adversary in
this case. If we only consider semi-honest adversary, prover-integrity follows immediately since the
prover will not deviate from the protocol.

3.2 Estimating the Performance of DECO with TLS 1.3

DECO [27] mainly implemented building blocks for TLS 1.2 and obtained some online and offline
running time in the WAN setting. The source code of DECO is not publicly available. We perform
a rough estimation on implementing DECO with TLS 1.3 and see if it will trigger a timeout.

Running time of ECtF. [27] only provided the running time of 2.85s (online) and 10.29s (offline)
for running the three-party handshake, which mainly consists of an iteration of ECtF and also a
2PC-SHA256 for deriving the master secret. The running time of the 2PC-SHA256 is similar to
the running time of 2PC-HMAC in [27], which is about 2.52s (online) and 3.19s (offline). It implies
that the running time of ECtF is about 0.33s (online) and 7.1s (offline).

Running time of TLS 1.3 key scheduling. As estimated in [27], the 2PC circuit for TLS
1.3 key scheduling roughly takes 30 invocations of 2PC-SHA256. It takes 75.6s (online) and 95.7s
(offline).

Running time of query execution. As shown in [27], the running time of 2PC-AES-GCM for
256 bytes data is 1.21s (online) and 12.01s (offline).

We can see the estimated running time in the WAN setting is 77.14s (online) and 114.81s
(offline), even without doing any selective opening in [27]. It is very likely that it will trigger a
timeout and hence it is not practical.

3.3 Overview of Our Design

There is a huge gap between the estimated running time of 77.14s and our target running time
of 10s. The most significant part (98%) of the running time comes from the large number of
2PC-SHA256 in TLS 1.3 key-scheduling.

The TLS 1.3 key scheduling is illustrated in Fig. 2 of [8]. In our Fig. 5, we extend it by including
the final session keys used for encrypting the application traffic (tkcapp for client’s key and tksapp
for server’s key), which are derived from CATS and SATS. Assume that we do not have pre-shared
key (PSK) for the initial connection. We can treat the keys derived only from PSK as constant.
Hence we can simplify the key scheduling by considering the key dES as a constant number. The
other input DHE is the output of the ECtF protocol, which is shared by the prover and the verifier.
As estimated in DECO [27], each 2PC computation of HKDF.Extract and HKDF.Expand requires
two or three invocations of 2PC-SHA256 (depending on which input is shared, refer to section 5.1
and 5.2 for details). Since there are 15 invocations of HKDF.Extract and HKDF.Expand, it sums up
to at least 44 invocations of 2PC-SHA256. To illustrate the complexity of TLS 1.3 key scheduling,
the key derivation of TLS 1.2 is shown in Fig. 6 using similar notation.

Design 1 for Selective Opening. We first design a 2PC key scheduling to minimize the number
of invocations of 2PC-SHA256. In order to support selective opening in [27], the server’s application
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Fig. 5: Design 1 for 2PC key scheduling for TLS 1.3. The definition of strings Labelj and Hi in
TLS 1.3 can be found in [8].

Fig. 6: 2PC key derivation for TLS 1.2.

key tksapp should be shared between the prover and the verifier. As a result, the secrets between DHE
and tksapp should be shared and computed by 2PC. On the other hand, the secrets used to derive
the handshake keys (CHTS,SHTS) and the client’s application key (CATS) can be obtained by the
prover. As shown in the purple area in Fig. 5, we save five 2PC computations of HKDF.Expand,
which is equivalent to 15 invocations of 2PC-SHA256.

Design 2 without Selective Opening. Although our first design already reduces 1/3 running
time in key scheduling, we still want to further optimize in TLS 1.3. Assume that selective opening
is not needed in the application. Note that SNARK is only needed for achieving selective opening.
Therefore, the implementation of SNARK is out of the scope of this design. Recall that the server’s
application key tksapp is used to decrypt and to authenticate the data sent from the server. Hence,
it should not be fully revealed to the prover during key scheduling. In order to reduce the number
of 2PC computation, we set tksapp and SATS to be completely revealed to the verifier.

Since the client’s application key tkcapp is used to encrypt some secret information of the prover
(e.g., password or cookie file), tkcapp and CATS should not be known to the verifier. It implies that
the key MS should be shared between the prover and the verifier. The overall design for the 2PC
key scheduling is shown in Fig. 7.

This design has three improvements in terms of running time, when selective opening is not
needed:
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Fig. 7: Design 2 for 2PC key scheduling for TLS 1.3 (without selective opening).

1. Reduce three invocations of 2PC-SHA256 in key scheduling, as compared to our first design in
Fig. 5.

2. Remove the 2PC-AES-GCM for query execution. The verifier can decrypt the HTML page
completely by himself.

3. Save the running time for selective opening.

In the rest of the paper, we will implement our second design for efficiency reason. Note
that our first design can still be used if the underlying 2PC-SHA256 and 2PC-AES-GCM is fast
enough for completing the TLS 1.3 connection. However, our DIDO is designed in a semi-honest
setting due to the performance bottleneck of 2PC protocols. Please refer to Appendix B for further
discussion about the performance bottleneck among the existing 2PC protocols.

Based on our design 2 and the TLS 1.3 protocol, the overall system architecture for our scheme
is modified, as shown in Fig. 3.

4 Three-party ECDHE

In DECO [27], the prover and the verifier jointly act as the client and interact with the server. Their
three-party handshake (3P-HS) involves a ECDHE key exchange, the ClientHello and ServerHello
messages in TLS 1.2, and the key derivation function. In this paper, we will separate them and
analyse each protocol individually.

The three-party ECDHE (3P-DH) runs as follows.

1. The verifier picks a random xv and sends xvG to the prover. The verifier computes a zero-
knowledge proof πv of xv with respect to xvG.

2. If πv passes the verification, the prover picks a random xp and sends xpG+ xvG = (xp + xv)G
to the server following the TLS 1.3 ECDHE protocol.

3. The server replies with yG. The prover forwards it to the verifier. The prover also sends to the
verifier xpG and a zero-knowledge proof πp of xp with respect to xpG. The prover computes
xpyG and the verifier computes xvyG if πp passes the verification.

4. The prover and the verifier have to perform a two-party computation for the generated session
key, i.e., sharing the x-coordinate of (xp+xv)yG = xpyG+xvyG. This two-party computation
is called ECtF: converting shares in EC(Fp) to shares in Fp.

DECO [27] used the secret-sharing-based Multiplicative-to-Additive (MtA) protocols in [10]
to construct ECtF. There are two main issues for ECtF in DECO. Firstly, DECO is expensive in
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terms of round complexity. DECO used 8 rounds of communication, which includes 6 rounds for
using the 3 MtA protocols in ECtF. The online running time of DECO’s handshake protocol in the
LAN and WAN is 368.5ms and 2850ms respectively [27]. The difference is mainly caused by the
round-trip time 67ms between two nodes in their WAN setting. In other words, the 8 rounds of
communication in ECtF already used 9.4% (268ms) of the running time. The second issue is that
DECO only considers ECDHE on the elliptic curve of the form Y 2 = X3 + a1X + a0 mod p (e.g.,
secp256r1, secp384r1 and secp521r1 in TLS 1.3). Their ECtF does not support the Montgomery
curve of the form Y 2 = X3 + a2X

2 + a1X mod p (e.g., Curve25519 and Curve448 in TLS 1.3),
which is also widely used in practice.

4.1 Round-optimal ECtF+ Protocol for All TLS 1.3 Curves

In this paper, we propose an improved version of the ECtF protocol, which supports all elliptic
curves in the TLS 1.3 standard. Instead of using the MtA protocols in [10] in a black-box manner,
we design our two-party computation protocol from scratch and construct a round-optimal ECtF+
protocol. It only has 3 rounds of communication (even ECDHE has 2 rounds: Alice sends an
ephemeral key to Bob and Bob sends an ephemeral key to Alice). In addition, it supports all
elliptic curves in the TLS 1.3 standard.

Point Addition on Elliptic Curve. Consider an elliptic curve of the general form:

v2 = u3 + a2 · u2 + a1 · u+ a0 mod p.

For Curve25519, a2 = 486662, a1 = 1, a0 = 0 and p = 2255 − 19. For secp256r1, a2 = 0, a1 = −3,
a0 = 410583637251521 42129326129780047268409114441015993725554835256 314039467401291 and
p = 2256 − 2224 + 2192 + 296 − 1.

Consider that the prover P and the verifier V have ECC points P1 = (u1, v1) and P2 = (u2, v2)
respectively. They want to jointly compute K = P1 + P2 and they get k1 and k2 such that
k1 + k2 = uk mod p and K = (uk, vk). Recall that by the elliptic curve computation, we have
uk = λ2 − a2 − u1 − u2, where λ = (v2 − v1)/(u2 − u1).

Our Scheme. The intuition of our ECtF+ protocol is to run two specially designed MtA protocols
in parallel. Suppose that the prover P chooses a randomness r1 and the verifier V chooses a
randomness r2. P and V run the MtA for δ = (r1 + r2)(u1 − u2) and ω = (r1 + r2)(v1 − v2) in
parallel. Hence they can obtain λ = δ/ω and calculate uk = λ2 − a2 − u1 − u2 accordingly.

Our ECtF+ protocol is as follows.

[Offline] Suppose that (KGen,Enc,Dec) is an additive homomorphic encryption scheme. P runs
(sk, pk)← KGen() and sends pk to the verifier V .

[Online] The prover P and the verifier V has a private input (u1, v1, sk) and (u2, v2) respectively.

1. P picks a random r1 ∈ Zp and computes:

Cu := Encpk(u1), Cv := Encpk(v1), Cr := Encpk(r1), Crv := Encpk(r1v1).

P sends (Cu, Cv, Cr, Crv) to V .
2. V picks some random r2, β2, γ2, α2 ∈R Zp and computes:

Cβ := Cr2
u · C−u2

r · Encpk(−β2) = Encpk(u1r2 − u2r1 − β2),

Cγ := Cr2
v · C−v2

r · Encpk(−γ2) = Encpk(v1r2 − v2r1 − γ2),

δ2 := β2 − r2u2 mod p,

ω2 := γ2 − r2v2 mod p,

Cα := (Cγ · Crv)
ω2 · Encpk(−α2).

V sends (Cβ , Cγ , δ2, Cα) to P .
3. P runs β1 := Decsk(Cβ), such that β1 + β2 = u1r2 − u2r1. P first sends δ1 := β1 + r1x1 mod p

to V .
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P locally runs γ1 := Decsk(Cγ), such that γ1 + γ2 = v1r2 − v2r1. P computes:

δ := δ1 + δ2 = u1r2 − u2r1 + r1u1 − r2u2 = (r1 + r2)(u1 − u2) mod p,

ω1 := γ1 + r1v1 mod p,

α1 := Decsk(Cα) = (γ1 + r1v1)ω2 − α2,

s1 = (ω2
1 + 2α1)δ

−2 − a2 − u1 mod p.

P outputs s1.
4. V computes:

δ := δ1 + δ2 mod p,

s2 := (ω2
2 + 2α2)δ

−2 − u2 mod p.

V outputs s2.

Correctness. We can check that s1 and s2 are the additive shares of uk.

ω1 + ω2 = (γ1 + γ2 + r1v1 − r2v2)

= (v1r2 − v2r1 + r1v1 − r2v2)

= (r1 + r2)(v1 − v2)

= δ(v1 − v2)/(u1 − u2) = δλ.

α1 + α2 = (γ1 + r1v1)ω2 = ω1ω2.

s1 + s2 = (ω2
1 + 2α1)δ

−2 − a2 − u1 + (ω2
2 + 2α2)δ

−2 − u2

= (ω2
1 + 2(α1 + α2) + ω2

2)δ
−2 − a2 − u1 − u2

= (ω1 + ω2)
2δ−2 − a2 − u1 − u2

= λ2 − a2 − u1 − u2.

Simulation. If the adversary corrupts P , then V ’s message can be simulated without knowledge
of its input (u2, v2). Indeed a simulator can just choose a random (u′

2, v
′
2) ∈ Z2

p and act as V . The
distribution of the message decrypted by P in this simulation is statistically close to the message
decrypted when V uses the real (u2, v2), because the “noise” β2, γ2, α2 are uniformly distributed
in Zp.

If the adversary corrupts V , then P ’s message can be simulated without knowledge of its input
(u1, v1, sk). Indeed a simulator can just choose a random a (u′

1, v
′
1) ∈ Z2

p and act as Alice. In this
case the view of V is computationally indistinguishable from the real one due to the semantic
security of the encryption scheme and the random choice of r1 in Zp.

Security in the Malicious Setting. The protocol mentioned above is secure in the semi-honest
setting. If we want to make it secure in the malicious setting, the online protocol has to be modified
as follows.

1. P additionally outputs a non-interactive zero-knowledge (NIZK) proof πP for (u1, v1, r1) with
respect to (Cu, Cv, Cr, Crv).

2. V verifies if πP is valid. V additionally outputs a NIZK proof πV for (r2, β2, γ2, α2) with respect
to (Cβ , Cγ , Cα).

3. P verifies if πV is valid.

A detailed summary of NIZK proofs used in the MtA protocol was given in [23]. If the underlying
encryption scheme is the Paillier encryption [16], then the prover P needs to provide an additional
NIZK proof of the well-formedness of the Paillier public key N in the offline phase. In the online
phase, πV can be omitted by using the Paillier-EC assumption [10]. For each Paillier ciphertext in
step 1, the corresponding NIZK proof takes 6 Paillier exponentiations and sends extra 6 logN bits.
We emphasize that in this paper, we will not adopt the malicious setting of ECtF+ since our DIDO is
designed in a semi-honest setting due to the performance bottleneck of 2PC protocols. Therefore,
we further relax other parts of DIDO to the semi-honest model for optimization, including the
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Table 1: Online running time of ECtF(+) on different elliptic curves in Paillier and CL encryption,
in the LAN setting.

Paillier CL

Curves ECtF [27] Our ECtF+ ECtF [27] Our ECtF+

secp256r1 0.350s 0.308s 3.012s 2.544s

Curve25519 × (0.363s) 0.317s × (2.971s) 2.660s

Table 2: Online running time of ECtF(+) on different elliptic curves in Paillier encryption, in the
WAN setting.

Paillier

Curves ECtF [27] Our ECtF+

secp256r1 0.423s 0.386s

Curve25519 × (0.428s) 0.386s

removal of zero-knowledge proofs for MtA. Please refer to Appendix B for further discussion about
the performance bottleneck among the existing 2PC protocols.

ECtF+ Implementation. We implement DECO’s ECtF and our ECtF+ and run them in both the
LAN and the WAN setting for direct comparison. We test the schemes by using both the Paillier
encryption and the CL encryption [5]. We use the rust-paillier library for the Paillier encryption
and the class library for the CL encryption. We use both the curve secp256r1 and Curve25519
in the implementation. In the LAN setting, the prover and the verifier are run in MacBook Pro
(resp. 3.1GHz dual-core Intel Core i5 and 1.4GHz quad-core Intel Core i7). They are put under
the same WiFi. For the online part, the prover’s running time is similar to the verifier’s running
time. We take the maximum running time of the prover and the verifier for simplicity. The results
are shown in Table 1. We also modify ECtF to support Curve25519 for comparison (the running
time is shown in brackets in the tables).

In the WAN setting, the prover and the verifier are run in two Azure virtual machines with
2.4GHz Intel Xeon CPU. They are in two different locations in a country. The round-trip time in
the WAN setting is 58 ms. Since we observed that the Paillier version is 10 times more efficient
than the CL version. Hence we only proceed to the Paillier version in the WAN setting. The results
are shown in Table 2.

Our ECtF+ outperforms DECO’s ECtF in three ways. Firstly, our ECtF+ is around 7.9% faster
than DECO’s ECtF if it is run in the LAN setting, as shown in Table 1. Secondly, our scheme has
only 3 rounds of communication while [27] has 8 rounds. Our ECtF+ is around 13.1% faster than
DECO’s ECtF if it is run in the WAN setting, as shown in Table 2. Thirdly, our ECtF+ supports
the efficient operation over Curve25519. We choose to use X25519 for the TLS handshake protocol
for the rest of the paper.

4.2 Three-party ECDHE with X25519

In TLS 1.3 ECDHE [17], the elliptic curve points are sent differently for different curves. For the
curves secp256r1, secp384r1, and secp521r1, the binary representation of the entire (x, y)-coordinate
is sent. However, only the u-coordinate on the Montgomery curve is sent for X25519 and x448 as
shown in RFC 7748 [14]. In TLS libraries that support X25519 and X448, the API usually outputs
the u-coordinate for ECDHE computation only. It is not compatible with the ECtF protocol, since
we need the (u, v)-coordinates of xpyG and xvyG for the prover and the verifier respectively as the
input to ECtF.

The X25519 standard is defined in RFC 7748. They define a function X25519(k, u), where k
is a 32 bytes string and u is a u-coordinate. The function first decodes k as an integer scalar,
sets the three least significant bits of the first byte and the most significant bit of the last to
zero, sets the second most significant bit of the last byte to 1 and, finally, decodes as little-endian.
The scalar multiplication can be computed by the decoded number and u, using the Montgomery
formula (a pseudocode is given in RFC 7748). If Alice and Bob choose random strings ka and kb
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respectively, and u∗ is the base point of Curve25519, their session key is X25519(ka, X25519(kb, u∗))
= X25519(kb, X25519(ka, u∗)). The case of X448 is almost the same and we omit it for simplicity.

The integration of the three-party handshake (3P-HS) protocol in [27] with X25519 is not
straightforward. There are a few reasons:

1. The function X25519(·, ·) defined in RFC 7748 only returns the u-coordinate. With only the
u-coordinate, the prover cannot calculate point addition (Step 2 of 3P-DH), and also cannot
run the ECtF protocol (Step 4). We need to have the (u, v)-coordinate.

2. There is a lack of Curve25519 point addition API. The only compulsory API is X25519(·, ·) as
defined in RFC 7748. Some TLS libraries do not provide Curve25519 point addition API.

3. The scalar k is masked before use.

In order to support X25519 and X448, one needs to find a TLS library without the above
obstacles, or develop his own library (which is time consuming and error-prone). In this paper, we
propose an alternative approach.

Workaround for v-coordinate. Recall that for Curve25519, we have v2 = u3 + 486662u2 + u
mod p. Given the u-coordinate, we can calculate v by taking the square root modulo p, using the
Tonelli-Shanks algorithm. However, there are two possible values: ±v mod p. We will discuss how
to handle this problem later.

Workaround for point addition: API from EdDSA. We observe that EdDSA signatures
(Ed25519 and Ed448) are also included in TLS 1.3. The twisted Edwards curve −x2+y2 = 1+dx2y2

mod p (for some constant d) is equivalent to the Montgomery curve. API and pseudocode for point
addition over the twisted Edwards curve are provided in RFC 8032 [11]. Once we have a (u, v)-
coordinate in the Montgomery curve, we convert it to the coordinates in the twisted Edwards
curve. Then we call the point addition function over the twisted Edwards curve, and convert it
back to the (u, v)-coordinate in the Montgomery curve. Hence we can handle point addition using
the existing TLS 1.3 API for EdDSA.

In our implementation, the Rustls library uses the ring library [19] for point addition over
the twisted Edwards curve. The points are stored in a projective coordinate (X,Y, Z) satisfying
x = X/Z, y = Y/Z. Given a (u, v)-coordinate on Curve25519, it is converted to a projective
coordinate (X,Y, 1), where:

X =
√
−486664 · u

v
, Y =

u− 1

u+ 1
.

After working on point addition over the (X,Y, Z)-coordinate, we eventually convert it back to the
(u, v)-coordinate by:

(u, v) = (
Z + Y

Z − Y
,
√
−486664 · uZ

X
).

Workaround for ±v and masked k. Assume that the u-coordinate of the generator G is uG. Ob-
serve that in step 1 of 3P-HS with X25519, the verifier picks a random kv and runs X25519(kv, uG).
The input kv is masked to xv, and then the u-coordinate of xvG is returned and is sent to the
prover. In step 2, the prover computes the v-coordinate of either xvG or −xvG because there are
two possible values. The u-coordinate of (xp ± xv)G is sent to the server. In step 3, the prover re-
ceives a u-coordinate us from the server. The prover uses X25519(kp, us) to obtain the u-coordinate
and calculates the v-coordinate of xpyG. Similarly, the verifier computes xvyG. In step 4, the ECtF
protocol outputs the shares of the u-coordinate of (xp + xv)yG or (xp − xv)yG. It is the same as
the session key computed by the server with 50% probability.

We propose a solution for this problem. After running X25519(kv, uG), we can run the masking
function on kv to obtain xv, use the scalar multiplication API from EdDSA to calculate xvG,
convert back to the Montgomery curve, and check whether the v-coordinate is negative. If so,
change xv to −xv (to flip the sign of the v-coordinate) and find the corresponding masked k′v. It
can ensure that point addition is always performed in step 2. However, this k′v may not exist since
it has to follow a specific masking format. Hence, we need to pick another kv until the v-coordinate
is positive.
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5 Design for 2PC Key Scheduling

In this section, we will discuss how to implement the 2PC key scheduling design in Fig. 3.

2PC Key Scheduling for TLS 1.3. Recall that after running ECtF+, the prover and the verifier
have the additive shares of the ECDHE session key DHE. The goal of our key scheduling is to
ensure that the prover cannot obtain the server application traffic secret SATS, which is used to
authenticate the information returned by the server. On the other hand, we also do not want
the verifier to obtain the client application traffic secret CATS, since it is used to encrypt the
information sent from the prover. As a result, we need to set MS as the shared secret between the
prover and the verifier according to Fig. 3. It further implies that dHS and HS are both shared
secrets. For the generated session keys, it is safe to give the client handshake key tkchs and the
server handshake key tkshs to the prover. Hence, we need to use 2PC computation for the purple
box in 3.

In order to complete the 2PC key scheduling with shared ECDHE session key DHE as input,
we need to implement 2PC for the functions HKDF.Extract and HKDF.Expand. In TLS 1.3, we have

HKDF.Extract(salt, k) = HMAC(salt, k),

HKDF.Expand(k, Labelj ||Hi) = HMAC(k, Labelj ||Hi).

The definition of the constant Labelj and Hi can be found in [8]. Recall the definition of HMAC
function for a key K and a message M (when |K| matches the key length of the hash function H)

HMAC(K,M) = H((K ⊕ opad)||H((K ⊕ ipad)||M)),

where opad is 512 bits of repeated bytes 0x5c, ipad is 512 bits of repeated bytes 0x36. From Fig.
3, we need to use both 2PC-HMAC for shared message M and 2PC-HMAC for shared key K.

5.1 2PC-HMAC for Shared Message

We only need to use 2PC-HMAC for shared message once, where the message M = DHE is shared
by the prover and the verifier and the key K = dES is a constant. We use SHA-256 as the hash
function H in our implementation, which is supported by TLS 1.3. If we break down HMAC by the
SHA-256 compression function SHA256(·, ·), we can see that the computation of HMAC(dES,DHE)
is as follows.

1. Compute the chaining state cs1 = SHA256(IV , dES ⊕ ipad), where IV is the initialization
vector for SHA-256.

2. Compute the chaining state cs2 = SHA256(IV , dES⊕ opad).
3. Compute the 256 bit padding pad3. Compute h1 = SHA256(cs1,DHE||pad).
4. Output HS = SHA256(cs2, h1||pad).

Since dES is a constant (when there is no pre-shared key), we can precompute cs1 and cs2. Recall
that the prover has a share up and the verifier has a share uv such that up + ux = DHE mod p. To
compute 2PC-HMAC(dES,DHE), we need to run as follows.

1. The prover and the verifier run a 2PC-Modular-Addition with private input up and uv respec-
tively. They will obtain a XOR share of DHE.

2. The prover and the verifier run a 2PC-SHA256(cs1,DHE||pad) with the XOR shares of DHE
as input. They will obtain a XOR share of h1.

3. The prover and the verifier run a 2PC-SHA256(cs2, h1||pad) with the XOR shares of h1 as
input. They will obtain a XOR share of HS.

We use the efficient implementation of 2PC-SHA256 in the emp-sh2pc library [20] 4, which uses
garbled circuits and oblivious transfer. Hence, we only need to design an efficient 2PC-Modular-
Addition protocol.

3According to the padding rules in HMAC, the first bit is one, followed by 191 zeros, and the last 64
bits is the binary of 768.

4https://github.com/emp-toolkit/emp-sh2pc
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Fig. 8: Our design for 2PC-HMAC(dES,DHE) with shared DHE.

2PC-Modular-Addition. There are a number of circuits designed for 2PC addition of 64 bits.
To the best of the authors’ knowledge, there are no modular addition circuits available for the 2PC
library emp we used. Hence we design our own modular addition circuit for 2PC.

Adder. It is well-known to build a half adder with one XOR gate and one AND gate. A full adder
can be constructed from two XOR gates, two AND gates and one OR gate (In Fig. 9, the last
OR gate in the full adder can be replaced by one XOR gate without altering the resulting logic).
To build a k-bit ripple adder with carry, we need k − 1 full adder and 1 half adder in the least
significant bit. There are some adders (e.g., Kogge-Stone, Han-Carlson, Brent-Kung) designed to
reduce the depth of the circuit from k to O(log k), at a cost of using more gates.

Fig. 9: Traditional half adder, full adder and “if-else” logic circuit.

The 2PC usually works for circuit with XOR, AND and INV gates. The performance of 2PC is
mainly dominated by the number of AND gates in the circuit, instead of the depth of the circuit.
In order to optimize the adder circuit, Goldfeder designed a full adder circuit with 1 AND gate
and 4 XOR gate5 (Fig. 10).

Our design. The design of our 2PC-Modular-Addition circuit for Curve25519 is as follows.

1. We first build a 255 bits ripple adder circuit with 254 Goldfeder’s full adder and 1 half adder
in the least significant bit.

2. If the final carry bit c255 is 1, add 19 to the 255-bit output, since X = X–(2255–19) mod
2255–19. Else, simply output X.

To implement the second step, we need a circuit to generate the constant term 19 and the logic
gates for “if-else” logic. We observe that b XOR b = 0 for any b = 0/1. Hence the constant 0 can
be generated by one XOR gate. The constant 1 can be obtained by applying an INV gate to 0. As
a result, we can obtain 19 in binary (Fig. 10).

5http://stevengoldfeder.com/projects/circuits/sha2circuit.html
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Fig. 10: Our circuit design.

Table 3: The number of logic gates used for a modular addition circuit (mod 2255 − 19).

# AND # XOR # INV

Traditional 1528 1783 2

This paper 765 2546 2

Logic control. The “if-else” logic can be implemented as follows. Assume that si is the i-th bit of
a 255 bit number S, and s∗i is the i-th bit of a 255 bit number S + 19. As shown in Fig. 9, the
traditional “if-else” logic can be implemented by:

ŝi = (c255 AND s∗i ) XOR ((INV c255) AND si).

This circuit runs for 255 times and the final output is (ŝ255, . . . , ŝ1). However, this “if-else” logic
circuit is not optimized for 2PC with the use of two AND gates. We give a new design by using
one AND gate, one INV gate and two XOR gates. It is illustrated in Fig. 10.

Result. As compared with the traditional approach (simple full adder, half adder and logic control)
in Table 3, our current approach saves about half of the AND gates. As a result, the efficiency of
our 2PC-Modular-Addition can be improved by about 50%, by using the free XOR technique in
2PC [13].

Remark that our circuit determines the modulus 2255 − 19 with only the carry c255. With this
operation, it leaves 2255 − 18 to 2255 − 1 which we treat them as the case “no need to take mod”.
This leads to a negligible probability of error.

5.2 2PC-HMAC for Shared Key

We need to use 2PC-HMAC for computing MS = HMAC(dHS, 0), and all HKDF.Expand(·, ·) func-
tions with shared keys HS orMS. The computation of the 2PC-HMAC(K,M) function is as follows.

1. Compute the shared chaining state cs1 = 2PC–SHA256(IV,K ⊕ ipad).
2. Compute the shared chaining state cs2 = 2PC–SHA256(IV,K ⊕ opad).
3. Compute the padding pad1 and h1 = 2PC–SHA256(cs1,M ||pad1)6.
4. Compute the padding pad2. Output HS = 2PC–SHA256(cs2, h1||pad2).

Alternatively, one can output the entire cs1 to the prover and he computes h1 on his own in
step 3. The value h1 is treated as a public input in step 4. This modification reduces the number of
2PC–SHA256 from four to three. However, it requires the library to provide an interface to modify
the internal chaining state of SHA-256 to cs1. We do not use this method in our implementation
due to the complexity in engineering work.

6 Decentralized Identification Oracles (DIDO)

In this section, we integrate our techniques above and construct a decentralized oracle for TLS 1.3.
We call our scheme as Decentralized IDentification Oracles (DIDO), as our application is mainly
for identification purpose. We define the DIDO protocol in Figure 11.

Next, we show that the PDIDO UC-securely realizes F , assuming a functionality F2PC for secure
2PC-HMAC, as stated in Theorem 1.

6For TLS 1.3, the message M here is less than 64 bytes. Hence one invocation of 2PC–SHA256 suffices.
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PS : Follow the standard TLS 1.3 protocol using ECDHE for key exchange.

PP and PV :

– P receives (sid,Query) from V, where Query is the template of query.
– P starts the handshake if it chooses to proceed after examining the Query.
– (3P-DH) P,V execute the three-party ECDHE protocol with S. After Step 1-2, P sends the client

hello message and key share (sid,mchs) to S. S replies with the server hello message, key share and
an encrypted finish message (sid,mshs). By using the server key share, P,V execute Step 3-4 of the
three-party ECDHE protocol. P obtains a share of the ECDHE key kDHE

P and V obtains another share
kDHE
V , such that kDHE

P + kDHE
V = kDHE, which is the ECDHE key obtained by S.

– (Key Scheduling) P,V execute the 2PC Key Scheduling with private input kDHE
P and kDHE

V respec-
tively. P obtains the TLS 1.3 secrets CHTS, SHTS and CATS. V obtains the secret SATS. P uses
SHTS to decrypt and to validate the server finish message in mshs.

– (Query) P sends the client handshake finish message (sid,mcfin) to S using keys derived from CHTS.
P prepares the query Query(θs) and encrypts it to client application message mcapp using keys derived
from CATS. P sends (sid,mcapp) to S. S replies with the response (sid,msapp) to P.

– (Open) After receiving a response (sid,msapp) from S, P forwards it to V. V then decrypts msapp using
keys derived from SATS and outputs the decrypted response.

Fig. 11: The protocol PDIDO.

Theorem 1. The proposed DIDO protocol PDIDO UC-securely realizes F in the F2PC world, as-
suming the discrete logarithm problem is hard in the group used in the ECDHE, the zero-knowledge
proof is secure and the compression function f of SHA-256 is an random oracle.

We give the security proof in the Appendix A. It covers both a static semi-honest adversary,
and also a static malicious adversary with abort.

6.1 Implementation

In DECO [27], the authors give a real example of using stock price API with DECO. By assessing
the stock price API, a JSON output for a stock will be returned. In this paper, we consider a
normal HTML webpage which provides some authenticated user information (the information is
usually validated offline by a trustworthy webpage owner). In [27], it is mentioned that a university
has the name and the date of birth for a student, but the university does not provides an open API
for accessing this information. However, such an open API may not be always available. In this
paper, we consider using the login account information of an utility company (e.g., electricity or
gas) as the address proof, for applying some online financial services (e.g., challenger bank/virtual
bank account, credit card or loans).

As an example, we first demonstrate that our DIDO implementation can be used to open a
popular TLS 1.3 website, and then show that DIDO can serve as the address proof for user in some
utility websites.

Some popular TLS 1.3 websites. We test our DIDO on some popular websites which support
TLS 1.3. Our DIDO can successfully access the websites and the verifier is able to decrypt the
payloads accordingly. We show the results in Table 4. It can be seen that there are some web pages
with longer running time, and may have a big differences between LAN and WAN. The running
time discrepancy is affected by the length of the content of the web page, and the response time
of the server.

Address Proof. In a webpage of a utility company (e.g., electricity or gas), a user can use his
username and password to login to his account and display his current address. It is common
for a web server to send a cookie file after entering the username and password. By using the
cookie file, the client browser can open the web page containing personal information. We test our
implementation using a real gas company’s web page.

1. The prover obtains the cookie file by the username and password (without using DIDO). For
example, he can use the cURL command shown in Fig. 12 to obtain such cookie.txt.
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Table 4: Running time of our DIDO implementation on different websites.

P and V in LAN P and V in WAN

www.google.com 4.266s 7.848s

www.youtube.com 6.384s 27.233s

github.com 4.717s 12.594s

www.microsoft.com 4.984s 6.275s

yahoo.com 4.468s 6.650s

wikipedia.org 4.338s 6.447s

easychair.org 5.665s 6.928s

Fig. 12: Command for getting the cookie file using LoginID and password.

2. The prover runs the post command in Fig. 13 to https://eservice.■■■■gas.com with our
DIDO implementation, by putting the cookie file in the red box.

Fig. 13: POST command for running rustls with our implementation of DIDO. The cookie file
should be put in the red box.

3. An HTML file is returned by the server via TLS 1.3. It is encrypted by the key derived from
SATS in Fig. 3. As discussed in section 5, SATS is only known to the verifier. Hence, the
prover simply forwards the encrypted HTML to the verifier. The verifier uses the derived key
to decrypt the HTML file (e.g., using AES-GCM). The user address is shown in the HTML
file using the JSON format, as shown in Fig. 14.

In order to further test the flexibility of our approach, we also try it from an electricity com-
pany (https://services.■■■.com.■■) providing service to the same residential address. Finally,
we obtain the HTML page in Fig. 15.

In this HTML page, the name of the account owner is also included. Hence, the account owner
can use this HTML page as his address proof by using DIDO.

Further Implementation Details. In the paragraph of section 4.2, we propose to pick kv until
the v-coordinate of xvG is positive. This solution involves more engineering work. For the ease
of testing, our sample code simply runs the ECtF+ protocol. With 50% probability, it fails and
re-runs it again until it succeeds. The expected number of times of running the ECtF+ protocol is:

E[#ECtF+] = 0.5 ∗ 1 + 0.25 ∗ 2 + 0.125 ∗ 3 + . . . = 2.

Performance. We use the same setting in Section 4.1 for testing the performance of our DIDO
implementation in both the LAN and the WAN settings. The running time is shown in Table 5.
We can see that the verifier V can receive the HTML page from the server within 10s.

7 Conclusion

In this paper, we propose a new design DIDO for decentralized oracle with TLS 1.3. We provide
support to X25519, propose a 2PC key scheduling and optimize the circuits for 2PC.
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Fig. 14: The HTML file sent from the gas company and decrypted by the verifier.

Fig. 15: The HTML file sent from the electricity company and decrypted by the verifier.
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Table 5: Running time of our DIDO implementation on different utility companies.

P and V in LAN P and V in WAN

Gas company 4.003s 6.770s

Electricity company 6.303s 8.456s
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A Security of DIDO

Proof. In the proof, we will show that for any real-world adversary A, an ideal simulator Sim can
be constructed. The ideal execution with is indistinguishable from the real execution with A for
all environments Z.

As aforementioned, we assumed S is honest throughout the protocol. Therefore, we only consider
A corrupts either P or V in the proof. Since V does not have any private input, a semi-honest
P cannot gain any private information of V. We have prover-integrity since P is semi-honest and
follows the protocol. Thus we only need the ideal-world simulators for corrupted V.

In addition, we give the modification of the proof for malicious security in a red box. We
note that we can achieve malicious security if the underlying 2PC-HMAC protocol is secure
in the malicious setting.

Corrupted V. As the verifier is corrupted, we are interested in showing the privacy guarantees.
The simulator Sim proceeds as follows:

1. Sim internally runs A and F2PC to simulate the real-world interaction with the prover P. Sim
forwards any input z from Z to A.

2. Sim forwards the Query to F from A, and instructs F send them to P.
3. P sends θs to F , then F responds with (sid, Q,R) to P. Sim receives (sid,S) from F and learns

the record sizes of Q and R, denote as |Q| and |R|.
4. Sim runs 3P-DH as P upon request from A. Sim and A runs the Step 1-2 of 3P-DH. Sim uses

the extractor of the zero-knowledge proof to get xv from πv. After Step 2, xpG+ xvG is used
as the client key share of TLS 1.3 ClientHello message. Sim generates the rest of ClientHello and
sends (sid,S,ClientHello) to F .

5. F returns ServerHello from S, which contains the (unencrypted) server key share yG. Sim
continues with the Step 3-4 of 3P-DH with A, learning its additive share up at the end. Since
Sim knows xv and xp, he can also compute the x-coordinate u of (xp+xv)yG by himself. Then
Sim computes uv = u− up.

6. Sim starts the 2PC key scheduling as P with private input up. Sim sends his private input to
F2PC when 2PC-HMAC is used, and obtains his output. After running the 2PC key scheduling,
Sim obtains CHTS, SHTS and CATS. Sim derives the key tkshs from SHTS for decrypting the
rest of ServerHello, and completes the rest of the handshake (e.g., ChangeCipherSpec, Finished
in TLS 1.3).

7. Since Sim knows both uv and up, he can also compute the key scheduling by himself and obtains
CATS’ and SATS’. Sim picks a random Q′ ← {0, 1}|Q| and derives the key tkcapp from CATS.

Sim encrypts Q′ using tkcapp to obtain the ciphertext Q̂. If CATS’ ̸= CATS, Sim sets R̂ as the
TLS 1.3 decryption error message. Otherwise, Sim picks a random response R′ with length |R|,
and then encrypts R′ with the key tksapp from SATS’ to obtain R̂. Sim sends (Q̂, R̂) to A and
outputs whatever A outputs.

Now we discuss that the ideal execution with Sim is indistinguishable from the real one with
A.

– Hybrid H1 is the real-world execution of PDIDO.
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– Hybrid H2 is the same asH1, except that Sim internally simulates F2PC. By using the extractor
of the zero-knowledge proof, Sim can extract xv from πv. Sim also invokes F and receives
(sid,Stmt(R),S). It also learns the sizes of Q and R. Due to the perfect simulation of ideal
functionality, H1 and H2 are indistinguishable.

– Hybrid H3 is the same as H2, except that P is simulated by Sim. To simulate the key uses in
the sequential 2PC-HMAC invocations, Sim samples xp and uses xpG to derive a share of the
ECDHE secret up.
By using xv and xp, Sim can compute the ECDHE secret u and also uv = u − up. Sim can
generate all keys in key scheduling and completes the handshake messages. Then, Sim picks a
random Q′ ∈ {0, 1}|Q| and a random R′ ∈ {0, 1}|R|. Afterwards, Sim sends the encryption of
Q′ and R′ to A.

The reasons why A cannot distinguish between the real and ideal executions:

– The number of invocations of 2PC-HMAC is equal since the input sizes are equal.
– A learns one SHA-2 hash of the input message which is like a random oracle in each invocation

of 2PC-HMAC and HMAC.
– If the input provided by V in 2PC-HMAC is correct, all messages should verify and the protocol

should proceed to the next step in both the real and ideal world. The checking time should be
indistinguishable from the real world.

– A can act maliciously in any of the following steps: (1) Deviate from the Step 4 of 3P-
DH. If so, P cannot obtain a valid share of DHE. It will not pass the handshake checking
with S. (2) Deviate from the 2PC-HMAC for generating HS, CHTS or SHTS. If so, P
cannot obtain valid handshake keys. It will not pass the handshake checking with S.
(3) Deviate from the 2PC-HMAC for generating dHS, MS or CATS. If so, P cannot
obtain a valid client application data key. S cannot decrypt the query and will return
the TLS 1.3 error message. (4) Deviate from the 2PC-HMAC for generating SATS. A
cannot obtain any information of P in this case. For all cases, if the 2PC-HMAC is
secure in the malicious setting, A cannot obtain the input of P even if he deviates from
the protocol.

– The encryption sizes are equal and indistinguishable since |Q′| = |Q| and |R′| = |R|.
– At the end, A receives the same output as in real execution.

Corrupted P. We show the prover-integrity guarantee in the malicious model. If V receives
(Stmt(R),S), P must have input some θs such that S(Query(θs)) = Stmt(R) = R.
The Sim works as follows given a real-world PPT adversary A.

1. Sim runs A and F2PC internally. Sim forwards any input z from Z to A and records all
the traffic going to and from A. Sim records and forwards its private input θs to A.

2. Sim runs the 3P-DH as V upon the request of A . During the process, Sim forwards the
output message m from A, which is intended for S, to F as (sid,S,m) and forwards
(sid,m′) to A if it receives any messages m′ from F . Sim learns xpG, xv and uv. Sim
uses the extractor of the zero-knowledge proof πp to obtain xp.

3. Sim runs 2PC key scheduling as V upon request from A, using uv as input. Similarly,
Sim uses F2PC as a sub-routine to run all 2PC-HMAC. Sim learns the secret SATS.

4. Sim records all the messages between A and S in the Query phase. Note that these
include ciphertext encrypted with keys derived from CHTS, SHTS and CATS.

5. By using xp and xv, Sim can run the key scheduling all by himself and derives CHTS’,
SHTS’, CATS’ and SATS’.

6. A sends (sid,msapp). Sim uses SATS to derive a key and to decrypt msapp. Sim aborts if
the decryption fails.

7. Sim checks the followings: (1) In Step 2 of 3P-DH, A sends (xp+xv)G to S as the client
key share. (2) The client/server finish message can be decrypted by the keys derived
from CHTS’/SHTS’. (3) The encrypted request Q̂ can be decrypted to θs by the key
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derived from CATS’. (4) SATS ̸= SATS’. If all of the above checks passed, Sim sends
θs to F and instructs F to send the output to V. Sim outputs whatever A outputs.

Now we discuss that the ideal execution with Sim is indistinguishable from the real one with
A.

– Hybrid H1 is the real-world execution of PDIDO.
– Hybrid H2 is the same as H1, except for step 1 that Sim internally simulates A and
F2PC. Sim records the private θs input and forwards it to A. For each step of PDIDO, Sim
forwards all messages between A and V, and A and S, as in the real execution. Due to
the perfect simulation of ideal functionality, H1 and H2 are indistinguishable.

– Hybrid H3 is the same as H2, except that Sim internally simulates V. To simulate
the keys used, Sim samples x̂v and uses x̂vG to derive a share uv, which is used in
the sequential 2PC-HMAC invocations. Sim obtains SATS after the 2PC Key Schedul-
ing with input uv. Upon receiving (sid,msapp) from A, Sim uses the key derived from
SATS to decrypt msapp and obtains the response. Sim aborts if the decryption fails. The
indistinguishability between H2 and H3 is trivial because x̂v is uniformly random.

– Hybrid H4 is the same as H3, except that Sim extracts xp from the zero-knowledge
proof πp and runs the key scheduling by himself. After that, Sim runs the checking in
the above Step 7 and it aborts if the checking fails.

There are two reasons that Sim may abort: (1) msapp from A is not originally from S. (2)
the keys used by S is not the same as the keys derived by 2PC-HMAC. We now show that
it would trigger V to abort as well with overwhelming probability.

– Assuming that DL is hard in the ECDHE group used. A cannot learn x̂v from x̂vG.
By the zero-knowledge property, A cannot learn x̂v from πv. If A malicious selects the
client key share (denoted Ŷ ) correlated with x̂vG, it would have to find the discrete
logarithm of Ŷ − x̂vG to run the 3P-DH. Without such value, the output shares uv and
up of 3P-DH would fail to derive keys to complete the handshake with an honest server,
except with negligible probability.

– By the security of 2PC-HMAC, A cannot learn SATS. By the security of AES-GCM,
without the knowledge of the key SATS, A cannot create a valid msapp that can be
decrypted successfully without abort.

– If A ignores the input x̂vG from Sim in 3P-DH and generates it by his own, he has a
valid server response encrypted with keys derived from some SATS*. By the security of
2PC-HMAC, A cannot force Sim to output SATS = SATS* which is chosen by A .

It remains to show that H4 is exactly the same as the ideal execution. Due to Step 7, F
delivers (sid,Stmt(R),S) to V only if ∃θs such that R is the response from S to Query(θs).

⊓⊔

B Discussion among the limitation from existing 2PC protocols

As aforementioned in Section 3.2 and 3.3, the main performance bottleneck of DIDO is the large
number of 2PC-SHA256 in key computations such as CHTS and SHTS. Moreover, large amount
of invocations of the existing 2PC-HMAC protocols will incur a running time larger than the TLS
1.3 timeout. The default TLS timeout is default in 10s according to the documentation of IBM7

and 15s for Microsoft8.
In DECO [27], it adopts the malicious model using emp-ag2pc [20, 22]9. According to Table

6 of [22], one 2PC-SHA256 requires 2376ms. In our TLS 1.3 implementation, there are roughly
30 invocations of 2PC-SHA256 which require 71s. This running time is not only unacceptable

7https://www.ibm.com/docs/en/zos/2.5.0?topic=considerations-handshake-timer
8https://techcommunity.microsoft.com/t5/ask-the-directory-services-team/tls-handshake-errors-and-

connection-timeouts-maybe-it-8217-s-the/ba-p/400501
9https://github.com/emp-toolkit/emp-ag2pc



24 Kwan Yin Chan, Handong Cui, Tsz Hon Yuen

for normal user, but also will trigger timeout in most server. A further ZK-SNARK for selective
opening will make it even worse. The imbalance between the tight performance requirement to avoid
timeout and the performance of existing 2PC protocols leads to the limitation of our DIDO protocol
to become practical if we keep the malicious security setting. Therefore, we further compromise
and make our protocol under the semi-honest security model, in which case we can drop the
time-consuming NIZKs.

We emphasize that the architecture of DIDO (e.g., design of 2PC-key derivation, modification
for Curve25519) supports the malicious security, but limited by the aforementioned performance
bottleneck. In order to explain this, we will first discuss the performance of the existing 2PC
protocols, and the possibility of the enhancement from semi-honest security model to a malicious
one.

Performance of existing 2PC protocols.We give a comparison between existing 2PC protocols
as follows to explain why we have such decision.

According to Table 1 of [12], in the existing implementations of 2PC-Garbled-Circuit, MP-
SPDZ [12] and EMP-toolkit [21, 22] are the existing implementations with the best performance.
We first consider using the newer MP-SPDZ. However, it does not support any online/offline
operations. Hence, we choose the EMP-toolkit library which contains components with different
security levels, such as emp-ag2pc for malicious security and emp-sh2pc for semi-honest security.

We adopt emp-sh2pc in our design since emp-ag2pc for malicious security will trigger a TLS1.3
timeout; in contrast, emp-sh2pc for semi-honest security will not. Accordingly, we further relax
other parts of DIDO to the semi-honest model for optimization, including the removal of zero-
knowledge proofs for MtA.

Possible improvement towards a malicious setting. To further enhance our security setting
of DIDO to malicious model, adoption of both/either a 2PC protocol with outstanding performance
and/or faster hardware may work. As aforementioned, the existing 2PC protocols which achieve
malicious security setting cannot fulfil the performance requirement. Moreover, it is not likely that
a faster hardware could have a 10x improvement in running time to avoid timeout. It is more
likely to work if there is a faster 2PC-SHA256 by some algorithmical improvements. Therefore, the
problem of implementing fast enough 2PC-SHA256 is still an open problem.
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