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Abstract

This paper studies the quantum computational complexity of the discrete logarithm (DL) and related
group-theoretic problems in the context of “generic algorithms”—that is, algorithms that do not exploit
any properties of the group encoding.

We establish the quantum generic group model and hybrid classical-quantum generic group model as
quantum and hybrid analogs of their classical counterpart. This model counts the number of group opera-
tions of the underlying cyclic group G as a complexity measure. Shor’s algorithm for the discrete logarithm
problem and related algorithms can be described in this model and make O(log |G|) group operations in
their basic form. We show the quantum complexity lower bounds and (almost) matching algorithms of the
discrete logarithm and related problems in these models.

* We prove that any quantum DL algorithm in the quantum generic group model must make 2(log |G|)
depth of group operation queries. This shows that Shor’s algorithm that makes O(log |G|) group op-
erations is asymptotically optimal among the generic quantum algorithms, even considering parallel
algorithms.

* We observe that some (known) variations of Shor’s algorithm can take advantage of classical compu-
tations to reduce the number and depth of quantum group operations. We show that these variants
are optimal among generic hybrid algorithms up to constant multiplicative factors: Any generic hy-
brid quantum-classical DL algorithm with a total number of (classical or quantum) group operations
Q@ must make Q(log |G|/ log Q) quantum group operations of depth Q(loglog |G| — loglog Q).

* When the quantum memory can only store ¢ group elements and use quantum random access clas-
sical memory (QRACM) of r group elements, any generic hybrid quantum-classical algorithm must
make either Q(/|G|) group operation queries in total or Q(log |G|/ log(tr)) quantum group opera-
tion queries. In particular, classical queries cannot reduce the number of quantum queries beyond
Q(log |G|/ log(tr)).

As a side contribution, we show a multiple discrete logarithm problem admits a better algorithm than
solving each instance one by one, refuting a strong form of the quantum annoying property suggested in
the context of password-authenticated key exchange protocol.
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1 Introduction

The discrete logarithm (DL) problem and related problems have long been fundamental cryptographic
primitives in the pre-quantum world [DH76, Gam85]. However, the emergence of quantum computing
has drastically altered the landscape of cryptography in the post-quantum world. Shor’s algorithm [Sho94]
has demonstrated that the DL problem (and integer factoring) can be solved in quantum polynomial time,
rendering many cryptographic protocols that rely on the DL problem insecure against full-fledged quantum
computers.

Since then, the quantum algorithms solving the DL problem and relevant algorithms have shown sig-
nificant progress in various directions [ME98, PG14]. First, hybrid quantum-classical algorithms are sug-
gested, taking advantage of the potentially massive power of classical computation to leverage smaller
quantum computers. This direction reduces the required number of sequential quantum group operations
by half [Kall7, EH17, Eke21].

The use of parallelism was shown to reduce the depth of quantum DL algorithms significantly [CWOO,
HS05], at the cost of large quantum memory. The optimization for the arithmetic (or group) operations [PG14,
RNSL17, GE21, HIN*20] and the other parts [Kit96, ME98] also have been studied extensively. The base
algorithm of all the above papers is essentially the near variants of Shor’s original algorithm, and the com-
plexity of the quantum DL algorithms is still dominated by O(log |G|) group operations for the underlying
group G.

Very recently, Regev and follow-up research [Reg23, RV23, EG23] discovered new quantum factor-
ing/DL algorithms that achieve better asymptotic complexity. Whether Regev-type algorithms show better
practical performance than Shor’s is currently unclear and an important open question.’

The lower bounds of the quantum DL algorithms, however, have not been established until now. This
state of affairs raises an important question in the opposite direction:

Is there any quantum lower bound for the DL problem?

The only known relevant result, by Cleve and Watrous [CW00], showed a lower bound on the depth for
the quantum Fourier transform (QFT), a crucial step of Shor’s algorithm. However, there might exist a
completely different quantum algorithm that does not rely on the quantum Fourier transform.” To the best
of our knowledge, there is no known lower bound, in terms of either time complexity or depth, for the
quantum complexity of the DL problem.’

1.1 This Work

In this paper, we study the hardness of the discrete logarithm problem and related problems by considering
a natural class of quantum algorithms referred to as generic algorithms. A generic quantum algorithm is
an algorithm that does not take advantage of the special properties of the encodings of group elements. In-
stead, these algorithms only use group operations only in a black-box manner, potentially in superposition.
Almost all quantum DL algorithms can be described in this model, including Shor’s and Regev’s (Again,
we refer Section 1.2 for a more detailed discussion on the Regev’s algorithm).

We formally establish the quantum generic group model (QGGM) by restricting that access to group
elements is provided through the group oracle. The QGGM resembles the classical generic group model
(GGM) [Sho97, MauO5]proposed for arguing the security of group-theoretic cryptographic problems in
classical settings. As in the classical GGM, the main complexity measure in the QGGM is the number of
group operation queries, which we refer to as the group operation complexity. In addition, we are also

Later, we will discuss Regev’s and related algorithms in more detail. (Spoiler: both Shor’s and Regev’s algorithms can be described
as generic algorithms, according to our definition. Thus, our group operation lower bound applies, but Regev’s better asymptotic
performance is not about group operation complexity.)

2Technically, the phase estimation-based DL algorithm [Kit96] can be done without the QFT (See [KSV02]). The recent Regev-style
algorithms use a different size QFT than Shor’s, making the direct implication obscure.

3The query complexity lower bound 2(n) for the abelian hidden subgroup problem over (Z/pZ)™ is proven in [KNP07], but it is
(almost) independent from p and does not give a meaningful bound for the DL problem.



concerned with the depth of group operation queries and the quantum memory size to study the power of
near-term quantum computers for the DL problem.

Lower bound in the fully quantum setting. Our first result states that no generic quantum algorithm in
the QGGM can solve the DL problem much faster than Shor’s original algorithm. Precisely, we show the
following theorem.

Theorem 1.1. For a prime-order cyclic group G, any generic quantum algorithm solving the discrete logarithm
problem over G must make Q(log |G|) group operation queries.

To establish this theorem, for any generic quantum DL algorithm A, we construct a generic classical DL
algorithm B in the GGM that perfectly simulates the output of A. Although the classical simulation may
require unbounded time for precise simulation, its group operation complexity is only exponentially larger
than that of A. Then, we observe that the known DL lower bound in the classical GGM of (|G|'/?) group
operations [Sho97, Mau05] holds even if the algorithm is allowed to run in unbounded time. We obtain
the desired result by combining this fact with the above simulation with an exponential blowup. We note
that the naive version of Shor’s algorithm has the group operation complexity of 4log |G| matching to the
lower bound in Theorem 1.1 up to the constant multiplicative factor. The same strategy establishes similar
hardness of other group-theoretic problems, such as computational /decisional Diffie-Hellman problems.

We also show that applying the group operation in parallel does not help much through the same proof.

Theorem 1.2. For a prime-order cyclic group G, any generic quantum algorithm solving the discrete logarithm
problem over G must make group operation queries of depth Q(log |G|).

The above result may initially seem sufficient to refute our main question. However, this is not the
case because this lower bound only considers purely quantum algorithms, which even exclude classical
preprocessing of group elements.

Hybrid quantum-classical algorithms. We observe that some simple (combination of) folklore hybrid
quantum-classical algorithms can do better than the purely quantum bound, exploiting classical computa-
tion to perform most group operations.

These hybrid algorithms consist of two phases: They first compute multiple group elements using
O(polylog |G|) classical group operation queries and store them as precomputed data. Then, they imple-
ment Shor’s algorithm using the stored group elements using O(log |G|/ loglog|G|) quantum group op-
erations and O(loglog|G|) quantum group operation depth (A more fine-grained tradeoff can be found
in Theorems 4.2 and 4.3).

We complement these algorithms by proving the matching lower bounds. We formalize a model for
generic hybrid quantum-classical algorithms that captures the above algorithms and a more general class
of algorithms. In the model, we allow an algorithm to make both classical and quantum group operation
queries with the restriction that it is forced to measure all the registers whenever its quantum group operation
number or depth count exceeds a certain threshold. It is supposed to capture hybrids of classical and quan-
tum computers with limited coherence time. Note that we do not consider noises in our model, whereas
actual near-term quantum computers are likely to be noisy. Since our main results are the lower bounds,
this just makes our results stronger.

The following theorem states the limitations of the generic hybrid algorithms, showing that the above
hybrid algorithms are indeed optimal with respect to both group operation number and depth.

Theorem 1.3. For a prime-order cyclic group G, any generic hybrid quantum-classical algorithm solving the discrete
logarithm problem with O(poly log |G|) total group operation queries (including both classical and quantum) must
make Q(log |G|/ loglog|G|) quantum group operation queries of depth Q(loglog |G|) between some two consecutive
forced measurements.

More generally, any generic hybrid DL algorithm with @) total group operations must make )(log |G|/ log Q)
quantum group operations of depth 2(loglog |G| — log log Q) between some two consecutive forced measurements.



Quantum memory-bounded algorithms. Quantumly processable memory is an expensive resource, ei-
ther quantum random-accessible memory that can store quantum states (QRAQM) or classical memory that
stores classical data but can be accessed coherently (QRACM).* While the original Shor’s algorithm only
uses quantum memory that stores a single group element, the hybrid algorithms described above make
use of relatively large quantum memory (Theorem 4.3) or large QRACM (Theorem 4.2). This motivates
the question of whether quantumly processable memory is necessary even for a mild speed-up of Shor’s
algorithm.

We prove that it is indeed necessary. We define a model for generic hybrid algorithms with memory
constraints. The following theorem asserts such a lower bound in the memory-bounded model.

Theorem 1.4. For a prime-order cyclic G, any generic hybrid algorithm solving the DL problem with quantum mem-
ory that can store t group elements and no QRACM must make either Q(+/]G]) classical or quantum group operation
queries in total or Q(log |G|/ log t) quantum group operations between some two consecutive forced measurements.”

More generally, any generic hybrid DL algorithm with quantum memory that can store t group elements and
QRACM that can store r group elements must make either Q(+/|G|) group operations in total or Q(log |G|/ log(tr))
quantum group operation queries between some two consecutive forced measurements.

In particular, the above theorem implies that classical queries cannot reduce the number of quantum
queries beyond Q(log |G|/ logt), or just (log |G|) when t = O(1). We have algorithms that match the above
lower bounds: Baby-step giant-step algorithm makes O(+/|G|) classical group operations, and the hybrid
algorithm in Theorem 4.2 with quantum memory that can store ¢ group elements and no QRACM makes
Q(log |G|/ logt) quantum queries.

The multiple DL problem. The multiple discrete logarithm problem asks to solve multiple instances of
the DL problem with the same underlying group simultaneously. When m DL instances are given, this
problem is called m-MDL. This problem is particularly interesting in the context of the standard curves in
elliptic curve cryptography, where only a few curves are recommended as standard. Classically, Kuhn and
Struik [KS01] suggested an O(y/m|G|) generic algorithm for the m-MDL problem, and Yun [Yun15] proved
the matching lower bound.

In Theorem 4.5, we present a generic quantum algorithm for the multiple discrete logarithm problem
using the results in vectorial addition chain [Pip80]. If log m/ log |G| = o(1) and m = Q(log |G|), it solves the
m-MDL problem using O(mlog |G|/ log(m)) group operations. This gives an amortized group operation
complexity of O(log |G|/ log m) per DL instance.

Regarding Theorem 1.1, the complexity of the m-MDL problem is lower than solving each instance
individually. It is related to the quantum annoying property [Thol9, ES21] suggested in the context of
password-authenticated key exchange (PAKE), which roughly means that quantum algorithms must solve
a DLP for each password guess of PAKE. Our algorithm shows that the strongest form of quantum annoying
cannot hold, regardless of the PAKE construction.

We can derive the lower bound of the m-MDL problem similarly to Theorem 1.1 and using the classical
lower bound given in [Yun15]. However, this would only give a lower bound of 2(logm + log |G|) group
operations. So there is an apparent gap between the upper and lower bounds from our approach.

1.2 Discussion

QGGM vs. non-generic improvements. We discuss two non-generic complexity improvements of the
DL algorithms.

4These two types of quantum-accessible memory were studied in [Kup13]. Formally, QRACM stores classical data (z;); and
enables one to realize a unitary operation |i) ® |0) — |i) ® |z;).

5This gives a depth lower bound of Q(log |G|/t log ) as an immediate corollary as an algorithm can make at most ¢ queries in one
parallel group operations in this setting.



¢ Following the recent better quantum factoring algorithm [Reg23, RV23], Ekera and Gartner [EG23]
gave a better quantum DL algorithm. Given the QGGM lower bounds in this paper, one may won-
der if their algorithms are non-generic because otherwise, it seems like a contradiction. We remark
that they can be described in the QGGM, and they indeed obey our group operation complexity lower
bounds if we count the number of group operations.

Their primary complexity measure is circuit complexity®, not group operation complexity. For this
purpose, they use the fact that group operations between two small elements are much faster than
ordinary group operations, while we assume that they both incur the same cost. On the other hand,
using small group elements is only for faster group operations, and the correctness seems irrelevant
to the smallness of base group elements.

¢ Hoyer and Spalek [HS05] showed that the DL problem on Zy can be solved by a hybrid quantum-
classical algorithm with a constant quantum depth if we allow for unbounded fan-out gates.” This
overcomes our quantum depth lower bound in Theorem 1.3.%

This is possible because their algorithm is non-generic. For example, they use that multiplication of
many elements of Zy can be done in T'Cy, i.e., computed by a constant depth classical circuit with
threshold gates [SBKH93]. We also note that they mainly focus on theoretic depth optimization and
are unlikely to be practical for two reasons. The unbounded fan-out gates are believed to be hard
to implement, so it’s barely considered in near-term quantum devices. Further, even equipped with
unbounded fan-out, the circuit size is increased to reduce the depth, making the algorithm require
huge quantum memory.

Besides the above algorithms, to our knowledge, all non-generic quantum algorithms for the DL prob-
lem are circuit optimization of (variants of) Shor’s (generic) DL algorithm [PZ03, RS14, RNSL17, HIN*20].
These optimizations leverage specific encoding structures for practical purposes, and the asymptotic com-
plexity remains unchanged.

This circumstance is reminiscent of the classical GGM, where some non-generic algorithms, such as
index calculus, show better efficiency than generic algorithms by exploiting the integer encoding of group
elements. Still, the classical GGM has been used as a meaningful model for arguing the hardness of group-
theoretic problems, especially for the general elliptic curves. Thus, we believe that lower bounds in the
QGGM are at least as meaningful as those in classical GGM.

Practical implication. Optimizing and estimating quantum attacks have been studied extensively to make
them practical. Shor’s algorithm is of practical interest and may be used for estimating the deadline of
mandating migration to post-quantum cryptography. In particular, a recent estimation by Gidney and Ek-
era [GE21] predicts that a single real-world DL instance can be solved within a half day using millions of
noisy qubits by a highly optimized quantum algorithm, assuming several plausible physical assumptions.
Our result indicates that there is a fundamental limitation for the generic approaches. Putting it differ-
ently, there are only a few ways to improve the quantum DL algorithms: reducing the hidden factors in
the QGGM as in [Reg23] or optimizing the quantum computer itself or the circuits, unless a non-generic
quantum algorithm is discovered.

Tight group operation complexity. Our lower bounds show asymptotically tight group operation com-
plexity, but the constant factor has room for improvement. In the formal theorems, the concrete quantum
query bounds are 0.25log |G|+ O(1) (or depth) in the fully quantum case (Theorem 5.2) and £ log |G| + O(1)

®More precisely, the asymptotic circuit complexity. The practical implications of these algorithms are under debate, and we re-
fer [EG24] for a recent discussion.

7Tt does not contradict the depth lower bound of the quantum Fourier transform [CW00], which assumes that each gate acts on a
constant number of qubits.

8Using fan-out gates does not affect the query depth in the QGGM.



for the memory bounded hybrid case with t = r = 1 (Theorem 7.2). Shor’s DL algorithm and early
variants [ME98, Kit96] make group operations 2log |G| times each, having a gap in the constant factor.

The hybrid quantum-classical algorithms [Kall7, Ekel9, Eke21, EH17] narrow down this gap. These
algorithms solve the DL problem by repeating a certain procedure with log |G| + O(1) group operations
about log®" |G| times,'® with appropriate classical pre- and post-processing. The constant gap still exists
besides the number of subroutine calls. Filling this gap is an interesting open problem.

Another interesting tradeoff point in our lower bound is the hybrid case (without memory bound)
in Theorem 6.2. We may ask if a small number of quantum group operations could reduce the classical
group operation queries. This theorem says that if a generic hybrid algorithm makes a single quantum
group operation, then it should make Q(|G|°-?%) classical group operations. In other words, this does not
rule out a hybrid DL algorithm with |G|%?° classical group operations and a single quantum group opera-
tion, which we do not know how to do. Theorem 7.2 rules out this case if there is a memory constraint.

The quantum complexity of the composite-order DL and MDL problems is also unknown. We do not
know how to use the composite order either in constructing algorithms or proving lower bounds. We note
that a recent work [Hha24] resolves these problems by showing tight lower bounds, though in a slightly
weaker hybrid model than ours.

Maurer-style vs. Shoup-style QGGM. In the classical setting, there are two formalizations of the GGM,
one by Shoup [Sho97] and the other by Maurer [Mau05]. In Shoup’s GGM, generic algorithms are given
random labels of group elements and can perform group operations by sending labels to the oracle. On the
other hand, in Maurer’s GGM, all group elements are kept by the oracle, and generic algorithms can access
them only through group operation or equality check queries. These two GGMs are known to be equivalent
for "single-stage games," which include the DL and related problems considered in this paper [Zha22].!!

Our QGGM is defined as a quantum analog of Maurer’s GGM. It is possible to define it in Shoup’s style.
Indeed, such a model was already considered in [Zha21] under the name of "post-quantum GGM." It is
easy to show that any generic algorithm that works in our (Maurer-style) QGGM also works in Shoup-style
QGGM. On the other hand, it seems difficult to show the other direction in the quantum setting, even if
we focus on single-stage games. Thus, it would make our results stronger if we could prove similar lower
bounds in Shoup-style QGGM. We believe that the lower bound in the fully quantum setting (Theorem 1.1)
can be extended to Shoup-style QGGM with a similar proof if the label space is much larger than the group
order. On the other hand, we do not know how to generalize the lower bounds for hybrid algorithms
(Theorems 1.3 and 1.4) to Shoup-style QGGM. For this reason, we focus on Maurer-style QGGM in this
paper. We believe that lower bounds in Maurer-style QGGM are still meaningful, given that it captures
Shor’s algorithm and many variants.

Hidden subgroup problems and other potential directions. This paper suggests the number of (quan-
tum) group operations as a complexity measure for studying the DL and related problems. We discuss the
potential applications to the hidden subgroup problem (HSP).

In the hidden subgroup problem (HSP) literature, the primary complexity measure is the query com-
plexity to the oracle function & : G — X hiding a subgroup, i.e. h(g1) = h(g2) iff g1 H = goH for some
hidden subgroup H of G. The standard approach, or Fourier sampling, to the HSP over abelian groups
makes a single oracle query to h. This approach is also a subroutine to solve some HSPs over non-abelian
groups, e.g., in [HRT00, EHOO, Kup05]. Finally, it is shown that O(log4 |G|) queries to h suffice for the HSP

9Regarding the constant factor, we notice that the specifications for the model of group operations matter a lot. For example, if we
only allow g, h +— g - h and not g - h~!, the memory-bounded case with t = r = 1 becomes 0.5 log |G| + O(1).

10Precisely, Kaliski’s algorithm [Kal17] repeats a subroutine of log |G|+1 group operations O(log!-5 |G|) times, and Ekera’s algorithm
repeat subroutines with (1 + 1/s) log |G| group operations about s times for some bounded s [Eke21].

HJager and Schwenk [JS08] originally claimed a general equivalence, but Maurer, Portmann, and Zhu [MPZ20] pointed out a
counterexample. Zhandry [Zha22] resolved this issue by reproving the equivalence in the case of single-stage games. Precisely
speaking, he proved equivalence between Shoup’s GGM and what is called the type-safe model, which is a variant of Maurer’s GGM
for single-stage games, but there is no difference between the type-safe model and Maurer’s GGM when we consider group-theoretic
problems such as the DL problem.



over an arbitrary group [EHKO04]. This makes proving lower bounds in terms of query complexity unlikely
to yield superpolynomial lower bounds for the HSP.'?

Interestingly, these HSP algorithms can be considered generic algorithms by extending our QGGM for
general groups. Also, contrary to the query complexity (to ), the group operation complexity of [EHKO04]
is exponentially large. One may wonder if the group operation complexity can provide an interesting
lower bound of the HSP for some nonabelian groups. The full answer is elusive with this paper’s tools.
The dihedral group case, a crucial case regarding its connection to the lattice-based [Reg04] and isogeny-
based cryptography [Pei20, CJS14], has a negative answer to this question, as the algorithm of Ettinger and
Hoyer [EHO00] only makes a polynomial number of group operations.

We believe exploring other potential applications of the generic model presented in this paper is an
interesting topic. For example, can we argue something about factoring by extending our model to the ring
operations?!?

1.3 Related Works

Post-quantum GGM. Zhandry [Zha21] introduced a model called post-quantum GGM as a quantum
analog of Shoup’s GGM. He showed that the generic group oracle in the model is quantumly reset indif-
ferentiable from ideal ciphers. This means that generic groups can be used to construct symmetric key
encryption secure against quantum adversaries. On the other hand, the work does not discuss the hardness
of the DL and its related problems in the post-quantum GGM.

Generic group action model. While the DL problem on cyclic groups can be solved in quantum polyno-
mial time by Shor’s algorithm, the DL problem for group actions is believed to be hard against quantum
computers. Such group actions with the quantum hardness of the DL problem have been used as bases
of some proposals of post-quantum cryptography [Cou06, RS06, CLM 18, JQSY19]. Montgomery and
Zhandry [MZ23] and Duman et al. [DHK*23] introduced generic models for group actions and studied
the relations between the DL and related problems. We stress that their results are not proving the lower
bounds.'*

Hybrid quantum-classical algorithms. The hybrid quantum-classical algorithms have recently begun to
attract more attention in various aspects. In [CCL23, CM20], the authors studied the relations between
the hybrid algorithm with shallow quantum circuits and BQP, refuting the conjecture of Josza [Joz06] and
proving Aaronson’s conjecture [Aar05]. The study of hybrid algorithms with shallow quantum circuits was
continued in [ACC*22] relative to random oracles. [Ros22] studied the hybrid algorithm in the context of
Grover’s algorithm, showing that classical queries cannot assist quantum computation. [HLS22] further
developed the tools for hybrid algorithms with random oracles and showed a similar result for collision
finding. Our model of generic hybrid algorithms is inspired by [CCL23, ACC*22], as well as the other

papers.

2 Technical Overview

Classical GGM. First, we recall the classical GGM as formalized by Maurer [Mau05]. Let G be a cyclic
group of order NV with a generator g in which we consider group-theoretic problems such as the DL prob-
lem. A generic algorithm A is formalized as an oracle-aided algorithm that has classical access to an oracle,
which keeps a table T storing elements of Zy. At the beginning, when A takes g¥', ..., g¥™ as input, the
table T is initialized as (y1, ..., Ym0, ...,0).!> The generic algorithm A can make the following two types of

12For a certain restricted class of algorithms, there are some known limitations [MRS08, HMR*10].

13In [Hha24], some progress is made in this direction.

4Indeed, [DHK 23] argued that we could not hope for the superpolynomial lower bound of the DL problem in group actions due
to [EHO00], similar to our discussion on the dihedral HSP.

15The size of T can be unbounded.



queries:

 Group operation queries. When A submits (b, 1, j, k) € {0, 1} x N3, the oracle finds i-th element x; and j-
th element z; in the table T and overwrites the k-th element of T' by x; + (—1)’x;. Nothing is returned
to A.

e Equality queries. When A submits (i, j) € N?, the oracle returns 1 if i-th and j-th elements of T are
equal and otherwise returns 0.

We only count the number of group operation queries and allow equality queries for free, following the
previous models [Mau05, Zha22].'®

Finally, A outputs a bit string or an index i* of T'. In the latter case, g
x;+ is the i*-th element in 7.

X%

is treated as A’s output where

Quantum GGM. We define the Quantum GGM (QGGM) as a natural quantum analog of the classical
GGM where A is allowed to make quantum queries and the table T is stored in a quantum register T. How-
ever, since overwriting values of quantum registers is not unitary, we formalize group operation queries in
a slightly different way. Specifically, a group operation query is (a superposition of) (b,i,j) € {0,1} x N?
and the oracle replaces i-th element of the table register T with z; + (—1)’z; (in superposition) where z;
and z; are i-th and j-th elements of T before the query, respectively. In this way, we can ensure that it is a
unitary operation. For clarity, we describe how the oracle works for group operation and equality queries
where Q is the query register:

e Group operation queries. Apply the following unitary on Q and T:
16,4, 1)Q @ |- Tiy ooy Ty oo)p 5 [0y, 5 @ [ @i A+ (=1) P, oo T, )iy
if i # j and otherwise it does nothing.
e Equality queries. Apply the following operation on Q and T
10,3, 5)Q @ |- Tiy ooy Tjy oo )p = (DD 4, 5)q | Ty ooy Ty o) p
where t = 1if ; = x; and ¢t = 0 otherwise.

Initialization and finalization of a generic algorithm are exactly the same as in the classical GGM except
that T is measured in the computational basis at the end.

Basic idea: the fully quantum setting. Our idea is to simulate a generic algorithm A taking m group
elements as input in the QGGM by a generic algorithm B in the classical GGM with an exponential blowup
in the number of group operations (or simply, queries). Since we have a group operation complexity lower
bound of Q(|G|'/?) for the DL problem in the classical GGM, such a simulation gives a lower bound of
Q(log|g|) in the QGGM. In particular, the classical lower bound holds even for unbounded algorithms as
long as the condition on the number of queries is satisfied.

The idea for the simulation is extremely simple. At the beginning, the table register T of the QGGM has
m non-zero elements (y1, ..., Ym ). Suppose that A makes one (potentially parallel) quantum group operation
query. After the query, T can only contain elements of the form z1y1 + 2292 + ... + 2mym Where |2z;| < 1
for all i € [m] in any branch with a non-zero amplitude. After A makes the next (potentially parallel)
quantum group operation query, a similar argument shows that T can only contain elements of the form
2191 + 22Y2 + ... + ZmYm Where |2;| < 2 for all i € [m]. By repeating a similar argument recursively, one can
see that after d-layer of parallel quantum group operation queries, T can only contain elements of the form
21y1 + 20Y2 + ... + ZmYm Where |z;| < 297! foralli € [m]. In particular, the number of such elements is at
most (2¢ + 1)™ < 2m(@+1)_ Thus, if the generic algorithm B in the classical GGM creates all these elements

16Gee Section 3 for more discussion.



in its table in advance using 2"(?*1) classical queries, it can perfectly simulate T for A. Note that B can
run in unbounded time, though it only makes classical queries. In particular, it can simulate any quantum
superposition of the group elements in the table. This means that a generic algorithm of query depth d in
the QGGM can be perfectly simulated by a generic algorithm that makes 2™(4+1) queries in the classical
GGM. In particular, for the DL problem, we have m = 2 since the inputis y; = g and y2 = ¢” for random z.
Combined with the lower bound in the classical GGM, we obtain Theorem 1.1.

Hybrid quantum-classical algorithms. We explain how to extend the above idea to the hybrid quantum-
classical algorithms. First, we describe our formalization of hybrid quantum-classical algorithms in the
QGGM. A hybrid quantum-classical algorithm is characterized as a consecutive execution of quantum
subroutines Uy, ..., Ur followed by a classical post-processing algorithm Az, ;. Each subroutine U; makes
arbitrarily many classical queries and a bounded number or depth of quantum queries and measures all
the registers including the table register T at the end. A7, makes arbitrarily many classical queries and
no quantum query.

We first consider the depth-bounded case where each subroutine can have quantum query depth at
most d. Let ) be the total number of the hybrid algorithm’s queries including both classical and quantum
ones. The idea is similar to the basic case: The classical simulation algorithm in GGM creates all the group
elements that may appear in the table register T.

We first analyze each subroutine and then apply an inductive argument. Suppose that a subroutine U;
is described as a sequence (C; o, O; 1, ..., Ci 4—1, O; ) where each C; ; only makes classical queries and each
0;,; makes one parallel quantum query. Let @); be the total number of queries made by U; and let ¢; ; be
the number of classical queries made by C; ;. Let m; be the number of non-zero elements stored in the
table register T when U; starts. For j = 0,1,...,d — 1, let S; ; C Zy be the set of elements that appear in
the table register T in some branch with a non-zero amplitude right before the application of O; ;11 and let
Si.a € Zn be the set right after the application of O; 4 (before the forced measurement). In our model, we
can show that |S; o| <m; + 1+ ¢io, S| < 2[Si;-11* + cij, and |S; a| < 2]S;,.4-1|* Thus, we have

d d d d
1Sial <22 (mi+1+cio+cii+..+ Ci,d—1)2 < 2% (m; + Qi +1)°

Then, by a similar argument to the basic case, a generic algorithm in the classical GGM can simulate the

subroutine U; by making at most 22" (m; + Qs + 1)2d group operation queries. Moreover, it is easy to see
that we have m; < m + Q1 + ... + Q;—1 where m is the number of elements given as input. This is because
one classical or quantum group operation only adds at most one new element in the table register. Then, if
we let ¢ be the number of classical queries by A7, the total number of classical queries needed to simulate
the whole execution is at most

2 (m+Qr+ D> 42" (m+Q+Q+ 1)+ +c<Q+T -2 (m+Q+1)>

where we use Q1 + Q2 + ... + Q7 + ¢ < Q. That is, any generic hybrid algorithm with the total number
of queries ) and bounded quantum query depth d can be simulated by a generic algorithm in the classical
GGM that makes at most Q +T'-22* (m+Q+ 1)2d classical queries. Combined with the classical GGM lower
bound, we obtain the depth-bounded part of Theorem 1.3.

Next, we consider the query-bounded case where each subroutine can make at most ¢ quantum queries,
and the total number of the hybrid algorithm’s queries is @), including both classical and quantum ones.
The idea is similar to the depth-bounded case, but we have to count the number of elements that appear
in the table register T more carefully by making use of the fact that there are no parallel queries. We use
similar notations to the depth-bounded case where the difference is that each O; ; makes only one non-
parallel group operation query instead of a parallel one and the index j ranges in [¢] instead of [d]. First, we
remark that we can simulate C; o, ..., C; 4—1 by making at most @); classical queries in an obvious way. Thus,
we ignore them in the following analysis and simply add @; to the number of classical queries needed to
simulate the subroutine at the end. Recall that m; denotes the number of non-zero elements stored in T at
the beginning of the subroutine U;. Before the subroutine U; applies O; 1, T has a classical state that has at
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most m; + Q; + 1 elements including 0. After applying O; 1, T is a superposition of at most 2(m; + Q; +1)?
different tables. We observe that in each possible table with a non-zero amplitude, at most one new element
is added. Thus, we can simulate O; ; by making at most 2(m;+@Q;+1)? classical queries. Next, for each fixed
branch of T, we can do the same analysis to see that we can simulate O, , by making at most 2(m; + Q; + 1)2
classical queries. Since there are 2(m; + @Q; + 1)? branches, the total number of classical queries needed to
simulate O; 5 is at most 2(m; +Q; +1)%-2(m; +Q; +1)? = 4(m; +Q; +1)* and we have at most 4(m; +Q; +1)*
branches with a non-zero amplitude. By repeating a similar argument recursively, we can simulate O; ; by
making 27/ (m; + Q; 4+ 1)% classical queries. Thus, the total number of classical queries needed to simulate
the subroutine U; = (C; 0, Ui 1, ..., Ci q—1, U; ¢) is at most

Qi +2(mi + Qi + 12 + . +29(my + Q; + 1)%7 < Q; + 27 (my; + Q; + 1)

Noting that we have m; < m + Q1 + ... + Q;_1, the total number of classical queries to simulate the
whole hybrid algorithm is at most

(@142 (m+ Q1 +1)*) + (Q2+ 2 (m+ Q1+ Q2+ 1)*)) + ..+ c < Q+T -2 (m + Q + 1)*,

where we use Q1 + Q2 + ... + Q7 + ¢ < Q. That is, any generic hybrid algorithm with the total number of
queries ) and bounded quantum query number ¢ can be simulated by a generic algorithm in the classical
GGM that makes at most Q + T - 297 (m + Q + 1)?? classical queries. Combined with the lower bound in
the classical GGM, we obtain the query-bounded part of Theorem 1.3.

Quantum-memory-bounded algorithms. To formalize a memory-bounded generic quantum algorithm,
we divide the table register T into the quantum part T and classical part T¢. We restrict T to store
at most ¢ elements whereas T¢ can store arbitrarily many elements. A generic hybrid quantum-classical
algorithm without QRACM cannot send a group operation query that involves a superposition over indices
in T¢. In this setting, the number of new elements that may be computed by one quantum query is at most
2t(t — 1). Thus, by a similar analysis to the query-bounded case for quantum-memory-bounded generic
algorithms in the previous paragraph, we can see that the number of classical queries to simulate each
subroutine U; is at most

Qi+ (2t(t— 1)+ 1) + o+ (2t —1) + 17 < Qs +2- (2(t — 1) +1)7,

where +1 appears for a technical reason,'” and thus the total number of classical queries to simulate the
whole hybrid algorithm is at most

(Q+2- 2t —1)+ D))+ (Qa+2- 2t —1)+1)9) + ...+ ¢ < Q4 2T(2t(t — 1) + 1)%.

Combined with the classical lower bounds, this implies the former part of Theorem 1.4.

For capturing QRACM that can store r elements, we allow a generic hybrid algorithm to make a query
involving a superposition over indices in T¢ as long as the number of indices in T involved in the super-
position is at most r. In this setting, the number of new elements that may be computed by one quantum
query is at most 2t - (¢t — 1 + ). Thus, by a similar analysis where we replace 2¢(t — 1) with 2¢- (t — 1+ 1),
the total number of classical queries to simulate the whole hybrid algorithm is at most

(@Q+2-2t+r—D)+DD)+(Qx+2-2tt+r—1)+ D)) +...+c<Q+2T - (2t(t+7—1) +1)%

Combined with the classical lower bound, this implies the latter part of Theorem 1.4.

3 The Adversarial Model

This section defines the model of generic adversaries for the discrete logarithm and related problems. Sec-
tion 3.1 defines the generic group model for the classical and quantum adversaries and Section 3.2 sum-
marizes the cryptographic problems such as the discrete logarithm and their lower bounds in the classical
generic group model.

7Slightly precisely, the element 0 in the memory-bounded simulation could be removed from the memory during the simulation.

11



3.1 The Generic Group Models

Classical generic group model. We first review the classical generic group model (GGM) as defined in [Mau05].
A generic algorithm A in the GGM interacts with an oracle that keeps a function 7' : N — Zy for some pos-
itive integers N. We often regard T as a table consisting of group elements, and we often refer to T'(i) by

the i-th element in the table 7. At the beginning, T is initialized as T'(¢) := y; for ¢ € [m] and T'(¢) := 0 for

all ¢ > m where (y1, ..., ym) € Z}; is the input of A. A is allowed to make the following queries:

e Group operation queries. When A submits (b, i, j, k) € {0,1} x N3, the oracle overwrites T'(k) := T'(i) +
(=1)*T(j). Nothing is returned to A.

e Equality queries. When A submits (i, j) € N?, the oracle returns 1 if T'(i) = T'(j), and 0 otherwise.

Finally, A outputs a classical string or a special symbol group along with an integer ¢. In the latter case, T'(¢)
is treated as A’s output.

When we discuss the complexity of A, we only count the number of group operation queries, denoted
by the group operation complexity, and allow it to make equality queries for free following [Mau05, Zha22].
Assuming the zero-cost equality query makes our result stronger, and in fact describes the practice more
appropriately. We refer to a more detailed discussion in [Zha22, Remark 3.1].

Quantum generic group model. We extend the GGM to define the quantum generic group model (QGGM).
A generic algorithm A in the QGGM works over a working register W, a query register Q, and a table reg-
ister T. The registers W and Q are initialized to be |0...0). The register T stores s group elements of Z y for
some positive integers s, N. At the beginning, T is initialized as |y1, ..., Ym, 0, ..., 0)p where (y1, ..., ym) € Z}
is the input of A. A can apply arbitrary quantum operations on W and Q, but it can only act on T through
the following types of queries:

¢ Group operation queries. Apply the following unitary Oq T on Q, T

|b,’L,j>Q X |...,J}i, sy Ty >T — ‘b,Z,j>Q X ’,l‘l + (—1)b.13j, sy Ty >T (1)
if i # j and otherwise it does nothing.

o Equality queries. Apply the following operation on Q and T

|b,Z,]>Q (%] |...,.§Ci, o Ty, >T > |b &b t,i,j>Q |...7l’i7 s L, >T
where t = 1if x; = z; and t = 0 otherwise.

Finally, A outputs a classical string or a special symbol group along with an integer i € [s]. In the latter case,
T is measured and the i-th element in the measurement outcome is treated as the output of A.

As in the classical GGM, the group operation complexity of A is defined by the number of group operation
queries, and the equality queries are considered as free.

Parallel-query generic algorithms. We define parallel-query generic algorithms in the QGGM. A parallel-
query generic algorithm A in the QGGM works similarly to that in the QGGM except that it has K query
registers Qq, ..., Qx for some positive integer K (referred to as the query width) and is allowed to make
parallel queries as follows:

o Parallel group operation queries. Let Oq, T be a unitary that works as in Equation (1) where Qj, plays
the role of Q. Then apply the following operation on Qy, ..., Qx and T

® ‘bkvlkajk>Qk ® |‘T1a "'a'rs>T = H OQk,T ® |bk‘77’k7]k>Qk & |I17"~7IS>T
ke[K] ke[K] ke[K]
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if i, & {in berr)gur U {dr bek for all k € [K] and otherwise it does nothing.'®
® Parallel equality queries. Apply the following operation on Q and T

Q) 1wk, i), @ 101, shp = R bk & tho ik G, @ 21, To)p
ke[K] ke(K]

where t;, = 1if ;, = z;, and t;, = 0 otherwise.
We call the number of parallel group operation queries by the group operation depth.

Remark 1. We do not consider parallel queries that mix group operation and equality queries because such
queries can be split into a parallel group operation query and a parallel equality query.

Remark 2. Strictly speaking, here we are extending the QGGM to deal with parallel queries; when K is
fixed to 1, this model becomes the QGGM above. On the other hand, if we always measure the query
register whenever the algorithm makes a query, it is not hard to see that the QGGM is equivalent to the
classical GGM when we allow s to be arbitrarily large.

Convention. We often analyze the problems defined for a multiplicative cyclic group G in the (Q)GGM
with N = |G|. In this case, we occasionally identify € Zy and ¢g* € G where g is a generator of G. In
particular, the generator 1 € Zy is identified with ¢ € G and the zero element 0 € Zy is identified with
1 € G. We also often abuse notation to write G to mean the generic group oracle in the (Q)GGM. For
example, a (parallel-query) generic algorithm for the DL problem is written as A9 (g, g%).

3.2 Group-theoretic Problems
3.2.1 Problems

For a finite set S, we write z <— S to denote that an element z is uniformly sampled from S at random.

The Discrete Logarithm (DL) Problem. In the discrete logarithm problem, an element <+ Zy is uni-
formly chosen at random. The first and second elements of the table T' are initialized by T(1) = 1 and
T(2) = z so that the input to the algorithm is (g, g”). The adversary is asked to output z. The advantage of
the DL adversary AY is defined as follows:

AdvpL(AY) =Pr [A9(g,¢") — ],

where the input g, g* denotes the elements stored in the table 7'.

The Computational/Decisional Diffie-Hellman Problem. In the computational Diffie-Hellman problem
(CDH), two elements x,y < Zy are randomly chosen. An instance (g, g%, ¢¥) is given to the adversary as
elements in 7. The adversary is asked to compute ¢g*¥ in the table. The advantage of the CDH adversary
AY is defined as follows:

Advcpn(A9) = fi [A%(g,9",9") = g"] .

In the decisional Diffie-Hellman problem (DDH), three random elements x,y,r < Zy are chosen, and
either (g, 9%, ¢%,9") or (g, g%, g%, g*¥) is given to the adversary, as elements in T, and the adversary is asked
to decide which is the case by outputting a decision bit b € {0, 1}.

The advantage of the DDH adversary A9 is defined as follows:

Advpp(A9) = Pr [A%(g,97,9%,9™) = 1] — Pr [A9(g,9",9%.9") = 1]|.

8Intuitively, this condition means that multiple queries should not write to the same register and if one of the queries writes to
some register, then that register should not be used as a control register for another query. Note that this does not prohibit parallel
queries that share the same control register.
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The Multiple Discrete Logarithm Problem. In the m-multiple discrete logarithm problem (m-MDL), m
elements z1, ..., 2, < Zy are independently and uniformly chosen at random. The m-MDL problem in-
stance ¢g**, ..., g"™ is given to the adversary, stored in the 2, ..., (m + 1)-th elements of T along with the first
element g of T'. The adversary is asked to find all of x4, ..., ,,,. The advantage of the m-MDL adversary A9
is defined as follows:

Adv,,_mpL(A9) = Pr [Ag(g,gml, e §7) = (24, ...,xm)] .

3.2.2 Classical lower bounds
The following theorems state the lower bounds of the above problems in GGM.

Theorem 3.1 (GGM lower bound of DL/CDH/DDH [Mau05, Sho97]). Let Q) be a positive integer, and G be a
prime-order cyclic group. For a generic algorithm A9 in GGM with Q queries and for any = € {DL, CDH, DDH}, it

holds that
=0 ()
Adv, (A7) = = .
dv..(A%) G

In particular, any constant-advantage algorithm in the GGM solving the DL/CDH/DDH problem makes at least
Q(+/|G]) queries.

Theorem 3.2 (GGM lower bound of MDL [Yun15]). Let Q) be a positive integer, and G be a prime-order cyclic
group. For a generic algorithm A9 in GGM with Q queries for the m-MDL problem G, it holds that

AdV,-mpL(A9) = O ((W) m) )

In particular, any constant-advantage algorithm in the GGM solving the m-MDL problem makes at least Q(1/m|G|)
group operations.

Remark 3. We stress that the query complexity is the only complexity measure when showing the lower
bounds. In particular, the lower bounds in Theorems 3.1 and 3.2 do apply for adversaries even with quantum
or unbounded computational powers, as long as they only make T classical queries. This observation is
essential for our result.

4 Quantum Algorithms in the QGGM

This section presents generic quantum algorithms for the DL and MDL problems. Readers mainly inter-
ested in the lower bound can safely skip this section.

We first review Shor’s algorithm for the DL problem with a closer look at the group operation complex-
ity and its modification with classical preprocessing. The new MDL algorithm is presented at the end of
this section.

We stress that all of these are generic. Also, they follow the standard approach for the abelian hidden
subgroup problem (HSP) but the way to compute the relevant function defining HSP is different. Therefore,
the correctness analysis follows from the known analysis, and we omit them (see, e.g., [Lom04]).

Let N be a positive integer and define wy := exp(27i/N). The quantum Fourier transform QFT and its
inverse QFT' are defined as follows:

N—

,_n

N—
QFT : wiF k), and QFTT : | Z N )

5-

k=0
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4.1 The Discrete Logarithm Problem

We rephrase the quantum algorithm due to Shor [Sho94] in detail and describe its variations in the hybrid
setting and the depth-efficient version.

Let G be a cyclic group of order N. Suppose that a generator g and a handle g representing the problem
instance are given to the adversary for random z. The QGGM algorithm below finds z, where the below
description roughly includes the square-and-multiply method to compute g**°*, which are omitted in the
usual descriptions. Let |G| = N, n = [log, N.

41.1 The quantum DL algorithm
The DL algorithm A proceeds as follows.
20 .

1. Given a problem instance (g, g*), the algorithm prepares the group elements of the form ¢¥ and g
or the set

—1

2 n—1 2 n
D, ={9,9>,9° ,....g® }U{g".¢*.0°" ... “}

in the table using classical group operations. It prepares a quantum state [0,0) , ® |1, Dg). .

2. Applying QFT ® QFT on the working register of A to obtain

N—-1

|a7b>A
Z N ® |17‘D£E>'
a,b=0

3. Using the binary expression of a,b and D,, the algorithm computes

1\72—:1 |aa b>A ’ga+ban:D>T
N )

a,b=0

applies QFT" @ QFT', and measures the register A. For the measurement outcome (u,v) # (0,0),
return v/u as an answer. Otherwise return L.

The number of oracle queries is O(n) = O(log|g|); the construction of D, requires O(n) queries, and

computing g*%® requires 2n queries, each of which is the controlled group operation multiplying ¢>" or

g%'" on the first entry of the table.

Note that the quantum registers of this algorithm are essentially the working register A and the first
register of the table holding g®**. Furthermore, the quantum group operation accesses only one register
of the remaining parts. The following folklore theorem summarizes the result of this algorithm, regarding
this observation.

Theorem 4.1. Let G be a cyclic group. There exists a QGGM algorithm making O(log |G|) group operations that
solves the discrete logarithm problem with an overwhelming probability.

This algorithm requires a quantum register holding 2n-qubit" and a single group element, and classical storage
holding 2n group elements. This algorithm does not require quantum access to classical storage.”’

19This can be reduced using the tricks in, e.g., [Kit96, ME98].
20Precisely speaking, it requires a QRACM storing a single group element, which is unavoidable when accessing group elements in
classical memory.
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4.1.2 Hybrid quantum-classical algorithms

In the above algorithm, the construction of D,, is entirely classical, and only the computation of g% uses

quantum power. Since classical computation is much cheaper than quantum computing, it is tempting to
reduce the later query complexity at the cost of the former classical preprocessing.

We can modify the above algorithm taking this consideration into account, by exploiting the base-p
numeral system for p > 2. Let n,, := [log,, N|. This modified p-base algorithm uses the following set

D) = U {gk.pv} U U {ge.pa‘z}
1<k<p,0<i<n, 1<0<p,0<<ny,
instead of D, above. The only differences are the step for preparing DY) and the way to compute g2,
The preparation requires O(plog |G|/ log p) group operations, and the p-base exponent takes O(log |G|/ log p)
quantum group operations. It is worth noting that this algorithm requires the QRACM access to a size-p

subset of D). The result of this hybrid algorithm is summarized as follows.

Theorem 4.2. Let G be a cyclic group and let p > 1 be an integer. There exists a generic hybrid algorithm with
O(log |G|/ log p) quantum group operations and O(plog |G|/ logp) classical group operations that solves the DL
problem with an overwhelming probability.

This algorithm requires a quantum register holding 2n-qubit and a single group element, and classical storage
holding O(plog |G|/ logp) group elements. This algorithm requires QRACM access to the classical O(p) group
elements simultaneously.

4.1.3 Depth-efficient algorithms

As suggested in [CW00], we can exploit the binary tree with 2log |G| leaves and log(2 log |G|) depth to reduce
the depth of the DL algorithm. Precisely, we prepare the elements in D, as leaves of the binary tree and
compute g**b* using this tree with 2log |G| — 1 internal nodes. Note that this computation is coherently
done over internal nodes.

Furthermore, we can combine the binary tree idea with the base-p numeric system with D). In this
case, we prepare glazitaziap)p® and g(baitbai PP™ for indices a, b as leaf nodes by coherently multiplying

the elements in D). The tree has O(log |G|/ log p) nodes and log log |G| — loglog p + O(1) depth. This gives
the following depth-efficient DL algorithm.

Theorem 4.3. Let G be a cyclic group and let p be an integer. There exists a generic quantum algorithm with
O(log |G|/ log p) group operations of depth loglog |G| — loglog p + O(1) that solves the discrete logarithm problem
with an overwhelming probability.

It requires a quantum register storing 2n-qubit and O(log |G|/ log p) group elements, and classical storage holding
O(plog |G|/ logp) group elements. It also requires QRACM access to the classical O(p) group elements simultane-
ously.

4.2 The Multiple Discrete Logarithm Problem

This section describes our new quantum MDL algorithm, where the adversary is given m group elements
y1 = g", ..., ym = g°™ as inputs. The adversary’s goal is to find z1, ..., z, using group operation queries.
The proposed algorithm follows the standard approach to hidden subgroup problems for the target
function f : Zy™' — G given by
S (Ko, os i) = g™ <y @)

which hides a rank-m subgroup H < ZWH generated by {z;eq—e; }1<i<m; thatis, itholds that f(g1) = f(g2)
for g1 H = g2 H. We stress the correctness follows from the previous analysis of the abelian HSP algorithms.
The improvement comes from the multi-exponentiation algorithm, which we recall below.
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421 The multi-exponentiation problem

In the multi-exponentiation problem, we are given the elements 1, k1, ..., h,, and the nonnegative exponents
€1, ....em, and asked to find AJ' - ... - A& only using the multiplication. Pippenger [Pip80] showed the
following result, which is known to be almost optimal.

Proposition 4.4 ([Pip80]). Let B be an integer, and lgm/1g B = o(1). Suppose e; < B for all i. Given inputs
1,ha, ey b and ey, ..., ey, there is an efficient deterministic algorithm to compute h$' - ... - h&r with

(I4+o0(1))mlgB

le B
&b+ lg(mlg B)

multiplications.

4.2.2 A multiple discrete logarithm algorithm

Let G be a cyclic group with order N. Suppose that we are given g,y1 = ¢**, ..., ym = g*™ as inputs. As in
the standard algorithm for HSP, the algorithm prepares a superposition

| = Ji)- T T
iz0 \o<k<n VM 0<kor ey VM™H
using QFT and then compute the target function f in Equation (2) coherently using Proposition 4.4.

To execute Proposition 4.4, the condition 1g m/ 1g |G| = o(1) must hold. We also note that this algorithm
requires large quantum memory. The result in this section is as follows.

Theorem 4.5. Let G be an cyclic group and m be a positive integer such that 1lgm/1g |G| = o(1). There exists a
QGGM algorithm that solves the m-MDL problem using
(2 +o(1))mlg|g|

lg(mlg|g])

quantum group operation with an overwhelming probability. If m = Q(log|G|), the amortized group operation
complexity is O(log |G|/ log m) per DL instance.

2log |G| +

5 Quantum Lower Bounds in the QGGM

In this section, we prove the quantum lower bounds of the DL and related problems in the QGGM. Our
main technical tool is the following simulation theorem.

Theorem 5.1. Let G be a group. Suppose that a generic algorithm A9 in the QGGM is given m group elements as
input and makes at most q group operations. Then there exists a generic algorithm BY in the classical GGM for G,
given the same inputs, which makes at most 2™ group operations to the oracle such that the output distributions
of BY(y) and A9 (y) are identical for any input y.

Furthermore, if A9 has the group operation depth at most d, the corresponding algorithm B exists with at most
2(d+1m eroup operations such that the output distributions are identical.

The generic algorithm B may perform quantum or unbounded computation, but the group operations
are all done classically. As observed in Remark 3, the GGM lower bounds apply to the algorithm B. With
this observation in mind, the quantum lower bound of the DL problem in the QGGM is an immediate
corollary of Theorem 5.1.
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Theorem 5.2 (Formal version of Theorem 1.1). Let G be a prime-order cyclic group. Any constant-advantage
generic quantum algorithm solving the DL problem makes group operations of depth at least Q(log |G)).

More precisely, the following holds. Let d be a positive integer. For a QGGM algorithm A9 making quantum
group operations of depth d for the DL problem over G, it holds that

Ag O 24d
Ad —o(Z).
voL(4%) <g|>

Proof. A DL instance consists of two group elements (g, g*), thus m = 2 for the DL problem. For m = 2,
any generic quantum algorithm A9 with a d query depth can be simulated by a generic classical algorithm
BY with Q = 22(4+1) queries by Theorem 5.1. The advantage of BY is bounded by O(Q?/|G|) due to Theo-
rem 3.1, which shows the desired result. O

The quantum CDH/DDH lower bound can be proven similarly.

Theorem 5.3. Let G be a prime-order cyclic group. Any constant-advantage generic quantum algorithm solving the
CDH/DDH problem makes group operations of depth at least Q(log|G|).

More precisely, the following holds. Let d be a positive integer. For a generic quantum algorithm A9 making
quantum group operations of depth d and for any « € {CDH, DDH}, it holds that

Adv,(A9) =0 (2;) :

5.1 Proof of Theorem 5.1

We return to the proof of the main theorem. The idea of the proof is to simulate the generic algorithm
in the QGGM by using classical group operations in the GGM. The simulation algorithm exhaustively
computes all branches of the original algorithm. This may take an unbounded time, but the group operation
complexity is bounded, and only exponentially larger than that of A, which suffices for our purpose; again,
the classical GGM lower bounds only consider the group operation complexity.

Proof of Theorem 5.1. Let A be a parallel-query generic algorithm in the QGGM with group operation depth
d and query width K that takes m group elements y1, ..., y, as input. Without loss of generality, we assume
that y1, ..., ym are not 0. Let N = |G|. Then we construct a generic algorithm B in the GGM that simulates A
as follows.

Initialization. For the simulation, the algorithm B makes use of a “labeling function”
L:Zn[Yq,....Yn] = [NJU{L},

which is gradually updated during the simulation.”’ Here, Zy[Y1, ..., Y;,] denotes the m-variate polyno-
mial ring over Zy with indeterminates Y7, ..., Y;,. Also, we note that [N] U {_L} denotes the set of labels,
and we will define the binary operation + between labels, which should be distinguished from the addi-
tion/subtraction of integers.

Intuitively, when we have L(f) = ¢ # L, it should be understood that we give a “label” ¢ € [N] to
f1,--sym) € Zn. For this to be well-defined, we always make sure that L(f) = L(g) if and only if
fa, - ym) = 9(y1, .., ym) for any f, g on which L is defined (i.e., takes a non-_L value).

The algorithm B initializes L as follows:

1. Set L(0) « [N].2

21, will take non-L values only on polynomials of degree at most 1 throughout the simulation.
22Recall this means L(0) is sampled from [N] uniformly at random.

18



2. For i = 1,...,m, uniformly set L(Y;) € [N] under the constraint that L(Y;) # L(0) and L(Y;) = L(Y;)
if and only if y; = y;. Note that B can do this because it can check if y; = y; by making an equality
query to the classical group oracle.

3. Set L(f) := Lforall f ¢ {0,Y7,...,Y;, 1.2

B also defines a set S C Zy[Y7, ..., Y}, ] of polynomials on which the value of L is defined (i.e., not .L). That
is, S := {0} U {Yi}ieq1,...m}- The set S will be updated along with L to ensure that it is always the set
consisting of polynomials on which the value of L is defined.

B creates the following state as a simulation of the initial state for A:

100 w.qr.....q © 1LY1); cees L(Yin)s L(0), ooy L(0)) .

During the simulation, we keep the invariance that for any ¢ € Z,, that appears in the register T' of any
branch with non-zero amplitude, there is f € S such that ¢ = L(f). This is satisfied at this point since

S ={0} U{Yiticq1, ..m}

Local operation. When A applies local operation on its registers W, Q1, ..., Qx, B also applies the same
operation.

Parallel group operation query. Suppose A makes a parallel group operation query. Let Sy := 5. (We
introduce Sy to record the set S at the point of making the query since we will update the set .S during
the simulation below.) Then B does the following. Informally, the first step updates L and S to include
the group elements potentially appearing after the query, and the second step defines the group operations
over the labels. B simulates the parallel group operation of A in the last step.

1. For each pair (f, g) € S2

ore (in arbitrary order), do the following:

(a) Check if there is any h € S such that

h(yh sy ym) = f(yla 7y’m) + g(y1> 7ym)

Note that B can check this by making one group operation query for the RHS and many equality
queries to the classical group oracle because f(y1,...,Ym), 9(Y1,---,Ym), and h(yi,...,ym) have
been already generated in the table of the classical group oracle.

o If there exists such h, it sets
L(f +g):= L(h).
Note that this is well-defined since the RHS does not depend on the choice of h.**

¢ Otherwise, it uniformly sets L(f + ¢g) < [N] under the constraint that L(f + g) # L(h) for
allh € S.

Then update S + SU{f + ¢}.
(b) Similarly define L(f — g) and update S <~ SU{f — g}.

2. For labels (¢,¢') € [N]?, define ¢ + ¢ as follows:*
o Check if there is (f, g) € S, such that ¢ = L(f) and ¢ = L(g).

pre

2There are infinitely many elements in Z y (Y1, ..., Yin], but B does not explicitly record that L is defined to be L on those inputs.
The value of L is understood to be L unless it is explicitly defined to be a non-_L value.

24 As already mentioned, we always ensure that L(h) = L(h') if and only if h(y1, ..., ym) = h' (Y1, ..., ym) forall b, b’ € S.

25This is the binary operation between two labels, NOT the sum/subtraction of £ and ¢’ as integers or modulus N.
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— If they exist, define
(+0=L(f+g).

Note that this is well-defined since the RHS does not depend on the choice of (f, g).%°
— Otherwise, define ¢ + ¢' := 1.

3. Then B simulates the group operation oracle by using the above defined operations for labels. That
is, it does the following: For each k € [K], let Oq, T be the unitary that works as follows:

Bry ks Gk, |- Cis -oos s ) = By Gk, oo i + (1) 0y oo b o) p

if i, # ji, and otherwise it does nothing. Then apply the following operation on Qy, ..., Qx and T

Q) ek, jk)g, @10, by = || Oqur Q) [bryir:dk)q, @ 101, s le)y

kE[K] ke[K] ke[K]

if ir, & {in e\ gk} U {Jn Jrrepx for all k € [K] and otherwise it does nothing.

Parallel equality query. When A makes a parallel equality query, B applies the following unitary:

) bk ik i)y @ [0, oes bs)p = Q) bk ths ks i)y © |61, L)y
kE[K] ke[K]

where t;, = 1if ¢;, = ¢;, and ¢}, = 0 otherwise.

Finalization. If A outputs a classical string, B outputs the same string. If A outputs the special symbol
group and an integer i, B measures T. Let £ € [N] be the i-th element in the measurement outcome. B finds
f € S such that L(f) = ¢. Then B finds the index i’ such that the i’-th element stores f(y1, ...,y ) in the
table kept by its own classical group oracle. (Such f and i’ must exist by the definition of the simulation.)
Then B outputs group and 7'.

The above completes the description of B. It is easy to see that B perfectly simulates A. To see this,
we consider a hybrid simulator B’ that has an additional capability to directly see y1, ..., y,, and works
as follows: B’ simulates the group operation oracle for A as in the QGGM except that it first randomly
chooses a random bijection I : Zy — [N] and records I(z) instead of z in T for any group element z. When
A makes a group operation query, B" applies /! to the relevant entries, applies the group operation, and
then applies I again. It is easy to see that B’ perfectly simulates A because the random bijection I just
induces a basis change in 7. Moreover, the ways of simulation by B and B’ are perfectly indistinguishable
from the view of A because we can regard B as doing the same as B’ except that it samples the bijection I
via lazy sampling through L.

We count the number of group operation queries made by 5. To do so, we observe that B only generates
group elements that can be generated by depth-d applications of the group operation. In particular, the
group elements generated after the first query are of the form z1y; + ... + Zmym for |z < 1, because
quantum group operations for ¢ = j is ignored by definition. Inductively, we can show that it only needs to
generate group elements z of the form

=211+ -+ ZmYm

where |z;| < 2¢7! for all j = 1,...,m. These group elements can be generated in the table of the classical
group oracle by making (2¢ + 1)™ < 2"(@+1) group operation queries.

Combining the above arguments, we conclude that the classical GGM algorithm B can perfectly simu-
late the algorithm A by making at most 2(¢+1)™ classical group operation queries. O

26Suppose that L(f) = L(f’) and L(g) = L(g’). Then on input (y1, ..., ym ), f, f' and g, ¢’ have the same image, respectively, which
implies that f &+ g and f’ & g also have the same image under that input. Thus, L(f £+ g) = L(f' £ ¢').
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6 Hybrid Quantum-Classical Algorithms

This section presents the lower bounds of generic hybrid quantum-classical algorithms for group-theoretic
problems. In Section 6.1, we formalize the model of generic hybrid algorithms. The lower bounds are
presented in Section 6.2 using the hybrid simulation theorem, which is proved in Section 6.3.

6.1 The Model of Hybrid Algorithms

We establish the model of generic hybrid algorithms in this section. First, we define a classical group operation
OS,T in the QGGM, which is illustrated in Figure 1, as follows.

1. Measure the query register Q.
2. If the measurement outcome is b, 7, j, measure the i-th and j-th entries of the register T.
3. Apply OQ’T.

Intuitively, when we apply the classical group operations, all the relevant registers contain classical infor-
mation. A non-classical group operation query is called quantum.

Remark 4. The classical group operation in the QGGM differs from the group operation in the GGM be-
cause the group oracles in the two models have different interfaces. In this section, an algorithm A (and
its components to be described below) is always a generic algorithm in the QGGM, making classical or
quantum group operation queries in the QGGM. On the other hand, an algorithm B is always an algorithm
in the GGM, making group operation queries in the GGM.

w
Q » —
|¢>W,Q,T 1 :
Ti OQ’T :E:
-
e

C
0q.r

Figure 1: The classical group operation OS,T: The single-line wires stand for quantum wires, while the
double-line wires are for classical wires. T;, T; denote the i-th and j-th entries of T. We assume that the
measurement outcome of Q indicates the i-th and j-th entries in this diagram. Recall that Oq  is a group
operation query.

In our generic hybrid model of computation, a hybrid algorithm is defined by a generic algorithm in
the QGGM that by itself performs only classical group operations, but has access to a quantum subroutine,
which is a generic quantum algorithm with a bounded number of quantum group operations but making
an arbitrary number of classical group operations.

A quantum subroutine formalizes a quantum algorithm with a limited coherence time. More precisely,
we define a g-query quantum subroutine by a generic quantum algorithm in the QGGM with at most ¢ quan-
tum group operations. After the ¢-th quantum group operation, it is forced to measure all registers on a
computational basis. We call this measurement as the forced measurement. On the other hand, the quantum
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Figure 2: The behavior of the quantum subroutine: Oy, ..., O, denote the unitary operation that includes a
single quantum group operation, and Cj, ...., C;_1 denote quantum algorithms that may include multiple
classical group operations but no quantum group operations. V' denotes an arbitrary quantum algorithm.
All registers are measured after O, on a computational basis.

subroutine can make an arbitrary number of classical group operations. The total number of group opera-
tions is the summation of classical and quantum group operations. The quantum subroutine can perform
an arbitrary quantum map over the registers (W, Q) in the middle of its execution. We illustrate the rough
behavior of the table register in a quantum subroutine as in Figure 2. As in the diagram, a quantum subrou-
tine can be described by an alternating sequence of generic algorithms (Cy, O, ..., Cq—1,0q), where C; is a
generic algorithm in the QGGM that may include multiple classical group operations and O; is a generic
algorithm in the QGGM that includes a single quantum group operation for each j. Let ¢; be the number
of classical group operations C; made.

Finally, a generic hybrid algorithm A is specified by a tuple (Ui, ..., Ur, Ar41) of T' quantum subroutines
and a follow-up generic algorithm that is connected as in Figure 3. Here, A7, is a generic algorithm that
only makes classical group operations, and U; is a g-query quantum subroutine for each j. Again, the
generic hybrid algorithm can perform an arbitrary quantum map over (Q, W) in the middle. Recall that
the quantum subroutine makes the forced measurements for all registers including 7" on a computational
basis, and the outcome of forced measurements will be given to the next subroutine (or A7) as input.

W M 1 M
|4 |4 Vv Vv
Uy v, — - — Ur Ary1 p——m——
T
I _ 1 N

Figure 3: The generic hybrid algorithm with T invocations of quantum subroutines: Uy, ..., Ur are quantum
subroutines and include the measurement at the end. Ary; is a generic algorithm with classical group
operations. V' denotes an arbitrary quantum algorithm.

Parallel-query generic hybrid algorithms. We also define parallel-query generic hybrid algorithm in the
QGGM, by allowing quantum subroutines to be parallel-query generic algorithms in the QGGM. While a

22



parallel classical group operation can be defined naturally, we only consider a classical group operation as
defined above, which makes the simulation easier. Concretely, we separately use the parallel-query group
operation oracle and the classical group operation oracle. The total number of queries is the summation
of classical group operations and the query width K times the number of parallel-query quantum group
operations.

A d-depth parallel quantum subroutine in the QGGM is defined by a parallel-query generic quantum
algorithm in the QGGM such that the number of parallel quantum group operation queries is bounded by
d. Again, the quantum subroutines can make intermediate classical queries, and can apply any quantum
map on (Q, W). Similarly with Figure 2, the d-depth parallel quantum subroutine can be described by
a sequence of algorithms (Cy, Oy, ...,Cq—1,04), where C; is a generic algorithm with ¢; classical group
operations and Oj is a generic quantum algorithm with a single parallel quantum group operation. The
subroutine is forced to measure its all registers after O,.

We characterize a parallel-query generic hybrid algorithm by a sequence of generic algorithms (U, ..., Ur, Ar41)
where U; is a parallel-query generic quantum algorithm and A7 is a generic algorithm with only classical
group operations.

Remark 5. We assume that the algorithm a priori fixes the sequence of oracle queries to classical and
quantum group operations. This means that the algorithm cannot decide which oracle to call depending
on its (classical) memory. As shown in [DFH22], our result holds for the adaptive algorithm that chooses
which oracle to query based on its memory with a slightly worse bound.

Remark 6. This model of hybrid algorithms embraces a large class of hybrid algorithms considered in the
literature as long as the subroutines have a bounded depth or number of quantum queries. For example,
both d-CQ and d-QC schemes in [CCL23] are included in our model. Even the algorithms in a higher

hierarchy like BPPBANC™” (which is advocated in [ACC*22] as a proper model of hybrid algorithms) are
described in this model, provided that the query number/depth bounds hold. In particular, the d-depth
quantum subroutine can be interpreted as a d-QC scheme.

6.2 Lower Bounds for Hybrid Algorithms

This section presents two types of quantum query lower bounds of the DL problem against hybrid algo-
rithms: The generic hybrid algorithm with ¢g-query and d-depth quantum subroutines. We begin with the
following simulation theorem for hybrid algorithms, whose proofs are deferred to the end of this section.

Theorem 6.1. Let G be a group. Suppose that a generic hybrid algorithm AY, taking m group elements as inputs,
makes at most @) group operation queries (including both classical and quantum).

o If AY invokes q-query quantum subroutines T times, then there exists a (randomized) classical GGM algorithm
BY that perfectly simulates AY with

Q+T -2 (m+Q+1)%
classical group operations.

o If AY invokes d-depth quantum subroutines T times, then there exists a (randomized) classical GGM algorithm
BY that perfectly simulates AY with
Q+T -2 (m+Q+1)*
classical group operations.
As corollaries, we prove the lower bounds of the hybrid algorithm.

Theorem 6.2 (Formal version of Theorem 1.3). Let G be a prime-order cyclic group. Any constant-advantage
generic hybrid algorithm solving the DL/CDH/DDH problems with @) group operations, including both classical
and quantum. If Q@ = O(poly log|G|), it must make Q(log |G|/ loglog |G|) quantum queries of depth Q(loglog |G|)
between some two consecutive forced measurements.

More precisely, the following holds. Let ¢ > 1,d > 0 be a positive integer. Let » € {DL, CDH, DDH}.
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e Ifa generic hybrid algorithm A9 invokes q-query quantum subroutines T times for ¢ > 1, then it holds that

(T . 2q+1(m +Q+ 1)2q)2
4 '

Adv.(A9) =0 (

e Ifa generic hybrid algorithm A9 invokes d-depth quantum subroutines T times, then it holds that

(T 2 (m+Q+ 1)2d)2

Adv, (49 =0
v(4%) ]

6.3 Proof of the Hybrid Simulation Theorem

This section proves Theorem 6.1. We first present the following variants of Theorem 5.1 simulating the
quantum subroutines.

Lemma 6.3 (The simulation of g-query parallel quantum subroutine). Let G be a group. Suppose that A9 is
a q-query quantum subroutine in the QGGM, taking m group elements and a classical string as inputs, making at
most Q group operation queries including both classical and quantum. Then there exists a generic algorithm BY in
the GGM with

Q+2" (m+Q+1)%

classical group operations such that the output distribution of BY (y) and A9 (y) are identical for any input y.

Lemma 6.4 (The simulation of d-depth parallel quantum subroutine). Let G be a group. Suppose that AY is a
d-depth parallel quantum subroutine in the QGGM, taking m group elements and a classical string as inputs, makes
at most Q) classical group operation queries. Then there exists a generic algorithm B in the GGM with

22" (m + Q + 1)
classical group operations such that the output distribution of BY (y) and A9 (y) are identical for any input y.
We can prove Theorem 6.1 by invoking the above lemmas for each quantum subroutine.

Proof of Theorem 6.1. Let A be a generic hybrid algorithm in the QGGM with T invocations of quantum
subroutines. Suppose that A is characterized by (Ux, ..., Ur, Ar41) where U; is a g-query quantum subrou-
tine (or d-depth quantum subroutine), and Az, is a generic algorithm in the QGGM with classical group
operations only. Let ¢ be the number of group operations Ar;; made and @); the total number of group
operations U; made.

We construct an algorithm B in the GGM that perfectly simulates A. We use the fact that the table
register of the output of a quantum subroutine with m group elements as input and () total queries has at
most m + @ nonzero group elements as each group operation makes at most a single new group element.

As the first step, B simulates U; using a sub-algorithm B;. Lemmas 6.3 and 6.4 assert that B; can
simulate the ¢g-query and d-depth quantum subroutine with

Q1 + 29 (m + Q1 +1)%, and 22" (m + Q1 + 1)

group operations, respectively.

After the simulation, B discards all but the output of the simulation, which is safely done as all registers
are measured on a computational basis at the end of execution of U;. Below, we only consider the non-
discarded parts when we say the group elements or table register, etc. The discarded parts do not affect the
remaining simulation.

The table register has at most m + @1 nonzero group elements after U; since @)1 group operations of
U, add at most ()1 new group elements to the table. B then simulates U using the non-discarded parts
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as input” with a new sub-algorithm By. The complexity of the simulation is similar, and the result of
measurement gives at most m + @1 + )2 nonzero group elements in the table.

Continuing this procedure until Ur. Finally, B simulates A7 ;. Each classical group operation query
of Ar4, can be simulated by a single group operation of B, because the table register is measured after the
execution of each quantum subroutine, and it is always classical during the execution of Ar,;. In other
words, the simulation of Ar; requires c classical group operations.

We conclude that the algorithm B in the GGM simulates the algorithm A in the QGGM. The number of
group operations is, if A invokes g-query quantum subroutines,

(Q+2 M+ Q1+ 1)) + (@2 + 2 (m+ Q1+ Q2+ 1)*) + . +c < Q+T- 2 (m+Q +1)%,
where we use @1 + Q2 + ... + Qr + ¢ < @, and
22'm+Qr+ 12 +2 M+ Qi+ Qe+ 1D + . +c<Q+T 22 (m+Q+1)*
if A invokes d-depth quantum subroutines, where we use ¢ < Q). O

It remains to prove Lemmas 6.3 and 6.4. We first prove the d-depth parallel quantum subroutine case,
which can be proven similarly to Theorem 5.1 with some modifications. The query number case needs a
new idea regarding the branches and the modifications used in the depth case.

We first prove Lemma 6.4. The basic idea of the proof is that, when A makes a classical group operation,
B can update the label function L and the set S with a single group operation. This is because the algorithms
measure the relevant registers. As many parts of the proof resemble one of Theorem 5.1, we highlighted
the differences in the simulation in red.

Proof of Lemma 6.4. Let Abe a generic quantum subroutine in the QGGM with at most d quantum group op-
eration depth that takes m group elements y, ..., y,, and classical string = as input. We assume that 1, ..., Y
are not 0, and let N = |G|. Suppose that A is characterized by a sequence of algorithms Cy, Oy, ..., Cy_1, Oy
with generic algorithm C; with ¢; classical group operations and generic algorithm O; with a single parallel
quantum group operation.

We construct a generic algorithm B in the GGM that simulates A by following the construction in The-
orem 5.1, except for some specifications of group operation queries. In particular, the local operation, the
equality query, and the finalization step are identical. The initialization is only slightly different as the al-
gorithm A takes a classical string as a part of the input. We also apply the parallel group operation query
procedure for the parallel quantum group operation queries, but we need a slightly different procedure for
classical group operations. The correctness of the simulation procedure can be proven in the same way as
the original proof.

Initialization. The algorithm B parses the input into the classical string z and group elements 1, ..., ym,
stored in the table register, and prepares a label function L : Zy[Y7,...,Y,,] = [N]JU{L}and S C Zy|[Y1, ..., Yy, ].
Set S := {0} U{Yi}icq1,...,m) and initialize L as in the previous proof. B creates the following state as a sim-
ulation of the initial state for A:

|Z>W$Q ® ‘L(Yl)v R L(Ym)vL(O)a ) L(0)>T

Recall that S C Zy[Y3,...,Y,,] is the set of polynomials on which the value of L is defined. Before
describing the classical group operation simulation, we make the following observation for the parallel
quantum group operation query. Recall the simulation of parallel quantum group operation in Section 5.1
and S is updated during the simulation.

27 Technically, we need slight variants of the above lemmas for the simulation, as the simulation input is described in the GGM,
while the subroutines in the lemmas expect the group elements stored in the QGGM. Still, the procedures are identical, and we choose
the modular analysis and omit the subtle details.
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Claim 1. Suppose that Sy be a set S right before a parallel quantum group operation and Syost be a set S
right after the same parallel quantum group operation. Then it holds that |Spost| < 2|Spre|*.

Proof. In the parallel group operation query simulation, the set of new elements added in Sy is included
in the set

S = {h:fig:fvg € Spre}7
which has at most 2|S,.|* different elements. As S, includes 0 by definition, Sy C S’ holds. This implies
the claim. O

Classical group operation query. When A makes a classical group operation query, B does the following.
Let Spre := S.

1. Measure B’s query register Q to obtain (b, ¢, j), and do nothing if i = j. Otherwise, measure the i-th
and j-th entries of B’s table register to obtain the labels ¢;, ¢;.

2. Find a pair (f, g) € S2. such that ; = L(f) and ¢; = L(g). Check if there is any h € S such that

pre

By, s Ym) = FY1s oo Ym) + (=19 (W1, ey Ym)-

o If there is such h, it sets L(f + (—1)%g) := L(h).

* Otherwise, it uniformly sets L(f +(—1)%g) < [N] under the constraint that L(f + (—1)°g) # L(h)
forall h € S.

Then update S <+ S U {f + (-1)%g}.
3. For all pairs (f’, ') € S2, such that L(f’) = ¢; and L(g') = ¢;, set L(f' + (—1)°¢) :== L(f + (—1)%9)

pre

and update S < SU{f’ + (—1)°¢'}.
4. Define ¢; + (—1)%4; := L(f + (—1)bg).
5. Then, B simulates the classical group operation oracle as follows:
16,,4)Q @ oo iy s Ly o) p 7 10,1, 5) @ @ [ oo b+ (= 1)%45, s U )
for i # j, and otherwise it does nothing.
Since the register Q and the i and j-th entries of T are measured, this step only needs a single group

operation for computing f(y1, ..., ¥m) + (—=1)°g(y1, -, Ym)-

Group operation complexity. We count the number of classical group operations made by B. Let S;_;
be the set S right before the parallel quantum group operation in O; and let Sy be the final set S. Recall
Cy makes ¢ classical group operations and the simulation of each classical group operation takes a single
group operation by B. We have |Sy| < m + 1 + ¢y, where m + 1 is the initial elements included in S. Also,
using Claim 1 and the fact that C; makes ¢; classical group operations, we have

1551 < 218;-1% + ¢j < 2(ISj-1] + ¢5)?,
and |Sy| < 2|S4—1]?. From this, we inductively prove that
191 <22 Y m+14co+ ... +¢j_1)%

for all j < d. Since |S,| is an upper bound of the number of group operations, we conclude that B can
perfectly simulate A with

d d
2 U+ ltcoter+..+ea1)? <22 (m+Q+1)2

group operations. This concludes the result for the d-depth parallel quantum subroutine. O
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Now we move to the proof of Lemma 6.3. The main idea of this case is to consider the branches. In
the beginning, there is only a single branch with nonzero amplitude in the table register. Two observations
for proving Lemma 6.3 are 1) for simulating a group operation over a fixed (classical) table in a single
branch, we only need a tiny number of new group elements, and 2) for each group operation, the number
of branches is multiplied by a bounded number; looking ahead, it is 2(m + @ + 1)%. As the simulation
procedure in Theorem 5.1 does not consider the branch, we need some more work in this case.

Proof of Lemma 6.3. Let A be a g-query quantum subroutine characterized by (Cy, Oy, ..., Cy—1,0,). Here,
Cj; is a generic algorithm with ¢; classical group operations and O; is a generic algorithm with a single
quantum group operation. We assume that A takes m group elements yy, ..., y,, and classical string z as
input and suppose that each y; is not 0, and let N = |G|. As in the above proof, we construct a generic
algorithm B in the GGM that simulates A. We assume that A takes (z,y1,...., ym) as input, where z is a
classical string and v, ..., Y, are group elements stored in the table register.

Initialization. The algorithm B parses the input into the classical string z and group elements y, ..., ym,
stored in the table register. B prepares a label function L : Zy[Y1, ..., Yin] = [NJU{L}and S C Zy[Y1, ..., Vi)
Set S := {0} U{Yi}icq1,....m) and initialize L as in the previous proof. B creates the following state as a sim-
ulation of the initial state for A:

|2)w.q @ [L(Y1),..; L(Y), L(0), ..., L(0)) ¢

Additionally, B initializes a rooted tree structure 7" with a root vg = {L(0)} U {L(Y;) }ie(1,...,m}, without
any further vertex. During the simulation, the tree 7 will be updated along with S and L, so that a leaf
node represents the table register of a branch with a nonzero amplitude. For example, the unique leaf node
vg of the initial tree 7 includes all information of the table register of the unique initial branch.

Quantum group operation query. Suppose A makes a quantum group operation query. Let Sy := S and
Tore := T for recording the set S and 7 at the point of making the query. Then B does the following:

1. For each leaf node v; of 7, (in arbitrary order), and for each (7, (') € v?, do the following;:

(a) Find a pair (f, g) € SZ. such that L(f) = £ and L(g) = ¢'. Check if there is any h € S such that

pre
h(yh sy ym) = f(yla ay’m) + g(yh 7ym)

o If there exists such h, it sets
L(f+g) = L(h).
¢ Otherwise, it uniformly sets L(f + ¢g) < [N] under the constraint that L(f + g) # L(h) for
allh e S.

(b) Update S < SU{f + g}. Add vj41 := v, U{L(f + ¢)} as a child node of v;.
(c) For all pairs (f',¢') € S2, such that L(f’) = ¢ and L(g’') = ¢, set L(f' + ¢') :== L(f + g) and

pre

update S+ SU{f' +¢'}.
2. Similarly add v;41 := v; U {L(f — ¢)} as a child node of v; and update S and L properly.
3. Define ¢ & ¢’ for labels (¢,¢') € [N]? as follows:
 Check if there is (f, g) € S2 such that ¢/ = L(f) and ¢ = L(g).

pre
— If they exist, define
(0 =L(f£g).

— Otherwise, define ¢ £ ¢/ := 1.
4. Apply the unitary 6Q_,T that is defined by:
16,,4)Q @ oo liy oy Ly o) g 7 10,1, 5) @ @ [ oo b+ (= 1)045, s £ )

if i # j and otherwise it does nothing.
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Classical group operation query. When A makes a classical group operation query, B does the following.
This is identical to the classical group operation in the d-depth subroutine case, except for the update of 7.
Precisely, in the second step, B updates v, < v, U {L(f + (—1)°g)} for each leaf node v,.

Finalization. Finalization is identical to the previous simulations.

Analysis. The main difference of this simulation from the previous simulations is using 7. In particular,
B computes the labels for f + g only when f, g comes from a single leaf node. We argue that it suffices for
simulating the group operation queries. For an intermediate quantum state

Z Qa,b,i,5,X |UJ>W |ba ZaJ>Q ‘X>T ’
w,b,i,7,X

we say that X is a nontrivial table if o, 3 ; ;, x is nonzero for some w, b, ¢, j.

Claim 2. Right before the group operation query, for a nontrivial table X, there is a leaf node v; of 7 such
that the following holds: For any group element included in X, there is f € v; such that f(y1,...,ym) = .
We say that v; corresponds to X.

Proof. We use induction. Before the first group operation query, the unique nontrivial table X = (y1, 92, ..., Ym,0, ...)
,,,,, m}- Consider a group operation query, in
which the statement holds right before the query. We prove that the statement still holds after the query.

Suppose that the group operation is quantum. Let X = (x1, z2, ...) be a nontrivial table, and let v; be the
corresponding leaf before the query at this point. Consider a fixed branch

[w)w [b, Z.’j>Q [ X)

Since v; corresponds to X, there exist f, g € Ssuchthat f(y1,...,¥m) = zi, 9(y1, ..., ym) = x; and L(f), L(g) €
v; hold. The simulation appends v; 11 = v, U{L(f + (—1)%g)} as a child node of v;. Since the quantum group
operation query only changes the i-th entry by z; to x; + (—1)"z;, we can easily check the v; 1 corresponds
to the table after query.

For a classical group operation query, a similar argument works with the same path v; since the simula-
tion adds L(f + (—1)"g) to the set v;. O

This claim ensures that each nontrivial table corresponds to some leaf node in the simulation so that the
simulation works well as in the previous proofs.

In the remainder of the proof, we count the number of group operations made by B. To do so, we need
some calculations for leaf nodes. Let v; be a leaf node. B appends the child nodes having one more group
element that v; for each quantum group operation. Similarly, B adds a single group element to the leaf
nodes for each classical group operation. This implies that all nodes have at most m + 1 + @ elements
during the simulation.

After the initialization, there is only a single leaf node. For each quantum group operation, B appends
at most 2|v;|? child nodes to the leaf node v;. Using |v;| < m+ Q + 1, the final tree T, after ¢ quantum group
operations, has at most

29(m +Q +1)%

leaf nodes. Since each non-root node and each classical group operation requires a single group operation
to update, the total number of group operations made by B is bounded by

Q+2(m+Q+1)*+21 (m+Q+ 1)V 4. <Q+2" (m+Q+1)%.

This concludes the proof. O
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7 Memory-bounded Algorithms

In this section, we consider the generic algorithms with bounded memory. More precisely, we consider algo-
rithms that have two memories, classical and quantum, and that store a limited number of group elements
in their quantum register. Furthermore, we assume that the algorithms can coherently access a few group
elements stored in the classical memory in a single group operation. In other words, we assume that the
algorithms only have a small amount of quantum random access classical memory (QRACM).

7.1 Quantum and Classical Memory Models

Recall that algorithms in (Q)GGM interact with a black-box table register T that stores group elements in
Zy . In this section, we assume that T holds two components T¢ and T = H%’Itv. The second component,
T, is a quantum memory with a bounded size. Generic algorithms can coherently access or store group
elements in T in superposition.

The first component T, corresponding to the classical memory, always stores group elements in a
computational basis, i.e., classical group elements. We additionally assume that the quantum algorithm
has a restriction on coherently accessing T¢. In other words, T¢ is not a quantum random access (classical)
memory (QRACM). We may assume that there is a QRACM holding a small number of group elements,
which will be formally discussed below.

Recall that the register T is of the form T = H7*. We decompose it into Ty ® T¢ for T = Hf! where
s > t. We additionally assume that each i-th component of T for ¢ > ¢ always holds a classical group
element. The quantum group operation query

b

|b, Z,]>Q [} ‘, Ly ney (Ej, >T = |b,’L,]>Q %) {, x; + (—1) SL’j, ceey fL‘j, >T

has the following restrictions: In each query, the indices should be one of the following choices and obey
the corresponding conditions.

1. (Group operations for quantum registers) The second and third registers of Q hold indices (that may
be in superpositions) indicating the group elements in the quantum register T; that is, 4, j < ¢ (in
any branch) always holds.

2. (Group operations for quantum-classical registers) The second register of Q holds indices (that may
be in a superposition) indicating the group elements in T, and the third register of Q is classical (i.e.,
measured before query) and indicates a group element in T¢; that is, ¢ < ¢ (in any branch) and j > ¢
holds.

3. (Group operations for classical registers) The second and third registers of Q are both classical (i.e.,
measured in the computational basis before query), and the stored indices 7, j indicate group elements
in T¢; thatis, 4,7 > t holds.

The first and second options are basically quantum (if the algorithm does not measure Q), and the last
option should be classical. Therefore, combining the first and second group operations as quantum group
operations is convenient.

In general, we consider the case that a (small) QRACM is available. We model a QRACM as a storage
containing r group elements. The QRACM is only involved in quantum-classical group operations. When
querying a quantum group operation, the algorithm must specify r indices ji, ..., j» > t for the classical reg-
ister. The QRACM loads those elements, and the group operation is made between QRACM and quantum
register T or just in T, after which the data in QRACM is discarded. Note that the second register must
hold indices (in a superposition) indicating the group elements in T since the result of the quantum group
operation is written in that register. Therefore, the quantum group operation can be described as follows,
by omitting the QRACM’s data loading and deletion.
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¢ (Group operations for quantum registers and QRACM) The algorithm specifies (not in superposition)
asetJ = {j1,..., jr} of indices such that j;, > ¢ for all k = 1, ...,r. The second register must indicate
the group elements in T, possibly in a superposition. The third register holds indices ji, ..., j, or
indicates the group elements in T. Then it applies Oq, .

In summary, the memory-bound QGGM is similar to the generic hybrid quantum-classical algorithm
in the QGGM with g-query quantum subroutines as described in Section 6, with the additional memory
constraints described above. The group operations for classical registers (Item 3) are always considered as
classical group operations. On the other hand, the quantum group operations always act on the quantum
registers and QRACM.

7.2 Lower Bounds for Memory-Bounded Algorithms

We present the simulation theorem for memory-bounded algorithms first.

Theorem 7.1. Let G be a group. Suppose that a generic hybrid algorithm A9 makes C classical group operations and
invokes q-query quantum subroutines T times. If the quantum memory of A9 only can store t group elements and A9
can access QRACM of r group elements, then there exists a (randomized) classical GGM algorithm BY that perfectly
simulates AY with
CH+2T-2t(t—1+7r)+1)¢
classical group operations.
Similarly to the other cases, this theorem directly implies the following lower bounds.

Theorem 7.2 (Formal version of Theorem 1.4). Let G be a prime-order cyclic group. Any constant-advantage
generic hybrid algorithm solving the DL/CDH/DDH problems with quantum memory holding t = O(1) group
elements and QRACM of r = O(1) group elements must make either C = Q(+/|G|) classical group operations or
Q(log |G|) quantum group operations.

More precisely, the following holds. If a generic hybrid algorithm A9 in the QGGM invokes g-query quantum
subroutines T times, it holds that for any » € {DL, CDH, DDH}

(C+2T«%ﬁ—1+m+4wf>
G| .

Adv, (49) =0 (

7.3 Proof of the Memory-Bounded Simulation Theorem

We prove the following memory-bounded simulation theorem for the quantum subroutines. The proof
of Theorem 7.1 is almost identical to the hybrid case, except that it uses Lemma 7.3 that has a nice property
that the number of classical queries C' is not involved in the exponential term.

In the proof of Lemma 7.3, the main difference is the contents of 7 where each node only includes ¢
elements, and identifies a potential branch in T,.

Lemma 7.3. Let G be a group. Suppose that A9 is a q-query quantum subroutine in the QGGM, taking group
elements and a classical string as inputs, makes at most C' classical group operation. If the quantum memory of A9
only can store t group elements and A9 can access QRACM of r group elements, then there exists a generic algorithm
BY in the GGM with

CH+2-(2t(t—1+7r)+1)4
classical queries such that the output distribution of BY (y) and A9 (y) are identical for any input y.

Proof. The proof is almost identical to that of Lemma 6.3, except that we change the contents of the rooted
tree structure to only include group elements in quantum memory. Let A be a ¢-query quantum subroutine
characterized by (Cy, Oy, ...,Cq—1,0,). Here, C; and O; are generic algorithms with ¢; classical group
operations and a single quantum group operation, respectively. We assume that A takes m group elements
Y1, ..., Ym and classical string z as input. Suppose that the input group elements are not 0, and let N = |G]|.
We will construct a generic algorithm B in the GGM that simulates A.
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Initialization. The algorithm B prepares a label function L : Zy[Y3,...,Y,,] — [NJU{Ll} and S C
ZN[Y1, ..., Ym]. Set S := {0} U{Yi}ic1,..,m} and initialize L as in the previous proof. B creates the fol-
lowing state as a simulation of the initial state for A:

|2)w.q ® [L(Y1), ... L(Ym), L(0), ..., L(0)) 1

Additionally, B initializes a rooted tree 7 with a root vg = {L(Y})}icq1,... 4} as a multiset, without any
further vertex.”® The nodes of 7 indicate potential branches of quantum memory Ty,. If a branch includes
a group element multiple times, the corresponding multiset will include the same element with the same
multiplicity. During the simulation, the tree 7 will be updated along with S and L.

Local operation. When A applies some operation on its local registers W, Q, B also applies the same
operation.

Quantum group operation query. Suppose A makes a quantum group operation query. Note that A
specifies the QRACM index set J = {j1, j2, ..., jr }, which can be obtained by B as well. Let Sy := S and
Tore := T for recording the set .S and 7 at the point. Then B does the following:

1. For each leaf node v; of 7y (in arbitrary order), do the following:

(a) Foreach (4,¢') € v?, do the following:
i. Find a pair (f,g) € S, such that L(f) = £ and L(g) = ¢'. Check if there is any h € S such
that
h(Y1, oo Ym) = F(Y1, s Ym) + 91, oY)
o If there exists such h, it sets
L(f+g) = L(h).
¢ Otherwise, it uniformly sets L(f + g) < [N] under the constraint that L(f + g) # L(h)
forallh € S.
ii. Update S < SU{f +g}. Define v; 1 := v, \ {L(f)} U{L(f +g)}.* Add v;4; as a child node
of v;.
iii. For all pairs (f’,g') € Sz, such that L(f') = £and L(g') = ¢, set L(f' + ¢') := L(f + g) and
update S <+~ SU{f" +¢'}.
iv. Similarly add vi41 := v \ {L(f)} U {L(f — g)} as a child node of v; and update S and L
properly.
(b) For each ¢ € v; and k € [r], do the following:
i. Obtain the label ¢’ from the jj-th entry of B’s table register, and find a pair (f, g) € S2. such

pre

that ¢ = L(f) and ¢ = L(g). Note that the jj-th entry of B is classical and B needs not to
measure it.

ii. Check if there is any h € S such that

(Y1, oo ym) = FW1s oo Ym) + 9(W15 s Ym)-

¢ If there exists such £, it sets
L(f +g) = L(h).
* Otherwise, it uniformly sets L(f + g) < [N] under the constraint that L(f + g) # L(h)
forallh € S.

BIft > m, wesetY; = 0fori > m. If t < m, this implies that the initial quantum register does not include all input group
elements.
21f there is multiple L(f) in vy, it reduces the multiplicity of f by 1.
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iii. Update S <~ SU{f + g}. Define v;11 := v, \ {L(f)} U{L(f + ¢)}. Add v;+1 as a child node
of v

iv. For all pairs (f', ') € Sg, such that L(f’) = fand L(g') = ¢, set L(f' + ¢) := L(f + g) and
update S <+~ SU{f" +¢'}.

v. Similarly add v;41 == v \ {L(f)} U {L(f — ¢)} as a child node of v; and update S and L
properly.

2. Define ¢ & ¢’ for labels (¢,¢') € [N]? as follows:
e Check if there is (f, g) € S2. such that £ = L(f) and ¢’ = L(g).

pre
— If they exist, define
(+0 =L(f+g).

— Otherwise, define ¢/ + ¢' := 1.
3. Apply the unitary Oq_ that is defined by:
16,4, 1)Q ® |- liy s by )op = 10,1, 5) @ ® ooy i+ (=1)045, o )
if i # j and otherwise it does nothing.
4. Finally, add a copy of v; as a child node of v;.%°
Classical group operation query. When A makes a classical group operation query, B does the following.
Let Spre := S and Tpre := T for recording the set S and 7 at the point.

1. Measure B’s query register Q to obtain (b, 7, j), and do nothing if i = j. Otherwise, measure the i-th
and j-th entries of B’s table register to obtain the labels ¢;, ¢;.

2. Find a pair (f, g) € Sp, such that ; = L(f) and ¢; = L(g). Check if there is any h € S such that

h(y17 7ym) = f(yla ceey ym) + (_1)bg(y17 7ym)

o If there is such h, it sets L(f + (—1)%g) := L(h).

* Otherwise, it uniformly sets L(f +(—1)%g) < [N] under the constraint that L(f + (—1)°g) # L(h)
forallh € S.

Then update S <~ SU{f + (=1)bg}. If i < ¢, for each leaf node v; of Tore (in arbitrary order) such that
L(f) € v, update v; v \ {L(f)} U{L(f + (=1)"9)}.

3. For all pairs (f,g') € 3. such that L(f') = ¢; and L(g') = £;, set L(f' + (=1)°¢') := L(f + (=1)’g)
and update S < SU {f’ + (—1)°¢'}.

4. Define ¢; + (=1)%; := L(f + (—=1)bg).
5. Then, B simulates the classical group operation oracle as follows:
16,4, 1)Q ® |- liy s by o )op = (0,1, 5) @ ® ooy i+ (=1)04, o £, )

for i # j, and otherwise it does nothing.

Finalization. Finalization is identical to the previous simulations.

30This is because some information can be erased from the nodes because of the memory bound.
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Analysis. The contents in each node is the main difference from the proof of Lemma 6.3. Recall that for
an intermediate quantum state

Z Qu,b,i,5, X |w>W |b7 Z.’j>Q ‘X>T )
w,b,4,5, X

we say that X is a nontrivial table if e, 3 ; j, x is nonzero. We prove the following variant of Claim 2, which
ensures that the algorithm B correctly simulates A.

Claim 3. Right before the group operation query, for a nontrivial table X, there is a leaf node v; of 7 such
that the following holds: Let z1, ..., z; be the first ¢ elements of X. There is a leaf node v; = {¢1,...,{;}
in 7 such that there exist (fi);c;y where fi(y1,...,ym) = x; and L(f;) = ¢; for all i € [t]. We say that v;
corresponds to X.

Proof. We use induction. Initially, X = (y1,¥2, ..., Ym, -..) is the unique nontrivial table corresponds to the
initial leaf node vo = {L(Y1),...,L(Y;)}. Consider a group operation query, in which the statement holds
right before the query. We prove that the statement still holds after the query.

For the quantum group operation, let X = (z1, 2, ...) be a nontrivial table and v; = {/1,...,¢;} be the
corresponding leaf node. Let (f;);c[s be functions such that f;(y1, ..., ym) = v; and L(f;) = ¢; for all i € [t].
Consider a fixed branch

|w>W ‘b, i7j>Q |X>T '
It holds that f;(Y1,...,Y,,) = x; foralli € [t]. If j > t, let f; € S be such that f;(Y1,...,Y,,) = ;. After the
query, it is easy to see that v, 41 = v\ {L(f;) }U{L(fi+(—1)°f;)} defined above corresponds to the new table
register. This argument also holds for the classical group operation with ¢ < ¢. For the group operations
over classical registers, v; still corresponds to X. For a nontrivial branch unaffected by any group operation
corresponds to the copy of . O

We count the number of group operations made by B. For each quantum group operation, B appends
one child node when it makes one group operation for simulating A. On the other hand, each classical
group operation of A requires a single group operation of B, and it may alter some contents of nodes but
do not create any new node. Thus it suffices to count the number of nodes in 7 for computing the query
complexity of B.

Recall that there are two options for quantum group operations. The following arguments show that
each quantum query appends at most 2¢(¢t — 1 + r) 4 1 child nodes for each leaf node.

¢ For the operations for quantum registers, at most 2¢(¢ — 1) different branches can appear, where factor
2 represents the choice of + and ¢(¢ — 1) is for the choice of indices in the quantum register.

¢ For the quantum-classical group operations with QRACM, the first index can be one of ¢ elements in
T and the second index is one among |J| = r group elements. Therefore, each query introduces at
most 2tr new branches.

The final +1 is for the branches unaffected by group operations. This implies that after ¢ quantum queries,

there are at most
q

S @t —1+7)+ 1) <2- (2t —147)+1)°

=0
different branches in 7 at the end, where we used ¢, > 1. As a single classical group operation can be
simulated by a single group operation of B, the total number of group operations in the GGM made by B
isbounded by C + 2 - (2t(t — 1 4+ r) + 1)?, which concludes the proof. O
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