
An Algorithm for Persistent Homology
Computation Using Homomorphic Encryption

Dominic Gold1, Koray Karabina2,3, and Francis C. Motta1

1 Florida Atlantic University, Boca Raton, FL, USA
dgold2012@fau.edu, fmotta@fau.edu

2 National Research Council Canada, Ottawa, Ontario, CA
3 University of Waterloo, Waterloo, Ontario, CA

koray.karabina@nrc-cnrc.gc.ca

Abstract. Topological Data Analysis (TDA) offers a suite of computa-
tional tools that provide quantified shape features in high dimensional
data that can be used by modern statistical and predictive machine learn-
ing (ML) models. In particular, persistent homology (PH) takes in data
(e.g., point clouds, images, time series) and derives compact represen-
tations of latent topological structures, known as persistence diagrams
(PDs). Because PDs enjoy inherent noise tolerance, are interpretable and
provide a solid basis for data analysis, and can be made compatible with
the expansive set of well-established ML model architectures, PH has
been widely adopted for model development including on sensitive data,
such as genomic, cancer, sensor network, and financial data. Thus, TDA
should be incorporated into secure end-to-end data analysis pipelines. In
this paper, we take the first step to address this challenge and develop a
version of the fundamental algorithm to compute PH on encrypted data
using homomorphic encryption (HE).

Keywords: homomorphic encryption, topological data analysis, secure comput-
ing, persistent homology, applied cryptography, privacy enhancing technology

1 Introduction

Topological Data Analysis (TDA) has blossomed into a suite of computational
tools, built on firm mathematical theory, that generate quantified, discriminat-
ing, shape-based features of data, which can provide interpretable representa-
tions of high dimensional data and be taken in by modern statistical and predic-
tive ML models. To apply the flagship approach, known as persistent homology
(PH), data—usually in the form of point clouds or scalar-functions defined on
a mesh (e.g., images, time series)—are transformed into a binary matrix that
encodes the evolution of a family of simplicial complexes. From this matrix a col-
lection of persistence diagrams (PDs) can be derived through a simple reduction
algorithm. PDs provide compact representations of the number and size of geo-
metric/topological structures in the data as multisets of planar points, and can
be equipped with natural metrics. Models can then be developed either directly

1

Boundary Matrix Topological Feature Vector

Persistent Homology ModelsData Filtration

Point Clouds, Signals, etc. Persistence Diagram Prediction / Decision

Birth Scale

D
ea

th
 S

ca
le

Birth Scale

P
er

si
st

en
ce

... ...Diagram 1
Diagram 2

Birth Scale

D
ea

th
 S

ca
le

Diagram Dissimilarities

Metrics / Vectorizations

Fig. 1. The TDA-ML Pipeline. Data is first transformed into a family of topological
spaces encoded in a binary matrix called a boundary matrix, and then the boundary
matrix is transformed into compact representations of the topological structures in the
data called persistence diagrams. The distances between diagrams are computed or
further transformations produce topological feature vectors. Finally, topological feature
vectors are input into downstream models for a desired task. The green box indicates
the contribution of this paper, securing the boundary matrix to persistence diagram
step in the pipeline.

on PDs using, for example, hierarchical clustering or k-medoids in the metric
space of diagrams for classification tasks, or subsequent transformations can be
applied to produce topological feature vectors [2, 7, 9, 18, 47, 49] to be used with
ML model architectures such as random forests, support vector machines, and
neural networks. We refer to these steps as the TDA-ML pipeline, as illustrated
in Figure 1.

Crucial to the use of PH in applications are the numerous stability results
that establish—under a variety of assumptions about the data and the metrics
placed on the data and the PDs—the (Lipschitz) continuity of the map sending
data to PDs [11,19,53] and to feature vectors [2]. Due its inherent noise tolerance
and suitability across domain and data types, PH has been widely adopted for
model development including on sensitive data, such as genomic [52], cancer [8],
sensor network [62], and financial data [26]. The reader may refer to recent review
articles for references to a variety of PH applications [10,44].

As the scale of predictive models and their data demands grow, there is
pressure to move to collaborative and cloud-based systems in which analysis is
performed remotely and in a distributed fashion (e.g., federated learning [40,
42]). This is especially true for propriety and sensitive models that require large
training data. On the other hand, a user—be it an independent data producer
or agent lacking the capabilities demanded by the models—may need to keep
private both their data and the decisions informed by that data. Thus, there is
a growing need in industry and government for efficient, secure end-to-end data
analysis pipelines that protect vital information on which sensitive decisions are
made; to protect privacy, ensure compliance with personal data management
regulations, and prevent hostile interference or misuse.

Example application domains, where bridging topological data analysis and
secure end-to-end algorithms will yield more efficient, privacy-preserving, and

2

robust applications where data analysis, data mining, statistical inference and
pattern recognition tasks are performed on private data collected from a large
number of, and potentially competing, parties include video surveillance for law
enforcement, location and energy use tracking for smart cities and autonomous
vehicles [6, 56], financial data [26], and biomedical data such as genomics [52]
and cancer [8], to name a few.

In order to address challenges with outsourcing sensitive data analysis, cryp-
tographic researchers have been developing secure multiparty computing tools
since the 1980s [61]. A good portion of the theoretical foundations of these prim-
itives have been successfully adapted for practical applications in industry [63].
For example, recent innovations in homomorphic encryption (HE) have expanded
the variety and complexity of the operations and algorithms that can compute on
encrypted data (e.g., comparisons and conditionals [16,17,31,55]. Secure multi-
party computing tools are nowadays interacting with privacy-preserving machine
learning (ML) applications [12, 20, 36]. Indeed, there has been a recent surge in
the development of secure ML algorithms using HE [4, 24, 34, 41]. Thus, HE
promises to expand to support complex algorithms and models that protect the
privacy of both input data and model outputs. Similarly, sensitive data may be
outsourced to a third party database management system (DBMS), where data
owner may not fully trust DBMS but still request DBMS to perform some rela-
tional operations on the data such as sort, join, union, intersect, and difference.
Specialized (symmetric key) encryption schemes allow data owners to encrypt
their data, while preserving the ability of DBMS to perform such operations over
the encrypted data [28,29,48,50].

In practice, a hybrid use of public key and symmetric encryption schemes
are complementary in creating secure and trustworthy data analytical services
and applications, which take encrypted data and perform both training and
inference on it. Many such models have been performed this way, like logistic
or ridge regression [12, 20, 25, 39, 43], support vector machines [3, 46], random
forests [30,37,58,64], and even neural networks [27,35,59,60]. The dual benefits
of an HE framework for ML model training and inference are that while the
client protects their data, the server protects their models that take in this
encrypted data. In the TDA-ML pipeline (Fig. 1), both feature generation and
model training/evaluation on those features represent critical components of the
model development and deployment. Thus, each step back in the pipeline that
can be realized in an HE framework relaxes the preprocessing demands on the
client and strengthens the protection of the server’s model. Thus securing the
boundary matrix to persistence diagram step (green box in Fig. 1) is a critical
step to allow a Server to fully protect any model that uses topological data
features.

Our contributions: We develop HE-Reduce (Algorithm 6) as a first-of-its-
kind version of the boundary matrix reduction algorithm (Reduce, Algorithm 1),
which is at the heart of PH and TDA, and which is suitable for secure compu-
tation using HE. We achieve this by modifying the logical structure of Algo-
rithm 1 and by developing new arithmetic circuits to replace its computational

3

and conditional statements. As a result, HE-Reduce traces essentially the same
steps as in Reduce but in a HE-friendly manner so that computations can be
performed securely in the ciphertext space. We prove the correctness of our pro-
posed algorithm and provide a complexity analysis. Our analysis is constructive
and provides lower bounds on the implementation parameters that guarantee
correctness. We implement our algorithms using the CKKS scheme from the
OpenFHE library [5] but our techniques can be adapted for other HE schemes
by implementing a compatible comparison function using BGV/BFV or TFHE
schemes at a comparable cost; see [32]. Finally, we highlight some limitations
of our proposed algorithm and suggest some improvements together with some
empirical evidence.

Outline: The rest of this paper is organized as follows. Section 2 establishes
the mathematical and computational preliminaries of PH and HE. Section 2 also
outlines the main challenges associated with transforming Reduce to HE-Reduce.
In Section 3, we establish an HE-compatible version of the boundary matrix
reduction algorithm, presented in Algorithm 6, and establish conditions guaran-
teeing correctness. Section 4 provides a complexity analysis for Algorithm 6 and
notes on the implementation, including limitations of the proposed algorithm
and potential improvements. Our plaintext implementation of Algorithm 6 in
Section 4.4 simulates an implementation of HE-Reduce using HE, verifies the
correctness of our theoretical results, and provides some positive evidence for im-
provements. Our experiments showcase the propagation of errors due to relaxing
algorithm parameters; see Figure 3. We make concluding remarks in Section 5
concerning potential future research thrusts in secure TDA. In some cases, we
have deferred technical proofs to the Appendix.

2 Preliminaries

Our approach to adapting the PH boundary matrix reduction algorithm into a
secure framework is to encrypt the input to the reduction algorithm and to allow
computations to be performed on ciphertexts in such a way that the decrypted
output of the algorithm is equivalent to the output of the algorithm running on
the plaintext input. In Section 2.1, we provide some necessary background infor-
mation on PH and present the main PH boundary matrix reduction algorithm
in Algorithm 1. In Section 2.2, we present an overview of HE and explain some
of the challenges that would occur when developing a cryptographic version of
Algorithm 1 based on HE.

We denote vectors and matrices with boldface, as in v ∈ Rn, R ∈ Rn×n,
and denote the i-th components of vectors with brackets, e.g., v[i], and columns
of matrices with subscripts, Ri. We denote the infinity norm of v by |v| =
‖v‖∞ = max

i

∣∣v[i]
∣∣. We then define the following metric between any two vectors

x,y ∈ Rn in the usual manner:

|x− y| = ‖x− y‖∞ = max
i

∣∣x[i]− y[i]
∣∣,

4

a

bd
cd

ac

bcd

abc

b

c

d

bc
ab

⊂ ⊂ ⊂ ⊂

⊂⊂

⊂

⊂ ⊂ ⊂

K-1 K0 K1 K2 K3 K4

K5 K6 K7 K8 K9 K10

Ø

0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9
10

H1
H0

∅ a b c ab ac bc d cd bd bcd abc
∅
a
b
c
ab
ac
bc
d
cd
bd
bcd
abc

∅ a b c ab ac bc d cd bd bcd abc
∅
a
b
c
ab
ac
bc
d
cd
bd
bcd
abc

Fig. 2. (Rows 1,2) Example filtration given by an ordering of the simplices in a sim-
plicial complex that consists of 4 points, 5 edges, and 2 triangles. (Row 3) From left
to right, the exact binary boundary matrix, the binary reduced boundary matrix, and
the H0 and H1 persistence diagrams corresponding to the given filtration. White boxes
in the matrices indicate 0s and shaded boxes represent 1s, with the lowest 1 in each
column shaded with black.

where | · | in the final expression is the usual absolute value of a real number. Fur-
thermore, for v ∈ [0, 1]n, we denote lv = low(v) as the integer-valued maximum
index containing a 1 to help ease notation when appropriate.

2.1 Persistent Homology

PH, a mathematical device from algebraic topology, provides a means of com-
paring data through its latent shape-based structures. This is achieved by first
associating to a dataset an ordered, nested family of combinatorial objects that
are equipped with well-defined notions of shape. In particular, these shape fea-
tures will be representations of k-dimensional holes in the data. Intuitively, a
k-dimensional hole is a vacancy left by a (k + 1)-dimensional object whose k-
dimensional boundary remains. In this way, PH can be regarded as a feature
extraction tool which pulls from data topological/geometric features which may
provide scientific insights and can be used to train discriminating or predictive
models. Although there are different forms of (persistent) homology theory, we
restrict our attention to simplicial homology because of its intuitive appeal and
practical computability.

Definition 1. An abstract simplicial complex, K, is a finite collection of finite
subsets (called simplices) such that if σ ∈ K, then τ ∈ K for all τ ⊂ σ. A k-

5

simplex, or a simplex of dimension k, is a set of size k+1, and the dimension of
a complex, dim(K), is the maximum dimension of any of its simplices. A proper
subset, τ (σ ∈ K, is called a face of σ. If τ is a codimension-1 face of σ, i.e.,
τ ⊂ σ ∈ K and |τ | = |σ| − 1, we call τ a boundary face of σ. For simplicity, we
will denote the k-simplex {x0, x1, . . . , xk} by x0x1 . . . xk.

One may regard 0-simplices (singleton sets) as points in some Euclidean
space, 1-simplices (pairs) as edge segments between points, 2-simplices (sets of
size 3) as filled-triangles, 3-simplices (sets of size 4) as filled tetraheda and so
on, with the requirement that simplices in the geometric realization intersect
only along common faces. Figure 2 illustrates such geometric realizations of
abstract simplicial complexes. For example, K5 is the geometric realization of
the abstract simplicial complex {∅, a, b, c, ab, ac, bc}. The empty triangle formed
by the edges ab, bc, and ac at index 5 in Figure 2 provides an example of a 1-
dimensional hole formed by the vacancy of the missing 2-simplex, abc, enclosed
by its three boundary edges, ab, ac, and bc. The holes in a simplicial complex, K
are collected into a group, denoted H1(K), composed of equivalence classes of
collections of 1-simplices that form cycles (e.g., ab, ac, and bc in K5) that could
be the boundary faces of some collection of 2-simplices, but aren’t. Similarly, a
collection of triangles in K that enclose a void become represents of elements
in H2(K). More generally, for each dimension k, the k-dimensional homology
group Hk(K) comprises equivalence classes of k-dimensional cycles that are not
boundaries of a collection of (k + 1)-dimensional simplices. H0(K) encodes the
connected components of K.

By ordering the simplices of a simplicial complex so that no simplex appears
before any of its faces, one forms a nested sequence of simplicial complexes,
which we’ll call a filtration. Across this filtration one can track which simplices
gave birth to homological features and which simplices kill off those homological
features to determine (birth, death) pairs that track the persistence of each
homological feature. For example, in Figure 2, H1(K4) is trivial since K4 contains
no holes. This is in contrast to the complexes K5 −K9 that have a non-trivial
H1 element represented by the boundary edges ab, bc, and ac that was born with
the introduction of bc at index 5. In K8 there appears another hole with the
introduction of the edge bd, which then disappears in K9 when the triangle bcd
fills the cycle formed by bc, bd, cd.

In practice one usually defines a complex, K, from a dataset and computes
a filtration from a real-valued function f : K → R that satisfies f(τ) ≤ f(σ)
if τ ⊆ σ ∈ K. f encodes the ‘scales’ at which each simplex appears in the fil-
tration gotten by ordering simplices according to their scales and sorting ties
arbitrarily while ensuring each simplex never appears before its faces. A multi-
tude of methods have been proposed to derive such filtrations [45], both from
point cloud data (e.g., Vietoris-Rips filtration [65], alpha filtration [21]) and re-
lated filtrations for functions on a cubical mesh [57]. However determined, the
structures in the filtration can be encoded in a square, binary matrix ∆(K)
called a boundary matrix, whose rows and columns are indexed by the simplices
in K, ordered σ1, . . . , σn so that i < j if f(σi) < f(σj) or if σi ⊂ σj . The entries

6

Algorithm 1 Reduce(∆)

Input: A boundary matrix ∆ = [∆0 |∆1 | ... |∆n−1] ∈ Zn×n
2

Output: A reduced matrix R ∈ Zn×n
2

1: R←∆
2: for j ← 0 to n− 1 do
3: while exists j0 < j with low(Rj0) = low(Rj) do
4: Rj ← (Rj + Rj0) mod 2
5: end while
6: end for
7: return R

of the boundary matrix are

∆i,j =

{
1, if σi is a boundary face of σj

0, otherwise
.

Thus, ∆ encodes the order in which simplices appear in the filtration and the
relationship between each simplex and its boundary simplices. We let the first
row and column correspond to the empty simplex, ∅, so that the vertices have
boundary equal to ∅. Thus, vertices are encoded by a column [1,0,. . . ,0], while
∆0 is then necessarily a zero column, which could be omitted. The scales, f(σi),
at which each simplex is added to the complex may be regarded as a real-valued
vector in Rn and can be held separately from the combinatorial information
encoded in the boundary matrix.

It is shown in [22,23] that calculation of the persistence pairs can be achieved
through a straightforward algorithm (Algorithm 1) that brings a boundary ma-
trix into a reduced form. The critical operation needed to transform a filtered
simplicial complex K—given by the monotonic filtration function f : K → R
and encoded in a boundary matrix ∆—into its PDs is the function

low(v) = max({i | (v[i] = 1}),

which returns the largest index among those coordinates of the binary vector v
that are equal to 1. Progressing from j = 1 to n (i.e., in the order of the simplices
given by the monotonic function f), each column ∆j is replaced with the mod-2
sum ∆i + ∆j , whenever low(∆i) = low(∆j) and i < j, until the lowest 1 in
column j is distinct from all lowest 1s in the preceding columns. The lowest 1s
in the reduced boundary matrix then specify the indices of the pair of simplices
at which each PH class of the corresponding dimension is born and dies. More
precisely, let R = Reduce(∆) be the reduction of the boundary matrix ∆ after
applying Algorithm 1. Then (f(σi), f(σj)) is a (finite persistence) point in the
k-dimensional PD dgmk(K) if and only if σi is a simplex of dimension k and
i = low(Rj). In other words, a k-dimensional homology class was born with the
introduction of the simplex σi = σlow(Rj) and died when σj was added to the
filtration.

7

In Figure 2 we illustrate the original boundary matrix, its reduced form after
applying Algorithm 1, and H0 and H1 PDs associated to the given filtration. In
the reduced matrix, columns b and c consist of all zeros, since their appearance
created homology (H0) classes4. The connected components represented by ver-
tices b and c are then killed by the introduction of ab and ac respectively, since
these edges merge the connected component into the component represented by
a, which was born earlier. This is encoded in the reduced boundary matrix by
the low 1s at indices (b, ab) and (c, ac) respectively. The edge bc likewise gives
birth to an H1 class, that is later killed off by the introduction of the triangle
abc. This is why, in Reduce(∆), column bc consists of all zeros and the low 1 in
abc is in row bc.

The low 1s in the reduced matrix encode the birth-death simplex pairs ap-
pearing in the PDs of the filtration. Here we take the scale of each simplex to be
the index of the complex in which it first appears so that the low 1 at (b,ab) is
sent to the point (1,3) in the H0 diagram. Similarly, (bd, bcd) maps to (8,9) and
(bc, abc) maps to (5,10) in the H1 PD, dgm1(K). If the scales of each simplex
were determined instead by some geometric information in the data (e.g., using
pairwise distances between points as is the case for the Vietoris-Rips filtration),
the positions of the points in the PDs would capture these scales, rather than
merely the indices.

2.2 Homomorphic Encryption

Let M be a message (plaintext) space and C be a ciphertext space. We assume
thatM and C are commutative rings with their respective identity elements, and
addition and multiplication operations, denoted (M, 1M,+,×) and (C, 1C ,⊕,⊗).
When the underlying ring is clear from the context, we simply denote the identity
element by 1 and so by abuse of notation the scalar space of the ring consists
of elements s =

∑s
i=1 1 ∈ Z. For a given parameter set params, an HE scheme

consists of algorithms as described in the following:

– KeyGen(params): Takes params as input, and outputs a public key and secret
pair (pk, sk), and an evaluation key evk.

– Encpk(m): Takes a plaintext message m ∈M and the public key pk as input,
and outputs a ciphertext c ∈ C.

– Decsk(c): Takes a ciphertext c ∈ C and the public key sk as input, and outputs
a plaintext message m ∈M.

– Addevk(c1, c2): Takes a pair of ciphertexts (c1, c2), ci ∈ C and the evaluation
key evk as input, an outputs a ciphertext cadd ∈ C.

– Multevk(c1, c2): Takes a pair of ciphertexts (c1, c2), ci ∈ C and the evaluation
key evk as input, an outputs a ciphertext cmult ∈ C.

– Evalevk(f ; c1, ..., ck): Takes an arithmetic circuit f : Mk → M, ciphertexts
ci ∈ C, and the evaluation key evk as input, and outputs a ciphertext ceval ∈ C.

4The first vertex a is a special case, and technically kills off the (-1)-dimensional
(reduced) homology class at index -1.

8

Here, params generally consists of a security parameter λ and a multiplica-
tive depth parameter L. The security parameter λ says that complexity of the
best attack to break the security of the HE scheme is O. The depth parameter
L guarantees that the HE scheme can evaluate circuits of maximum multiplica-
tive depth L. We frequently refer to multiplicative depth and computational
complexity of circuits in our analysis and they are defined as follows.

Definition 2. Let f be an arithmetic circuit. Multiplicative depth, or simply
depth, of f is the maximum number of sequential multiplications required to
compute f . Computational complexity, or simply complexity, of f is the number
of multiplication and addition operations required to compute f .

For example, f(m1,m2,m3, ...,mn) =
∑n
i=1m

2i

i is a depth-n multiplicative

circuit, where m2i

i can be computed after i successive multiplications (squarings).
A naive way to compute f would require n(n+ 1)/2 multiplications and (n− 1)
additions and so we can say that f has computational complexity O(n2).

A basic correctness requirement5 for an HE scheme is that the decryption
operation is the inverse of the encryption operation, that is

Decsk(Encpk(m)) = m

for all m ∈M. The homomorphic feature5 of an HE scheme requires

Decsk(Evalevk(f ; c1, ..., ck)) = f(m1, ...,mk)

for all ci ∈ C such that ci = Encpk(mi). In other words, HE allows one to evaluate
polynomials on encrypted data such that the decryption of the result is exactly
the same as the value of that polynomial evaluated on plaintext messages. We
should note that we presented here a limited overview of HE schemes so that our
paper is self-contained. HE schemes are much more involved (e.g., consisting of
other algorithms such as scaling, relinearization, bootstrapping, etc.) and their
implementations require a great deal of detail (e.g., encoding and decoding
algorithms so that the plaintext messages can be mapped into the message space
of the scheme, batching operations, etc.). Moreover, most of these details depend
on the choice of the HE scheme. For a survey of HE schemes and existing libraries,
we refer the reader to [1, 5].

Some of the challenges of using HE in practice are:

– Increasing the depth of the arithmetic circuit significantly increases the com-
plexity of the circuit’s encrypted evaluation. Practical HE schemes can handle
arithmetic circuits with relatively low depth. For example, [20] reports and
compares some results for homomorphic evaluation of circuits up to depth 30.
Bootstrapping is a viable option to reset the level of a ciphertext right before
maximum tolerance is reached.

5The correctness and homomorphic features of HE may be violated with negligible
probability.

9

– Algorithms in general require evaluation of functions that are not necessarily
polynomials and approximation of functions through low-depth circuits is a
challenge. Similarly, algorithms involve conditional statements and evaluating
these statements while running an algorithm on ciphertext variables requires
different ways of handling conditionals. As an example, given m1,m2 ∈ Zp for
some prime p, the conditional statement that returns m1 + m2 if m1 = m2;
and that returns m1 if m1 6= m2 can be implemented over ciphertexts as

(Evalevk(f ; c1, c2)⊗ c1)⊕ ((1− Evalevk(f ; c1, c2))⊗ (c1 ⊕ c2)),

where ci = Encpk(mi), and f(m1,m2) = (m1 −m2)p−1 can be implemented
as an arithmetic circuit of depth O(log2 p) using a square-and-multiply type
exponentiation algorithm.

Our objective is to adapt Algorithm 1 so that secure boundary matrix reduc-
tion operation can be performed based on encrypted boundary matrices using
HE. In the light of our discussion above, there are three main challenges to
address:

1. Develop an arithmetic circuit for encrypted low computations so that given a
pair of ciphertexts c1 and c2 (representing the encryption of column vectors
v1 and v2), low(v1) = low(v2) can be verified; see line 3 in Algorithm 1.

2. Develop an arithmetic circuit so that the conditional modular addition oper-
ation (line 4 in Algorithm 1) can be performed in the ciphertext space.

3. Modify the logical structure of Algorithm 1 so that all of the modular vector
additions in lines 2-4 in Algorithm 1 are correctly executed in the ciphertext
space, until low(Rj0) 6= low(Rj) for all j0 < j, and for all j = 0, ..., (n− 1).

3 HE-Compatible Matrix Reduction

3.1 Low: HE-compatible computation of low

The first obstacle to realizing an HE-compatible Reduce algorithm is computing
the largest index of any 1 in an n-dimensional binary vector v ∈ {0, 1}n, called
low(v) (see Section 2.1). For reasons that will become clear, it will be necessary
for us to extend the usual definition of low—as defined in Section 2—to the
n-dimensional 0-vector; we assign low(0) = n − 1. By construction, a non-zero
column in a boundary matrix of a valid filtration can never have a low of n− 1
before or during reduction by Algorithm 1. 6

In [16], the authors introduce a method of locating the index of the maxi-
mum value of a vector (maxidx) of distinct numbers using HE. We adapt this
method to obtain an approximation of the low value of a binary vector. First,
in Lemma 1, we establish the correctness of our reimagining of the exact low

6If it did, that would imply the simplex that appeared latest is the boundary of
a simplex that appeared earlier, which violates the condition that each step in the
filtration gives a valid complex.

10

function obtained by monotonically scaling vector coordinates with respect to
their index while ensuring all coordinates remain distinct and guaranteeing the
low corresponds to the new largest coordinate.

Transformation 1. For v ∈ Rn, let S (v) :=
[
v[i] + i

n

]n−1
i=0

Definition 3. Let Dn = {v ∈ Rn | v[i] 6= v[j], 0 ≤ i 6= j < n} be the collection
of n-dimensional vectors with distinct coordinates. For a vector v ∈ Dn, define
maxidx : Dn → Z by maxidx(v) = k if v[k] > v[j] for all j different from k.

Lemma 1. For any binary vector v ∈ {0, 1}n,

low(v) = maxidx(S(v))

Proof. See Appendix A.

How does our argument about maxidx approximating low hold in our “ap-
proximate arithmetic” setting? The following generalization of Lemma 1 states
that as long as our approximate binary vector v′ ∈ Rn isn’t too far from an
underlying, true binary vector v ∈ {0, 1}n, then we may continue to extract
low(v) using maxidx(v′).

Lemma 2. Let v ∈ {0, 1}n and v′ ∈ Rn be given such that |v′ − v| < 1
2n . Then

low(v) = maxidx(S(v′)).

Proof. See Appendix A.

Remark 1. The proximity between v and v′ cannot be relaxed for the above
choice of Transformation 1, since it is possible to construct vectors, v and v′

such that |v − v′| = 1
2n + c, with 0 = low(v) 6= maxidx(S(v′)) = n− 1 for any

c > 0.

Using this construction, it is then natural to apply the MaxIdx function pre-
sented in [16] (Algorithm 2), to develop the Low function (Algorithm 3). This
Low function will estimate low with arbitrary accuracy, for real vectors that
well-approximate binary vectors.

MaxIdx takes a vector v ∈ [1/2, 3/2)n and returns a vector b with b[k] ≈ 1
if maxidx(v) = k and b[j] ≈ 0 for j 6= k. The component-wise accuracy in
approximating the coordinates of the true maximum value indicator vector (b
with b[maxidx(v)] = 1 and 0 elsewhere) is controlled by a tuple of parameters
PL = (d, d′,m, t). In [16], the authors show that the error in each coordinate is
bounded by 2−α, for α > 0 which can be made arbitrarily large with sufficiently
large choices of d, d′,m, and t.

To attain the actual index containing the maximum value of v, as opposed
to the maximum index indicator vector, b, we compute the dot product between
b and [0, 1, ..., n− 1]. This is the approach we adopt in the Low function given in
Algorithm 3. Since the MaxIdx algorithm requires the input vector to be in the
interval [12 ,

3
2)n, and our inputs S(v′) will be in the interval [0, 2)n, we apply a

linear transformation that preserves the maxidx of its input.

11

Algorithm 2 MaxIdx(v; d, d′,m, t) from [16]

Input: A vector v ∈ [1
2
, 3
2
)n ∩ Dn; d, d′,m, t ∈ N

Output: A vector b ∈ [0, 1]n such that b[k] ≈ 1, if maxidx(v) = k, otherwise
b[i] ≈ 0.
Depth: d′ + 1 + t(d+ logm+ 2)
Complexity: O(n+ d′ + t(d+ n logm))

1: I ← Inv(
∑n−1

j=0 v[j]/n; d′)
2: for j ← 0 to n− 2 do
3: b[j]← v[j]/n · I
4: end for
5: b[n− 1]← 1−

∑n−2
j=0 b[j]

6: for i← 1 to t do
7: I ← Inv(

∑n−1
j=0 b[j]m; d)

8: for j ← 0 to n− 2 do
9: b[j]← b[j]m · I

10: end for
11: b[n− 1]← 1−

∑n−2
j=0 b[j]

12: end for
13: return b

Transformation 2. TL (v) :=
[
v[i]+1

2

]n−1
i=0

The error in MaxIdx propagates through the Low algorithm in the following
manner:

Theorem 1. Let α > 0 and fix parameters d, d′,m, t for the MaxIdx algorithm
so that

|MaxIdx(x; d, d′,m, t)− emaxidx(x)| < 2−α,

for all x ∈ [12 ,
3
2)n. Further assume v′ ∈ [0, 1]n and v ∈ {0, 1}n are such that

|v′ − v| < 1
2n . Then

∣∣Low(v′; d, d′,m, t)− low(v)
∣∣ < 3

2
(n)(n− 1)2−α.

Proof. The result follows from Lemmas 4 and 5 in Appendix A and the triangle
inequality.

In the next section we establish choices of parameters ensuring a specified
level of accuracy of the approximating Low function.

As a final remark, we note that the dependence of Low’s error on n2 is a
consequence of extracting the low of a vector using a dot product between the
vector of indices, [0, . . . , n − 1], and the max-index-indicator vector. This may
be unavoidable when using the current implementation of the MaxIdx function,
although it is conceivable that a fundamentally different approach to computing
Low may yield a better error growth with the size of the boundary matrix.

12

Algorithm 3 Low(v′; d, d′,m, t)

Input: A vector v′ ∈ [0, 1]n; d, d′,m, t ∈ N . v′ ≈ v ∈ {0, 1}n
Output: A real number r . r ≈ low(v)
Depth: d′ + 2 + t(d+ log(m) + 2)
Complexity: O(n+ d′ + t(d+ n logm))

1: v′ ← S(v′) . Lemma 2
2: v′ ← TL(v

′) . Maps [0, 2)n to [1/2, 3/2)n

3: b← MaxIdx(v′; d, d′,m, t) . Algorithm 2
4: r ← b · [0, 1, ..., n− 1] . Extract low estimate
5: return r

3.2 Parameters for Low

Having established an approximation of the low function that is amenable to
an HE framework, we next establish the prerequisite results needed to inform
the choices of Low’s parameters that will guarantee correctness. There are two
results we create in order to help ease the proof of the theorem at the end of
this section. The first of these is to establish a lower bound on this ratio over
for all binary vector inputs to Low, as this value will directly affect the choice of
parameters for the MaxIdx and, subsequently, the Low functions.

Let us borrow Theorem 5 from [16], which gives the parameter choices
(d, d′,m, t) to achieve any desired non-zero error

|MaxIdx(v; d, d′,m, t)− emaxidx(v)| < 2−α.

Theorem 2 (Theorem 5 in [16]). Let v ∈ [12 ,
3
2)n be a vector with n distinct

entries. Define c to be the ratio of the maximum value over the second maximum
value such that c ∈ (1, 3). If

t ≥ 1

log(m)
[log(α+ log(n) + 1)− log log(c)]

min(d, d′) ≥ log(α+ t+ 2) + (m− 1) log(n)− 1

then the error (component-wise) of the MaxIdx(v; d, d′,m, t) algorithm compared
to emaxidx(v) is bounded by 2−α.

Of great importance to us is a lower bound on c, the ratio of the largest to
the second largest coordinate values in the input to MaxIdx’s parameters. As
c approaches 1, MaxIdx and Low’s parameters d, d′, and t grow without limit.
For this reason, we aim to obtain a larger lower bound on c across all possible
(approximate binary) input vectors. We re-write the bound |v − v′| < 1

2n as
|v − v′| ≤ ε

2n where ε ∈ [0, 1) to fine-tune parameter c.
We compute that a lower bound on c is given by c ≥ 1 + 2−2ε

6n−4+ε in Lemma 8
in Appendix A. Importantly, if ε = 1 (and so assume v′ is approximately binary
only within the bound 1/2n needed for Lemma 2 to compute low via maxidx)

13

then the ratio of the first to the second largest coordinates of the transformed
v′ can be arbitrarily close to 1. As a consequence, there will no longer exist
a choice of finite parameters in the Low algorithm that guarantees correctness
over all possible approximately-binary vectors v′. On the other hand, as ε gets
closer to 0, the lower bound on c increases away from 1, which will allow Low

to be computed more efficiently. Thus there will be a trade-off between the
computational cost of maintaining v′ sufficiently close to binary throughout the
boundary matrix reduction, and estimating low efficiently.

The variable α specifies the desired level of accuracy of MaxIdx (to 2−α),
and informs the minimum parameters needed to attain said accuracy. Lemma 6
recasts the accuracy parameter of Low to an arbitrary δ > 0. With this, we can
specify the choice of parameters needed to approximate low(v) using Low(v′; d, d′,m, t)
to arbitrary accuracy.

Theorem 3. Assume v ∈ {0, 1}n and v′ ∈ [0, 1]n are such that |v − v′| ≤ ε
2n ,

for some 0 ≤ ε < 1. Choose the parameters d, d′,m, and t for the MaxIdx

function, along with a pre-determined δ > 0, such that

α > log(3) + 2 log(n)− log(δ)− 1

t ≥
log
(
α+ 1 + log(n)

)
− log log

(
1 + 2−2ε

6n−4+ε

)
logm

min(d, d′) ≥ log(α+ t+ 2) + (m− 1) log(n)− 1

Then Low(v′; d, d′,m, t) has δ-error. That is,

|Low(v′; d, d′,m, t)− low(v)| < δ.

Proof. See Appendix B.

As these parameters are now well-established for the Low function, we now
refer to this tuple of parameters (dL, d

′
L,mL, tL) as PL to avoid confusion with the

upcoming Comp function which will have a similar parameter naming convention.
Furthermore, when PL is clear from context, define

Lv := Low(v;PL)

for ease of notation in the upcoming sections.

3.3 LowComp: HE-compatible Equality Check

Theorem 3 approximates low(x) and low(y) via Low(x′;PL) and Low(y′;PL).
One of the remaining challenges is to characterize the equality check low(x) =
low(y) using Low(x′;PL) and Low(y′;PL). The second challenge is to rewrite (1)
for z′ so that it can be computed by avoiding the if statement and the mod 2
addition.

Suppose that x′ and y′ are two real valued vectors that are approximations
of the binary vectors x and y, respectively. We must now determine a method

14

that takes x′ and y′ as input, and outputs z′ such that z′ approximates the
binary vector

z =

{
x + y mod 2 if low(x) = low(y)

x if low(x) 6= low(y)
(1)

In Section 3.5, we show that z in (1) can be approximated by

z′ = Ω(x′ − y′)2 + (1−Ω)x′, (2)

where the predicate Ω takes Low(x′;PL) and Low(y′;PL) as input, and approxi-
mates the boolean value low(x) == low(y). We establish the theory to calculate
Ω in this section.

Lemma 3. Let x,y ∈ {0, 1}n and x′,y′ ∈ [0, 1]n and assume that PL is chosen
such that |Low(x′;PL) − low(x)| < δ and |Low(y′;PL) − low(y)| < δ for some
0 < δ < 1

4 . Let φ be any value in the interval (2δ, 1− 2δ). Then

|Low(x′;PL)− Low(y′;PL)| ≤ φ iff low(x) = low(y)

Proof. Suppose that |Low(x′;PL)− Low(y′;PL)| > φ. Then

φ < |Low(x′;PL)− Low(y′;PL)|
≤ |Low(x′;PL)− low(x)|+ |Low(y′;PL)− low(y)|+ |low(x)− low(y)|
< 2δ + |low(x)− low(y)|.

This implies that |low(x) − low(y)| > φ − 2δ > 0 as φ > 2δ by assumption.
Both low(x) and low(y) are integer-valued functions, so it must be the case that
low(x) 6= low(y).

Conversely, suppose that

|Low(x′;PL)− Low(y′;PL)| ≤ φ.

Then

|low(x)− low(y)| ≤ |Low(x′;PL)− low(x)|
+ |Low(y′;PL)− low(y)|
+ |Low(x′;PL)− Low(y′;PL)|
< δ + δ + φ

And so we have that |low(x) − low(y)| < 2δ + φ < 1 as φ < 1 − 2δ. Again, as
low is an integer-valued function, it must be the case that low(x) = low(y).

Remark 2. Tracing the proof of Lemma 3 also reveals that the intervals on which
|Low(x′;PL)−Low(y′;PL)| and φ live are disjoint, and so it will never be the case
that

|Low(x′;PL)− Low(y′;PL)| = φ,

despite the statement of the lemma.

15

The implications of Lemma 3 is that one does not need to be very accurate
in the calculation of Low(x′;PL), and in fact only needs to approximate low(x)
(using Low(x′;PL)) to an accuracy of 1

4 . If that condition is guaranteed, then one
may compare the value |Low(x′;PL) − Low(y′;PL)| to any 2δ < φ < 1 − 2δ to
check whether the underlying low values are equal or not.

With this lemma, our strategy to compare low values of two approximately
binary vectors will be to exploit an approximation of the function that compares
the relative size of its two inputs. First, we introduce the following function:

Definition 4. For x,y ∈ {0, 1}n, let lx = low(x) and ly = low(y). Define

lowcomp(lx, ly) =

{
0, if lx 6= ly

1, if lx = ly
.

The function lowcomp will be used to gate the mod 2 addition of two columns
in place of the conditional equality check in Algorithm 1. In particular, for a
given x and y ∈ [0, 1]n, the statement “update x to x + y mod 2, if their lows
are equal” may be reinterpreted as

x = x + lowcomp(lx, ly)y mod 2.

We now establish a LowComp algorithm to estimate the lowcomp function for
approximately binary vectors. Our formulation is based on the Comp algorithm,
which estimates the comp function given in Definition 5 (both introduced in [16])
that compares the relative size of its inputs.

Definition 5 ([16]). For any non-zero real numbers a, b, define

comp(a, b) = lim
k→∞

ak

ak + bk
=


1, if a > b
1
2 , if a = b

0, if a < b

The Comp algorithm (Algorithm 4), approximates the comp function by eval-

uating the expression
am

t

amt + bmt , for t a positive integer, and m often chosen to

be a power to 2.
Comp, along with Lemma 3, are the building blocks we need to build LowComp.

Using Lemma 3, we make the observation that

lowcomp(x,y) = 1⇔ low(x) = low(y)

⇔ φ ≥ |Low(x′;PL)− Low(y′;PL)|
⇔ φ2 ≥ (Low(x′)− Low(y′))2

and so we compare (Low(x′;PL)−Low(y′;PL))2 to φ2 to determine if the underly-
ing low values are equal or not. This construction removes the need to implement
an HE circuit to compute absolute value at the cost of two squarings.

16

Algorithm 4 Comp(a, b; d, d′,m, t) from [16]

Input: distinct real numbers a, b ∈ [1/2, 3/2); d, d′,m, t ∈ N
Output: a real number r ∈ (0, 1) . r ≈ 1 if a > b; r ≈ 0 if a < b
Depth: d′ + 1 + t(d+ log(m) + 2)
Complexity: O(d′ + t(d+ log(m)))

1: I ← Inv(a+b
2

; d′)
2: a0 ← a

2
· I

3: b0 ← 1− a0
4: for n← 0 to t− 1 do
5: I ← Inv(amn + bmn ; d)
6: an+1 ← amn · I
7: bn+1 ← 1− an+1

8: end for
9: return at

We make two important notes before we explicitly define LowComp. The first is
that, by construction, |Low(x′;PL)−Low(y′;PL)| and φ exist in disjoint intervals
(refer to Lemma 3’s remark), and so φ and |Low(x′;PL)−Low(y′;PL)| will never
be equal. Thus LowComp may be treated as an approximate binary indicator func-
tion for our application. The second is that the input (Low(x′;PL)−Low(y′;PL))2
is in the interval [0, (n−1)2]. As the Comp function requires its inputs to be in the
interval [12 ,

3
2), we apply a linear transformation to bring values in the correct

interval.

Transformation 3. TC(x) := 1
2 + x

n2

Since TC is a monotonic function, the relative order of the inputs are pre-
served. We now explicitly define LowComp by performing Comp on TC(φ

2) and
TC((Lx′ − Ly′)2) as described in Algorithm 5.

LowComp inherits from Comp that its outputs live in (0,1) and that it can
approximate lowcomp arbitrarily well given appropriately chosen parameters.
We formalize this in the following theorem.

Theorem 4. Let x,y ∈ {0, 1}n and x′,y′ ∈ [0, 1]n and assume that PL is chosen
such that |Low(x′;PL) − low(x)| < δ and |Low(y′;PL) − low(y)| < δ for some
0 < δ < 1

4 . Let φ be any value in the interval (2δ, 1− 2δ). Define LowComp as in
Algorithm 5.

If the parameters in the Comp function are chosen such that

|Comp(a, b; d, d′,m, t)− comp(a, b)| < η,

then we also have

|LowComp(Lx′ , Ly′ , φ; d, d′,m, t)− lowcomp(lx, ly)| < η.

Proof. See Appendix C.

17

Algorithm 5 LowComp(Lx′ , Ly′ , φ; d, d′,m, t)

Input: Lx′ , Ly′ ∈ [0, n− 1], φ ∈ (2δ, 1− 2δ); d, d′,m, t ∈ N
Output: A real number r ∈ (0, 1) . r ≈ lowcomp(lx, ly)
Depth: d′ + 2 + t(d+ log(m) + 2)
Complexity: O(d′ + t(d+ logm))

1: Ld ← Lx′ − Ly′

2: r ← Comp(TC(φ
2), TC(L

2
d); d, d′,m, t) . Algorithm 4

3: return r

3.4 Parameters for LowComp

We shall proceed with the analysis of LowComp’s parameters in a similar fashion
to Low’s parameters in Section 3.2. Theorem 4 from [16] gives lower bounds for
the parameters d, d′,m, and t to achieve 2−α error in the Comp function.

Theorem 5 (Theorem 4 in [16]). Let x, y ∈ [1/2, 3/2) satisfy

c ≤ max(x, y)/min(x, y)

for a fixed c ∈ (1, 3). If

t ≥ 1

log(m)
[log(α+ 1)− log log(c)]

d ≥ log(α+ t+ 2) +m− 2

d′ ≥ log(α+ 2)− 1

then |Comp(x, y; d, d′,m, t)− comp(x, y)| < 2−α.

The role of c in Comp is similar to MaxIdx in the Section 3.2: the closer
c = max(a, b)/min(a, b) is to 1, the larger the value for all subsequent choice of
parameters, thus increasing the “effort” needed for the Comp function to distin-
guish which of the two inputs is larger. For this reason, it is our goal to bound
c = max(a, b)/min(a, b) as far from 1 as possible.

Once a φ is fixed, the only guarantee is that TC((Lx′ −Lx′)2) is either strictly
greater or less than said TC(φ

2) (see Lemma 3’s remark). Since we are only
concerned with whether low(x) and low(y) are equal or not, the ratio c may be
reinterpreted as

c =
max

{
TC(φ

2), TC((Lx′ − Lx′)2)
}

min {TC(φ2), TC((Lx′ − Lx′)2)}
>


TC(φ

2)

TC((Lx′ − Lx′)2)
, if low(x) = low(y)

TC((Lx′ − Lx′)2)

TC(φ2)
, if low(x) 6= low(y)

It follows that

c > min

{
TC(φ

2)

TC((2δ)2)
,
TC((1− 2δ)2)

TC(φ2)

}
> 1

18

where the minimum changes depending on which case we are in. Thus, once a
δ ∈ (0, 1/4) is chosen, this expression is variable with respect to the value of φ
and thus TC(φ

2). The optimal choice of φ will ensure the minimum of these two
ratios are as far away from 1 as possible. So, we aim to optimize the right side
of this expression with respect to φ: that is, to determine what value of TC(φ

2)
solves

max

(
min

{
TC(φ

2)

TC((2δ)2)
,
TC((1− 2δ)2)

TC(φ2)

})
, (3)

where the max is taken over TC(φ
2) in the interval

(
TC((2δ)

2), TC((1− 2δ)2)
)
.

This solution to Eq. (3) comes from a general fact about positive real num-
bers, which we prove in Proposition 9, and which establishes the following
corollary:

Corollary 1. The value of TC(φ
2) which solves Eq. (3) is

TC(φ
2) =

√(
1

2
+ (

2δ

n
)2
)(

1

2
+ (

1− 2δ

n
)2
)
.

Thus, c >
√

n2+2(1−2δ)2
n2+2(2δ)2 .

Proof. See Appendix D.

Having determined the bottleneck value c, we explicitly construct a choice of
parameters for LowComp to achieve any desired level of accuracy (which has been
re-contextualized from the 2−α error in Comp to an arbitrary η error in LowComp,
see Lemma 7).

Theorem 6. Let x,y ∈ {0, 1}n and x′,y′ ∈ [0, 1]n and assume that PL is chosen
such that |Low(x′;PL) − low(x)| < δ and |Low(y′;PL) − low(y)| < δ for some
0 < δ < 1

4 . Define LowComp as in Algorithm 5, where we explicitly pick

φ = n

√√√√√(1

2
+ (

2δ

n
)2
)(

1

2
+ (

1− 2δ

n
)2
)
− 1

2
.

If the parameters in the Comp function are chosen such that

α > − log(η)

t ≥ 1

log(m)

[
log(α+ 2)− log log

(√
n2 + 2(1− 2δ)2

n2 + 2(2δ)2

)]
d ≥ log(α+ t+ 2) +m− 2

d′ ≥ log(α+ 2)− 1

then LowComp has η-error. That is,

|LowComp(Lx′ , Ly′ , φ; d, d′,m, t)− lowcomp(lx, ly)| < η

19

Proof. See Appendix D.

Remark 3. LowComp can now be thought of as a function of only two inputs (Lx′

and Ly′), as we will always choose this optimal value of φ. The theorem also
implies a trade-off between δ and η. Indeed, estimating low using Low to a high
degree requires less “effort” for Comp to distinguish the (in)equality of two Low

values. Similarly, less accurate low estimates will require Comp to do more of the
heavy-lifting. This intuition is confirmed by the dependence on δ of the lower
bound on c. As δ approaches 0, the bound on c increases further away from 1,
causing our choice of parameters for LowComp to get smaller. On the flip side, as
δ approaches its upper limit of 1/4, then c may get arbitrarily close to 1, causing
LowComp’s parameters to get arbitrarily large. We refer to these parameters as
PC = (dC, d

′
C,mC, tC).

3.5 Conditional modular addition of vectors

For a given x and y ∈ [0, 1]n, the statement “update x to x + y mod 2, if their
low values are equal” from Equation 1 may be reinterpreted as

x = x + lowcomp(lx, ly)y mod 2. (4)

Furthermore, addition modulo 2 can be recast as a polynomial operation using
the observation that for any two a, b ∈ {0, 1}, the operation (a − b)2 = a + b
mod 2. Thus, we may rewrite (1) as

x = lowcomp(lx, ly)(x− y)2 + (1− lowcomp(lx, ly))x,

taking all operations component-wise, to remove mod 2 addition.
We may then approximate this operation using Low to esimate low and

LowComp to estimate lowcomp. That is, the operation we will be performing
on approximate binary vectors is

x′ = LowComp(Lx′ , Ly′)(x′ − y′)2 + (1− LowComp(Lx′ , Ly′))x′, (5)

as alluded to in Eq. (2) in Section 3.3.

3.6 Modifying the Logical Structure of Reduce

The main operation in Reduce (Algorithm 1) is gated by a conditional while
loop. As mentioned before, conditional statements cannot be explicitly imple-
mented (or traced) over ciphertexts. Therefore, we need to rewrite lines 2-6 in
Algorithm 1 so that they are HE-compatible. This is done by replacing the while
loop with a double nested for loop, each of which run through all preceding col-
umn indices. Assume low(∆i) 6= low(∆k) for all 0 ≤ i 6= k < j, as is the case
when the Reduce algorithm, applied to a boundary matrix ∆, first encounters
column j. If we loop through the preceding j columns once, comparing each
∆k, k = 0 . . . , j − 1 to ∆j , either low(∆k) = low(∆j) for some k < j or not. In

20

the latter case, we know ∆j is already in reduced form and will not change—no
matter how many times one loops again through the preceding j − 1 columns—
since the (binary) addition only happens when the low’s of two columns match.
On the other hand, if some low(∆k) = low(∆j) for some k < j, ∆j ←∆j +∆k

mod 2 will change ∆j , and in particular, this addition necessarily causes the
low(∆j) to decrease. Thus, after such an update this new ∆j will never again
be equal to ∆k. In other words each column vector will only update column
j at most once. Without any assumptions about the order in which preceding
columns update ∆j , we simply loop over the preceding columns enough times to
guarantee every vector which should have updated column j has done so. This
requires exactly j loops over all preceding columns since each preceding column
can only update ∆j at most once. For the base case, note that column j = 0
is trivially in reduced form and ∆1 will certainly be in reduced form after a
single comparison with ∆0. This aligns with the worst case complexity for the
original Reduce algorithm: O(j2) for column j, O(n3) overall [22]. In Section
3.1, we modified the existing MaxIdx from [16] to attain the Low algorithm to
estimate low. We have already discussed how to check the equality of two low
values using Low and LowComp in Section 3.3. Finally, the mod 2 addition over
rational numbers was constructed in Section 3.5. With all of this combined, we
may now rewrite the main block of the Reduce algorithm as written in lines
6-9 of Algorithm 6 in a way which makes it compatible with each approximate
algorithm on approximate vectors framework.

3.7 An HE-Compatible Reduce

As the challenges as listed in Section 2.2 have now been addressed in Sections 3.1-
3.6, we now present Algorithm 6, which is an HE-compatible version of Reduce
and which can take an encrypted boundary matrix as input and reduce it using
HE-operations in the ciphertext space. We note that the moment we do the
very first column addition, vectors have moved from {0, 1}n to [0, 1]n, requiring
the need for all algorithms to be compatible with approximate binary vectors.
For this reason, we must have a guarantee of correctness, which is a function
of the controllable errors in our approximation variables: v′ (Theorem 1), Low
(Lemma 3) , and LowComp (Section 3.2).

As long as |v′−v| < 1/2n, we know that Low(v′;PL) will approximate low(v)
as accurately as wanted. And as long as Low(v′;PL) estimates low(v) to within
1/4, LowComp is able to distinguish between low(x) and low(y) using Low(x′;PL)
and Low(y′;PL). LowComp directly defines an approximately binary indicator

Ω ← LowComp(Lj0 , Lj ;PC)

which will be used to perform the “mod 2” addition, which will naturally have
accumulating non-zero errors (determined by η). The finiteness of the algorithm
guarantees the existence of an η such that the accumulation of errors never
exceeds the maximum threshold of 1/2n. In a strict sense, HE-Reduce only fails
to produce the correct reduced boundary matrix if the maximum error in some

21

Algorithm 6 HE-Reduce(∆;PL,PC)
Input: A boundary matrix ∆ = [∆0 |∆1 | ... |∆n−1] ∈ Zn×n

2

Output: A matrix R′ ∈ [0, 1]n×n . Approximates Algorithm 1

1: L0 ← Low(∆0;PL) . Algorithm 3
2: ∆′0 ←∆0

3: for j ← 1 to n− 1 do
4: Lj ← Low(∆j ;PL) . Algorithm 3
5: ∆′j ←∆j

6: for k ← 0 to j − 1 do . Section 3.6
7: for j0 ← 0 to j − 1 do
8: Ω ← LowComp(Lj0 , Lj ;PC) . Algorithm 5
9: ∆′j ← Ω(∆′j −∆′j0)2 + (1−Ω)∆′j . Equation 5

10: Lj ← Low(∆′j ;PL) . Algorithm 3
11: end for
12: end for
13: end for
14: return R′ = [∆′0 |∆′1 | ... |∆′n−1]

component is 1/2 or larger. If |Reduce(∆) − R′| < 1/2, then Round(R′) =
Reduce(∆), where Round casts entries to the nearest integer. This condition is
guaranteed by the stricter requirement that errors are within 1/2n.

4 Complexity and Implementation Analysis

As in all HE-compatible functions, there is particular interest in HE-Reduce’s
complexity and depth to understand the noise growth that a ciphertext will ac-
cumulate as it passes through the algorithm. We will prove a more general state-
ment that establishes the depth of our algorithm on an n× n boundary matrix.
We note that while we establish the textbook version of the Reduce algorithm
as HE-Reduce, an immediate improvement to the algorithm to make it even more
HE-compatible is easily seen. We implement this verison, HE-Reduce-Optimized,
and analyze its depth and complexity.

4.1 Analysis of HE-Reduce-Optimized

In our implementation, we use Algorithm 7, which is a slightly modified version
of Algorithm 6. Here, the Low computation in line 10 in Algorithm 6 is now
pushed out of the for loop (see line 14 in Algorithm 7) and the repetitive update
operations

∆′j ← Ω(∆′j −∆′j0)2 + (1−Ω)∆′j , j0 = 0, ..., j − 1

in line 9 in Algorithm 6 are now replaced by a single cumulative update operation
(line 13 in Algorithm 7), which can be explicitly rewritten as

∆′j ←
j−1∑
j0=0

Ωj0,j((∆
′
j −∆′j0)2) + (1−

j−1∑
j0=0

Ωj0,j)∆
′
j , (6)

22

Algorithm 7 HE-Reduce-Optimized(∆;PL,PC)
Input: A boundary matrix ∆ = [∆0 |∆1 | ... |∆n−1] ∈ Zn×n

2

Output: A matrix R′ ∈ [0, 1]n×n . Approximates Algorithm 1

1: L0 ← Low(∆0;PL) . Algorithm 3
2: ∆′0 ←∆0

3: for j ← 1 to n− 1 do
4: Lj ← Low(∆j ;PL) . Algorithm 3
5: ∆′j ←∆j

6: for k ← 0 to j − 1 do . Section 3.6
7: cumLeft = 0, cumOmega = 0
8: for j0 ← 0 to j − 1 do
9: Ω ← LowComp(Lj0 , Lj ;PC) . Algorithm 5

10: cumOmega← cumOmega +Ω
11: cumLeft← cumLeft +Ω(∆′j −∆′j0)2

12: end for
13: ∆′j ← cumLeft + (1− cumOmega)∆′j . Equation 6
14: Lj ← Low(∆′j ;PL)
15: end for
16: end for
17: return R′ = [∆′0 |∆′1 | ... |∆′n−1]

where Ωj0,j = LowComp(Lj0 , Lj ;PC). The correctness follows from the fact that
Ωj0,j is either approximately zero for all j0 = 0, ..., j − 1 except for at most one
value of j0 = k (where it is approximately one), whence we have either ∆′j stays

approximately the same or is updated to ∆′j ≈ (∆′j −∆′k)2, as required.

Theorem 7. Let B ∈ Zn×m2 be a binary matrix with n ≥ m. Furthermore
suppose the tuples of parameters PL = (dL, d

′
L,mL, tL) and PC = (dC, d

′
C,mC, tC)

are given which give depth DL = dL + 1 + tL(d
′
L + log(mL) + 2) and DC = dC +

1 + tC(d
′
C + log(mC) + 2) to the Low and Comp functions, respectively. Then, the

depth of the HE-Reduce-Optimized (Algorithm 7) is m(m−1)
2 [DL +DC + 1] and

its complexity is

O
(
m3[1 + d′C + tC(dC + log(mC))] +m2[d′L + tL(dL +m log(mL))]

)
.

Proof. We proceed with an induction on m. For the base case, note that column
j = 0 is trivially in reduced form and ∆1 will certainly be in reduced form after
a single comparison with ∆0. This aligns with the worst case complexity for the
original Reduce algorithm: O(j2) for column j, O(n3) overall [22].

For the inductive hypothesis, assume that for all j ≤ m− 1, that the depth
of the HE-Reduce-Optimized algorithm, after termination on a n× j matrix, is

d(j) = j(j−1)
2 D.

Now consider an n × m matrix B = [x0 | ... | xm−2 | xm−1] ∈ Zn×m2 .
Then the sub-matrix B′ obtained by excluding the last column xm−1 is an

n × (m − 1) matrix, and thus has depth d(m − 1) = (m−1)(m−2)
2 D by the in-

ductive hypothesis. Let us now focus on the last column, xm. Consider the

23

outer loop corresponding to k = 0 in the HE-Reduce-Optimized algorithm. Af-
ter the first inner loop finishes, we have the depth of column x′m is exactly

d(m − 1) + D = (m−1)(m−2)
2 D + D, where the last D term is added from the

very last update.
However, in HE-Reduce-Optimized, for all subsequent k = 1, ...,m−1, every

k loop adds exactly D to the depth only one time. This is because every run of the
inner j0 for loop runs in parallel with ciphertexts of lower depth than the most
recent update of x′m. A counting argument will yield that the depth of column

x′m after all loops are completed is [(m−1)(m−2)2 D+D]+[(m−2)D] = m(m−1)
2 D,

thus completing the induction.
As for the complexity, the optimized algorithm calls Low (which has complex-

ityO(m+d′L+tL(dL+m logmL)) exactlym(m−1)/2 times but still calls LowComp
(which has complexity O(d′C + tC(dC + logmC))) exactly m(m− 1)(2m− 1)/6
times. Thus, the overall complexity is as stated.

Remark 4. This algorithm performed on a boundary matrix ∆ ∈ Zn×n2 is depth
n(n− 1)/2 [DL +DC + 1] and cost O(n3 + n2[d′L + tC(dL + n)]) for the choice of
mC = mL = 2, and assuming that d′L > d′C, dL > dC, and tC ≈ tL.

4.2 Implementation Notes

In this section, we discuss our implementation of Algorithm 6 using HE. We
assume that a Client generates pk, sk, evk, for some suitable params; and
the Server knows pk and evk. Note that the Server can evaluate circuits on
ciphertexts but cannot decrypt; see Section 2.2. By construction, variables of Al-
gorithm 6 deals with vectors over the set R of real numbers and the approximate
arithmetic is performed over R. Additionally, as comparisons feature heavily in
our implementation, we note that CKKS comparison circuits are comparable
in amortized time to both BFV/BGV and TFHE schemes [33]. Therefore, the
HEAAN [15] HE scheme, also known as the CKKS scheme, would be a suitable
choice for implementing Algorithm 6. In CKKS, we have M = Z[X]/〈XN + 1〉
and C = ZQ[X]/〈XN + 1〉 × ZQ[X]/〈XN + 1〉. Moreover, CKKS allows one to
encode and encrypt N/2 numbers [x0, ..., xN/2−1], xi ∈ R, as a single ciphertext,
where ciphertext operations can be performed component-wise and simultane-
ously. As a result, under the setting of above CKKS parameters, a Client can
encode and encrypt an n× n boundary matrix ∆ in at least two different ways:
as n ciphertexts c0, ..., cn−1, where ci ∈ C represents the encryption of the i’th
column of ∆, which requires n ≤ N/2; or as a single ciphertext c, where c ∈ C
represents the encryption of the “concatenated columns of ∆”-vector, which
requires n ≤

√
N/2.

For simplicity, we assume that a Client encrypts ∆ using the first method;
obtains and sends ci ∈ C to the Server. The Server can use evk and compute
c′0, ..., c

′
n−1 ← Evalevk(f ; c0, ..., cn−1), using ciphertext addition and multiplica-

tion operations7, where f is the arithmetic circuit induced by Algorithm 6. The

7In practice, one would have to utilize other ciphertext operations like Rotate.

24

Server sends c′i, i = 0, ..., n−1, back to the Client, who can use sk and decrypt
c′i to x′i. Note that, by our previous arguments following Algorithm 6, Round(x′i)
would match the ith column of Reduce(∆).

In order to get a more concrete sense of the implementation of Algorithm 6
using CKKS, we consider CKKS parameters at λ = 128-bit security level, and set
N = 217 and Q = P · q0 ·

∏50
i=1 qi, as a product of 52 primes with log2Q = 3300,

log2 P = 660, and log2 qi ≈ δ = 51 < log2 q0 < 2δ = 102; see Table 6 in [14].
This choice maximizes the depth L of circuits that HEAAN can evaluate, without
bootstrapping, to L = 50 and the precision digits of data during computations
is kept at 10. Under this choice of parameters, a Client can encode and encrypt
boundary matrices of size (n × n), where n ≤ N/2 = 216(

√
N/2 = 28) using

the first (second) encoding approach. CKKS can handle circuits of depth up
to L = 50 and so one would have to bootstrap [15] once the depth limit is ex-
hausted. In our implementation, we use Algorithm 7, which is a slightly modified
and optimized version of Algorithm 6. Our implementation, using Intel(R) 16-
Core(TM) i9-9900K 3.60GHz, can reduce a single encrypted 3x3 matrices in 4.5
seconds with 40 bootstrappings using the (non-cryptographic) CKKS parameters
N = 25, Q ≈ 23188; and PL = PC = (5, 5, 2, 5), where the parameters are chosen
such that the underlying Comp in our computations uses one of the optimal pa-
rameters as reported in [16]. Note that Reducing 3x3 matrices takes 225 minutes
using 128-bit secure CKKS parameters with N = 217. Note that if ciphertext
slots are fully utilized then the amortized times would be 4.5/(24/(3+1)) = 1.125
and 225 · 60/(216/(3 + 1)) = 0.82 seconds, respectively.

4.3 Limitations and Potential Improvements

A major challenge in implementing HE-Reduce using HE is the cubic co-factor
n3 in the depth of the underlying arithmetic circuit (even HE-Reduce-Optimized

has a quadratic co-factor n2, see Theorem 7.) As pointed out in an implementa-
tion scenario in Section 4.2, HEAAN can handle circuits up to depth 50 but the
depth of HE-Reduce-Optimized quickly reaches large numbers as n grows and
exceed 50 even for small values of n. Therefore, the size of the boundary matrix
may be too large in practice to be practically reducable. Indeed, the Vietoris-
Rips and Čech filtrations have 2m simplices in the worst case for a point cloud
with m points [45] since they define scales for every simplex in the powerset of
the vertices (although it would be unusual to compute with simplices of all di-
mensions). Another challenge is to encode and encrypt (n×n) boundary matrices
for large n. As noted in Section 4.2, currently suggested HEAAN parameters [14]
at 128-bit security level limits n < N/2 = 216 or n <

√
N/2 = 28, depending on

the choice of encoding. Therefore, substantial improvements would be required
before an efficient implementation of HE-Reduce-Optimized can be realized.

A possible improvement would be to reduce the size of the boundary matrix
by the choice of filtration, which is an active field of research. For example, for
a point cloud of size m in dimension d, the (weighted) alpha [21,22] and sparse
Rips filtrations [51] create complexes of size mO(d/2) and O(m) respectively [45].
Very recent theoretical results also justify computing the PH of small subsets

25

of a point cloud to construct a distribution of PDs representing the topology of
the original cloud [54]. This approach has the potential to massively reduce the
size of each boundary matrix, whose reductions can be carried out completely in
parallel. Another improvement would come from relaxing our theoretical bounds
for parameters to reduce the depth in Theorem 7. Section 4.4 provides some
motivating evidence of the feasibility and potential consequences of such an
approach.

4.4 Empirical Results

The output of Algorithm 7 is an approximately binary matrix

R′ = HE-Reduce-Optimized(∆;PL,PC) ∈ [0, 1]n×n

which approximates the output of Reduce(∆). The key bound in parameter se-
lection is that throughout HE-Reduce-Optimized, the approximate binary vec-
tors must never disagree with the true underlying binary vectors by more than
1/2n, to ensure the output of HE-Reduce-Optimized returns an approximately
binary vector with the same implied birth-death pairings as the exact Reduce.
How prevalent are the cases in which the maximum error between the approxi-
mate and the exact reduced matrix exceeds 1/2n? This question focuses on the
accumulation of error throughout HE-Reduce-Optimized due to approximating
exact operations in plaintext, and is independent of the noise growth that is
accumulated by HE operations.

We explored this question in a fashion similar to the parameter relaxation
experiment conducted in [16] by systematically increasing the parameters PL
and PC of HE-Reduce-Optimized with respect to their depth and complexity to
determine a minimum depth cofactor D = DL +DC + 1 (as defined in Theorem
7) which resulted in 100% accuracy. Specifically, for each parameter choice, we
randomly sampled the space of 10 × 10, upper-triangular, binary matrices and
compared the results of exact and approximate reductions, recording when all
entries were within 1/2n and/or 1/2 of the exact-reduced binary matrix. We
found that the minimum depth (119) and complexity (55300) parameter pair
for which 100% of the approximately reduced matrices were within 1/2n of
their exact counterparts was PL = (3, 3, 2, 6) and PC = (3, 3, 2, 12), as reported
in Table 1. That said, it may be that some matrices will exhibit an error in
excess of the 1/2n tolerance for these parameter choices, although we expect
such examples to be rare if they exist. By reducing tC from 12 to 11, we found
only 81.2% of approximately reduced matrices had errors less than 1/2n and
only 91.2% of matrices had maximum error was less than 1/2—and so would
still yield the correct reduced matrix after rounding (Table 1). By additionally
raising tL from 6 to 7 (so the circuit depth is again 119 but complexity is 51800)
we find 98.6% of approximately reduced matrices had errors less than 1/2n and
100% of matrices had maximum error was less than 1/2 (Table 1). These results
in expected accuracy suggests there is moderate sensitivity to the choice of some
parameters.

26

Table 1. Empirically-determined parameters for accurate reduction of 10×10 matrices.
∗ represents the lowest depth and complexity parameters of HE-Reduce-Optimized that
exhibited correct reduction (within 1/2n error) of 100% of randomly chosen matrices.

PL PC D Complexity Within 1/2n Within 1/2

(3, 3, 2, 6) (3, 3, 2, 11) 113 51300 81.2% 91.2%
(3, 3, 2, 7) (3, 3, 2, 11) 119 51800 98.6% 100%

∗ (3, 3, 2, 6) (3, 3, 2, 12) 119 55300 100% 100%

We found that the same parameters for HE-Reduce-Optimized shown to
correctly reduce random 10 × 10 matrices, also correctly reduces the 12 × 12
example boundary matrix given in Figure 2. Indeed, the maximum error in any
component of the approximate reduced boundary matrix is 2.04e−3, well within
the required 1/2n = 1/24 ≈ 0.041 tolerance to guarantee correct computation
of column low 1s (Figure 3 (A)).

By relaxing some choices of accuracy parameters we observe failure cases
where HE-Reduce-Optimized produces approximate binary matrices that do
not cast to the exact reduced matrix. For instance, relaxing tL from 5 to 6
returns a matrix that fails to be in reduced form, as both columns ab and bc
have the same low 1s (Figure 3 (B)). By increasing tC substantially, this issue is
remedied, however, the approximately reduced matrix does not agree with the
exact reduction (Figure 3 (C)). It is interesting to note that, in this case, the
low 1s are all correct, and so the correct persistence diagram is computed.

Relaxing LowComp parameters also leads to failure, as shown in (Figure 3
(D)), where large errors accumulate during reduction leading to values that fall
far outside the allowed range of [0, 1].

5 Concluding Remarks and Future Research

We developed a new algorithm that enables key TDA computations in the ci-
phertext space using HE. We proved the correctness of our proposed algorithm,
provided detailed correctness and complexity analysis, and an implementation
of our algorithms using CKKS from the OpenFHE library [5]. We also presented
some concrete directions for improvement and provided experimental results. To
our knowledge, this is the first attempt to introduce secure computing for TDA.
It would be interesting to extend and improve our results, and to implement
secure TDA algorithms on realistic data sets.

The Reduce algorithm represents one of several fundamental components of
TDA machinery which challenge existing technologies in the HE space. Another
is the calculation of distances between PDs, which rely on combinatorial opti-
mization algorithms to minimize the cost of matchings between persistence pairs
in pairs of PDs [38]. Others include the numerous methods being broadly de-
ployed to vectorize PDs for use with downstream ML models [2, 7, 9, 18, 47, 49].
HE-compatible implementations could allow remote processing of encrypted PDs
and would immediately enable the use of existing implementations of encrypted

27

∅
a

b

c

ab

ac

bc

d

cd

bd

bcd

abc

PL=(3,3,2,6) | PC=(3,3,2,12) PL=(3,3,2,5) | PC=(3,3,2,12)

PL=(3,3,2,5) | PC=(3,3,2,20) PL=(3,3,2,6) | PC=(3,3,2,11)

∅
a

b

c

ab

ac

bc

d

cd

bd

bcd

abc

∅
a

b

c

ab

ac

bc

d

cd

bd

bcd

abc

∅ a b c ab ac bc d cd bd bcdabc ∅ a b c ab ac bc d cd bd bcd abc

∅ a b c ab ac bc d cd bd bcdabc ∅ a b c ab ac bc d cd bd bcd abc

∅
a

b

c

ab

ac

bc

d

cd

bd

bcd

abc 0

1/24

0.2

0.4

0.6
0.5

0.8
1-1/24
>1

(A) (B)

(C) (D)

Fig. 3. Approximate reductions of the boundary matrix in Figure 2 using arithmetic
circuits for various choices of algorithm parameters. Matrix entries are colored accord-
ing their magnitude after approximate reduction by HE-Reduce-Optimized. Errors in
excess of 1/2 are bordered in red. Entries with values in excess of 1 are colored red.

Euclidean distance calculations [13] and encrypted ML models that take as input
finite-dimensional feature vectors [12,20,36]. We are hopeful these challenges will
have implications beyond TDA-ML use cases by soliciting contributions from the
broader HE community, and that the constraints imposed by HE will motivate
new TDA approaches.

References

1. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic encryption
schemes: Theory and implementation. ACM Computing Surveys 51, 1–35 (2019)

2. Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chep-
ushtanova, S., Hanson, E., Motta, F., Ziegelmeier, L.: Persistence images: A stable
vector representation of persistent homology. J. Mach. Learn. Res. 18(1), 218–252
(January 2017)

28

3. Al Badawi, A., Chen, L., Vig, S.: Fast homomorphic svm inference on encrypted
data. Neural Computing and Applications 34(18), 15555–15573 (Sep 2022), https:
//doi.org/10.1007/s00521-022-07202-8

4. Aloufi, A., Hu, P., Wong, H.W.H., Chow, S.S.M.: Blindfolded evaluation
of random forests with multi-key homomorphic encryption. IEEE Trans-
actions on Dependable and Secure Computing 18(4), 1821–1835 (2021).
https://doi.org/10.1109/TDSC.2019.2940020

5. Badawi, A., Bates, J., Bergamaschi, F., Cousins, D., Erabelli, S., Genise, N.,
Halevi, S., Hunt, H., Kim, A., Lee, Y., Liu, Z., Micciancio, D., Quah, I., Polyakov,
Y., Saraswathy, R., Rohloff, K., Saylor, J., Suponitsky, D., Triplett, M., Vaikun-
tanathan, V., Zucca, V.: OpenFHE: Open-Source Fully Homomorphic Encryption
Library. Cryptology ePrint Archive, Paper 2022/915 (2022), https://eprint.iacr.
org/2022/915

6. Braun, T., Fung, B.C.M., Iqbal, F., Shah, B.: Security and privacy challenges
in smart cities. Sustainable Cities and Society 39, 499–507 (2018), https://www.
sciencedirect.com/science/article/pii/S2210670717310272

7. Bubenik, P.: Statistical topological data analysis using persistence landscapes.
Journal of Machine Learning Research 16, 77–102 (01 2015)

8. Bukkuri, A., Andor, N., Darcy, I.K.: Applications of topological data
analysis in oncology. Frontiers in Artificial Intelligence 4 (2021).
https://doi.org/10.3389/frai.2021.659037, https://www.frontiersin.org/articles/
10.3389/frai.2021.659037

9. Carriere, M., Chazal, F., Ike, Y., Lacombe, T., Royer, M., Umeda, Y.: PersLay: A
Neural Network Layer for Persistence Diagrams and New Graph Topological Sig-
natures. Proceedings of the 23rdInternational Conference on Artificial Intelligence
and Statistics (AISTATS) 108, 2786–2796 (2020), https://proceedings.mlr.press/
v108/carriere20a.html

10. Chazal, F., Michel, B.: An introduction to topological data analysis: Fundamental
and practical aspects for data scientists. Frontiers in Artificial Intelligence 4 (2021).
https://doi.org/10.3389/frai.2021.667963, https://www.frontiersin.org/article/10.
3389/frai.2021.667963

11. Chazal, F., de Silva, V., Oudot, S.: Persistence stability for geometric complexes.
Geometriae Dedicata 173, 193–214 (2012)

12. Chen, H., Gilad-Bachrach, R., Han, K., Huang, Z., Jalali, A., Laine, K., Lauter,
K.: Logistic regression over encrypted data from fully homomorphic encryption.
BMC Medical Genomics 11, 1–12 (2018)

13. Chen, H., Laine, K., Player, R.: Simple encrypted arithmetic library - seal v2.1. In:
Brenner, M., Rohloff, K., Bonneau, J., Miller, A., Ryan, P.Y., Teague, V., Bracciali,
A., Sala, M., Pintore, F., Jakobsson, M. (eds.) Financial Cryptography and Data
Security. pp. 3–18. Springer International Publishing, Cham (2017)

14. Cheon, H., Son, Y., Yhee, D.: Practical FHE parameters against lattice attacks.
Journal of the Korean Mathematical Society 59, 35–51 (2022)

15. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. Advances in Cryptology – ASIACRYPT 2017, Lecture
Notes in Computer Science 10624, 409–437 (2017)

16. Cheon, J.H., Kim, D., Kim, D., Lee, H.H., Lee, K.: Numerical method for com-
parison on homomorphically encrypted numbers. Advances in Cryptology – ASI-
ACRYPT 2019, Lecture Notes in Computer Science 11922, 415–445 (2019)

17. Chialva, D., Dooms, A.: Conditionals in homomorphic encryption and machine
learning applications. CoRR abs/1810.12380 (2018), http://arxiv.org/abs/1810.
12380

29

https://doi.org/10.1007/s00521-022-07202-8
https://doi.org/10.1007/s00521-022-07202-8
https://doi.org/10.1109/TDSC.2019.2940020
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://www.sciencedirect.com/science/article/pii/S2210670717310272
https://www.sciencedirect.com/science/article/pii/S2210670717310272
https://doi.org/10.3389/frai.2021.659037
https://www.frontiersin.org/articles/10.3389/frai.2021.659037
https://www.frontiersin.org/articles/10.3389/frai.2021.659037
https://proceedings.mlr.press/v108/carriere20a.html
https://proceedings.mlr.press/v108/carriere20a.html
https://doi.org/10.3389/frai.2021.667963
https://www.frontiersin.org/article/10.3389/frai.2021.667963
https://www.frontiersin.org/article/10.3389/frai.2021.667963
http://arxiv.org/abs/1810.12380
http://arxiv.org/abs/1810.12380

18. Chung, Y.M., Lawson, A.: Persistence Curves: A canonical framework for summa-
rizing persistence diagrams. Advances in Computational Mathematics 48(1), 6
(Jan 2022), https://doi.org/10.1007/s10444-021-09893-4

19. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions
have lp-stable persistence. Found. Comput. Math. 10(2), 127–139 (2010), http:
//dblp.uni-trier.de/db/journals/focm/focm10.html#Cohen-SteinerEHM10

20. Crockett, E.: A low-depth homomorphic circuit for logistic regression model train-
ing. In: WAHC 2020 Workshop on Encrypted Computing and Applied Homomor-
phic Cryptography (2020)

21. Edelsbrunner, H.: The union of balls and its dual shape. Discrete & Computational
Geometry 13(3), 415–440 (Jun 1995), https://doi.org/10.1007/BF02574053

22. Edelsbrunner, H., Harer, J.L.: Computational Topology - an Introduction. Ameri-
can Mathematical Society (2010)

23. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and sim-
plification. In: Proceedings of the 41st Annual Symposium on Foundations of Com-
puter Science. p. 454. FOCS ’00, IEEE Computer Society, USA (2000)

24. Fang, H., Qian, Q.: Privacy preserving machine learning with homomorphic en-
cryption and federated learning. Future Internet 13(4), 94 (2021)

25. Giacomelli, I., Jha, S., Joye, M., Page, C.D., Yoon, K.: Privacy-preserving ridge re-
gression with only linearly-homomorphic encryption. In: Preneel, B., Vercauteren,
F. (eds.) Applied Cryptography and Network Security. pp. 243–261. Springer In-
ternational Publishing, Cham (2018)

26. Gidea, M., Katz, Y.: Topological data analysis of financial time series: Land-
scapes of crashes. Physica A: Statistical Mechanics and its Applications 491, 820–
834 (2018). https://doi.org/https://doi.org/10.1016/j.physa.2017.09.028, https://
www.sciencedirect.com/science/article/pii/S0378437117309202

27. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of The 33rd
International Conference on Machine Learning. Proceedings of Machine Learning
Research, vol. 48, pp. 201–210. PMLR, New York, New York, USA (20–22 Jun
2016), https://proceedings.mlr.press/v48/gilad-bachrach16.html

28. Grubbs, P., Ristenpart, T., Shmatikov, V.: Why your encrypted database is not
secure. Proceedings of the 16th Workshop on Hot Topics in Operating Systems
(HotOS) pp. 162–168 (2017)

29. Hacigümüs, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing SQL over encrypted data
in the database-service-provider model. In: Proceedings of the ACM International
Conference on Management of Data (SIGMOD). pp. 216–227 (2002)

30. Huynh, D.: Cryptotree: fast and accurate predictions on encrypted structured data.
CoRR abs/2006.08299 (2020), https://arxiv.org/abs/2006.08299

31. Iliashenko, I., Zucca, V.: Faster homomorphic comparison operations for BGV and
BFV. Proceedings of Privacy Enhancing Technologies 2021(3), 246–264 (2021)

32. Iliashenko, I., Zucca, V.: Faster homomorphic comparison operations for bgv and
bfv. Proceedings on Privacy Enhancing Technologies 2021, 246 – 264 (2021)

33. Iliashenko, I., Zucca, V.: Faster homomorphic comparison operations for BGV and
BFV. Proceedings on Privacy Enhancing Technologies 2021(3), 246–264 (2021).
https://doi.org/10.2478/popets-2021-0046, https://hal.science/hal-03506798

34. Jäschke, A., Armknecht, F.: Unsupervised machine learning on encrypted data. In:
Cid, C., Jacobson Jr., M.J. (eds.) Selected Areas in Cryptography – SAC 2018,
Lecture Notes in Computer Science. pp. 453–478 (2019)

30

https://doi.org/10.1007/s10444-021-09893-4
http://dblp.uni-trier.de/db/journals/focm/focm10.html#Cohen-SteinerEHM10
http://dblp.uni-trier.de/db/journals/focm/focm10.html#Cohen-SteinerEHM10
https://doi.org/10.1007/BF02574053
https://doi.org/https://doi.org/10.1016/j.physa.2017.09.028
https://www.sciencedirect.com/science/article/pii/S0378437117309202
https://www.sciencedirect.com/science/article/pii/S0378437117309202
https://proceedings.mlr.press/v48/gilad-bachrach16.html
https://arxiv.org/abs/2006.08299
https://doi.org/10.2478/popets-2021-0046
https://hal.science/hal-03506798

35. Jiang, X., Kim, M., Lauter, K., Song, Y.: Secure outsourced matrix computation
and application to neural networks. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. p. 1209–1222. CCS ’18,
Association for Computing Machinery, New York, NY, USA (2018), https://doi.
org/10.1145/3243734.3243837

36. Kaissis, G., Makowski, M.R., Rueckert, D., Braren, R.: Secure, privacy-preserving
and federated machine learning in medical imaging. Nature Machine Intelligence
2(6), 305–311 (2020)

37. Karn, R.R., Elfadel, I.A.M.: Confidential inference in decision trees: Fpga
design and implementation. In: 2022 IFIP/IEEE 30th International Con-
ference on Very Large Scale Integration (VLSI-SoC). pp. 1–6 (2022).
https://doi.org/10.1109/VLSI-SoC54400.2022.9939567

38. Kerber, M., Morozov, D., Nigmetov, A.: Geometry helps to compare persistence
diagrams. Proceedings of the Eighteenth Workshop on Algorithm Engineering and
Experiments (ALENEX) pp. 1–10 (2016)

39. Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X.: Secure logistic regression based
on homomorphic encryption: Design and evaluation. JMIR Medical Informatics 6
(2018)

40. Konečný, J., McMahan, H.B., Ramage, D., Richtárik, P.: Federated optimization:
Distributed machine learning for on-device intelligence. CoRR abs/1610.02527
(2016), http://arxiv.org/abs/1610.02527

41. Lee, J.W., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin, M., Lee, E., Lee,
J., Yoo, ., Kim, Y.S., No, J.S.: Privacy-preserving machine learning with fully
homomorphic encryption for deep neural network. IEEE Access 10, 30039–30054
(2022)

42. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-
efficient learning of deep networks from decentralized data. Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, PMLR 54, 1273–
1282 (2017)

43. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft,
N.: Privacy-preserving ridge regression on hundreds of millions of records.
In: 2013 IEEE Symposium on Security and Privacy. pp. 334–348 (2013).
https://doi.org/10.1109/SP.2013.30

44. Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap
for the computation of persistent homology. EPJ Data Science 6(1), 17 (2017),
https://doi.org/10.1140/epjds/s13688-017-0109-5

45. Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap
for the computation of persistent homology. EPJ Data Science 6 (2017), https:
//doi.org/10.1140/epjds/s13688-017-0109-5

46. Park, S., Byun, J., Lee, J., Cheon, J.H., Lee, J.: He-friendly algorithm
for privacy-preserving svm training. IEEE Access 8, 57414–57425 (2020).
https://doi.org/10.1109/ACCESS.2020.2981818

47. Perea, J.A., Munch, E., Khasawneh, F.A.: Approximating Continuous Func-
tions on Persistence Diagrams Using Template Functions. Foundations of Com-
putational Mathematics (Jun 2022). https://doi.org/10.1007/s10208-022-09567-7,
https://doi.org/10.1007/s10208-022-09567-7

48. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: protect-
ing confidentiality with encrypted query processing. Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP), Association for Computing
Machinery pp. 85–100 (2011), https://doi.org/10.1145/2043556.2043566

31

https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1109/VLSI-SoC54400.2022.9939567
http://arxiv.org/abs/1610.02527
https://doi.org/10.1109/SP.2013.30
https://doi.org/10.1140/epjds/s13688-017-0109-5
https://doi.org/10.1140/epjds/s13688-017-0109-5
https://doi.org/10.1140/epjds/s13688-017-0109-5
https://doi.org/10.1109/ACCESS.2020.2981818
https://doi.org/10.1007/s10208-022-09567-7
https://doi.org/10.1007/s10208-022-09567-7
https://doi.org/10.1145/2043556.2043566

49. Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for
topological machine learning. 2015 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR) pp. 4741–4748 (2015)

50. Shafieinejad, M., Gupta, S., Liu, J.Y., Karabina, K., Kerschbaum, F.: Equi-joins
over encrypted data for series of queries. IEEE 38th International Conference on
Data Engineering (ICDE) pp. 1635–1648 (2022)

51. Sheehy, D.R.: Linear-size approximations to the vietoris-rips filtration. In: Pro-
ceedings of the Twenty-Eighth Annual Symposium on Computational Geometry.
p. 239–248. SoCG ’12, Association for Computing Machinery, New York, NY, USA
(2012), https://doi.org/10.1145/2261250.2261286

52. Shnier, D., Voineagu, M.A., Voineagu, I.: Persistent homology analysis of
brain transcriptome data in autism. Journal of The Royal Society Inter-
face 16(158), 20190531 (2019). https://doi.org/10.1098/rsif.2019.0531, https://
royalsocietypublishing.org/doi/abs/10.1098/rsif.2019.0531

53. Skraba, P., Turner, K.: Wasserstein stability for persistence diagrams (2021)

54. Solomon, E., Wagner, A., Bendich, P.: From Geometry to Topology: Inverse
Theorems for Distributed Persistence. In: Goaoc, X., Kerber, M. (eds.) 38th
International Symposium on Computational Geometry (SoCG 2022). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 224, pp. 61:1–
61:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2022). https://doi.org/10.4230/LIPIcs.SoCG.2022.61, https://drops.dagstuhl.de/
opus/volltexte/2022/16069

55. Togan, M., Pleşca, C.: Comparison-based computations over fully homomor-
phic encrypted data. In: 2014 10th International Conference on Communications
(COMM). pp. 1–6 (2014). https://doi.org/10.1109/ICComm.2014.6866760

56. Upmanyu, M., Namboodiri, A.M., Srinathan, K., Jawahar, C.V.: Efficient privacy
preserving video surveillance. 2009 IEEE 12th International Conference on Com-
puter Vision pp. 1639–1646 (2009)

57. Wagner, H., Chen, C., Vuçini, E.: Efficient Computation of Persistent Homology for
Cubical Data, pp. 91–106. Springer Berlin Heidelberg, Berlin, Heidelberg (2012),
https://doi.org/10.1007/978-3-642-23175-9 7

58. Wu, D.J., Feng, T., Naehrig, M., Lauter, K.E.: Privately evaluating decision trees
and random forests. Proceedings on Privacy Enhancing Technologies 2016, 335 –
355 (2016)

59. Xu, R., Joshi, J.D., Li, C.: Cryptonn: Training neural networks over encrypted
data. In: 2019 IEEE 39th International Conference on Distributed Computing Sys-
tems (ICDCS). pp. 1199–1209. IEEE Computer Society, Los Alamitos, CA, USA
(jul 2019), https://doi.ieeecomputersociety.org/10.1109/ICDCS.2019.00121

60. Xu, R., Joshi, J., Li, C.: Nn-emd: Efficiently training neural networks using en-
crypted multi-sourced datasets. IEEE Transactions on Dependable and Secure
Computing 19(4), 2807–2820 (2022). https://doi.org/10.1109/TDSC.2021.3074439

61. Yao, A.: How to generate and exchange secrets. Proceeedings of the 27th Annual
Symposium on Foundations of Computer Science pp. 162–167 (1986)

62. Yu, J., Lu, X., Gao, Z., Li, S., Li, L., Li, C., Tong, H.: Topology control of
wsns based on persistent homology. Journal of Physics: Conference Series 2333(1),
012003 (aug 2022), https://dx.doi.org/10.1088/1742-6596/2333/1/012003

63. Zhao, C., Zhao, S., Zhao, M., Chen, Z., Gao, C., Li, H., Tan, Y.: Secure multi-
party computation: Theory, practice and applications. Information Sciences 476,
357–372 (2019)

32

https://doi.org/10.1145/2261250.2261286
https://doi.org/10.1098/rsif.2019.0531
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2019.0531
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2019.0531
https://doi.org/10.4230/LIPIcs.SoCG.2022.61
https://drops.dagstuhl.de/opus/volltexte/2022/16069
https://drops.dagstuhl.de/opus/volltexte/2022/16069
https://doi.org/10.1109/ICComm.2014.6866760
https://doi.org/10.1007/978-3-642-23175-9_7
https://doi.ieeecomputersociety.org/10.1109/ICDCS.2019.00121
https://doi.org/10.1109/TDSC.2021.3074439
https://dx.doi.org/10.1088/1742-6596/2333/1/012003

64. Zhou, Y., Shen, H., Zhang, M.: A distributed and privacy-preserving random forest
evaluation scheme with fine grained access control. Symmetry 14(2), 415 (Feb
2022), http://dx.doi.org/10.3390/sym14020415

65. Zomorodian, A.: Fast construction of the vietoris-rips com-
plex. Computers & Graphics 34(3), 263–271 (2010).
https://doi.org/https://doi.org/10.1016/j.cag.2010.03.007, https://www.
sciencedirect.com/science/article/pii/S0097849310000464, shape Modelling
International (SMI) Conference 2010

33

http://dx.doi.org/10.3390/sym14020415
https://doi.org/https://doi.org/10.1016/j.cag.2010.03.007
https://www.sciencedirect.com/science/article/pii/S0097849310000464
https://www.sciencedirect.com/science/article/pii/S0097849310000464

Appendix

A Low Correctness Proofs

(Proof of Lemma 1). First note that S(v) ∈ Dn, since all entries are necessar-
ily distinct by definition of Transformation 1, and so maxidx(S(v)) is defined.

Suppose that low(v) = k for some 0 ≤ k ≤ n−1. We have to show S(v)[k] >
S(v)[j] for all 0 ≤ j ≤ n− 1 and j 6= k.

Case 1: 0 ≤ j < k. Note that v[k] = 1 and that v[j] ∈ {0, 1}. Therefore,

S(v)[k] = v[k] + k/n = 1 + k/n > v[j] + j/n = S(v)[j].

Case 2: 0 ≤ k < j ≤ n − 1. Note that v[j] = 0 because low(v) = k is the
largest index with v[k] = 1. Therefore, S(v)[j] = v[j] + j/n = j/n and that

S(v)[k] = 1 + k/n > (n− 1)/n ≥ j/n = S(v)[j].

Remark 5. The same argument in the proof of Lemma 1 would work for any
transformation S that is strictly monotonically increasing on {0, 1, . . . , n − 1}
and strictly bounded by 1. However, in the implementation of MaxIdx, which we
use to approximate maxidx (and thus low), the rate of convergence is increasing
with the distance between distinct values in v, and so a nonlinear choice of S
may have the effect of decreasing the rate of convergence, at least for some input
vectors. Further analysis would be required to find an optimal choice for S.

(Proof of Lemma 2). Suppose that low(v) = k for some 0 ≤ k ≤ n− 1. We
have to show S(v′)[k] > S(v′)[j] for all 0 ≤ j ≤ n− 1 and j 6= k.

Case 1: 0 ≤ j < k. Note that v[k] = 1, v′[k] > 1 − 1/2n, v[j] ∈ {0, 1}, and
v′[j] < 1 + 1/2n. Therefore,

S(v′)[k] = v′[k] + k/n > (1− 1/2n) + k/n

> (1 + 1/2n) + (k − 1)/n > v′[j] + j/n = S(v′)[j].

Case 2: 0 ≤ k < j ≤ n − 1. Note that v[j] = 0 because low(v) = k is
the largest index with v[k] = 1. Moreover, v′[k] > 1 − 1/2n and v′[j] < 1/2n.
Therefore,

S(v′)[k] = v′[k] + k/n > (1− 1/2n) + k/n ≥ 1− 1/2n

= 1/2n+ (n− 1)/n > v′[j] + j/n = S(v′)[j].

Lemma 4. Let ε > 0 and let ej denote the standard n-dimensional basis vector,
with ej [j] = 1 and ej [i] = 0 for all i 6= j. Fix parameters d, d′,m, t for the MaxIdx

algorithm so that |MaxIdx(x; d, d′,m, t)− emaxidx(x)| < 2−α, for all x ∈ [12 ,
3
2)n.

Then, for any binary vector v ∈ {0, 1}n,∣∣Low(v; d, d′,m, t)− low(v)
∣∣ < n(n− 1)

2
(2−α),

where Low, low, and MaxIdx are computed as described in [16].

34

Proof. To ease notation let b = MaxIdx(v; d, d′,m, t). Assume the paramaters
d, d′,m and t have been chosen so that∣∣b[i]− ek[i]

∣∣ < 2−α

for all 0 ≤ i < n− 1, if k = maxidx(v). Then

∣∣Low(v; d, d′,m, t)− low(v)
∣∣ =

∣∣∣∣∣
n−1∑
i=0

ib[i]−
n−1∑
i=0

iej [i]

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
i=0

i(b[i]− ej [i])

∣∣∣∣∣
≤
n−1∑
i=0

∣∣i(b[i]− ej [i])
∣∣

< 2−α
n−1∑
i=0

i

=
n(n− 1)

2

(
2−α

)
.

Lemma 5. Let α > 0 and fix parameters d, d′,m, t for the MaxIdx algorithm
so that |MaxIdx(x; d, d′,m, t) − emaxidx(x)| < 2−α, for all x ∈ [12 ,

3
2)n. Further

assume v′ ∈ [0, 1]n and v ∈ {0, 1}n are such that |v′ − v| < 1
2n . Then∣∣Low(v′; d, d′,m, t)− Low(v; d, d′,m, t)

∣∣ < n(n− 1)2−α

Proof. Recall that the Low algorithm presented in Algorithm 3 requires the input
vectors to undergo two transformations, S and TL, before being fed into the
MaxIdx algorithm. Let x′ = TL(S(v′)) and x = TL(S(v)). The problem now
reduces to bounding∣∣MaxIdx(x′; d, d′,m, t)− MaxIdx(x; d, d′,m, t)

∣∣
where |x′ − x| < 1

4n <
1
2n . By Lemmas 1 and 2

maxidx(x′) = maxidx(TL(S(v′))) = low(v)

= maxidx(TL(S(v))) = maxidx(x),

and so a triangle inequality obtained by adding and subtracting emaxidx(x′) and
emaxidx(x) yields∣∣MaxIdx(x′; d, d′,m, t)− MaxIdx(x; d, d′,m, t)

∣∣
<2−α + 0 + 2−α = 2−α+1.

Letting

b = MaxIdx(x; d, d′,m, t)

b′ = MaxIdx(x′; d, d′,m, t),

35

we have

∣∣Low(v′; d, d′,m, t)− Low(v; d, d′,m, t)
∣∣ =

∣∣∣∣∣
n−1∑
i=0

ib′[i]−
n−1∑
i=0

ib[i]

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
i=0

i(b′[i]− b[i])

∣∣∣∣∣
≤
n−1∑
i=0

∣∣i(b′[i]− b[i])
∣∣ < 2−α+1

n−1∑
i=0

i

=
n(n− 1)

2
(2−α+1) = n(n− 1)2−α.

B Low Parameters Proofs

Proposition 8. Fix n ≥ 2 and assume v ∈ {0, 1}n and v′ ∈ [0, 1]n satisfy
|v − v′| ≤ ε

2n , for some 0 ≤ ε < 1. Let x′ = TL(S(v′)) and denote the (i+ 1)-th
smallest value of x′ by x′(i), so min{x′[i] | 0 ≤ i ≤ n− 1} =: x′(0) < x′(1) < . . . <

x′(n−1) := max{x′[i] | 0 ≤ i ≤ n− 1}. Let

c = x′(n−1)/x
′
(n−2)

be the ratio of the largest coordinate value of x′ over the second largest value.
Then

c ≥ 1 +
2− 2ε

6n− 4 + ε
.

Proof. Suppose low(v) = k. By Lemma 2, x′[k] has the highest value in the
vector. Define the two sets

M1 = {j | v[j] = 1 and j < k}

=
{
j | v′[j] ≥ 1− ε

2n
and j < k

}
and

M0 = {j | v[j] = 0} =
{
j | v′[j] ≤ ε

2n

}
.

There are two cases to consider, either M1 is empty or not.

Case 1: If M1 is empty, let m = maxM0. Since S is an increasing function
with respect to index, and TL is strictly increasing we have that TL(S(v′))[m] =
x′[m] is necessarily the second highest value. This is because

x′[m] =
v′[m] + m

n + 1

2
≥

m
n + 1

2
>

ε
2n + j

n + 1

2
>

v′[j] + j
n + 1

2
= x′[j]

36

for 0 ≤ j < m ≤ n − 1. The middle inequality follows because m,n ∈ Z and
m > j =⇒ m− j ≥ 1 =⇒ m

n ≥
1
n + j

n >
ε
2n + j

n . Thus,

x′(n−1)

x′(n−2)
=

x′[k]

x′[m]
>

1− ε
2n + k

n + 1
ε
2n + n−1

n + 1

= 1 +
2k + 2− 2ε

4n− 2 + ε
≥ 1 +

2− 2ε

4n− 2 + ε
.

Case 2: If M1 is not empty, let m = maxM1. We first show that x′[i] > x′[j]
for all i ∈ M1, j ∈ M0; that is, all transformed approximate 1’s are larger than
all transformed approximate 0’s. Let j ∈M0 and i ∈M1 be arbitrary. Then

v′[j] +
j

n
<

ε

2n
+
j

n
≤ ε

2n
+
n− 1

n

≤ 1− 1

2n
≤ 1− ε

2n
+
i

n
< v′[i] +

i

n

for i ≥ 0. Since TL is an increasing function, we have that x′[j] < x′[i] as desired.
Thus, the second largest coordinate of x′ is x′[m] > (1− ε

2n + m
n + 1)/2, where

m = maxM1. Necessarily m ≤ k − 1, and so we have that

x′(n−1)

x′(n−2)
=

x′[k]

x′[m]
>

1− ε
2n + k

n + 1

1 + k−1
n + 1

= 1 +
2− ε

4n+ 2k − 2
≥ 1 +

2− ε
6n− 4

.

Thus, as n and ε were chosen from the beginning, we know that the ratio be-
tween the largest and second largest value for any “approximate” binary vector is

bounded below by min
{

1 + 2−2ε
4n−2+ε , 1 + 2−ε

6n−4

}
. However, both 2−2ε

4n−2+ε and 2−ε
6n−4

are greater than or equal to 2−2ε
6n−4+ε , with the former being immediate for n ≥ 1

and the latter is true as

2− ε
6n− 4

≥ 2− 2ε

6n− 4
≥ 2− 2ε

6n− 4 + ε
, for 0 ≤ ε < 1.

And so, it follows that

c ≥ min

{
1 +

2− 2ε

4n− 2 + ε
, 1 +

2− ε
6n− 4

}
≥ 1 +

2− 2ε

6n− 4 + ε
.

Lemma 6. Assume v ∈ {0, 1}n and v′ ∈ [0, 1]n satisfy |v − v′| ≤ ε
2n , for some

0 ≤ ε < 1. Consider Theorem 5 in [16], which gives the parameters (d, d′,m, t)
for the MaxIdx function for a given desired accuracy of 2−α. If α is chosen such
that

α > log(3) + 2 log(n)− log(δ)− 1

then |Low(v′; d, d′,m, t)− low(v)| < δ.

37

Proof. We note that from Theorem 1 it suffices to have

3

2
n(n− 1)2−α <

3n2

2α+1
< δ

⇔ 2α+1 >
3n2

δ
⇔ α > log(3) + 2 log(n)− log(δ)− 1

(Proof of Theorem 3). Lemma 6 provides the corresponding α needed for a
desired δ-error in Low. That is, if one desires error δ in |Low(v′)− low(v)|, then
one may choose α > log(3) + 2 log(n)− log(δ)− 1.

c’s lower bound has been found in Proposition 8. In particular, by Propo-
sition 8, we know that c ≥ 1 + 2−2ε

6n−4+ε . But this is equivalent to saying that

− log(log(c)) ≤ − log

(
log

(
1 +

2− 2ε

6n− 4 + ε

))
=⇒ log(α+ 1 + log(n))− log(log(c))

≤ log(α+ 1 + log(n))− log

(
log

(
1 +

2− 2ε

6n− 4 + ε

))
Therefore, if we choose

t ≥
log(α+ 1 + log(n))− log

(
log
(

1 + 2−2ε
6n−4+ε

))
logm

we fulfill the former inequality in Theorem 5 (from [16]).
At this point, both α and t are determined. As min{d, d′} is dependent upon

these choice of parameters, our choice of min{d, d′} is also determined.

C LowComp Correctness Proofs

(Proof of Theorem 4). Recall Lemma 3 and the following chain of if and
only if implications:

lowcomp(lx, ly) = 1⇔ low(x) = low(y)⇔ φ ≥ |Lx′ − Ly′ |
⇔ φ2 ≥ (Lx′ − Ly′)2 ⇔ TC(φ

2) ≥ TC(Lx′ − Ly′)2

There are two cases: lowcomp(lx, ly) = 1 or lowcomp(lx, ly) = 0. Case 1:
lowcomp(lx, ly) = 1. Then TC(φ

2) ≥ TC(Lx′ − Ly′)2 which implies that

|Comp(TC(φ
2), TC(Lx′ − Ly′)2; d, d′,m, t)

− comp(TC(φ2), TC(Lx′ − Ly′)2)| < η

=⇒ |Comp(TC(φ
2), TC(Lx′ − Ly′)2; d, d′,m, t)− 1| < η

=⇒ 1− η < Comp(TC(φ
2), TC(Lx′ − Ly′)2; d, d′,m, t) < 1

=⇒ 1− η < LowCompLx′ , Ly′ ; d, d′,m, t) < 1.

38

Case 2: lowcomp(lx, ly) = 0. Then TC(φ
2) < TC(Lx′ − Ly′)2 which implies

that

|Comp(TC(φ
2), TC(Lx′ − Ly′)2; d, d′,m, t)

− comp(TC(φ2), TC(Lx′ − Ly′)2)| < η

=⇒ |Comp(TC(φ
2), TC(Lx′ − Ly′)2; d, d′,m, t)− 0| < η

=⇒ 0 < Comp(TC(φ
2), TC(Lx′ − Ly′)2; d, d′,m, t) < η

=⇒ 0 < LowComp(Lx′ , Ly′ ; d, d′,m, t) < η.

D LowComp Parameters Proofs

Proposition 9. Consider positive a < b < c. Then the value of b which opti-
mizes the problem

max
b∈(a,c)

(
min

{
b

a
,
c

b

})
is b =

√
ac. In other words, b is equal to the geometric mean of the endpoints.

Furthermore, for this choice of b, we have that

max
b∈(a,c)

(
min

{
b

a
,
c

b

})
=

√
c

a
.

Proof. Suppose b =
√
ac. Then b

a = c
b =

√
c
a . If b >

√
ac, then b

a >
c
b , implying

that the minimum of the two ratios is c
b . But then c

b <
c√
ac

=
√

c
a . Similarly,

if b <
√
ac, then b

a < c
b , so that the minimum of the two ratios is now b

a . It

follows that b
a <

√
ac
a =

√
c
a . Thus the value of b over (a, c) which maximizes

the min
{
b
a ,

c
b

}
is b =

√
ac and the maximum value is

√
c
a .

(Proof of Corollary 1). The value of TC(φ
2) comes immediately from applying

the preceding Proposition 9. This proposition also establishes c’s lower bound,
as

c =
max

{
TC(φ

2), TC((Lx′ − Lx′)2)
}

min {TC(φ2), TC((Lx′ − Lx′)2)}

> min

{
TC(φ

2)

TC((2δ)2)
,
TC((1− 2δ)2)

TC(φ2)

}
=

√
TC((1− 2δ)2)

TC((2δ)2)

=

√
1
2 + (1−2δ

n)2

1
2 + (2δ

n)2
=

√
n2 + 2(1− 2δ)2

n2 + 2(2δ)2
.

Lemma 7. Consider Theorem 5, which gives the parameters (d, d′,m, t) for
the Comp function for a given desired accuracy of 2−α. If α is chosen such that
α > − log(η) then Comp (and by extension, LowComp) has η-error. That is,

|LowComp(Lx′ , Ly′ , φ; d, d′,m, t)− lowcomp(lx, ly)| < η

39

Proof. If α > − log(η), then 2−α < η. The result follows from Theorem 4.

(Proof of Theorem 6). For

φ = n

√√√√√(1

2
+ (

2δ

n
)2
)(

1

2
+ (

1− 2δ

n
)2
)
− 1

2
,

one may calculate

TC(φ
2) =

√(
1

2
+ (

2δ

n
)2
)(

1

2
+ (

1− 2δ

n
)2
)
.

By Corollary 1, c is bounded below by
√

n2+2(1−2δ)2
n2+2(2δ)2 . But this is equivalent

to saying that

− log(log(c)) ≤ − log

(
log

(√
n2 + 2(1− 2δ)2

n2 + 2(2δ)2

))
=⇒ log(α+ 2)− log(log(c))

≤ log(α+ 2)− log

(
log

(√
n2 + 2(1− 2δ)2

n2 + 2(2δ)2

))
.

Therefore, if we choose

t ≥ 1

logm

[
log(α+ 1 + log(n))

− log

(
log

(√
n2 + 2(1− 2δ)2

n2 + 2(2δ)2

))]
,

we fulfill the former inequality in Theorem 4.
Furthermore, Lemma 7 determines what α must be to achieve the desired

η-error in LowComp. At this point, with a fixed choice of m, Theorem 4 from [16]
establishes the remaining parameters d, d′, and t.

40

	An Algorithm for Persistent Homology Computation Using Homomorphic Encryption

