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ABSTRACT
Zero-knowledge proofs are widely used in real-world applications

for authentication, access control, blockchains, and cryptocurren-

cies, to name a few. A core element in zero-knowledge proof systems

is the underlying hash function, which plays a vital role in the effi-

ciency of the proof system. While the traditional hash functions,

such as SHA3 or BLAKE3 are efficient on CPU architectures, they

perform poorly within zero-knowledge proof systems. This is pri-

marily due to the requirement of these systems for hash functions

that operate efficiently over finite fields of large prime order as well

as binary fields. To address this challenge, a new paradigm called

Arithmetization-Orientation has emerged. These designs are tai-

lored to improve the efficiency of hashing within zero-knowledge

proof systems while providing reliable security guarantees.

In this work, we propose XHash, which is a high-performance

hash function designed for ZK-STARKs and is inspired by the Mar-

vellous design strategy. When using Algebraic Intermediate Repre-

sentation, XHash outperforms Rescue and Poseidon as the most im-

portant ZK-friendly hash functions for STARKs. Moreover, XHash

has a competitive performance on CPU architectures with an av-

erage speed of ≈ 3𝜇𝑠 for 2-to-1 hashing. Compared to RPO, which

is the fastest hash function of the Marvellous family, XHash per-

forms ≈ 2.5 times faster on CPU. From the security perspective,

XHash inherits the security of the Marvellous design strategy, and

we analyze its security against state-of-the-art algebraic attacks.

Additionally, we propose a new type of security argument against

algebraic attacks that relies on a single well-defined and reasonable

conjecture of a novel type. Finally, we specify a standard version of

XHash designed for Polygon Miden VM, with its AIR complexity

being 504, compared to Rescue with an AIR complexity of 672, and

Poseidon with an AIR complexity of 1176.

KEYWORDS
Hash Functions, STARKs, Zero-Knowledge, Arithmetization Ori-

ented

1 INTRODUCTION
Zero-knowledge (ZK) proof systems are advanced cryptographic

protocols used to prove the validity of a statement to a party (a veri-

fier) without revealing any further information. ZK systems are used

in a variety of applications such as blockchains and banking systems.

A pioneer ZK proof system is ZK-STARK [9] which is a scalable

proof system widely used in industrial applications such as Polygon

Miden and Starknet. A core building block in a ZK-STARK is the

underlying hash function. The pursuit for efficient ZK-STARKs has

motivated the need for Arithmetization Oriented (AO) primitives,

i.e., cryptographic primitives with low arithmetic complexity. Exam-

ples of such AO designs are [1, 6, 14, 16–18, 21, 22, 27, 30, 31, 33, 41].

However, the two main AO hash functions in practical use for ZK

proof systems are Rescue [2] and Poseidon [29].

The design of Rescue was a major improvement in the domain

of AO primitives by introducing non-procedural computations.

While Rescue is competitive inside the STARK, its security-first

approach leaves room for improvement when executed on more

standard platforms such as a CPU or an FPGA. Indeed, subsequent

improvements were obtained in follow-up works such as Rescue-

Prime [40] and more recently, RPO [4] where Ashur, Kindi, Meier,

Szepieniec, & Threadbare published an optimized variant for the

specific case of 2-to-1 compression of elements from a finite field

𝐹𝑝 with 𝑝 = 2
64−2

32
+1 for 128- and 160 bits of security. RPO offers

the same performance as Rescue-Prime when evaluated inside the

STARK but is about 40% faster on a standard CPU. The lion’s share

of this improvement was achieved by finding a particularly efficient

MDS matrix but without changing the overall design or introducing

new operations.

In this work, we take the next step in designing AO primitives.

We start by analyzing the remaining bottlenecks in RPO and im-

prove the efficiency by introducing a new operation: exponentiation

over an extension field. Arithmetic over an extension field is quite

common in the design of traditional symmetric-key algorithms

such as AES [19]. In the context of AO primitives, this approach

was carried over to Vision [2] and Chaghri [6] as well as the now-

defunct Starkad [28]; but it was not yet considered for primitives

operating over large prime fields.

In this work, we use S-boxes employing extension field arithmetic

over large prime fields for the first time to the best of our knowledge.

Concretely, we propose two new permutations:

(1) XHash12: interleaving between Rescue rounds and a new

type of round;

(2) XHash8: a more aggressively optimized variant of XHash12

which does not apply the expensive 𝑥1/𝛼 S-box to all ele-

ments.

Related work. The state of the art arithmetization-oriented

hash functions over F𝑝 for zero-knowledge applications are Posei-

don [29], Anemoi [14], Griffin [27], Rescue [2], and its successors

Rescue Prime [40] and RPO [4]. While most efficient hash functions
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are defined over F𝑝 , Vision [2] is an efficient hash function over F2.
An efficient instance of Vision is Vision Mark-32 [5]. The security

of Poseidon is analyzed in [3, 12, 32, 39], and it is shown that the

security estimation of partial layers is not correct. However, none of

the attacks broke any standard instance of Poseidon. The security

of Anemoi and Griffin are analyzed in [7], and it is shown that the

initial security argument overestimates the attack complexity, and

is thus not as solid as expected. In terms of performance inside

the STARKs, while Rescue and Anemoi are competitive, and more

efficient than Poseidon, they are still less efficient than XHash.

Summary of Contributions. Our contributions can be sum-

marized as follows.

• Design of XHash: Using operations over fields of differ-
ent order allows XHash to achieve two goals with one op-

eration. Specifically, operations over F𝑝 , and F𝑝3 provide

density, and high polynomial degree using less complexity,

and provide robust security guarantees. XHash performs

better over zk-STARKs than all other candidates and has a

competitive performance on CPU.

• RPX Standard Specification: XHash design allows the

usage of arbitrary constants for specific needs, as long as

they are not jeopardizing security [13]. We specify an effi-

cient MDS matrix, round constants, padding, and hashing

mode of operation tailored for Polygon Miden VM.

• Robust Security Argument:We have investigated both

the padding scheme and the applicability of algebraic at-

tacks to both variants of XHash. For algebraic attacks re-

lying on the computation and exploitation of a Gröbner

basis, our literature survey suggests a security argument

on the complexity of the variable elimination step in ad-

dition to that of the computation of the Gröbner basis to

ensure reliable security. We propose a generalization of

the “FreeLunch” [7] approach which, under a reasonable

conjecture about the behavior of the degree of polynomial

ideals of dimension 0, is sufficient for us to argue that both

variants of XHash are safe against such attacks.

Structure of the Paper. In section 2, we introduce the neces-

sary notation and required background for following the paper.

In section 3, we discuss the design rationale of XHash. In section 4,

we describe XHash and its design specification. In section 5, we

describe RPX standard specification as a hash function using XHash

in Sponge construction. In section 6, we analyze the security of

XHash against statistical and algebraic attacks. In section 7, we

analyze the performance of XHash on CPU and STARKs. Finally,

we conclude the work in section 8.

2 BACKGROUND
2.1 Notation
In the rest of this work, 𝑝 = 2

64 − 2
32

+ 1 and F𝑝 is a finite field of

order 𝑝 and the elements of F𝑝 are called “words”. For the Sponge

constructions, 𝑟 denotes the rate (size of the outer part), expressed

in words, and 𝑐 is the capacity (size of the inner part), expressed in

words. Vectors and matrices are denoted by capital Latin letters. For

example, the vector 𝑆 of size𝑛 is denoted by 𝑆 = (𝑆[0], . . . , 𝑆[𝑛 − 1])
and the elements of a matrix𝑀 with dimensions 𝑛 ×𝑚 are denoted

by𝑀[𝑖][ 𝑗]where 0 ≤ 𝑖 < 𝑛, 0 ≤ 𝑗 < 𝑚. ⊞ is used to denote addition

over the finite field F𝑝 . Finally, ℓ denotes the number of inverse

power maps applied in each round.

2.2 Rescue-Prime Optimized
Rescue-Prime Optimized (RPO) is a sponge function instantiated

with a permutation over F12𝑝 . The permutation consists of seven

rounds and each round can be described in terms of four compo-

nents:

• an S-box 𝜋0 : 𝑥 ↦→ 𝑥7;

• an S-box 𝜋1 : 𝑥 ↦→ 𝑥
1

7 ;

• an MDS matrix𝑀 ; and

• constant addition ⊞𝑐 .

With respect to the state vector 𝑆 ∈ F12𝑝 these components allow to

define two types of steps:

• an (𝐹 )-step works as follows: first, the S-box 𝜋0 is applied

to each of the state elements to provide non-linearity. Then,

the state vector is multiplied with an MDS matrix to spread

local properties over the entire state. Finally, a different

round constant is added to each element to avoid self-

symmetry between different rounds;

• the (𝐵)-step is almost the same, only that 𝜋1 is applied

instead of 𝜋0. That is, first the S-box 𝜋1 is applied to each of

the state elements to provide non-linearity. Then, the state

vector is multiplied with an MDS matrix to spread local

properties over the entire state. Finally, a different round

constant is added to each element to avoid self-symmetry

between different rounds.

With this notation, a typical round for a Rescue-like function is

(𝐹 )(𝐵). Concretely, RPO can be written as

(𝐹 )(𝐵)(𝐹 )(𝐵)(𝐹 )(𝐵)(𝐹 )(𝐵)(𝐹 )(𝐵)(𝐹 )(𝐵)(𝐹 )(𝐵) ,

except that the last 𝑀 and constants injection are moved to the

beginning for reasons explained in [2, Sec. 4.3].

3 DESIGN RATIONALE
So far, three main components have been used in Marvellous de-

signs: S-boxes, linear layers, and injections of round constants.

Together, S-boxes, MDS multiplications, and constant injections re-

sult in a dense polynomial representation of a high degree. Building

on Rescue’s S-boxes, the designers of RPO fixed the MDS matrix to

one that can be efficiently computed over 𝑝 = 2
64−232+1. A natural

question then arises—whether the efficiency can be improved any

further without sacrificing security. Noting that the costs of 𝜋0 and

constant injection are almost negligible and that 𝑀 has been ag-

gressively optimized, the remaining bottleneck has been observed

to be the 𝜋1 S-box. On a CPU, each call to 𝜋1 requires about 70

multiplications, there are 12 calls in each (𝐵)-step, and seven (𝐵)

steps; totaling in 70 · 12 · 7 = 5880 multiplications. This is by far the

largest cost driver in the entire permutation.

Before attempting to reduce this cost, one must determine what

purpose the (B)-step serves. Citing [2], the two S-boxes (𝜋0, 𝜋1) are

motivated as follows:

The difference between 𝜋0 and 𝜋1 is in their degree. They should be
chosen such that 𝜋0 has a high degree when evaluated forward (i.e.,
in the direction of the encryption) and a low degree when evaluated
backward (i.e., in the direction of the decryption). The other S-box,
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namely 𝜋1, is chosen with the opposite goal (i.e., to have a low degree
in the forward direction and a high degree in the backward direction).
This choice serves to achieve three objectives: (i) no matter which
direction an adversary is trying to attack, the degree is guaranteed to
be high; (ii) it results in the same cost for the encryption and decryption
functions, and (iii) owing to non-procedural computation, the low-
degree representation of each S-box can be evaluated efficiently.

We remind the reader that the stated goal of [2] was to design a

general-purpose primitive, usable not only for hashing, not only

in STARKs, and to work with any sufficiently large prime field.

In the context of Polygon Miden, Goal (ii) is irrelevant since we

expect honest users only to compute the primitive “forward”, never

requiring efficient “backward” evaluation. Hence, we can abandon

Goal (ii) altogether.

For similar reasons, goal (i) can also be relaxed. Avoiding attacks

still requires that the degree in either direction be high—but it no

longer needs to be the same in both directions. First, observe that

the high degree in the “backward” direction is ensured by the (F)-

rounds, which we are not looking to optimize. Therefore, the degree

remains sufficiently high and the security argument does not need

to be re-evaluated.

We now conjecture the possibility that the (B)-stepmay offer “too

much security” for our purposes. Concretely, [2] observes that the

(B)-step achieves maximal degree already after two rounds. Given

that the minimal number of rounds is set to ten in Rescue, eight

in Rescue-Prime, and seven in RPO, positing a (B’)-step that can

achieve, hypothetically speaking, a maximal degree in four rounds;

the overall performance can be improved without affecting security.

Getting ahead of ourselves, this is exactly what we will be doing. To

reduce the cost of achieving a compact polynomial description, we

propose to use power maps over an extension field. Exponentiation

in an extension field simultaneously provides diffusion by mixing

the base field elements as well as confusion by doing so in a non-

linear way.

Revisiting the design rationale for general Marvellous designs

we see that in the context of a hash function operating over 𝐹 12𝑝
with 𝑝 prime, the interpolation attack would be the main concern

in case the polynomial degree is not sufficiently high. Considering

in detail the argument against the interpolation attack we see that

resistance is achieved when the univariate polynomial describing

the cipher is:

(1) dense; and

(2) of maximal degree.

Intuitively, the composition of an MDS matrix (which ensures opti-

mal diffusion) with a power map ensures density due to the Multi-

nomial Theorem.

We are left to ensure a maximal degree. Considering that

𝑥
1

7 = 𝑥 (2𝑝−1)/7 = 𝑥10540996611094048183

achieves an almost maximal degree already in a single call to 𝜋1
we can informally argue that this is an “overkill” and that an S-box

resulting in a lower degree per step may still be sufficient to resist

the interpolation attack as long as it reaches a maximal degree

within a reasonable number of rounds. Thus, we are looking for

a power map 𝛽 such that 7 < 𝛽 <
𝑝−1
7

. However, by definition,

such an S-box will be inefficient to compute inside the STARK both

directly and folded.

Seeing that a better power map is not readily available, we can

instead apply the same power map, but to fewer elements. However,

with this approach, only the elements to which the power map was

applied are “protected”. If this approach is taken, the partial S-box

layer must be complemented with another operation that would

mix high-degree elements with the rest non-linearly. If done right,

this would ensure that all polynomials are both dense and of high

degree.

4 SPECIFICATION OF XHASH
We complement the S-boxes (𝜋0, 𝜋1) described in Section 2.2 with a

third type of S-box:

• 𝜋2 is similar to 𝜋0 in that it takes a field element and raises

it to the 7th power. However this time, the element is in

𝐹𝑝3 rather than 𝐹𝑝 .

Using the new S-box 𝜋2, we define XHash8 and XHash12. XHash12

uses a full layer of 𝜋1 S-boxes applied to all elements of the state.

XHash8 further improves efficiency using a partial layer of 𝜋1 S-

boxes applied to 8 out of 12 elements in the state.

4.1 XHash12: With Full 𝑥
1

7 Layer
XHash12 employs a full layer of 𝜋1 S-boxes, and works as follows:

• A version of the (F)-step starting with round constants in-

jection, followed by an MDS multiplication, and concluded

by applying 𝜋0 to each word of the state;

• A version of the (B)-step starting with MDS multiplication,

followed by round constants injection, and concluded by

applying 𝜋1 to each word of the state;

• A (P3)-step starting with constants injection; then, the 12-

element state is restructured as a 4-element vector in a cubic

extension field, i.e.,

(𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8, 𝑠9, 𝑠10, 𝑠11) ↦→ (𝑆0,1,2, 𝑆3,4,5, 𝑆6,7,8, 𝑆9,10,11)

where each 𝑠𝑖, 𝑗,𝑘 ∈ 𝐹𝑝3 . This is followed by an application

of 𝜋2 to each of these extension field elements, such that

(𝑆0,1,2, 𝑆3,4,5, 𝑆6,7,8, 𝑆9,10,11) ↦→ (𝑆7
0,1,2, 𝑆

7

3,4,5, 𝑆
7

6,7,8, 𝑆
7

9,10,11).

At this point, the state is decomposed back into a 12-element

vector in 𝐹𝑝 ;

• The last step is a special one, denoted by (MC). It consists

of an MDS multiplication followed by round constants in-

jection.

The state consists of 12 field elements in 𝐹𝑝 where 𝑝 = 2
64−232+1.

The permutation consists of 10 steps in total, described as follows:

(𝐹 )(𝐵)(𝑃3)(𝐹 )(𝐵)(𝑃3)(𝐹 )(𝐵)(𝑃3)(𝑀𝐶),

and depicted in Figure 1.

4.2 XHash8: With Partial 𝑥
1

7 Layer
XHash8 is a more aggressively optimized version of XHash12. The

difference is that it employs partial layers of 𝜋1 S-boxes and works

as follows:
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Figure 1: The XHash12 permutation. The folding point de-
picts how to compress the (F) and (B) rounds into a single
low-degree polynomial. This allows the verifier to evaluate
a sequence of (F)(B)(P3) steps as two STARK rounds (blue
lines). The dotted blue line represents the finalization step.

• A version of the (F)-step starting with a constant addition,

followed by an MDS multiplication, and concluded by ap-

plying 𝜋0 to each word of the state;

• A modified version of the (B)-step, namely the (B’)-step,

starting MDS multiplication, followed by constant addi-

tion, and concluded by applying 𝜋1 to 8 out of the 12 state

elements:

(𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8, 𝑠9, 𝑠10, 𝑠11) ↦→

(𝑠
1

7

0
, 𝑠1, 𝑠

1

7

2
, 𝑠

1

7

3
, 𝑠4, 𝑠

1

7

5
, 𝑠

1

7

6
, 𝑠7, 𝑠

1

7

8
, 𝑠

1

7

9
, 𝑠10, 𝑠

1

7

11
)

• A (P3)-step starting with constants injection; then, the 12-

element state is restructured as a 4-element vector in a cubic

extension field, i.e.,

(𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8, 𝑠9, 𝑠10, 𝑠11) ↦→
(𝑆0,1,2, 𝑆3,4,5, 𝑆6,7,8, 𝑆9,10,11)

where each 𝑠𝑖, 𝑗,𝑘 ∈ 𝐹𝑝3 . This is followed by an application

of 𝜋2 to each of these extension field elements, such that

(𝑆0,1,2, 𝑆3,4,5, 𝑆6,7,8, 𝑆9,10,11) ↦→ (𝑆7
0,1,2, 𝑆

7

3,4,5, 𝑆
7

6,7,8, 𝑆
7

9,10,11).

At this point, the state is decomposed back into a 12-element

vector in 𝐹𝑝 .

• The last step is a special one, denoted by (MC). It consists

of an MDS multiplication followed by round constants in-

jection.

Again, the state consists of 12 field elements in 𝐹𝑝 where 𝑝 =

2
64 − 2

32
+ 1 and the permutation consists of 10 steps:

(𝐹 )(𝐵′)(𝑃3)(𝐹 )(𝐵′)(𝑃3)(𝐹 )(𝐵′)(𝑃3)(𝑀𝐶) ;

as depicted in Figure 2.
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Figure 2: The XHash8 permutation. The folding point depicts
how to compress the (F) and (B’) rounds into a single low-
degree polynomial. This allows the verifier to evaluate a
sequence of (F)(B’)(P3) steps as two STARK rounds (blue lines).
The dotted blue line represents the finalization step.

4.3 The Hash Function
A hash function offering 128-bit security is obtained by using either

of these permutations in a sponge construction with the elements

(𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7) as the outer part, and (𝑠8, 𝑠9, 𝑠10, 𝑠11) as the

inner part. The round constants are randomly selected and the MDS

is the same as the one used in RPO. Domain separation is handled

in the same way as in RPO by designating certain values of an inner

part element to encode the domain.

5 RPX STANDARD SPECIFICATION
The XHash12 function defined in Section 4.1 has been implemented

in optimized form by Polygon Miden. We provide here a canonical

specification of the function implemented in [34] which we refer

to as RPX.

5.1 MDS Matrix
RPX uses the same MDS matrix found by the RPO project. That is,

a circulant matrix whose first row is

[7, 23, 8, 26, 13, 10, 9, 7, 6, 22, 21, 8].
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5.2 Round Constants
To ensure “nothing-up-my-sleeve” round constants we reuse the

ones derived for RPO. Recall that the RPO constants were derived

by employing the following procedure:

• Start from the string RPO(%i,%i,%i,%i);
• Populate the wildcards “%i” with the ASCII decimal expan-

sion of the integer parameters 𝑝,𝑚, 𝑐, 𝜆, in that order;

• Use SHAKE256 to expand this ASCII string into 9 · 2 ·𝑁 ·𝑚
pseudorandom bytes;

• For every chunk of 9 bytes, compute the matching integer

by interpreting the byte array as the integer’s base-256

expansion with the least significant digit first;

• Reduce the obtained integer modulo 𝑝;

• Collect all such integers. The list of obtained field elements

constitutes the list of round constants.

5.3 Primitive
The permutation used in RPX is different from the one depicted

in Figure 1 and the injection of the first set of round constants in

even rounds is swapped with the MDS matrix. Since multiplication

is distributive with respect to addition, injecting 𝐶 before apply-

ing the MDS, or 𝑀(𝐶) after applying it is equivalent in terms of

cryptanalytic resistance, and therefore, all security arguments for

XHash12 carry over to RPX.

5.4 Hashing Mode
To hash a sequence of field elements in 𝑝 = 2

64 − 2
32

+ 1 we

instantiate the sponge construction with the RPX permutation. The

state consists of 12 field elements, of which eight are designated as

rate, and the remaining four are designated as capacity. Absorbing

is done in overwrite mode (i.e., the topmost eight elements of the

state are overwritten by new values every time the permutation is

invoked) and the squeezing phase outputs eight field elements, of

which the first four are returned as digest and the rest are discarded.

5.5 Padding
For hashing field elements we use the zero-padding scheme; that is,

if the length of the last block is smaller than 𝑟 = 8 field elements,

a sufficient amount of [0] elements are appended to complete it.

We note that this padding rule alone is not sponge compliant. To

ensure bijectivity, we partition the input space into eight input

domains: all messages whose last block is of length 8 are designated

to the 0-domain; all messages whose last block is of length 7 are

designated to the 1-domain, etc.

Domain Separation. We enforce domain separation by fixing the

topmost inner part element (i.e., the ninth state element) to the

domain identifier. Designating one capacity element to encode the

domain identifier effectively ensures that two messages whose last

blocks differ in length will be processed differently. We provide our

proof intuition for this result in the following paragraphs.

Proof Intuition. We first note that RPX’s security (such as indiffer-

entiability, collision resistance, preimage resistance, etc.) remains

the same even when the padded zeros are pushed to the start i.e.,

when the padding type is changed from being a post-padding to

a pre-padding. This holds because both paddings are bijective to

each other, which means that the prepadded RPX can be seen as

RPX with differently ordered a.k.a. permuted input set yet with

the same output multiset and output distribution. Therefore, it is

sufficient to argue the security of prepadded RPX.

We highlight that prepadded RPX processes messages in the

exact same way as prepadded overwrite sponge except that the

valid input space for the first permutation call is now larger due

to the domain separation. We also note that this increase can at

most double the input space for any number of domain seperators.

More specifically, the 𝑖-domain can only increase the input space by

𝑝𝑟−𝑖 many values as the prepadding for this domain fixes 𝑖 many

elements of a valid input value to zeros and since there are at most

𝑟 many domains, i.e., 0 ≤ 𝑖 ≤ 𝑟 − 1, we get that the final input space

size of the first permutation = 𝑝 + 𝑝2 + . . . + 𝑝𝑟 ≤ 2𝑝𝑟 .

One can notice that this change affects the pre-image resistance

of prepadded RPX by one bit. More concretely, for 𝑞 many permu-

tation calls, the pre-image bound of prepadded overwrite Sponge is

𝑝𝑟 (𝑞/𝑝𝑏 ) with 𝑝𝑟 representing the possible number of valid inputs

for the first permutation call. For prepadded RPX, this reduces to

2𝑝𝑟 (𝑞/𝑝𝑏 ). On the other hand, this increased input space does not

affect the probability of finding collisions as they happen in the

permutation outputs and remains 𝑝−𝑐/2.
Indeed RPX’s preimage resistance is reduced now from 𝑐 log

2
𝑝-

bit to 𝑐 log
2
𝑝 − 1; however, noting that 𝑐 log

2
𝑝 = 2 · 𝜅 = 256 this

does not form a bottleneck and the security is still compatible with

overwrite sponge bounds found in the literature (e.g., [11]); i.e., at

least 128-bit security.

6 SECURITY RATIONALE
The security of both XHash8 and XHash12 is analyzed against

standard attacks, including statistical and algebraic attacks.

6.1 Differential cryptanalysis
We analyze the resistance of XHash8 against differential crypt-

analysis by counting active S-boxes. The resistance of XHash8

also ensures the resistance of XHash12 since, for any trail pattern,

XHash12 activates the same number or more S-boxes than XHash8.

Since the same set of S-boxes is used in both, the probability of

the best differential characteristic for XHash8 upper bounds the

probability of the best differential characteristic for XHash12.

The analysis follows the standard argument: we find a lower

bound on the number of active S-boxes and an upper bound on

the probability of the best differential transition in any S-box; the

quantity obtained from raising the latter to the power of the former

upper bounds the probability of the best differential characteristic.

The aspects of our new function that require special care are:

(1) The (B’) step uses a partial S-box layer;

(2) The (P3) step mixes base field elements in a non-linear way.

As a result of these particularities, the Two-Round Propagation

Theorem originally stated by Daemen and Rijmen in [20, Thm.

9.3.1] for the case of alternating block ciphers cannot be applied

directly to XHash8.

To address these observations we provide a step-by-step detailed

analysis. First, we observe that in the first step the adversary con-

trols only the outer part of the sponge and therefore they can only
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introduce a difference in 1 ≤ 𝑑
(𝐼 ) ≤ 𝑟 = 9 field elements. Conse-

quently, after the application of the MDS matrix 4 ≤ 𝑑
(𝐹 ) ≤ 12

S-boxes are active in the (F)-step. For the (B’)-step, the adversary

can activate 0 ≤ 𝑑
(𝐵′

)
≤ 8 S-boxes, followed by 1 ≤ 𝑑

(𝑃3) ≤ 4

S-boxes in the (P3)-step.
1
In total, over a triplet of consecutive

(F)(B’)(P3) steps, at least nine S-boxes are activated from (𝜋0, 𝜋1),

and at least one S-box of type 𝜋2.

In theorem 6.1 we show that S-boxes of type 𝜋2 are (𝛾 − 1)-
uniform which in our setting means that their differential transition

probability is upper bounded by 2
−186

. Completing the argument,

we see that the probability of the best differential transition over

a triplet of consecutive (F)(B’)(P3) is upper bounded by 2
9·(−60) ·

2
1·(−186)

= 2
−540−186

= 2
−726

; which is already enough to resist

differential attacks at the 128-bit security level.

Theorem 6.1. Let F𝑞 be a finite field of order 𝑞 = 𝑝𝑛 and charac-
teristic 𝑝 . Let 𝐹 (𝑥) = 𝑥𝛾 be a power map defined over F𝑞 , then 𝐹 is
differentially (𝛾 − 1)-uniform.

Proof. Given 𝛼, 𝛽 ∈ F𝑞, 𝛼 ̸= 0, the cardinality of the set D =

{𝑥 ∈ F𝑞 |𝐹 (𝑥 + 𝛼) − 𝐹 (𝑥) = 𝛽} can be computed as the number of

roots for the following polynomial:

(𝑥 + 𝛼)𝛾 − 𝑥𝛾 =

𝛾−1∑︁
𝑖=0

(
𝛾

𝑖

)
𝛼𝛾−𝑖𝑥𝑖 , (1)

which is a polynomial of degree 𝛾 − 1. It is well known that a

polynomial of degree 𝛼 has at most 𝛼 roots. We, therefore, obtain

the upper bound |D|≤ 𝛾 − 1. □

6.2 Algebraic Attacks
Arguing security against algebraic attacks is a complicated task

as these are not so well understood at this stage, and the inter-

play between the “algebraic” part and more classical techniques

can sometimes be used to an attacker’s advantage in lowering the

overall complexity of the attack.

By “algebraic” attack, we refer to attacks that ultimately culmi-

nate with the resolution of a (system of) equation(s), of which the

roots need to be found. Univariate techniques can sometimes be

applied, but they are not relevant here:

(1) the degree of the inverse function is close to the maximum

possible, meaning that the univariate degree in any lin-

ear combination of the inputs will very quickly become

unusable; and

(2) the field size (𝑝 = 2
64 − 2

32
+ 1) is not that large, meaning

that a univariate approach would need to be more efficient

than a simple brute-force on one word: a hard task here.

6.2.1 Univariate Algebraic Attacks.

Polynomial Degree. Again, we analyze only the polynomial de-

gree of XHash8 and use it as a lower bound for the polynomial

degree of XHash12. Similar to other algorithms from theMarvellous

family, the high polynomial degree is obtained by applying a large

power map to the elements of the state. However, when we use

XHash8, 𝜋1 is applied only to part of the state. Supposedly, even if

we ignore the (P3) round, the next application of M will distribute

1
We note that the S-boxes in the (P3)-step are of different type than those in the (F)-

and (B)- steps.

the high-degree terms to the entire state. However, this is hard to

argue formally without reverting to complicated case analysis and

furthermore, it is not clear that a linear transformation is enough

to spread algebraic properties in a sufficient way.
2
Thus, we do not

abstract the (P3)-step but analyze its diffusion properties.

Let (𝑥0, 𝑥1, 𝑥2) ∈ 𝐹 3𝑝 and 𝑥0,1,2 ∈ 𝐹𝑝3 . For brevity, we consider

only a single squaring operation: Consider the three polynomials

describing the base field elements after a single squaring operation:

𝑥2
0,1,2 = (𝑐0𝑥

2

0
+ 𝑐1𝑥1 · 𝑥2,

𝑥1 · (𝑐3𝑥0 + 𝑐4𝑥2) + 𝑐5𝑥22 ,
𝑐6𝑥0 · 𝑥2 + 𝑐7𝑥21 + 𝑐8𝑥

2

2
),

where 𝑐𝑖 ∈ F𝑝 for all 0 ≤ 𝑖 ≤ 8. Taking into account that 𝑥0 =

𝜋1(𝑦0) = 𝑦
1/7
0
, 𝑥2 = 𝜋1(𝑦2) = 𝑦

1/7
2

and setting 𝑥1 = 𝑦1 we get

𝑥2
0,1,2 = (𝑦

2/7
0

+ 𝑦1 · 𝑦1/7
2
,

𝑦1 · (𝑦1/7
0

+ 𝑦
1/7
2

) + 𝑦
2/7
2
,

𝑦
1/7
0

· 𝑦1/7
2

+ 𝑦2
1
+ 𝑦

2/7
2

),

and conclude that every possible polynomial description of the

initial state is of a high degree even before applying the MDSmatrix.

While this observation is already enough to argue resistance against

interpolation attacks, in Appendix A we work out the complete

case for 𝑥7 in 𝐹𝑝3 .

Density. Several works have recently noticed that the solving

degree of a polynomial system describing an AO primitive and con-

sisting of 𝜋0 S-boxes alone is smaller than the degree of regularity.

In particular, Sauer observed in [36] that for Rescue-like functions

(i.e., functions mixing 𝜋0 and 𝜋1 S-boxes), the solving degree grows

at the same rate as the Macaulay bound; whereas this is not the case

for Hades-like ciphers. This observation was later independently

confirmed by Ashur, Kindi, Meier, Szepieniec, & Threadbare in the

design of RPO and more recently quantified and leveraged into an

attack by Ashur, Buschman, and Mahzoun in [3].

To explain this observation Sauer introduces a new metric, “in-

volvement”, as a proxy for the difficulty of finding a Gröbner ba-

sis [37]. Two notions of involvement are suggested based on vectors

of origin; one based on the normalized average of polynomials from

the original system required to describe each element in the Gröb-

ner basis and the other on the number of non-zero coefficients in

the matrix describing the vectors of origin. Sauer presents heat

maps suggesting that the latter is a reasonable, even if noisy, proxy

for the difficulty of finding a Gröbner basis.

Here, we suggest that the notion of density is sufficient to capture

the quality we are interested in when designing a symmetric-key

primitive. As an instructive example, consider the polynomial mod-

eling of a single Rescue round consisting of consecutive (F)(B) steps:(
𝑚−1∑︁
𝑘=0

𝑀[ 𝑗, 𝑘]𝑆2𝑖−1[𝑘]𝛼
)
−(

𝑚−1∑︁
𝑘=0

𝑀−1
[ 𝑗, 𝑘](𝑆2𝑖+1[𝑘] − 𝐾2𝑖+1[𝑘])

)𝛼
+ 𝐾2𝑖 [ 𝑗] = 0

(2)

2
See [32] for the binary case and [3] for the prime case.
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Note that in the second term, the power map 𝛼 is applied to the

entire sum, creating a complicated expression due to the multino-

mial theorem. For 𝛼 = 7 and𝑚 = 12 as in the case of RPO, each

such polynomial consists of 12 +

(
18

11

)
monomials in 24 variables.

Comparably, the modeling of an (F)-round(
𝑚−1∑︁
𝑘=0

𝑀[ 𝑗, 𝑘]𝑆𝑖−1[𝑘]𝛼
)
+ 𝐾2𝑖 [ 𝑗] − 𝑆𝑖 [ 𝑗] = 0 (3)

consists of 12 + 1 = 13 monomials in 12 + 1 = 13 variables. It is

straightforward to see that polynomials of type (2) are denser than

polynomials of type (3) and since clearly density implies involve-

ment (but not necessarily the other way around) we conjecture

density to be the explanation to Sauer’s observations
3
.

XHash8 achieves density differently. Considering an even STARK

round consisting of one pair of (F)(B’) steps. This round gives rise

to two types of polynomials:(
𝑚−1∑︁
𝑘=0

𝑀[ 𝑗, 𝑘]𝑆𝑖−1[𝑘]𝛼
)
+ 𝐾2𝑖 [ 𝑗] − 𝑆7𝑖 [ 𝑗] = 0 𝑗 ̸≡ 1 (mod 3)(

𝑚−1∑︁
𝑘=0

𝑀[ 𝑗, 𝑘]𝑆𝑖−1[𝑘]𝛼
)
+ 𝐾2𝑖 [ 𝑗] − 𝑆𝑖 [ 𝑗] = 0 𝑗 ≡ 1 (mod 3)

neither of which is dense. Density arises from the polynomial mod-

eling of (P3). The polynomial description of (P3) can be found in

Appendix A showing that each base element can be modeled as a

3-variate polynomial of degree seven with 31–34 monomials. Fol-

lowing the MDS, each state element is modeled by a polynomial

with 36 · 4 = 144 monomials in 13 variables.

6.2.2 The Steps of a Multivariate Algebraic Attacks. The multivari-

ate approach models the primitive as a system of multivariate equa-

tions, that needs to be solved. Using a terminology inspired by the

one introduced in [7], the four steps performed to solve a multivari-

ate polynomial system are described as follows.

SysGen: First, the system of equations needs to be generated.

Several heuristics are available to this end, but all of them have to

introduce new variables whenever a 𝑑-th root is used as it is the

compositional inverse of these operations that is of a low degree.

This step can further be simplified using techniques from “classi-

cal” symmetric cryptanalysis, typically based on the probability

one propagation of some affine spaces. This was used to shave off

two SPN rounds generically in [8], with the conditions that the

S-boxes are monomials over the base field considered,
4
and that

the cipher/permutation starts with an S-box layer. The system that

is generated in the end is not uniquely defined: different generation

strategies will yield different systems. For instance, using affine

spaces to simplify it will remove some equations. Similarly, we can

prefer to introduce new variables and equations to obtain more

but lower degree equations. The existence of an efficient SysGen
procedure is implied by arithmetization-orientation, but it is not

necessarily the approach used in attacks.
5

3
This conjecture arises independently in the argument of Freelunch [7] attacks

4
In contrast to what is done in XHash, where monomials are applied over both F𝑝 and

F3𝑝 .
5
In fact, our encoding for XHash12 will be the STARK one, while the one for XHash8

is significantly different.

Note that the algorithms used in the next steps are better under-

stood in the case where the system is expected to have unique (or

just a few) solutions. This further adds constraints for the SysGen
step, but they are easily handled: the expected number of solutions

is easily estimated assuming e.g. that the hash function behaves like

a random function, and the input can be constrained for instance

by forcing it to be in a vector space of the appropriate dimension.

GröbFind: Once a system is obtained, it is necessary first to

endow it with a structure that will allow us to work with it. This, in

particular, allows us to do the polynomial arithmetic we need, e.g.

to reduce large degree polynomials modulo lower degree ones. The

equations we have obtained define an ideal: since we investigate

their common roots, any linear combination will also have the same

roots. An ideal of polynomials has a Gröbner basis, a particular

set of polynomials that essentially allow us to properly define a

reduction modulo this ideal. A Gröbner basis is defined for a given

monomial ordering. Several of these are well-known. In particular,

a Gröbner basis in lexicographic order can greatly simplify the next

steps of the attack. On the other hand, the complexity of finding

a Gröbner basis is highly dependent on said ordering. In general,

to obtain a basis e.g. in grevlex order given any ideal, we need to

use either F4 or F5 [24, 26]. Unfortunately, efficient open-source

implementations are hard to find. The state-of-the-art approach

to compute the complexity is the one described in [2] where the

behavior of toy examples is compared to the expected behavior of a

regular system and then extrapolated to larger cases. We performed

similar experiments and the results are reported in Appendix B.

VarElim. Once a Gröbner basis is known, we use its structure
to extract a univariate polynomial in one of the variables. This

extraction step is usually done by reordering the Gröbner basis, i.e.

by obtaining a Gröbner basis for a different monomial order, one

that is suitable for this purpose. It is usually the lexicographic one.

This change of order can be done using the FGLM [25] algorithm,

whose complexity is precisely known as it boils down to linear

polynomial arithmetic. It depends on a quantity called the degree of
the ideal (𝐷𝐼 ) and corresponds to the number of roots the system has

in the algebraic closure of the field considered. This number is much

higher than the number of solutions in the field itself (typically 0, 1

or 2).

More custom approaches are sometimes possible; for instance,

the authors of [7] introduced the combination of MatMul and
PolyDet: the idea is to bypass the cost of a full FGLM run by focusing

on a single variable that is of particular interest in their case.

UniSolve. By design, we expect a solution to exist. Thus, once

a univariate equation is extracted, we solve it using well-known

techniques to get the first root of the system. We then substitute

its value in the other equations and deduce an assignment for

all the variables. This works provided that the equations have the

correct structure, but this is always the case for the output of FGLM,

under some reasonable assumptions that have been found to hold

in practice when attacking arithmetization oriented primitives.

6.2.3 Arguing Security in the Multivariate Case. In order to show

that a hash function is safe from multivariate algebraic attacks, we

need to find a lower bound on the time complexity of the resolution

of a system corresponding to a CICO instance. For XHash, as 𝑝 is
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small, we need to fix several inputs and several outputs to zero at

the same time.

Which complexity should we focus on? The complexity of Sys-
Gen could be amortized over several attacks, and is expected to

be lower than the other steps. The UniSolve step is also known to

be very efficient [8] Worse, the GröbFind step has been found to

be literally free for some permutations [7]. This leaves us with the

VarElim step. This is not a bad thing: it is the step whose complexity

is the best understood. It depends on a quantity known as the ideal
degree (𝐷𝐼 ), which corresponds to the number of solutions of the

multivariate system in the algebraic closure of the field considered.

For example, 𝑦 = 𝑥7 has a unique solution in F𝑝 , but 7 in its alge-

braic closure. The complexity of FGLM is then proportional to 𝐷3

𝐼
,

though variants exist with a lower (but still higher than quadratic)

complexity in some very specific cases.

Under a reasonable conjecture, we can derive lower bounds on

𝐷𝐼 that are sufficient to argue the security of both variants of XHash.

To describe this conjecture, we first need the following definition.

Definition 6.2 (𝑏-Almost Basal). We call 𝑏-almost basal (𝑏-AB) a
system of 𝑛 polynomials 𝑃𝑖 in variables (𝑥0, ..., 𝑥𝑛−1), where 𝑏 > 0

is an integer, when the following properties hold:

• Non-degenerate: the ideal spanned by these polynomials is

of dimension 0;

• Basal part: there exists a monomial order such that the

leading term of 𝑃𝑖 , 𝑖 < 𝑏, is the monomial 𝑥
𝑑𝑖
𝑖

for some

integer 𝑑𝑖 > 0.

Such a system is depicted in Figure 3.

The idea of this notion is to describe a set of multivariate poly-

nomials which is “partially” a Gröbner basis. Indeed, it is sufficient

for polynomials to form a Gröbner basis that the leading term in

each 𝑃𝑖 is of the form 𝑥
𝑑𝑖
𝑖
. In a 𝑏-AB system, the first 𝑏 polynomials

have this shape. In fact, an 𝑛-AB system is a Gröbner basis.

𝑥
𝑑0
0

− 𝑃 ′
0
(𝑥0, ..., 𝑥𝑛−1)

𝑥
𝑑1
1

− 𝑃 ′
1
(𝑥0, ..., 𝑥𝑛−1)

...

𝑥
𝑑𝑏−1
𝑏−1 − 𝑃 ′

𝑏−1(𝑥0, ..., 𝑥𝑛−1)

𝑃𝑏 (𝑥0, ..., 𝑥𝑛−1)

𝑃𝑏+1(𝑥0, ..., 𝑥𝑛−1)

...

𝑃𝑛−1(𝑥0, ..., 𝑥𝑛−1)

𝑏-AB system

basal part

Figure 3: The structure of an 𝑏-AB system, where 𝑃𝑖 (𝑥) =

𝑥
𝑑𝑖
𝑖

− 𝑃 ′(𝑥 ).

Using this notion, we are ready to state the following conjecture.

Conjecture 1 (Monotonous IdealDegreeConjecture (MIDC)).

For a 𝑏-AB system, the degree 𝐷𝐼 of the ideal is lower bounded by
𝐷𝐼 ≥

∏𝑏−1
𝑖=0

𝑑𝑖 .

The intuition behind this conjecture is simple: the ideal degree

corresponds to the number of solutions the system has in the alge-

braic closure of the underlying field, and this conjecture postulates

that this number does not decrease when we take into account

the last equations. That is where the term “monotonous” comes

from: we assume that the ideal degree increases or stays constant

but does not decrease when we consider more equations. To put

it differently, this conjecture posits that the actual Gröbner basis

of the system contains the basal part and that the last equations

(those not in the basal part) do not decrease the ideal degree.

This conjecture is true when 𝑏 = 𝑛: in this case, the system is a

Gröbner basis, and the ideal degree is known to be

∏𝑛−1
𝑖=0

𝑑𝑖 .

According to our experiments, for a simplified XHash, this con-

jecture holds. In fact, in our experiments, we do have that 𝐷𝐼 =∏𝑛−1
𝑖=0

𝑑𝑖 , even though the last polynomials have identical leading

terms. In that case, the last equations participate as if they had

different leading terms. Still, we deem it safer at this stage to only

take the basal part into account when making a security claim.

Applying our attack strategy against one word in XHash8, i.e.

solving a CICO instance with a single [0] in the input and one

in the output, we simply obtain a FreeLunch [7] system. It is a

particular case of an𝑛-AB system. Under the MIDC, the ideal degree

corresponding to an attack on 𝑤 words is lower bounded by the

complexity of attacking a single word. Indeed, when 𝑤 > 1, the

first equations still form a basal part of the polynomial system, and

only the last𝑤 − 1 equations are not basal. As a consequence, we

get a bound on 𝐷𝐼 which corresponds to its value in the𝑤 = 1 case,

namely 𝐷𝐼 ≥ 𝑑8𝑟 .
For XHash8, even ignoring the presence of the first equation

with leading term 𝑥0 among the final equations, we get that 𝐷𝐼 ≥
𝑑3×8 ≈ 2

67
. Adding the equation in 𝑥0, which also satisfies the

criteria to be part of the basal part, we get 𝐷𝐼 ≥ 𝑑3×8 × 𝑑3×2 ≈ 2
84
.

As a consequence, for GB-based algebraic attacks to be a threat

against XHash8, we would need two things:

(1) that the bound for 𝐷𝐼 is tight (experiments indicate that it

is not), and
(2) an FGLM-like algorithm with a complexity strictly sub-

quadratic in 𝐷𝐼—in fact, even a complexity proportional

to 𝐷1.5
𝐼

would give a complexity around 2
126

in this case:

barely an attack.

For XHash12, we get a bound of 𝐷𝐼 ≥ 𝑑3×12 ≈ 2
101

, which is even

higher—and thus safer. At this stage, we expect neither the bounds

to be tight nor such an algorithm to exist. Thus, we claim that

XHash8 is safe against GB-based algebraic attacks. The detailed

analysis of the attack is described in Appendix C

7 PERFORMANCE
In this section, we compare the performance of RPX with Posei-

don [29], Griffin [27], Anemoi [14], and Rescue Prime [40], which

are the state-of-the-art designs in the literature and industry, for

STARKs. We compare the performance of RPX on multiple CPU ar-

chitectures with BLAKE3 [35], SHA3 [23], Poseidon [29], Rescue [2],
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Rescue Prime [40], and RPO [4]. The performance of different can-

didates for STARKs is measured using Algebraic Intermediate Rep-

resentation (AIR) as suggested in [10]. The performance on CPUs

is measured to demonstrate the efficiency of different candidates

for verifiers of the ZK proof systems.

7.1 Algebraic Intermediate Representation
Algebraic Intermediate Representation (AIR) is used in STARKs [10]

and is the suggested notion of measuring the performance of the

STARK proof system [2]. An AIR of degree 𝑑 , width𝑤 , and length

𝑡 over F𝑞 is a set of multivariate polynomials of maximum de-

gree 𝑑 over F𝑞 , with variables 𝑥𝑖, 𝑗 , 𝑖 ≤ 𝑤, 𝑗 ≤ 𝑡 . The total cost of

representation in AIR is 𝑑 · 𝑤 · 𝑡 . The comparison of the cost of

AIR representation for RPX, Poseidon, Griffin, Rescue Prime, and

Anemoi is depicted in Table 1.

Table 1: Cost of AIR for hashing with one call to the under-
lying permutations.

𝑡 RPX Rescue Prime Poseidon Anemoi Griffin

3 - 252 336 252 -

6 - 336 504 420 -

12 504 672 1176 756 672

24 - 1344 2184 1344 -

7.2 CPU Performance
The CPU performance of RPX is measured and compared to various

candidates, including "traditional" hash functions like SHA3 and

BLAKE3, optimized for out-of-STARK performance, and algebraic

hash functions like Rescue Prime, RPO, and Poseidon, optimized

for performance inside the STARK. Anemoi and Griffin are not

considered because Poseidon has been demonstrated to be faster

than them [14]. However, the comparison with Rescue and Res-

cue Prime is included, as they inspire RPX. The benchmarking

scenario described in Table 2 is a 2-to-1 hashing: (𝑥,𝑦) ↦→ ℎ(𝑥,𝑦)

where 𝑥,𝑦, ℎ(𝑥,𝑦) are the digests corresponding to each of the hash

functions.

Table 2: 2-to-1 Hashing of different candidates. All times are
in microseconds.

Architecture

B
LA

K
E3

SH
A
3

Po
se
id
on

R
es
cu

e
Pr

im
e

R
PO

X
H
as
h1

2

Apple M1 Pro 0.076 0.245 1.5 9.1 5.2 2.7

Apple M2 Max 0.071 0.233 1.3 7.9 4.6 2.4

Amazon Graviton 3 0.108 5.3 3.1

AMD Ryzen 9 5950X 0.064 0.273 1.2 9.1 5.5

AMD EPYC 9R14 0.083 4.3 2.4

Intel Core i5-8279U 0.068 0.536 2 13.6 8.5 4.4

Intel Xeon 8375C 0.067 8.2

8 CONCLUSION
This work introduced XHash, an efficient permutation for zero-

knowledge applications with robust security. The security of XHash

relies on a detailed analysis against different attack vectors, in

particular algebraic attacks. For these, we have introduced a new

type of security argument with a clear underlying conjecture which

allows us to provide a strong argument against even the most recent

variants of this attack. From the performance point of view, XHash

is more efficient for STARKs than all current candidates and is very

competitive on different CPU architectures, making it the most

suitable option for the provers in zero-knowledge systems as well

as the verifiers.
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A POLYNOMIAL REPRESENTATION OF 𝜋2
Let (𝑥0, 𝑥1, 𝑥2) ∈ 𝐹 3𝑝 and (𝑦0, 𝑦1, 𝑦2) ∈ 𝐹 3𝑝 such that

𝜋2(𝑥0, 𝑥1, 𝑥2) = (𝑦0, 𝑦1, 𝑦2);
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𝑥3
1
𝑥
(2𝑝−1)/7
2

+ 105𝑥
(4𝑝−2)/7
0

𝑥4
1
𝑥
(2𝑝−1)/7
2

+ 42𝑥
(2𝑝−1)/7
0

𝑥5
1
𝑥
(2𝑝−1)/7
2

+ 14𝑥6
1
𝑥
(2𝑝−1)/7
2

+ 105𝑥
(8𝑝−4)/7
0

𝑥1𝑥
(4𝑝−2)/7
2

+ 210𝑥
(6𝑝−3)/7
0

𝑥2
1
𝑥
(4𝑝−2)/7
2

+ 210𝑥
(4𝑝−2)/7
0

𝑥3
1
𝑥
(4𝑝−2)/7
2

+ 210𝑥
(2𝑝−1)/7
0

𝑥4
1
𝑥
(4𝑝−2)/7
2

+ 42𝑥5
1
𝑥
(4𝑝−2)/7
2

+ 35𝑥
(8𝑝−4)/7
0

𝑥
(6𝑝−3)/7
2

+ 140𝑥
(6𝑝−3)/7
0

𝑥1𝑥
(6𝑝−3)/7
2

+ 420𝑥
(4𝑝−2)/7
0

𝑥2
1
𝑥
(6𝑝−3)/7
2

+ 280𝑥
(2𝑝−1)/7
0

𝑥3
1
𝑥
(6𝑝−3)/7
2

+ 105𝑥4
1
𝑥
(6𝑝−3)/7
2

+ 70𝑥
(6𝑝−3)/7
0

𝑥
(8𝑝−4)/7
2

+ 210𝑥
(4𝑝−2)/7
0

𝑥1𝑥
(8𝑝−4)/7
2

+ 315𝑥
(2𝑝−1)/7
0

𝑥2
1
𝑥
(8𝑝−4)/7
2

+ 140𝑥3
1
𝑥
(8𝑝−4)/7
2

+ 63𝑥
(4𝑝−2)/7
0

𝑥
(10𝑝−5)/7
2

+ 168𝑥
(2𝑝−1)/7
0

𝑥1𝑥
(10𝑝−5)/7
2

+ 105𝑥2
1
𝑥
(10𝑝−5)/7
2

+ 35𝑥
(2𝑝−1)/7
0

𝑥
(12𝑝−6)/7
2

+ 49𝑥1𝑥
(12𝑝−6)/7
2

+ 9𝑥
(2𝑝−1)
2

,

𝑦1 = 7𝑥
(12𝑝−6)/7
0

𝑥1 + 35𝑥
(8𝑝−4)/7
0

𝑥3
1
+ 35𝑥

(6𝑝−3)/7
0

𝑥4
1

+ 21𝑥
(4𝑝−2)/7
0

𝑥5
1
+ 14𝑥

(2𝑝−1)/7
0

𝑥6
1
+ 2𝑥7

1

+ 42𝑥
(10𝑝−5)/7
0

𝑥1𝑥
(2𝑝−1)/7
2

+ 105𝑥
(8𝑝−4)/7
0

𝑥2
1
𝑥
(2𝑝−1)/7
2

+ 140𝑥
(6𝑝−3)/7
0

𝑥3
1
𝑥
(2𝑝−1)/7
2

+ 210𝑥
(4𝑝−2)/7
0

𝑥4
1
𝑥
(2𝑝−1)/7
2

+ 84𝑥
(2𝑝−1)/7
0

𝑥5
1
𝑥
(2𝑝−1)/7
2

+ 21𝑥6
1
𝑥
(2𝑝−1)/7
2

+ 21𝑥
(10𝑝−5)/7
0

𝑥
(4𝑝−2)/7
2

+ 105𝑥
(8𝑝−4)/7
0

𝑥1𝑥
(4𝑝−2)/7
2

+ 420𝑥
(6𝑝−3)/7
0

𝑥2
1
𝑥
(4𝑝−2)/7
2

+ 420𝑥
(4𝑝−2)/7
0

𝑥3
1
𝑥
(4𝑝−2)/7
2

+ 315𝑥
(2𝑝−1)/7
0

𝑥4
1
𝑥
(4𝑝−2)/7
2

+ 84𝑥5
1
𝑥
(4𝑝−2)/7
2

+ 70𝑥
(8𝑝−4)/7
0

𝑥
(6𝑝−3)/7
2

+ 280𝑥
(6𝑝−3)/7
0

𝑥1𝑥
(6𝑝−3)/7
2

+ 630𝑥
(4𝑝−2)/7
0

𝑥2
1
𝑥
(6𝑝−3)/7
2

+ 560𝑥
(2𝑝−1)/7
0

𝑥3
1
𝑥
(6𝑝−3)/7
2

+ 175𝑥4
1
𝑥
(6𝑝−3)/7
2

+ 105𝑥
(6𝑝−3)/7
0

𝑥
(8𝑝−4)/7
2

+ 420𝑥
(4𝑝−2)/7
0

𝑥1𝑥
(8𝑝−4)/7
2

+ 525𝑥
(2𝑝−1)/7
0

𝑥2
1
𝑥
(8𝑝−4)/7
2

+ 245𝑥3
1
𝑥
(8𝑝−4)/7
2

+ 105𝑥
(4𝑝−2)/7
0

𝑥
(10𝑝−5)/7
2

+ 294𝑥
(2𝑝−1)/7
0

𝑥1𝑥
(10𝑝−5)/7
2

+ 189𝑥2
1
𝑥
(10𝑝−5)/7
2

+ 63𝑥
(2𝑝−1)/7
0

𝑥
(12𝑝−6)/7
2

+ 84𝑥1𝑥
(12𝑝−6)/7
2

+ 16𝑥
(2𝑝−1)
2

,

𝑦2 = 21𝑥
(10𝑝−5)/7
0

𝑥2
1
+ 35𝑥

(6𝑝−3)/7
0

𝑥4
1
+ 21𝑥

(4𝑝−2)/7
0

𝑥5
1
+ 7𝑥

(2𝑝−1)/7
0

𝑥6
1

+ 2𝑥7
1
+ 7𝑥

(12𝑝−6)/7
0

𝑥
(2𝑝−1)/7
2

+ 105𝑥
(8𝑝−4)/7
0

𝑥2
1
𝑥
(2𝑝−1)/7
2

+ 140𝑥
(6𝑝−3)/7
0

𝑥3
1
𝑥
(2𝑝−1)/7
2

+ 105𝑥
(4𝑝−2)/7
0

𝑥4
1
𝑥
(2𝑝−1)/7
2

+ 84𝑥
(2𝑝−1)/7
0

𝑥5
1
𝑥
(2𝑝−1)/7
2

+ 14𝑥6
1
𝑥
(2𝑝−1)/7
2

+ 21𝑥
(10𝑝−5)/7
0

𝑥
(4𝑝−2)/7
2

+ 105𝑥
(8𝑝−4)/7
0

𝑥1𝑥
(4𝑝−2)/7
2

+ 210𝑥
(6𝑝−3)/7
0

𝑥2
1
𝑥
(4𝑝−2)/7
2

+ 420𝑥
(4𝑝−2)/7
0

𝑥3
1
𝑥
(4𝑝−2)/7
2

+ 210𝑥
(2𝑝−1)/7
0

𝑥4
1
𝑥
(4𝑝−2)/7
2

+ 63𝑥5
1
𝑥
(4𝑝−2)/7
2

+ 35𝑥
(8𝑝−4)/7
0

𝑥
(6𝑝−3)/7
2

+ 280𝑥
(6𝑝−3)/7
0

𝑥1𝑥
(6𝑝−3)/7
2

+ 420𝑥
(4𝑝−2)/7
0

𝑥2
1
𝑥
(6𝑝−3)/7
2

+ 420𝑥
(2𝑝−1)/7
0

𝑥3
1
𝑥
(6𝑝−3)/7
2

+ 140𝑥4
1
𝑥
(6𝑝−3)/7
2

+ 70𝑥
(6𝑝−3)/7
0

𝑥
(8𝑝−4)/7
2

+ 315𝑥
(4𝑝−2)/7
0

𝑥1𝑥
(8𝑝−4)/7
2

+ 420𝑥
(2𝑝−1)/7
0

𝑥2
1
𝑥
(8𝑝−4)/7
2

+ 175𝑥3
1
𝑥
(8𝑝−4)/7
2

+ 84𝑥
(4𝑝−2)/7
0

𝑥
(10𝑝−5)/7
2

+ 210𝑥
(2𝑝−1)/7
0

𝑥1𝑥
(10𝑝−5)/7
2

+ 147𝑥2
1
𝑥
(10𝑝−5)/7
2

+ 49𝑥
(2𝑝−1)/7
0

𝑥
(12𝑝−6)/7
2

+ 63𝑥1𝑥
(12𝑝−6)/7
2

+ 12𝑥
(2𝑝−1)
2

.

B GRÖBNER BASIS RESISTANCE
To compute the Gröbner basis, each round is divided into two steps:

The first step is called the basic step and contains 𝜋0, linear layer,

constant addition, and 𝜋1. The second step is called the extension

step which contains constant addition, 𝜋2, linear layer, and constant

addition. In our experiments, we used a toy instance with state size

𝑚 = 3, rate 𝑟 = 1, and capacity 𝑐 = 2. We denote the number of

steps in the polynomial system by 𝑁 and the number of rounds in

the polynomial system by 𝑅 = 2𝑁 .

Polynomial description. The input is denoted by:

𝑋0 = (𝑋0[1], . . . , 𝑋0[𝑟 ], 0, . . . , 0) ,

the state after the step 𝑖 by

𝑋𝑖 = (𝑋𝑖 [1], . . . , 𝑋𝑖 [𝑚]) ,

and the output by

𝑌 = (𝐻 [1], . . . , 𝐻 [𝑟 ], 𝑌 [𝑟 + 1], . . . , 𝑌 [𝑚])

where 𝐻 [𝑖] is the 𝑖th output of the hash function. The MDS matrix

is denoted by𝑀 and constants used at step 𝑖 are denoted by

𝐾𝑖 = (𝐾𝑖 [1], . . . , 𝐾𝑖 [𝑚]) , 𝐾 ′
𝑖 =

(
𝐾 ′
𝑖 [1], . . . , 𝐾

′
𝑖 [𝑚]

)
.

In the case of the XHash12, the 𝑖th basic step is modeled as:

𝑚−1∑︁
𝑘=0

𝑀[ 𝑗, 𝑘] · 𝑋𝑖 [𝑘]𝛼 + 𝐾𝑖 [ 𝑗] − (𝑋 ′
𝑖 )
𝛼 − 𝐾 ′

𝑖 [ 𝑗] = 0

In the case of the XHash8, the 𝑖th basic step is modeled as:

𝑚−1∑︁
𝑘=0

𝑀[ 𝑗, 𝑘] · 𝑋𝑖 [𝑘]𝛼 + 𝐾𝑖 [ 𝑗] − (𝑋 ′
𝑖 )
𝛼 − 𝐾 ′

𝑖+1[ 𝑗] = 0 𝑘 ̸≡ 1 mod 3

𝑚−1∑︁
𝑘=0

𝑀[ 𝑗, 𝑘] · 𝑋𝑖 [𝑘]𝛼 + 𝐾𝑖 [ 𝑗] − 𝑋 ′
𝑖 − 𝐾

′
𝑖 [ 𝑗] = 0 𝑘 ≡ 1 mod 3
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The 𝑖th extended step is modeled as:

𝑚−1∑︁
𝑘=0

𝑀−1
[ 𝑗, 𝑘] · (𝑋𝑖+1[𝑘] + 𝐾𝑖+1[𝑘]) − 𝜋2,𝛽 = 0 𝛽 = 𝑘 mod 3

The results of the Gröbner basis algorithm for XHash12 with𝑚 =

3, 𝑟 = 1, 𝑝 = 65519 are described in Table 3.

Table 3: Experimental results for finding a Gröbner basis in
degrevlex order for XHash12

𝑅 𝑁 V SD D𝑟𝑒𝑔 Complexity Time(s) Mem(MB)

1 1 3 7 19 13.81 0.0 0.15

1 2 6 12 37 28.36 72.38 1.13

2 3 9 21 55 47.54 26338 12.3

Introducing partial layers in XHash8 results, as expected, in a

smaller solving degree; interestingly, the actual running time actu-

ally increases. These experiments on toy parameters are described

in Table 4.

Table 4: Experimental results of finding Gröbner basis in the
degrevlex order for XHash8

𝑅 𝑁 V SD D𝑟𝑒𝑔 Complexity Time(s) Mem(MB)

1 1 3 8 19 14.73 0.0 0.15

1 2 6 12 37 28.36 61.33 1.12

2 3 9 17 55 43.15 74593 31.58

The total complexity of computing the Gröbner basis in degrevlex

order for the hash function with 𝑁 steps, state size𝑚, and rate 𝑟 is:

C𝑔𝑏 ≥
(
V + 𝑑𝑠𝑜𝑙

𝑑𝑠𝑜

)
2

, (4)

C𝑔𝑏 ≈ 2
423.59 .

By taking a very conservative approximation and assuming the

solving degree remains 17 after the third step, the complexity of

both instances is lower bounded by

C𝑔𝑏 ≥ 2
136.87 .

C ALGEBRAIC FREELUNCH ATTACK
We build a security claim against rootfinding attacks against each

of the steps described in subsubsection 6.2.2.

SysGen. As we established during the discussion above, heuris-

tics exist to lower the complexity of this step, however, it is also

possible to mitigate them using appropriate counter-measures (such

as starting with a linear diffusion layer). Furthermore, as this step

cannot be avoided, it could make sense to base a security claim on

the complexity of this step. However, this complexity is hard to

estimate, and (as shown in [7]) tends to be much lower than other

steps of the attack. Besides, running for instance a preimage search

multiple times for different preimages would lead to essentially

identical systems, except for some constants in the very last equa-

tions. As a consequence, the cost of this step could be amortized

over several attacks. In the end, we claim that relying on this step

for a security bound would not lead to meaningful results.

GröbFind. Experimental results often indicated that this step

was the longest in the attack against an AOP, which led the authors

of several primitives to follow those of Rescue [2], and base their

security claims using an estimate of the complexity of F4 or F5 (e.g.

Griffin [27], Anemoi [14]).

While there is no reason to challenge these experimental results,

such claims are now unfortunately falling short. Indeed, it turns

out that it is possible to find monomial orderings such that the

system obtained during the SysGen step is immediately a Gröbner

basis. To the best of our knowledge, this was first put forward to

investigate the AES [15], and then adapted to the cryptanalysis of

AOPs by two independent teams investigating different algorithms:

the authors of [7] described the “freelunch” approach, which they

applied to Anemoi, Arion, XHash8 and in particular Griffin; while

Steiner very recently put forward papers presenting such orderings

for Poseidon [39] and Rescue [38].

VarElim. The complexity of FGLM is well known and “stable”:

while the complexity of GröbFind can only be upper-bounded

(while we would need a lower bound anyway), that of FGLM is tight.

Furthermore, even though the technique presented in [7] is more

efficient than FGLM, its complexity has a similar structure. Variants

of FGLM exist that can be applied e.g. to sparser systems. The

applicability of these variants is not so clear, but their complexity

also depends on the same quantity: the ideal degree 𝐷𝐼 .

We will thus base our security argument on the complexity of

this step.

UniSolve. The complexity of this step is tightly known and is

negligible compared to all the other steps considered here. It cannot

serve as the basis for a security claim.

C.1 Modeling XHash
In what follows, letters 𝑥,𝑦 denote variables in F𝑝 , and Greek letters
denote multivariate polynomials of F𝑝 . The inner operations of

XHash are denoted with upper case Latin letters.

General Approach. For both instances of XHash, we use a similar

approach. In order to ensure that the system is expected to have

a single solution (or at most a few), we need to restrict the input

to a vector space of dimension 𝑟 , 𝑟 being the rate. The simplest

approach consists simply in starting with variables 𝑥0, ..., 𝑥𝑟−1 for
the input of the permutation, setting the others to 0.

Then we construct polynomial constraints ensuring that the

internal state at the output of the permutation is indeed the image

of the initial state after the relevant operations. Passing through

low degree operations is easy as we simply need to directly update

the polynomials by composing them with said operations. For the

(partial) layer of the 7
𝑡ℎ

root, we proceed differently: we introduce

variables 𝑦𝑖
𝑗
just after each 7-th roots, 𝑖 being the round index and

𝑗 the word index.

First Round. For the first round, we simply need to encode that

the inputs of each 7th root are obtained by applying twoMDS layers

and a layer of small monomials (along with the appropriate round

constants). We deduce 12 equations (resp. 8) for XHash12 (resp.
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XHash8) of the following shape:

(𝑦1𝑗 )
7
= 𝐶1 + 𝐿𝑗 (𝑆 (𝐿 (𝐶0 + ®𝑥))) = 𝛼 𝑗 (𝑥 ) .

To look for solutions to the CICO problem—or indeed for preim-

ages, we need to fix the capacity words to 0. To this end, we consider

that ®𝑥 = (𝑥0, ..., 𝑥𝑟−1, 0, ..., 0).

Middle Rounds. We get equations of the following types for the

middle rounds of XHash12:

(𝑦𝑖+1𝑗 )
7
= 𝐶𝑖 + 𝐿𝑗

(
𝑆

(
𝐿

(
𝐶𝑖 +𝑇 (𝑦

𝑖
)

)))
= 𝜇𝑖 (𝑦

𝑖
) . (5)

Since the layer of small S-boxes (𝑆) and the layer of big S-boxes (𝑇 )

are both of degree 7, and since the MDS layer 𝐿 ensures that all

outputs depend on all inputs, we have that 𝜇𝑖 is always of degree

7
2
= 49.

For XHash8, the situation is similar except that we introduce

fewer such variables (only 8 per rounds), and that the polynomial

constraints take as input the variables from all the previous rounds,

not only the immediate predecessor. It complicates writing a closed

formula for these constraints, but they can be generated recursively

starting from the first one with a computer program that updates

the expression of the polynomials corresponding to the “identity”

boxes in the high degree layer and keeps those in memory. We then

get equations of the form

(𝑦𝑖+1𝑗 )
7
= 𝜇′𝑖 (𝑦

𝑖 , 𝑦𝑖−1, ..., 𝑦1, 𝑥) . (6)

As for 𝜇𝑖 , the polynomials 𝜇′
𝑖
are of degree 49 in 𝑦𝑖 . However, their

degree in the previous variables is higher since each of those went

through operations of degree 49 during each round.

Final Rounds. For the final round, we do not introduce any new

variable. However, we add one equation per word whose value

needs to be set to a specific value. Essentially, we get several affine

combinations of the image under the big S-box of the 𝑦𝑟
𝑗
and (for

XHash8) some complex polynomials in all the previous variables

which we denote 𝜔𝑖 .

Bypassing Rounds. A natural attack angle at this stage is to try

and simplify the system using the knowledge of its structure, a

trick usually achieved by carefully tracking the propagation of

some affine spaces. This was applied with some success to several

SPNs in [8], and even more so against both Griffin and Arion [7]

due to the specifics of their non-linear layer—in particular, the fact

that the non-linear layer of Griffin is affine over large affine spaces.

However, we could not find such heuristics here. In the first

round, the first MDS layer restricts the control needed to apply

the technique from [8]. The fact that the non-linear layer is of

a very high degree everywhere
6
then prevents the applicability

of the technique from [7]. The monomial-based non-linear layer

could have potentially led to the existence of chains of subspaces,

as in [13], but the dense and structure-less round constants are an

effective counter-measure against it.

Furthermore, the use of the monomial over F3𝑝 in the big S-box

layer makes it complicated to play with the algebraic representation

of several rounds by tightly interweaving its 3 input variables.

6
Except for XHash8, where some inverse monomials are not applied, but this is of no

consequence here.

Overall, while the threat from “free” rounds might a priori be

pressing due to the low total number of rounds, it seems like the

built-in countermeasures make such threats impractical.

C.2 A Specific Monomial Ordering
In the end, we have two types of variables: the 𝑥 𝑗 , which corre-

sponds to the input, and the 𝑦𝑖
𝑗
, which are grouped in layers cor-

responding to the round at which they are introduced. We order

them using a weighted grevlex order, whereby variables 𝑥 𝑗 have

weight 1, and a variable 𝑦𝑖
𝑗
(introduced during round 𝑖) has weight

𝛼2𝑖 .

Our system of equations is of the form

0 = (𝑦0
0
)
7 − 𝛼0 ( ®𝑥)
...

0 = (𝑦0
ℓ−1)

7 − 𝛼11 ( ®𝑥)
0 = (𝑦1

0
)
7 − 𝜇0

(
®𝑥, ®𝑦0

)
...

0 = (𝑦
𝑁𝑟

ℓ−1)
7 − 𝜇0

(
®𝑥, ®𝑦0, ..., ®𝑦𝑁𝑟 −1

)
0 = 𝜔0

(
®𝑥, ®𝑦0, ..., ®𝑦𝑁𝑟

)
...

0 = 𝜔4

(
®𝑥, ®𝑦0, ..., ®𝑦𝑁𝑟

)
,

(7)

where ℓ = 8 for XHash8 and ℓ = 12 for XHash12.

By construction, our custom ordering ensures that the leading

monomials in all the starting and middle equations are different

variables (namely, all the 𝑦𝑖
𝑗
). For XHash8, in the case where we

only try to force one 0 in the input and in the output, this is exactly

a FreeLunch system: the leading monomial in the last equation is of

the form 𝑥
49(𝑟+1)

0
, meaning that it is yet another variable and that

the whole system is a Gröbner basis out-of-the-box.

Unfortunately, it is not the case for XHash12, or when the number

of attacked output blocks (and thus the number of variables in ®𝑥 ) is
at least equal to 2. Still, we do have that the leading monomials in

all but the final equations are pairwise distinct.

On XHash12. In XHash12, the input variables do not play a spe-

cific role since the inverse monomial layers are full. Indeed, we lose

the ability to force the input variables to play a specific role in the

last round, and thus cannot have the 𝑥 𝑗 be the only variables in the

leading monomials in any equation.

We thus considered alternative strategies to build the system of

equations for XHash12, and in particular to build the weights so

that they decrease with the number of rounds, thus forcing the 𝑥𝑖

to be the leading terms in the first round, the
®𝑦𝑖 to be the leading

terms in the second round, etc. However, the inner workings of the

round function prevented us from going further: it is “easy” to force

𝑦𝑑 to be the leading term of an equation of the form 𝑦𝑑 − 𝑃 ( ®𝑦, 𝑥),
but much more complicated to pick a specific variable intervening

in the rather dense polynomial 𝑃 , and have it be the only variable

in the leading monomial of such an equation.

In the end, we use the same encoding for XHash12 as we do for

XHash8, and in fact can be built using the same program.
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C.3 Experimental Results
It is easy to design (and implement) a system of equations corre-

sponding to an attack against a greatly simplified XHash8, differing

from the real one in the following ways.

• Use 𝑥 ↦→ 𝑥3 as a small S-box,

• Use a lower value for 𝑝 (namely, 𝑝 = 2
16 − 17) such that

𝑥 ↦→ 𝑥3 is a permutation,

• Decrease the number of branches and consider different

patterns for the application of the cubic roots.

• resize the big S-box to operate on F2𝑝 rather than F3𝑝 ; and

allow its replacement by a simple (full) layer of branch-wide

monomials (to better understand the impact of big S-boxes).

The attached Python script does just that. We call ℓ the number

of cubic roots applied in parallel in each round (so that ℓ = 8 for

XHash8 for instance), and 𝑤 the number both of 𝑥𝑖 and of final

equations.
7

Confirming the MIDC.. Running experiments on a small number

of rounds, we have found that the Monotonous Ideal Degree Con-

jecture held. In fact, a stronger result seems to hold in the case of

XHash8: In this case, the ideal degree seems equal to

𝑑ℓ𝑟︸︷︷︸
𝑦𝑖

×𝑑𝑘×2𝑟︸︷︷︸
𝑥 𝑗

,

which is 𝑑 (𝑘−1)2𝑟 times bigger than the bound given by the conjec-

ture.

On the Impact of 𝑇 . The much denser 𝑇 operation (operating

over F3𝑝 ) does not influence the degree of the ideal. In that sense, it

a priori does not provide more resistance against algebraic attacks

than a simpler layer of monomials applied on each branch.

However, in practice, it does imply some important properties.

First, its greater density means that all the polynomials have an

observable higher Hamming weight—a property that gets stronger

as the exponent increases. This means that the equations are hard

to generate and manipulate, and that targeting the (elimination

of) specific terms is likely to be much more complicated. More

importantly, making the polynomials denser is important to prevent

the algorithm targeting sparse systems from becoming applicable.

Furthermore, by operating on several words at once, it prevents

an attacker from singling out any of them. Being able to do this is

important to select which variables to pick as the leading monomi-

als, or to find heuristics to bypass rounds for free. As a consequence,

we consider that these layers offer a significant security increase,

albeit not one that is directly visible in the ideal degree.

Comparing XHash8 and XHash12. Unsurprisingly, computing

the actual value of 𝐷𝐼 takes a lot longer for a simplified XHash with

a full layer of cubic roots. Intuitively, this makes sense: in this case,

the polynomials obtained are further from being a Gröbner basis,

and thus SAGE needs to work harder to obtain one to compute this

quantity.

7
We need these to be equal to maintain an ideal of dimension 0.
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