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Abstract. Hash functions are a crucial component in incrementally ver-
ifiable computation (IVC) protocols and applications. Among those, re-
cursive SNARKs and folding schemes require hash functions to be both
fast in native CPU computations and compact in algebraic descriptions
(constraints). However, neither SHA-2/3 nor newer algebraic construc-
tions, such as Poseidon, achieve both requirements.
In this work we overcome this problem in several steps. First, for certain
prime field domains we propose a new design strategy called Kintsugi,
which explains how to construct nonlinear layers of high algebraic de-
gree which allow fast native implementations and at the same time also
an efficient circuit description for zero-knowledge applications. Then we
suggest another layer, based on the Feistel Type-3 scheme, and prove
wide trail bounds for its combination with an MDS matrix.
We propose a new permutation design named Monolith to be used as a
sponge or compression function. It is the first arithmetization-oriented
function with a native performance comparable to SHA3-256. At the
same time, it outperforms Poseidon in a circuit using the Merkle tree
prover in the Plonky2 framework. Contrary to previously proposed de-
signs, Monolith also allows for efficient constant-time native implemen-
tations which mitigates the risk of side-channel attacks.

1 Introduction

1.1 Hash Functions in Zero-Knowledge Frameworks

Zero-knowledge use cases and particularly the area of computational integrity
combined with zero knowledge have seen a rise in popularity in the last couple
of years. Many new protocols [GWC19; ZGK+22; KST22; BC23] and low-level
primitives [AGR+16; AAE+20; GKR+21] have been designed and published



recently, in an attempt to increase the performance in this setting. The emer-
gence of folding techniques and recursive SNARKs (incrementally verifiable com-
putation, or IVC [Val08]) make it possible to efficiently prove the integrity of
complex computations. Proofs covering up to 227 operations are known1 whereas
SNARK-based verifiable delay functions (VDFs) might require proving up to 240

operations [KMT22]. A single IVC operation is typically a compact arithmetic
computation (polynomial) in a certain prime field or an assertion to some low-
degree polynomial predicate. With VC programs (also called circuits) being that
large and containing cryptographic protocols, more and more programs contain
hash functions as subroutines. Hash functions and their underlying permuta-
tions are used not only for data integrity checks, but also to instantiate com-
mitment schemes, authenticated encryption [PSS19; CFG+22], non-interactive
proofs based on the Fiat–Shamir transform, and many other techniques.

Hash Functions in IVC Applications. For typical applications of hash func-
tions (e.g., integrity checks) standard choices like SHA-2 or SHA-3 are usually not
the bottleneck. However, this is different in IVC applications mentioned above.
For hashing and membership proofs in ZK, e.g. in folding schemes [KST22; KS23;
BC23] or private mixers [PSS19], the size of hash functions as an arithmetic cir-
cuit over a prime field is more important than the “native” software performance
(e.g., on an x86 architecture). Several new hash functions have tried to bridge
this gap [AGR+16; AAE+20; GHR+23; GKR+21; SAD20; BBC+23].

Hash functions may also be used as a commitment tool in IVC frameworks
where the underlying commitment scheme is not homomorphic (STARKs being
a notable example [BBH+19]). With a prover and a verifier engaging in commit-
open protocols over prime fields, this setting requires to efficiently construct a
Merkle tree in a prime field domain over large amounts of data. So far, the
computations were performed natively on x86 hardware and not (yet) inside a
circuit. Here, classical hash functions have been used until recently.

Both cases appear in recursive schemes, in particular in recursive STARKs
[COS20], which are an attractive IVC concept due to relatively little overhead
and the possibility of parallelism for large or long computations. These schemes
are used in an increasing number of applications, including zero-knowledge vir-
tual machines [Fou22; Pol22b; Zha22] and decentralized signature aggregation
[But22] protocols as notable examples. In recursive STARKs the computation
and its proof are broken into chunks C1, C2, . . . , Ck and subproofs π1, . . . , πk such
that the proof πi certifies that chunks from C1 to Ci are computed correctly by
utilizing the previous proof πi−1 and a proof for Ci. In order to create πi, the
prover computes a Merkle tree over the witness data and then proves some tree
openings in a circuit. Thus, the same hash function is used in the circuit and
in the native computation. In this scenario, up to 90% of a prover’s computa-
tion may be spent on the hash function call and proofs [COS20; RIS23a], and a
construction of a function that excels in both areas is a crucial open problem.

1 https://research.protocol.ai/sites/snarks/
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Lookups and Small Domains. Two recent developments in IVC are relevant
to our design. The first one is the lookup technique. Starting with Plookup, the
IVC operations include not only arithmetic expressions but also lookup state-
ments of the form a ∈ T , where T is a table available to the verifier [GW20;
PH23; STW23]. For some polynomial commitment schemes (but not for FRI),
the table may be preprocessed [ZBK+22; ZGK+22; EFG22] so that its size does
not contribute to the online prover cost. The lookup technique not only reduces
the cost of traditional hash functions in circuits but also allows for cheap trans-
formations of high algebraic degree [GKL+22; SLS+23].2

Another improvement is purely technical but nevertheless vital for the per-
formance. It is the use of small prime fields of ≤ 64 bits of special form like 2k−1
or 2m−2k +1 [Pol22a; Pol23; RIS23b], which allow for more efficient arithmetic
operations. STARK proofs [BBH+19] can use them since they do not require a
group where the discrete logarithm problem is assumed to be hard. The perfor-
mance growth is significant: switching to an efficient 64-bit field improves the
performance by a factor of up to 10 for the Poseidon hash function [GKS23].
Moreover, the modular reduction for these fields can often be implemented with
mere additions and bit shifts, which are vectorizable on modern CPU architec-
tures and faster than in larger and more generic prime fields. Small fields for
IVC applications are also prominent in other recent works [HLN23; Hab23].

1.2 Our Contributions

We approach the problem of creating a hash function that is simultaneously fast
and circuit-friendly in several steps. First we summarize the technical ideas of
the new design, and then we introduce the new hash function Monolith.

Efficient Nonlinearity and Compact Circuits over Prime Fields. Our
first main contribution is a generic design of components over certain prime
fields, which can be implemented with just a few (and possibly vector) constant-
time instructions on the x86 architecture, and can be written as a small cir-
cuit. This strategy, called Kintsugi, significantly improves upon the ideas be-
hind Reinforced Concrete [GKL+22] and Tip5 [SLS+23], yielding faster and
constant-time-friendly S-boxes. These new S-boxes are defined by first splitting a
field element into smaller bit arrays. Then, constant-time-friendly S-boxes using
Daemen’s χ function and similar ones [Dae95] are applied to these arrays, which
can be parallelized with fast vector instructions and implemented as lookup ta-
bles in circuits. Finally, the outputs are assembled back to a field element with
no overflow or collision, which is asserted in circuits with minimal overhead.

Low-Degree Components with Provable Differential Bounds. Our sec-
ond contribution is a concept of using a Feistel Type-3 [ZMI89] function together
with an MDS layer. It can be seen as a replacement for the power function xd

2 https://zcash.github.io/halo2/design/gadgets/sha256/table16.html
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from Poseidon [GKR+21] and similar constructions. The advantage is that
we can use faster squaring operations (i.e., x2) instead of more expensive (as d
must be coprime with p−1) power functions over Fp, and simultaneously obtain
low-degree predicates in circuits.

Notably, x 7→ x2 is not invertible over Fp, and hence we cannot use this
component to build an invertible SPN. However, we can exploit a Feistel scheme
to make the entire construction invertible. A discussion regarding the risks of
using non-bijective components for designing symmetric primitives in which the
internal state is not obfuscated by a secret can be found in [Gra23].

Although the Feistel layer alone is known to have weak diffusion, we show
that together with an MDS matrix it comes close to a regular SPN. To the best of
our knowledge, we are the first to prove the results on the differential properties
of the component using a strategy analogous to the wide trail design [DR02]. In
particular, we prove lower bounds on the number of active nonlinear functions in
trails. Similar to extended generalized Feistel networks introduced in [BMT13],
we believe that this result and its possible extension to Feistel structures of other
types may be useful in the design of any symmetric primitive, including those for
more classical settings (as already happened for the Lilliput cipher [BFM+16]).

Monolith: Fast, Constant-Time, Circuit-Friendly. All of these techniques
lead us to the design of Monolith, a family of permutations which are efficient in
native software, in hardware, and inside of circuits. This permutation can then
be turned into a hash function and other permutation-based schemes.3

Construction of Monolith. Our scheme has a few rounds using three different
components. We adopt the naming convention of Reinforced Concrete.

The first component is Bricks (Section 4.4), which is instantiated with a
Feistel Type-3 construction with square mappings. The second component is
Concrete (Section 4.5), which is the multiplication with a circulant MDS ma-
trix. Together with Bricks it provides the diffusion necessary to protect against
statistical attacks. The third and last component is Bars (Section 4.3), which is
based on the Kintsugi outlined above. We prove that each such Bar operation
has a high degree and provides high security against algebraic attacks. The Bar
function is applied only to a few field elements in each round.

The combination of these three components provides security against statis-
tical and algebraic attacks while allowing for an efficient implementation. Our
initial analysis has found a 3-round attack on a weakened version, and also sug-
gests that all potential attacks should stop at 4 rounds. Since improvements are
expected, we set the number of rounds uniformly to 6.

Performance. We give an extensive comparison between our new proposal and its
competitors in Section 7. Our benchmarks confirm that the native performance
of Monolith is comparable to SHA-3, which makes it the first circuit-friendly
3 A monolithic building is a seamless structure where components are intimately fused

in order to provide the most secure and robust construction.
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Fig. 1. Comparison of hash functions in various settings (logarithmic scale). The native
benchmarks ("Time", "Const Time") are from Table 3, the numbers for Monolith-64,
Poseidon, and Poseidon2 are taken for the 64-bit prime field and a state size of t =
12. Proof (IVC) timings are benchmarks for a proof of preimage knowledge (Table 5).
Numbers for SHA3-256 and SHA-256 are extrapolated from a circom implementation
using R1CS [Bal23].

compression function achieving this goal. At the same time, Monolith is efficient
within IVC systems. In contrast to Reinforced Concrete, Monolith also allows
for a constant-time implementation without significant performance loss.

A performance overview is given in Fig. 1. We test the IVC performance on
Plonky2 [Pol22a], a popular choice for FRI-based proofs. Compared to Tip5,
Monolith is around twice as fast and gives the user more freedom regarding the
choice of the prime number (including the recent 31-bit prime used in [RIS23b]
due to advantageous implementation characteristics). Moreover, compared to
the widely used Poseidon permutation, Monolith shows a native performance
improvement by a factor of around 15. Finally, Monolith allows for an efficient
circuit implementation, since it can be represented by a low number of degree-
2 constraints, leading to a faster performance compared to Poseidon when
implemented in Plonky2 (see Table 5).

2 Fast and Circuit-Friendly Functions over Fp

When working over Fp, informally, we cannot just split a field element into
smaller chunks, process them independently, and then reassemble. This is due
to the fact that the field size is a prime and thus cannot be represented as a
product of smaller domains.

To solve this problem, we present a generic strategy for specific prime num-
bers. Elements of it can be found in earlier works on Reinforced Concrete
[GKL+22] and Tip5 [SLS+23]. The main principles are as follows.
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Fig. 2. The Kintsugi strategy.

1. Split the integer form of a field element into chunks according to carefully
chosen boundaries aligned with the sum of the powers of two such that the
resulting chunks fit a lookup table in a ZK circuit.

2. Identify the combination of chunk values that never appear due to the fact
that p is not a power of two.

3. Design intra-chunk transformations Si such that
– impossible chunk combinations never appear (e.g. by making some chunk

values fixed points), and
– they can be implemented in constant time, for example with an AndRX

(AND-rotation-XOR) transformation [AJN14].
4. Combine the chunks back into a large element, after a possible shuffle (only

operations guaranteeing that the output element is in the field are possible).

We call this strategy Kintsugi.4 An illustration is shown in Fig. 2.

2.1 Chunks and Buckets

In order to formally define the Kintsugi strategy, we need to introduce some
notations. For a prime p ≥ 5, we define p′ as

p′ =

{
p− 1 if p ≡ 1 mod 4,

p otherwise.

Consider the binary representation of p′ of length ρ := ⌈log2(p′)⌉. It has the
form (most significant bit coming first)

p′ = 1 . . . 1 || 0 . . . 0 || 1 . . . 1 || . . . ||

{
0 . . . 0 or
1 . . . 1,

where · || · denotes concatenation, that is, it consists of alternating sequences
of ones and zeroes. The first sequence is always a 1-sequence, while the last one
can be either a 0- or a 1-sequence.
4 Kintsugi is the Japanese art of repairing broken pottery by mending the areas of

breakage with lacquer dusted or mixed with e.g. powdered gold. Here, we break the
state and we recombine it after applying a particular function to each small chunk.
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Definition 1. Given p′ as before, we denote its 1-/0-sequences as chunks (re-
spectively, 1-chunks and 0-chunks).

Given the lengths of 1-chunks ν1, ν2, . . . , νξ and the lengths of 0-chunks
µ1, µ2, . . . , µξ (both from left to right), and ωi =

∑
j≥i(νi+1 + µi), we obtain

p′ =

ξ∑
i=1

2ωi · (2νi − 1). (1)

For efficiency, we may split each chunk into sub-chunks, called buckets. Each
S-box will then work independently on each bucket. To obtain simple conditions
for invertibility, we require the buckets to be aligned with chunk boundaries, i.e.,
we require that buckets do not overlap chunks. We formalize this in the following.

Definition 2. Let p be a prime with 1- and 0-chunks defined by Eq. (1) and

T = {τ1, . . . , τs}

be a bucket decomposition, i.e., some positive integers τ1, . . . , τs such that
∑s

i=1 τi =
ρ = ⌈log2 p′⌉. We say that the bucket decomposition T is aligned with p′ if for
every i ∈ {1, 2, . . . , ξ} there exist ki, li such that

νi =

j<li∑
j=ki

τj and µi =

j<ki+1∑
j=li

τj .

This means that for every i the i-th 1-chunk covers buckets from ki to li
(exclusive). Such buckets are called 1-buckets. Further, the i-th 0-chunk covers
buckets from li to ki+1 (exclusive). These are called 0-buckets. This decomposi-
tion is illustrated (with small buckets) in Figure 3.

1 1 0 0 11 1 0 0 1 1 1 1 1 0 0

ν1 = 2 ν2 = 3 ν3µ1 µ2 µ3

ω3 = 2ω2 = 9ω1 = 14

τ1 = 2 τ2 τ3 = 3 τ4 τ5 τ6 τ7

k1 = 1 k2 = 3 k3 = 5l1 = 2 l2 = 4 l3 = 7

Fig. 3. Chunk and an aligned bucket decomposition of the number 52860. Here ξ = 3
and s = 7.

Finally, we impose that the buckets are not too small, in order to avoid
potential security issues. Indeed, the number of fixed points and/or invariant
subspaces for Kintsugi becomes too large when the buckets are too small.
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Definition 3. The bucket decomposition is efficient if τi ≥ 3 for each i ≥ 1.

This condition puts a constraint on p. However, we believe it is satisfied by
the majority of the primes used in cryptography, including the ones used in our
work. We highlight that we worked with p′ directly instead of p, since this just
given efficiency condition is never satisfied by p ≥ 5 if p = 1 mod 4.

2.2 The Kintsugi Bar

The nonlinear component Bar, based on Kintsugi, is defined as follows. Let
τ1, τ2, . . . , τs be an efficient and aligned bucket decomposition for p as in Eq. (1).
Then, for C, S, and D described in the following, the component operates as

x 7→ C ◦ S ◦ D(x). (2)

Decomposition D. The decomposition D, i.e.,

x ∈ Fp 7→ (x′
1, x

′
2, . . . , x

′
s) ∈ Z2τ1 × Z2τ2 × · · · × Z2τs ,

decomposes the original field element x ∈ Fp into s > 1 buckets x′
1, . . . , x

′
s s.t.

x =

s∑
i=1

2ρi · x′
i

over integers, where ρ1 = 0 and ρi =
∑

j>i τj . As the bucket decomposition is
aligned, we get that each bucket is either a 1- or 0-bucket.

S-Boxes S. The operation S applies s invertible S-boxes in parallel, i.e.,

S(x′
1, x

′
2, . . . , x

′
s) = S1(x

′
1) || S2(x

′
2) || · · · || Ss(x

′
s), (3)

where Si : Z2τi → Z2τi and we require that

1τi is a fixed point if Si operates on a 1-bucket of p′, and
0τi is a fixed point if Si operates on a 0-bucket of p′ .

(4)

Hence, a z-chunk of p′ must be mapped via Si into a z-chunk, where z ∈ {0, 1}.

Composition C. The final operation C is the inverse of the decomposition.
Given (x′

1, x
′
2, . . . , x

′
s) ∈ Z2τ1 × Z2τ2 × . . .× Z2τs as before, it simply computes

y =

s∑
i=1

2ρi · x′
i mod p ∈ Fp,

where ρ1 = 0 and ρi =
∑

j>i τj .

8



2.3 Well-Definition and Bijectivity

Here we prove that our C ◦ S ◦ D(·) defined in Eq. (2) and in particular its S
components are invertible and well-defined.

Lemma 1. Let p be a prime and {τi} the bucket decomposition aligned with p′.
Then Kintsugi (Eq. (2)) with the S-boxes satisfying Eq. (4) is bijective over Fp.

Proof. We consider the natural extension of the transformation C ◦ S ◦ D(·) to
the domain Z2ρ and denote it by T . Then we proceed in two steps. First we
prove that T is bijective over Z2ρ . Then we prove that for any x < p we have
T (x) < p. These two facts imply the result.

Transformation T . We define T : Z2ρ → Z2ρ as T := C′ ◦ S ◦ D′(·), where D′ is
a generalization of D that takes inputs from Z2ρ instead of Zp, i.e.,

x ∈ Z2ρ 7→ (x′
1, x

′
2, . . . , x

′
s) ∈ Z2τ1 × Z2τ2 × . . .× Z2τs ,

where x =
∑s

i=1 2
ρi · x′

i as before. Further, S is defined as before and C′ is the
inverse of D′ (basically, it corresponds to C without the modular reduction).

Bijectivity of T . This follows from the fact that D′, S, and C′ are bijective.

Field Invariant of T . Finally, we have to prove that ∀x ∈ {0, . . . , p−1} : T (x) ∈
{0, . . . , p − 1}. Let us start by analyzing the case x = p − 1. If p − 1 = p′ (i.e.,
p ̸= 1 mod 4), then all S-boxes act as identity functions (due to Eq. (4)), and
thus T (x) = x < p. Instead, if x = p−1 ̸= p′, then D(x) differs from D(p′) in the
first bucket: the former ends with 10 and the latter with 11. As 2τs − 1 is a fixed
point of the S-box Ss, we get that Ss(x

′
s) < 2τs − 1 = zs and so T (x) < p′ ≤ p.

Next, let us consider the case x < p− 1. Consider the binary form of x, and
let b be the most significant bit in which it differs from p′. Clearly, b is in a
1-bucket of p′ with some index i. Note that for each j < i all S-boxes Sj act as
identity functions, that is, Si(xi) = S(zi) = zi. For x′

i < 2τi − 1 = zi, we have
Si(x

′
i) < 2τi −1 = zi as 2τi −1 is a fixed point of the S-box Si. This implies that

if x < p− 1, then T (x) < p− 1.
The two previous facts together with T being bijective imply that T (x) >

p− 1 for each x > p− 1. It follows that C ◦ S ◦ D(x) ∈ Fp for each x ∈ Fp.

2.4 Considerations about the Kintsugi Strategy

Due to the isomorphism between Fτi
2 and F2τi , almost any invertible AndRX

transformation works well for S and can be implemented in constant time as its
components are basic x86 operations. Here we give some examples for p = 2n−1.

– Bit Shuffle. Clearly, both 1τ and 0τ are fixed points under the bit shuffling
operation for any τ . Moreover, it is essentially for free in hardware.
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– Efficient Linear Operations. Linear operations over Fτ
2 of the form

x 7→ x⊕ (x ≪ i)⊕ (x ≪ j)

with nonzero i ̸= j, and where ≪ denotes the circular shift operation, are
(i) invertible for odd τ and (ii) result in 1τ and 0τ being fixed points.

– Efficient Nonlinear Operations. Nonlinear operations over Fτ
2 such as

x 7→ x⊕ (x̄ ≪ 1)⊙ (x ≪ 2)

for odd τ , where x̄ := x ⊕ 1τ , are also possible. This corresponds to the χ-
function [Dae95, Table A.1] already used in Keccak/SHA-3, which is known
to be invertible for gcd(τ, 2) = 1. Moreover, 1τ and 0τ are fixed points.

An additional bit rotation may be needed to reduce the number of fixed points.

Bars in Kintsugi and Reinforced Concrete. There are various differences
between the Kintsugi strategy just described and the Bars functions proposed
in Reinforced Concrete (and later used in Tip5). In Reinforced Concrete an
element of Fp is represented as a vector from Zp1

× · · · × Zpl
.

– We rely on the structure of the prime p. Thanks to its composition of a few
powers of two, the decomposition now is simply a bit extraction rather than
a chain of modular reductions, which is expensive both natively and inside
the proof system. The bijectivity of Kintsugi is guaranteed under the minor
and easily satisfied condition that some specific inputs are fixed points.

– The S-boxes of Reinforced Concrete or Tip5 do not have a simple rep-
resentation and must be implemented as tables both for native and circuit
computations. The Kintsugi strategy instantiates the S-boxes with AndRX
transformations, which are fast and constant-time in native x86 implemen-
tations but can easily be transformed to table lookups for circuits.

Side-Channel Leakage and Countermeasures. Lookup tables in symmet-
ric primitives are a well-known source of side channel leakage. When confidential
information is processed (e.g., committing to coin secrets with ZK hash func-
tions in privacy-preserving payment systems), an adversary may recover a large
portion of it from timing differences of lookups into memory or caches. These
techniques are well-known since at least two decades in the context of encryption
[Pag02; Ber05; OST06], and the high-level ideas have found first applications in
zero-knowledge proof systems [TBP20]. The lookup-oriented designs Reinforced
Concrete and Tip5 use specific tables for which a constant-time implementation
with reasonable overhead is nontrivial. It is thus of utmost importance to have
a design where lookups can be replaced with constant-time operations.

2.5 Statistical and Algebraic Properties

Here we prove a generic statement that links algebraic and statistical properties
of mappings over Fp, which we will use in the security analysis of Monolith.
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Lemma 2. Let p ≥ 3 be a prime number, and let Fsq denote the squaring
function x → x2 over Fp. Let Fsq be any interpolant of Fsq over F⌈log2 p⌉

2 , i.e., for
any a < p and its bit representation a we have that Fsq(a) is the bit representation
of Fsq(a). Then Fsq has (multivariate) degree at least d, where d is the maximum
positive integer such that d < log2

√
p and

⌈
2d−0.5

⌉
is odd.5

Proof. We prove this result by contradiction. Suppose that the degree of Fsq is
smaller than d. Then the XOR sum of its outputs over any hypercube of dimension
d is equal to zero [Lai94], including the hypercube

H := {a0 = (0, 0, . . . , 0), . . . , a2d−1 = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
d ones

)}.

Note that F(ai) = i2 < p by the definition of d. Now consider B = {ai ∈ H | i >
2d−0.5}, so that (i) 22d > F(b ∈ B) > 22d−1 and (ii) the 2d-th least significant
bit is set. By simple computation, the size of B is 2d − ⌈2d−0.5⌉. Whenever this
number is odd, F does not XOR to 0 at the 2d-th least significant bit, which
contradicts the previous fact. As a result, the squaring has at least degree d if⌈
2d−0.5

⌉
is odd and d < log2

√
p.

Lemma 3 (Differential). Let F be a function that maps Fp to itself with
a differential ∆I → ∆O holding with probability 0 < α < 1, i.e., |{x ∈ Fp |
F(x+∆I) = F(x) +∆O}| = p · α. Then we have deg(F) > α · p, where deg(F)
is the degree of F as a polynomial over Fp.

Proof. By definition, F(x + δin) = F(x) + δout has at least α · p solutions
x1, x2, . . . , xαp. Therefore, the polynomial G(x) := F(x + δin) − F(x) − δout
is divisible by the polynomial (x−x1) ·(x−x2) · · · · ·(x−xα·p) of degree α ·p, and
so it has a degree of at least α · p. As the degree of the polynomial G is smaller
than the degree of F by 1, we obtain that deg(F) > α · p.

Lemma 4 (Linear Approximation). Let F be a function that maps Fp to
itself such that there exists a linear approximation (a, b) with probability 0 <

β < 1, that is, |{x∈Fp|F(x)=a·x+b}|
p = β. Then we have deg(F) ≥ β · p.

Proof. By definition, the equation F(x) = A · x+ B has at least β · p solutions
x1, x2, . . . , xβ·p. Therefore, the polynomial G(x) := F(x)− (a · x+ b) is divisible
by the polynomial (x − x1) · (x − x2) · · · · · (x − xβp) of degree β · p. Similar to
before, we conclude that F has degree at least equal to β · p.

Based on the previous result, we can immediately conclude the following.

Corollary 1. Let F be a function that maps Fp to itself with b < p fixed points,
that is, |{x ∈ Fp : F (x) = x}| = b. It follows that deg(F) ≥ b.
5 For example,

⌈
2d−0.5

⌉
is odd for d ∈ {2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 21, . . . }.
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3 Feistel Type-3 Layer and the Wide Trail Strategy

The Kintsugi Bar is nonlinear but we will see in Section 6.1 that its high alge-
braic degree comes at the cost of weak differential properties. Thus if being used
in an SPN construction, it would make it vulnerable to statistical (e.g., differen-
tial) cryptanalysis. For this reason, we introduce another nonlinear component
defined as a Feistel Type-3 network [ZMI89] that complements Kintsugi Bars.
By instantiating it via low-degree functions, it will allow us to provide strong
argument for guaranteeing resistance against differential and statistical attacks
in general. We follow the naming convention of Reinforced Concrete (the first
lookup-based ZK-friendly hash function) where the nonlinear layer providing
protection against statistical attacks is called Bricks, and use the same name
for uniformity.

Feistel Type-3. The Feistel Type-3 network is a member of a larger Feistel family
[HR10], which has been largely neglected in favour of SPN schemes in block
cipher and hash function design, primarily for its complexity and worse diffusion
properties. As already recalled in the introduction, a potential drawback of SPN
schemes regards the fact that their invertibility depends on the fact that all their
internal components are invertible as well. As it is well known, this is not the case
of Feistel networks, which remain invertible independently of the details of their
internal functions. For many prime order groups used in SNARKs, the smallest
invertible power mapping is x5. As a result, we have found the Feistel Type-3
newtork instantiated with square maps x 7→ x2 to be particularly attractive as it
is cheaper in circuits and, most importantly, its blend with an MDS layer yields
statistical properties similar to those in regular SPNs.

With nonlinear Fi, BricksF for t elements x1, . . . , xt is defined as

BricksF (x1, . . . , xt) := (x1, x2+F1(x1), x3+F2(x2), . . . , xt+Ft−1(xt−1)). (5)

Diffusion Layer. While BricksF alone does not provide fast diffusion, a combi-
nation with a matrix layer increases the diffusion properties [BMT13; BFM+16].
This approach is well-known in the SPN design as the wide trail strategy [DR01],
where a lower bound for the number of “active” nonlinear components in any dif-
ferential trail is proven, leading to strong arguments against differential attacks.

Here we follow this line of research, and for the first time we derive bounds
for the SPN structure where the nonlinear layer is a Feistel Type-3 function. For
this, we work with matrices of Maximum Distance Separable (MDS) Codes for
maximizing the number of active Fp-words over two consecutive rounds.

Our New Bound. Now we obtain our main result on the differential properties of
the Feistel-Type3-MDS combination. Our new bound improves the ones recently
proposed in [Gra23] for an analogous (but different) scheme.

Proposition 1. Consider an R-round construction, where each round consists
of the application of BricksF over Ft

q as in Eq. (5) followed by the multiplication
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with a t× t MDS matrix. The minimum number ĉ of active functions Fi in any
differential trail satisfies

ĉ ≥ (t− 1) ·
(
3R− 2− (−2)1−R

9

)
≥ (t− 1) ·

(
3R− 2.5

9

)
.

Proof. Denote the number of active words in the input and the output of the
i-th BricksF layer by ai and bi, respectively. Then we exploit two properties.

– Each active input word xi to BricksF activates Fi if i < t, hence a words
activate at least a− 1 functions Fi.

– Each active output word yi of BricksF implies that Fi−1 or Fi−2 is active
if i > 1. Hence b words activate at least b−1

2 functions.
With the MDS property, which states that bk + ak+1 ≥ t+ 1 for each k ≥ 1, we
obtain the following for the number ck of active functions Fi in round k:

c1 ≥ max
{
a1 − 1, b1−1

2

}
, b1 + a2 ≥ t+ 1,

c2 ≥ max
{
a2 − 1, b2−1

2

}
, b2 + a3 ≥ t+ 1,

...

cr−1 ≥ max
{
ar−1 − 1,

br−1−1

2

}
, br−1 + ar ≥ t+ 1,

cr ≥ max
{
ar − 1, br−1

2

}
,

for r rounds. Summing each two consecutive inequalities for ci, we obtain

2ci + ci+1 ≥ 2 bi−1
2 + (ai+1 − 1) = bi + ai+1 − 2 ≥ t− 1 (6)

with the last inequality being the MDS property.
W.l.o.g., let us find a bound for ĉ := c1+· · ·+cR where all ci are non-negative

real values satisfying Eq. (6). First, the optimal {ci} make all inequalities equal.
Indeed, suppose that 2cj+cj+1 > t−1 but for all k > j we have 2ck+ck+1 = t−1.
Then by using c′j = cj − ϵ, c′j−1 = cj−1 + ϵ/2, c′j−2 = cj−2 − ϵ/4 for a small ϵ
Eq. (6) is still satisfied but cmin decreases by ϵ · (1− 1/2+ 1/4− 1/8+ · · · ) > 0.
Thus all inequalities are equations, i.e.,

2ci + ci+1 = t− 1 .

Then we observe that in the optimal {ci} it should hold that cR = 0. Indeed
otherwise we apply the same trick by setting c′R = cR − ϵ, c′R−1 = cR−1 + ϵ/2
etc., again decreasing cmin. Thus, the minimum is achieved by cR = 0 and

cR−1 = t−1
2 , cR−2 = t−1

4 , cR−3 = 3(t−1)
8 , . . . , cR−i =

t−1
3 ·

(
1 + (−1)i+1

2i

)
.

Substituting these values into the formula for ĉ, we obtain

ĉ =

R−1∑
i=0

t− 1

3

(
1 +

(−1)i+1

2i

)
=

t− 1

3

R−1∑
i=0

(
1 +

(−1)i+1

2i

)
=

t− 1

3

(
R−

R−1∑
i=0

(−2)−i

)

=
t− 1

3

(
R− 2(1− (−2)−R)

3

)
= (t− 1)

(
3R− 2− (−2)1−R

9

)
.
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Remark 1 (On the Design Rationale). Our choice of Feistel versus SPN is purely
performance-driven: fewer non-constant field multiplications in the former when
using x 7→ x2. However, neither Feistel Type-3 nor Type-26 alone would provide
good statistical properties [HR10]. Notably, the combination of Type-2 with an
MDS layer would not allow us to derive optimal bounds regarding the number
of active nonlinear functions in such a simple and elegant way either.

4 Specification of Monolith

Monolith is a family of permutations which can be used within hash functions
and other constructions. They use prime fields Fp with two options for p, namely

pGoldilocks = 264 − 232 + 1 and pMersenne = 231 − 1. (7)

The permutation Monolith-64 is defined over pGoldilocks with the state consisting
of t = 8 or t = 12 elements. The permutation Monolith-31 is defined over
pMersenne with the state consisting of t = 16 or t = 24 elements.

4.1 Modes of Operation

Monolith supports sponge modes and a 2-to-1 compression function.

Sponge-Based Schemes. First, Monolith can instantiate a sponge [BDP+07;
BDP+08] and thus various symmetric constructions such as variable-length hash
functions, commitment schemes, authenticated encryption, and stream ciphers.
The recently proposed SAFE framework [AKM+22; KBM23] instructs how to
handle domain separation and padding in these constructions. In a sponge, the
permutation state is split into an outer part with a rate of r elements and an
inner part with a capacity of c elements. As we uniformly suggest a security level
close to 128 bits, we set c =

⌊
256
ρ

⌋
and r = 2c.

2-to-1 Compression Function. We also suggest a fixed-length 2-to-1 com-
pression function. Concretely, it takes t Fp elements as input and produces t/2
Fp elements as output. It is defined as x ∈ Ft

p 7→ Trt/2(P(x) + x) ∈ Ft
p, where

Trt/2 yields the first t/2 elements of the inputs. This compression function can be
used in Merkle trees and has recently also been applied in similar constructions,
including Anemoi [BBC+23], Griffin [GHR+23], and Poseidon2 [GKS23]. For
a security level of close to 128 bits, we set t =

⌊
512
ρ

⌋
, i.e., t = 8 for the 64-bit

field and t = 16 for the 31-bit field (factually yielding slightly less than 128 bits).

6 Type-2 Feistel turns state {xi} into {yi} where odd elements remain untouched and
y2i = x2i+1 + Fi(x2i).
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x1

y1

x2

y2

· · ·

· · ·

xt

yt

S S · · · S S S · · · S · · ·Bars

x2 x2 x2· · ·Bricks

M × (x1, x2, . . . , xt)
T + (c1, c2, . . . , ct)

TConcrete,
constants

Fig. 4. One round of the Monolith construction, where xi, yi ∈ Fp.

4.2 Permutation Structure

The Monolith permutation is defined as

Monolith(·) = RR ◦ · · · ◦ R2 ◦ R1 ◦ Concrete(·),

where R is the number of rounds and Ri over Ft
p are defined as

Ri(·) = c(i) + Concrete ◦ Bricks ◦ Bars(·), ∀i ∈ {1, 2, . . . , R} ,

where Concrete is a linear operation, Bars and Bricks are nonlinear operations
over Ft

p, c(1), . . . , c(r−1) ∈ Ft
p are pseudo-random round constants, and c(r) =

0. Note that a single Concrete operation is applied before the first round. A
graphical overview of one round of the construction is shown in Fig. 4.

Round Constant Generation. The actual values of pseudo-randomly chosen round
constants have no impact on the security. For completeness we provide a gener-
ation method in Appendix A.3.

4.3 Bars

The Bars layer is defined as

Bars(x1, x2, . . . , xt) := Bar(x1) || · · · || Bar(xu) || xu+1 || · · · || xt (8)

for a t-element state, where u ∈ {1, . . . , t} denotes the number of Bar applications
in a single round. We select u such that u · log2 p ≈ 256, i.e., the nonlinear part
occupies around 256 bits of the state. Each Bar application is defined as

Bar(x) = C ◦ S ◦ D(x),

where C,S and D are the operations defined in Section 2. In the following, we
describe them individually for Monolith-64 and Monolith-31.
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Bars for Monolith-64. In Eq. (8) we set t ∈ {8, 12} (compression or sponge,
resp.) and we set u = 4 (i.e., 4 Bar operations are applied in each round).

Operations D and C. We use a decomposition into 8-bit values such that

x = 256x′
8 + 248x′

7 + 240x′
6 + 232x′

5 + 224x′
4 + 216x′

3 + 28x′
2 + x′

1.

The composition C is the inverse operation of the decomposition D.

S-Boxes S. In Eq. (3) we set s = 8. Then all Si over F8
2 are defined as

Si(y) =
(
y ⊕

(
(y ≪ 1)⊙ (y ≪ 2)⊙ (y ≪ 3)

))
≪ 1, (9)

where ≪ is a circular shift (here we interpret an integer as a big-endian 8-bit
string) and y is the bitwise negation (see [Dae95, Table A.1]).

Bars for Monolith-31. In Eq. (8) we set t ∈ {16, 24} (compression or sponge,
resp.) and we set u = 8 (i.e., 8 Bar operations are applied in each round).

Operations D and C. The decomposition D is given by

x = 224x′
4 + 216x′

3 + 28x′
2 + x′

1,

where x′
4 ∈ Z7

2 and x′
3, x

′
2, x

′
1 ∈ Z8

2. The composition C is the inverse of D.

S-Boxes S. In Eq. (3) we set s = 4 using {8, 7}-bit lookup tables. Then, for
y ∈ F8

2 and y′ ∈ F7
2, the S-boxes are defined as (see [Dae95, Table A.1])

∀i ∈ {1, 2, . . . , s− 1} : Si(y) =
(
y ⊕

(
(y ≪ 1)⊙ (y ≪ 2)⊙ (y ≪ 3)

))
≪ 1,

Ss(y
′) =

(
y′ ⊕

(
(y′ ≪ 1)⊙ (y′ ≪ 2)

))
≪ 1.

(10)

4.4 Bricks

The component Bricks over Ft
p is defined as a Feistel Type-3 BricksF (Eq. (5))

with x 7→ x2, i.e., Bricks(x1, . . . , xt) := (x1, x2 + x2
1, x3 + x2

2, . . . , xt + x2
t−1).

4.5 Concrete

The Concrete layer is defined as Concrete(x1, . . . , xt) := M × (x1, . . . , xt)
T ,

where M ∈ Ft×t
p is an MDS matrix.

If p = 264−232+1, then M = circ(23, 8, 13, 10, 7, 6, 21, 8) for t = 8 and M =
circ(7, 23, 8, 26, 13, 10, 9, 7, 6, 22, 21, 8) for t = 12. These two circulant matrices
defined for the Goldilocks prime pGoldilocks correspond to the ones found and
implemented by the Winterfell STARK library.7 These matrices have the unique
7 https://github.com/facebook/winterfell/tree/main/crypto/src/hash/mds
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Table 1. Parameters for Monolith.

Name p Security Rounds R
Width t # Bar u2-to-1 Sponge

Monolith-64 264 − 232 + 1 128 6 8 12 4
Monolith-31 231 − 1 124 6 16 24 8

advantage of having small elements in the time and frequency domain (i.e., before
and after DFT application), allowing for especially fast native performance.

If p = 231− 1 and t = 16, M is the 16× 16 matrix from Tip5 [SLS+23]8, i.e.,

M = circ(61402, 1108, 28750, 33823, 7454, 43244, 53865, 12034,
56951, 27521, 41351, 40901, 12021, 59689, 26798, 17845).

If p = 231 − 1 and t = 24, M is a 24 × 24 submatrix of the 32 × 32 circulant
MDS matrix constructed from [HS24]. This particular design choice is explained
in Section 7.1. The 32× 32 circulant MDS matrix is defined as

M = circ(0x536C316, 0x1DD20A84, 0x43E26541, 0x52B22B8D, 0x37DABDF0, 0x540EC006,
0x3015718D, 0x5A99E14C, 0x23637285, 0x4C8A2F76, 0x5DEC4E6E, 0x374EE8D6,

0x27EDA4D8, 0x665D30D3, 0x32E44597, 0x43C7E2B3, 0x67C4C603, 0x78A8631F,

0x452F77E3, 0x39F03DF, 0x743DBFE0, 0x4DA05A48, 0x5F027940, 0x8293632,

0x50F2C76A, 0x7B773729, 0x577DE8B0, 0x73B1EAC6, 0x58DA7D29, 0x67AA4375,

0xDBA9E33, 0x2655E5A1).

4.6 Number of Rounds and Security Claims

We suggest to use R = 6 rounds for Monolith-64 and Monolith-31 (see Table 1)
and claim 2 log2(pGoldilocks) ≈ 128 bits and 4 log2(pMersenne) ≈ 124 bits of security
for Monolith-64 and Monolith-31, respectively.

Remark 2. We do not claim that the Monolith permutation does not have
any non-generic property (or "indifferentiable from random"). In particular,
we do not consider certain permutation distinguishers – such as the integral
one [DKR97] or the zero-sum partitions [KR07; BCC11] – that have not ever
resulted in collision or preimage attacks for similar designs. We refer to Ap-
pendix B.3 for more details.

4.7 Security Analysis

The numbers of rounds are conservatively chosen based on the security analysis
proposed in Section 5 and Section 6. As some of the components or combinations
8 It is also MDS for pMersenne as proved in https://github.com/Neptune-Crypto/
twenty-first/blob/master/twenty-first/src/shared_math/tip5.rs
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are new, our analysis contains several nontrivial ideas and may be of separate
interest to cryptanalysts and designers.

First, in the spirit of the wide trail strategy, [DR02], we prove tight bounds
for the number of active squarings in differential characteristics for the Type-
3 Feistel-MDS combination in Section 5.1. We also study rebound attacks in
Section 5.3, a research direction that is often missed in the ZK hash function
design. We demonstrate practical attacks on a reduced version of Monolith and
argue the security of the full version.

Using differential and linear properties of Bar, we prove lower bounds on
its algebraic degree in Section 6.1, which implies resistance against algebraic
attacks after a few rounds. In this regard, we additionally study the complexity
of Gröbner basis attacks on toy versions of Monolith with smaller primes but
still realistic Bars layers in Section 6.3.

To summarize, we are not able to even break 5 rounds of the proposed scheme
with any basic attacks proposed in the literature. As future work, we encourage
to study reduced-round and/or toy variants of our design.

5 Security Analysis: Statistical Attacks

5.1 (Truncated) Differential and Linear Cryptanalysis

Given pairs of inputs with some fixed input differences, differential cryptanal-
ysis [BS90] considers the probability distribution of the corresponding output
differences produced by the cryptographic primitive. Since the Bars layer is not
supposed to have good statistical properties, we simply assume that the attacker
can skip it with probability 1.

As the maximum differential probability of the square map is 1/p, Proposi-
tion 1 immediately implies the following bound.

Corollary 2. Any 4-round differential characteristic for Monolith has a prob-
ability of at most p

−9(t−1)
8 .

As a result, any characteristic that spans over 5 rounds and more would
cover more squarings than the number of state elements, and thus a solution to
it cannot be found by standard means. Therefore, a differential-based collision
attack on 5 rounds looks infeasible.

Linear Attacks. Linear cryptanalysis [Mat93] exploits the existence of linear
approximations. For primitives over binary fields, the attack makes use of the
high correlations [DGV94] between sums of input bits and sums of output bits.
The generalization of this attack over prime fields has been proposed in [BSV07;
DGG+21]. We claim that our scheme is secure against this approach, due to the
low correlation of the map x 7→ x2 (as for the case of differential attacks).
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Truncated Differentials. Truncated differential attacks [Knu94] are used mostly
against primitives that have incomplete diffusion over a few rounds. This is not
the case here since (i) Bricks is a full nonlinear layer, and (ii) the Concrete ma-
trix is MDS. We have not found any other attacks where a truncated differential
can be used as a subroutine either.

5.2 Rebound Attacks

Rebound attacks [MRS+09] have been widely used to analyze the security of
various types of hash functions against shortcut collision attacks since the be-
ginning of the SHA-3 competition. It starts by choosing internal state values in
the middle of the computation, and then computing in the forward and back-
ward directions to arrive at the inputs and outputs. It is useful to think of it as
having central (often called "inbound") and the above mentioned "outbound"
parts. In the attack, solutions to the inbound phase are first found, and then are
filtered in the outbound phase.

Whereas it is not possible to prove the resistance to the rebound attacks
rigorously, we can provide some meaningful arguments to demonstrate that they
are not feasible. The inbound phase deals with truncated and regular differen-
tials. By Corollary 2 we see that a solution for a 5-round differential cannot
be found, and so the inbound phase cannot cover more than 4 Bricks layers.
In the outbound phase, the Concrete layers that surround these Bricks layers
make all differentials diffuse to the entire state, so that the next Bricks layers
destroy all of those. We hence conclude that 6 rounds of Monolith are sufficient
to prevent rebound attacks. We refer to Appendix B.1 for more details.

5.3 Other Statistical Attacks

We claim that 6 rounds are sufficient for preventing other statistical attacks as
well. Here we provide argument to support such conclusion for one of the most
powerful statistical attacks against a hash function, that is, the rebound attack.
For that goal, we propose an analysis of the number of the fixed points and of
the truncated differential characteristics.

Fixed Points. Contrary to Reinforced Concrete, the Bars layer of Monolith
has very few fixed points. Both local maps x⊕

(
(x ≪ 1)⊙ (x ≪ 2)⊙ (x ≪ 3)

)
and x⊕

(
(x ≪ 1)⊙ (x ≪ 2)

)
have about (7/4)n fixed points (for even and odd

n, respectively) when considered over Fn
2 (a bit value is preserved if the product

of nearby bits is 0). However, all of them except 0 and 1 = 2n − 1 are destroyed
by the circular shift (verified experimentally).

A Bar of Monolith-64, consisting of 8 such S-boxes, admits 28−24+1 = 241
fixed points out of 264 − 232 + 1. This implies that the probability that a point
is fixed is approximately 2−56 for Bar and less than 2−56·4 = 2−224 for Bars.
Similarly, a Bar of Monolith-31 admits 24 − 1 = 15 fixed points out of 231 − 1.
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This implies that the probability that a point is fixed is approximately 2−27 for
Bar and less than 2−27·8 = 2−216 for Bars.

For comparison, we recall that a Bar of Reinforced Concrete has 2134.5

fixed points out of 2254 possibilities. Hence, the probability of encountering a
fixed point is approximately 2−119.5·3 = 2−358.5 for Bars. At the current state of
the art, we are not aware of any attack that exploits these fixed points.

Invariant Subspace Attacks. An invariant subspace attack exploits the ex-
istence of a subspace X ⊆ Ft

p that remains invariant under the round function.
(Note that we do not require that the coset of such subspace does not change
as well.) Such attack is particular effective either in the case of keyed ciphers
instantiated with weak keys [LAA+11; LMR15], or/and in the case of partial
SPN schemes, in which part of the state remains unchanged after the applica-
tion of the nonlinear layer. In this second case, the linear layer and the round
constants can be carefully chosen in order to break such invariant subspaces, as
shown in [GRS21; GSW+21].

In our design, Bars layer is a partial nonlinear layer. However, such layer is
combined with another nonlinear layer instantiated with Feistel Type-3 BricksF .
Even considering a weaker version of the scheme instantiated by a single non-
linear layer of the form Bar(x1) || · · · || Bar(xu) || x2

u + xu+1 || x2
u+1 + xu+2 · · · ||

x2
t−1 + xt, and due to the fact that the linear layer is instantiated with an MDS

matrix, we have not found any non-trivial invariant subspace that covers more
than a single round of Monolith.

6 Security Analysis: Algebraic Attacks

Cryptanalytic successes such as Gröbner basis attacks on Friday and Jarvis [ACG+19],
attacks on MiMC combining higher-order differential distinguishers with poly-
nomial factorization [EGL+20; BCP23; LP19; RAS20], or an attack on Gren-
del [GKR+22] leveraging polynomial factorization are a stark warning that
through analysis of such attack vectors is important. While the use of Bars
is intuitively expected to frustrate such attacks, it is nevertheless essential to
establish a sound basis for arguments against such attacks.

6.1 Degree of the Bars Polynomials

Lemma 5. Let n > 4 be such that gcd(n, 3) = 1. Let S be the invertible map over
Fn
2 given Eq. (9), that is, x 7→

(
x⊕

(
(x ≪ 1)⊙ (x ≪ 2)⊙ (x ≪ 3)

))
≪ 1.

Let S be the corresponding mapping but over Z2n , where the elements of Fn
2 are

viewed as the big-endian counterparts of elements from Z2n .
The map S has differential probability at least 13/64 over Z2n . Particularly

the pair (x, x+1) for even x is mapped into (y, y+2) for some y ≡ 0, 1 (mod 4).

Proof. Consider two input states x, x′ with a single bit difference in the i-th bit,
that is, xi = 1⊕ x′

i = 0 and xj = x′
j for j ̸= i. Let us derive sufficient conditions
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for which the output states y, y′ via S differ in the (i− 1)-th bit only (note the
final shift ≪ 1). By simple computation, this occurs if the product in the S-box
bit mapping is 0 whenever the i-th bit is XORed or is part of the product, i.e.,

xi+1 ⊙ xi+2 ⊙ xi+3 = 0, xi+1 ⊙ xi+2 = 0, xi−1 ⊙ xi+1 = 0, xi−2 ⊙ xi−1 = 0.

The number of 5-tuples satisfying this system is 13 out of 32 possible. Therefore,
a differential for S over Fn

2 holds with probability 13/32.
For i = n, we have

{(x1, . . . , xn−1, 0), (x1, . . . , xn−1, 1)}
S−→ {(y1, . . . , yn−2, 0, yn), (y1, . . . , yn−2, 1, yn)}.

By simple computation, the same result holds for S, i.e., {x = 2 · x′ (even), x+

1} S−→ {y, y + 2}. The result follows immediately.

Lemma 6. The Bar function for p = 264−232+1 (Section 4.3) has differential
probability at least 13/64 over Fp.

Proof. For every even x < p−1 we have that x+1 < p. Let D of Bar decompose
x to x1, x2, . . . , xs. Then we have that D(x + 1) differs from D(x) in the last
bucket only, and we have S(xs + 1) = S(x) + 2 from Lemma 5 with probability
13/32. Therefore for the full Bar function we have Bar(x + 1) = Bar(x) + 2 for
at least 13(264 − 232)/64 values of x, which gives the lemma statement.

Lemma 7. Let n > 4 be such that gcd(n, 2) = 1. Let S′ be the invertible map
over Fn

2 given Eq. (10), that is, x 7→
(
x⊕

(
(x ≪ 1)⊙ (x ≪ 2)

))
≪ 1. Let S

′

be the corresponding mapping but over Z2n , where the elements of Fn
2 are viewed

as the big-endian counterparts of elements from Z2n .
The map S

′
has differential probability at least 1/8 over Z2n . Particularly,

the pair (x, x+1) for even x is mapped into (y, y+2) for some y ≡ 0, 1 (mod 4).

Proof. The proof repeats that of Lemma 5 with the system of equations for xi

appearing as xi+1 ⊙ xi+2 = 0, xi+1 = 0, and xi−1 = 0. The number of 3-tuples
satisfying this system is 1 out of 8 possible. Thus, for i = n we have a differential
for S′ with probability 1/8:

{(x1, . . . , xn−1, 0), (x1, . . . , xn−1, 1)}
S′
−→ {(y1, . . . , yn−2, 0, yn), (y1, . . . , yn−2, 1, yn)} .

Simultaneously, for S
′
, we have that {x = 2x′ (even), x+ 1} S

′

−→ {y, y + 2}. The
result follows immediately.

Lemma 8. The Bar function for p = 231 − 1 (Section 4.3) has differential
probability at least 1/16 over Fp.

The proof is identical to that of Lemma 6. With Lemma 3, we obtain the
following bound on the degree of Bar.

Proposition 2. The Bar operation (and its inverse) has degree at least (i) 259

for p = 264 − 232 + 1, and (ii) 227 for p = 231 − 1.
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Additional data about the degree of Bars for various p as well as density
estimates are presented in Appendix B.2. Our practical tests on toy-Bars func-
tions defined on smaller prime fields showed that the corresponding interpolation
polynomial is dense and of high (usually, maximum or close to maximum) degree.

6.2 Security against Algebraic Attacks via Bars

Here we consider attacks that exploit the fact that several rounds of the per-
mutation do not have maximum possible algebraic degree. For this, we interpret
the output elements as polynomials of the input elements. Then we formulate a
collision or a preimage attack as a system of equations and try to solve it.

Interpolation Attacks. Interpolation attacks [JK97] exploit the degree of a
component to reconstruct its polynomial and solve a system of equations. How-
ever, we have demonstrated that the degree of the Bar component is close to
p. Therefore, after at most 2 rounds of Monolith, the degree in each variable
becomes almost p, which implies that mounting the attack is infeasible.

Note that the Bars layer is partial, using only u Bar components. Thus,
excluding the Type-3 Feistel layer, it may be possible to pass r rounds by guessing
r · u intermediate variables. However, as u ≥ t/3, this is possible for at most 2
rounds (without exhausting the degrees of freedom). We conclude that it is not
feasible to apply simple algebraic attacks on 4 or more rounds of Monolith.

Solving a CICO Problem with Univariate polynomials. In the CICO
problem, the goal is to find a solution to the system of v polynomial equations
of t− v input variables (as the remaining v ones are set to zero). More formally:

Definition 4 (CICO Security). A permutation P : Ft
p → Ft

p is v-CICO
secure if no algorithm with expected complexity smaller than pv finds I1 ∈ Ft−v

p

and O2 ∈ Ft−v
p such that P(0v || I1) = 0v || O2.

The univariate system appears if v = t−1 or we guess t−v−1 variables. Note
that our guess may be invalid if the number of equations exceeds the number of
variables, so we have to repeat the guess pv−1 times. Note also that p is smaller
than 2128 so pv−1 may still be feasible.

– If v = 1 and we have guessed t− 2 variables, then we have to solve a single
polynomial equation faster than in time p. The degree of the polynomial
reaches p after 2 applications of the Bars layer, i.e., after 2 rounds. Therefore,
solving the equation will require time ≈ p.

– If v > 1, and we have guessed t− v− 1 variables, then the probability that a
CICO solution exists for a particular guess is p−(v−1), since we only solve one
equation and hope for other v−1 to hold. A system of polynomial equations
has degree close to p, so solving it would cost at least p time for any guess.
Multiplying by the number of guesses, we obtain that the total complexity
still exceeds p · pv−1 = pv.
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6.3 Solving the Multivariate CICO Problem with Gröbner Bases

In a general case, we model the CICO problem as a system of multivariate
polynomial equations generating a zero-dimensional ideal. The main technique
for solving these systems is to use Gröbner bases and apply the following steps.

1. Compute a Gröbner basis for the zero-dimensional ideal of the system of
polynomial equations with respect to the degrevlex term order.

2. Convert the degrevlex Gröbner basis into a lex Gröbner basis using the
FGLM algorithm [FGL+93].

3. Factor the univariate polynomial in the lex Gröbner basis and determine the
solutions for the corresponding variable. Back-substitute those solutions, if
needed, to determine solutions for the other variables.

The total complexity of a Gröbner basis attack is hence the sum of the respective
complexities of the above steps. We argue that even step 1. is prohibitively
expensive for Monolith.

The complexity of computing a Gröbner basis with (matrix-based) algorithms
such as Lazard [Laz79; Laz83], F4 [Fau99], or Matrix-F5 [BFS15] for an equation
system with ne equations in nv variables over a field F can be bounded by

O
(
ne ·

(
nv + dsolv

nv

)ω)
(11)

operations in F. Here, dsolv denotes the solving degree and ω denotes the linear
algebra exponent. Intuitively, dsolv corresponds to the maximum degree attained
during a Gröbner basis computation. Thus, the overall complexity of computing
a Gröbner basis can be understood as bounded by row-reducing (full-rank) ma-
trices of size ne ·

(
nv+i−1

i

)
×
(
nv+i−1

i

)
, for i = 0, 1, . . . , dsolv, eventually, leading to

the bound in Eq. (11). In practice, the Macaulay matrices built during a Gröb-
ner basis computation might be sparse and have a substantial rank defect, and
Eq. (11) does not account for this particular structure in the Macaulay matrices.

Rationale for our Security Arguments. As a conservative choice and to ac-
count for the structured Macaulay matrices in the algebraic model for Monolith,
in Eq. (11) we drop any factors from the asymptotic O(·) notation and set

ne = ω = 1, and, hence, use CGB(nv, dsolv) =

(
nv + dsolv

nv

)
as a guideline for

estimating the complexity of actual Gröbner basis computations. We stress that
setting ω = 1 is a highly optimistic scenario from an attacker’s viewpoint.

Establishing concrete estimates for CGB, hence, boils down to bounding the
solving degree dsolv. This task is in general a difficult problem in its own regard,
often as hard as actually computing a Gröbner basis. However, for the special
case of (semi-)regular sequences, there exist bounds on dsolv. In particular, for
regular sequences dsolv is upper-bounded by the Macaulay bound [BFS15]

dMac := 1 +

ne∑
i=1

(di − 1). (12)
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Informally, the case of regular sequences can be regarded as a generic case, for-
malizing the notion of “random polynomial systems”. Although the assumption
of regular sequences often fails for algebraic models of circuit-friendly primitives,
comparing a given algebraic model with this generic case can still be an infor-
mative approach and help to establish heuristic estimates for the complexity of
Gröbner basis computations when practical experiments are infeasible. In our
analysis, we compare the actual solving degree dsolv from our practical exper-
iments with dMac. This allows us to extrapolate trends from the aquired data
points to large-scale instances, which are computationally intractable.

When analyzing a given algebraic model, another problem is scalability: it is
nontrivial to properly scale down the original system of equations to some small-
scale variant that is solvable on a standard machine. We tackle this problem and
estimate the complexity of a Gröbner basis attack on the CICO problem for
full-scale Monolith as described below. We point out that we only focus on step
1. of a Gröbner basis attack and show that already the complexity of this step
exceeds the generic CICO security level.

– We consider a small-scale, weakened version of one round of Monolith, de-
noted SmallWeak1R, with a small state of only t = 4 elements, and u=2 Bar
functions in the Bars layer. We have

SmallWeak1R := Concrete′ ◦ Bricks ◦ Bars ◦ Concrete′,

where for Concrete′ we use the circulant matrix M = circ(2, 1, 1, 1), which
is not MDS and thus weaker than the MDS matrix used in Monolith. For
Bricks, we use the same Bricks as described in Section 4.4, with t = 4. The
Bars function is the same function described in Section 4.3, with t = 4 and
a decomposition into m = 2 buckets for all small primes for which we run
actual computations, see also Table 2. For the S-Box functions inside Bar,
we use suitable functions from [Dae95, Table A.1].

– We use the following CICO problem, called SmallWeak1R-CICO, in our anal-
ysis: find i2, i3, i4, o2, o3, o4 ∈ Fp such that

SmallWeak1R(0, i2, i3, i4) = (0, o2, o3, o4) . (13)

– We suggest an arguably optimal model for SmallWeak1R-CICO, denoted by
the same name, as a system of polynomial equations (see Appendix B.3).

– For various small primes, we run actual GB computations on the model
SmallWeak1R-CICO and observe that for these small-scale instances

dsolv ≥ dMac/4.

– Extrapolating heuristically, we argue that the complexity of computing a
Gröbner basis for SmallWeak1R-CICO, also for larger primes, is around

CGB(nv, dMac/4) =

(
nv + dMac/4

nv

)
. (14)
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Table 2. Results of Gröbner basis computations on several instances of
SmallWeak1R-CICO, described in Eq. (13), for various small primes p, decomposition
into m = 2 buckets with bucket sizes 2s1 , 2s2 , and extrapolation to 1R-CICO. Here,
ne and nv denotes the number of equations and variables, respectively. The degree
dsolv denotes the maximum degree reached during a GB computation with Magma.
T is the runtime in microseconds (10−6). For the complexity C we use the estimate
C = CGB(nv, dMac/4). Extrapolated estimates are in italic.

SmallWeak1R-CICO 1R-CICO
p 13 29 61 113 pMers. pGoldil. pMers. pGoldil.

ne, nv 10, 10 10, 10 10, 10 10, 10 14, 14 22, 22 64, 64 48, 48
si 2, 2 2, 3 2, 4 4, 3 8,8,8,7 8,. . . ,8 8,8,8,7 8,. . . ,8
u 2 2 2 2 2 2 8 4
dMac 18 34 66 74 2294 4590 9177 9181
dsolv 11 14 19 24 573 1147 2295 2296
dMac : dsolv 1.62 2.43 3.47 3.08 4 4 4 4
log2 T 16.5 21.5 25.5 30.5 - - - -
log2 C 10.8 16 22.7 24 92.2 154 419.8 333.7

For the original, full-sized primes pGoldilocks and pMersenne, this yields a com-
plexity estimate for solving SmallWeak1R-CICO via Gröbner basis techniques
of 2154 operations in Fp for p = pGoldilocks, and 293 operations for p =
pMersenne. Compared to the generic CICO-security level of 264 and 231 func-
tion calls for pGoldilocks and pMersenne, respectively, our analysis suggests am-
ple security margin against Gröbner basis attacks on SmallWeak1R-CICO.

Based on the (heuristic) estimate presented in Eq. (14), we argue that one round
of full Monolith given by 1R := Concrete ◦ Bricks ◦ Bars ◦ Concrete provides
ample security against Gröbner basis attacks as well. Intuitively, it is reasonable
to assume that an increased state size and/or an increased field size do not make
the attacks more efficient (given the same ratio of CICO constraints and Bar
applications).

In more detail, let 1R-CICO denote the following CICO-problem for 1R: find
I1, O2 ∈ Ft−v

p such that
1R(0v, I1) = (0v, O2),

where 0v denotes a v-tuple with all entries being zero. For pGoldilocks, we have
t = 12, v = 4, and for pMersenne we have t = 24, v = 8. This amounts to a generic
CICO-security level of 2256 and 2248 function calls, respectively. Extrapolating
Eq. (14), we arrive at an estimated Gröbner basis complexity for 1R-CICO of
2334 operations in Fp for p = pGoldilocks, and 2420 operations for p = pMersenne.
We summarize the results of our Gröbner basis analysis in Table 2.

Discussion of Gröbner Basis Experiments. The results of our Gröbner
basis experiments on small-scale instances of SmallWeak1R-CICO, described in
Eq. (13), are depicted in Table 2. We conducted our experiments on a machine
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with an Intel Xeon E5-2630 v3 @ 2.40GHz (32 cores) and 378GB RAM under
Debian 11 using Magma V2.26-2.

For the maximum degree dsolv reached during a Gröbner basis computation,
we see that the ratio dMac : dsolv is higher than 4. Moreover, C = CGB(nv, dMac/4)
can be seen as a lower bound for the actual computation time T .

6.4 Algebraic Attacks over F2

We also consider algebraic attacks working over the binary field F2, due to the low
degree of Bars in this setting. Here we demonstrate that the squaring operation
of Bricks has a high degree as a multivariate polynomial over F2.

Since
⌈
2d−0.5

⌉
is odd for d = 15 and d = 30, Lemma 2 implies the following

bound on the degree of the squaring function over F2.

Proposition 3. Let p ∈ {pMersenne, pGoldilocks} (7). Let Fsq be an interpolant
over F⌈log2 p⌉

2 of the squaring operation F(x) = x2 over Fp.Then Fsq has degree
(multivariate over F2) at least d, where (i) d = 30 for p = 264− 232+1, and (ii)
d = 15 for p = 231 − 1.

Since Bars is of degree 2 over F2, and since Concrete is a nonlinear function
over a binary field, we claim that Monolith is secure against algebraic attacks
instantiated over the binary field.

7 Performance Evaluation

7.1 Native Performance

We compare the performance of Monolith and competitors in Table 3. All bench-
marks were taken on an AMD Ryzen 9 7900X CPU (singlethreaded, 4.7GHz).

We included implementations of Monolith into the framework in [IAI21], and
also added instantiations of widely popular Poseidon [GKR+21], its modifica-
tion Poseidon2 [GKS23], and also Griffin [GHR+23] with p = 264 − 232 + 1
following their original instance generation scripts.9 We benchmark these hash
functions with a state size of t = 8 for the compression mode and of t = 12 for the
sponge mode in order to have a fair comparison. We also compare against Tip5
with its fixed state size of t = 16 using the implementation from [SLS+23],10
and against Tip4′, a faster instance of Tip5 with a fixed state size t = 12, us-
ing the implementation from [Sal23].11 We also compare against Reinforced
Concrete instantiated with the scalar field of the BN254 curve, and against
SHA3-256/SHA-256 as implemented in RustCrypto.12 The constant-time ver-
sions of Tip5 and Reinforced Concrete is our modification of the original code,
which may not be optimized, thus it is given as an estimate.
9 The source code is available at https://extgit.iaik.tugraz.at/krypto/
zkfriendlyhashzoo/-/tree/master/plain_impls.

10 https://github.com/Neptune-Crypto/twenty-first
11 https://github.com/Nashtare/winterfell
12 https://github.com/RustCrypto/hashes

26

https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/tree/master/plain_impls
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/tree/master/plain_impls
https://github.com/Neptune-Crypto/twenty-first
https://github.com/Nashtare/winterfell
https://github.com/RustCrypto/hashes


Table 3. Native performance in nano seconds (ns) of different hash functions for
variable and constant time implementations. Benchmarks are given for one permutation
call, i.e., hashing ≈ 500 bits for all but SHA functions. Estimates are in italic.

Hashing algorithm Time (ns) Const. Time (ns)
2-to-1 sponge 2-to-1 sponge

p = 264 − 232 + 1: t = 8 t = 12 t = 8 t = 12

Monolith-64 129.9 210.5 148.5 230.4
Poseidon 1897.6 3288.7 2347.6 4059.1
Poseidon2 944.6 1291.5 1149.2 1617.9
Rescue-Prime 12128.0 19095.0 12128 19095
Griffin 1815.0 1988.4
Tip5 (t = 16) 463.6 500
Tip4′ 247.9

p = 231 − 1: t = 16 t = 24 t = 16 t = 24

Monolith-31 210.3 924.2 237.9 946.4
Poseidon 4478.8 8539.7 4372.9 8538.0
Poseidon2 792.8 1257.4 840.7 1355.3

Other:

Reinforced Concrete (BN254) 1467.1 20000
SHA3-256 189.8
SHA-256 45.3

Finally, we compare Monolith-31 with Poseidon and Poseidon2 over the
pMersenne prime field and state sizes of t = 16 and t = 24 (again for sponge and
compression mode), as well as for a constant time implementation (constant time
Fp operations and no lookup tables). We see that Monolith-64 is significantly
faster than any other arithmetization-oriented hash function. For example, the
fastest one, i.e., Poseidon2, is slower by a factor 7.3 for t = 8. Tip4′, the fastest
lookup table based design, is also slower by a factor of 1.9 when using Monolith
with the compression mode, and also slower by 36ns compared to Monolith
with the same state size t = 12.

Most interestingly, the performance gap between arithmetization-friendly
hash functions and traditional ones is now closed, with SHA3-256 being slower
than Monolith-64 with t = 8 and only faster by 21ns than Monolith-64 in the
sponge mode with t = 12.

Regarding Monolith-31 for the 31 bit Mersenne prime field we observe that
we still get a fast native performance with 210ns for t = 16. This is significantly
faster than Tip5 which has the same state size, but is implemented with the
larger 64 bit prime field. Only for t = 24 we observe a slower native performance
which is due to the usage of a 32×32 circular MDS matrix in the Concrete layer,
which we use to be able to implement it via a radix-2 FFT (see Note on MDS

27



Matrices below). However, competing designs, such as Tip5 also rely on MDS
matrices and thus will either suffer from the same performance loss, or if they
come up with better matrices/implementations, these can be used in Monolith-
31 as well. Nonetheless, one can observe that Monolith-31 is still faster than the
closest competitor for the same field and state size, i.e., Poseidon2, by 300ns.

Unlike other lookup-based designs, Monolith does not rely on lookup tables
and its structure allows for constant-time implementations without significant
performance loss. The binary χ-like layer can be efficiently implemented using
a vectorized implementation that does not require an explicit (de-)composition,
while unrolling the lookup-tables containing repeated power maps in Reinforced
Concrete, Tip5, and Tip4′ adds considerable workload to the computation.
Thus, the overhead of going to a constant-time implementation only consists of
supporting constant-time prime field arithmetic for Monolith, which can help in
efficiently preventing side-channel attacks such as the ones proposed in [TBP20].

Using a constant-time reduction leads to a slight slowdown in our compari-
son. However, the resulting runtimes are still significantly faster than the non-
constant-time runtimes of other circuit-friendly hash functions, such as Posei-
don and Griffin, and Tip4′ for t = 8 and t = 12. Moreover, a constant-time
Monolith-64 in compression mode is still faster than SHA3-256 for t = 8 (al-
though we acknowledge the different security margin of the two constructions).

Finally, for completeness, we give the runtime of each part of the Monolith
permutation for both a constant- and variable-time version in Appendix C.

Note on MDS Matrices. We use matrix multiplications based on fast Fourier
transforms and circulant matrices for the linear layer of Monolith. For t ∈
{8, 12, 16} we use matrices whose dimensions correspond to the state size. How-
ever, for t = 24, we use a circulant matrix of dimension 32 × 32 [HS24].13 This
allows us to efficiently employ a radix-2 algorithm. In more detail, if the input
to the linear layer is (x1, . . . , x24), the output is defined by

(y1, . . . , y24)
T = Tr24(M × (x1, . . . , x24, 0, . . . , 0︸ ︷︷ ︸

8 zeroes

)T ),

where M ∈ F32×32 and Tr(·)n yields the first n elements of the input. While the
multiplication uses a 32×32 MDS matrix, the final output will be the result of the
multiplication by a 24× 24 (non-circulant) MDS matrix, since every submatrix
of an MDS matrix is also MDS. This approach leads to an advantage of around
15% compared to the naive multiplication with a generic 24× 24 matrix.

7.2 Performance in Proof Systems

A modern zero-knowledge proof system defines arithmetization rules for the cir-
cuit it attempts to prove. Most new proof systems support the Plonkish arith-
metization, where all input, output, and intermediate variables are put into a
13 We emphasize that it is unknown how to efficiently construct a 24 × 24 circulant

MDS matrix over Fp for large p.
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Table 4. Plonkish arithmetization comparison for various 64-bit schemes. The numbers
are for a single permutation.

Primitive Lookups Nonlinear
constraints Degree Witness size Area-degree

product

Monolith-64-compression 192 44 2 460 920
Monolith-64-sponge 192 64 2 480 960
Tip5 160 60 7 380 2660
Tip4′ 160 40 7 360 2520
Poseidon/Poseidon2 (sponge) 0 118 7 118 826
Rescue-Prime (sponge) 0 96 7 96 672

witness matrix W with a fixed number of rows and columns. The data in each row
is restricted by polynomial equations determining the values and computations
used. One of these generic equations of degree 2 is aix1x2+ bix3+ cix4+ di = 0,
where ai, bi, ci, di are public constants for the i-th row [GWC19]. The Plonkish
arithmetization allows for different tradeoffs w.r.t. the number of columns, vari-
ables being used, and the final degrees. Additionally, various tuples within a row
may be constrained to a set of values in a predefined table T.

A precise comparison of different arithmetizations is hard without imple-
menting and testing. However, a significant part of the work is to construct s
degree-ρ polynomials for the witness columns and to prove that they satisfy
the polynomial equations. The total work is then estimated as an element in
O(d · ρ · s), where d is the maximum degree of a row polynomial. The cost of
using table lookups for FRI-based schemes is currently equivalent to the use of
a single polynomial of degree t = max{ρ, |T|}.

In this section we give possible arithmetizations for translating Monolith into
a set of Plonkish constraints and refer to Appendix D.1 for R1CS constraints.
Our Plonkish arithmetization is designed to accommodate lookup constraints
capable of efficiently looking up 8-bit values. If the proof system is able to use
larger tables (e.g., 16-bit ones), then multiple lookup constraints can be combined
into just one larger constraint, reducing the total number of constraints.

Plonkish Arithmetization. Each composition Concrete◦Bricks is described
with t polynomial equations of degree 2. Then, for each Bar in the Bars layer, we
enforce the correct relations with x =

∑m
i=1 2

∑i
j=1 sjx′

i and y =
∑m

i=1 2
∑i

j=1 sjy′i,
while also making sure that the limbs in the decomposition correspond to field
elements. For pGoldilocks, this means enforcing that either the least significant 32
bits of Bar’s input are 0 or the most significant bits are not all 1, i.e.,

(x42
24 + x32

16 + x22
8 + x1)(x82

24 + x72
16 + x62

8 + x5 − z) = 0, z′(z − 232 + 1) = 1.

For pMersenne = 0x7fffffff we need to make sure that the combined values are
̸= p, which is equivalent to them not being 28 − 1 (three) or 27 − 1 (one), i.e.,

(x4 + x3 + x2 + x1 − 27 − 3 · 28 + 4) · z′ = 1.
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Table 5. Proving performance in Plonky2 using pGoldilocks and sponge mode.

Permutation Prove (ms) Verify (ms) Size (kB)

Monolith-64-sponge 3.49 0.63 113
Poseidon 6.23 1.12 70

We describe the application of s individual S-boxes with s lookup constraints
(x1, y1), (x2, y2), . . . , (xs, ys). These also include the range checks for each input
which are also necessary for the correctness of the constraints above.

Apart from 2s lookup variables per Bar, we define u variables at the output of
the first Concrete layer (these are the inputs to the Bars layer) and t variables at
the output of each of the following Concrete layers (except for the last one). The
reason is that the variables after the first Concrete layer store linear relations
in the input, and only the u variables entering the Bars layer are needed. For
the last layer, the output variables can be used directly. In total, we have 6 ·
(2us + u) + 5t + u variables, where {u = 4, s = 8} for the pGoldilocks case and
{u = 8, s = 4} for the pMersenne case (considering S-boxes of ≈ 8 bits).

In Table 4 we compare the (non-optimized) arithmetization of Monolith
with the ones of other 64-bit designs (see Appendix D.2 for details). To achieve
a fair comparison, we do not apply any constraint or witness optimization but
try to follow the same approach. We see that both the number of lookups and
constraints in Monolith is slightly larger than in Tip5 and Tip4’, but the con-
straint degree is smaller by the factor of 3.5, which should result in an overall
decrease of the prover time by a factor of at least 2 (estimated as area-degree
product). This is reasonable since Tip5 and Tip4’ are able to process more field
elements with a permutation call. Poseidon, Poseidon2, and Rescue-Prime
due to their comparably small witness size and no lookup tables are estimated
to still provide faster proving performance, closely followed by Monolith-64 with
its low-degree nonlinear layers. Again, we stress that these numbers are derived
from non-optimized arithmetizations and are subject to change. For example,
one can leverage the low degree of Monolith to reduce witness size by trad-
ing with a larger degree round function. We refer to Appendix D.3 for details.
Furthermore, these estimates are based on a simplified performance metric (area-
degree-product) which does not consider every aspect of prover performance, and
benchmarks in real proof systems might differ.

Benchmarks in Plonky2. We implemented Monolith-64 in the Plonky214

proof system to verify the estimations of Table 4.15 Plonky2 uses FRI commit-
ments and hence works well with small prime fields. Since it already comes with
a custom gate of Poseidon in sponge mode (t = 12) where the entire gate is put
into just one row of the trace, we implement Monolith-64-sponge with the same
parameters. To highlight the main advantage of Monolith-64, namely its fast
14 https://github.com/mir-protocol/plonky2
15 Our implementation is available at https://github.com/HorizenLabs/monolith.
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native performance, we benchmark proving a Monolith-64 permutation while
using Monolith-64 as the hash function to build the Merkle trees. Similarly, we
benchmark Poseidon when using Poseidon as the hash function (which is the
default setting in Plonky2). The results can be seen in Table 5. One can observe
that since Monolith requires more witnesses than Poseidon and both gates use
just one row in the trace, the resulting proof is larger. However, the combination
of proving Monolith-64 while using it at as the Plonky2 hash function leads to
half the prover and verifier runtime compared to Poseidon.
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SUPPLEMENTARY MATERIAL

A Fast Reduction for Special Primes

A.1 Fast Reduction for Primes of the Form ϕ2 − ϕ + 1

Here we describe the fast reduction modulo a prime number of the form ϕ2−ϕ+1.
Note that this includes p = 264−232+1, where ϕ = 232. We focus on the case of
a multiplication, where two n-bit inputs result in an output of at most 2n bits.

Given Fp for p = ϕ2 − ϕ+ 1, it follows that

ϕ2 = ϕ− 1 =⇒ ϕ3 = ϕ2 − ϕ = −1.

Now, let us write a value x to be reduced as

x = x0 + ϕ2x1 + ϕ3x2,

where x0 ∈ Z2n and x1, x2 ∈ Z2n/2 . Then

x = x0 + (ϕ− 1)x1 − x2 (mod p),

where note that log2(x0 + (ϕ − 1)x1 − x2) ≈ log2(p). This reduction can be
computed using only a small number of additions and subtractions.

A.2 Fast Reduction for Primes of the Form 2ρ − 1

Here we describe the fast reduction modulo a prime number of the form 2ρ − 1
which includes p = 231 − 1. We focus on the case of a multiplication, where two
ρ-bit inputs result in an output of at most 2ρ bits.

Given Fp for p = 2ρ − 1, it follows that 2ρ = 1+ p. Now, let us write a value
x to be reduced as

x = x0 + 2ρx1,

where x0 ∈ Z2ρ and x1 ∈ Fp. Then

x = x0 + x1 + (2ρ − 1) · x1︸ ︷︷ ︸
=0 (mod p)

= x0 + x1 (mod p).

This reduction can be computed using only a small number of additions and
binary shifts.
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A.3 Generation of Round Constants

The round constants c
(i)
1 , c

(i)
2 , . . . , c

(i)
t for the i-th round are generated using the

well-known approach of seeding a pseudo-random number generator and reading
its output stream. In particular, we use SHAKE-128 with rejection sampling, i.e.,
we discard elements which are not in Fp. SHAKE-128, thereby, is seeded with
the initial seed “Monolith” followed by the state size t and number of rounds R,
each represented as one byte, the prime p represented by ⌈log2(p)/8⌉ bytes in
little endian representation, and the decomposition sizes in the bar layer, where
each si is represented as one byte. As concrete examples, the seed is

b’Monolith\x08\x06\x01\x00\x00\x00\xff\xff\xff\xff

\x08\x08\x08\x08\x08\x08\x08\x08’

for Monolith-64 with t = 8 and R = 6, and

b’Monolith\x10\x06\xff\xff\xff\x7f\x08\x08\x08\x07’

for Monolith-31 with t = 16 and R = 6.

B Security Analysis – Additional Material

B.1 Rebound Collision Attack on the 3-Round (Weakened)
Monolith

The best rebound attack that we have found is a near-collision attack on the
reduced 3-round permutation without the Bars layer. We show how to find a
state that satisfies a differential ∆1 → ∆8 for certain ∆1, ∆8 which are equal in
the last Fp word, i.e., ∆1,t = ∆8,t. As a concrete application, this yields a zero
difference in this word for the compression function x 7→ Trt/2(P(x) + x), which
is a near-collision.

The inbound phase covers 3 layers of Bricks separated by 2 Concrete layers:

∆1
Concrete←−−−−−
t→1

∆2
Bricks←−−−−

1
∆3

Concrete−−−−−→
1→t

∆4
Bricks←−−→

t
∆5

Concrete−−−−−→
t←2

∆6
Bricks−−−−→

2
∆7︸ ︷︷ ︸

inbound phase

Concrete−−−−−→
2→t

∆8.

To find such a state pair, we apply the following approach.

1. In the inbound phase we arbitrarily choose δ and set ∆3 = [0, 0, . . . , 0, δ] such
that its nonzero difference is in the last word only and propagates through
Bricks−1 untouched. That is, ∆2 = ∆3. Let ∆1 be Concrete−1(∆2).

2. The inbound phase covers the expansion of ∆2 to t words and back to
the 2-word difference ∆7 = [0, 0, . . . , 0, δ2, δ3]. Note that we have ∆6 =
[0, 0, . . . , 0, δ2, δ4]. We arbitrarily set δ2, δ3 such that ∆8,t = ∆1,t and then
choose δ4 such that

Concrete(∆2) = ∆4,1 = ∆5,1 = Concrete−1(∆6).
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3. As a result, the differential path for the full 3-round scheme is established,
and we determine the state. The (δ3, δ4) differential determines the input
word xt−1 of the third Bricks layer, and the equation

Bricks(X+∆4) = Bricks(X) +∆5.

determines input words x1, x2, . . . , xt−1 of the second Bricks layer. Note
that this is a system of linear equations, and by solving it we can determine
the full state.

Overall we obtain a partial collision at a negligible cost (the cost for solving the
linear system of equations can be approximated by Ω(t3), which is much smaller
than the cost for constructing the collision in the case of a random permutation
approximated by p1/2). We are not aware of any possible extension of such attack
to more rounds and/or including Bars, which is left as an open problem for future
work.

B.2 Degree and Density: Practical Results

Evaluating the actual density of the polynomial resulting from Bar applied to
a single field element in Fp, where p ∈ {264 − 232 + 1, 231 − 1}, is infeasible in
practice. Indeed, any enumeration and subsequent interpolation approach would
take far too long.

Therefore, in our experiments we focus on smaller finite fields defined by
“similar” prime numbers. In particular, we focus on n-bit primes of the form
2n−2η +1 for η as close to n as possible. We then apply the S-box Si to smaller
parts of the field element, exactly as in Bar where the S-box is applied to each
8-bit part of the larger field element. We also vary the sizes of the parts to which
the Si are applied in order to get a broader picture.

The results of our evaluation are shown in Table 6. For example, in the
first case, where p = 28 − 24 + 1, Si is applied to the first 4 bits (starting
from the least significant bit) and then to the next 4 bits, covering the entire
field element. The size of these parts is indicated in the second column. As
we can see, the maximum degree is reached for all tested primes of the form
2n − 2η +1, where η > 1. Moreover, for these primes, the density is always close
to 100%, mostly matching it. We also applied Si to elements of F2n−1 directly,
where n ∈ {5, 7, 13}, which resulted in almost maximum-degree polynomials of
low density (specifically, only 6, 18, and 629 monomials exist in the polynomial
representation, respectively). This suggests that increasing the number of S-box
applications per field element (i.e., increasing the number of smaller parts to
which Si are applied) is beneficial for the density of the resulting polynomial.

We also evaluated the degrees and density values resulting from the inverse S-
boxes applied to the field elements, in order to get an estimation of the algebraic
strength of the inverse operation. The results match the results given in Table 6,
where always more than 99% monomials are reached together with a degree close
to the maximum.
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Table 6. Degree and density of the polynomials resulting from Bar applied to various
field elements.

p Bit splittings Degree Density

28 − 24 + 1 {4, 4} 239 (= p− 2) 100%
213 − 28 + 1 {8, 5}, {4, 4, 5} 7935 (= p− 2) > 99% (7934/7935)
213 − 25 + 1 {5, 8}, {5, 4, 4} 8159 (= p− 2) > 99% (8157/8159)
214 − 210 + 1 {10, 4}, {5, 5, 4} 15359 (= p− 2) > 99% (15358/15359)
214 − 24 + 1 {4, 10} 16367 (= p− 2) 100%
214 − 24 + 1 {4, 5, 5} 16367 (= p− 2) > 99% (16364/16367)

213 − 1 {5, 8}, {8, 5}, {4, 9}, {9, 4} 8189 (= p− 2) > 99% (8188/8189)
27 − 1 {3, 4}, {4, 3} 125 (= p− 2) > 99% (124/125)

25 − 1 – 26 (= p− 5) ≈ 21% (6/29)
27 − 1 – 120 (= p− 7) ≈ 14% (18/125)
213 − 1 – 8178 (= p− 13) ≈ 8% (629/8189)

Table 7. Degree and density of the polynomials after a single round, where t = 4 and
two input variables are used (with the other two input elements being fixed).

p Bit splittings Degree Density

28 − 24 + 1 {4, 4} 239 (= p− 2) > 99% (28785/28920)
27 − 1 {3, 4} 125 (= p− 2) > 98% (7919/8001)
27 − 1 {4, 3} 125 (= p− 2) > 98% (7919/8001)

Results for Ft
p. We also ran tests regarding the density over the entire state.

Naturally, this task gets harder with an increased number of rounds, since the
degrees are rising too quickly. In our tests we focused on p ∈ {28−24+1, 27−1}
and t = 4, and we give the results together with the sizes of the smaller S-boxes
in Table 7.

As can be seen, the maximum number of monomials is almost reached after
a single round. We suspect that some of the monomials are not reached due
to cancellations, which is reasonable when considering these small prime fields.
Still, we acknowledge this fact by adding another round on top of that in order to
ensure that all polynomial representations of the state are dense and of maximum
degree. Thus, having 6 rounds achieves 4 rounds of security margin regarding
degrees and density of polynomials.

B.3 Details about GB Attacks

Algebraic Model for Bar. We suggest the following algebraic model for
Bar for a decomposition of a prime field element into m buckets with sizes
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2s1 , 2s2 , . . . , 2sm :
x = x1b1 + x2b2 + · · ·+ xmbm,

0 =
∏2si−1

j=0 (xi − j), 1 ≤ i ≤ m,

y = L1(x1)b1 + L2(x2)b2 + · · ·+ Lm(xm)bm.

Here, b1 = 1 and bi := 2s1+···+si , for 2 ≤ i ≤ m, and Li : Fp → Fp is the
interpolation polynomial over Fp of degree (si−1 for the S-box Si given by

Li(xi) :=
∑

0≤k≤2si−1

Si(k)
∏

0≤j≤2si−1
j ̸=k

xi − j

k − j
.

The resulting system consists of m+2 equations, namely m equations of respec-
tive degrees 2s1 , . . . , 2sm , 1 equation of degree maxi(2

si − 1), and 1 equation of
degree 1. The m+ 2 variables are x1, . . . , xm, x, y.

Algebraic Model for SmallWeak1R-CICO. We consider the CICO problem
SmallWeak1R-CICO that fixes v = 1 words to 0 in the input and output, respec-
tively. In other words, we are looking for i2, i3, i4, o2, o3, o4 ∈ Fp such that

SmallWeak1R(0, i2, i3, i4) = (0, o2, o3, o4).

The function SmallWeak1R = Concrete′ ◦ Bricks ◦ Bars ◦ Concrete′ is a small-
scale and weakened version of one round of Monolith defined on t = 4 words
and u = 2 Bar functions in the Bars layer. For Concrete′, we use the circulant
matrix M = circ(2, 1, 1, 1), which is not MDS and thus weaker than the MDS
matrix in Monolith. Our algebraic model for SmallWeak1R-CICO, denoted by
the same name, is given by the following system of equations:

0 = Concrete′−1(v1, v2, v3, v4)1,

w1 = Bar(u1),

w2 = Bar(u2),

0 = (Concrete′ ◦ Bricks)(w1, w2, v3, v4)1.

Here, H(·)i denotes the i-th element of the output of the function H for i ∈
{1, 2, 3, 4}. We note that each Bar function decomposes a prime field element
into m = 2 buckets, hence, wi = Bar(ui) denotes above algebraic model for
Bar with a decomposition into m = 2 buckets. The resulting equation system
consists of 10 equations with

– 4 equations for each Bar system wi = Bar(ui), i = 1, 2, and
– 2 equations for modelling the CICO constraint at the input and the output.

In total, we have 10 variables, namely u1, u2, u3, u4, w1, w2 and 2 internal vari-
ables for each Bar system.
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B.4 Non-Applicable Attacks

We emphasize that we do not claim security of Monolith against zero-sum
partitions [BCC11] (which can be set up via higher-order differentials [Knu94;
BCD+20] and/or integral/square attacks [DKR97]). In such an attack, the goal
is to find a collection of disjoint sets of inputs and corresponding outputs for the
given permutation that sum to zero (i.e., satisfy the zero-sum property). Our
choice is motivated by the fact that, to the best of our knowledge, it is not pos-
sible to turn such a distinguisher into an attack on the hash and/or compression
function. For example, in the case of SHA-3/Keccak [Nat15; BDP+11], while
24 rounds of Keccak-f can be distinguished from a random permutation using
a zero-sum partition [BCC11] (that is, full Keccak-f), preimage/collision at-
tacks on Keccak can only be set up for up to 6 rounds of Keccak-f [GLL+20].
Indeed, the authors of Keccak-f deem a 12-round version of the primitive to
provide ample security margin [BDP+18]. For this reason and as already done
in similar work [GKR+21; GHR+23], we ignore zero-sum partitions for practical
applications.

C Benchmarks of Different Round Functions

In Table 8, we give the runtime of each part of the Monolith permutation for
both a constant- and variable-time implementation.

Table 8. Native performance of each different round function in Monolith. Imple-
mented in Rust.

Operation Time (ns) Const. Time (ns)

p = 264 − 232 + 1: t = 8 t = 12 t = 8 t = 12

Concrete 19.5 33.6 19.5 33.6
Bricks 12.2 19.3 16.0 21.8
Bars 10.4 12.9 10.4 12.9

p = 231 − 1: t = 16 t = 24 t = 16 t = 24

Concrete 31.8 112.6 31.9 115.1
Bricks 17.0 21.7 17.0 21.7
Bars 8.4 12.0 8.4 12.0

D Arithmetization Details

D.1 R1CS

It is possible, though more expensive, to implement Monolith in legacy proof
systems that only support R1CS equations without any table lookups. In con-
trast to Reinforced Concrete, our design admits a reasonably small R1CS
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representation described in the following. First, we use t− 1 constraints to gen-
erate equations for Bricks. For Bars, we decompose each element that goes into
a Bar into bits thus using one constraint per Bar for the actual decomposition
plus log2(p) ·#Bar constraints for ensuring that the bits are either 0 or 1. Then
each output bit of Bar requires 3 multiplications (2 for AND and 1 for XOR) for
the 8-bit S-box and 2 multiplications for the 7-bit one as used in Monolith-31.
By combining the composition constraints with the following bricks layer we get
1028 constraints for Monolith-64 and 944 constraints for Monolith-31 per Bars.
Finally, the Concrete layer can be included in the constraints of Bricks and
Bars, resulting in a total for R · (1027 + t) R1CS constraints for Monolith-64
and R · (943+ t) constraints for Monolith-31, where R is the number of rounds.

D.2 Circuits for Other Hash Functions

The Tip5 function applies four 64-bit S-boxes with lookups per round, so 32
8-bit lookups per round. It also uses 12 degree-7 power functions per round. We
allocate variables for the outputs of the power functions in addition to 64 lookup
variables per round.

Similarly, the Tip4’ function also applies 32 8-bit lookups per round to the
smaller state. However, it uses 8 degree-7 power functions per round, propor-
tionally reducing the number of variables.

The Poseidon2 function (as well as Poseidon which has the same number
of rounds and the same arithmetization) with t = 12 defined for pGoldilocks has
8 full and 22 partial rounds, thus 118 degree-7 functions in total. We allocate
variables for all outputs of the S-boxes, and link the others via linear equations.

Regarding Rescue-Prime, an instance with t = 12 defined for pGoldilocks re-
quires 8 rounds which each consist of two subrounds which alternate between
nonlinear layers featuring the xd and x1/d power maps. Due to this construction
one can find degree-7 constraints spanning a whole round of rescue, leading to
96 degree-7 constraints in total.

D.3 Multiround Constraints for Monolith

We consider p = pGoldilocks and t = 12. When implementing both Monolith
and Tip5 in a single gate, we can immediately observe various similarities. For
example, considering 8-bit lookups, the number of lookups is almost the same,
with Tip5 using slightly fewer ones due to its lower number of rounds (note that
both permutations use four lookup words per round). Moreover, the number of
necessary columns is similar in a round-based approach.

The major advantage of Monolith becomes apparent after considering the de-
gree of the constraints. Indeed, while Tip5 uses a maximum degree of 7 (which is
the smallest integer d such that gcd(pGoldilocks−1, d) = 1), Monolith uses a max-
imum degree of only 2. Not only does this lead to more efficient constraints, but it
allows for different tradeoffs. For example, consider p = pGoldilocks, t = 12 and a
state after the Concrete layer defined by 12 variables w(1)

1 , . . . w
(1)
12 . After the sub-

sequent application of Bars, we add 4 new variables w
(2)
1 , . . . , w

(2)
4 for the state
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elements modified by the lookup table. We now apply Bricks and then Concrete
to the state. Note that describing the state in w

(1)
5 , . . . w

(1)
12 , w

(2)
1 , . . . , w

(2)
4 after

these transformations results in degree-2 constraints (ignoring the table lookups),
since only one Bricks layer has been applied. Hence, we may now choose to only
add 4 new variables w(3)

1 , . . . , w
(3)
4 after the application of the last Concrete layer

at the positions of the table lookups. After the next Bars layer, the state is de-
fined by 8 polynomial equations in w

(1)
5 , . . . w

(1)
12 , w

(2)
1 , . . . , w

(2)
4 of degree 2 and

by the 4 new variables w(4)
1 , . . . , w

(4)
4 resulting from the table lookups. After ap-

plying the next Bricks and Concrete layers, we arrive at a state defined by 12

polynomial constraints in w
(1)
5 , . . . w

(1)
12 , w

(2)
1 , . . . , w

(2)
4 , w

(4)
1 , . . . , w

(4)
4 of degree 4.

A graphical overview of this approach is shown in Fig. 5.

Concrete

Bars

Bricks

Concrete

Bars

Bricks

Concrete

...

w
(1)
1 , . . . , w

(1)
t , Degree: 1

w
(1)
u+1, . . . , w

(1)
t , w(2)

1 , . . . , w
(2)
u , Degree: 1

w
(1)
u+1, . . . , w

(1)
t , w(2)

1 , . . . , w
(2)
u , Degree: 2

w
(1)
u+1, . . . , w

(1)
t , w(2)

1 , . . . , w
(2)
u , w(3)

1 , . . . , w
(3)
u , Degree: 2

w
(1)
u+1, . . . , w

(1)
t , w(2)

1 , . . . , w
(2)
u , w(4)

1 , . . . , w
(4)
u , Degree: 2

w
(1)
u+1, . . . , w

(1)
t , w(2)

1 , . . . , w
(2)
u , w(4)

1 , . . . , w
(4)
u , Degree: 4

w
(1)
u+1, . . . , w

(1)
t , w(2)

1 , . . . , w
(2)
u , w(4)

1 , . . . , w
(4)
u , Degree: 4

Fig. 5. Variables (or trace elements) when using Monolith with degree-4 constraints.
Newly added variables are emphasized in bold and the degree indicates the maximum
degree of the polynomial equations describing the corresponding state in the given
variables.

As a result, with degree-4 constraints we can save t−u trace elements in each
pair of rounds, where u is the number of Bar applications in the Bars layers. This
allows us to achieve a slimmer row with even fewer columns. We point out that
this advantage of Monolith’s low degree also applies in a similar fashion when
comparing to other hash functions which use xd, such as Poseidon, Poseidon2,
Rescue, Griffin, Anemoi, and many more.
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