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difference distribution table (DDT) and linear approximation table (LAT)
affect the security of the cipher against differential and linear cryptanalysis.
In most previous work, differential uniformity and linearity of an S-box are two
primary cryptographic properties to impact the resistance against differential
and linear attacks. In some cases, the branch number and fixed point are
also be considered. However, other important cryptographic properties such
as the frequency of differential uniformity (resp. linearity) and the number of
Bad Input and Bad Output (BIBO) patterns in DDT (resp. LAT) are often
ignored. These properties substantially affect lightweight cryptography based
on substitution bit permutation networks (SbPN) such as PRESENT, GIFT
and RECTANGLE. This paper introduces a new method to search for S-boxes
satisfying all above criteria simultaneously. In our strategy, we transform the
process of searching for S-boxes under certain constraints on cryptographic
properties into a satisfiability (SAT) problem. As applications, we use our
new approach to search out 4-bit and 5-bit S-boxes with the same or better
cryptographic properties compared with the S-boxes from well-known ciphers.
Finally, we also utilize our method to verify a conjecture proposed by Boura
et al. in the case of all 3-bit and 4-bit S-boxes. We propose a proposition and
two corollaries to reduce the search space in this verification.

Keywords Symmetric cryptography · Lightweight cryptography · Block
cipher · S-box · Difference Distribution Table (DDT) · Linear Approximation
Table (LAT)

Mathematics Subject Classification: 11T71, 14G50, 68P25, 81P94.

1 Introduction

The substitution box (S-box) is the nonlinear component of symmetric cryp-
tography primitives since it provides “confusion” for ciphers. The security of
a cipher is strongly dependent on the cryptographic properties of its S-box.
Consequently, an S-box used in cryptography should have good properties to
resist various attacks.

Differential and linear attacks are two important statistical techniques in
cryptanalysis of block ciphers, introduced by Biham and Shamir [11] and Mat-
sui [35] respectively. In order to resist differential and linear attacks, differ-
ential uniformity and linearity of an S-box are considered as two primary
cryptographic properties in most previous works. They should be as small
as possible. In some cases, designers may consider the branch number, fixed
points and so on [5,43].

Previous approaches available in the literature for the construction of an
S-box can be divided into three main streams:

1. Choose an S-box randomly.
2. Design an S-box by mathematical algebraic or structural constructions.
3. A variety of heuristic approaches to generate an S-box.
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The first type of approaches is based on using some pseudo-random genera-
tion. However, it is hard to provide good results as the search space is too
large and good cryptographic properties are scarce [37]. Hence designers use
the second type of approaches more and more, which are mathematical or
structural methods to generate S-boxes. The mathematical method consists
in finding expressions leading to better properties. For example, AES’s S-box
[20] is based on inversion in the finite field GF (28) and simultaneously op-
timal with respect to most of desired criteria, such as differential uniformity
and linearity. RECTANGLE’s S-box [43] is chosen from one of the optimal
4-bit S-box equivalence classes [32]. Besides that, structural methods are also
used in cryptography. SKINNY’s [9] S-box is designed based on a generalized
Feistel structure and Midori’s [4] S-box has involution property by utilizing
two smaller S-boxes and a bit permutation. So, the inverse of their S-boxes
are straightforward deduced and have low hardware implementation cost. The
last approach uses heuristic algorithms including the hill climbing method,
the simulated annealing method, the genetic algorithm or a combination of
these algorithms [26,28,42]. All these heuristic algorithms use guided search
in order to evolve S-boxes to find even better ones. They described give good
results for constructing bijective S-boxes with respect to only one of the main
criteria, but it becomes much more challenging when more properties should
be considered simultaneously [27].

However, as mentioned above, these approaches are hard to give good re-
sults when multiple cryptographic properties are considered simultaneously.
Usually, designers divide all the properties that need to be considered into sev-
eral parts to search for an S-box in steps. For example, designers first search for
a set of S-boxes with the optimal differential uniformity and linearity. Then,
they exhaust S-boxes from the set to meet other requirements, such as no fixed
points, high branch numbers and so on. In the process of a step-by-step search,
some good results will be ignored, such as GIFT’s S-box that does not have
the optimal differential uniformity. Therefore, how to search for an S-box with
multiple good cryptographic properties together in a more efficient way is our
first motivation in this paper.

Lightweight cryptography has become an extremely active research topic
with the development of the Internet of Things (IoT), which aims to provide
security in a limited resource environment. The properties of the S-box in
lightweight cryptography are considered more carefully than before, especially
in substitution bit-permutation networks (SbPN), such as PRESENT [13],
GIFT [5], and RECTANGLE [43]. The SbPN ciphers use a bit-permutation
as the diffusion layer and thus saving a considerable amount of hardware cost.
Consequently, the security of these ciphers greatly depend on the S-boxes.
In this case, the frequency of differential uniformity (resp. linearity) in DDT
(resp. LAT) has a great effect on multiple differential (resp. linear hull) attacks.
In other words, S-boxes that have the same differential uniformity (linearity)
but different frequencies of differential uniformity (linearity) may have differ-
ent performances in terms of resistance against differential (linear) attacks.
Meanwhile, a bad input and bad output (BIBO) pattern in DDT (resp. LAT)
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may result in a differential or linear trail with a single active S-Box. Here,
BIBO means that the hamming weight of both input and output differences
(or masks) is exactly one. For instance, PRESENT’s DDT has no BIBO pat-
tern, but its LAT has 8 BIBO patterns. As a result, its linear attack is nearly
ten rounds longer than its differential attack.

Furthermore, it is almost impossible for an S-box to achieve that all prop-
erties above are optimal simultaneously. Designers need to trade off between
different cryptography properties. For example, GIFT uses an S-box with sub-
optimal differential uniformity so that the total number of BIBO patterns of
the S-box is as low as possible. In this case, it can still resist differential attacks
very well. The previous approaches for constructing an S-box have limitations
on a trade-off between these properties and search for sub-optimal solutions.
Thus our second motivation is to efficiently find good S-boxes with a trade-off
between all properties above.

Finally, reconstructing S-boxes from a given DDT or LAT is a significant
problem. It can be used to recover the secret S-box from DDT or LAT. For
example, in the slide attack on GOST proposed by Bar-On et al. [7], the
attacker could deduce the secret S-box from its known DDT. Another line of
research that will enjoy such efficient reconstruction algorithms is the study of
the theoretical properties of DDTs. A recent work by Boura et al. [14] studies
a theoretical question — whether two different S-boxes, which do not satisfy
some trivial relation, could share the same DDT. To answer the question,
Boura et al. proposed a guess-and-determine (GD) algorithm by utilizing a
depth-first search strategy. Later, Dunkelman and Huang improved the GD
algorithm by using the relationship between DDT and LAT to reduce the
search space [23]. Nevertheless, both algorithms have limitations that they
can only reconstruct S-boxes from a known DDT and are powerless to support
theoretical analysis about non-specific DDT and LAT issues. Therefore, our
third motivation is to build a model which can analyze the S-box and its DDT
or LAT when we do not know the complete DDT or LAT.

Our Contributions
In view of the above state-of-the-art, our contributions are twofold as fol-

lows.

1. Propose a new method of searching for S-boxes with good cryp-
tographic properties
In this paper, we build a model which can consider many cryptographic
properties at the same time, such as fixed points, branch number, differen-
tial uniformity, linearity, the frequency of differential uniformity (linearity)
and the number of BIBO patterns. Firstly, we transform the relationship
between an S-box and its DDT and LAT into a satisfiability modulo the-
ories (SMT) problem. Then we add the requirements on cryptographic
properties of S-boxes as constraints. Finally, we utilize an SMT solver STP
(Simple Theorem Prover) to solve the model and get expected S-boxes.
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As applications, for 4-bit S-boxes, we apply this model to search out
3723/947/620 S-boxes which have the same cryptographic properties as the
S-boxes used in PRESENT/GIFT/RECTANGLE. We summarize the re-
sults in Table 1. In addition, we also trade off difference uniformity against
the number of BIBO patterns. As a result, we search out 824 S-boxes
to meet different design requirements. Compared with PRESENT/GIFT/
RECTANGLE’s S-boxes, although these new S-boxes have a slightly higher
differential uniformity, there are only 3 BIBO patterns in total. For 5-bit
S-boxes, we search out 31/28 S-boxes with the same cryptographic proper-
ties as the 5-bit S-box used in KECCAK/ASCON, which are summarized
in Table 2. Furthermore, we find out 17 5-bit new S-boxes better than
KECCAK/ASCON’s S-boxes in terms of the differential uniformity.
In addition, we simplify the above model, replacing the constraints on
properties with the values of predetermined DDT or LAT. We use this
new model to search for S-boxes that have the same DDT as PRESENT
and KECCAK without fixed points. In experiments, we search all 96 out of
256 S-boxes without fixed point corresponding to the DDT of PRESENT’s
4-bit S-box within 10 minutes and 672 out of 1024 S-boxes without fixed
point corresponding to the DDT from KECCAK’s 5-bit S-box within 7.5
hours.

Table 1: Summary of cryptographic properties of PRESENT, GIFT and RECTANGLE’s
S-boxes and new S-boxes found in our work. #BIBODDT and #BIBOLAT represent the
number of BIBO patterns in DDT and LAT, respectively. Differential uniformity and lin-
earity are denoted as U(S) and L(S). The frequency of differential uniformity and linearity
in DDT and LAT are represented by #U(S) and #L(S), respectively.

#BIBODDT #BIBOLAT U(S) L(S) #U(S) #L(S) #New S-boxes
PRESENT [13] 0 8 4 8 24 36 3723

GIFT [5] 1 3 6 8 2 36 947
RECTANGLE [43] 2 2 4 8 24 36 620

New S-box1 1 2 8 8 2 44 834
1 δS(α, β) = 8 only occurs twice in the DDT of our new S-box.

Table 2: Summary of cryptographic properties of KECCAK and ASCON’s S-boxes and new
S-boxes found in our work.

#BIBODDT #BIBOLAT U(S) L(S) #U(S) #L(S) #New S-boxes
KECCAK [10] 5 5 8 16 20 40 31
ASCON [22] 0 0 8 16 20 40 28
New S-box 0 0 6 16 24 40 17

2. Verify the conjecture proposed by Boura et al. in [14]
In paper [14], Boura et al. propose a conjecture that an S-Box S(x) only has
trivially DDT-equivalent S-Boxes of the form S(x⊕ c)⊕ d,with c, d ∈ Fn

2 ,
if and only if the rows in its DDT are pairwise distinct.
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In this paper, we first propose a proposition and two corollaries to reduce
the search space in the verification. Then we extend our model in Section 3
to verify the conjecture. We use the same way to transform the relationship
between two S-boxes and their same DDT into an SMT problem. Finally,
we add the conditions mentioned in the conjecture as constraints on the
model, such as two S-boxes are not trivially DDT-equivalent and any rows
of the DDT are pairwise distinct. Experimentally, we verify the correctness
of the conjecture for all 3-bit and 4-bit S-boxes by using our model.

Organization of the article

In Section 2, we recall some preliminaries, including differential and linear
properties of an S-box and an overview of STP. Next, we propose a new method
of searching for S-boxes with good properties and apply it to 4-bit and 5-bit
S-boxes in Sections 3 and 4 respectively. In Section 5, we verify a conjecture
about trivially DDT-equivalence class of an S-box proposed by Boura et al.
Finally, we conclude this paper in Section 6.

2 Preliminaries

In this section, we first recall the basic differential and linear properties of
an S-box in Section 2.1. In Section 2.2, we introduce some definitions of other
important cryptographic properties of an S-box, such as the frequency of differ-
ential uniformity, the frequency of linearity, and the number of BIBO patterns.
Then, we briefly introduce the Simple Theorem Prover (STP) solver and its
CVC input language formats in Section 2.3.

2.1 Basic differential and linear properties of S-boxes

Often the S-boxes are the only nonlinear components in a block cipher and
play an important role in ensuring the cipher’s resistance to cryptanalysis.
Mathematically, an S-box corresponds to a vectorial Boolean function and
an m × n S-box S : Fm

2 → Fn
2 is a mapping from m-bit input to n-bit

output. For each input x = (x0, x1, . . . , xm−1) ∈ Fm
2 , there is one output

y = (y0, y1, . . . , yn−1) ∈ Fn
2 such that y = S(x).

Differential uniformity and linearity are two important cryptographic prop-
erties to impact an S-box’s resistance against differential and linear attacks,
which should be carefully considered when constructing an S-box. We briefly
recall some definitions and properties related to them.

Definition 1 (Difference distribution table) Let S : Fm
2 → Fn

2 be an
S-box. For any α ∈ Fm

2 and β ∈ Fn
2 , δS(α, β) is defined as

δS(α, β) = #{x ∈ Fm
2 |S(x)⊕ S(x⊕ α) = β}.
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An 2m × 2n table T can be built as follow: take α as the row index to traverse
Fm
2 , β as the column index to traverse Fn

2 , as well as the value δS(α, β) at
the intersection of the α-th row and β-th column. Such table is defined as
differential distribution table (DDT) of the S-box, in which α denotes the
input difference, β denotes the output difference and δS(α, β) denotes how
many x satisfy this (α, β).

Based on the definition of DDT, the differential uniformity of an S-box is
defined as follows.

Definition 2 (Differential uniformity [36]) The differential uniformity of
an S-box S : Fn

2 → Fm
2 is defined as

U(S) ≜ max
α∈Fn

2 \{0},β∈Fm
2

δS(α, β).

It is easy to find that the differential uniformity of any S-box is greater than or
equal to 2 (U(S) ≥ 2). If U(S) of an S-box reaches the minimum, i.e. U(S) = 2,
we call this S-box almost perfect nonlinear (APN).

The existence of n-bit APN permutation is implied by the existence of n-bit
almost Bent (AB) functions [18,36] when n is odd. However, when n is even,
only one 6-bit APN S-box has been discovered by Dillon et al. in 2009 [15].
Whether an APN S-box exists or not on other even dimensions is still an open
problem, named “The Big APN Problem” [17].

Definition 3 (DDT-equivalent) Two different S-boxes S0(x) and S1(x) are
DDT-equivalent if they have the same DDT, and they are trivially DDT-
equivalent if and only if they satisfy that S0(x) = S1(x ⊕ c) ⊕ d with c, d in
Fn
2 .

To calculate the number of S-boxes trivial DDT-equivalent to an S-box S, we
give Proposition 1. Assume that S is an n-bit bijective S-box. If ∆aS(x) =
S(x) ⊕ S(x ⊕ α) is constant for all possible x, we call this α ∈ Fn

2 a linear
structure. The set of all linear structures is a vector space named linear space
of S.

Proposition 1 ([14]) Let S be a function from Fn
2 into Fn

2 and let l denote the
dimension of its linear space. Then, the DDT-equivalence class of S contains
the 22n−l distinct functions of the form

x 7→ S(x⊕ c)⊕ d, c, d ∈ Fn
2 . (1)

We say that a DDT-equivalent class is trivial if its size matches the lower-
bound given in Proposition 2.

Definition 4 (Linear approximation table) Let S : Fm
2 → Fn

2 be an S-
box. For any α ∈ Fm

2 and β ∈ Fn
2 , λS(α, β) is defined as

λS(α, β) = #{x ∈ Fn
2 |α · x⊕ β · S(x) = 0} − 2n−1 =

1

2

∑
x∈Fn

2

(−1)α·x⊕β·S(x).
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Recall that the Walsh Fourier transform of S is defined as

WS(α, β) ≜
∑
x∈Fn

2

(−1)α·x⊕β·S(x).

An 2m×2n table T can be built as follow: Take α as the row index to traverse
Fm
2 , β as the column index to traverse Fn

2 , as well as the value λS(α, β) at
the intersection of the α-th row and β-th column. Such table is defined as
Linear Approximation Table (LAT) of the S-box, in which α denotes the input
mask, β denotes the output mask and λS(α, β) denotes how many x satisfy
this (α, β).

Based on the definition of LAT, the linearity of an S-box is defined as follows.

Definition 5 (Linearity [36]) The linearity of an S-box S : Fn
2 → Fm

2 is
defined as

L(S) = max
α∈Fn

2 ,β∈Fm
2 \{0}

|WS(α, β)|

Linearity impacts the resistance against linear cryptanalysis. Generally, de-
signers expect that the linearity of an S-box is as low as possible. Note that in
some other papers, the authors use nonlinearity rather than linearity. Actually,
the nonlinearity and linearity of an S-box are related by:

NL(S) = 2n−1 − 1

2
L(S)

As is well known for bijective S-boxes, the linearity L(S) ≥ 2(n+1)/2. Es-
pecially, for even dimension n, the smallest linearity is 2n/2+1 [18]. When
the linearity of an S-box S reaches the lower bound, this S is called almost
bent (AB) function. An AB function contributes to a maximal resistance to
both linear and differential cryptanalysis. What’s more, an almost Bent (AB)
function is almost perfect nonlinear (APN) as well[16].

According to Leander and Poschmann’s work on 4-bit S-boxes in [32], the
optimal U(S) is 4 and L(S) is 8, which means no S-box under dimension 4 that
is both APN and AB function. Those bijective S-boxes with optimal U(S) and
L(S) are called optimal S-boxes. In addition, all optimal 4-bit S-boxes can be
classified to 16 differential affine equivalence classes (please refer to Table 11
in Appendix A).

To explain above definitions more clearly, we take the S-box used in GIFT
as an example depicted in Table 3. Its DDT and LAT are provided in Appendix
B. As seen from Table 12 and 13, the differential uniformity of GIFT’s S-box
is 6 appearing in cells (4, 7) and (6, 3), and the linearity is 8. It implies that
this S-box is not in any equivalence class of the optimal S-boxes.



An STP-based model toward designing S-boxes 9

Table 3: Specification of GIFT S-box S.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 1 10 4 12 6 15 3 9 2 13 11 7 5 0 8 E

2.2 Other important differential and linear properties of S-boxes

Besides the properties in Section 2.1, other important differential and linear
properties of S-boxes are proposed recently. The number of occurrences of
differential uniformity in DDT and linearity in LAT also impact the resistance
against differential and linear attacks. Thus, we consider them and define them
as the frequency of differential uniformity and linearity, respectively.

Definition 6 (Frequency) The frequency of differential uniformity in DDT
is defined as

#U(S) ≜ #{(α, β)|δS(α, β) = U(S), α ∈ Fn
2\{0}, β ∈ Fn

2},

while the frequency of linearity in LAT is defined as

#L(S) ≜ #{(α, β)|WS(α, β) = L(S), α ∈ Fn
2\{0}, β ∈ Fn

2}.

Furthermore, the number of BIBO patterns is also significant and we define it
as follows.

Definition 7 (Bad Input and Bad Output (BIBO) pattern) If in-
put/output difference (resp. mask) (α, β) satisfy wt(α) = wt(β) = 1 and
δS(α, β) 6= 0 (resp. λS(α, β) 6= 0), we call this input/output difference (resp.
mask) a Bad Input and Bad Output (BIBO) pattern.

It can be seen from Definition 7 that a BIBO pattern may result in a differential
or linear trail with a single active S-Box. In [5,29,30], the authors proposed
some schemes to overcome this case with the mathematical and structural
constructions. In our paper, we denote the number of BIBO patterns in DDT
as #BIBODDT and the number of BIBO patterns in LAT as #BIBOLAT.
All BIBO patterns (α, β) in DDT (or LAT) form a subtable called 1-1 bit
table. As examples, we list the 1-1 bit tables of GIFT’s and RECTANGLE’s
DDT in Table 4 and Table 5, respectively. There is only 1 BIBO pattern in
GIFT (e.g. #BIBODDT = 1) and 2 BIBO patterns in RECTANGLE (e.g.
#BIBODDT = 2).

2.3 A constraint solver: STP (Simple Theorem Prover)

In recent years, automatic searching tools are widely used in cryptanalysis.
One category of the automatic searches is based on the Boolean satisfiability
problem (SAT) or the more general extension called satisfiability modulo theo-
ries (SMT) method. SAT is the problem of determining whether there exists an
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Table 4: 1-1 bit table of the S-box’s
DDT used in GIFT.

α
β 1000 0100 0010 0001

1000 0 0 0 2
0100 0 0 0 0
0010 0 0 0 0
0001 0 0 0 0

Table 5: 1-1 bit table of the S-box’s
DDT used in RECTANGLE.

α
β 1000 0100 0010 0001

1000 0 0 0 0
0100 0 0 0 2
0010 0 0 0 0
0001 2 0 0 0

evaluation for the binary variables such that the value of the given Boolean for-
mula equals one. An extension of the SAT problem is SMT problem, in which
some of the Boolean variables are replaced by a suitable set of binary and (or)
non-binary variables [41]. In most previous work, it mainly uses an SAT/SMT
solver STP (Simple Theorem Prover) [24] to search for differential or linear
trails [1–3,31,33,38,39,41]. In STP, CVC formats is one of the commonly used
file-based input languages. We list some CVC language references and three
examples as follows. For more details, please refer to http://stp.github.io/.

Table 6: A Description for CVC Input Language [24]

Name Symbol Example
Concatenation @ t1@t2@...@tm

Extraction [i:j] x[31:26]
Bitwise XOR BVXOR BVXOR(t1,t2)
Bitvector Add BVPLUS BVPLUS(n,t1,t2,..., tm)

Less Than Or Equal To BVLE BVLE(t1,t2)
Greater Than Or Equal To BVGE BVGE(t1,t2)

Not Equal to \= t1 \= t2

Example 1 Description of GIFT’s S-box in CVC formats as follows.

S: ARRAY BITVECTOR(4) OF BITVECTOR(4);
//Statement: the size of the S-box is 24 and each element is a 4-bit Boolean

variable.
ASSERT( S[0bin0000] = 0bin1100 );
ASSERT( S[0bin0001] = 0bin0101 );
...
//Assignment: S[0] = 12; S[1] = 5; ...

Similarly, the DDT and LAT can be described in CVC formats as well.

Example 2 “If condition” can be described in CVC formats. For example, If
a = b then c = 1 else c = 0.
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a, b, c: BITVECTOR(1);
ASSERT( IF a = b THEN c = 0bin1 ELSE c = 0bin0 ENDIF );

Example 3 To describe x = (a+ b)⊕ c where x, a, b ∈ F5
2 and c ∈ F4

2.

x: BITVECTOR(5);
a, b: BITVECTOR(5);
c: BITVECTOR(4);
ASSERT( x = BVXOR(BVPLUS(5, a, b), 0bin0@c) );

Note that the parameters of BVXOR function must have the same length.
So, we add 0 to the most significant bit of c.

3 New method of searching for S-boxes with good properties

From a design perspective, differential uniformity and linearity of an S-box
are two primary properties to be considered. However, other properties, such
as fixed point, branch number, frequency of differential uniformity, frequency
of linearity, and number of BIBO patterns also affect an S-box’s resistance
against differential attacks and linear attacks. In our new method, we search
for S-boxes by considering all of these properties above simultaneously.

For an n×n S-box, it may have some basic properties, such as it is bijective
and nonlinear. In some cases, designers require an S-box without fixed point
and so on [25]. In Section 3.1, we show how to describe these basic properties
of an S-box as SMT problems.

In Section 3.2, we first propose how to transform the relationship between
the S-box and its DDT and LAT into an SMT problem. Then, we add all
requirements on the above cryptographic properties as constraints into the
same model. Finally, we utilize STP to solve the model. However, it can only
get a single result at one time. In order to find more solutions, we add each
previous solution as a constraint to avoid the repeated solution.

3.1 Transform basic properties of an S-box into SMT problems

In this section, an n-bit S-box is denoted by S : Fn
2 → Fn

2 . We transform
constraints on the basic properties of S-boxes into SMT problems and use
CVC formats to build an STP model. We exemplify four basic properties in
the following.

– Nonlinear. An S-box is a nonlinear function if and only if there exist two
inputs x1 and x2 such that

S[x1]⊕ S[x2] 6= S[x1 ⊕ x2], for ∀x1, x2 ∈ Fn
2 .
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We can describe this case in the model using (2n × (2n − 1))/2 constraints
for different x1 and x2.

ASSERT( BVXOR(S[x1], S[x2]) \ = S[BVXOR(x1, x2)] );

– Bijective. For any two inputs x1 and x2, an S-box is bijective if and only
if we have

S[x1] 6= S[x2], for ∀x1, x2 ∈ Fn
2 .

It also needs (2n × (2n − 1))/2 constraints to describe these equations as
follows.

ASSERT( S[x1] \ = S[x2] );

– Without fixed point. For all possible input x, an S-box has no fixed
point if and only if we have

S[x] 6= x, for ∀x ∈ Fn
2 .

There are 2n constraints for all possible inputs x.

ASSERT( S[x] \ = x );

– Branch number. The differential branch number of an S-box is defined
as

DBN = min{wt(α) + wt(β)|δS(α, β) 6= 0, 0 ≤ α, β < 2n},

while the linear branch number of an S-box is defined as

LBN = min{wt(α) + wt(β)|λS(α, β) 6= 0, 0 ≤ α, β < 2n}.

In order to add the requirements on branch number into the STP-based
model, we can describe them with CVC language in the following forms:

ASSERT( DDT[α, β] = 0bin0 ); //for each wt(α) + wt(β) <DBN.
ASSERT( LAT[α, β] = 0bin0 ); //for each wt(α) + wt(β) <LBN.

3.2 General STP model to search for S-boxes with good properties

In this part, we first propose how to describe the relationship between an S-box
and its DDT and LAT as an SMT problem.
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In order to link an S-box with its DDT, we set 2n dummy variables
IsTrueDDT (α, β, x) for each input/output difference pair (α, β), 0 ≤ α, β, x <
2n as follows:

IsTrueDDT (α, β, x) =

{
1, if S(x⊕ α) = S(x)⊕ β,

0, others.
(2)

Each variable aims to record whether an input pair (x, x ⊕ α) contributes to
item δs(α, β) in DDT. By exhausting all possible input x, we can link an S-box
and its DDT by

δs(α, β) =

2n−1∑
x=0

IsTrueDDT (α, β, x). (3)

Equations (2) and (3) can be described as CVC input language as the
following forms:

ASSERT( IF BVPLUS(S[x], β) = S[BVPLUS( x, α)] THEN
IsTrue[α, β, x] = 0bin0 ELSE IsTrue[α, β, x] = 0bin1 ENDIF );

ASSERT( DDT[α, β] = BVPLUS( n, IsTrue[α, β, 0], IsTrue[α, β, 1], · · · ) );

As mentioned before, the properties of an S-box considered in this paper are
U(S), L(S), #U(S), #L(S), #BIBODDT and #BIBOLAT. So, when designers
confirm requirements on these properties, we can describe them as constraints
in our model.

Firstly, for any α, β < 2n,the requirements on differential uniformity U(S)
and linearity L(S) can be added into our model as:

δS(α, β) ≤ U(S),

λS(α, β) ≤ L(S).

Note that U(S) and L(S) are variables predetermined by designers.
Secondly, some S-boxes of well-known lightweight ciphers like PRESENT,

GIFT and RECTANGLE are designed by considering the number of BIBO
patterns. We set new dummy variables IsTrueDDT

BIBO(α, β) as follows where
both hamming weight of α and β are 1.

IsTrueDDT
BIBO(α, β) =

{
1, if δS(α, β) 6= 0

0, others.
(4)

This equation describes whether an input/output difference pair (α, β) is a
BIBO pattern. Furthermore, we can calculate the number of BIBO patterns
in a DDT according to Equation (5).

#BIBODDT =
∑

wt(α)=wt(β)=1

IsTrueDDT
BIBO(α, β) (5)
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Similarly, we can calculate the number of BIBO patterns in a LAT by using
variables IsTrueLAT

BIBO(α, β) and #BIBOLAT. These constraints according to
Equations (4) and (5) can be described in STP-based model as following forms:

ASSERT( IF DDT[α, β] = 0bin0 THEN
BIBO[α, β] = 0bin0 ELSE BIBO[α, β] = 0bin1 ENDIF );

ASSERT( #BIBO = BVPLUS( n, BIBO[α1, β1], BIBO[α2, β2], · · · ) );

When considering the frequeny of differential uniformity, we set dummy
variables IsTrueDDT

Freq (α, β) with (α, β) ∈ Fn
2 × Fn

2 as follows:

IsTrueDDT
Freq (α, β) =

{
1, if δS(α, β) = U(S)
0, others.

(6)

We can calculate the frequency of differential uniformity #U(S) by the fol-
lowing equation.

#U(S) =
2n−1∑
β=0

2n−1∑
α=0

IsTrueDDT
Freq (α, β). (7)

Meanwhile, the frequency of linearity can be described by setting the variables
IsTrueLAT

Freq(α, β) and#U(S). These constraints on frequency can be described
in STP-basd model as CVC formats:

ASSERT( IF DDT[α, β] = U(S) THEN
Freq[α, β] = 0bin0 ELSE Freq[α, β] = 0bin1 ENDIF );

ASSERT( #Freq = BVPLUS( n, Freq[α1, β1], Freq[α2, β2], · · · ) );

All in all, we can combine all constraints on U(S), L(S), #U(S), #L(S),
#BIBODDT and #BIBOLAT together in our model. After assigning predeter-
mined values to them, we can find out expected S-boxes by STP.

According to Proposition 1, there are many S-boxes mapping to the same
DDT, which means there are many solutions for such an STP-based model.
To get multiple solutions, once we get a new S-box S1(x), we remove it out of
the solution space by

(S(0) 6= S1(0)) OR (S(1) 6= S1(1)) OR · · · OR (S(2n−1) 6= S1(2
n−1)). (8)

Equation (8) can be transformed into CVC formats as:

ASSERT( (S[0] 6=S1[0]) OR(S[1]6=S1[1]) OR· · ·OR(S[2n − 1] 6=S1[2n − 1]) );

Please note S1[x] represents previous solution and it is described as a set
of constant values in our model.
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4 Applications on 4-bit and 5-bit S-boxes

There are two scenarios for applying the new model in Section 3. In the first
case, when given some differential and linear properties of an S-box without
knowing the whole DDT or LAT, we can use our model to search for expected
4-bit and 5-bit S-boxes directly in Section 4.1 and 4.2. The other case is to
search for (reconstruct) S-boxes while we know the DDT or LAT. We simplify
the model and replace the constraints on properties with specific DDT or LAT
in Section 4.3. As applications, we list the number of S-boxes without fixed
points that have the same DDT as PRESENT and KECCAK separately.

4.1 Searching for 4-bit S-boxes

In the design process, designers usually search for an S-box according to the
security requirements. In most previous work, differential uniformity and lin-
earity are two primary properties considered when designing a new S-box.
However, the frequency of differential uniformity and linearity in DDT and
LAT also impacts resistance against multiple differential attacks and linear
hull attacks, respectively. More importantly, the frequency of differential uni-
formity (linearity) in the DDT (LAT) provides a more accurate estimation of
the maximum expected differential (linear hull) probability than that provided
merely by the differential uniformity. Furthermore, the existence of BIBO pat-
terns will lead to the single active bit path. So, the number of BIBO patterns
should be as low as possible.

When considering all above properties, we apply our model to finding new
4-bit S-boxes, which have the same cryptographic properties as current well-
known 4-bit S-boxes used in PRESENT, GIFT, and RECTANGLE. We first
summarize the cryptographic properties of target S-boxes on differential uni-
formity, linearity, frequency of differential uniformity, frequency of linearity,
and number of BIBO patterns, then assign them to constraint variables in
our model to search for S-boxes. For instance, the values of these properties in
PRESENT are U(S) = 4, L(S) = 8,#U(S) = 24,#L(S) = 4,#BIBODDT = 0
and #BIBOLAT = 8, respectively. In the end, we found out 3723/947/620 S-
boxes with the same cryptographic properties as PRESENT/GIFT/RECTANGLE’s
S-boxes within 6 hours. Here, we name these S-boxes as PRESENT/GIFT/
RECTANGLE-like S-boxes. The number of S-boxes are summarized in Table
1 and some example S-boxes are shown in Table 7.

In addition, the designers of GIFT select an S-box with U(S) = 6, L(S) =
8, #BIBODDT = 1 and #BIBOLAT = 3. As mentioned in section 2.1, this
S-box is not in any equivalence class of the optimal S-boxes. However, with
a trade-off between differential uniformity and number of BIBO patterns, the
whole cipher also has strong resistance against differential attacks. So it is
significant to search for new S-boxes with a lower #BIBODDT at the cost of
a higher differential uniformity. These new S-boxes in Table 1 have U(S) = 8
and L(S) = 8, but their total number of BIBO patterns in DDT and LAT is
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only 3. Compared with GIFT, they have a lower number of BIBO patterns at
the cost of a higher differential uniformity.

Interestingly, we get an observation from the searching results:

Observation 1 If we pre-determine an optimal S-box with U(S) = 4, L(S) =
8, and #BIBODDT = 0, its total number of BIBO patterns existed in DDT
and LAT must satisfy

#BIBODDT +#BIBOLAT = #BIBOLAT > 3.

This observation explains that a lower total number of BIBO patterns may be
at the cost of higher differential uniformity or linearity.

Table 7: Some PRESENT/GIFT/RECTANGLE-like S-boxes and the new S-
box. (*-like S-boxes have the same U(S), L(S), #U(S), #L(S), #BIBODDT
and #BIBOLAT as *.)

#BIBO S(x)

PRESENT-like S-boxes 4
5,11,8,14,9,2,7,4,3,12,13,1,6,14,0,10
12,7,1,13,10,0,15,3,5,2,14,8,6,11,9,4
14,11,0,12,3,6,9,15,2,4,13,7,5,8,10,1

GIFT-like S-boxes 4
15,9,1,2,8,6,7,12,10,4,13,14,3,5,0,11
2,12,1,7,5,11,8,14,15,10,13,0,9,4,6,3
15,3,8,4,2,12,1,11,9,0,6,13,5,14,10,7

RECTANGLE-like S-boxes 4
5,13,10,0,11,6,12,3,2,14,1,7,4,9,15,8
15,2,6,8,1,4,13,11,9,12,0,7,14,3,10,5
5,2,13,8,6,11,3,4,0,15,14,1,9,12,10,7

New S-box1 3 5,2,6,8,9,15,12,3,0,13,11,7,14,10,1,4

4.2 Searching for 5-bit S-boxes

Similar to 4-bit S-boxes, we also apply our model to searching for 5-bit S-
boxes. The S-boxes’ cryptographic properties used in two famous ciphers –
KECCAK and ASCON are listed in Table 2. Firstly, we assign them to con-
straint variables in our model. We found out only 31 and 28 KECCAK-like
and ASCON-like S-boxes within 6 hours, respectively.

Furthermore, we also search out some new S-boxes with a trade-off between
differential uniformity and its frequency of differential uniformity. We list the
properties of these new S-boxes in Table 2. Compared with ASCON, they
have lower differential uniformity (U(S) = 6) at the cost of higher frequency
of differential uniformity (#U(S) = 24). In Table 8, we list some examples of
KECCAK-like, ASCON-like, and new S-boxes.
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Table 8: KECCAK-like, ASCON-like 5-bit S-boxes and the new S-box

#BIBO S(x)

KECCAK-like S-boxes 10

23,24,3,14,20,9,30,19,10,17,28,2,11,5,4,29,
8,12,21,6,13,18,1,27,25,22,16,15,0,7,31,26
12,5,21,14,3,20,30,15,22,1,9,27,26,0,23,28,
24,18,19,11,29,2,8,17,6,31,13,16,7,25,4,10
22,30,21,25,11,20,31,2,26,5,12,29,4,8,6,7,1,
0,3,13,28,14,16,27,19,10,15,18,24,23,9,17

ASCON-like S-boxes 0

24,9,27,6,3,31,22,1,20,30,8,5,10,21,15,16,4,
19,23,12,28,0,13,26,7,11,25,18,17,14,2,29
23,28,15,16,2,1,21,30,25,19,18,12,11,8,13,
6,24,14,0,3,5,29,10,27,4,7,31,9,26,22,20,17
3,13,26,22,17,2,15,21,0,23,12,9,20,25,30,
10,27,14,4,29,28,8,1,18,7,24,16,19,31,6,11,5

New S-box2 0 22,15,16,9,27,3,5,6,1,21,30,18,28,8,10,29,
14,0,13,26,24,20,17,31,19,12,7,25,11,23,4,2

4.3 Reconstruct S-boxes from a given DDT

If we know the complete DDT or LAT, we can simplify our model and replace
all constraints on properties with the specific value of DDT or LAT.

For example, if we want to know how many S-boxes without fixed points
have the same DDT as PRESENT’s S-box, we can transform the relationship
between S-box and PRESENT’s DDT into an SMT problem. Then, we describe
the property of no fixed point as constraint. By using STP, we get the solutions:

– For 4-Bit S-boxes. We take the PRESENT’s S-box as an example. There
are a total of 28 different 4-bit S-boxes corresponding to PRESENT’s DDT,
which are summarized in Table 9. It also verifies the Proposition 1 by
experiments. We spent 10 minutes finding all these 256 S-boxes1 and there
are 96 S-boxes left when we add the constraint of no fixed point.

Table 9: The result of the experiments on 4-bit S-boxes

#S-boxes #S-boxes without fixed point Percentage Time
256 96 37.5% 10 mins

With fixed point
10,13,6,11,4,7,1,2,3,14,9,0,15,8,12,5
13,14,8,11,10,7,6,1,0,9,3,4,5,12,15,2
12,11,10,7,6,5,3,0,15,2,1,8,9,14,4,13

Without fixed point
10,13,9,0,6,11,12,5,1,2,4,7,15,8,3,14
11,8,14,13,1,6,7,10,4,3,9,0,2,15,12,5
13,14,8,11,3,4,15,2,6,1,5,12,10,7,0,9

– For 5-Bit S-boxes. The time spent in finding 5-bit S-box’s DDT is much
more than 4-bit one. As can be seen from Table 10, we found all 1024

1 All experiments in our paper are implemented in the AMD EPYC 7302 CPU @ 3.0 GHz
with eight threads.
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S-boxes with the same DDT as KECCAK’s S-box in 7.5 hours, and 672 S-
boxes have no fixed point. It also verifies the Proposition 1 by experiments.

Table 10: The result of the experiments on 5-bit S-boxes

#S-boxes #S-boxes without fixed point Percentage Time
1024 672 65.6% 7.5 hours

With fixed point

17,18,23,16,13,14,3,4,9,10,15,8,5,6,11,12,
1,0,7,2,29,28,19,22,24,25,30,27,20,21,26,31
18,21,16,19,22,17,28,31,10,13,8,11,30,25,20,
23,1,4,3,2,5,0,15,14,24,29,26,27,12,9,6,7
4,5,6,3,24,25,18,23,29,28,31,26,17,16,27,30,
22,21,20,19,10,9,0,7,14,13,12,11,2,1,8,15

Without fixed point

29,24,19,18,9,12,15,14,20,17,26,27,16,21,
22,23,13,10,3,0,25,30,31,28,5,2,11,8,1,6,7,4
11,10,5,0,23,22,17,20,2,3,12,9,14,15,8,13,
27,24,21,18,7,4,1,6,19,16,29,26,31,28,25,30
16,17,22,19,28,29,18,23,9,8,15,10,21,20,27,
30,1,2,7,0,13,14,3,4,25,26,31,24,5,6,11,12

5 Verify a Conjecture about trivial DDT-equivalence proposed by
Boura et al.

When we find an S-box with good cryptographic properties, we can generate
new S-boxes through some equivalent transformations to keep these properties.
For example, two S-boxes in the same affine equivalence class have the same
differential uniformity and even the whole differential spectrum [6]. So, it is
significant to theoretical research the S-boxes in some equivalence classes.

In the paper [14], the authors give a conjecture on the DDT-equivalence
classes.
Conjecture 1 [14] The DDT-equivalence class of an S-box S, such that the
rows in its DDT are pairwise distinct, only contains S-boxes of the form S(x⊕
c)⊕ d,with c, d ∈ Fn

2 (i.e. is trivial).
To verify the conjecture, one method is to traverse all the S-boxes and

classify them according to the same DDT, and then verify whether there exist
two non-trivially DDT-equivalent S-boxes in the same class. However, the
search space is too large to traverse all the S-boxes and classify them, even
though the size of S-boxes is 4-bit.

We give a proposition and two corollaries as follows to reduce the search
space. We first classify all n-bit S-boxes into affine equivalence classes.

Proposition 2 (adapted from [14]) Let F and G be two functions which are
affine equivalent, i.e., there exist two affine functions A0 and A1, where A1

and A2 are bijective such that G = A2 ◦ F ◦ A1. Then, the DDT-equivalence
classes of F and of G have the same size. Moreover, the class of G is composed
of all A2 ◦ F ′ ◦A1 where F ′ varies in the class of F .
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Proof Let L0 and L1 denote the linear parts of the affine functions A0 and
A1. It is well-known that the DDT of F amd G are related by

δG(a, b) = δF (L1(a), L
−1
2 (b)), ∀(a, b) (9)

This comes from the fact that

∆aG(x) = A2[F (A1(x⊕ a))]⊕A2[F (A1(x))],

= L2[F (A1(x)⊕ L1(a))⊕ F (A1(x))],

= L2[∆L1(a)F (A1(x))].

Let F ′ ∈ CDDTF be an element in the DDT-equivalence class of F and let us
consider G′ = A2 ◦ F ′ ◦A1. Then, the DDT of F ′ and G′ satisfy: for all (a, b)

δG′(a, b) = δF ′(L1(a), L
−1
2 (b)) = δF (L1(a), L

−1
2 (b)),

where the last equality comes from the fact F and F ′ have the same DDT.
Then, we deduce from Equation (9) that δG′(a, b) = δG(a, b) for all (a, b). It
follows that

G′ = A2 ◦ F ′ ◦A1, F ′ ∈ CDDTF ⊆ CDDTG.

By exchanging the roles of F and G, we deduce that both sets coincide. ut

According to Proposition 2, the DDT-equivalence classes of the S-boxes in an
affine equivalence class have the same size.

Corollary 1 Let S : Fn
2 → Fn

2 is a single representative S-box of an affine
equivalence class AS. If its DDT has the same rows, then the DDT of any
S-box in AS has the same rows.

Proof Let L0 and L1 denote the linear parts of the affine functions A0 and A1.
F and G are affine equivalent functions and G = A2◦F ◦A1. From Proposition
2, we know that

δG(a, b) = δF (L1(a), L
−1
2 (b)), ∀(a, b) (10)

Assume that two rows a1 and a2 are the same in the DDT of G, then two rows
L1(a) and L2(a) are the same in the DDT of F . ut

In other words, from Corollary 1, we do not need to verify the representative
S-box, whose DDT is same in two rows, of an affine class.

Corollary 2 Let S : Fn
2 → Fn

2 is a single representative S-box of an affine
equivalence class AS. If the DDT-equivalence class CS of S is trivial, then the
DDT-equivalence classes of all S-boxes in AS are trivial.

Proof From Proposition 1, the DDT-equivalence class CS of S is trivial if and
only if it contains 22n−l elements. Then the DDT-equivalence classes CS′ of
all S-boxes S′ in AS contains 22n−l elements too (i.e. are trivial). ut
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From Corollary 2, if the representative S-box of an affine equivalence class
only has trivially DDT-equivalent S-boxes, then all S-boxes in this affine equiv-
alence class also only have trivially DDT-equivalent S-boxes.

In a summary, to verify the conjecture, it is sufficient to traverse a special
set of S-boxes. Any element in this set is a single representative S-box of an
affine equivalence class and its DDT is pairwise distinct in any two rows. Then,
if all these S-boxes in this set only have trivially DDT-equivalent S-boxes, the
conjecture is correct.
Extended Model. We extend the model in Section 3 to verify the conjecture.
This model can verify whether there exists any S-box S2(x) that is non-trivially
DDT-equivalent to a given S-box S1(x). We launch it by STP, if it returns that
there does not exist an S-box S2(x), then all S-boxes in the affine equivalence
class AS only have trivially DDT-equivalent S-boxes.

We build this model as follows. Firstly, we transform the relationship be-
tween two S-boxes S1(x), S2(x) and their same DDT into SMT problem as
Section 3.2, respectively.

Then, we add the constraint that S1(x) and S2(x) are non-trivially DDT-
equivalent as follows. For any c, d ∈ Fn

2 , there exist an x ∈ Fn
2 such that

S1(x) 6= S2(x⊕ c)⊕ d.

To implement this inequation by STP, we must exhaust c and d. We can
describe this inequation as CVC formats:

c, d: BITVECTOR(n);
ASSERT( S1[0] 6= S2[0⊕ c] ⊕ d OR

S1[1] 6= S2[1⊕ c] ⊕ d OR
· · · OR
S1[2n − 1] 6= S2[2n − 1⊕ c] ⊕ d

Finally, we assign the value of an S-box S(x) to S1(x).

ASSERT( (S1[0] = S[0]) AND · · · AND (S1[2n − 1]) = S[2n − 1]) );

Experimentally, we traverse all S-boxes in a special set where any S-box is
a single representative of an affine equivalence class and its DDT is pairwise
distinct in any two rows. Then we assign their values to S1(x) in our model to
verify the conjecture.
Experimental result. We efficiently verify the correctness of the conjecture
for all 3-bit S-boxes by using our model in a few minutes.

There are a total of 302 affine equivalence classes for all 4-bit S-boxes
(Table 5.2-5.8 in [21]). Note that, for 4-bit S-boxes, a linear structure is one
input difference to 16 same output differences. We classify their representative
S-boxes into two sets as follows.
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The DDT of any S-box in this set does not have the same rows. There
are a total of 259 S-boxes in this set. We further classify them according to
whether they have a linear structure.

[a] 253 S-boxes do not have linear structure except the input difference 0.
We verify that the size of their DDT-equivalence classes are 28 (i.e. are trivial).

[b] The representative S-boxes of classes 293, 294, 296, 299, and 300 have
only 1 linear structure except the input difference 0. We verify that the size of
their DDT-equivalence classes are 27 (i.e. are trivial).

[c] The representative S-box of class 302 is the identity function and it has
15 linear structures except the input difference 0. The dimension of its linear
space is l = 4. We verify that the size of its DDT-equivalence class is 24 (i.e.
is trivial).

Up to here, we already verify that the conjecture is correct for all 4-bit
S-boxes.
The DDT of any S-box in this set has the same rows. For completeness,
there are a total of 43 S-boxes in this set, even though we do not need to verify
this set. We list their class number in Table 14. The classes 295, 297, 298, and
301 have linear structures except the input difference 0.

[a] The representative S-boxes of classes 276, 277, and 287 do not have
linear structure except the input difference 0. We verify that the size of their
DDT-equivalence classes are 2× 28 (i.e. are non-trivial).

[b] The representative S-box of class 289 does not have linear structure
except the input difference 0. We verify that the size of its DDT-equivalence
class is 4× 28 (i.e. is non-trivial).

[c] The representative S-boxes of classes 295, 297, and 298 have only 1
linear structure except the input difference 0. The dimensions of their linear
spaces are l = 1. We verify that the size of their DDT-equivalence classes are
27 (i.e. are trivial).

[d] The representative S-box of class 301 has 3 linear structures except the
input difference 0. The dimension of its linear space is l = 2. We verify that
the size of their DDT-equivalence classes are 26 (i.e. is trivial).

[e] The representative S-boxes of other 35 classes do not have linear struc-
ture except the input difference 0. We verify that the size of their DDT-
equivalence classes are 28 (i.e. are trivial).

6 Conclusion and future works

This paper proposes a new method to search for S-boxes by considering many
cryptographic properties simultaneously, such as fix points, branch number,
differential uniformity, linearity, the frequency of differential uniformity (lin-
earity) and the number of BIBO patterns. We search out many 4-bit and 5-bit
S-boxes and compare them with some well-known ciphers. Our work provid
new insights on the design of S-boxes. We can trade off multiple properties
to achieve good resistance against differential and linear attacks rather than



22 Zhenyu Lu et al.

focusing on the optimal S-box with the lowest differential uniformity and lin-
earity.

Furthermore, what our method can do is far more than examples in this
paper. Boomerang Connectivity Table (BCT) [19] and Differential-Linear Con-
nectivity Table (DLCT) [8] can also be modeled like our method, and other
cryptographic properties related to DDT and LAT can also be added to our
model, such as the whole differential spectrum and Walsh spectrum.

On the other hand, some SAT-based works can optimize the implementa-
tion of an S-box [12,34,40]. We can combine our method with them to build
a SAT-based tool for designing an S-box with good cryptographic properties
and efficient hardware implementation.
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A Representatives for all 16 classes of optimal 4-bit S-boxes

Table 11: Representatives for all 16 classes of optimal 4 bit S-boxes

G0 0,1,2,13,4,7,15,6,8,11,12,9,3,14,10,5
G1 0,1,2,13,4,7,15,6,8,11,14,3,5,9,10,12
G2 0,1,2,13,4,7,15,6,8,11,14,3,10,12,5,9
G3 0,1,2,13,4,7,15,6,8,12,5,3,10,14,11,9
G4 0,1,2,13,4,7,15,6,8,12,9,11,10,14,5,3
G5 0,1,2,13,4,7,15,6,8,12,11,9,10,14,3,5
G6 0,1,2,13,4,7,15,6,8,12,11,9,10,14,5,3
G7 0,1,2,13,4,7,15,6,8,12,14,11,10,9,3,5
G8 0,1,2,13,4,7,15,6,8,14,9,5,10,11,3,12
G9 0,1,2,13,4,7,15,6,8,14,11,3,5,9,10,12
G10 0,1,2,13,4,7,15,6,8,14,11,5,10,9,3,12
G11 0,1,2,13,4,7,15,6,8,14,11,10,5,9,12,3
G12 0,1,2,13,4,7,15,6,8,14,11,10,9,3,12,5
G13 0,1,2,13,4,7,15,6,8,14,12,9,5,11,10,3
G14 0,1,2,13,4,7,15,6,8,14,12,11,3,9,5,10
G15 0,1,2,13,4,7,15,6,8,14,12,11,9,3,10,5

B DDT and LAT of GIFT‘s S-box

Table 12: DDT of the GIFT’s S-box

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 2 2 0 2 2 2 2 2 0 0 2
2 0 0 0 0 0 4 4 0 0 2 2 0 0 2 2 0
3 0 0 0 0 0 2 2 0 2 0 0 2 2 2 2 2
4 0 0 0 2 0 4 0 6 0 2 0 0 0 2 0 0
5 0 0 2 0 0 2 0 0 2 0 0 0 2 2 2 4
6 0 0 4 6 0 0 0 2 0 0 2 0 0 0 2 0
7 0 0 2 0 0 2 0 0 2 2 2 4 2 0 0 0
8 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4
9 0 2 0 2 0 0 2 2 2 0 2 0 2 2 0 0
10 0 4 0 0 0 0 4 0 0 2 2 0 0 2 2 0
11 0 2 0 2 0 0 2 2 2 2 0 0 2 0 2 0
12 0 0 4 0 4 0 0 0 2 0 2 0 2 0 2 0
13 0 2 2 0 4 0 0 0 0 0 2 2 0 2 0 2
14 0 4 0 0 4 0 0 0 2 2 0 0 2 2 0 0
15 0 2 2 0 4 0 0 0 0 2 0 2 0 0 2 2



An STP-based model toward designing S-boxes 27

Table 13: LAT of the GIFT’s S-box

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 2 -2 -2 2 4 0 0 -4 -2 -2 -2 -2
2 0 0 0 -4 0 4 0 0 2 2 2 -2 2 -2 2 2
3 0 0 0 -4 -2 -2 2 -2 2 -2 -2 -2 0 4 0 0
4 0 0 0 0 0 0 -4 -4 0 0 0 0 0 0 4 -4
5 0 0 0 0 2 -2 2 -2 0 4 4 0 2 2 -2 -2
6 0 0 0 -4 4 0 0 0 -2 -2 -2 2 2 -2 -2 -2
7 0 0 0 4 2 2 2 -2 2 -2 -2 -2 4 0 0 0
8 0 0 0 0 0 -4 0 -4 0 0 0 0 0 -4 0 4
9 0 0 0 0 -2 -2 2 2 4 0 0 4 2 -2 2 -2
10 0 0 -4 0 0 0 4 0 -2 -2 2 -2 -2 -2 2 -2
11 0 0 4 0 2 -2 2 2 -2 2 -2 -2 0 0 4 0
12 0 4 4 0 0 0 0 0 0 -4 4 0 0 0 0 0
13 0 -4 4 0 -2 2 2 -2 0 0 0 0 -2 -2 -2 -2
14 0 -4 0 0 4 0 0 0 2 -2 2 2 -2 2 2 2
15 0 -4 0 0 -2 -2 -2 2 -2 -2 2 -2 4 0 0 0

C The class number of the affine equivalence classes in [21]

Table 14: The class number of affine equivalence classes in the set where any
DDT of an S-box has the same rows.

Class 15 16 26 31 32 33 108 136 137 142

143 190 216 233 248 249 250 251 252 253 254

255 256 257 258 259 262 267 268 272 273 276

277 282 284 287 288 289 291 295 297 298 301


