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Abstract. At Asiacrypt 2021, Baksi et al. introduced DEFAULT, the10

first block cipher designed to resist differential fault attacks (DFA) at the11

algorithm level, boasting of a 64-bit DFA security. The cipher initially12

employed a straightforward key schedule, where a single key was XORed13

in all rounds, and the key schedule was updated by incorporating round-14

independent keys in a rotating fashion. However, during Eurocrypt 2022,15

Nageler et al. presented a DFA attack that exposed vulnerabilities in the16

claimed DFA security of DEFAULT, reducing it by up to 20 bits in the17

case of the simple key schedule and even allowing for unique key recovery18

in the presence of rotating keys. In this work, we have significantly im-19

proved upon the existing differential fault attack (DFA) on the DEFAULT20

cipher. Our enhanced attack allows us to effectively recover the encryp-21

tion key with minimal faults. We have accomplished this by computing22

deterministic differential trails for up to five rounds, injecting around 523

faults into the simple key schedule for key recovery, recovering equiva-24

lent keys with just 36 faults in the DEFAULT-LAYER, and introducing25

a generic DFA approach suitable for round-independent keys within the26

DEFAULT cipher. These results represent the most efficient key recov-27

ery achieved for the DEFAULT cipher under DFA attacks. Additionally,28

we have introduced a novel fault attack called the Statistical-Differential29

Fault Attack (SDFA), specifically tailored for linear-structured SBox-30

based ciphers like DEFAULT. This novel technique has been successfully31

applied to BAKSHEESH, resulting in a nearly unique key recovery. Our32

findings emphasize the vulnerabilities present in linear-structured SBox-33

based ciphers, including both DEFAULT and BAKSHEESH, and under-34

score the challenges in establishing robust DFA protection for such cipher35

designs. In summary, our research highlights the significant risks associ-36

ated with designing linear-structured SBox-based block ciphers with the37

aim of achieving cipher-level DFA protection.38
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1 Introduction41

The differential fault attack (DFA) is a powerful physical attack that poses a sig-42

nificant threat to symmetric key cryptography. Introduced in the field of block43

ciphers by Biham and Shamir [9], DFA [21,19,30] has proven to be capable of44

compromising the security of many block ciphers that were previously considered45

secure against classical attacks. While nonce-based encryption schemes can au-46

tomatically prevent DFA attacks by incorporating nonces in encryption queries,47

the threat of DFA [24,17] still persists in designs with a parallelism degree greater48

than 2. Additionally, DFA [23,15,16] can pose a significant risk to nonce-based49

designs in the decryption query. In essence, DFA represents a significant chal-50

lenge for cryptographic implementations whenever an attacker can induce phys-51

ical faults. In response to this threat, the research community has focused on52

proposing countermeasures to enhance the DFA resistance of ciphers.53

Countermeasures against fault injection attacks can be classified into two54

main categories. The first category focuses on preventing faults from occurring55

by utilizing specialized devices. The second category focuses on mitigating the56

impact of faults through redundancy or secure protocols. Countermeasures that57

mitigate the effects of fault injection attacks utilize redundancy for protection.58

These countermeasures can be classified into three categories based on where the59

redundancy is introduced: cipher level (no redundant computation), using a sepa-60

rate dedicated device, and incorporating redundancy in computation (commonly61

achieved through circuit duplication). Additionally, protocol-level techniques can62

also be employed to enhance fault protection.63

Most of the countermeasures against attacks on cryptographic primitives,64

modes of operation, and protocols are focused on implementation-level defenses65

without requiring changes to the underlying cryptographic algorithms or pro-66

tocols themselves. One effective countermeasure against DFA is to introduce67

redundancy into the system so that it can still function even if some faults or68

errors are introduced. Another countermeasure is to use error detection and69

correction codes. These codes can detect when errors or faults have occurred70

and correct them before they affect the output. Recent cryptographic designs71

propose primitives with built-in features to enable protected implementations72

against DFA attacks. For instance, FRIET [28] and CRAFT [8] are efficient and73

provide error detection. DEFAULT [4] is a more radical approach, aiming to pre-74

vent DFA attacks through cipher-level design. A brief survey on fault attacks75

and their countermeasures in symmetric key cryptography can be found in [3].76

DEFAULT is a block cipher design proposed by Baksi et al. at Asiacrypt77

2021 that provides protection against DFA attacks at the cipher level. The pri-78

mary component of the DFA protection layer in DEFAULT (called the DEFAULT-79

LAYER) is a weak class linear structure (LS) based substitution boxes (SBox),80

which behave like linear functions in some aspects. The idea behind the DEFAULT81

design is that strong non-linear SBoxes are more resistant against classical dif-82

ferential attacks (DA), but weaker against DFA attacks. Conversely, weaker non-83

linear SBoxes are more resistant against DFA attacks but weaker against DA.84

Simply speaking, the DEFAULT cipher is a combination of DEFAULT-LAYER85
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(where rounds are used LS SBoxes) and DEFAULT-CORE (where rounds are86

used non-LS SBoxes). To address this trade-off, DEFAULT maintains the main87

cipher, which is presumed secure against classical attacks, and adds two keyed88

permutations as additional layers before and after it. These keyed permutations89

have a unique structure that makes DFA non-trivial on them, resulting in a DFA-90

resistant construction. The SBox in DEFAULT-LAYER features three non-trivial91

LS elements, resulting in specific inputs/outputs becoming differentially equiv-92

alent, including the associated keys. As a result, attackers cannot learn more93

than half of the key bits by attacking the SBox layer. The designers claim that94

using DFA, an adversary can only recover 64 bits out of a 128-bit key, leaving95

a remaining keyspace of 264 candidates that is difficult to brute-force. For even96

more security, the design approach can be scaled for a larger master key size. In97

their initial design [5], the authors first propose the simple key schedule func-98

tion where the master key is used throughout each round in the cipher. Then99

in [4] the authors update the simple key schedule by recommending to use of100

the rotating key schedule function in the cipher to make it a more DFA secure101

cipher.102

In [20], the authors initially demonstrate the vulnerability of the simple key103

schedule of the DEFAULT cipher to DFA attacks. They highlight that this attack104

can retrieve more key information than what the cipher’s designers claimed,105

surpassing the 64-bit security level. The authors also present a method to retrieve106

the key in the case of a rotating key schedule by exploiting faults to create an107

equivalent key and then targeting the DEFAULT-CORE to recover the actual108

key. However, their attack on the simple key schedule does not achieve unique109

key recovery even with an increased number of injected faults. Moreover, as110

described in [11], this work presents a differential fault attack on the DEFAULT111

cipher under the simple key schedule, but it is worth noting that this attack is112

not applicable to the modified version of the cipher employing a key scheduling113

algorithm.114

In recent times, Baksi et al. introduced a new lightweight block cipher based115

on linear structure (LS SBox) principles, as detailed in [6]. Similar to the DEFAULT-116

LAYER, which incorporates three non-trivial LS elements within its SBox, this117

newly introduced design features only one non-trivial LS element, resulting in a118

DFA security level of 232. Although the designers have not explicitly claimed any119

DFA security, we find it pertinent to conduct a comprehensive investigation into120

its DFA security, given its alignment with the LS SBox-based design paradigm.121

1.1 Our Contributions122

In this paper, we make several contributions in the field of fault attacks on123

LS SBox-based ciphers: DEFAULT and BAKSHEESH. Firstly, we demonstrate124

the vulnerability of the DEFAULT cipher to DFA attacks under bit-flip fault125

models, specifically targeting the simple key schedule. Our approach effectively126

reduces the key space with a minimal number of injected faults, surpassing the127

performance of previous attacks. To achieve this, we propose novel techniques128

for deterministic trail computation up to five rounds by analyzing the ciphertext129
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differences. These techniques enable us to filter the intermediate rounds and130

further reduce the key space.131

Furthermore, we extend our analysis to the rotating key schedule and show-132

case the efficiency of our approach in reducing the key space to a unique solution133

with a minimal number of faults. Additionally, we present a general framework134

for computing equivalent keys of the DEFAULT-LAYER cipher. By applying this135

framework, we demonstrate the efficacy of DFA attacks on rotating key schedules136

with significantly fewer injected faults.137

Moreover, we introduce a new attack called the Statistical-Differential Fault138

Attack under the bit-set fault model. This attack efficiently recover the round139

keys of the DEFAULT cipher, even when the keys are independently chosen from140

random sources.141

Finally, we applied our proposed DFA attack to another linear-structured142

SBox-based cipher, BAKSHEESH, efficiently recovering its master key uniquely.143

Likewise, under the bit-set fault model, the SDFA attack can be effectively ap-144

plied to nearly retrieve its key uniquely.145

To summarize our contributions, we offer a concise performance comparison146

between our enhanced attacks and previous attack methods in Table 1. Our work147

represents a substantial advancement in the field of fault attacks on LS SBox-148

based ciphers, notably the DEFAULT and BAKSHEESH ciphers, by introducing149

a highly effective key recovery strategy.150

Cipher Key Schedule Relevant Works Attack Strategy
Results

References
# of Faults Key Space

DEFAULT

Simple

Nageler et al.
Enc-Dec IC-DFA 16 239 [20, Section 6.1]

Multi-round IC-DFA 16 220 [20, Section 6.2]

This Work

Second-to-Last Round Attack 64 232 Section 3.1.2

Third-to-Last Round Attack 34 1 Section 3.1.3

Fourth-to-Last Round Attack 16 1 Section 3.1.4

Fifth-to-Last Round Attack 5 1 Section 3.1.5

SDFA [64, 128] 1 Section 4.2

Rotating

Nageler et al.

Generic NK-DFA 1728 + x 1 [20, Section 4.3]

Enc-Dec IC-NK-DFA 288 + x 232 [20, Section 5.1]

Multi-round IC-NK-DFA (84± 15) + x 1 [20, Section 5.2, 6.3]

This Work

Third-to-Last Round Attack 96 + x 1 Section 3.2.2.1

Fourth-to-Last Round Attack 48 + x 1 Section 3.2.2.2

Fifth-to-Last Round Attack 36 + x 1 Section 3.2.2.3

SDFA [64, 128] 1 Section 4.3

BAKSHEESH Rotating This Work

Second-to-Last Round Attack 40 1 Section 5.1.2

Third-to-Last Round Attack 12 1 Section 5.1.3

SDFA 128 1 Section 5.2

*x represents the number of faults to retrieve the key at the DEFAULT-CORE. We verified that 32

bit-faults at the second-to-last round in DEFAULT-CORE achieve unique key recovery.

Table 1: Differential Fault Attacks on DEFAULT with Different Key Schedules
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2 Preliminaries151

In this section, we will introduce the notations that will be utilized throughout152

the paper. Following that, we will provide descriptions of the DEFAULT and153

BAKSHEESH ciphers. Subsequently, we will offer a concise overview of DFA154

attacks, followed by an in-depth discussion of the linear structure (LS) SBox, a155

crucial element in designing a block cipher with DFA protection. The following156

notations are used throughout the paper.157

– a⊕ b denotes the bit-wise XOR of a and b.158

– + denotes the integer addition.159

– ∪,∩ denotes the set union and intersection respectively.160

– ∆C denotes the ciphertext difference.161

2.1 Description of DEFAULT Cipher162

The DEFAULT cipher [4] is a lightweight block cipher with a 128-bit state and163

key size. It is designed to resist DFA attacks by limiting the amount of key infor-164

mation that can be learned by an attacker. The cipher incorporates two keyed165

permutations, known as DEFAULT-LAYER, as additional layers before and after166

the main cipher. These layers provide protection against DFA attacks and other167

classical attacks. The DEFAULT cipher consists of two main building blocks:168

DEFAULT-LAYER and DEFAULT-CORE. The DEFAULT-LAYER layer protects the169

cipher from DFA attacks, while the DEFAULT-CORE layer protects against clas-170

sical attacks. The encryption function of the DEFAULT cipher can be expressed171

as Enc = EncDEFAULT-LAYER ◦ EncCORE ◦ EncDEFAULT-LAYER, indicating that the172

encryption process involves applying the DEFAULT-LAYER function before and173

after the DEFAULT-CORE function.174

The DEFAULT cipher employs a total of 80 rounds, with the DEFAULT-LAYER175

function being applied 28 times and the DEFAULT-CORE function being applied176

24 times. Each round function consists of a structured 4-bit SBox layer, a per-177

mutation layer, an add round constant layer, and an add round key layer. The178

DEFAULT-LAYER function utilizes a linear structured SBox, while the DEFAULT-179

CORE function utilizes a non-linear structured 4-bit SBox. In the following sec-180

tions, we will discuss each component of the DEFAULT cipher in detail.181

2.1.1 SBoxes The DEFAULT-LAYER layer of the DEFAULT cipher utilizes a182

4-bit Linear Structured SBox, denoted as S. Table 2a shows the mapping of183

input and output values for this SBox, and it consists of four linear structures:184

0 → 0, 6 → a, 9 → f , and f → 5. The definition of a linear structure can be185

found in Definition 1. Similarly, the DEFAULT-CORE layer uses another SBox,186

denoted as Sc. Table 2b provides the input-output mapping for this SBox. To187

evaluate the differential behavior of S and Sc, the differential distribution tables188

are given in Table 3a and Table 3b respectively.189
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x : 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) : 0 3 7 e d 4 a 9 c f 1 8 b 2 6 5

(a) DEFAULT-LAYER SBox

x : 0 1 2 3 4 5 6 7 8 9 a b c d e f

Sc(x) : 1 9 6 f 7 c 8 2 a e d 0 4 3 b 5

(b) DEFAULT-CORE SBox

Table 2: SBoxes for DEFAULT cipher
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16
1 8 8
2 8 8
3 8 8
4 8 8
5 8 8
6 16
7 8 8
8 8 8
9 16
a 8 8
b 8 8
c 8 8
d 8 8
e 8 8
f 16

(a) DDT of S

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16
1 2 2 2 2 2 2 2 2
2 4 4 4 4
3 2 2 2 2 2 2 2 2
4 4 4 4 4
5 2 2 2 2 2 2 2 2
6 4 4 4 4
7 2 2 2 2 2 2 2 2
8 4 4 4 4
9 2 2 2 2 2 2 2 2
a 4 4 8
b 2 2 2 2 2 2 2 2
c 4 4 4 4
d 2 2 2 2 2 2 2 2
e 4 4 8
f 2 2 2 2 2 2 2 2

(b) DDT of Score

Table 3: DDT of SBoxes used in DEFAULT

Definition 1 (Linear Structure). For F : Fn
2 → Fn

2 , an element a ∈ Fn
2 is190

called a linear structure of F if for some constant c ∈ Fn
2 , F (x)⊕ F (x⊕ a) = c191

holds ∀x ∈ Fn
2 .192

2.1.2 Permutation Bits The DEFAULT cipher incorporates the GIFT-128193

permutation (P ) in each of its rounds, which is derived from the GIFT [7] ci-194

pher. In the permutation layer of the GIFT cipher, there are two versions: one195

with 4 Quotient-Remainder groups for the 64-bit version, and another with 8196

Quotient-Remainder groups for the 128-bit version. It is worth noting that these197

8 Quotient-Remainder groups do not diffuse over themselves for 2 rounds.198

2.1.3 Add Round Constants For DEFAULT cipher, a round constant of199

6-bits are XORed with the indices 23, 19, 15, 11, 7 and 3 respectively at each of200

the rounds. Along with this, the bit index 127 is flipped at each round to modify201

the state bits.202

2.1.4 Add Round Key The round key for DEFAULT cipher is 128 bits in203

length. In the first preprint version of DEFAULT, a simple key schedule was204

used where all the round keys were the same as the master key for each round.205

However, in a later version, a stronger key schedule was proposed to enhance206

security against DFA attacks. In this updated version, the authors introduced207

an idealized key schedule where each round key is independent of the others.208
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x : 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) : 3 0 6 d b 5 8 e c f 9 2 4 a 7 1

(a) SBox

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 16
1 4 4 4 4
2 4 4 4 4
3 4 4 4 4
4 4 4 4 4
5 4 4 4 4
6 4 4 4 4
7 4 4 4 4
8 16
9 4 4 4 4
a 4 4 4 4
b 4 4 4 4
c 4 4 4 4
d 4 4 4 4
e 4 4 4 4
f 4 4 4 4

(b) DDT of SBox

Table 4: SBox and DDT of BAKSHEESH cipher

Although this idealized scheme requires 28 × 128 key bits to encrypt 128 bits209

of state using the DEFAULT cipher, it is not practical. To address this, the210

authors employed an unkeyed function R to generate four different round keys211

K0, · · · ,K3, where K0 = K and Ki = R4(Ki−1) for i ∈ 1, 2, 3. These four round212

keys are then used periodically for each round to encrypt the plaintext.213

2.2 Specification of BAKSHEESH214

BAKSHEESH [6] is a lightweight block cipher designed to process 128-bit plain-215

texts. It is based on the GIFT-128 [7] cipher, featuring 35 rounds of encryption.216

Within its design, BAKSHEESH employs a 4-bit substitution-permutation box217

(SBox) with a non-linear LS element. The round function of BAKSHEESH com-218

prises four operations: SubCells–applying a 4-bit linear structured SBox to the219

state, PermBits–permuting the bits of the state (similar to GIFT-128), AddRound-220

Constants–XORing a 6-bit constant and an additional bit to the state (similar to221

GIFT-128), and AddRoundKey–XORing the round key with the state. The SBox222

and its DDT are provided in Table 4a and Table 4b, respectively. BAKSHEESH223

exhibits a single linear structure at 8. Additionally, concerning the round keys,224

the first round key matches the master key, and subsequent round keys are225

generated with a 1-bit right rotation. More details about the specification of226

BAKSHEESH cipher cen be found in [6].227

2.3 Differential Fault Attack228

Differential Fault Attack (DFA) is a type of Differential Cryptanalysis that op-229

erates in the grey-box model. In this attack, the attacker deliberately introduces230

faults during the final stages of the cipher to extract the secret component ef-231

fectively. In contrast, the security of a cipher against Differential Cryptanalysis232

in the black-box model depends on the probability of differential trails (fixed233

input/output difference) being as low as possible. However, in DFA, the attacker234
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can introduce differences at the intermediate stages by inducing faults, increas-235

ing the trail probability for those rounds significantly. As a result, the attacker236

can extract the secret component more efficiently than in Differential Cryptanal-237

ysis in the black-box model. Finally, estimating the minimum number of faults238

is crucial in DFA to ensure the attack is both efficient and effective, keeping the239

search complexity within acceptable limits. To protect ciphers from DFA attacks,240

various state-of-the-art countermeasures have been proposed, including the use241

of dedicated devices or shields that prevent any potential sources of faults. Other242

countermeasures include the implicit/explicit detection of duplicated computa-243

tions and mathematical solutions designed to render DFA ineffective or ineffi-244

cient.245

2.4 Revisiting Learned Information via the Linear Structure SBox246

A linear structure SBox is a class of permutations that exhibit some properties247

of linear functions, making them weaker than non-linear permutations in certain248

aspects. The SBox S used in DEFAULT-LAYER has four linear structures as249

L(S) = {0, 6, 9, f}. According to the DDT (Table 3a) of S, the non-trivial linear250

structures are 6, 9 and f . Similarly, for the inverse SBox S−1, the set of all251

linear structures of S−1 will be L(S−1) = {0, 5, a, f}. In their work [4], the252

designers demonstrate that inducing bit flips before the SBox can yield limited253

information to attackers, reducing key bits from 4 to 2 during encryption faults.254

However, in [20], Nageler et al. showed an improved DFA targeting the decryption255

algorithm, further reducing key bits to 1. This reduction to 232 contradicts the256

initial claim of 264 key space reduction. Learning key information from a linear257

structure SBox is non-trivial, and previous works lack detail on this aspect. This258

section revisits how attackers can glean key information from faults injected259

during both encryption and decryption queries at the SBox.260

Learned Information from S/S−1. Suppose that (x0, x1, x2, x3) and (y0, y1, y2, y3)
are respectively the bit-level input and output of SBox S. Similarly, (y0, y1, y2, y3)
and (x0, x1, x2, x3) are the input and output of S−1. Note that, the output of
S is same as the input to S−1 and vice-versa. Consider a set A of inputs which
satisfy the differential α → β for the SBox S, i.e., A = {x : S(x)⊕S(x⊕α) = β}.
Then, for any y ∈ L(S), we have,

S(x⊕y)⊕ S(x⊕y ⊕α) = (S(x)⊕S(x⊕y))⊕(S(x⊕α)⊕S(x⊕y⊕α))⊕ (S(x)⊕S(x⊕α))

= β. [As, (S(x)⊕S(x⊕y)) = (S(x⊕α)⊕S(x⊕α⊕ y)).]

This result shows that x ∈ A =⇒ x ⊕ y ∈ A, y ∈ L(S). Thus, for any input261

x ∈ {0, 1, . . . , f}, the attacker cannot uniquely identify which among {x, x⊕6, x⊕262

9, x⊕f} is the actual input to the SBox. Further, this can be partitioned into four263

subsets as {{0, 6, 9, f}, {1, 7, 8, e}, {2, 4, b, d}, {3, 5, a, c}} = {B0,B1,B2,B3}. Sim-264

ilarly, for S−1, the partition will be {{0, 5, a, f}, {1, 4, b, e}, {2, 7, 8, d}, {3, 6, 9, c}} =265

{D0,D1,D2,D3}. The input bit relations of Bi/Di’s of S/S−1 are denoted by266

Beq
i /Deq

i and given in Table 5. For example, consider the SBox S−1 (for encryp-267

tion) with a differential 7 → 2. Then, the number of inputs that satisfy 7 → 2268
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Beq
0 Beq

1 Beq
2 Beq

3 Deq
0 Deq

1 Deq
2 Deq

3

3∑
i=0

xi = 0
3∑

i=0
xi = 0

3∑
i=0

xi = 1
3∑

i=0
xi = 1

3∑
i=0

yi = 0
3∑

i=0
yi = 1

3∑
i=0

yi = 1
3∑

i=0
yi = 0

x0 ⊕ x3 = 0 x0 ⊕ x3 = 1 x0 ⊕ x3 = 0 x0 ⊕ x3 = 1 y0 ⊕ y2 = 0 y0 ⊕ y2 = 1 y0 ⊕ y2 = 0 y0 ⊕ y2 = 1

x1 ⊕ x2 = 0 x1 ⊕ x2 = 1 x1 ⊕ x2 = 1 x1 ⊕ x2 = 0 y1 ⊕ y3 = 0 y1 ⊕ y3 = 0 y1 ⊕ y3 = 1 y1 ⊕ y3 = 1

Table 5: Input Bit Relations of Partition Correspond to S/S−1

will be D2 ∪ D0 = {0, 5, a, f, 2, 7, 8, d} and hence, the attacker can learn the bit269

relation of this input set D2 ∪ D0 as Deq
2 ∩ Deq

0 =⇒ y0 ⊕ y2 = 0. Similarly, if270

the differential 7 → 4 happens, then the attacker can learn the bit relation as271

Deq
1 ∩ Deq

3 =⇒ y0 ⊕ y2 = 1. In this way, for any differential α → β of S−1, the272

attacker can learn the bit relation of the inputs that satisfy α → β. Conversely, if273

we consider the SBox S (for decryption) with differential γ → δ, the attacker can274

learn the bit relation from the sets Bi, i ∈ {0, 1, 2, 3}. For example, the inputs to275

satisfy the differential 2 → 7 will be B2 ∪ B0 and thus, input bit relation will be276

Beq
2 ∩ Beq

0 =⇒ x0 ⊕ x3 = 0. Similarly, for 2 → d, the learned information will277

be Beq
1 ∩ Beq

3 =⇒ x0 ⊕ x3 = 1.278

Consider an encryption query where difference is injected at the last round
before the SBox operaration. Let (k0, k1, k2, k3) be the key XORed with the
output of SBox and outputs the ciphertext (ignore the linear layer). Now, for each
SBox, we are going to combine these learned information for the input/output
of S/S−1 with the key to learn the corresponding key relation. For example,
consider the learned information y0 ⊕ y2 = 0 for a given differential 2 → 7 of S
(7 → 2 for S−1). If c be the non-faulty ciphertext, then we have,

c0 ⊕ c2 = (y0 ⊕ y2)⊕ (k0 ⊕ k2) =⇒ (k0 ⊕ k2) = (c0 ⊕ c2)⊕ (y0 ⊕ y2) = c0 ⊕ c2.

This relation shows that the attacker can learn the key information from the279

ciphertext relation. In the way, for both encryption and decryption, an attacker280

can learn key informations for each non-zero differential of S/S−1. In Table 6,281

we summarize the key bits information for both enc/dec which can be learned282

based on the input difference of S/S−1.

Direction Learned expression

0 1 2 3 4 5 6 7 8 9 a b c d e f

Enc (S−1) 1
3∑

i=0
ki k0⊕k2 k1⊕k3 k0⊕k2 k1⊕k3 1

3∑
i=0

ki

3∑
i=0

ki 1 k1⊕k3 k0⊕k2 k1⊕k3 k0⊕k2

3∑
i=0

ki 1

Dec (S) 1
3∑

i=0
ki k0⊕k3 k1⊕k2

3∑
i=0

ki k1⊕k2 1 k0⊕k3 k0⊕k3 1 k1⊕k2

3∑
i=0

ki k1⊕k2 k0⊕k3

3∑
i=0

ki 1

Table 6: Learned Key-Information when faulting at (S/S−1)
283

3 Our Improvements of DFA on DEFAULT Cipher284

In this work, we focus on improving the previously proposed differential fault285

analysis (DFA) attack on the DEFAULT cipher, specifically on both its simple286

and rotating key schedules. To enhance this attack, we first introduce a strat-287

egy that allows for the deterministic computation of the internal differential288
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path when faults are injected up to the fifth-to-last rounds. We demonstrate289

the effectiveness of this method by applying it to the simple key schedule of290

the DEFAULT cipher and showing that an attacker can recover the key if faults291

are introduced during the third, fourth, or fifth-to-last rounds. Additionally, we292

improve the DFA attack on the rotating key schedule of the DEFAULT cipher.293

Throughout the paper, we use the encryption oracle to inject faults. Overall,294

our work is focused on fully breaking the DFA security of the DEFAULT cipher295

under difference-based fault attacks and providing insights into the challenges of296

using linear structure (LS) substitution boxes (SBox) in block ciphers to achieve297

cipher-level protection.298

Fault Model. In this attack, we consider a fault model where the goal is to in-299

duce a precise single bit-flip faults in the cryptographic state nibble during the300

encryption query. For instance, an attacker might deliberately introduce a single301

bit-flip fault to alter a single bit in the nibble, located just before the input to the302

SBox operation, at the ith last round of the state during encryption. Achieving303

this level of precision is feasible in practice, as attackers can employ techniques304

such as Laser fault injection [2,14,27]. These methods offer high accuracy in both305

space and time. Additionally, electromagnetic (EM) fault injection serves as an306

alternative method that does not require the de-packaging of the chip. Practi-307

cal implementation of precise bit-level fault injections has been demonstrated308

through EM fault injection setups, as illustrated in [26].309

3.1 Attacks on Simple Key Schedule310

In their previous work, Nageler et al. [20] expanded their DFA attack by induc-311

ing bit-flip faults across multiple rounds to further reduce the key space. Their312

strategy involved injecting differences at certain rounds and exploring all possible313

differential paths through subsequent rounds based on the DDT. By analyzing314

the distribution of input/output differences at each SBox in subsequent rounds,315

they conducted differential analysis to recover key bits. However, this approach316

could not reduce the key space beyond 216, despite the potential for inducing317

additional faults. As a result, we delved deeper into this issue and devised a318

novel approach to achieve complete key recovery with significantly fewer faults.319

Moreover, our proposed attack enables key retrieval with significantly reduced320

offline computation time compared to previous approaches.321

In this section, we present our strategy for deterministic computation of the322

differential trail up to five rounds in order to perform efficient DFA attacks. We323

describe how we compute the trail and utilize it to retrieve the key using bit-324

flip faults. Additionally, we analyze the number of faults required to uniquely325

recover the key for different rounds, providing an estimate of the fault complexity326

involved in the attack.327

3.1.1 Faults at the Last Round In this attack scenario, the attacker needs328

to inject faults and analyze each of the 32 Substitution Boxes (SBox) indepen-329

dently. As per the designers’ claim, injecting faults at each SBox nibble can330
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reduce the search space from 24 to 22 at most, resulting in a total search com-331

plexity of 432 = 264. However, in [20], the authors further reduce the SBox332

nibble space to 2 by injecting faults at the decryption algorithm. Specifically,333

the authors demonstrate how to derive three linearly independent equations for334

each nibble of the key by inducing two and one faults in the encryption and335

decryption algorithms, respectively. It is worth noting that computing the table,336

which calculates the learned information involving the key nibbles for encryption337

and decryption algorithms, is not a straightforward process according to their338

work. Hence, we revisit the methodology for computing this table regarding the339

learned information involving the key nibbles and aim to provide a more detailed340

explanation.341

Based on the information learned from Table 6, an attacker can learn two342

bits of information for each nibble in the last round of the DEFAULT-LAYER.343

One approach to reduce the key space is to inject two single bit-flip faults at each344

nibble in the last round before the SBox operation and reduce the key nibbles of345

22 individually, resulting in a key space reduction to 264 by inducing 2×32 = 64346

number of bit-faults at the last round. However, a more efficient strategy is347

needed to induce faults further from the last rounds and deterministically obtain348

information about the input differences of each SBox in the last round. This349

requires developing a strategy that can deterministically guess the differential350

path from which the faults are injected. In the upcoming subsections, we will351

demonstrate that it is possible to deterministically guess the differential path of352

the DEFAULT-LAYER up to five rounds. By inducing around five bit-flip faults353

at the fifth-to-last round, we estimate that the key space can be reduced to 264354

with greater efficiency than the naive approach.355

3.1.2 Faults at the Second-to-Last Round In this attack scenario, we356

assume that bit-faults are introduced at each nibble during the second-to-last357

round of the DEFAULT-LAYER. As a result, the fault propagation can affect358

at most four nibbles in the final round of the DEFAULT-LAYER. The DEFAULT-359

LAYER uses the GIFT-128 bit permutation internally, which has a useful property360

known as the Quotient-Remainder group structure. At round r, the 32 nibbles361

of a DEFAULT state are denoted as Sr
i , i = 0, . . . , 31 and can be grouped into362

eight groups Gri = (Sr
4i, S

r
4i+1, S

r
4i+2, S

r
4i+3) for i = 0, . . . , 7. This property states363

that any group at round r is permuted to a group of four nibbles at round r+1364

through a 16-bit permutation, i.e.,365

Gri
16 bit permutation−−−−−−−−−−−−→ (Sr

i , S
r
i+8, S

r
i+16, S

r
i+24), i = 0, . . . , 7.

The structure of the cipher allows for a nibble difference at the input of366

group Gri in the second-to-last round to induce a bit difference in four nib-367

bles Sr+1
i , Sr+1

i+8 , S
r+1
i+16, and Sr+1

i+24 in the last round. This observation enables368

an attacker to deterministically determine the differential path by injecting bit-369

flip faults at the second-to-last round. Moreover, this observation allows for370

the deterministic computation of the differential paths up to five rounds, which371

11



we will discuss in the next subsections. This is possible because for each non-372

faulty and faulty ciphertext, the last round can be inverted by checking the in-373

put bit-difference at each nibble using the differential distribution table (DDT).374

The internal state difference can then be computed by checking the input bit-375

difference after the second-to-last round’s inverse using the Quotient-Remainder376

group structure.377

Attack Strategey. To attack the cipher in this scenario, a simple approach is to378

inject two bit-faults at each nibble in the last round, reducing the keyspace of379

each nibble to 22, i.e., the overall keyspace is thus reduced to 264. Then, inject380

one fault at each nibble in the second-to-last round, reducing the keyspace to381

232. To accomplish this, we first group the 32 nibbles of the state into eight382

groups Gri, each consisting of four nibbles, and consider the combined key space383

of nibble positions i, i+ 8, i+ 16, and i+ 24 for each group Gri.384

For each key in the combined key space of Gri, we invert two rounds by con-385

sidering the equivalent key classes of individual nibble positions at the second-386

to-last round and checking whether they satisfy Gri’s input difference at the387

second-to-last round. By doing this, we can determine the internal state dif-388

ference between the faulty and non-faulty ciphertexts. It is noteworthy that389

injecting faults in more than one nibble within Gri during encryptions at the390

second-to-last round can further reduce the keyspace for that group, poten-391

tially from 216 to 24. The overall keyspace has now been effectively reduced to392

24·8 = 232, considering 8 groups denoted as Gri. Initially, this approach neces-393

sitates approximately 2 × 32 + 32 = 96 bit-faults to achieve this reduction in394

the keyspace. However, we have enhanced this attack by introducing faults at395

the second-to-last round during encryption. Our practical verification shows that396

injecting faults at each SBox in the second-to-last round, specifically inducing397

faults at the least significant bits of the nibble (i.e., either at index 1 or index 2),398

notably reduces the keyspace to 232. This is because the output difference spread399

more differences if the input difference is either 2 or 4 (see DDT in Table 3a).400

The specific values representing the reduced keyspace for varying numbers of401

injected faults can be found in Table 10 (Appendix A).402

3.1.3 Faults at the Third-to-Last Round In this section, we focus on the403

key space reduction using Difference-based Analysis (DFA) for three rounds. We404

introduce a fault at the third-to-last round of the cipher, i.e., at round R25 in405

DEFAULT-LAYER. Throughout the attack, we induce bit-faults at the nibbles406

to generate input differences, and we assume that we know the nibble index407

where the input differences are injected. The attack consists of two phases. In408

the initial phase, we inject a bit fault at the input of the third-to-last round and409

determine the trail of three rounds deterministically. To achieve this, we com-410

pute the input and output differences of every nibble at each round, allowing411

us to trace the propagation of differences through the cipher. By carefully ana-412

lyzing the trail, we can establish a deterministic relationship between the input413

differences and the output differences, enabling us to deduce the trail with high414
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confidence. In the second phase, we utilize the computed trail to reduce the key415

space of the cipher. With knowledge of the trail, we can target specific nibbles416

and their corresponding input differences at the last round. By exploiting these417

input differences, we can perform DFA and significantly reduce the key space.418

This reduction is based on the fact that we now have knowledge of the correla-419

tions between the input-output differences and the key bits, allowing us to make420

informed guesses and narrow down the possible key values.421

Deterministic Trail Finding. We know that a nibble difference at position Gri422

can activate the four nibbles at positions i, i + 8, i + 16, and i + 24 after one423

round of the DEFAULT cipher. Then, the nibble differences propagate to the424

groups Gr j
4
, where j = i, i + 8, i + 16, i + 24, in the next round. By inducing425

an input difference at any nibble before the SBox operation in the third-to-426

last round R25 of DEFAULT-LAYER, we can activate the nibbles at positions i,427

i + 8, i + 16, and i + 24 in the second-to-last round. Furthermore, the nibble428

differences in the groups Gr j
4
, where j = i, i+ 8, i+ 16, i+ 24, in the second-to-429

last round can activate at most all the even-positioned nibbles in the last round.430

This fault propagation property is illustrated in Figure 6 (Appendix A). This431

property of differential propagation allows us to determine the differential trail432

deterministically when an attacker injects bit-faults at the third-to-last round.433

The procedure for computing the differential trail is described in Algorithm 1.434

This algorithm takes advantage of the single bit differences in the input of each435

SBox at the last three rounds. By systematically analyzing the propagation of436

these single bit differences, we can construct the differential trail with certainty.437

Key Recovery. For each differential trail, we begin by narrowing down the key438

nibble spaces associated with active SBox in the final round through a com-439

parison of non-faulty and faulty ciphertexts. By introducing two distinct bit440

differences at each nibble in the final round, we can efficiently reduce the key441

space to 22. Next, we focus on each group Gri, where i ranges from 0 to 7, at442

the second-to-last round. We combine the key spaces from the nibble positions443

i, i + 8, i + 16, and i + 24 based on the key nibbles of the last round. For each444

combined key, we perform the inverse of one round and check the corresponding445

trail list to determine the resulting differential. At this stage, we use the equiv-446

alent key nibble obtained from the reduction at the last round. If the computed447

differential matches the observed differential, we consider the combined key as a448

potential key combination. This filtering process is applied to each group at the449

second-to-last round. Finally, we create combined key spaces for each even/odd450

position based on the key reductions at the second-to-last round. These cor-451

respond to the left/right half of the nibbles at the third-to-last round. It is452

important to note that faults introduced at the sixteen least/most significant453

nibbles of the third-to-last round can affect almost all the even/odd position454

nibbles in the last round. Our practical verification demonstrates that injecting455

faults at each SBox in the third-to-last round, involving the flipping of the bit at456

either index 1 or index 2, significantly reduces the keyspace to nearly a unique457

key. The specific values representing the reduced keyspace for varying numbers458
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Algorithm 1 Deterministic Computation of Three Rounds Differen-
tial Trail

Input: A list of ciphertext difference L∆C , faulty value δ, and faulty nibble position x
Output: Lists of input-output differences A25

iod,A
26
iod, & A27

iod at the third-to-last, second-to-
last, and the last round respectively

1: Initialize L1 ← [ ],A25
iod ← [[ ], [ ]],A26

iod ← [[ ], [ ]],A27
iod ← [[ ], [ ]], D25

od ← [ ],D26
id ← [ ]

2: A25
iod[0] = [0 for i in range(32)]

3: A25
iod[0][x] = delta

4: D25
od = D26

id = [0 for i in range(32)] ▷ Dummy output state difference list after the SBox layer

5: D25
od[x] = 0xf

6: L1 = P (D25
od)’

7: D26
id = findActiveSBox(L1) ▷ For each non-zero nibble value, this function assign 1 to this

nibble index, otherwise it assign to 0
8: A27

iod[1] = P−1(L∆C)
9: L3 = [ ] ▷ Third layer possible input difference list

10: for i = 0 to A27
iod[1] do

11: Append DDT−1[i] to the list L3

12: A27
iod[0] = [0 for i in range(32)]

13: for pos, i in enumerate(L3) do
14: if i ̸= [0] then dList = [0 for i in range(32)]

15: for dif in i do
16: dList[pos] = dif

17: if list subset(findActiveSBox(P−1(dList)),D26
id ) == 1 then

18: A27
iod[0][pos] = dif

19: A26
iod[1] = P−1(A27

iod[0])
20: L2 = [ ] ▷ Second layer possible input difference list

21: for i in P−1(A27
iod[0]) do

22: Append DDT−1[i] to the list L2

23: A26
iod[0] = [0 for i in range(32)]

24: for pos, i in enumerate(L2) do
25: if i ̸= [0] then dList = [0 for i in range(32)]

26: for dif in i do
27: dList[pos] = dif

28: if list subset(findActiveSBox(P−1(dList)),D25
od) == 1 then

29: A26
iod[0][pos] = dif

30: A25
iod[1] = P−1(A26

iod[0])

31: return the lists A27
ID,A26

ID and A25
ID

of injected faults can be found in Table 10. Figure 1 shows the distribution of459

the size of the reduced keyspace after this attack.460

3.1.4 Faults at the Fourth-to-Last Round In this section, we demonstrate461

the deterministic computation of the differential trail and propose an attack462

that requires fewer faults compared to the previous attack on three rounds.463

We introduce bit-flip nibble faults at the fourth-to-last round of the cipher,464

specifically at round R24 in DEFAULT-LAYER. These introduced bit-flip nibble465

faults at the fourth-to-last round cause the nibble differences in the left half466

(16 least significant nibbles) or right half (the next 16 nibbles) of the fourth-to-467

last round to propagate to almost all even or odd nibbles, respectively, at the468

second-to-last round. Furthermore, at the last round, the differences in even or469

odd nibbles activate all 32 nibbles in the state. In this attack, we first compute470

the trail deterministically and then based on the computed trail for each fault,471

we recover the key. By exploiting the known correlations between input-output472
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Fig. 1: Distribution of the Reduced Keyspace for the Third-to-Last Round Attack

differences and key bits, we can significantly reduce the key space with a smaller473

number of injected faults compared to the previous attack.474

Deterministic Trail Finding. To compute the trail, we first determine the unique475

input-output nibble differences for each SBox at the last round. Once these dif-476

ferences are established, we can utilize Algorithm 1 to compute the trail for the477

remaining three rounds. Assuming that nibble differences arise at all even po-478

sitions in the state at the second-to-last round before the SBox operations, we479

have exactly two active even nibbles in each group Gri at this round. Conse-480

quently, the input nibble difference at each SBox in the last round will no longer481

be a simple bit difference. Therefore, for each output of SBox at the last round,482

there are two possible choices of input differences, which may not be in the form483

of single-bit nibble differences.484

To determine the output difference of SBoxes in Gri at the second-to-last485

round, we exhaustively consider all combined input differences corresponding to486

the positions i, i+8, i+16, and i+24 from the last round. We then check whether,487

after the bit permutation, these differences only go to the even nibble positions488

in Gri, and their corresponding input differences are single-bit differences. This489

strategy allows us to uniquely identify the output difference of SBoxes in Gri490
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at the second-to-last round. The process is described in detail in Algorithm 5491

(Appendix A).492

Key Recovery. Earlier, we explained the process of computing the unique trail493

based on both non-faulty and faulty ciphertexts when injecting faults during the494

fourth-to-last rounds. Once the trail is computed, we can proceed to reduce the495

key space by analyzing the last three rounds, as explained earlier. To achieve496

this, we iterate exhaustively through the entire keyspace at the last round for497

each input-output nibble difference at the fourth-to-last round. We invert the498

intermediate rounds by using the reduced keys at each round and filter out499

incorrect keys. By repeating this process for each input-output nibble difference500

in the last four rounds, we can significantly reduce the key space, approaching a501

nearly unique solution. Hence, through the analysis of input-output differences502

and the iterative refinement of the key space via intermediate round inversions,503

we can effectively narrow down the potential key candidates and approximate the504

correct key with a high level of confidence. Our practical validation confirms that505

the introduction of 8 bit-faults in each half of the SBox (both left and right) in the506

fourth-to-last, achieved by flipping a bit at either index 1 or index 2, substantially507

diminishes the keyspace, resulting in nearly unique keys. Detailed information on508

the reduced keyspace values corresponding to different fault injection counts is509

available in Table 10. Figure 2 shows the distribution of the size of the keyspace510

after this attack.511

3.1.5 Faults at the Fifth-to-Last Round In this section, we discuss how we512

can deterministically compute the differential trail when injecting faults during513

the fifth-to-last round (round R23) in the DEFAULT-LAYER cipher. These faults514

can be injected either in the left half (from nibble positions 0 to 15) or the right515

half (from positions 16 to 31), affecting either all the even nibble positions or516

the odd nibble positions in the state at the third-to-last round. An example of517

fault propagation resulting from a nibble fault in the left half is illustrated in518

Figure 7 (Appendix A).519

Furthermore, the differences in even/odd nibbles at the third-to-last round520

activate all the nibbles in the second-to-last round and subsequently in the last521

round as well. In this attack scenario, we compute the trail for five rounds522

uniquely and then estimate the number of faults required to recover the key.523

By doing so, we can significantly reduce the key space using a smaller number524

of faults compared to our previous approaches.525

Deterministic Trail Finding. To compute the trail for five rounds when injecting526

faults at the fifth-to-last round, the approach involves inverting two rounds and527

then determining the upper three rounds’ trails based on the possible differences528

at the third-to-last round. The objective is to check if these trails satisfy the529

input difference at the fifth-to-last round. When faults are injected at the left530

or right half during the fifth-to-last round, the nibble differences in each group531

Gri, where i ∈ 0, 1, · · · , 7, in the input to the third-to-last round follow a specific532
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Fig. 2: Distribution of the Reduced Keyspace for the Fourth-to-Last Round At-
tack
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Fig. 3: Distribution of the Reduced Keyspace for the Fifth-to-Last Round Attack

pattern. Specifically, they are either 0, 1, 4, 5 (faults at the left half) or 0, 2, 8, 10533

(faults at the right half) as shown in Figure 7.534

This nibble difference pattern at the second-to-last round helps filter the535

ciphertext difference and trace it back to the input of the second-to-last round.536

Subsequently, the last three rounds of the computation trail (as described in537
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Algorithm 1) are applied to identify the unique differential trail. The process for538

computing the five rounds trail is presented in Algorithm 2.539

Key Recovery. The deterministic computation of the five-round trail enables us540

to reduce the key space by evaluating each round individually based on the ci-541

phertext difference. To recover the key, the initial step is to exhaustively evaluate542

each key nibble at the last round individually, effectively reducing the entire key543

space by up to 64 bits at the last round. Subsequently, we proceed to perform544

key space reduction for each group individually at the second-to-last round. This545

iterative process continues up to the fifth-to-last round, where we repetitively546

analyze and reduce the key space. By applying this method, we progressively nar-547

row down the key space at each round, taking into account the induced faults,548

until we ultimately arrive at a unique solution based on the number of injected549

faults. In summary, by analyzing each round and reducing the key space iter-550

atively, we can effectively narrow down the potential key candidates based on551

the induced faults in the differential trail computation. Our empirical validation552

strongly supports the notion that introducing a single bit-fault within each of553

the 8 groups Gri, i ∈ 0, 1, · · · , 7 of the SBox, achieved by flipping a bit at ei-554

ther index 1 or index 2, substantially reduces the keyspace, resulting in unique555

keys. For comprehensive details regarding the reduced keyspace values associ-556

ated with varying fault injection counts, we refer to Table 10. Figure 3 shows557

the distribution of the size of the keyspace after this attack.558

3.2 Attacks on Rotating Key Schedule559

In the study presented in [20], the authors introduce the concept of computing an560

equivalent key, which generates the same ciphertext as the original key for a given561

plaintext. Building on this notion, the attacker’s strategy involves computing562

an equivalent key for the DEFAULT-LAYER layer by injecting faults at various563

rounds. Subsequently, the attacker aims to recover the master key by executing564

a Differential Fault Analysis (DFA) on the DEFAULT-CORE.565

This section begins by explaining how to derive an equivalent key for the566

DEFAULT-LAYER. We introduce additional methodologies for calculating an567

equivalent key based on specific properties of the linear structured SBox S.568

Using this equivalent key, we propose a comprehensive attack strategy based569

on our deterministic trail computation approach, facilitating the unique recov-570

ery of the DEFAULT cipher’s key for different rounds amidst injected faults.571

This method not only boasts efficient offline computation capabilities but also572

requires significantly fewer faults compared to previous attacks. Additionally,573

we present a versatile attack approach applicable in scenarios where the cipher574

utilizes multiple round-independent keys.575

3.2.1 Exploiting Equivalent Keys Due to the LS SBox, we know that for
any α ∈ L(S) ∃β ∈ L(S−1) such that S(x ⊕ α) = S(x) ⊕ S(α) = S(x) ⊕
β, ∀x ∈ F4

2 . Let us define L(S, S−1) = {(α, β) : S(x ⊕ α) = S(x) ⊕ β} =
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Algorithm 2 Deterministic Computation of Five Rounds Differen-
tial Trail

Input: A list of ciphertext difference L∆C

Output: Lists of input-output differences A23
ID,A24

ID, A25
ID,A26

ID, & A27
ID

1: L1 ← [ ],L2 ← [ ],A23
ID ← [[ ],A24

ID ← [[ ], [ ]],A25
ID ← [[ ], [ ]],A26

ID ← [[ ], [ ]],A27
ID ← [[ ], [ ]]

2: T1 = [0, 1, 4, 5], T2 = [0, 2, 8, 10]
3: T = [ [(T1)

8, (T2)
8, (T1)

8, (T2)
8], [(T2)

8, (T1)
8, (T2)

8, (T1)
8] ] ▷ Input nibble differences at the

second-to-last round correspond to faults at the left/right half
4: L1 = L∆C

5: L1 = P−1(L1) ▷ Invert through bit-permutation layer
6: for i = 0 to 31 do ▷ At the round R27

7: A27
ID[1][i] = L1[i]

8: for j = 0 to 1 do ▷ For each fault at the left/right half in the fifth-to-last round
9: for i = 0 to 8 do ▷ For each group Gri at R26

10: for (∆0, ∆1, ∆2, ∆3) ∈ S−1(L1[i])×S−1(L1[i+8])×S−1(L1[i+16])×S−1(L1[i+24])
at round R27 do

11: L1[i] = ∆0,L1[i + 8] = ∆1,L1[i + 16] = ∆2,L1[i + 24] = ∆3

12: L1[j] = 0, j /∈ {i, i + 8, i + 16, i + 24}
13: A27

ID[0] = L1

14: L1 = P−1(L1)
15: A26

ID[1] = L1

16: for (∆0, ∆1, ∆2, ∆3) ∈ S−1(L1[0+α])×S−1(L1[1+α])×S−1(L1[2+α])×S−1(L1[3+
α]) at round R26 do ▷ α← 4 ∗ i

17: L2[α] = ∆0,L2[1 + α] = ∆1,L2[2 + α] = ∆2,L2[3 + α] = ∆3

18: L2[j] = 0, j /∈ {α, 1 + α, 2 + α, 3 + α}
19: A26

ID[0] = L2

20: if (∆0 ∈ T [j][α]) & (∆1 ∈ T [j][1+α]) & (∆2 ∈ T [j][2+α]) & (∆3 ∈ T [j][3+α])
then

21: L∆C = L2

22: Compute the trail for other three rounds using Algorithm 1 and get A25
ID,A24

ID, and A23
ID

23: return the lists A27
ID,A26

ID,A25
ID,A24

ID and A23
ID

{(0, 0), (6, a), (9, f), (f, 5)}. In another way, we can say that for any (α, β) ∈
L(S, S−1), Pr[α → β] = 1. Consider a toy cipher consisting of one DEFAULT-
LAYER SBox with a key addition before and after: y = S(x ⊕ k0) ⊕ k1, where
k0, k1 ∈ F4

2 . Due to the LS SBox, we have for any (α, β) ∈ L(S, S−1),

y = S(x⊕(k0⊕α))⊕(k1⊕β) = S(x⊕k0)⊕β⊕(k1⊕β) = S(x⊕k0)⊕k1,∀x ∈ F4
2 .

This means that if (k0, k1) be the actual key used in the toy cipher, then for576

any (α, β) ∈ L(S, S−1), (k̂0, k̂1) = (k0 ⊕α, k1 ⊕ β) will also be an equivalent key577

of the toy cipher, i.e., the number of equivalent keys of this toy cipher will be578

22. Similarly, any round function of DEFAULT cipher can be think of parallel579

execution of 32 toy ciphers. Let k0 = (k00, k
1
0, . . . , k

31
0 ) and k1 = (k01, k

1
1, . . . , k

31
1 )580

denote the two keys before and after the SBox layer respectively. Then, ∀ linear581

structures (αi, βi), i ∈ {0, 1, . . . , 31}, the number of equivalent keys for the round582

function of DEFAULT cipher will be 22×32 = 264. The various methods for gen-583

erating equivalent keys of the DEFAULT-LAYER are outlined in Algorithm 3 and584

Algorithm 4. The practical verification to compute the equivalent keys can be585

found in [1]. Thus, for the DEFAULT-LAYER with four keys (k0, k1, k2, k3) used586

in the three round functions, the number of equivalent keys (k̂0, k̂1, k̂2, k̂3) will587

be 23×64 = 2192. For example, the keys in Table 7 are equivalent keys and hence,588

generate the same ciphertext c corresponds to the message m. Since the keyspace589

of (k0, k1, k2, k3) used in the DEFAULT-LAYER is 2512 and it has 2192 number590
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of equivalent keys for any choosen key, we can further divide the keyspace into591

2512−192 = 2320 number of different equivalent key classes.592

3.2.2 Generalized Attack Strategy In this approach, we exploit the fact593

that injecting two faults at each nibble position in the last round of the encryp-594

tion process reduces the key nibble space from 24 to 22. We iteratively select one595

key nibble from each reduced set of key nibble values to obtain keys k̂3, k̂2, and596

k̂1. However, at the fourth-to-last round, the key nibbles of k0 still have 22 pos-597

sible choices. To compute k̂0, our strategy involves introducing additional faults598

at higher rounds and using the other keys k̂3, k̂2, and k̂1 in conjunction with the599

deterministic trail computation up to the fifth-to-last round. For instance, if we600

inject 32 faults at each nibble in the sixth-to-last round of DEFAULT-LAYER, we601

can trace back from the ciphertext difference to the fourth-to-last round output602

difference by applying the equivalent round keys k̂3, k̂2, and k̂1. Based on this603

fourth-to-last round difference, we can compute the trail for the upper three604

rounds (from fourth to sixth last rounds) using Algorithm 1.605

In the case of the simple key schedule, we have demonstrated that around 32606

faults at each nibble in the third-to-last round are adequate for unique key recov-607

ery. Similarly, in the scenario described in the previous section, we can uniquely608

retrieve the key k̂0 by injecting a suitable number of faults, such as around 12609

or 5 faults at the seventh-to-last or eighth-to-last rounds, and deterministically610

computing the upper trails for four or five rounds using Algorithm 5 or Algo-611

rithm 2, respectively. To summarize, the first step requires approximately 256612

faults to uniquely select k̂3, k̂2, and k̂1 from 264 choices, along with k0 having 264613

possibilities. The recovery of k̂0 can be accomplished by injecting just 5 extra614

single bit-flip faults at the eight-to-last round. Consequently, around 261 faults615

are needed to recover an equivalent key of DEFAULT-LAYER. Once the equiva-616

lent key is obtained, the original key can be recovered by injecting faults in the617

DEFAULT-CORE.618

The aim is to explore alternative strategies that can effectively reduce the619

number of faults required, as opposed to the initial approach of injecting two620

faults at each nibble in the last four rounds. By leveraging deterministic trail621

computations, several strategies can be employed to achieve this reduction. These622

strategies are as follows:623
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Algorithm 3 Computation of
Equivalent Round Keys Ac-
cording to [20]

Input: k seq[ ] = [[k3], [k2], [k1], [k0]]
Output: Return an equivalent key
k seq[]

1: for i = 0 to 2 do
2: δ = [0, 0, . . . , 0]
3: for j = 0 to 31 do
4: for any (α, β) ∈ L(S, S−1) do
5: if ((α > 0) and (β > 0))

then
6: k seq[i][j] = k seq[i][j]⊕α
7: δ[j] = δ[j]⊕ β
8: break
9: k seq[i] = permute bits(k seq[i])

10: for ℓ = 0 to 32 do
11: k seq[i + 1][ℓ] = k seq[i + 1][ℓ] ⊕

δ[ℓ]

12: return key seq[]

Algorithm 4 Other Ways to
Compute Equivalent Round
Keys for DEFAULT-LAYER

Input: k seq[ ] = [[k3], [k2], [k1], [k0]]
and choose one element (p, q) from the
Set S = {(0, 3), (4, 7), (8, 11), (12, 15)}
Output: Return an equivalent key
k seq[]

1: for i = 0 to 2 do
2: δ = [0, 0, . . . , 0]
3: for j = 0 to 31 do
4: for any (α, β) ∈ L(S, S−1) do
5: x = k seq[i][j]⊕ α
6: if p ≤ x ≤ q then
7: k seq[i][j] = k seq[i][j]⊕α
8: δ[j] = δ[j]⊕ β
9: break

10: k seq[i] = permute bits(k seq[i])
11: for ℓ = 0 to 32 do
12: k seq[i + 1][ℓ] = k seq[i + 1][ℓ] ⊕

δ[ℓ]

13: return key seq[]

624

k0 : 1a5f01b35ef5deea60361f4df591c654
k1 : 5a66c55f3847aed3025023785542a124
k2 : 85cb6b4f87f44ed160d20d713c86144f
k3 : 84c302e5cb1539af59d623e9acdae09d

(a) Original Keys

k̂0 : 7c3967d53893b88c0650792b93f7a032

k̂1 : 96aa0993f48b621fce9cefb4998e6de8

k̂2 : 4907a7834b38821dac1ec1bdf04ad883

k̂3 : 2e69a84f61bf9305f37c894306704a37

(b) An Equivalent Keys

k̂0 : 153f98d5310a481a0930e0bdfc61c95d

k̂1 : 31210031003333000322101301033031

k̂2 : 12120210330102210232022122130120

k̂3 : 12320213202301003022231012132232

(c) An Equivalent Keys

k̂0 : 153f98d5310a481a0930e0bdfc61c95d

k̂1 : 57476657665555666544767567655657

k̂2 : 47475745665457745767577477465475

k̂3 : 47675746757654556577764547467767

(d) An Equivalent Keys

Table 7: An Example of Different Sets of Equivalent Keys

3.2.2.1 Retrieving Equivalent Key Using Three Round Trail Computation. It625

should be noted that a single bit-flip fault at any nibble can activate at least626

two nibbles in the next round. By injecting 32 faults at each nibble in the third-627

to-last round, we can generate at least two differences at each nibble in the628

second-to-last and last rounds. This allows us to compute k̂3 and k̂2. Then,629

by injecting another 32 faults at the fifth-to-last round, we can recover k̂1 and630

consider the 264 choices of k0 by computing three-round trails using k̂3 and631

k̂2. Finally, inducing another 32 faults at the sixth-to-last round, we obtain an632

equivalent key (k̂0, k̂1, k̂2, k̂3). In summary, approximately 96 faults are required633

to recover an equivalent key for DEFAULT-LAYER.634

3.2.2.2 Retrieving Equivalent Key Using Four Round Trail Computation. By635

injecting 32 single bit-flip fauts at each nibbles in the fourth-to-last round, we can636

achieve the generation of at least two different input differences at each nibble in637
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the third-to-last, second-to-last and last rounds which can able to reduce the key638

nibble space to 22 individually. This enables the computation of k̂3, k̂2 and k̂1.639

Additionally, by introducing 8 faults at the seventh-to-last round, we can recover640

the 264 choices of k0 by utilizing four-round trails computed using k̂3, k̂2 and k̂1.641

Furthermore, approximately 8 faults at the eighth-to-last round are sufficient642

to obtain an equivalent key (k̂0, k̂1, k̂2, k̂3). To summarize, a total of around 48643

faults are required to recover an equivalent key for DEFAULT-LAYER.644

3.2.2.3 Retrieving Equivalent Key Using Five Round Trail Computation. Like645

the previous approach, we inject 32 single bit-flip faults at each nibbles in the646

fifth-to-last round. This ensures the generation of at least two different input647

differences at each nibble in the fourth-to-last, third-to-last, second-to-last and648

last rounds respectively and then compute k̂3, k̂2, k̂1 and 264 choices of k0. More-649

over, approximately 4 faults at the tenth-to-last round are sufficient to obtain650

an equivalent key (k̂0, k̂1, k̂2, k̂3). As a result, a total of around 36 faults are651

required to recover an equivalent key for DEFAULT-LAYER. Figure 4 shows the652

distribution of the size of the keyspace after this attack.653
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Fig. 4: Distribution of recovering an equivalent key for the rotating key schedule

3.2.3 Generic Attack Strategy for More Round Keys In the scenario654

where an DEFAULT-LAYER encryption consists of r rounds with r + 1 round655

keys k0, k1, . . . , kr, a simple approach involves injecting two faults at each nibble656

in the encryption process for each of the r rounds. This allows us to compute657

r equivalent keys: k̂r, k̂r−1, . . . , k1. However, the initial key k0 remains unknown658

due to the lack of input knowledge and the unavailability of additional DEFAULT-659

LAYER SBox to be faulted.660

To recover the unknown key k0, we target the last round of the DEFAULT-661

CORE and introduce faults individually to each SBox. This technique enables662

the unique retrieval of the key k0. Once an equivalent key is determined, the663

original key can be obtained by applying the DFA to the DEFAULT-CORE.664
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To minimize the number of required faults, an efficient strategy involves665

injecting 8 faults at the fifth-to-last round, allowing the unique determination666

of k̂r and kr−1. This strategy is repeated iteratively until only three rounds667

remain. At this point, injecting 32 faults at the initial round of DEFAULT-LAYER668

facilitates the unique recovery of k̂3 and k̂2. Finally, injecting two faults at each669

nibble in the initial round yields the unique choice of k̂1. Subsequently, the DFA670

is applied to the DEFAULT-CORE to uniquely retrieve k0.671

3.3 Experimental Results on DEFAULT under DFA672

In this attack scenario, we have conducted a comprehensive analysis for both673

the simple key schedule and the rotating key schedule of DEFAULT. For the674

simple key schedule, our estimations indicate that approximately 32, 34, 16, and675

5 bit-faults are required to effectively reduce the key spaces to 232, 1, 1, and676

1, respectively, under a differential fault attack (DFA). These faults are intro-677

duced at the second-to-last, third-to-last, fourth-to-last, and fifth-to-last rounds,678

respectively. Likewise, for the rotating key schedule, our estimates suggest that679

approximately 96, 48, and 36 bit-faults are necessary to recover the equivalent680

key for the DEFAULT-LAYER using DFA techniques when the faults are injected681

at the third-to-last, fourth-to-last, and fifth-to-last rounds, respectively. We have682

also rigorously validated the efficacy of Algorithm 3, 4 in computing equivalent683

keys for the DEFAULT-LAYER. Furthermore, we have determined that around684

32 bit-faults at each SBox in the second-to-last round are sufficient to uniquely685

recover the key of DEFAULT-CORE. It is important to emphasize that all our686

findings and estimations have undergone rigorous practical experiments to en-687

sure their validity and reliability. Detailed implementations of these attacks can688

be found in [1]. Our experiments were conducted on an Intel® Core™ i5-8250U689

computer. It is worth noting that employing more powerful computing hardware690

could potentially yield more accurate fault estimation results.691

4 Introducing SDFA: Statistical-Differential Fault Attack692

on DEFAULT Cipher693

In addition to Difference-based Fault Analysis (DFA), Statistical Fault Attack694

(SFA) is another powerful attack in the context of fault attacks and their anal-695

ysis. SFA leverages the statistical bias introduced by injected faults and differs696

from previous attacks is that it only requires faulty ciphertexts, making it appli-697

cable in various scenarios compared to difference-based fault attacks. While the698

designers of the DEFAULT cipher claim that their proposed design can protect699

against DFA and any form of difference-based fault attacks, but they do not700

assert security against other fault attacks that exploit statistical biases in the701

execution. In such scenarios, the designers recommend for the adoption of spe-702

cialized countermeasures designed to thwart Statistical Ineffective Fault Analysis703

(SIFA) [13,12] and Fault Template Attack (FTA) [10,25]. These countermeasures704
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are recommended to mitigate the inherent risks associated with these specific705

types of attacks.706

Although countermeasures against statistical ineffective fault attacks and707

fault template attacks can enhance the resilience of a cryptographic system, the708

absence of specific countermeasures against difference-based fault attacks leaves709

a potential vulnerability to bit-set faults. Bit-set faults involve intentional ma-710

nipulations of individual or groups of bits, allowing attackers to strategically711

modify intermediate values or ciphertexts. Practical experiments [22,18] on a712

microcontroller demonstrated successful induction of bit-set faults using laser713

beams, with higher occurrence rates than bit-flip faults. Despite requiring ex-714

pensive equipment, this method allows for precise fault injection in target lo-715

cation and timing, as shown in [29]. Without targeted countermeasures against716

difference-based fault attacks exploiting the propagation of differences through717

the algorithm, bit-set faults pose a potential risk of revealing sensitive informa-718

tion or compromising system security.719

In this section, we introduce a new fault attack called SDFA, which combines720

DFA with SFA by inducing bit-set faults. The SDFA attack enables us to further721

reduce the number of faults required to recover the key compared to our proposed722

improved attacks for both simple and rotating key schedules. Additionally, we723

demonstrate the effectiveness of this attack in retrieving subkeys for rotating724

key schedules, even when all the subkeys are generated from a random source.725

4.1 Learned Information via SDFA726

In Section 2.4, we discussed the information learned from DFA and its relation727

to input-output differences in an SBox. In this section, we delve deeper into the728

connection between DFA and SFA when bit-set faults are introduced into the729

state. Specifically, we examine the scenario where four bit-set faults are applied730

to positions in the last round SBox, resulting in the unique recovery of the key731

nibble using SFA. Alternatively, by introducing a bit-set fault in a nibble, we can732

narrow down the key nibble space from 24 to 24−t, 1 ≤ t ≤ 2. Our objective is733

to combine the power of SFA and DFA to uniquely recover the key nibble with734

fewer faults in a nibble.735

Consider an SBox with inputs (u0, u1, u2, u3) and outputs (v0, v1, v2, v3).736

Given an input-output difference α → β in the SBox, the set of possible output737

nibbles that satisfy the given differential can be represented as Di ∪ Dj , where738

i, j ∈ 0, 1, 2, 3. Now, let us assume an attacker injects a bit-set fault at the 0-th739

bit of the SBox, resulting in u0 = 1, and the input difference α = 1. Depending740

on the DDT table, this leads to either β = 3 or β = 9. Consequently, the set741

(D) of outputs that satisfy the differential α → β will be either D = D0 ∪ D3742

for β = 3, or D = D1 ∪ D2 for β = 9. Simultaneously, for SFA, the attacker can743

compute the set of outputs I that satisfy ui = 1 by inverting the SBox using744

the faulty outputs, i.e., I = {x : S−1(x) & 2i = 2i}.745

To determine the intersecting nibbles between DFA and SFA, our objective is746

to identify the common nibble values from each of the four partition sets Di for747

DFA. These sets are denoted as Hi and defined as Hi = {x ∈ D : S−1(x) & 2i =748
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2i}. Table 8 provides the sets Hi corresponding to different bit-sets at the ith749

position. These sets Hi are obtained by identifying the common values found750

within the intersecting sets of D for DFA and I for SFA.751

Finally, for each bit-set ui in the SBox, if D = Dp ∪ Dq, p, q ∈ {0, . . . , 3}752

represents the set of outputs that satisfy the differential α → β, then the SDFA753

(Statistical-Differential Fault Attack) is defined as the set Z of possible outputs754

that satisfy the differential α → β, given by Z = D ∩ I = Hp ∪Hq. An example755

of the intersecting outputs obtained by performing SDFA under a bit-set fault756

at the second bit position in the SBox is presented in Example 1.757

Now consider a toy cipher where given a message m, the ciphertext c is758

produced by c = S(m)⊕ k. From the above example, the attacker can learn the759

following two independent equations involving the key bits as follows:760

k0 ⊕ k2 = (c0 ⊕ c2)⊕ (v0 ⊕ v2) = c0 ⊕ c2,

k2 ⊕ k3 = (c2 ⊕ c3)⊕ (v2 ⊕ v3) = c2 ⊕ c3 ⊕ 1.

Likewise, for any S-box differential α → β involving bit-sets in the SBox,761

the attacker can extract two independent equations that involve the key bits,762

thereby revealing two bits of information about that key nibble. Table 9 provides763

a comprehensive list of possible differentials under nibble bit-sets, along with764

their corresponding independent equations that can be derived through the SDFA765

attack. It is important to note that in the case of bit-set faults, if the targeted bit766

is already set to 1, no difference will be generated. In such cases, the DFA attack767

cannot be performed. However, the SFA attack can still be applied to reduce the768

key information by one bit. Therefore, even if bit-set faults fail to generate a769

difference, they can still contribute to the reduction of one key bit information.770

Example 1. Let us consider the input-output difference 2 → 7 corresponding to771

the bit-set u1 = 1 in an S-box. In this case, the set D of output differences772

corresponding to the DFA will be D = D0 ∪D2 = {0, 5, a, f, 2, 7, 8, d}. Similarly,773

for SFA, the set I will be I = {1, 5, 6, 7, 8, 9, a, e}. Therefore, the intersecting774

set Z is obtained as Z = D ∩ I = {5, a, 7, 8}. Alternatively, we can compute775

H0 = {5, a} and H2 = {7, 8}, which are the sets of output differences in D that776

satisfy the condition (S−1(x) & 2i) = 2i. Then, the set Z can be expressed as777

Z = H0 ∪H2 = {5, a, 7, 8}.778

Bit-Set H0 H1 H2 H3

u0 = 1 {5, f} {4, e} {2, 8} {3, 9}
u1 = 1 {5, a} {1, e} {7, 8} {6, 9}
u2 = 1 {5, a} {4, b} {2, d} {6, 9}
u3 = 1 {5, f} {1, b} {2, 8} {6, c}

Table 8: Set of Outputs of SBox under Bit-Sets

4.2 Attack on Simple Key Schedule779

By analyzing the SBox-based toy cipher (Figure 5), we have discovered that a780

single bit-set at the SBox can effectively extract atmost two bits of information781
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Direction
Learned Expression

u0 = 1 u1 = 1 u2 = 1 u3 = 1

1→ 3 1→ 9 2→ 7 2→ d 4→ 7 4→ d 8→ 6 8→ c

Enc (S−1)

3∑
i=0

ki

3∑
i=0

ki k0⊕k2 k0⊕k1 k0⊕k1 k0⊕k2 k0 k0

k1⊕k2⊕k3 k0 k2 ⊕ k3 k1⊕k2⊕k3 k0 ⊕ k2 k0⊕k3 k1⊕k3 k1⊕k3

Table 9: Learned Key-Information under Bit-Sets at SBox

from the key nibble. Additionally, from the insights provided in Table 9, we782

observe that any two bit-sets at the SBox can reduce atmost four bits of infor-783

mation, i.e., to generate four independent equations involving the key bits. This784

enables us to uniquely recover the key nibble. In the worst case, it can reduce785

atleast two bits of information for two bit-sets in a nibble.786

If our focus is on the last round of the DEFAULT-LAYER, in the best case787

scenario we can achieve the unique recovery of each key nibble by injecting 2788

faults (active bit-set faults). In the worst case, 4 bit-set faults ensure the unique789

key recovery of each key nibbles. This shows that around 64 active bit-set faults790

(in the best case) are required to retrieve the key uniquely. Whereas in the worst791

case scenario 128 active bit-set faults are sufficient to recover the key. However,792

to minimize the number of faults required, the attacker can strategically inject793

bit-set faults in the upper rounds.794

4.3 Attack on Rotating Key Schedule795

The rotating key schedule in DEFAULT-LAYER involves four keys, namely k0, k1,796

k2, and k3, which are used for each round in a rotating fashion. The master key k0797

serves as the initial key, and the other three keys are derived by applying the four798

unkeyed round function of DEFAULT-LAYER recursively. From the perspective799

of an attacker, if any one of the round keys is successfully recovered, it becomes800

possible to derive the remaining three keys using the key schedule function. In801

the case of DEFAULT-LAYER, the key k3 is used in the last round. By injecting802

approximately three bit-set faults at each nibble in the last round, it is feasible803

to effectively retrieve the key k3.804

To summarize, a total of around 64 to 128 faults are required to recover805

the complete set of keys in DEFAULT-LAYER. This attack strategy leverages the806

relationship between the round keys and the rotating key schedule, allowing for807

the recovery of the master key and subsequent derivation of the other keys.808

4.4 Generic Attack on Truely Independent Random Keys809

In the scenario where the round keys in the DEFAULT cipher are genuinely gener-810

ated from random sources rather than derived from a master key using recursive811

unkeyed round functions, the task of uniquely retrieving all the keys becomes812

SB

Fig. 5: Toy example of single SBox
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considerably more challenging. In this case, both our DFA approach and the813

strategy presented in [20] face significant challenges in recovering keys uniquely814

and may require injecting a substantially larger number of faults compared to815

our SDFA approach.816

Simply speaking, the SDFA approach involves injecting approximately three817

bit-set faults at each round of DEFAULT-LAYER and utilizing these faults to818

achieve unique key recovery. Thus, when the round keys are genuinely inde-819

pendent and not derived from a master key, this strategy proves to be much820

more effective than the DFA strategy. To provide a more concrete perspective,821

if DEFAULT employs a total of x (x > 29) truly independent round keys, then822

approximately x × y, y ∈ [64, 128] bit-set faults are needed to recover all of its823

independent keys. This substantial increase in the number of required faults un-824

derscores the heightened difficulty of retrieving the keys when they are genuinely825

independent and not derived from a common source.826

4.5 Experimental Results on DEFAULT under SDFA827

We have performed an extensive analysis utilizing our novel attack strategy,828

SDFA, on both the simple key schedule and the rotating key schedule, considering829

the bit-set fault scenario. In the most favorable scenario for both key schedules,830

our estimations indicate that 64 active bit-set faults, with two faults introduced831

at each SBox, are adequate to uniquely recover the encryption key. Conversely,832

in the most challenging scenario, injecting 128 active bit-set faults at each SBox833

guarantees the unique key recovery. For complete implementation details of these834

attacks, we refer to [1]. The experiment was conducted on an Intel® Core™ i5-835

8250U computer.836

5 Attacks on BAKSHEESH837

For the BAKSHEESH cipher, despite the absence of any claimed DFA security838

by the designer, we conducted a thorough examination of its susceptibility to839

both Differential Fault Analysis (DFA) and Statistical-Differential Fault Analysis840

(SDFA) under bit-flip and bit-set fault scenarios, respectively. In this section, we841

will begin by outlining the differential fault attack, wherein we introduce faults842

at various rounds and determine the minimum number of faults required to843

achieve unique key recovery. Subsequently, we will present the SDFA attack and844

provide an estimate of the number of faults necessary to successfully retrieve the845

key in a unique manner.846

5.1 DFA on BAKSHEESH847

In this section, we outline our strategy for efficiently determining the differential848

trail up to three rounds to facilitate DFA attacks. We explain the trail computa-849

tion process, its application in key retrieval via bit-flip faults, and estimate the850

fault complexity for key recovery in various rounds.851
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5.1.1 Faults at the Last Round In our observations, injecting two faults at852

each nibble in the last round of BAKSHEESH yields three bits of information.853

Additionally, it is worth noting that the two key values corresponding to any two854

injected faults at the SBox are complementary to each other. The initial approach855

to reduce the key space involves inducing two bit-flip faults at each nibble in the856

last round before the SBox operation, individually affecting key nibbles, thus857

reducing the key space to 232 with 64 faults in the last round. However, a more858

efficient strategy is required, inducing faults further from the last rounds, and859

deterministically obtaining information about the input differences for each SBox860

in the last round. This necessitates the development of a deterministic strategy861

capable of guessing the differential path from which the faults originate. In the862

upcoming subsections, we will demonstrate the feasibility of deterministically863

computing the differential path in BAKSHEESH for up to three rounds.864

5.1.2 Faults at the Second-to-Last Round The GIFT-128 permutation865

structure of the cipher permits a nibble difference at the input of group Gri in the866

second-to-last round to induce a bit difference in four nibbles in the last round.867

This observation allows an attacker to deterministically ascertain the differential868

path by introducing bit-flip faults at the second-to-last round. Furthermore, this869

insight enables the deterministic computation of differential paths for up to three870

rounds, as discussed in the next subsection. This is achievable because, for both871

non-faulty and faulty ciphertexts, the last round can be inverted by assessing872

input bit-differences at each nibble using DDT. The internal state difference can873

then be calculated by examining input bit-differences after the inverse operation874

of the second-to-last round, leveraging the Quotient-Remainder group structure.875

A straightforward approach to attacking the cipher involves injecting two bit-876

faults at each nibble in the last round, thereby reducing the keyspace for each877

nibble to 2, resulting in an overall keyspace of 232. Subsequently, injecting one878

fault at each nibble in the second-to-last round uniquely reduces the keyspace.879

This naive approach necessitates approximately 96 faults for key recovery. How-880

ever, we can enhance this attack by introducing faults at the second-to-last round881

during encryption. Our practical validation confirms that the introduction of one882

bit-faults at the second bit position in each SBox and two bit-faults at the third883

bit position in two different SBox at each group Gri at the second-to-last round,884

substantially diminishes the keyspace to nearly unique key. Detailed information885

on the reduced keyspace values corresponding to different fault injection counts886

is available in Table 11 (Appendix A).887

5.1.3 Faults at the Third-to-Last Round In this attack, we introduce888

bit-faults into a nibble during the third-to-last round of the cipher. Similar to889

the previous attack in DEFAULT-LAYER, we follow a deterministic process to890

calculate the input and output differences for each nibble at every round. This891

allows us to track how differences propagate throughout the cipher, as illustrated892

in Figure 6. Also, the three rounds trail computation is similar to Algorithm 1.893

We then leverage the computed trail to reduce the cipher’s key space. By in-894

troducing two distinct bit differences in each nibble during the last round, we895
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effectively reduce the key space to 232. Next, our focus narrows down to nibble896

positions 0, 1, 2, 3, 8, 9, 10, and 11 during the second-to-last round. We filter897

these nibble positions by iteratively inverting two rounds relative to combining898

the key spaces from nibble positions 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24,899

25, 26, and 27, all based on the key nibbles of the last round. Similarly, we fil-900

ter nibble positions 20, 21, 22, 23, 28, 29, 30, and 31 by inverting two rounds901

with respect to combining the key spaces from nibble positions 4, 5, 6, 7, 12,902

13, 14, 15, 20, 21, 22, 23, 28, 29, 30, and 31, again based on the key nibbles of903

the last round. We subsequently perform further filtering on remaining nibble904

differences at the second-to-last round, considering the reduced key space for all905

32 key nibble positions. Finally, we conduct additional filtering on nibble dif-906

ferences at the third-to-last round based on the further reduced key space. Our907

practical verification demonstrates that introducing two bit-faults at the third908

bit position in two different SBox within each group Gri during the third-to-last909

round significantly reduces the keyspace to a unique key. Comprehensive details910

regarding the reduced keyspace values for various fault injection counts can be911

found in Table 11.912

5.2 SDFA on BAKSHEESH913

The SBox employed in the BAKSHEESH cipher features a single non-zero LS914

element, denoted as 8. In the context of DFA, the key nibbles can be effectively915

reduced to one bit by introducing a minimum of two faults in each nibble. No-916

tably, only introducing any two out of the three possible input differences (1, 2,917

and 4) at each SBox is sufficient to reduce the key nibbles to 2, given that 8 is918

a LS point.919

Regarding SFA, our observations indicate that performing four SFA opera-920

tions using bit-set faults can reduce the key nibbles to a minimum of 2. We have921

verified that introducing bit-set faults at each position within the SBox nibbles,922

with one active fault at the first three positions, is capable of uniquely reducing923

the key nibble space. Therefore, approximately 128 bit-set faults are sufficient924

for a nearly unique key recovery.925

5.3 Experimental Results on BAKSHEESH926

In this attack scenario, we have applied both our DFA and SDFA attack tech-927

niques to BAKSHEESH, achieving successful key recovery. In the DFA approach,928

our estimations suggest that approximately 48 and 16 bit-faults are needed to929

reduce the key spaces to 20.2 and 1, respectively. These faults are strategically930

introduced at the second-to-last and third-to-last rounds. When it comes to the931

SDFA approach, our most favorable estimations indicate that 96 active bit-set932

faults, with three faults introduced at each SBox, are sufficient for a unique key933

recovery. In the worst-case scenario, injecting 128 active bit-set faults at each934

SBox guarantees a unique key recovery. For detailed implementations of these935

attacks, we refer to [1]. The experiments were performed on an Intel® Core™936

i5-8250U computer. It is important to mention that employing more powerful937
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computing hardware could potentially lead to more precise fault estimation re-938

sults.939

6 Discussion940

This work presents enhanced DFA attacks on both LS SBox-based ciphers, DE-941

FAULT and BAKSHEESH. The DEFAULT-LAYER SBox incorporates three non-942

trivial LS elements, while BAKSHEESH has only one non-trivial LS element.943

In our attack, we leverage deterministic trail computation for five rounds in the944

case of DEFAULT and three rounds for BAKSHEESH. This deterministic trail945

computation significantly reduces the number of required faults for key recov-946

ery. Therefore, exploring deterministic trail computation for a larger number of947

rounds could be an interesting avenue for future research.948

Regarding the DEFAULT cipher, the designers claimed its DFA security to949

be 264 under any difference-based fault analysis. In response, we introduce a950

new fault attack, the Statistical-Differential Fault Attack (SDFA), under the951

bit-set fault model. Our attack successfully recovers the unique keys of both952

DEFAULT and BAKSHEESH ciphers, even when the keys are independently953

drawn from random sources. This research highlights that without specific DFA954

protection, such ciphers are vulnerable to our proposed attacks. Furthermore,955

any difference-based countermeasures implemented against these ciphers con-956

tradict the design principles of cipher-level DFA protection. This suggests that957

employing linear-structured SBox-based cipher designs may not be advisable for958

achieving cipher-level DFA protection. Additionally, it would be interesting to959

investigate whether other attacks exploiting information leakages from statisti-960

cal biases, such as Statistical Ineffective Fault Attack (SIFA) or Fault Template961

Attack (FTA), require fewer faults compared to difference-based fault analysis.962

7 Conclusion963

In light of the practical significance of Differential Fault Analysis (DFA) style964

attacks, the development of effective cipher protection strategies holds substan-965

tial relevance. Over recent years, various approaches and strategies have been966

explored to mitigate such vulnerabilities. Notably, the authors of the DEFAULT967

cipher have introduced a compelling design strategy aimed at intrinsically con-968

straining the extent of information accessible to potential attackers. This innova-969

tive approach represents a notable contribution to the ongoing efforts to enhance970

cipher’s DFA security.971

In this study, we have presented an enhanced Differential Fault Attack (DFA)972

on the DEFAULT cipher, enabling the effective and unique retrieval of the en-973

cryption key. Our approach involves determining deterministic differential trails974

spanning up to five rounds and applying DFA by injecting faults at various975

rounds while quantifying the required number of faults. Specifically, for the sim-976

ple key schedule, we demonstrate that approximately 5 bit-faults are sufficient977
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to uniquely recover the key of DEFAULT. In contrast, for systems utilizing ro-978

tating keys, we show that approximately 20 bit-faults are required to recover979

the equivalent key of DEFAULT-LAYER. Remarkably, our attack achieves key980

recovery with a significantly reduced number of faults compared to previous981

methods.982

Furthermore, we introduced a novel fault attack technique known as the983

Statistical-Differential Fault Attack (SDFA), which combines elements of both984

Statistical Fault Analysis (SFA) and DFA. In this attack, we demonstrate that985

at most 128 bit-set faults are sufficient to recover the key for both the key986

schedule configurations of the DEFAULT cipher. This attack highlights its efficacy987

in recovering encryption keys, not only for systems employing rotating keys but988

also for ciphers utilizing entirely round-independent keys.989

Finally, we applied our proposed DFA attack to another linear-structured990

SBox-based cipher, BAKSHEESH, and efficiently recovered its master key uniquely.991

We show that approximately 16 bit-faults are required to achieve unique key re-992

covery for BAKSHEESH. Similarly, under the bit-set fault model, the SDFA993

attack can be effectively applied to nearly retrieve its key uniquely by inducing994

128 bit-set faults in the worst case.995

In conclusion, our work makes significant contributions to the field of fault996

attacks by presenting enhanced DFA techniques, extending their applicability997

to rotating and round-independent keys, and introducing the SDFA approach.998

These advancements provide valuable insights into the vulnerabilities of the DE-999

FAULT and BAKSHEESH ciphers and highlight the challenges in achieving ef-1000

fective DFA protection for linear-structured SBox-based ciphers. Our findings1001

underscore the difficulty in achieving DFA protection for such ciphers and em-1002

phasize the need for enhanced security measures to safeguard encryption keys.1003

1004
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A Appendix1173

Attack Strategy
Results

Number of Faults Reduced Key Space

Faults at the Second-to-Last Round

64 232

48 239

32 246

Faults at the Third-to-Last Round

32 20.2

28 27

24 214

Faults at the Fourth-to-Last Round

16 1

12 1

8 27

Faults at the Fifth-to-Last Round

8 1

6 1

5 1

Table 10: Keyspace Reduction with Varying Injected Faults in DEFAULT’s Sim-
ple Key Schedule under Differential Fault Attacks

Attack Strategy
Results

Number of Faults Reduced Key Space

Faults at the Second-to-Last Round
48 1
40 1
32 232

Faults at the Third-to-Last Round
16 1
12 1
10 2

Table 11: Keyspace Reduction with Varying Injected Faults in BAKSHEESH
under Differential Fault Attacks
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Fig. 6: Fault Propagation for Three Rounds

Algorithm 5 Deterministic Computation of Four Rounds Differen-
tial Trail

Input: A list of ciphertext difference L∆C

Output: Lists of input-output differences A24
ID, A25

ID,A26
ID, & A27

ID

1: Initialize L1 ← [ ],A24
ID ← [[ ], [ ]],A25

ID ← [[ ], [ ]],A26
ID ← [[ ], [ ]],A27

ID ← [[ ], [ ]]
2: L1 = L∆C

3: L1 = P−1(L1) ▷ Invert through bit-permutation layer
4: for i = 0 to 31 do ▷ At the round R27

5: A27
ID[1][i] = L1[i]

6: for i = 0 to 8 do ▷ For each group Gri at R26

7: for (∆0, ∆1, ∆2, ∆3) ∈ S−1(L1[i]) × S−1(L1[i + 8]) × S−1(L1[i + 16]) × S−1(L1[i + 24])
at round R27 do

8: L1[i] = ∆0,L1[i + 8] = ∆1,L1[i + 16] = ∆2,L1[i + 24] = ∆3

9: L1[j] = 0, j /∈ {i, i + 8, i + 16, i + 24}
10: L1 = P−1(L1)
11: if L1[j] = 0, ∀j ∈ {0. . . . , 31} \ {α, α + 1, α + 2, α + 3} then ▷ α← 4 ∗ i
12: if j ∈ {0, 1} then ▷ j = 0/1→ injected faults at the left/right half of R24

13: if S−1(L1[α + j]) /∈ S or S−1(L1[α + j + 2]) /∈ S then ▷ S ← {1, 2, 4, 8}
14: Break the for loop

15: A27
ID[0][i] = ∆0,A27

ID[0][i + 8] = ∆1,A27
ID[0][i + 16] = ∆2,A27

ID[0][i + 24] = ∆3

16: L∆C [i] = ∆0,L∆C [i + 8] = ∆1,L∆C [i + 16] = ∆2,L∆C [i + 24] = ∆3

17: Compute the trail for other three rounds using Algorithm 1 and get A26
ID,A25

ID and A24
ID

18: return the lists A27
ID,A26

ID,A25
ID and A24

ID
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Fig. 7: Fault Propagation for Five Rounds
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