
Meteor: Improved Secure 3-Party Neural Network Inference with
Reducing Online Communication Costs

Ye Dong1,2, Xiaojun Chen1,2,(�), Weizhan Jing1,2, Kaiyun Li1,2, Weiping Wang1,2
1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
{dongye,chenxiaojun,jingweizhan,likaiyun,wangweiping}@iie.ac.cn

Abstract

Secure neural network inference has been a promising solution
to private Deep-Learning-as-a-Service, which enables the service
provider and user to execute neural network inference without
revealing their private inputs. However, the expensive overhead of
current schemes is still an obstacle when applied in real applica-
tions. In this work, we present Meteor, an online communication-
efficient and fast secure 3-party computation neural network in-
ference system aginst semi-honest adversary in honest-majority.
The main contributions of Meteor are two-fold: i) We propose a
new and improved 3-party secret sharing scheme stemming from
the linearity of replicated secret sharing, and design efficient pro-
tocols for the basic cryptographic primitives, including linear op-
erations, multiplication, most significant bit extraction, and mul-
tiplexer. ii) Furthermore, we build efficient and secure blocks for
the widely used neural network operators such as Matrix Multipli-
cation, ReLU, and Maxpool, along with exploiting several specific
optimizations for better efficiency. Our total communication with
the setup phase is a little larger than SecureNN (PoPETs’19) and
Falcon (PoPETs’21), two state-of-the-art solutions, but the gap is
not significant when the online phase must be optimized as a prior-
ity. Using Meteor, we perform extensive evaluations on various
neural networks. Compared to SecureNN and Falcon, we reduce
the online communication costs by up to 25.6× and 1.5×, and im-
prove the running-time by at most 9.8× (resp. 8.1×) and 1.5× (resp.
2.1×) in LAN (resp. WAN) for the online inference.

CCS Concepts

• Security and privacy→ Privacy-preserving protocols.

Keywords

Privacy, Security, Secret Sharing, Neural Network

1 Introduction

In the Deep-Learning-as-a-Service (DLaaS) paradigm, the service
provider offers a trained neural network (NN), and a user calls
a well-defined API for data analysis. Aiming to alleviate the pri-
vacy concerns associated with DLaaS [1, 3], existing works have
introduced secure computation to enable Secure Inference. Secure
inference exploits cryptographic primitives to ensure that the only
information available for the user is the inference result, and noth-
ing more is revealed to either party.

(�)Xiaojun Chen is the corresponding author.

Secure inference protocols can provide high privacy protection,
but the key concern is how to obtain privacy with satisfying effi-
ciency. Note that different cryptographic tools offer their charac-
teristics and trade-offs. In particular, fully homomorphic encryp-
tion (FHE)-based methods are efficient in communication but still
limited by expensive computation burdens [30, 31, 35]. Garbled
circuits [75] (GC)-based schemes only require a constant round of
interactions but have a high communication overhead and are ex-
pensive for arithmetic operations [5, 61]. Secret sharing [66]-based
approaches provide efficient arithmetic operations and support
non-linear functions [48, 51, 52, 62, 72, 73] using much less commu-
nication, yet usually require interactions in proportion to the depth
of Multiplication (MULT) gates. Among the secret sharing-based
works, 2-out-of-3 replicated secret sharing-based secure 3-party
computation (3PC) approaches [51, 73] have achieved significant
improvements and gained much attention.

However, the online communication of replicated secret sharing
is still the efficiency bottleneck even in the semi-honest model. The
costly online communication might limit the users’ query through-
put, especially in the WAN setting. Therefore, improving the online
communication (and running-time) is challenging and a priority in
real applications.

The online communication mainly stems from MULT, and we
analyze the detailed costs in the following aspects: i) Costs of

Resharing: Multiplying two ℓ-bit integers (2-MULT) generates
3-out-of-3 secret shared intermediate results. This requires inter-
active communication of ℓ bits per party for resharing 3-out-of-3
shares into 2-out-of-3 shares in 1 round for maintaining correctness
and consistency; ii) Costs of 2-MULT with Faithful Trunca-

tion: When evaluating 2-MULT on two ℓ-bit fixed-point inputs,
the parties need to truncate the product to avoid overflow. How-
ever, the best known protocol for 2-MULT equipped with faithful
truncation needs an online communication of 4

3 ℓ bits per party in 1
round (incur 1

3 ℓ more bits than 2-MULT on integers); iii) Costs of
𝑁 -MULT: 𝑁 -MULT takes 𝑁 ℓ-bit integers as inputs and multiplies
them to produce the product. 𝑁 -MULT plays an important role
in extracting the most significant bit, but existing works achieve
𝑁 -MULT by utilizing 2-MULT in a tree-manner. This incurs an
online communication of (𝑁 − 1)ℓ bits in ⌈log2 𝑁 ⌉ rounds.

In this paper, we focus on improving the online communication
costs of the latter two kinds of MULT gates. Although our method
requires more costs for the setup phase (i.e., communicating (2𝑁 −
1−𝑁)ℓ bits in log2 𝑁 rounds per party for𝑁 -MULT), our significant
improvements in the online phase are beneficial in real applications
and might be of independent interest. Formally, our techniques and
contributions are as follows:

Ye Dong, et al.

Table 1: Online communication (Comm., in bits) and round complexity of SecureNN, Falcon, andMeteor.𝑞 is the smallest prime

with 𝑞 ≥ ℓ , and 𝑘 = ⌈log2 𝑞⌉. ForMSB Ext., we set𝑁 = 3, 4 for𝑁 -MULT. †: In SecureNN,MSB Ext. is equal to ShareConvert+Compute

MSB (except Select Share), we summarize the corresponding communication and round costs here.

Framework SecureNN Falcon Meteor
Complexity Comm. Round Comm. Round Comm. Round

2-MULT

Integers 4
3 ℓ 1 ℓ 1 ℓ 1

Fixed-Point 4
3 ℓ 1 4

3 ℓ 1 ℓ 1
𝑁 -MULT (𝑁 − 1) 4

3 ℓ ⌈log2 𝑁 ⌉ + 1 (𝑁 − 1)ℓ ⌈log2 𝑁 ⌉ ℓ 1
MSB Ext. 8

3 ℓ𝑘 +
14
3 ℓ† 7† (2ℓ + 1)𝑘 + ℓ ⌈log2 (ℓ + 1)⌉ + 3 (43 ℓ + 1)𝑘 ⌈log4 (ℓ + 1)⌉ + 2

MUX
4
3 ℓ 1 1 + ℓ 2 ℓ 1

Our Techniques We propose Meteor, an online communication-
efficient and fast secure neural network inference system. Meteor
achieves its performance improvements via our improved 3PC pro-
tocols and specific optimizations for secure NN operators. Following
previous works [72, 73], our 3PC protocols are secure against a semi-
honest adversary in honest-majority. We build several primitives
with a focus on online efficiency by exploiting a function-dependent
but input-independent setup.

Our construction is similar to the sharing semantics of ABY2.0 [56],
but exploits a different perspective from the linearity of replicated
secret sharing [6, 51, 73]: For theMULT, we only need linear opera-
tions of replicated secret sharing to generate 2-out-of-3, instead of 3-
out-of-3, secret shares in the online phase. This new perspective can
accelerate the 2-MULT for fixed-point inputs and 𝑁 -MULT for in-
teger inputs, and bring several further optimizations for more com-
plex primitives, such as most significant bit extraction (MSB Ext.)
and multiplexer (MUX). Besides, our linearity perspective is more
straightforward to be generalized to any kind of linear secret shar-
ing. Detailed comparison is shown in § 3.1.
Contributions Formally, we have the following contributions:

• Improved Secure 3-Party Computation: We propose
an improved 3PC secret sharing scheme (J·K-sharing) and
construct a set of basic cryptographic primitives, including
linear operations (Lops), MULT, MSB Ext., MUX, and etc.
Our primitives are more online communication- and round-
efficient than that of SecureNN [72] and Falcon [73]. The
detailed theoretical improvements are shown in Table 1.

• Optimized Secure NN Operators: Furthermore, we con-
struct fast protocols for Matrix Multiplication (MatMul),
ReLU function, and Maxpool (MP) based on our basic
primitives with specific optimizations. Compared to Se-
cureNN [72] and Falcon [73], we achieve 1.2-6× and 1.3-
1.6× improvements in terms of communication costs. Mean-
while, we are approximately 1.8-20× and 1.5 faster for the
secure online evaluation of NN operators, respectively.

• Efficient Secure Inference: In the end, we perform ex-
tensive secure inference experiments on various neural
networks and datasets in both LAN and WAN settings: i)
For single inference, we reduce the online communication
by upto 25.6× and 1.5×, and improve the online running-
time by at most 9.8× (resp. 8.1×) and 1.5× (resp. 2.1×) in
LAN (resp. WAN) compared to SecureNN and Falcon, re-
spectively. ii) For batch inference, Meteor is more scalable
than Falcon. Specially, we improve the communication

Table 2: Notation table.

𝑃𝑖 party 𝑖 in 3PC
X uppercase bold letter denotes matrix
x lowercase bold letter denotes vector
x lowercase letter denotes scalar

x[𝑖] the 𝑖th bit of x
[·] 3-out-of-3 sharing
⟨·⟩ 2-out-of-3 replicated secret sharing
J·K our 3PC secret sharing
Z𝐿 discrete ring modulo 𝐿 with 𝐿 = 2ℓ
F𝑞 field modulo prime 𝑞
F𝑓 the ideal functionality for 𝑓 (·)
∈𝑅 random sample
𝜅 the symmetric security parameter

and running-time by both around 1.5× in WAN. Our source
code is available: https://github.com/Ye-D/Meteor.

Organization We present the background and preliminaries in
§ 2, and give a high-level overview of Meteor in § 3. We propose
efficient protocols for the basic primitives in § 4 and justify their
security in § 5. And in § 6, we construct the optimized secure NN
operators. The experimental results are illustrated in § 7. We discuss
related works in § 8 and conclude this work in § 9.

2 Background & Preliminaries

We introduce the background and preliminaries about neural net-
work and 3PC replicated secret sharing in this section.

2.1 Notations

The main notations are summarized in Table 2.

2.2 Neural Network

The computational flow of a neural network is composed of multiple
linear and non-linear layers. Each layer receives input and processes
it to produce an output that serves as input to the next layer.
Linear Layers Typical linear layers in NN inference include Fully-
Connected (FC), Convolution (CONV), and Batch Normalization
(BatchNorm, only being linear layer in NN inference):

• FC: Given input vector x ∈ R𝑛×1, a FC layer generates
the output y ∈ R𝑚×1 as y = Wx + b, where W ∈ R𝑚×𝑛
is the weight matrix and b ∈ R𝑚×1 is the bias term. More
generally, neural networks often take a batch of images as
inputs X𝑛×|𝐵 | (|𝐵 | is the batchsize), thus the FC layer can
be computed with matrix multiplication as Y = WX + B.

https://github.com/Ye-D/Meteor

Meteor: Improved Secure 3-Party Neural Network Inference with Reducing Online Communication Costs

• CONV: The CONV layer computes the dot product of a
small weight matrix (filter) and the neighborhood of an
element of the input. The process is sliding each filter with
a certain stride, and the size of filter is called filter size. For
a generalized exposition on CONV, please refer to [72].

• BatchNorm: A BatchNorm layer is typically applied to
shift its input 𝑥 to amenable ranges. During the inference,
the BatchNorm parameters 𝛾 and 𝛽 are fixed, BatchNorm
normalizes 𝑥 as 𝛾 · 𝑥 + 𝛽 .

Non-Linear Layers NN uses activation functions to model non-
linear relationships between input and output. And Pool functions
sometimes are applied.

• Activation:The activation functions are applied in element-
wise. One of the most popular activation functions is ReLU
function: ReLU(𝑥) = max(0, 𝑥). Other activation functions
inlcude Sigmoid, Tanh, and etc [54];

• Pool: Pooling arranges inputs into several windows and ag-
gregates elements of each window. Maxpool (resp. Avgpool)
calculates the maximum (resp. average) for each window.

2.3 3PC Replicated Secret Sharing

Secret value x ∈ Z2ℓ is shared by three random values x0, x1, x2 ∈
Z2ℓ with x = x0 + x1 + x2 (mod 2ℓ) [6, 51, 73]. In 3-out-of-3 sharing
([·]-sharing), 𝑃𝑖 has [x]𝑖 = x𝑖 . In replicated secret sharing (2-out-of-
3, ⟨·⟩-sharing), 𝑃𝑖 gets ⟨x⟩𝑖 = (x𝑖 , x𝑖+1). Without special declaration,
we compute in Z2ℓ and omit (mod 2ℓ) for brevity.
Sharing and Reconstruction To achieve functionality F ⟨·⟩

SHARE
,

secret owner samples random x1, x2 ∈𝑅 Z2ℓ , sets x0 = x−x1−x2, and
sends ⟨x⟩𝑖 = (x𝑖 , x𝑖+1) to 𝑃𝑖 . And to implement F ⟨·⟩

REC
, 𝑃𝑖 sends x𝑖+1

to 𝑃𝑖−1 such that 𝑃𝑖−1 reconstructs x = x0 + x1 + x2 for 𝑖 ∈ {0, 1, 2}.
LinearOperations Let (𝑐1, 𝑐2, 𝑐3) be public constants, and (⟨x⟩, ⟨y⟩)
be two secret-shared values. Then, ⟨𝑐1x+𝑐2y+𝑐3⟩ can be computed
as (𝑐1x0 + 𝑐2y0 + 𝑐3, 𝑐1x1 + 𝑐2y1, 𝑐1x2 + 𝑐2y2) where 𝑃𝑖 can compute
its share locally. When (𝑐1 = 1, 𝑐2 = 1, 𝑐3 = 0), we get ⟨x + y⟩.
Multiplication Functionality F ⟨·⟩

MULT
multiplies two shared values

⟨x⟩ and ⟨y⟩, existing protocol achieves this as follows: i) First, 𝑃𝑖
computes z𝑖 = x𝑖y𝑖 +x𝑖+1y𝑖 +x𝑖y𝑖+1 locally such that z𝑖 is [·]-shared.
ii) Parties then perform re-sharing by letting 𝑃𝑖 sends z′𝑖 = 𝛼𝑖 + z𝑖 to
𝑃𝑖−1, where 𝛼0 + 𝛼1 + 𝛼2 = 0 (𝑃𝑖 can generate 𝛼𝑖 in the setup phase
as [6, 51, 73]). iii) Finally, {(z′0, z

′
1), (z

′
1, z
′
2), (z

′
2, z
′
0)} form ⟨x · y⟩.

In the case of ℓ > 1 (e.g., ℓ = 64) which support arithmetic
operations (e.g., +, −, and ·), we refer to this type as Arithmetic
Sharing and use notation ⟨·⟩. Boolean Sharing (⟨·⟩2) refers to ℓ = 1
where +,− and · are respectively replaced by bit-wise ⊕ and ∧.
MSB Extraction The key step of comparing ⟨x⟩ ≥ ⟨y⟩ in two’s
complement representation is extracting the most significant bit of
⟨z⟩ = ⟨x⟩ − ⟨y⟩. General methods either re-interpret the arithmetic
sharing as boolean sharing and evaluate an addition circuit on
boolean shares to compute ⟨msb(z)⟩2, or employ garbled circuits to
extract the most significant bit. Recently, Wagh et al. proposed an
efficientMSB Ext. method based on wrap function and bit decom-
position in replicated secret sharing [73]. We follow their approach
in Meteor but optimize the online efficiency with our improved
secret sharing scheme. And we plan to improve other MSB Ext.

methods [29, 49, 51] with our novel secret sharing for future work.

Fixed-Point Representation In secure NN inference, we need
to encode floating-point numbers as integers in rings [51, 52, 73].
Given floating-point 𝑥 ∈ R, its encoding is as: x = ⌊2𝑑 ·𝑥⌋ (mod 2ℓ),
where it is usually ℓ = 64 and 𝑑 = 13 as [73]. In this way, we use
[0, 2ℓ−1) to represent 𝑥 ∈ R+, and [2ℓ−1, 2ℓ) for negative values.

3 A High-Level Overview of Meteor

We first present an overview of our J·K-sharing semantics in § 3.1.
Then, we show the design and threat model of Meteor in § 3.2.

3.1 Overview of J·K-Sharing Semantics

Costs Analysis of MULT Existing ⟨·⟩-sharing based 3PC ap-
proaches need ℓ bits per party in 1 round for evaluating 2-MULT

with 2 integer inputs (resharing), and requiremore costs for 2-MULT

with fixed-point inputs and 𝑁 -MULT with integer inputs: i) When
multiplying 2 fixed-point inputs x and y, the parties need to reveal
[z + r′] and compute (z + r′)/2𝑑 − ⟨r⟩ for faithful truncation, where
z = xy, r = r

′/2𝑑 , and (r, r′) are in secret. As [z+r′] is of [·]-sharing,
it needs 4

3 ℓ bits communication per party for mask-and-reveal in
the online phase [51, 73]. ii) When multiplying 𝑁 integers, parties
need to perform resharing for each 2-MULT. This requires an online
communication of (𝑁 − 1)ℓ bits per party in ⌈log2 𝑁 ⌉ rounds [73].

The main costs of MULT stem from Resharing-related oper-
ations. Inspired by this conclusion, we are wondering: Will the
efficiency (e.g., communication and running-time) be improved if we
can maintain the ⟨·⟩-sharing format during the whole computation?
Linearity of ⟨·⟩-Sharing From § 2.3, we notice the linear opera-
tions of ⟨·⟩-values lead to ⟨·⟩-shared results locally (no communica-
tion). This is true for two ⟨·⟩-shared inputs (𝑐1⟨x⟩ + 𝑐2⟨y⟩ + 𝑐3), and
can be easily generalized to three or more ⟨·⟩-shared inputs.
J·K-Sharing Inspired by the sharing semantics of [9, 10, 69] and
with the linearity of ⟨·⟩-sharing in mind, we propose an improved
3PC secret sharing (J·K-sharing) as follows:

Definition 1 (J·K-sharing). A value x ∈ Z2ℓ is said to be J·K-
shared among {𝑃0, 𝑃1, 𝑃2} if there exists random𝜓x andmx such that:
i)𝜓x is ⟨·⟩-shared among {𝑃0, 𝑃1, 𝑃2}; ii) mx = x −𝜓x is known to all
parties in clear. The share of 𝑃𝑖 is JxK𝑖 = (mx, ⟨𝜓x⟩𝑖) for 𝑖 ∈ {0, 1, 2}.

For brevity, we use notations𝜓x1 ...x𝑛 = 𝜓x1𝜓x2 . . .𝜓x𝑛 andmx1 ...x𝑛 =

mx1mx2 . . .mx𝑛
. Similarly, J·K𝑞-sharing is for x ∈ F𝑞 and J·K2-sharing

is for x ∈ Z2, where we use modulo 𝑞 in J·K𝑞-sharing and replace +,−
by ⊕ and · by ∧ in J·K2-sharing.

With J·K-sharing, we can evaluateMULT by computing the rela-
tively expensive multiplication of secret random ⟨𝜓 ⟩s in the setup
phase, such that the online phase only involves the linear operations of
⟨·⟩-sharing. Taking 2-MULT(x, y) with integer inputs as an example,
the parties compute ⟨𝜓z⟩ = ⟨𝜓x⟩⟨𝜓y⟩ in the setup phase, and com-
putemz with linear operations and 1 round of revealing. J·K-sharing
also needs ℓ bits per party, but gives the following benefits:

• For 2-MULTwith fixed-point inputs, we only need ℓ bits per
party in 1 round for mask-and-reveal in the online phase.
This is because the intermediate results are in ⟨·⟩-shared
fashion. Hence, we improve the communication by 1.3×;

• For 𝑁 -MULT with integer inputs, we only need linear op-
erations of ⟨·⟩-sharing to generate ⟨·⟩-shared product of
𝑁 integers in the online phase, since all multiplications

Ye Dong, et al.

I J·K-sharing

II Lops MULT MSB Ext. MUX

III MatMul ReLU MP

Figure 1: Dependency of protocols in Meteor.

among ⟨𝜓 ⟩s can be evaluated in the setup phase. There-
fore, our approach needs an online communication of ℓ bits
per party in 1 round, which is independent of 𝑁 and first
achieved in the regime of 3PC. Compared to prior methods,
we improve the online communication by 𝑁× and rounds
by ⌈log2 𝑁 ⌉×.

What’s more, we propose efficient J·K-sharing based protocols
for other primitives and NN operators in respective § 4 and § 6.
Comparison to ABY2.0 [56]. Patra et al. has proposed similar
sharing semantics to improve the online efficiency of 2PC [56]
inspired by ASTRA [18] and [55], but our J·K-sharing is different in
the following aspects:

• Beaver-Friendly v.s. Linearity: ABY2.0 is inspired by
Beaver triples [7] and reduces the communication by shar-
ing the inputs in a Beaver-friendly format. However, J·K-
sharing stems from the linearity of replicated secret sharing.
They might be equivalent in some settings (e.g., 2PC), but
our linearity perspective is more straightforward to be gen-
eralized to other linear secret sharing.

• 2PC v.s. 3PC: For the setup phase, ABY2.0 exploits Obliv-
ious Transfer (OT) [33] or HE [26] to generate correlated
randomness, but we utilize the multiplication protocol of
⟨·⟩-sharing (free of OT or HE). Therefore, J·K-sharing is
more efficient in setup when honest-majority in 3PC is avail-
able.

3.2 Design of Meteor

Our Meteor, as depicted in Figure 1, consists of three layers:
• I: We first propose an improved 3-party secret sharing

scheme (J·K-sharing) inspired by the linearity of replicated
secret sharing in 3PC.

• II: Secondly, we design efficient protocols for the most com-
mon basic cryptographic primitives, i.e., Linear Operations
(Lops), MULT,MSB Ext., andMUX.
• III: Thirdly, we build secure blocks for the widely used NN

operators, such asMatMul, ReLU, andMP, together with
specific optimizations to support fast secure NN inference.

Function-dependent but Input-independent Setup Following [72,
73], we also focus on the online efficiency. Meteor is cast into
a function-dependent but input-independent setup phase, and an
input-dependent online phase as [19, 56, 57]. In the setup phase, we
generate the function-dependent but input-independent correlated
randomness for a given function to improve the online efficiency.
This setup is available and widely utilized in many applications.
Threat Model Following works [72, 73], Meteor resists semi-
honest adversaries in honest-majority [47]. Namely, each party

follows the protocol, but may individually try to learn information
about other inputs:

Definition 2 (Semi-Honest Security). Let Π be a three-party
protocol running in real-world and F : ({0, 1}𝑛)3 → ({0, 1}𝑚)3 be
the ideal randomized functionality. We say Π securely computes F
in presence of a single semi-honest adversary if for every corrupted
party 𝑃𝑖 (𝑖 ∈ {0, 1, 2}) and every input x ∈ ({0, 1}𝑛)3, there exists an
efficient simulator S such that:

{view𝑖,Π (x), outputΠ (x)}
𝑐≈ {S(𝐼 , x𝑖 , F𝑖 (x)), F (x)},

where view𝑖,Π (x) is the view of 𝑃𝑖 in the execution ofΠ on x, outputΠ (x)
is the output of all parties, and F𝑖 (x) denotes the 𝑖th output of F (x).

4 Improved Secure 3-Party Computation

In this section, we present the detailed constructions of sharing
and reconstruction (§ 4.1), linear operations (§ 4.2), MULT(§ 4.3),
MSB Ext.(§ 4.4), andMUX (§ 4.5).

4.1 Sharing and Reconstruction

Sharing ΠSHARE (x) achieves F
J·K
SHARE

by enabling 𝑃𝑖 (secret owner)
to generate a J·K-sharing of its x. In the setup phase, all parties
together sample random ⟨𝜓x⟩ using existing F ⟨·⟩

RAND
with 𝑃𝑖 gets𝜓x

in clear (c.f. Appendix A). In the online phase, 𝑃𝑖 revealsmx = x−𝜓x.
Reconstruction We describe our protocol ΠREC (JxK) for F

J·K
REC

that reconstructs x as follows: Given JxK, parties invoke F ⟨·⟩
REC

to
reconstruct𝜓x and locally compute x = mx +𝜓x.

4.2 Linear Operations

J·K-sharing is linear in the sense that given JxK, JyK and public
constants 𝑐1, 𝑐2, and 𝑐3, parties can compute JzK = 𝑐1 ·JxK+𝑐2 ·JyK+𝑐3
by locally setting (mz = 𝑐1 ·mx+𝑐2 ·my+𝑐3, ⟨𝜓z⟩ = 𝑐1 ·⟨𝜓x⟩+𝑐2 ·⟨𝜓y⟩).

4.3 Multiplication

We consider 2-input multiplication (2-MULT) and 𝑁 -input multi-
plication (𝑁 -MULT). The former is employed in secure FC/CONV,
while the latter plays an important role in secureMSB Ext.

4.3.1 2-Input Multiplication We first consider the multiplication of
two integers. Given the J·K-shares of integers x and y, functionality
F J·K

2-MULT
generates JzK with z = xy. For z, we will need:

mz = z −𝜓z = xy −𝜓z
= (mx +𝜓x) (my +𝜓y) −𝜓z
= mxmy +mx𝜓y +my𝜓x +𝜓xy −𝜓z

. (1)

In the setup phase, parties compute the input-independent ⟨𝜓xy⟩ =
⟨𝜓x⟩⟨𝜓y⟩. And in the online phase, parties compute ⟨mz⟩ locally
and collaboratively reveal it. So the challenge is reduced to generate
⟨𝜓xy⟩ given ⟨𝜓x⟩ and ⟨𝜓y⟩. We leverage F ⟨·⟩

MULT
to accomplish this

task as § 2.3. The protocol is in Figure 2. Π2-MULT needs an online
communication of ℓ bits per party in 1 round.
Fixed-Point Multiplication Extension As analyzed in § 3, we
truncate the product (i.e., xy/2𝑑 where x and y are in fixed-point)
after each multiplication in secure NN inference. Existing faithful
truncation method [51, 73] needs 4

3 ℓ bits per party in online phase.

Meteor: Improved Secure 3-Party Neural Network Inference with Reducing Online Communication Costs

Protocol Π2-MULT

Input: 𝑃0, 𝑃1, and 𝑃2 hold J·K-shared JxK and JyK.
Output: JzK = JxK · JyK.
• Setup:

(1) Parties generate ⟨𝜓z ⟩ using functionality F⟨·⟩
RAND

.
(2) Parties execute ⟨𝜓xy ⟩ = F⟨·⟩

MULT
(⟨𝜓x ⟩, ⟨𝜓y ⟩) .

• Online:
(1) 𝑃𝑖 locally computes ⟨mz ⟩𝑖 = mxy +mx ⟨𝜓y ⟩𝑖 +my ⟨𝜓x ⟩𝑖 +
⟨𝜓xy ⟩𝑖 − ⟨𝜓z ⟩𝑖 .

(2) Parties exchange the shares of ⟨mz ⟩ to reconstruct mz.
(3) 𝑃𝑖 outputs JzK𝑖 = (mz, ⟨𝜓z ⟩𝑖) .

Figure 2: 2-Input Multiplication Protocol for Integers.

To reduce the costs, we propose online free faithful truncation at
the same online communication as 2-MULT for integers: i) In the
setup phase, parties generate (⟨𝜓z⟩, ⟨𝜓

′
z
⟩) with 𝜓z = 𝜓

′
z
/2𝑑 using

the optimized binary circuits [51]. ii) In the online phase, parties
compute and reveal ⟨m′

z
⟩ = xy− ⟨𝜓 ′

z
⟩ as equation (1) and revealm′

z
.

iii) Parties set JzK = (m′
z
/2𝑑 , ⟨𝜓z⟩) with m

′
z
/2𝑑 +𝜓z = xy/2𝑑 holds.

Online Communication The correctness and precision guaran-
tees of our method are similar to prior works [51, 73], our main
contributions here lie in the online communication improvements.
As ⟨m′

z
⟩ is in ⟨·⟩-sharing, our Π2-MULT with truncation for fixed-

point inputs needs ℓ bits per party in 1 round for revealing it during
the online phase, achieving 1.3× improvements.

4.3.2 𝑁 -Input Multiplication Functionality F J·K
𝑁 -MULT

multiplies
𝑁 integers for any positive constant 𝑁 . From the fact that secret
random ⟨𝜓 ⟩s are input-independent, we can multiply them in the
setup phase. Therefore, we only need linear operations of ⟨·⟩-shared
values to get the ⟨·⟩-shared product of𝑁 integers in the online phase.
Taking (x1, x2, . . . , x𝑁) as inputs, we have mz = Π𝑁

𝑡=1x𝑡 − 𝜓z =

Π𝑁
𝑡=1 (mx𝑡

+𝜓x𝑡) −𝜓z =
∑
T⊆{1,...,𝑁 } (Π 𝑗∉Tmx𝑗

· Π𝑘∈T𝜓x𝑘) −𝜓z.
In the setup phase, parties can compute the input-independent

⟨·⟩-shares of {Π𝑘∈T𝜓x𝑘 }T⊆{1,...,𝑁 } exploiting F
⟨·⟩
MULT

. In the online
phase, the parties only need to revealmz. The details are in Figure 5.
Online Communication The online communication remains just
ℓ bits per party in 1 round independent of the fan-in. In contrast,
previous ⟨·⟩-sharing based methods require (𝑁 − 1)ℓ bits per party
in ⌈log2 𝑁 ⌉ rounds. In the setup phase, the above method requires
(2𝑁 − 1 − 𝑁)ℓ bits per party in ⌈log2 𝑁 ⌉ rounds. To balance the
burden in the setup and online phases, we set 𝑁 = 3 and 4 as [56].

4.4 Secure MSB Extraction

Given JxK, functionality F J·K
SecMSB

extracts Jmsb(x)K2 securely. From
x = mx +𝜓x for JxK, we can write

msb(x) = msb(mx) ⊕ msb(𝜓x) ⊕ c, (2)

where c is the carry bit ofmx and𝜓x modulo 𝐿
2 (ignoring theirmsb),

which is formalized as c = (2mx + 2𝜓x ≥ 𝐿) = (2𝜓x ≥ 𝐿 − 2mx). Let
s = 2𝜓x and b = 𝐿 − 2mx, our key insights are as follows:

i) 𝜓x is independent of inputs, we can compute Jmsb(𝜓x)K2
and J·K𝑞-shares of bits of s in the setup phase.

ii) m𝑥 and 𝐿 are public in the online phase.

Protocol ΠSecMSB

Input: 𝑃0, 𝑃1, and 𝑃2 hold JxK = (mx, ⟨𝜓x ⟩) .
Output: Jmsb(x)K2.
• Setup:

(1) The parties call functionality FJ·K
PreMSB

to generate
Jmsb(𝜓x)K2, {Js[𝑖]K𝑞 }ℓ𝑖=1 with s = 2𝜓x, (J𝜆K2, J𝜆K𝑞)
with 𝜆 ∈𝑅 Z2, and J𝜁 K𝑞 with 𝜁 ∈𝑅 F∗𝑞 .

(2) The parties run the setup phase of FJ·K
𝑁 -MULT

.
• Online:

(1) Compute b = 𝐿 − 2mx.
(2) for 𝑖 ∈ [ℓ, ℓ − 1, . . . , 1], all parties compute in F𝑞 :
(3) Ju[𝑖]K𝑞 = (1 − 2J𝜆K𝑞) · (Js[𝑖]K𝑞 − b[𝑖]) .
(4) Jw[𝑖]K𝑞 = Js[𝑖]K𝑞 + b[𝑖] − 2Js[𝑖]K𝑞b[𝑖].
(5) Je[𝑖]K𝑞 = Ju[𝑖]K𝑞 + 1 +∑ℓ

𝑘=𝑖+1Jw[𝑘]K
𝑞 .

(6) end for

(7) Compute JdK𝑞 = J𝜁 K𝑞 · Πℓ
𝑖=1Je[𝑖]K

𝑞 (mod 𝑞) using
FJ·K
𝑁 -MULT

, and reveal d.
(8) Set JcK2 = 𝜆′ ⊕ J𝜆K2, where 𝜆′ = (d ≠ 0) .
(9) Output Jmsb(x)K2 = msb(mx) ⊕ Jmsb(𝜓x)K2 ⊕ J𝑐K2.

Figure 3: Secure Most Significant Bit Extraction Protocol.

Protocol ΠMUX

Input: 𝑃0, 𝑃1, and 𝑃2 hold J·K-shared JxK, JyK, and JvK2.
Output: JzK with z = x if v = 1 and z = y otherwise.
• Setup:

(1) Parties generate ⟨𝜓 ⟩ using functionality F⟨·⟩
RAND

.
(2) Parties convert ⟨𝜓 ℓ

v
⟩ = F⟨·⟩

Bit2A
(⟨𝜓v ⟩2) for JvK2.

(3) Parties compute JuK = JxK − JyK.
(4) Parties invoke F⟨·⟩

MULT
to compute ⟨𝜓u𝜓

ℓ
v
⟩ = ⟨𝜓u ⟩ · ⟨𝜓 ℓ

v
⟩.

• Online:
(1) 𝑃𝑖 locally computes ⟨m

uv
ℓ ⟩𝑖 = (1 − 2⟨𝜓 ℓ

v
⟩𝑖)mum

ℓ
v
+

mu ⟨𝜓 ℓ
v
⟩𝑖 + ⟨𝜓u ⟩𝑖mℓ

v
+ (1 − 2mℓ

v
) ⟨𝜓u𝜓

ℓ
v
⟩𝑖 − ⟨𝜓 ⟩𝑖 .

(2) Parties reconstruct m
uv

ℓ and set Ju · vℓ K = (m
uv

ℓ , ⟨𝜓 ⟩) .
(3) Parties locally compute and output JzK = Ju · vℓ K + JyK.

Figure 4: Secure Multiplexer Protocol.

With our key insights in mind, we propose protocol ΠSecMSB as
Figure 3. In the setup phase, we manage to generate Jmsb(𝜓x)K2,
{Js[𝑖]K𝑞}ℓ

𝑖=1, J𝜆K
2, J𝜆K𝑞 , and J𝜁 K𝑞 using F J·K

PreMSB
. We construct pro-

tocol ΠPreMSB (c.f., Appendix § C) for F J·K
PreMSB

based on [51, 73].
In the online phase, the challenge is computing c. Inspired by

[73], we propose an optimized method as Figure 3. The key point is
that s < b if and only if there ∃𝑖 ∈ [ℓ, . . . , 1] subjected to e[𝑖] = 0,
which means s[𝑘] = b[𝑘] for ∀𝑘 > 𝑖 and (s[𝑖] = 0, b[𝑖] = 1).
Otherwise, we have 𝑠 ≥ b⇔ e[𝑖] ≠ 0 for ∀𝑖 ∈ [ℓ, . . . , 1].
Online Communication We use Π𝑁 -MULT with 𝑁 = 3, 4. For the
online phase: i) Steps 2-6 need ℓ ⌈log2 𝑞⌉ bits per party in 1 round.
ii) Step 7 needs ≈ (13 ℓ + 1) ⌈log2 𝑞⌉ bits per party in ⌈log4 (ℓ + 1)⌉ + 1
rounds. iii) Steps 1, 8, 9 are locally. Therefore, the online phase
needs ≈ (43 ℓ + 1) ⌈log2 𝑞⌉ bits per party in ⌈log4 (ℓ + 1)⌉ + 2 rounds.

4.5 Multiplexer

Given (JxK, JyK, JvK2), functionality F J·K
MUX

outputs JzK = JxK if v = 1,
and JzK = J𝑦K otherwise. This is JzK = (JxK − JyK) · JvK2 + JyK.

Ye Dong, et al.

Let JuK = JxK − JyK, the challenge is computing JuK · JvK2. A
trivial solution is converting JvK2 to JvK by [29, 63] and computing
JuK · JvK with 1 + ℓ bits per party in 2 rounds. To reduce costs, we
propose protocol ΠMUX. Denote the value of bit v in Z2ℓ as vℓ . For
JvK2 = (mv, ⟨𝜓v⟩2), vℓ = (mv ⊕𝜓v)ℓ = m

ℓ
v
+𝜓 ℓ

v
− 2mℓ

v
𝜓 ℓ
v
. Thus, for

JuK · JvK2 we have

u · vℓ = (mu +𝜓u) · (mℓ
v
+𝜓 ℓ

v
− 2mℓ

v
𝜓 ℓ
v
)

= mum
ℓ
v
+mu𝜓

ℓ
v
− 2mum

ℓ
v
𝜓 ℓ
v
+𝜓umℓ

v
+𝜓u𝜓 ℓ

v
− 2𝜓umℓ

v
𝜓 ℓ
v

= (1 − 2𝜓 ℓ
v
)mum

ℓ
v
+mu𝜓

ℓ
v
+𝜓umℓ

v
+ (1 − 2mℓ

v
)𝜓u𝜓 ℓ

v

.

(3)

In the setup phase, we compute ⟨𝜓 ℓ
v
⟩ from ⟨𝜓v⟩2 via F ⟨·⟩

Bit2A
(c.f.,

Appendix § D) and compute ⟨𝜓u𝜓 ℓ
v
⟩ using F ⟨·⟩

MULT
. In online phase,

parties compute and reveal m
uv

ℓ , set Ju · vℓK = (m
uv

ℓ , ⟨𝜓 ⟩), and
output JzK = Ju · vℓK + JyK as shown in Figure 4.
Online Communication ΠMUX needs ℓ bits per party in 1 round.

5 Security Analysis

Theorem 1 captures the security of our protocols, and the full proof
is given in Appendix G.

Theorem 1. In the hybrid model, our protocols securely realize the
functionalities F J·K

SHARE
, F J·K

REC
, F J·K

Lops
, F J·K

2-MULT
, F J·K

𝑁 -MULT
, F J·K

SecMSB

and F J·K
MUX

against a semi-honest adversaryA, who corrupts no more
than one party.

6 Optimized Secure NN Operators

In § 6.1, we show the secure evaluation of FC, CONV, BatchNorm.
In § 6.2, we construct secure ReLU. We give private MP and ReLU-
MP equivalent switching in § 6.3. The full protocols and high-level
buildings of other secure NN operators are shown in Appendix E.

6.1 Secure Matrix Multiplication

Protocol Π2-MULT can be easily vectorized toMatMul . Given JXK =
(mX, ⟨𝜓X⟩) with dimension𝑚×𝑛 and JYK = (mY, ⟨𝜓Y⟩) with dimen-
sion 𝑛 × 𝑜 : i) In the setup phase, parties execute F ⟨·⟩

MULT
to compute

⟨𝜓XY⟩ = ⟨𝜓X⟩ · ⟨𝜓Y⟩. ii) In the online phase, parties locally compute
⟨mZ⟩ = mX ·mY+mX · ⟨𝜓Y⟩ + ⟨𝜓X⟩ ·mY+ ⟨𝜓XY⟩ − ⟨𝜓Z⟩, reconstruct
mZ, and set JZK = (mZ, ⟨𝜓Z⟩). We need𝑚𝑜ℓ bits (independent of
𝑛) in 1 round for the online phase. The full protocol is shown in
Figure 8. The security ofMatMul follows in F J·K

2-MULT
-hybrid model.

Secure FC&CONVWe can leverageMatMul to achieve secure FC.
For CONV, we reshape the input and filter to express convolution
as MatMul for subsequent secure evaluation. To support fixed-
point truncation, the parties can generate (⟨𝜓Z⟩, ⟨𝜓

′
Z⟩), and perform

faithful truncation similarly as § 4.3.1 but in vectorization.
Fusing CONV & BatchNorm BatchNorm often goes after CONV,
we can fuse them into one for better efficiency [4]. Suppose the
trained parameters for BatchNorm andCONV are (WBN, bBN) and
(WCONV, bCONV), we can replace them by a single CONV with
(W = WBN ·WCONV, b = WBN · bCONV + bBN). Therefore, we can
compute both layers together at the same costs as secure CONV.

6.2 Secure ReLU

The activation function considered in this work is the rectified linear
unit (ReLU). Taking x as input, F J·K

ReLU
returns x if x ≥ 0, and 0 other-

wise. To achieve F J·K
ReLU

securely, it suffices to first extract Jmsb(x)K2

using F J·K
SecMSB

, and then execute F J·K
MUX
(JxK, JyK, Jmsb(x)K2 ⊕ 1)

with y = 0. The details are shown in Figure 9.
Our method needs an online communication of (43 ℓ+1) ⌈log2 𝑞⌉+

ℓ bits per party in ⌈log4 (ℓ + 1)⌉ + 3 rounds. And the security of
ΠReLU is easily to see in (F J·K

SecMSB
, F J·K

MUX
)-hybrid model.

6.3 Secure Maxpool

Given J·K-shared vector x = (x1, x2, . . . , x𝑛) of size-𝑛, the goal of
functionality F J·K

MP
is to compute the maximum value among the 𝑛

elements. F J·K
MP

can be implemented on top of ReLU. The key point
is that the parties update JmaxK = Jx𝑖K if and only if ReLU(JmaxK−
Jx𝑖K) = 0 (⇔ max < x𝑖). The full protocol is shown in Figure 10.

Furthermore, benefiting from binary sort on the inputs and small
amounts of bookkeeping [73], the online phase needs approximately
(𝑛−1) ((43 ℓ+1) ⌈log2 𝑞⌉+ℓ) bits per party in ⌈log2 𝑛⌉ (⌈log4 (ℓ+1)⌉+3)
rounds, and the security follows in the F J·K

ReLU
-hybrid model.

6.3.1 ReLU-MP Equivalent Switching MP is usually applied af-
ter ReLU, but they are commutative operators in NN inference:
ReLU(MP(·)) = MP(ReLU(·)).

There is no significant performance difference of the alterna-
tion in cleartext, but ReLU(MP(·)) is much more efficient than
MP(ReLU(·)) in MPC since the former reduces the number of ReLU
operations significantly [43]. We thus evaluateMP before ReLU.

7 Evaluations

In this section, we present the system implementation and the de-
tailed experimental results. The online costs of micro NN operators
are in § 7.1. And in § 7.2, we present the results for single inference.
In § 7.3, we show running-time and scalability for batch inference.
Experimental Details We implement Meteor on top of Falcon
in C++ and run our experiments on Intel(R) Xeon(R) Silver 4314
CPU @ 2.40 GHz with 500 GB RAM in both LAN and WAN with a
single thread. For LAN, our bandwidth is about 1 GB/s and round
trip time (rtt) is about 1 ms. For WAN, our bandwidth is about
40 MB/s and rtt is about 70 ms. For fair comparisons, we re-run
SecureNN and Falcon in our settings with semi-honest security.
Optimizations Following Falcon [73], we focus on online effi-
ciency and do not take setup costs into account1. As Softmax does
not impact inference results, we omit it as [73]. We use Eigen li-
brary [2] for fast MatMul, uint64 for Z2ℓ , 𝑑 = 13, and 𝑞 = 67. All
experiments are executed 10 times, and we record the average2.
Datasets & Neural NetworksWe select 2 standard benchmarking
datasets: MNIST [44] and CIFAR-10 [42], and 6 standard network
architectures: 3 from the secure ML community (Network-A [52],
B [62], and C [48]) and 3 from the ML community (LeNet [45],
AlexNet [41], and VGG16 [67]) for extensive experiments.

1Falcon also does not take setup costs into consideration in experiments.
2The original results of communication in Falcon are incorrect due to the parallel

implementation bugs and we have checked it with the authors. We re-run Falcon with
a single thread. For details, please refer to https://github.com/snwagh/falcon-public.

https://github.com/snwagh/falcon-public

Meteor: Improved Secure 3-Party Neural Network Inference with Reducing Online Communication Costs

Table 3: Online costs of NN operators of SecureNN, Falcon, and Meteor. ForMatMul, the inputs are of size𝑚 ×𝑛 and 𝑛 ×𝑜 . And
CONV is with input𝑚 ×𝑚, 𝑐 input channels, 𝑜 output channels, and filter of 𝑓 × 𝑓 . ReLU is computed in element-wise with size

𝑛. AndMP is with𝑚 ×𝑚 inputs, 𝑐 input channels, and 𝑓 × 𝑓 window. Communication is in MB and Running-Time is in seconds.

Operator Size Comm. Time (LAN) Time (WAN)
SecureNN Falcon Meteor SecureNN Falcon Meteor SecureNN Falcon Meteor

MatMul𝑚,𝑛,𝑜
(784, 128, 10) 0.563 0.084 0.063 0.065 0.003 0.003 0.146 0.103 0.073
(128, 500, 100) 0.642 0.137 0.102 0.258 0.007 0.012 0.346 0.118 0.076

CONV𝑚,𝑐,𝑜,𝑓
(28, 1, 20, 5) 0.110 0.123 0.092 0.019 0.005 0.004 0.122 0.103 0.099
(8, 16, 50, 5) 0.143 0.008 0.006 0.019 0.002 0.002 0.091 0.102 0.066

ReLU𝑛
128 × 128 3.845 2.376 1.556 0.205 0.035 0.040 1.076 0.623 0.433
576 × 20 2.703 1.670 1.094 0.148 0.025 0.030 0.815 0.566 0.457

MP𝑚,𝑐,𝑓
(24, 20, 2) 2.143 1.287 0.821 0.123 0.038 0.031 1.412 1.355 0.929
(8, 50, 4) 0.744 0.483 0.285 0.139 0.118 0.079 5.523 6.409 4.323

Table 4: Online costs of single inference for NN-A, -B, -C, and LeNet on MNIST of SecureNN, Falcon, and Meteor. Communi-

cation is in MB and Running-Time is in seconds.

NN-A NN-B NN-C LeNetFramework Comm. Time Comm. Time Comm. Time Comm. Time
SecureNN 0.700 0.175 1.352 0.236 2.954 0.416 6.314 0.861
Falcon 0.041 0.035 0.168 0.031 1.641 0.128 2.415 0.160LAN
Meteor 0.027 0.024 0.111 0.024 1.066 0.104 1.568 0.143
SecureNN 0.700 5.223 1.352 6.734 2.954 9.666 6.314 14.892
Falcon 0.041 1.544 0.168 1.191 1.641 5.517 2.415 6.759WAN
Meteor 0.027 1.056 0.111 0.836 1.066 3.049 1.568 3.176

7.1 Online Costs of Micro Benchmarks

We present the online costs of the NN operators, includingMatMul,
CONV, ReLU, andMP, in Table 3. Our improvements are as follows:
Communication Improvements For the linear operators (i.e.,
MatMul and CONV), we improve the communication costs by ap-
proximately 1.2-6× and 1.3× over SecureNN and Falcon, respec-
tively. This improvement arises from our free truncation technique.
For ReLU and MP, we achieve respective 2.5× and 1.6× communi-
cation improvements compared with SecureNN and Falcon due to
our communication efficient ΠSecMSB and ΠMUX.
Running-Time Improvements In the LAN setting, we improve
the running-time by approximately 2-20× for linear operators and
4× for non-linear operators compared with SecureNN. Meanwhile,
we achieve comparable running-time in comparison to Falcon in
LAN. In the WAN setting, we are approximately 1.8× and 1.5×
faster than SecureNN and Falcon, respectively.

7.2 Online Costs of Single Inference

The online costs of single inference are shown as follows.
Evaluation on MNIST We perform experiments on NN with
MNIST as SecureNN [72] and Falcon [73], and the results are
illustrated in Table 4. Compared to SecureNN, we improve the com-
munication by upto 25.6× (11.1× on average), and the running-time
by upto 9.8× (6.8× on average) and 8.1× (5.2× on average) in re-
spective LAN and WAN. Besides, we reduce the communication
by 1.5× on average, and are upto 1.5× (1.3× on average) and 2.1×
(1.7× on average) faster than Falcon in LAN and WAN.
Evaluation on CIFAR10 As illustrated in Table 5, we evaluate
Meteor on NN with CIFAR10 to demonstrate our improvements.

Table 5: Online costs of single inference on CIFAR10. Com-

munication is in MB and Running-Time is in seconds.

AlexNet VGG16Framework Comm. Time Comm. Time
Falcon 4.075 0.480 44.844 3.428LAN Meteor 2.562 0.429 29.424 4.240
Falcon 4.075 13.522 44.844 38.559WAN Meteor 2.562 8.997 29.424 27.174

For communication, we reduce the costs by 1.6× on average. For in-
ference time, we achieve comparable efficiency in LAN and ≈ 1.5×
improvements in WAN over Falcon. Note in this case, our im-
provements in LAN are not as significant as that in WAN. The
reason is that in LAN, the overall time is more restricted by the
computation burden since there is enough bandwidth and a small
rtt [73]. Therefore, the improvements in communication gain lim-
ited running-time benefits when the NN is computationally expen-
sive. However, as MPC protocols are more likely to be executed in
WAN, our improvements are meaningful in practical applications.

The improvements mainly stem from two aspects: i) our efficient
MatMul improveS the online communication of linear layers by
1.3× in comparison to Falcon. ii) More importantly, OUR online
communication- and round-efficient protocols ΠSecMSB and ΠMUX

improve the online efficiency of secure ReLU andMP functions.

7.3 Online Costs of Batch Inference

In this section, we measure the amortized online running-time for
batch inference and show our improvements in scalability.
Amortized Running-Time Table 6 shows the running-time of
Meteor over a batch of 128 images on AlexNet and VGG16 in LAN
and WAN settings. For AlexNet, the amortized time for per-image

Ye Dong, et al.

Table 6: Online Running-Time in seconds of Meteor with a

batch of |𝐵 | = 1 and 128 images of CIFAR-10.

LAN WAN
|𝐵 | 1 128 1 128

AlexNet 0.429 18.649 8.997 203.304
VGG16 4.240 282.682 27.174 2404.509

drops from 0.429 s to 0.146 s (2.9× improvements) in LAN and from
8.997 s to 1.588 s (5.7× improvements) in WAN. While for VGG16,
we achieve 1.9× and 1.4× time reduction for single image inference
by batch processing in respective LAN andWAN. The improvement
mainly comes from batch processing amortizes the computation
and latency costs for each image.
Scalability Evaluation To present our scalability improvements
against Falcon,we furthermeasure the communication and running-
time of Meteor on AlexNet and VGG16 with different batchsize as
Figure 11 in Appendix F. We have the following findings: i) Given
the batchsize |𝐵 |, we improve the online communication costs by
≈ 1.5× in comparison to Falcon, which is consistent with the
analysis for single inference in § 7.2. ii) For the online inference
running-time, we achieve comparable efficiency in LAN but ≈ 1.5×
improvements in WAN compared to Falcon, which is not unex-
pected; after all, the communication improvements have mere gains
to running-time in LAN as analyzed in § 7.2. Also, the scalability
improvement is primarily due to our proposed efficient protocols.

8 Related Work

Secure NN inference usingMPC has gained much attention recently.
In the earlier stage, privacy-preserving machine learning mainly
focused on traditional machine learning models such as linear re-
gression [12, 27, 28, 65], logistic regression [68], decision trees [37],
k-means clustering [14, 34], and SVM [71, 76].

In the area of two-party computation (2PC), CryptoNets [30]
was one of the earliest works to use homomorphic encryption
for secure NN inference, CryptoDL [31] developed approximate
and low-degree polynomials to implement non-linear functions for
efficiency improvements over CryptoNets. Mohassel et al. proposed
SecurML [52] in the two-server setting with secret sharing and GC.
Meanwhile, Liu et al. designed fast matrix multiplications protocols
in MiniONN [48]. DeepSecure [64] uses GC to develop a privacy-
preserving deep learning prediction framework, and Gazelle [35]
combines techniques from HE and MPC to achieve fast private
inference. EzPC [17] is a ABY-based [26] framework, and its follow-
up works [32, 58–60] focus on improving performance.

In order to solve the performance bottleneck of 2PC, recentworks
introduce a third party to assist computations. Chameleon [62] used
the same technique as in [48] to complete the matrix multiplication
operations but employed a semi-honest third-party to generate
correlated randomness for multiplication triplets in offline. In or-
der to solve the computational bottleneck incurred by the garbled
circuits [6], both SecureNN [72] and Cryptflow [43] constructed
novel protocols for non-linear functions such as ReLU and Max-
pool that completely avoid the use of GC with the help of a third-
party. What’s more, schemes based on 3PC replicated secret sharing
also provide better overall efficiency [51, 73], Falcon is one of the
most efficient methods and can evaluate large NN such as VGG16
and AlexNet. Additionally, works such as BLAZE [57], Fantastic

Four [23], FLASH [15], and Tetrad [40], and [24, 46] are evaluated
in MPC (𝑁 ≥ 3), but these works focus on resisting malicious
adversaries and require much more costs. And more works focus
on dishonest-majority settings [13, 21, 25, 36]. ASTRA [18] and
SWIFT [39] proposed 3PC sharing based on 2PC additive sharing
and constructed protocols against malicious adversaries. Meteor
is based on 3PC replicated secret sharing and semi-honestly secure,
our protocols are more succinct and easier to follow. ScionFL [10]
extended ABY2.0 to multi-party, and its Inner-Product protocol
needs 2 elements per party in 2 rounds, which is 2×more expensive
than ours. And our method is independent of ScionFL.

There are some other works combining quantized NN with
MPC [5, 22, 61]. Riazi et al. proposed [61], where the weights and
activations are in ±1, and they used GC and Oblivious Transfer (OT)
to provide constant round private inference.Quotient [5] was pro-
posed to realize the secure computation of ternarized NN, where
the weights are in {-1,0,1}. The author converts the ternarized multi-
plication into two binary multiplications and completes them based
on OT. And other functions are all processed by GC. Therefore,
prior private binary (ternarized) NN inference schemes suffer from
the enormous communication costs introduced by GC, and they
are even slower than secret sharing-based approaches for floating-
point NN. Recently, some works proposed to utilize hardware, such
as GPU, to accelerate the computation of MPC [20, 50, 53, 70, 74].
Specially, GForce is a 2PC inference framework, it proposed sto-
chastic rounding and truncation layers to fuse (de)quantization
between non-linear/linear layers for better efficiency, and a suite
of GPU-friendly protocols for common operations. CryptGPU is a
3PC training and inference framework, it embedded cryptographic
operations of discrete secret-shared values into floating-point op-
erations to exploit existing CUDA kernels, and proposed several
optimizations to softmax. These works mainly improved computa-
tion efficiency, while Meteor focuses on reducing communication.

9 Conclusion & Future Work

In Meteor, we propose an improved 3PC secret sharing scheme
from the linearity of replicated secret sharing and construct secure
blocks for secure NN inference. Extensive evaluations also present
our improvements. For future work, we are willing to improve other
MSB Ext. methods [29, 49, 51] with our novel secret sharing and
the setup communication costs for better efficiency.

Acknowledgments

This work is supported by The National Key Research and Devel-
opment Program of China No. 2020YFB1006100 and the Strategic
Priority Research Program of Chinese Academy of Sciences, Grant
No. XDC02040400.

References

[1] 1996. The Health Insurance Portability and Accountability Act of 1996 (HIPAA).
https://www.hhs.gov/hipaa/index.html

[2] 2011. Eigen library. https://eigen.tuxfamily.org/
[3] 2016. Regulation (EU) 2016/679 of the European Parliament and of the Council of

27 April 2016 on the protection of natural persons with regard to the processing
of personal data and on the free movement of such data, and repealing Directive
95/46/EC (GDPR). https://gdpr-info.eu/

[4] 2022. Fusing Convolution and Batch Norm using Custom Function. https:
//pytorch.org/tutorials/intermediate/custom_function_conv_bn_tutorial.html

https://www.hhs.gov/hipaa/index.html
https://eigen.tuxfamily.org/
https://gdpr-info.eu/
https://pytorch.org/tutorials/intermediate/custom_function_conv_bn_tutorial.html
https://pytorch.org/tutorials/intermediate/custom_function_conv_bn_tutorial.html

Meteor: Improved Secure 3-Party Neural Network Inference with Reducing Online Communication Costs

[5] Nitin Agrawal, Ali Shahin Shamsabadi, Matt J Kusner, and Adrià Gascón. 2019.
QUOTIENT: two-party secure neural network training and prediction. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. 1231–1247.

[6] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.
2016. High-throughput semi-honest secure three-party computation with an
honest majority. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. 805–817.

[7] Donald Beaver. 1991. Efficient multiparty protocols using circuit randomization.
In Annual International Cryptology Conference. Springer, 420–432.

[8] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. 1996. Pseudorandom functions
revisited: The cascade construction and its concrete security. In Proceedings of
37th Conference on Foundations of Computer Science. IEEE, 514–523.

[9] Aner Ben-Efraim, Michael Nielsen, and Eran Omri. 2019. Turbospeedz: Double
your online SPDZ! Improving SPDZ using function dependent preprocessing. In
Applied Cryptography and Network Security: 17th International Conference, ACNS
2019, Bogota, Colombia, June 5–7, 2019, Proceedings 17. Springer, 530–549.

[10] Yaniv Ben-Itzhak, Helen Möllering, Benny Pinkas, Thomas Schneider, Ajith
Suresh, Oleksandr Tkachenko, Shay Vargaftik, Christian Weinert, Hossein
Yalame, and Avishay Yanai. 2022. ScionFL: Secure Quantized Aggregation for
Federated Learning. arXiv preprint arXiv:2210.07376 (2022).

[11] Dan Bogdanov, Sven Laur, and Jan Willemson. 2008. Sharemind: A framework
for fast privacy-preserving computations. In European Symposium on Research
in Computer Security. Springer, 192–206.

[12] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. 2015. Ma-
chine learning classification over encrypted data. In Symposium on Network and
Distributed System Security (NDSS).

[13] Lennart Braun, Daniel Demmler, Thomas Schneider, and Oleksandr Tkachenko.
2022. MOTION–A Framework for Mixed-Protocol Multi-Party Computation.
ACM Transactions on Privacy and Security 25, 2 (2022), 1–35.

[14] Paul Bunn and Rafail Ostrovsky. 2007. Secure two-party k-means clustering. In
Proceedings of the 14th ACM conference on Computer and communications security.
486–497.

[15] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith Suresh. 2020. FLASH:
Fast and Robust Framework for Privacy-preserving Machine Learning. Proc. Priv.
Enhancing Technol. 2020, 2 (2020), 459–480.

[16] Ran Canetti. 1998. Security and Composition of Multi-party Cryptographic
Protocols. Cryptology ePrint Archive, Paper 1998/018. https://eprint.iacr.org/
1998/018 https://eprint.iacr.org/1998/018.

[17] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul
Tripathi. 2019. EzPC: programmable and efficient secure two-party computation
for machine learning. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 496–511.

[18] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. 2019.
Astra: High throughput 3pc over rings with application to secure prediction. In
Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security
Workshop. 81–92.

[19] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. 2019. Trident: Efficient
4pc framework for privacy preserving machine learning. arXiv preprint
arXiv:1912.02631 (2019).

[20] Zheng Chen, Feng Zhang, Amelie Chi Zhou, Jidong Zhai, Chenyang Zhang, and
Xiaoyong Du. 2020. ParSecureML: An efficient parallel secure machine learning
framework on GPUs. In 49th International Conference on Parallel Processing. 1–11.

[21] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping
Xing. 2018. SPDZ𝑘2 : efficient MPC mod 2𝑘 for dishonest majority. In Annual
International Cryptology Conference. Springer, 769–798.

[22] Anders Dalskov, Daniel Escudero, and Marcel Keller. 2020. Secure evaluation of
quantized neural networks. Proceedings on Privacy Enhancing Technologies 2020,
4 (2020), 355–375.

[23] Anders Dalskov, Daniel Escudero, and Marcel Keller. 2021. Fantastic four:
Honest-majority four-party secure computation with malicious security. In 30th
{USENIX} Security Symposium ({USENIX} Security 21).

[24] Anders Dalskov, Daniel Escudero, and Ariel Nof. 2022. Fast Fully Secure Multi-
Party Computation over Any Ring with Two-Thirds Honest Majority. Cryptology
ePrint Archive (2022).

[25] Ivan Damgård, Daniel Escudero, Tore Frederiksen, Marcel Keller, Peter Scholl,
and Nikolaj Volgushev. 2019. New primitives for actively-secure MPC over
rings with applications to private machine learning. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 1102–1120.

[26] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A frame-
work for efficient mixed-protocol secure two-party computation.. In NDSS.

[27] Wenliang Du, Mikhail J Atallah, et al. 2001. Privacy-Preserving Cooperative
Scientific Computations.. In csfw, Vol. 1. Citeseer, 273.

[28] Wenliang Du, Yunghsiang S Han, and Shigang Chen. 2004. Privacy-preserving
multivariate statistical analysis: Linear regression and classification. In Proceed-
ings of the 2004 SIAM international conference on data mining. SIAM, 222–233.

[29] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl.
2020. Improved primitives for MPC over mixed arithmetic-binary circuits. In
Annual International Cryptology conference. Springer, 823–852.

[30] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In International Conference on Machine
Learning. 201–210.

[31] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. 2017. Cryptodl: Deep
neural networks over encrypted data. arXiv preprint arXiv:1711.05189 (2017).

[32] Zhicong Huang, Wen jie Lu, Cheng Hong, and Jiansheng Ding. 2022. Cheetah:
Lean and Fast Secure Two-Party Deep Neural Network Inference. Cryptology
ePrint Archive, Report 2022/207. https://ia.cr/2022/207.

[33] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending oblivious
transfers efficiently. InAnnual International Cryptology Conference. Springer, 145–
161.

[34] Geetha Jagannathan and Rebecca NWright. 2005. Privacy-preserving distributed
k-means clustering over arbitrarily partitioned data. In Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data mining.
593–599.

[35] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
{GAZELLE}: A low latency framework for secure neural network inference. In
27th {USENIX} Security Symposium ({USENIX} Security 18). 1651–1669.

[36] Marcel Keller. 2020. MP-SPDZ: A versatile framework for multi-party com-
putation. In Proceedings of the 2020 ACM SIGSAC conference on computer and
communications security. 1575–1590.

[37] Ágnes Kiss, Masoud Naderpour, Jian Liu, N Asokan, and Thomas Schneider.
2019. Sok: Modular and efficient private decision tree evaluation. Proceedings on
Privacy Enhancing Technologies 2019, 2 (2019), 187–208.

[38] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark
Ibrahim, and Laurens van der Maaten. 2021. Crypten: Secure multi-party com-
putation meets machine learning. Advances in Neural Information Processing
Systems 34 (2021), 4961–4973.

[39] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. 2021. {SWIFT}:
Super-fast and Robust Privacy-Preserving Machine Learning. In 30th {USENIX}
Security Symposium ({USENIX} Security 21).

[40] Nishat Koti, Arpita Patra, Rahul Rachuri, and Ajith Suresh. 2021. Tetrad: Actively
Secure 4PC for Secure Training and Inference. arXiv preprint arXiv:2106.02850
(2021).

[41] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012), 1097–1105.

[42] V. Nair Krizhevsky and G. Hinton. 2014. The CIFAR-10 dataset.
[43] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Ras-

togi, and Rahul Sharma. 2019. Cryptflow: Secure tensorflow inference. arXiv
preprint arXiv:1909.07814 (2019).

[44] Yann LeCun. 2017. MNIST database. http://yann.lecun.com/exdb/mnist/
[45] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[46] Yi Li and Wei Xu. 2019. PrivPy: General and scalable privacy-preserving data
mining. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 1299–1307.

[47] Yehuda Lindell and Benny Pinkas. 2009. A proof of security of Yao’s protocol for
two-party computation. Journal of cryptology 22, 2 (2009), 161–188.

[48] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. 2017. Oblivious neural
network predictions via minionn transformations. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security. 619–631.

[49] Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren, and Sameer Wagh. 2021.
Rabbit: Efficient Comparison for Secure Multi-Party Computation. In Interna-
tional Conference on Financial Cryptography and Data Security. Springer, 249–270.

[50] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and
Raluca Ada Popa. 2020. Delphi: A cryptographic inference service for neural
networks. In 29th {USENIX} Security Symposium ({USENIX} Security 20). 2505–
2522.

[51] Payman Mohassel and Peter Rindal. 2018. ABY3: A mixed protocol framework
for machine learning. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 35–52.

[52] Payman Mohassel and Yupeng Zhang. 2017. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, 19–38.

[53] Lucien KL Ng and Sherman SM Chow. 2021. GForce:GPU-Friendly Oblivious and
Rapid Neural Network Inference. In 30th USENIX Security Symposium (USENIX
Security 21). 2147–2164.

[54] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall.
2018. Activation functions: Comparison of trends in practice and research for
deep learning. arXiv preprint arXiv:1811.03378 (2018).

https://eprint.iacr.org/1998/018
https://eprint.iacr.org/1998/018
https://eprint.iacr.org/1998/018
https://ia.cr/2022/207
http://yann.lecun.com/exdb/mnist/

Ye Dong, et al.

[55] Satsuya Ohata and Koji Nuida. 2020. Communication-efficient (client-aided)
secure two-party protocols and its application. In Financial Cryptography and
Data Security: 24th International Conference, FC 2020, Kota Kinabalu, Malaysia,
February 10–14, 2020 Revised Selected Papers. Springer, 369–385.

[56] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. 2021. {ABY2.
0}: Improved {Mixed-Protocol} Secure {Two-Party} Computation. In 30th
USENIX Security Symposium (USENIX Security 21). 2165–2182.

[57] Arpita Patra and Ajith Suresh. 2020. BLAZE: blazing fast privacy-preserving
machine learning. arXiv preprint arXiv:2005.09042 (2020).

[58] Deevashwer Rathee, Anwesh Bhattacharya, Rahul Sharma, Divya Gupta, Nis-
hanth Chandran, and Aseem Rastogi. 2022. SECFLOAT: Accurate Floating-Point
meets Secure 2-Party Computation. In 2022 IEEE Symposium on Security and
Privacy (SP). IEEE, 576–595.

[59] Deevashwer Rathee, Mayank Rathee, Rahul Kranti Kiran Goli, Divya Gupta,
Rahul Sharma, Nishanth Chandran, and Aseem Rastogi. 2021. SIRNN: A Math
Library for Secure RNN Inference. arXiv preprint arXiv:2105.04236 (2021).

[60] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya
Gupta, Aseem Rastogi, and Rahul Sharma. 2020. CrypTFlow2: Practical 2-Party
Secure Inference. Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3372297.3417274

[61] M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin Lauter,
and Farinaz Koushanfar. 2019. {XONN}: XNOR-based Oblivious Deep Neural
Network Inference. In 28th {USENIX} Security Symposium ({USENIX} Security
19). 1501–1518.

[62] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori,
Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A hybrid secure
computation framework for machine learning applications. In Proceedings of the
2018 on Asia Conference on Computer and Communications Security. 707–721.

[63] Dragos Rotaru and Tim Wood. 2019. Marbled circuits: Mixing arithmetic and
boolean circuits with active security. In International Conference on Cryptology
in India. Springer, 227–249.

[64] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar. 2018. Deepsecure:
Scalable provably-secure deep learning. In Proceedings of the 55th Annual Design
Automation Conference. 1–6.

[65] Ashish P Sanil, Alan F Karr, Xiaodong Lin, and Jerome P Reiter. 2004. Privacy
preserving regression modelling via distributed computation. In Proceedings of
10th ACM SIGKDD international conference on Knowledge discovery and data
mining. 677–682.

[66] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
[67] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional net-

works for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
[68] Aleksandra B Slavkovic, Yuval Nardi, and Matthew M Tibbits. 2007. " Secure" Lo-

gistic Regression of Horizontally and Vertically PartitionedDistributed Databases.
In Seventh IEEE International Conference on Data Mining Workshops. IEEE, 723–
728.

[69] Ajith Suresh. 2021. Mpcleague: robust MPC platform for privacy-preserving
machine learning. arXiv preprint arXiv:2112.13338 (2021).

[70] Sijun Tan, Brian Knott, Yuan Tian, and David J Wu. 2021. CRYPTGPU:
Fast Privacy-Preserving Machine Learning on the GPU. arXiv preprint
arXiv:2104.10949 (2021).

[71] Jaideep Vaidya, Hwanjo Yu, and Xiaoqian Jiang. 2008. Privacy-preserving SVM
classification. Knowledge and Information Systems 14, 2 (2008), 161–178.

[72] Sameer Wagh, Divya Gupta, and Nishanth Chandran. 2019. Securenn: 3-party se-
cure computation for neural network training. Proceedings on Privacy Enhancing
Technologies 2019, 3 (2019), 26–49.

[73] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek
Mittal, and Tal Rabin. 2020. FALCON: Honest-Majority Maliciously Secure
Framework for Private Deep Learning. arXiv preprint arXiv:2004.02229 (2020).

[74] Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa. 2022. Piranha: A GPU
Platform for Secure Computation. Cryptology ePrint Archive (2022).

[75] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986). IEEE, 162–167.

[76] Hwanjo Yu, Jaideep Vaidya, and Xiaoqian Jiang. 2006. Privacy-preserving svm
classification on vertically partitioned data. In Pacific-asia conference on knowl-
edge discovery and data mining. Springer, 647–656.

A Non-Interactive ⟨·⟩-Randomness Generation

Functionality F ⟨·⟩
RAND

enables parties sample an secret random num-
ber in ⟨·⟩-shared fashion using a pseudorandom function PRF [8].
ProtocolΠRAND achieves F ⟨·⟩

RAND
as follows: Each pair of parties (i.e.,

𝑃𝑖 and 𝑃 𝑗) maintain a pre-set random shared-key 𝑘𝑖 𝑗 ∈𝑅 {0, 1}𝜅 ,
i.e., 𝑃0 and 𝑃1 share key 𝑘01. Then, 𝑃𝑖 and 𝑃𝑖+1 generate r𝑖 ←
PRF(𝑘𝑖,𝑖+1, cnt) where cnt is a counter incremented for 𝑖 ∈ {0, 1, 2}.

Protocol Π𝑁 -MULT

Input: 𝑃0, 𝑃1, and 𝑃2 hold J·K-shared {Jx𝑡 K}𝑁𝑡=1.
Output: JzK = Π𝑁

𝑡=1Jx𝑡 K.
• Setup:

(1) Parties generate ⟨𝜓z ⟩ using functionality F⟨·⟩
RAND

.
(2) For T ⊆ {1, . . . , 𝑁 }, parties securely compute
⟨Π𝑘∈T𝜓x𝑘

⟩ = Π𝑘∈T ⟨𝜓x𝑘
⟩ using F⟨·⟩

MULT
in a tree-

manner.
• Online:

(1) 𝑃𝑖 locally computes ⟨mz ⟩𝑖 =
∑
T⊆{1,...,𝑁 } (Π 𝑗∉Tmx𝑗

·
⟨Π𝑘∈T𝜓x𝑘

⟩𝑖) − ⟨𝜓z ⟩𝑖 .
(2) Parties exchange the shares of ⟨mz ⟩ to reconstruct mz.
(3) 𝑃𝑖 outputs JzK𝑖 = (mz, ⟨𝜓z ⟩𝑖) .

Figure 5: 𝑁 -Input Multiplication Protocol for Integers.

Finally, 𝑃𝑖 sets ⟨r⟩𝑖 = (r𝑖 , r𝑖+1) [6, 51]. Also, we can let 𝑃𝑖 (secret
owner) obtain r in clear by letting 𝑃𝑖 keep 𝑘𝑖−1,𝑖+1 and generate
𝑟𝑖−1 locally.

As the pre-set shared-keys are secure (i.e., 𝜅 = 128), the security
of ΠRAND is easy to see. Similarly, parties can generate shared
random bit ⟨r⟩2 in Z2 and ⟨r⟩𝑞 in F𝑞 .

B Protocol Π𝑁 -MULT

Figure 5 show the 𝑁 -input multiplication protocol for integers.

C Input-Independent Randomness Generation

Following Falcon [73], we generate the input-independent random-
ness for protocol ΠSecMSB in the setup phase as Figure 6: i) We first
accomplish the bit decomposition of𝜓𝑥 in ⟨·⟩-sharing using F ⟨·⟩

BitDec

[51], so that it is trivially to extract ⟨msb(𝜓x)⟩2 and {⟨s[𝑖]⟩2}ℓ
𝑖=1

(s = 2𝜓x). ii) Then, we reshare ⟨msb(𝜓x)⟩2 as Jmsb(𝜓x)K2. iii)
Next, we convert {⟨s[𝑖]⟩2}ℓ

𝑖=1 to ⟨·⟩
𝑞-shares in F𝑞 leveraging F ⟨·⟩

Bit2A
,

and reshare {⟨s[𝑖]⟩𝑞}ℓ
𝑖=1 as {Js[𝑖]K𝑞}ℓ

𝑖=1. iv) Finally, we generate
J𝜁 K𝑞 ∈ F∗𝑞 based on F ⟨·⟩

Prep
from [73].

Protocol ΠPreMSB is a little expensive but practical since it can
be executed in the setup phase. The correctness is guaranteed and
security follows the analysis in [51, 73], and we omit it for brevity.

D Bit to Arithmetic Conversion for ⟨·⟩-Sharing
We first introduce functionality F ⟨·⟩

Bit2A
, which generates the arith-

metic sharing of a bit v ∈ {0, 1}, given ⟨v⟩2 = (v0, v1, v2). We utilize
protocol Π⟨·⟩

Bit2A
to achieve F ⟨·⟩

Bit2A
as follows. Denote the value in

Z2ℓ of bit v as vℓ . Then we have

v
ℓ = v0 ⊕ v1 ⊕ v2

= v
ℓ
0 + v

ℓ
1 + v

ℓ
2 − 2vℓ0v

ℓ
1 − 2vℓ1v

ℓ
2 − 2vℓ2v

ℓ
0 + 4vℓ0v

ℓ
1v

ℓ
2
. (4)

For equation (4), only the last term v
ℓ
0v

ℓ
1v

ℓ
2 requires communica-

tion and other terms (vℓ
𝑖
, vℓ

𝑖
v
ℓ
𝑖+1)

2
𝑖=0 can be computed by 𝑃𝑖 locally.

For vℓ0v
ℓ
1v

ℓ
2, we firstly let 𝑃0 compute vℓ0v

ℓ
1. Then, parties can invoke

Du-Atallah protocol [11, 62] to compute vℓ0v
ℓ
1v

ℓ
2 securely. Finally,

we get the [·]-shared [vℓ0v
ℓ
1v

ℓ
2] (step 1)-3) in Figure 7. Also, the other

terms form [·]-sharing (e.g., for [vℓ0], [v
ℓ
0]0 = v

ℓ
0, [v

ℓ
0]1 = [vℓ0]2 = 0),

https://doi.org/10.1145/3372297.3417274

Meteor: Improved Secure 3-Party Neural Network Inference with Reducing Online Communication Costs

Protocol ΠPreMSB

Input: 𝑃0, 𝑃1, and 𝑃2 hold ⟨𝜓x ⟩.
Output: Jmsb(𝜓x)K2, {Js[𝑖]K𝑞 }ℓ𝑖=1 with s = 2𝜓x, (J𝜆K2, J𝜆K𝑞)
with 𝜆 ∈𝑅 Z2, and J𝜁 K𝑞 with 𝜁 ∈𝑅 F∗𝑞 .

(1) Perform bit decomposition F⟨·⟩
BitDec

from [51] to get
⟨𝜓x ⟩ → ⟨𝜓x ⟩2.

(2) Sample random bits ⟨𝜓𝜓x
⟩2, ⟨𝜆⟩2, and ⟨𝜓𝜆 ⟩2, random

values ⟨𝜓𝜆 ⟩𝑞 , ⟨𝜓𝜁 ⟩𝑞 , and {⟨𝜓s[𝑖] ⟩𝑞 }ℓ𝑖=1 using F
⟨·⟩
RAND

.
(3) Reveal ⟨m𝜓x

⟩2 = ⟨𝜓x ⟩2 [ℓ] ⊕ ⟨𝜓𝜓x
⟩2 using F⟨·⟩

REC
, where

⟨𝜓x ⟩2 [ℓ] is the ⟨·⟩-shares of the msb of 𝜓x. And set
Jmsb(𝜓x)K2 = (m𝜓x

, ⟨𝜓𝜓x
⟩2) .

(4) Compute ⟨s⟩2 = (⟨𝜓x ⟩2 ≪ 1) .
(5) Use F⟨·⟩

Bit2A
for each bit of s to get ⟨s[𝑖] ⟩2 → ⟨s[𝑖] ⟩𝑞

with 𝑖 ∈ {1, 2, . . . , ℓ } and ⟨𝜆⟩2 → ⟨𝜆⟩𝑞 .
(6) Reveal ⟨m

s[𝑖] ⟩𝑞 = ⟨s[𝑖] ⟩𝑞 − ⟨𝜓
s[𝑖] ⟩𝑞 (mod 𝑞) exploit-

ing F⟨·⟩
REC

, and set Js[𝑖]K𝑞 = (m
s[𝑖] , ⟨𝜓s[𝑖] ⟩𝑞) , 𝑖 ∈

{1, 2, . . . , ℓ }.
(7) Reveal ⟨m𝜆 ⟩2 = ⟨𝜆⟩2 ⊕ ⟨𝜓𝜆 ⟩2 leveraging F⟨·⟩

REC
, and set

J𝜆K2 = (m𝜆, ⟨𝜓𝜆 ⟩2) .
(8) Reveal ⟨m′

𝜆
⟩𝑞 = ⟨𝜆⟩𝑞 − ⟨𝜓𝜆 ⟩𝑞 (mod 𝑞) via F⟨·⟩

REC
, and

set J𝜆K𝑞 = (m′
𝜆
, ⟨𝜓𝜆 ⟩𝑞) .

(9) Generate ⟨𝜁 ⟩𝑞 ∈ F∗𝑞 using F⟨·⟩
Prep

from [73].

(10) Reveal ⟨m𝜁 ⟩𝑞 = ⟨𝜁 ⟩𝑞 − ⟨𝜓𝜁 ⟩𝑞 (mod 𝑞) by F⟨·⟩
REC

, and
set J𝜁 K𝑞 = (m𝜁 , ⟨𝜓𝜁 ⟩𝑞) .

(11) Outputs Jmsb(𝜓𝑥)K2, {Js[𝑖]K𝑞 }ℓ𝑖=1, (J𝜆K2, J𝜆K𝑞) , and
J𝜁 K𝑞 .

Figure 6: Secure MSB Extraction Pre-processing Protocol.

Protocol Π
⟨·⟩
Bit2A

Input: 𝑃0, 𝑃1, and 𝑃2 hold ⟨v⟩2 with v ∈ {0, 1}.
Output: ⟨vℓ ⟩.

(1) 𝑃2 samples 𝑎0, 𝑎1 ∈𝑅 Z2ℓ and sends 𝑎𝑖 to 𝑃𝑖 for 𝑖 ∈
{0, 1}.

(2) 𝑃0 computes vℓ0v
ℓ
1 + 𝑎0 and sends it to 𝑃1; 𝑃1 computes

v
ℓ
2 + 𝑎1 and sends it to 𝑃0.

(3) 𝑃0 computes [vℓ0v
ℓ
1v

ℓ
2]0 = −𝑎0 (vℓ2 + 𝑎1) , 𝑃1 computes

[vℓ0v
ℓ
1v

ℓ
2]1 = v

ℓ
2 (v

ℓ
0v

ℓ
1+𝑎0) , and 𝑃2 computes [vℓ0v

ℓ
1v

ℓ
2]2 =

𝑎0𝑎1.
(4) 𝑃𝑖 locally computes [vℓ]𝑖 = v

ℓ
𝑖
− 2vℓ

𝑖
v
ℓ
𝑖+1 − [v

ℓ
0v

ℓ
1v

ℓ
2]𝑖 .

(5) Parties reshare [vℓ] as ⟨vℓ ⟩.

Figure 7: Bit2A Conversion Protocol for ⟨·⟩-Sharing.

we hence can compute [vℓ] locally. In the end, parties can reshare
[vℓ] as ⟨vℓ ⟩. The details are in Figure 7.

Protocol Π⟨·⟩
Bit2A

needs a communication of 7
3 ℓ bits per party in 3

rounds, and the security is fully analyzed in [11].

D.1 Bit to Arithmetic Conversion for J·K-Sharing

The goal of functionality F J·K
Bit2A

it to generate the arithmetic sharing
of a given secret bit JvK2 = (mv, ⟨𝜓v⟩2). Although we do not this

Protocol ΠMM

Input: 𝑃0, 𝑃1, and 𝑃2 hold J·K-shared matrices JXK and JYK.
Output: JZK = JXK · JYK.
• Setup:

(1) Parties generate ⟨𝜓Z ⟩ using functionality F⟨·⟩
RAND

.
(2) Parties execute ⟨𝜓XY ⟩ = F⟨·⟩

MULT
(⟨𝜓X ⟩.⟨𝜓Y ⟩) .

• Online:
(1) 𝑃𝑖 locally computes ⟨mZ ⟩𝑖 = mXY + mX ⟨𝜓Y ⟩𝑖 +

mY ⟨𝜓X ⟩𝑖 + ⟨𝜓XY ⟩𝑖 − ⟨𝜓Z ⟩𝑖 .
(2) Parties exchange the shares of ⟨mZ ⟩ to reconstruct mZ.
(3) 𝑃𝑖 sets and outputs JZK𝑖 = (mZ, ⟨𝜓Z ⟩𝑖) .

Figure 8: Secure Matrix Multiplication Protocol for Integers.

Protocol ΠReLU

Input: 𝑃0, 𝑃1, and 𝑃2 hold J·K-shared JxK.
Output: JzK = ReLU(JxK) .
• Setup:

(1) Parties execute the setup phases of FJ·K
SecMSB

and FJ·K
MUX

.
• Online:

(1) Parties compute Jmsb(x)K2 using FJ·K
SecMSB

.
(2) Output JzK = FJ·K

MUX
(JxK, JyK, Jmsb(x)K2 ⊕ 1) with y = 0.

Figure 9: Secure ReLU Protocol.

Protocol ΠMP

Input:𝑃0,𝑃1, and𝑃2 hold J·K-shared vector JxK = (x1, x2, . . . , x𝑛) .
Output: JmaxK with max = Max(x1, x2, . . . , x𝑛) .
• Setup:

(1) Parties generate ⟨𝜓z ⟩ using functionality F⟨·⟩
RAND

.
• Online:

(1) Parties set JmaxK = Jx1K.
(2) for 𝑖 = 2, 3, . . . , 𝑛, do
(3) Parties compute JmaxK = ReLU(JmaxK − Jx𝑖K) + Jx𝑖K.
(4) end for

(5) Parties output JmaxK.

Figure 10: Secure Maxpool Protocol.

functionality in this work, F J·K
Bit2A

might be of independent interests
and be helpful in other task such as privacy-preserving e-voting.

Given JvK2 = (mv, ⟨𝜓v⟩2), we have

v
ℓ = (mv ⊕𝜓v)ℓ = m

ℓ
v
+𝜓 ℓ

v
− 2mℓ

v
𝜓 ℓ
v
. (5)

In the setup phase, parties interactively generate the ⟨·⟩-shares of
value𝜓 ℓ

v
using F ⟨·⟩

Bit2A
and sample random values ⟨𝜓 ′

v
⟩ in Z2ℓ using

F ⟨·⟩
RAND

. In the online phase, parties locally compute ⟨vℓ ⟩ = m
ℓ
v
+

⟨𝜓 ℓ
v
⟩ − 2mℓ

v
⟨𝜓 ℓ

v
⟩ and then reshare ⟨vℓ ⟩ as JvℓK. Concretely, parties

compute and reveal ⟨m′
v
⟩ = ⟨vℓ ⟩ − ⟨𝜓 ′

v
⟩, and set JvℓK = (m′

v
, ⟨𝜓 ′

v
⟩).

Online Communication In the online phase, the parties recon-
struct ⟨m′

v
⟩ with a communication of ℓ bits per party in 1 round.

E Secure Buildings of NN operators

Figure 8-10 show the secure protocols for MatMul, ReLU, and MP.

Ye Dong, et al.

8 16 32 64 128
Batchsize

0

100

200

300

400

500

Co
m

m
. /

 M
B

METEOR
FALCON

(a) Communication

8 16 32 64 128
�
�������

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

��
�
��
��
�

����
�
����
	

(b) Running-time, LAN

8 16 32 64 128
�
�������

50

100

150

200

250

300

��
�
��
��
�

����
�
����
	

(c) Running-time, WAN

8 16 32 64 128
Batchsize

0

1000

2000

3000

4000

5000

6000

Co
m

m
. /

 M
B

METEOR
FALCON

(d) Communication

8 16 32 64 128
�
�������

50

100

150

200

250

��
�
��
��
�

����
�
����
	

(e) Running-Time, LAN

8 16 32 64 128
�
�������

0

500

1000

1500

2000

2500

3000

3500

��
�
��
��
�

����
�
����
	

(f) Running-Time, WAN

Figure 11: Online costs of batch inference of Falcon and Meteor for AlexNet and VGG16 on CIFAR-10, where 11(a)-11(c) are

for AlexNet and 11(d)-11(f) are for VGG16. Communication is in MB and Running-Time is in seconds.

Secure Buildings of Other NN Operators: In addition, our basic
primitives can support other secure NN operators: i) For other Acti-
vation functions (i.e., Sigmoid and Tanh), we approximate them by
piece-wise continuous polynomials following previous works [48,
52, 56]. The polynomials can be expressed as basic operations (e.g.,
MULT&MSB Ext.), and thus we can construct their secure proto-
cols on the top of the basic primitives. ii) Avgpool is much simpler
than Maxpool. Note that the poolsize is in plaintext, parties thus
can compute sum of their respective shares and truncate the sum by
the poolsize to get the approximate average [38, 70]. As we do not
employ these operators in Meteor, we omit their detailed protocols
for brevity.

F Online costs of Batch Inference

The online costs of batch inference are illustrated in Figure 11.

G Security Proof

Proof. Let the semi-honest adversary A corrupt no more than
one party, we now present the steps of the ideal-world adversary
(simulator) S for A in the stand-alone model with security un-
der sequential composition [16]. Our simulator S for individual
protocol is constructed as follows:
Security for ΠSHARE: For the instances where A is the owner of
the secret value x, S has to do nothing sinceA is not receiving any
messages. S receives mx from A on behalf of honest parties. For
the instances where one honest party is the owner, S sets x = 0
and follows protocol honestly.
Security for ΠREC: To reconstruct a value x, S is given the output
x, which is the output of A. Using x and shares corresponding to
honest parties, S computes the shares corresponding to A and
sends this to A on behalf of honest parties. S sends the shares of
honest parties to A on behalf of honest parties.

Security for ΠLops: There is nothing to simulate as the protocol
ΠLops is non-interactive.
Security for Π2-MULT & Π𝑁 -MULT: For the setup phase, we con-
sider the multiplication of ⟨·⟩-sharing as an ideal functionality
F ⟨·⟩
MULT

whichmultiplies the randomness. Since wemake only black-
box access to F ⟨·⟩

MULT
, the simulation for the same follows from the

security of the underlying primitive used to instantiate F ⟨·⟩
MULT

[6].
During the online phase, S follows the step honestly using the data
obtained from the corresponding setup phase.
Security for ΠSecMSB: For the setup phase, we invoke FPreMSB

in a black-box manner as Falcon [73]. Therefore, the simulation
for the same follows from the security analyzed in [73]. For the
online phase, we make black-box access to F J·K

Lops
, F J·K

2-MULT
, and

F J·K
𝑁 -MULT

. To simulate the revealed d, S samples a random number
𝑟 ∈𝑅 F𝑞 , shares 𝑟 as J𝑟K𝑞 , and sends A’s share to it. The security
of protocol ΠSecMSB follows in the (F J·K

PreMSB
, F J·K

2-MULT
, F J·K

𝑁 -MULT
)-

hybrid model.
Security for ΠMUX: The setup phase is constructed directly on
F ⟨·⟩
Bit2A

andF ⟨·⟩
MULT

, thus the security is easily to see in (F ⟨·⟩
Bit2A

, F ⟨·⟩
MULT

)-
hybrid model. For the online phase, S follows the steps honestly
using the data obtained from the corresponding setup phase.

This concludes the proof. □

	Abstract
	1 Introduction
	2 Background & Preliminaries
	2.1 Notations
	2.2 Neural Network
	2.3 3PC Replicated Secret Sharing

	3 A High-Level Overview of Meteor
	3.1 Overview of -Sharing Semantics
	3.2 Design of Meteor

	4 Improved Secure 3-Party Computation
	4.1 Sharing and Reconstruction
	4.2 Linear Operations
	4.3 Multiplication
	4.4 Secure MSB Extraction
	4.5 Multiplexer

	5 Security Analysis
	6 Optimized Secure NN Operators
	6.1 Secure Matrix Multiplication
	6.2 Secure ReLU
	6.3 Secure Maxpool

	7 Evaluations
	7.1 Online Costs of Micro Benchmarks
	7.2 Online Costs of Single Inference
	7.3 Online Costs of Batch Inference

	8 Related Work
	9 Conclusion & Future Work
	Acknowledgments
	References
	A Non-Interactive -Randomness Generation
	B Protocol N-MULT
	C Input-Independent Randomness Generation
	D Bit to Arithmetic Conversion for -Sharing
	D.1 Bit to Arithmetic Conversion for -Sharing

	E Secure Buildings of NN operators
	F Online costs of Batch Inference
	G Security Proof

