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Abstract. The TLS (Transport Layer Security) protocol is the most
important, most attacked, most analysed and most used cryptographic
protocol in the world today. TLS is critical to the integrity of the Inter-
net, and if it were to be broken e-commerce would become impossible,
with very serious implications for the global economy. Furthermore TLS
is likely to assume even greater significance in the near future with the
rapid growth of an Internet of Things (IoT) – a multiplicity of internet
connected devices all engaged in secure inter-communication. However
the impending invention of a Cryptographically Relevant Quantum Com-
puter (CRQC) would represent an existential threat to TLS in its current
form. As it stands the latest version TLS1.3, benefiting as it does from
years of research and study, provides effective security, but it must soon
be updated to resist this new threat. In this research we first under-
take a new clean-room implementation of a small-footprint open source
TLS1.3, written in C++ and Rust, and suitable for IoT applications. Our
implementation is designed to be cryptographically agile, so that it can
easily accomodate new post-quantum cryptographic primitives. Next we
use this new implementation as a vehicle to study the impact of going
post-quantum, with a particular emphasis on the impact on the Internet
of Things. Finally we showcase the flexibility of our implementation by
proposing an implementation of TLS that uses identity-based encryption
to mitigate this impact.

1 Introduction

The TLS protocol is executed by a web browser every time a website is ac-
cessed on the internet, unless its one of those rapidly diminishing number of
websites (HTTP and not HTTPS) that implement no security. After the pro-
tocol is run, an encrypted tunnel is established between client and server, and
the server’s identity is authenticated to the client. Commonly client authenti-
cation, if required, happens at the application layer, where typically the client
enters a username and password. However TLS is also relevant in non-browser
contexts, and for many of those TLS can also take responsibility for client-side
authentication. TLS authentication uses public key cryptography and exploits
the Public Key Infrastructure (PKI).



The full official TLS 1.3 specification is provided in RFC8446. A more read-
able version is provided by Wong [29].

Let us briefly recap how PKI works in the context of TLS. Typically a web-
site or TLS server is equipped with a three link certificate chain, consisting of a
leaf certificate, an intermediate certificate, and a root certificate. The root cer-
tificate is self-signed, and is issued by a recognised Certificate Authority (CA).
Each certificate has embedded within it a public key that can be used for sig-
nature verification, and the entity that owns the certificate has in its possession
the associated private signing key. The leaf certificate is created by the web-
site owner, and is digitally signed by the owner of the intermediate certificate.
The intermediate certificate in turn is signed by the Certificate Authority (CA).
Browsers maintain a store of trusted CA root certificates – there are a lim-
ited number of them. To be precise the certificate store provided with a recent
Ubuntu distribution had exactly 138 root certificates. The purpose of the in-
termediate certificate is to limit the exposure of the CA’s signing key. Longer
certificate chains are possible, but rare. A website’s identity, embedded in the
leaf certificate, is verified when it provides a digital signature on some known
data, which can then be verified using the embedded public key. The validity of
the leaf certificate is verified by checking the certificate chain, that is verifying
the signatures on each certificate using the relevant public key extracted from
the chain. Note that the signature on the self-signed root certificate is commonly
not checked – its presence in the root certificate store is sufficient to validate it.

1.1 A very brief history of TLS

It was certainly serendipitous that the requirement for transport security in
the context of the internet’s evolution, dovetailed nicely with the invention of
public key cryptography. By 1995 the SSL standard was established, and after
a few iterations it evolved to a state where it could support the deployment of
e-commerce on the Internet. As it evolved improved encryption primitives were
rotated in, and older, often broken, primitives rotated out. However over the
years a lot of cryptographic “clutter” accumulated, which often proved difficult
to eliminate, largely due to the need to maintain continuity, and to support
backward compatibility. However the blame here lies largely with PKI rather
than SSL/TLS. Clearly any kind of identifying credential like a certificate chain
needs to have a useful lifetime, and PKI certificate chains often have validity
periods lasting for decades.

By 1999 SSL had progressed to version 3.0, after which it underwent a name
change and was succeeded by TLS 1.0. Further development culminated in ver-
sion 1.3 launched in 2017. Fortunately SSL/TLS development mostly managed
to stay ahead of many determined efforts to break its security (most notably
the HeartBleed hack [15]), and since the arrival of TLS 1.3 cryptanalytic at-
tacks have become rarer and of less significance. Furthermore the development
of proofs of security has helped to cement confidence in the protocol in its most
recent manifestation [8].
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1.2 TLS 1.3

In TLS version 1.3 a client typically starts the protocol by sending an “Hello”
message to a previously unvisited website. This will include a random key share
for a Diffie-Hellman key exchange in the clients favoured elliptic curve or finite
field group. The server will respond with its own “Hello” which, if it approves
of and supports the chosen group, will include its key share in the same group.
Note that if the server is not happy with the client choice of group, it may invoke
a Handshake Retry Request (HRR), indicating its unhappiness with the client’s
choice, and urging it to try again.

Assuming agreement is reached, the Diffie-Hellman key exchange completes,
and both client and server now share unauthenticated keying material, from
which suitable encryption keys for bidirectional communication can be derived,
via a suitable Key Derivation Function (KDF). Immediately such handshake
keys are available the server uses its key to encrypt the remainder of its “Hello”
message and all subsequent protocol messages – the idea being to hide protocol
messages as soon as a mutual key becomes available.

Next the server transmits its certificate chain to the client, followed by a
digital signature applied to a hash of the entire communications transcript up to
this point. When the client verifies this signature, using the public key extracted
from the leaf certificate in the chain, then this has the effect of authenticating
the server’s previously negotiated encryption key. Finally the server transmits
to the client a Hash-based Message Authentication Code (HMAC), calculated
on the communications transcript to date using the agreed key.

Now it is the client’s turn. If it is authenticating it may at this stage choose
to send its own certificate chain plus signature. Otherwise it just transmits its
HMAC on the transcript to the server, and we are done.

Note that this is a 3-pass protocol. It is a variant of a so-called SIGMA-I
protocol of a type originally proposed by Krawczyk [18], [19]. Observe that the
server bundles its “Hello”, certificate chain, signature and final HMAC into a sin-
gle transmission. At the end of the process both parties share traffic encryption
keys which give effect to the encrypted tunnel that now exists between them.
The encrypted tunnel uses a cipher in a modern AEAD mode of operation to
safely encrypt all subsequent application traffic in both directions.

The full TLS 1.3 protocol (assuming a Handshake Retry Request is not re-
quired) is illustrated in figure 1. Unencrypted communication is shown in black,
encrypted communication in red. Optional components are shown dashed.

1.3 Going Post-Quantum

In a Post-Quantum world (meaning a world where CRQCs are widely deployed)
the current methods for both key exchange and signature become obsolete, and
must be abandoned. The simplest approach to going post-quantum is to simply
substitute in newly standardised post quantum cryptographic primitives. But
this will have consequences, which have been the subject of much recent research
activity, see for example [12], [11].
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Fig. 1. Full TLS Protocol (simplified)

Primarily there will be an impact on

– execution time
– dynamic memory requirement
– bandwidth

Given the much larger public key and signature sizes associated with the
soon to be standardised post-quantum methods, the amount of data transferred
between client and server is going to blow up substantially. There will clearly
be a price associated with this. This bandwidth issue has already been explored
experimentally by Westerban [28], and indeed in some settings it may lead to
insurmountable problems. However in this paper the focus will be more on the
first two issues, which are of particular concern in the context of the Internet of
Things (IoT).

One implication of going post-quantum is that the classic key exchange will
most likely need to be replaced by a KEM (Key Encapsulation Method). As
it turns out for TLS this is mostly a technical issue which will not effect the
protocol as described. In a classic Diffie-Hellman key exchange both parties can
simultaneously swap ephemeral values, and then calculate a mutual key. Using
a KEM the client generates an ephemeral key pair and sends the public key to
the server, who uses it to encapsulate a random key which is sent back to be
client to be decapsulated using the private key. In all cases ephemeral values
are deleted after use. In TLS the Diffie-Hellman exchange does not take place
simultaneously, as the client share is sent in the client Hello, and the server
response comes back in the server Hello. So the basic flow remains the same in
both cases, and the outcome is a shared, and as yet unauthenticated, mutual
key.
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It is commonly recommended that a wiser path for transition to post-
quantum cryptography will be to initially use a so-called hybrid approach. The
intuition is simple, perform key exchange and signature using both pre and post
quantum methods. If either fails, then that registers as an overall failure. In the
key exchange context the agreed key is an amalgam of keys generated using both
methods [26]. This approach mitigates against either the invention of a CRQC,
or the cryptanalysis of the newer post-quantum primitives at any time prior to
such an invention.

2 TiigerTLS

As a first step it was decided to write a clean-room open-source implementation
of TLS 1.3, while abandoning any ambitions to maintain backward compatibil-
ity with earlier versions. This allowed us to ruthlessly clean out all deprecated
cryptographic primitives (a process already encouraged in version 1.3), and also
obviously greatly simplified the software development process. As a new imple-
mentation we also had the luxury to choose our preferred programming language.
In line with a growing trend among crypto developers we decided to implement
both client and server in the Rust language. Rust has the benefit of catching
more bugs at compiler time, rather than at runtime, and is particularly strong
for preventing the kind of buffer overflow attacks which have caused problems
for earlier implementations of SSL/TLS [15]. However since Rust is not cur-
rently ideal for small embedded environments, it was also decided to develop a
compatible TLS 1.3 client in C++.

While wanting to minimize the footprint of both server and client, our as-
sumption was that it would be the client which would most often need to fit into
the smaller space. The single largest dynamic memory requirement in TLS is
for an input buffer to receive protocol communications. Nonetheless the overall
requirement can still be kept quite small, as cryptographic primitives are not
usually major consumers of memory. Therefore it makes sense to allocate mem-
ory exclusively from the stack where possible, rather than from the heap. As can
be seen from figure 1, from the client point of view, the protocol can be divided
into three main phases (key exchange, authenticating the server, and optionally
authenticating the client) each of which can then automatically deallocate much
of its memory from the stack when finished, to allow memory to be re-used by the
next phase. The biggest consumer in our experience are those phases required
to process a certificate chain.

Using stack allocation implies that maximum fixed sizes must be assumed for
all allocated arrays. Unfortunately such maximums are often not dictated by the
TLS standard, so worst case assumptions must be made. This in turn implies that
on occasion our implementation will fail when attempting interoperation against
other TLS implementations. However we have no ambitions to write a browser,
as our implementation is mainly targeted at non-browser IoT applications, and
maximum sizes can be adjusted where needed at compile time for each particular
application.
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Our implementation is open sourced and can be accessed here 1. Read the
multiple blogs for some unfiltered commentary on the issues that arose when
implementing TLS1.3 from scratch. When the C++ and Rust clients are tested
against the TLS Anvil framework [20], they currently achieve a compatibility
rating of 98.2% at strength 3. The Rust server achieves 96.81% compatibility
also at strength 3. These results compare favourably with competitive products
[20].

3 Agility

In a changing cryptographic landscape a key notion is that of Agility – that is
the ability to quickly switch cryptographic primitives with minimal disruption
to the protocol implementation. Such agility should ideally be designed-in from
the start. Unfortunately TLS has a particularly poor history in this regard, and
in many consumer IoT products it is implemented in a way that lags behind
current best practise. In particular it is often not regularly updated, which can
in part be put down to a lack of agility in the design [22].

To achieve agility in our implementation we use a SAL, a Security Abstraction
Layer. The concept is simple – all cryptography is implemented inside of the
SAL. Hence in a context where a primitive needs to be replaced, only the SAL
is impacted.

This strict division between the protocol state machine and the cryptography
that is uses is baked into our implementation of TLS 1.3. To be concrete, in our
C++ client the SAL is implemented by the files tls sal.h and tls sal.cpp.
The fixed and unchanging SAL API is defined in tls sal.h. The implementa-
tion in tls sal.cpp is however left to the developer. It will probably source its
cryptography from one or more open or closed resources. In our implementation
the default SAL uses the MIRACL Core library 2, as it supports most of the
cryptography required by TLS1.3 in both C++ and Rust, and supports both 32
and 64 bit architectures. But we also provide a SAL which mixes functions from
MIRACL and the well known libsodium library3, to exploit its nice random num-
ber generator, and its fast and secure implementations of the TLS1.3 supported
CHACHA20 cipher, and the X25519 elliptic curve. Yet another SAL exploits
hardware support for random number generation and elliptic curve cryptogra-
phy where it is available.

With a structure that has agility as part of its design, it is reasonable to
assume that a switch to post quantum primitives could take place with minimal
disruption. Indeed the key exchange phase of TLS can already be regarded as
agility-friendly. The client and server Hellos simply need to update their lists of
acceptable primitives, and old primitives will be deprecated and a new primitive
will automatically be agreed. However as indicated above it is not so simple
when it comes to updating PKI. The ideal solution would be to issue every web

1 https://github.com/Crypto-TII/TLS1.3
2 https://github.com/miracl/core
3 https://github.com/jedisct1/libsodium
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connected device with an updated certificate chain. However in a setting where
long-lived authentication credentials are used, then major disruption seems to be
inevitable in the face of a catastrophic failure of the underlying cryptography,
as would be the case if CRQCs suddenly became widely available. Hopefully
updated credentials can be rolled out well in advance of such an event. Here we
can regard this as primarily an issue for PKI, rather than as one that a TLS
implementation can solve [16].

4 Trust Management

A big component of TLS is the authentication of the identities of the two parties
involved. At a minimum the true server identity must be established, while
the client may, for now, remain anonymous. Authentication is established by a
party processing the proffered certificate chain and establishing its authenticity.
Therefore the Trust Management API is conceptually quite simple – it inputs
a certificate chain along with the claimed identity, and returns true or false.
However certificate processing is potentially quite a complex procedure, and so
its makes sense to isolate this functionality behind another abstracted layer,
a Trust Management Layer (TML). Note that the name does not preclude the
possibility of, in the future, implementing an alternate authentication mechanism
other than PKI.

The TML will need access to the SAL, as it will require some cryptographic
functionality. If using PKI, cryptographic hashes and digital signatures will need
to be calculated and verified.

In our implementation we currently deploy a very simple TML which does
basic certificate chain testing, which may be sufficient for certain IoT applica-
tions. It does not support certificate revocation or the important mechanisms
of Certificate Transparency and Certificate Stapling. A more functional TML is
under active development.

TLS State Machine

Security Abstraction Layer Trust Management Layer

Cryptography PKI

Fig. 2. TLS program structure

The overall implementation structure of both client and server can be simply
visualised as in figure 2.
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5 Session Resumption

As can be seen in figure 1 at any time after the secure TLS1.3 tunnel is estab-
lished, the server may issue the client with a “resumption ticket”. Basically the
server takes a snapshot of its current cryptographic state (keys etc), encrypts it
with a long term Session Ticket Encryption Key (STEK), and sends it over to
the client for safe keeping. The idea being that if in the future the client wants
to connect again to the same server, it starts by handing back this ticket. This
simple mechanism allows the server, if it wishes, to remain stateless. That is it
does not need to remember anything about prior client connections – everything
it needs for a safe reconnection is stored in the ticket. And since the keys used
are already authenticated, a resumption handshake does not require either the
server or the client to resubmit its certificate chain. So a resumption handshake
is potentially much quicker. As a bonus, since mutual keys are already available
from the very start, the client may send encrypted “early data” in its first pro-
tocol pass, potentially improving the client experience by allowing the server to
be more immediately responsive. See figure 3

Client Server

Key Exchange Key ExchangeClient Hello

Server Hello

Server Hello Extensions

Server Finish

Client Finish

Resumption Ticket

Resumption Ticket

Early Data

Communication

Fig. 3. Resumption TLS Protocol (simplified)

Observe that after a resumption handshake, yet another resumption ticket
can be issued. TLS 1.3 has in effect adopted the popular idea of the double
ratchet, as made famous by the popular Signal messaging application.

There are some subtleties to bear in mind. First tickets are not valid forever,
indeed the maximum permissible lifetime in TLS 1.3 is just one week, and most
often they are issued with lifetimes much shorter than that. Also if the server
remains stateless, there is nothing to prevent a client from re-using the same
ticket indefinitely – one reason for limiting its lifetime. Observe that we have
kept the key exchange phase of the protocol, to allow new random key material
to be mixed in, and hence to maintain forward secrecy, a classic requirement
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for an effective ratchet. However this does not take effect in time for the “early
data” and hence care should be exercised over what is transmitted. The length of
the early data is limited, and to be safe only relatively innocuous data should be
transmitted here (like a HTTP GET message used to fetch a web page’s HTML
content).

Despite some valid privacy concerns as to how session resumption may be
abused to track client behaviour [27], with careful use we regard session resump-
tion as being a valuable feature of TLS. In our experience the majority of the
websites that support TLS 1.3 now also support session resumption. In an In-
ternet of Things context its reduced overhead compared to the full handshake,
is particularly welcome.

6 The TLS State Machine

One major implication of “going post-quantum” is that public keys and/or sig-
natures will get much larger. This is an unfortunate feature of all proposed
post-quantum methods. If we simply use post-quantum primitives as drop-in re-
placements for existing methods, then this will have a major impact on the sizes
of the protocol messages that will be exchanged. In particular certificate sizes
will increase, maybe getting 10 times bigger. Which raises a valid and legitimate
question – the TLS state machine was designed in the context of much smaller
public keys and signatures. So maybe it is no longer optimal in a post-quantum
world, and maybe it should therefore be modified.

Just such an idea is suggested by KEMTLS [24]. In this paper the authors
suggest a way in which the transcript signature can be replaced by a KEM,
as post-quantum KEMs (like Kyber [4]) are much smaller than post-quantum
signatures (like Dilithium [9]). However in the case where client authentication
is required this introduces an extra flow into the protocol, which is quite a high
price to pay, although mitigations have been proposed [25].

However KEMTLS does not eliminate the bulk of post-quantum signatures
and public keys that are bound up inside of certificate chains and which will still
need to be processed. It is also not relevant to resumption handshakes. Given
the effort made to agree the TLS1.3 specification we feel it unlikely that such
a change will be acceptable to the community. It is therefore our view that the
most likely way forward will not involve changes to the state machine.

7 Implementing TLS1.3 in a constrained environment

Unfortunately TLS1.3 is itself an unconstrained protocol. Therefore size limita-
tions must be imposed if it is to fit inside of a constrained environment, like an
IoT node. So the obvious next question must be – how constrained is that? And
the less than satisfactory answer must be – it depends. In reality it may not be
possible to fit TLS into the tiniest of devices, especially when it is considered
that TLS is probably just a small part of what must be fitted inside of the avail-
able resources. The application itself has a legitimate expectation that it it will
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be able to make use of the bulk of those resources. See [1] for a discussion of
these issues.

Programmers can often surprise us with their ability to squeeze cryptographic
protocols into the smallest of spaces (while often ignoring the requirements of the
actual application), but at some point this comes at the cost of poor performance
or limited functionality. In [13] it is suggested that “An IoT device may only have
256 or 512kb of RAM and often need to conserve battery”, and this is the type
of device that we choose to target here. We find that we can implement (almost)
the full TLS1.3 into such devices, while only consuming a small fraction of the
available resources. To achieve this constraints must be imposed on larger data
objects like certificates, but we find that such constraints are not very limiting
in practise.

For our experiments we will use two typical contemporary IoT node devices.
See figure 4. The first device is the Arduino Nano RP2040 Connect, which uses
the Raspberry Pi Pico microcontroller. This has 264kb of SRAM and up to
16MB of flash memory. It uses a dual core ARM M0+ processor clocked at
133MHz. It supports WiFi and bluetooth, has low power modes, and has a
built-in ATECC608A crypto co-processor [17].

The second device is the even physically smaller TinyPICO. It uses a dual
core Xtensa LX7 processor clocked at 240MHz and has 4MB of flash memory
and up to 4MB of SRAM. It also supports WiFi. In its low power mode it might
consume as little as 20uA.

Given the generous allocation of flash memory for both devices, we found
that code size was not a significant constraint. It was practical therefore for the
client executable to include a full database of root certificates.

Fig. 4. RP2040 Connect, AAA battery, TinyPICO
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8 Results

Both devices are supported on the well-known Arduino Platform. In all cases our
Rust TLS server ran on a PC, and the C++ client ran on the IoT device. They
communicated wirelessly using standardWiFi over a local area network. Protocol
progress could be observed on the Arduino serial monitor and in a PC command
window. Since we control both sides of the protocol we can generate our own
certificate chains, and add our own root certificate to the root certificate stores.
One minor isue arises – it is not entirely straightforward to determine when TLS
finishes and the application takes over the communications channel. Handshake
and application data can overlap. So here we assume that a TLS handshake has
completed after the client Finish message, but before any resumption tickets are
transmitted.

First we measure the bandwidth requirement as observed by the client, in
terms of the number of bytes sent and received in order to complete the full
handshake and resumption handshakes. These results must be considered as
indicative, as they obviously depend on the variable lengths of certificate chains,
random padding etc.

If client authentication is to be supported in the context of a resumption
handshake, then the client identity must be embedded in that part of a resump-
tion ticket which forms the pre-shared key identity which is transmitted back
from client to server in the pre-shared key extension in its client Hello. This could
be a full copy of the clients X.509 certificate chain, or just a subset, an option
alluded to in RFC5077. Here we choose just to include the client’s authenticated
identity. This reduces the extension size significantly.

Bytes read Bytes sent/no client auth Bytes sent/client auth

ECC Full 1059 365 1157

ECC Resume 267 508 534

PQ Full 15632 1519 10425

PQ Resume 1316 1651 1663

HYBRID Full 12034 1553 8294

HYBRID Resume 1359 1667 1691

Table 1. Bytes sent and received by client

8.1 Pre-Quantum TLS 1.3

Our first measurements were taken in a scenario where standard Elliptic Curve
Cryptography (ECC) methods were the preferred technology for both key
exchange and certificate public keys and signatures. This is a setting very
favourable for constrained IoT deployments, as ECC key sizes and signatures
are close to being the smallest possible. For key exchange the client favoured

11



the well known X25519 curve, which was also supported by the server. The
ECDSA algorithm was used for the transcript signature using the secp256r1
standard elliptic curve and the certificate chain used the same algorithm
throughout. The cipher suite negotiated by the initial exchange of Hellos was
TLS AES 128 GCM SHA256 [29]. The idea was to compare the impact of going
post-quantum against this best case scenario.

Fortuitously the TinyPICO reports the stack high water mark, and from this
it is quite easy to obtain a good estimate of stack memory usage. In this case it
was just less than 16kb. As remarked above one major memory requirement is
for an input buffer to hold protocol messages. Since ECC based certificates can
be very small, we found that this input buffer could be safely reduced to just
4kb, which helped to keep the stack requirement relatively modest.

The Arduino Nano RP2040 uses the well known ARM M0+ processor and it
was therefore possible to make use of Thomas Pornin’s fast assembly language
implementation of X25519 [23]. The Nano RP2040 also has a crypto co-processor
which does fast hardware ECDSA using the same secp256r1 curve. The device
was initialised to generate its own secret signing key inside of its secure memory,
and to emit a self-signed certificate to allow it to authenticate as a client. For
this device it was therefore possible to create an optimised tailored SAL to make
full use of all of these resources. An alternative SAL using only portable C++
software was also available using the MIRACL library. The MIRACL library also
provided support for all of the other less time-critical cryptographic primitives.

The TinyPICO uses a much less well known processor for which we could
not find optimal assembly language implementations, and it does not support a
crypto co-processor. So for this device only the fully portable SAL was viable.

Timings are given in table 2. Note that 3 ECDSA signature verifications are
calculated by the TLS client (one to verify the transcript signature, and two
more to verify the certificate chain), and key exchange timings are for both the
generation of ephemeral values and the calculation of the shared secret.

Device Nano RP2040 TinyPICO

Elliptic Curve Cryptography Optimal Portable Portable

Full TLS Handshake 584ms 1609ms 701ms

Full TLS H/S + Client Auth 646ms 1908ms 781ms

Resumption H/S + Early data 251ms 473ms 183ms

X25519 key exchange 51ms 207ms 58ms

ECDSA Verification (x3) 68ms 380ms 110ms

ECDSA Signature 109ms 325ms 98ms

Table 2. Timings using standard ECC cryptography
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8.2 Post-quantum TLS 1.3

As indicated above we will just drop-in soon-to-be-standardised post-quantum
primitives as replacements for the ECC methods, which are broken in a post-
quantum world. The key exchange uses the Kyber768 KEM [4], and for digital
signature/verification we will use Dilithium 3 [9]. We use the portable imple-
mentations from the MIRACL library, which minimise memory while not com-
promising on performance. We acknowledge however that a much smaller imple-
mentation is always possible given enough programmer ingenuity [5]. Security
for both schemes is set at the conservatively chosen AES192 level, which may be
overkill, but seems prudent given the relative novelty of these methods. To cre-
ate a suitable server certificate chain and a client certificate plus private key, we
used the tweaked version of OpenSSL as provided by the Open Quantum Safe
project [7]. The OpenSSL instructions required to generate a standard 3-link
certificate chain are given in the appendix.

As well as a SAL supporting Kyber and Dilithium, our main TLS and TML
code needed to be augmented to accept these new primitives. Provisional OIDs
have been assigned to the Dilithium scheme, and so our X.509 parsing code has
only to be patched to recognise the new OID.

But the elephant in the room is the size of those elephantine Dilithium 3
certificates. Each one is signed and each one embeds a public key. And the
public key size is 1184 bytes, and the signature is 3293 bytes. Recall that an
elliptic curve public key can be as short as 32 bytes, and a signature 64 bytes.

As expected much more memory is required, just under 58k of RAM. That
is bad, but not in our view a show-stopper, certainly not for our chosen devices.
Note that Dilithium signing timings vary significantly, as multiple attempts are
normally required before a safe signature can be created [9]. So the timings given
for signing should be treated with caution.

Device Nano RP2040 TinyPICO

Post-Quantum Cryptography Portable Portable

Full TLS Handshake 771ms 376ms

Full TLS H/S + Client Auth 1435ms 717ms

Resumption H/S + Early data 512ms 347ms

Kyber key exchange 45ms 27ms

Dilithium Verification (x3) 88ms 40ms

Dilithium Signature 560ms 224ms

Table 3. Timings using Post-Quantum cryptography

8.3 Hybrid TLS1.3

Here we follow [26] for the key exchange, combining X25519 with Kyber768. We
also calculate all signatures using both the elliptic curve secp256r1 combined with
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Dilithium 2. Note that here we use Dilithium at a slightly weaker security level,
as we assume that overall security benefits from the use of two signatures. In all
cases verification is performed twice, and both must succeed for the signature to
be validated. Again we generate our test certificates using Open Quantum Safe
[7], which generates certificates and certificate chains in the required format.

Device Nano RP2040 TinyPICO

Hybrid Cryptography Portable Portable

Full TLS Handshake 2006ms 792ms

Full TLS H/S + Client Auth 2528ms 1064ms

Resumption H/S + Early data 685ms 378ms

Kyber key exchange 264ms 109ms

Dilithium Verification (x3) 440ms 131ms

Dilithium Signature 498ms 199ms

Table 4. Timings using Hybrid cryptography

9 Using Identity-Based Encryption

The use of Identity-Based encryption (IBE) in the context of TLS as an alterna-
tive to PKI has been suggested by Banerjee and Chandrakasan [2]. Established
methods for implementing IBE have been proposed using both classic crypto-
gaphic pairings [3] and using post-quantum lattices [10].

Using standard PKI, a client must wait to learn the public key of the server
prior to sending it any data. The client also needs to have stored somewhere
the public key of the certificate authority that validated the certificate chain
which conveys the server’s public key to the client. The advantage of using IBE
is that data can be transmitted immediately using only the known address of
the server, as that address, or identity, is its public key. However there is again
a need to store a public key associated with the Trusted Authority (TA) that
issued the server with its IBE private key. And of course that is also the well-
known downside of using IBE – the private key is issued directly to the server
by the Trusted authority. However in an IoT context where the TLS server and
the TA may have a particularly close and trusting relationship, this key-escrow
issue may not be so important.

In [2] it is suggested to modify the full TLS handshake to integrate an IBE-
KEM exchange with the ephemeral Diffie-Hellman key exchange between the two
parties. Here we suggest a different approach, whereby we exploit the Pre-Shared
Key (PSK) feature support offered in TLS1.3. The intuition is that knowing the
identity of the Server, and its TA public value, is equivalent to already possessing
a pre-shared key (PSK) which authenticates the server. In this way IBE can
be used in a TLS PSK handshake without making any changes to the state
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machine. The server recovers the PSK by performing an IBE decryption using
its IBE secret key. Since an IBE PSK can be calculated off-line, before the
connection is made, its cost can be amortised against other start-up costs by the
client. Observe that using IBE there is no extra on-line cryptographic overhead
required of a client, over and above that required of a ticket-based resumption.

In the paper [2] it is suggested that client-side authentication can also be
achieved using IBE. However the suggested modification to TLS assumes that
the client identity is known a priori to the server, and this is not normally
the case. Indeed client identity in TLS is only optionally revealed to a server
on a clients second pass, which is encrypted using the handshake keys. Only
when this identity is known could IBE encryption be used by the server, and
we do not see much advantage in this. Note that client authentication using
PKI is commonly supported on IoT nodes using hardware (as is the case for the
RP2040), including secure memory for PKI secret key storage. And the TLS1.3
standard does support a post handshake auth extension which allows a client
to authenticate after a PSK handshake has concluded [29]. So we will not consider
client-side authentication further in the IBE context.

9.1 Pairing-based IBE (BFIBE)

Pairing-based IBE as originally described in [3] does require the expensive cal-
culation of a pairing for both encryption and decryption. However alternative
pairing-based IBE schemes do not require a pairing for encryption, if this should
be considered an issue [6]. As pointed out above IBE encryption does not con-
tribute to the online TLS connection cost. To implement an ID-KEM-CCA [2]
based on pairings we use the de facto standard BLS12381 curve and the Optimal
Ate pairing, which approximately provides 128-bit of security. We implemented
pairing-based IBE using the FullIdent CCA-secure scheme as described in [3].
The ciphertext that encapsulates the PSK is 161 bytes in length (we do not use
point compression).

9.2 Post Quantum IBE (PQIBE)

Here we follow [2] and use the method of Ducas et al [10]. We choose the param-
eter set recommended in [14] for a very conservative 192-bits of security. Using
the ID-KEM-CCA given in [2] this results in a ciphertext of exactly 4000 bytes.
Some savings could be achieved by using a 24-bit rather than a 28 bit prime
modulus, as suggested in [21], [2].

9.3 Results

Again we find that the lattice based implementation requires much more mem-
ory/bandwidth. But by using a post-quantum IBE based TLS implementation
we find that the overall memory/bandwidth requirement is significantly reduced
compared with our original post-quantum PKI based TLS.
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After a successful IBE TLS connection, standard ticket-based resumption
can be used for subsequent connections to the same server. Also note that using
a PSK allows the transmission of encrypted “early data” as discussed above,
with the potential of improving overall client-server responsiveness.

And of course there is again the possibility of going with a hybrid solution –
using a combination of BFIBE and PQIBE. This is simply achieved by concate-
nating both PSK encapsulations, then concatenating the extracted PSKs and
processing the combination using the standard KDF (key derivation function).

On final observation. Although we find that in a post-quantum world using
IBE results in a faster connection and the overall bandwidth requirement is more
than halved compared to PKI, if using IBE the client is required to transmit more
data. This may be an issue, as IoT nodes typically consume most battery power
while transmitting.

Bytes read Bytes sent Timing

BFIBE/X25519 264 580 354ms

PQIBE/KYBER 1308 5555 414ms

HYBRID 1349 5774 609ms

Table 5. Bytes sent/received by client using IBE based PSK, and timings on RP2040

10 Discussion

If Kyber and Dilithium maintain their claimed security levels into the future, it
may be acceptable to lower their security from AES192 to AES128, with some
savings. But this is far from being assured at the time of writing.

Just to extract one comparison from our timings, we find that for the Nano
RP2040, without client authentication, an optimised ECC full TLS handshake
takes 584 ms, and a resumption handshake takes 251 ms. A Post-Quantum full
handshake takes 771ms, and a resumption takes 512ms.

One tentative conclusion might be that once hardware and assembly lan-
guage support for lattice based crypto starts appearing there will not really be
a significant difference in these timings. As the TLS1.3 resumption mechanism
becomes more widely used this will also lead to significant improvements. Lattice
based crypto typically spends a major proportion of its time hashing, and hence
hardware support for the SHA3 hash algorithm would have a significant impact.

Another conclusion would be that implementation of post-quantum TLS1.3
on the majority of IoT nodes is likely to be quite feasible.

In this exercise we have used the same post-quantum signature algorithm at
the same security level for all layers in the certificate chain. In fact alternative
standard signature schemes with a different balance of signature/public key size,
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and at different security levels, may be a better fit. This will be the subject of
further research. See also [16].

Of course its important to admit to what is not covered by this exercise,
and that is the impact of the much larger bandwidth requirement on system
delays and therefore on the overall user experience. More studies of the type
reported by Westerban [28] are needed. One mitigation that might be considered,
particularly in a full handshake IoT context, is to transmit raw public keys
rather than full certificates, using a TOFU (Trust On First Use) model for
authentication. The use of raw public keys is fully supported in TLS1.3, and
implemented in TiigerTLS. Basically the public key can be extracted from the
full stored certificate and transmitted in its place, assuming that the use of raw
public keys has been agreed by both parties via standardised extensions to the
exchanged client and server Hellos. Since a raw public key is significantly smaller
than either a certificate chain or a self-signed certificate, considerable bandwidth
savings are possible.

Going hybrid in a sense actually gives us the worst of both worlds – the larger
keys and signature sizes associated with post-quantum methods are combined
with the longer compute times associated with pre-quantum methods. However
it appears to be the wisest way to progress in the immediate future.

Finally we recommend consideration of an IBE based TLS as an alternative to
standard PKI based TLS for use in a closed-world IoT setting, as it significantly
mitigates the cost of going post-quantum. As we have demonstrated this is quite
easily integrated with the existing TLS protocol.
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Creating a post-quantum certificate chain

These OpenSSL instructions use the modified version of OpenSSL (available from
the Open Quantum Safe project [7]) to create a post-quantum 3-link certificate
chain based on the Dilithium signature scheme. It can easily be modified to
create 3-link ECC-based and hybrid certificate chains.

#create Root CA

openssl req -new -x509 -days 365 -newkey dilithium3 -keyout dilithium3_CA.key -out dilithium3_CA.crt -nodes -subj "/CN=TiigerTLS root CA"

#create Intermediate CA

openssl req -new -newkey dilithium3 -keyout dilithium3_intCA.key -out dilithium3_intCA.csr -nodes -subj "/CN=TiigerTLS intermediate CA"

openssl x509 -req -CAcreateserial -days 365 -extfile myopenssl.cnf -extensions int_ca -in dilithium3_intCA.csr -CA dilithium3_CA.crt

-CAkey dilithium3_CA.key -out dilithium3_intCA.crt

#create Server certificate

openssl req -new -newkey dilithium3 -keyout dilithium3_server.key -out dilithium3_server.csr -nodes -subj "/CN=TiigerTLS server"

openssl x509 -req -in dilithium3_server.csr -CA dilithium3_intCA.crt -CAkey dilithium3_intCA.key -set_serial 01 -days 365

-out dilithium3_server.crt

#verify cert chain

openssl verify -CAfile dilithium3_CA.crt -untrusted dilithium3_intCA.crt dilithium3_server.crt

cat dilithium3_server.crt dilithium3_intCA.crt > dilithium3_certchain.pem

After running these instructions, provision the TLS server with files
dilithium3 server.key (private key) and dilithium3 certchain.pem. Pro-
vision the TLS client with dilithium3 CA.crt, to be inserted into the root CA
store.
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