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ABSTRACT
Privacy-preserving neural network based on secure multi-party

computation (MPC) enables multiple parties to jointly train neu-

ral network models without revealing sensitive data. In privacy-

preserving neural network, the high communication costs of se-

curely computing non-linear functions is the primary performance

bottleneck. For commonly used non-linear functions, such as ReLU,

existing work adopts an offline-online computation paradigm and

utilizes distributed comparison function (DCF) to reduce commu-

nication costs. Specifically, these works prepare DCF keys in the

offline phase and perform secure ReLU using these DCF keys in

the online phase. However, the practicality of existing work is sig-

nificantly limited due to the substantial size of DCF keys and the

heavy reliance on a trusted third party in the offline phase.

In this work, we introduce a communication-efficient secure two-

party neural network framework called FssNN, which proposes a

key-reduced DCF scheme without a trusted third party to enable

practical secure training and inference. First, by analyzing the cor-

relations between DCF keys to eliminate redundant parameters, we

propose a key-reduced DCF scheme with a compact additive con-

struction, which decreases the size of DCF keys by about 17.9% and

the offline communication costs by approximately 28.0%. Secondly,

by leveraging an MPC-friendly pseudorandom number generator,

we propose a secure two-party distributed key generation protocol

for our key-reduced DCF, thereby eliminating the reliance on the

trusted third party. Finally, we utilize the key-reduced DCF and

additive secret sharing to compute non-linear and linear functions,

respectively, and design secure computation protocols with con-

stant online communication rounds for neural network operators,

reducing the online communication costs by 28.9% ∼ 43.4%.

We provide formal security proofs and evaluate the performance

of FssNN on various models and datasets. Experimental results

show that compared to the state-of-the-art framework AriaNN, our

framework reduces the total communication costs of secure training

and inference by approximately 25.4% and 26.4% respectively.
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1 INTRODUCTION
Machine learning using neural networks (NN) is widely applied in

many practical scenarios such as healthcare prediction, financial

services, auto driving and policy making. Jointly training neural

network models by collecting data frommultiple parties can greatly

improve the models’ accuracy and generalization their capabilities,

but data leakage issues and privacy protection regulations do not

allow data to be shared in plain text[21]. Privacy-preserving neural

network based on cryptographic methods such as homomorphic

encryption[12], garbled circuit[27], and secret sharing[15] enables

neural network training and inference in an encrypted state, which

can effectively solve the conflicting problem of data sharing and

privacy protection. Compared with these solutions based on ho-

momorphic encryption and garbled circuit, secret sharing-based

solutions have significant advantages in computation efficiency and

communication efficiency respectively, so they are regarded as the

most promising solutions in practical applications.

However, secret sharing-based solutions require a large number

of calculations of non-linear functions (such as activation func-

tion ReLU, etc.) during the training, which incurs huge computa-

tion overhead and communication costs. Compared with plain-

text training, the running-time is several orders of magnitude

slower[18, 22, 25], severely limiting secret sharing-based solutions’

practicality. In order to reduce communication costs of computing

non-linear function, in 2019, Boyle et al. [5] propose a secure two-

party computation protocol based on function secret sharing[3, 4]

in an offline-online paradigm. Their online communication rounds

of computing activation function can be reduced to a constant
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round by using the distributed comparison function (DCF, a FSS

scheme for comparison functions), but in the offline phase it still

requires a huge communication overhead to precompute the DCF

key and relies heavily on a trusted dealer. In 2021, Ryffel et al.[23]

reduce DCF key sizes by designing a compact key generation and

evaluation algorithm and present a secure ReLU protocol based on

their DCF construction, thus proposing an online-efficient neural

network training and inference framework, but the secure proto-

cols designed for ReLU incorporate a 1-bit error and rely heavily

on the trusted dealer in the offline phase. In 2021, Boyle et al.[2]

further decrease the DCF key sizes (the key sizes are 𝑛(𝜆 + 3) +𝜆 + 1
bits where 𝑛 is the input size and 𝜆 is the security parameter.) and

construct a distributed DCF key generation scheme by extending

the Doerner-Shelat protocol to replace the trusted dealer, but this

scheme is only suitable for a small input domain. Therefore, the

existing DCF construction faces the problems of large key sizes and

poor practicality of the distributed DCF key generation scheme.

In response to above problems, we propose a communication-

efficient and secure two-party neural network framework, FssNN,

based on a key-reduced DCF with compact additive construction.

We reduce communication costs in the online and offline phases by

combining additive secret sharing and function secret sharing, and

replace the trusted dealer by designing a distributed key generation

scheme based on MPC-friendly pseudorandom generators, thereby

greatly improving practical performance of privacy-preserving neu-

ral network. First, by integrating correction words and designing a

more compact key generation algorithm, we propose a key-reduced

DCF with fewer key sizes than [2] to achieve efficient computation

of non-linear functions in the offline phase. Secondly, by leverag-

ing the proposed DCF construction and combining additive secret

sharing with function secret sharing, we construct online-efficient

secure computation protocols for Hadamard product, ReLU and

DReLU, which can reduce the communication costs of online phase

to about 1/2 of that of AriaNN[23]. Finally, by introducing 2PC-

friendly pseudorandom generators, we propose a distributed DCF

key generation scheme based on secure two-party computation to

replace the trusted dealer and support a larger input domain than

the state-of-the-art solution [2]. Theoretical analysis shows that

compared with he state-of-the-art DCF construction[2], our pro-

posed DCF construction reduces the key sizes from 𝑛(𝜆 + 3) + 𝜆 + 1
bits to (⌈𝑛− log 𝜆⌉)(𝜆+3) +2𝜆 bits. For the typical parameter 𝑛 = 32

bits and 𝜆 = 127 bits, the key reduction is 790 bits with a decrease

of 17.9%. Furthermore, FssNN has fewer online rounds and lower

communication complexity compared with existing framework

ABY2.0[22] and AriaNN[23], while FssNN requires more computa-

tion in the offline phase.

In the experiment, we execute FssNN with Python in Ubuntu

and implement an end-to-end system for secure two-party training

and inference, and we conduct experimental tests on various neural

network models on MNIST dataset and so on. Experimental results

show that compared with the start-of-the-art work AriaNN[23], we

reduce the communication costs of secure training and inference by

roughly 25.4% and 26.4% respectively, while keeping the accuracy of

secure training and inference close to that of plaintext counterpart.

1.1 Related Work
Privacy-preserving neural network built on MPC has emerged as a

flourishing research area in the past few years. Existing works use

secure computation protocols based on secret sharing to compute

linear functions and protocols based on secret sharing (SS), garbled

circuit (GC), or function secret sharing (FSS) to compute non-linear

functions. These works also adopt the offline-online computation

mode[7] to obtain an efficient online phase by moving a majority

of computation and communication costs to the offline phase.

In SS-based and GC-based solutions, SecureML[21] is the first

privacy-preserving neural network framework and implementa-

tion with secure two-party computation (2PC) based on SS and

GC. It enables the secure training by combining Boolean secret

sharing, arithmetic secret sharing and Yao’s secret sharing[8], but

the conversion between three types of secret shares incurs huge

communication costs. ABY2.0[22] reduces online communication

rounds and communication costs by designing an efficient secret

shares conversion protocol, and improves the efficiency of secure

two-party neural network. However, these 2PC frameworks have a

number of communication rounds linear to the circuit depth, result-

ing in extremely high communication costs and latency. ABY3[20]

and Falcon[25] are proposed to tackle secure training by leveraging

three-party computation (3PC), and Trident[6] and Tetrad[18] are

the secure four-party computation (4PC) framework for privacy-

preserving neural network training. Compared with 2PC frame-

works, these 3PC and 4PC frameworks have fewer communication

rounds (still linear with circuit depth)[11], but impose a stronger

security assumption (honest-majority rather than the dishonest-

majority), the practicality is greatly limited.

In FSS-based solutions, non-linear functions are evaluated by us-

ing FSS-based 2PC protocols, which are optimal in terms of online

communication and rounds[2]. AriaNN[23] is a low-interaction

privacy-preserving neural network framework based on FSS by

reducing the key sizes of distributed comparison function (DCF, a

FSS scheme for comparisons) However, it still requires consider-

able online communication costs, and the secure protocols within

AriaNN designed for ReLU incorporate a 1-bit error. BCG+21[2],

LLAMA[16] and Grotto[24] provide secure computation protocols

based on DCF for computing various math functions (e.g., compar-

ison, reciprocal square root and piecewise polynomial), yet they

currently can not provide support for training neural networks.

Orca[17] enables secure inference and training by accelerating the

computation of FSS-based 2PC protocols with GPUs, but the online

phase in Orca requires additional communication rounds compared

with other FSS-based solutions, incurring the high communica-

tion latency. However, AriaNN [23], LLAMA[16], Grotto[24] and

Orca[17] rely heavily on a unrealistic trusted dealer to generate

DCF key in the offline phase. Although BCG+21[2] designs a dis-

tributed DCF key generation scheme by extending the Doerner-

Shelat protocol[10] to replace the trusted dealer, it is only suitable

to a small input domain (Z
2
16 or smaller), which greatly limits its

practicality.

The FSS-based secure neural network frameworks are summa-

rized in Table 1.
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Table 1: The FSS-based secure neural network frameworks.#,
G# and  respectively represent that inference and training
are not supported, only inference is supported and inference
and training are both supported. “gate evaluation rounds”
indicates the online communication rounds for a gate. “GPUs”
indicates whether GPU implementation is provided.

Framework

inference

& training

gate evalua-

tion rounds

no trusted

dealer

GPUs

BCG+21 [2] # 0 ✓ ×
AriaNN [23]  0 × ✓
LLAMA [16] G# 0 × ×
Grotto [24] # 0 × ×
Orca [17]  𝑂 (1) × ✓
FssNN  0 ✓ ×

1.2 Our Contributions
In this paper, we propose FssNN, a communication-efficient secure

two-party neural network (NN) framework, to enable practical

secure neural network training. FssNNhas the small constant-round

online communication complexity and low offline communication

costs, and does not rely on the trusted dealer in the offline phase.

In details, our contributions can be summarized in the following

three aspects:

• Key-reduced distributed comparison function with
compact additive construction. By integrating correc-

tion words and designing a more compact key generation

algorithm, we propose a key-reduced distributed compari-

son function (DCF) with fewer key sizes than the state-of-

the-art DCF construction[2] from 𝑛(𝜆 + 3) + 𝜆 + 1 bits to

(⌈𝑛 − log 𝜆⌉)(𝜆 + 3) + 2𝜆 bits where 𝑛 is the input size and 𝜆

is the security parameter, thus reduce offline communication

costs by 26.8% - 28.3% .

• Online-efficient seucre neural network operators. By
leveraging the proposed DCF and combining additive secret

sharing with function secret sharing, we construct online-

efficient and secure computation protocols for neural net-

work operators, such asHadamard product, ReLU andDReLU,

and reduce the online communication costs to about 1/2 of
that of the state-of-the-art solution[23].

• DistributedDCFkey generation based onMPC-friendly
pseudorandom generators By introducing MPC-friendly

pseudorandom generators, we propose a distributed DCF

key generation scheme to replace the trusted dealer and

support a larger input domain (Z
2
32 and above) than the

state-of-the-art DCF key generation shceme[2].

1.3 Organization
Following basic notations and background on neural network and

secure computation in § 2, § 3 presents the proposed FssNN where

§ 3.1 provide a high-level overview of FssNN, and § 3.2 and § 3.3
present secure computation protocols for linear layers and non-

linear layers. § 4 presents theoretical analysis and experimental

results, closing up with conclusion on § 5.

2 PRELIMINARIES
Notations. Z2𝑛 is a ring with arithmetic operations with each

element identified by its 𝑛-bit binary representation. We parse

𝑥 ∈ {0, 1}𝑛 as 𝑥𝑛−1 | | · · · | |𝑥0 where 𝑥𝑛−1 is the most significant

bit (MSB), and 𝑥 [𝑖 ] ∈ Z2 denotes 𝑥𝑖 and 𝑥 [𝑖, 𝑗 ) ∈ Z2𝑗−𝑖 denotes

the ring element corresponding to the bit-string 𝑥 𝑗−1 | | · · · | |𝑥𝑖 for
0 ≤ 𝑖 < 𝑗 ≤ 𝑛. Denote scalar, vector and matrix by lowercase letter

𝑥 , lowercase bold letter x and uppercase bold letter X respectively.

Denote random sampling by ∈𝑅 and security parameter by 𝜆, and

1{𝑏} by the indicator function that outputs 1 when 𝑏 is true and 0

otherwise. In this paper, we consider two parties and denote party

𝑏 by 𝑃𝑏 where 𝑏 ∈ {0, 1} is party index.

2.1 Neural Network Training
Let𝐷 = {(x𝑖 , 𝑦𝑖 ) |𝑖 ∈ {0, 1, · · · ,𝑚}} denotes training datasets where
each data sample x𝑖 contains 𝑑 features with the corresponding

output label 𝑦𝑖 . Neural network is a computational process to learn

a function 𝑔 such that 𝑔(x𝑖 ) ≈ 𝑦𝑖 where 𝑔 can be represented

as a function of weight matrix W and input data x𝑖 . The neural
network training procedure consists of two phases, namely forward

propagation and backward propagation. The phase to calculate the

predicted output 𝑦𝑖 = 𝑔(W, x𝑖 ) is called forward propagation, which
comprises of linear operations and a non-linear activation function.

One of the most popular activation functions is the rectified linear

unit (ReLU).

To learn the weight W, a cost function 𝐶 (W) that quantifies the
error between predicted value 𝑦𝑖 and actual value 𝑦𝑖 is defined, and

W is calculated and updated by solving the optimization problem of

argminW𝐶 (W). The solution for this optimization problem can be

computed by using stochastic gradient descent (SGD), which is an

effective approximation algorithm for approaching a local minimum

of a function step by step. SGD algorithm works as follows:W is

initialized as a vector of random values or all 0s. In each iteration,

a sample (x𝑖 , 𝑦𝑖 ) is selected randomly and the coefficient matrix

W is updated by W := W − 𝛼∇𝐶 (W), where 𝛼 is the learning rate

and ∇𝐶 (W) is the partial derivatives of the cost with respect to the

changes in weight. The phase to calculate the change 𝛼∇𝐶 (W) is
called backward propagation, where error rates are fed back through
a neural network to update weightW.

In practice, instead of selecting one sample of data per iteration,

a small batch of samples are selected randomly andW is updated

by averaging the partial derivatives of all samples on the current

W. This is called a mini-batch SGD, and its advantage is to allow

for the use of vectorization techniques to accelerate computation.

2.2 Additive Secret Sharing
An additive secret sharing (SS) scheme splits a secret value into

multiple shares that add up to the original secret value and none of

the individual shareholders have enough information to reconstruct

the secret value. In a two-party SS, 𝑃0 with secret share ⟨𝑥⟩0 and
𝑃1 with secret share ⟨𝑥⟩1 share the secret value 𝑥 ∈ Z2𝑛 , s.t. 𝑥 =

(⟨𝑥⟩0+⟨𝑥⟩1) mod 2
𝑛
. We say that 𝑃0 and 𝑃1 hold together the secret

share pair ⟨𝑥⟩, which means that 𝑃0 holds ⟨𝑥⟩0 and 𝑃1 holds ⟨𝑥⟩1.
3
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Sharing andReconstruction. To realize the functionalityFShare
which additively shares a secret value 𝑥 ∈ Z2𝑛 , secret owner sam-

ples random 𝑟 ∈ Z2𝑛 , and sends ⟨𝑥⟩𝑏 = (𝑥 − 𝑟 ) mod 2
𝑛
to 𝑃𝑏 and

sends ⟨𝑥⟩
1−𝑏 = 𝑟 to 𝑃

1−𝑏 . To implement the functionality FRecon
which opens an additively shared value ⟨𝑥⟩, 𝑃𝑏 sends ⟨𝑥⟩𝑏 to 𝑃

1−𝑏
who computes (⟨𝑥⟩0 + ⟨𝑥⟩1) mod 2

𝑛
for 𝑏 = {0, 1}. In the following

text, we omit the modular operation for simplicity.

Addition and Multiplication. Functionalities FAdd and FMul
add and multiply two shared values ⟨𝑥⟩ and ⟨𝑦⟩ respectively. It
is easy to non-interactively add the shared values by having 𝑃𝑏
compute ⟨𝑧⟩𝑏 = ⟨𝑥⟩𝑏 + ⟨𝑦⟩𝑏 . We overload the addition operation to

denote the secure addition by ⟨𝑥⟩ + ⟨𝑦⟩. To realize FMul, taking the

advantage of Beaver’s precomputed multiplication triples technique

[1], the specific protocol ΠMul works as follows: assume that 𝑃0
and 𝑃1 hold multiplication triples ⟨𝑢⟩, ⟨𝑣⟩, ⟨𝑢𝑣⟩ where 𝑢, 𝑣 ∈𝑅 Z2𝑛 ,
𝑃𝑏 locally computes ⟨𝑒⟩𝑏 = ⟨𝑥⟩𝑏 − ⟨𝑢⟩𝑏 and ⟨𝑓 ⟩𝑏 = ⟨𝑦⟩𝑏 − ⟨𝑣⟩𝑏 and

then the two parties reconstruct ⟨𝑒⟩, ⟨𝑓 ⟩ to get 𝑒, 𝑓 . Finally, 𝑃𝑏 lets

⟨𝑧⟩𝑏 = 𝑏 · 𝑒 · 𝑓 + 𝑓 · ⟨𝑢⟩𝑏 + 𝑒 · ⟨𝑣⟩𝑏 + ⟨𝑢𝑣⟩𝑏 .
In the case of 𝑛 > 1 (e.g., 𝑛 = 32) which supports arithmetic

operations (e.g., addition and multiplication), arithmetic share pair

is denoted by ⟨·⟩𝐴 . In the case of 𝑛 = 1 which supports Boolean

operations (e.g., XOR and AND), Boolean share pair is denoted by

⟨·⟩𝐵 . In this paper, we mostly use the arithmetic share pair and

denote it by ⟨·⟩ for short.

Generating Multiplication Triples. Functionality FGenMT gen-

erates multiplication triples (⟨𝑢⟩, ⟨𝑣⟩, ⟨𝑢𝑣⟩) consumed in ΠMul. Typ-

ically, multiplication triples can be generated based on oblivious

transfer (OT). In this paper, the protocol ΠGenMT for FGenMT is

achieved by directly using VOLE-style OT generation scheme pro-

posed in Ferret [26].

2.3 Function Secret Sharing
Intuitively, a two-party function secret sharing (FSS) scheme [2]

splits a function 𝑓 ∈ F into two shares 𝑓0, 𝑓1, such that: (1) each

𝑓𝑏 hides 𝑓 ; (2) for each input 𝑥 , 𝑓0 (𝑥) + 𝑓1 (𝑥) = 𝑓 (𝑥). This section
follows the definition of FSS from [2].

Definition 2.1. (FSS: Syntax). A two-party FSS scheme is a pair

of algorithms (Gen, Eval) such that:

(1) Gen(1𝜆, ˆ𝑓 ) is a probabilistic polynomial-time (PPT) key gen-

eration algorithm that given 1
𝜆
and

ˆ𝑓 ∈ {0, 1}∗ (description
of a function 𝑓 : Gin → Gout) outputs a pair of keys (𝑘0, 𝑘1).
We assume that

ˆ𝑓 explicitly contains descriptions of input

and output groups Gin,Gout.
(2) Eval(𝑏, 𝑘𝑏 , 𝑥) is a polynomial-time evaluation algorithm that

given 𝑏 ∈ {0, 1} (party index), 𝑘𝑏 (key defining 𝑓𝑏 : Gin →
Gout) and 𝑥 ∈ Gin (input for 𝑓𝑏 ) outputs a group element

𝑦𝑏 ∈ Gout (the value of 𝑓𝑏 (𝑥)).

Definition 2.2. (FSS: Correctness and Security). Let F = {𝑓 } be
a function family. We say that (Gen, Eval) as in Definition 2.1 is an

FSS scheme for F if it satisfies the following requirements:

(1) Correctness: For all 𝑓 : Gin → Gout ∈ F , and every

𝑥 ∈ Gin, if (𝑘0, 𝑘1) ← Gen(1𝜆, ˆ𝑓 ), then Pr[Eval(0, 𝑘0, 𝑥) +
Eval(1, 𝑘1, 𝑥) = 𝑓 (𝑥)] = 1.

(2) Security: For each 𝑏 ∈ {0, 1} there is a PPT algorithm

Sim𝑏 (simulator), such that for every sequence { ˆ𝑓𝑖 }𝑖∈N of

polynomial-size function descriptions fromF and polynomial-

size input sequence 𝑥𝑖 for 𝑓𝑖 , the outputs of the following

experiments Real and Ideal are computationally indistin-

guishable:

– Real(1𝜆) : (𝑘0, 𝑘1) ← Gen(1𝜆, ˆ𝑓𝑖 ); Output 𝑘𝑏 .
– Ideal(1𝜆) : Output Sim𝑏 (1𝜆).

Distributed Comparison Function and its Variant. A spe-

cial piecewise function, 𝑓 <
𝛼,𝛽
(𝑥), also referred to as a comparison

function, outputs 𝛽 if 𝑥 < 𝛼 and 0 otherwise. We refer to a FSS

scheme for comparison functions as distributed comparison func-

tion (DCF). And the variant of DCF, called dual distributed compar-

ison function (DDCF), is considered and denoted by 𝑓 <
𝛼,𝛽0,𝛽1

(𝑥)
that outputs 𝛽0 for 0 ≤ 𝑥 < 𝛼 and 𝛽1 for 𝑥 ≥ 𝛼 . Obviously,

𝑓 <
𝛼,𝛽0,𝛽1

(𝑥) = 𝛽1 + 𝑓 <𝛼,𝛽0−𝛽1 (𝑥) and thus DDCF can be constructed

by DCF.

Secure Two-party Computation via FSS. Recent work of Boyle
et al. [2, 5] shows that FSS paradigm can be used to efficiently

evaluate some function families in the two-party computation in the

offline-online model, where Gen and Eval correspond to the offline

phase and the online phase respectively. In the offline phase, a
trusted dealer randomly samples mask rin for each input wire𝑤in
or rout for each output wire 𝑤out in the computation circuit. For

each gate 𝑔 with𝑤in and𝑤out, the dealer constructs offset function
𝑔[r

in,rout ] (𝑥) := 𝑔(𝑥 − rin) + rout, and runs Gen to generate FSS keys

(𝑘0, 𝑘1) corresponding to 𝑔[r
in,rout ]

. Then the dealer sends 𝑘𝑏 to 𝑃𝑏 ,

and sends the corresponding mask r to 𝑃𝑏 for circuit input and

output wires𝑤 owned by 𝑃𝑏 . In the online phase, 𝑃𝑏 calculates

the masked wire value 𝑥 = 𝑥 + rin for each 𝑤in with rin owned

by 𝑃𝑏 , and sends it to 𝑃
1−𝑏 . Starting from the input gates, 𝑃0 and

𝑃1 compute gates in topological order to obtain masked output

wire values. To compute a gate 𝑔 with𝑤in and𝑤out, 𝑃𝑏 uses Eval
with FSS key 𝑘𝑏 and masked input wire value 𝑥 = 𝑥 + rin to obtain

the masked output wire value 𝑔(𝑥) + rout. For output wires, they
subtract the corresponding mask received from the dealer to obtain

clear output values. In this paper, a secure two-party computation

protocol is proposed to instantiate the trusted dealer.

2.4 Threat Model
We consider two-party computation secure against a semi-honest
adversary, i.e., the corrupted party running the protocol honestly

while trying to learn as much information as possible about oth-

ers’ input or function share. In this paper, we directly follow the

definition of semi-honest security from [19].

Definition 2.3. Let F = (F0, F1) be a functionality. We say that Π
securely realizes F in the presence of static semi-honest adversaries

if there exist probabilistic polynomial-time algorithm Sim0 and

4
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Sim1 such that:

{(Sim0 (1𝑛, 𝑥, F0 (𝑥,𝑦)), F (𝑥,𝑦))}𝑥,𝑦,𝑛
𝑐≡ {(viewΠ

0
(𝑥,𝑦, 𝑛), outputΠ (𝑥,𝑦, 𝑛))}𝑥,𝑦,𝑛

{(Sim1 (1𝑛, 𝑦, F1 (𝑥,𝑦)), F (𝑥,𝑦))}𝑥,𝑦,𝑛
𝑐≡ {(viewΠ

1
(𝑥,𝑦, 𝑛), outputΠ (𝑥,𝑦, 𝑛))}𝑥,𝑦,𝑛

where 𝑥,𝑦 ∈ {0, 1}∗ such that |𝑥 | = |𝑦 |, and 𝑛 ∈ N.

In addition, modular sequential composition theorems [13, 19]

are considered, and we prove protocols secure under the definition

of semi-honest security from [19] and immediately derive their

security under sequential composition. Our protocols invoke several

sub-protocols and for ease of exposition we describe them using

the hybrid model [19], which is the same as a real interaction

except that the sub-protocol executions are replaced with calls to

the corresponding trusted functionalities - protocol invoking F is

said to be in the F -hybrid model.

3 THE PROPOSED FSSNN
In this section, we present a high-level overview of FssNN frame-

work in § 3.1, and provide detailed construction of secure linear

layer functions and secure non-linear layer functions in § 3.2 and
§ 3.3 respectively.

3.1 The FssNN Overview
In this paper, we propose a secure two-party neural network frame-

work, FssNN, to enable practical and secure training and inference.

We decrease communication rounds and communication costs by

utilizing additive secret sharing and key-reduced distributed com-

parison function (DCF, a function secret sharing scheme for com-

parisons), and replace the trusted dealer using a distributed DCF

key generation scheme.

As shown in Figure 1, FssNN works as follows: parties 𝑃0 and

𝑃1 hold the secret shares of training datasets ⟨𝐷⟩0 and ⟨𝐷⟩1 respec-
tively, and initialize ⟨W⟩

0
and ⟨W⟩

1
to be the all 0s locally. Then,

for 𝑏 = 0, 1, 𝑃𝑏 randomly selects a training sample (⟨x𝑖 ⟩𝑏 , ⟨𝑦𝑖 ⟩𝑏 ),
and engages in a secure two-party SGD protocol (2PC-SGD) with

𝑃
1−𝑏 to update ⟨W⟩ interactively, which involves two steps: 1○

forward propagation and 2○ backward propagation. During the

forward propagation and the backward propagation, we need to

securely compute linear layers (denoted by green solid line boxes)

and non-linear layers (denoted by blue dashed line boxes). Finally,

𝑃0 and 𝑃1 select a new sample randomly and repeat the above pro-

cess until the samples are used up, and finally 𝑃𝑏 gets ⟨W⟩𝑏 . It can
be seen from Figure 1 that the secure training is mainly divided

into secure linear layers and secure non-linear layers.

To reduce the communication rounds and communication costs

required to compute linear layers and non-linear layers, we pro-

pose a hybrid method combing additive secret sharing (SS) and

function secret sharing (FSS) and adopt the offline-online paradigm

to compute linear layers in one round of online communication and

compute non-linear layers in a constant round of online communi-

cation. Figure 2 shows our secure linear layer protocols (denoted

by blue dashed line boxes) and secure non-linear layer protocols

(denoted by blue dashed line boxes) in the offline-online paradigm.
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Figure 2: Secure linear layers and non-linear layers

For linear layers, by leveraging a SS-based secure two-party

computation protocol, we generate multiplication triples (GenMT
)

in the offline phase and utilize these multiplication triples to com-

pute linear layer functions such asMatMul,Conv, FC andHadamProd
in one round of communication in the online phase. Among them,

we propose a protocol, BitXA, that supports direct multiplication

of a bit and an integer to reduce online communication costs, and

extend it to HadamProd through vectorization techniques. For
non-linear layers, we propose a key-reduced DCF scheme with

compact additive construction and design a distributed DCF key

generation scheme based on an MPC-friendly pseudorandom gen-

erator (PRG). In the offline phase, we design a distributed DCF key

generation scheme (GenDCF) for the proposed key-reduced DCF

to generate the DCF key rather than relying on a trusted dealer,

and utilize the DCF key to compute non-linear layer functions such

as ReLU, DReLU,MaxPool and DMaxPool with a constant-round

online communication.

In § 3.2 and § 3.3, we will introduce the detailed construction of

the secure linear layers and the secure non-linear layers respec-

tively.
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3.2 Construction of Secure Linear Layers
In this section, we present the detailed construction of linear layer

functions, i.e.,MatMul (§ 3.2.1, and FC aswell asConv) andHadamProd
(§ 3.2.2), in the online and offline phases.

3.2.1 Secure Matrix Multiplication. By leveraging the vector-

ization technique in [21], secure scalar multiplication (Mul) in-
troduced in § 2.2 can be easily extended to secure matrix multi-

plication (MatMul) where the multiplication triples are replaced

by matrix multiplication triples. Given secret shares of matrices

⟨X⟩, ⟨Y⟩ held by 𝑃0 and 𝑃1 where X ∈ Z𝑚1×𝑚2

2
𝑛 ,Y ∈ Z𝑚2×𝑚3

2
𝑛 , func-

tionality FMatMul computes ⟨Z⟩ s.t. Z = X × Y. ΠMatMul realizes

the functionality FMatMul as follows: 1) In offline phase, 𝑃𝑏 samples

⟨U⟩𝑏 , ⟨V⟩𝑏 randomly, and then parties invoke GenMT (⟨U⟩, ⟨V⟩) to
generate matrix multiplication triples (⟨U⟩, ⟨V⟩, ⟨UV⟩). 2) In the

online phase, parties open X − U and Y − V, and then 𝑃𝑏 computes

⟨Z⟩𝑏 = 𝑏 · (X−U)× (Y−V) + (X−U)×⟨V⟩𝑏 +⟨U⟩𝑏 ×(Y−V) + ⟨UV⟩𝑏
locally. This requires an online communication of (𝑚1𝑚2+𝑚2𝑚3) ·𝑛
bits in in 1 round.

Secure FC and Conv. A fully-connected layer in neural net-

work is exactly a matrix multiplication, thus secure fully-connected

layer (FC) can be implemented directly using ΠMatMul. Likewise,

convolutional layer can also be expressed as a (larger) matrix mul-

tiplication using an unrolling technique (see Figure 3. in [23]), so

secure convolution layer (Conv) can also be implemented using

ΠMatMul.

3.2.2 SecureHadamardProduct. Neural network trainingmakes

extensive use of Hadamard product in backpropagation. Observe

that Hadamard product operations (denoted by ⊙) have a specific
structure that can be leveraged to reduce communication costs:

when computing X ⊙ Y where X ∈ Z𝑚1×𝑚2

2
𝑛 ,Y ∈ Z𝑚2×𝑚3

2
, the each

element 𝑥 in X is a 𝑛-bit integer and the each element 𝑦 in Y is a

bit. However, the arithmetic share ⟨𝑥⟩𝐴 can not be directly mul-

tiplied by the Boolean share ⟨𝑦⟩𝐵 since they are calculated with

different moduli. Existing works first convert ⟨𝑦⟩𝐵 to the arithmetic

share ⟨𝑦⟩𝐴 and then perform the multiplication of ⟨𝑥⟩𝐴 and ⟨𝑦⟩𝐴 ,
incurring an online communication of 2𝑚1𝑚2𝑛 bits in 2 rounds.

In order to reduce online communication costs, we propose an

online-efficient Hadamard product protocol to support the direct

computation ofX⊙Y bymoving the share conversion into the offline

phase, which requires an online communication of𝑚1𝑚2 (𝑛 + 1)
bits in 1 round. We present a scalar protocol, ΠBitXA, to support

the product of ⟨𝑥⟩𝐴 and ⟨𝑦⟩𝐵 , which can be easily extended to the

vector protocol ΠHadamProd through the vectorization technique.

Given the arithmetic share ⟨𝑥⟩𝐴 and Boolean share ⟨𝑦⟩𝐵 , func-
tionality FBitXA generates ⟨𝑧⟩𝐴 with 𝑧 = 𝑥 · 𝑦 and the protocol is

shown in Algorithm 1. ΠBitXA needs an online communication of

𝑛 + 1 bits per party in 1 round.

Compare with Orca[17]. Orca[17] proposes a protocol Πselect
𝑛

to implement the same functionality and claims that their proto-

col requires no communication. However, their protocol hides the

process of opening secret shares (step 1 in the online phase in Algo-

rithm 1), so it still needs the online communication of 𝑛 + 1 bits in
1 round, and the protocol’s keysize is 4𝑛 bits, while our protocol’s

“keysize” (i.e., ⟨𝛿𝑥 ⟩𝐴, ⟨𝛿𝑦⟩𝐴, ⟨𝛿𝑧⟩𝐴 and ⟨ ˆ𝛿𝑦⟩𝐵 ) is 3𝑛 + 1 bits.

Algorithm 1 BitXA: ΠBitXA (⟨𝑦⟩𝐵, ⟨𝑥⟩𝐴)

Input: 𝑃0 and 𝑃1 hold ⟨𝑥⟩𝐴 and ⟨𝑦⟩𝐵 .
Output: 𝑃0 gets ⟨𝑧⟩𝐴0 and 𝑃1 gets ⟨𝑧⟩𝐴1 where 𝑧 = 𝑥 · 𝑦.
•Offline Phase
1: 𝑃𝑏 samples ⟨ ˆ𝛿𝑦⟩𝐵𝑏 ∈𝑅 Z2, and then 𝑃0 and 𝑃1 convert it to

arithmetic share:

(1) 𝑃0 lets ⟨𝑒⟩𝐴
0

= ⟨ ˆ𝛿𝑦⟩𝐵
0
, ⟨𝑓 ⟩𝐴

0
= 0, and 𝑃1 lets ⟨𝑒⟩𝐴

1
=

0, ⟨𝑓 ⟩𝐴
1
= ⟨ ˆ𝛿𝑦⟩𝐵

1

(2) 𝑃0 and 𝑃1 compute (⟨𝑒 𝑓 ⟩𝐴
0
, ⟨𝑒 𝑓 ⟩𝐴

1
) ←

ΠMul (⟨𝑒⟩𝐴, ⟨𝑓 ⟩𝐴).
(3) 𝑃𝑏 computes ⟨𝛿𝑦⟩𝐴𝑏 = ⟨𝑒⟩𝐴

𝑏
+ ⟨𝑓 ⟩𝐴

𝑏
− 2 · ⟨𝑒 𝑓 ⟩𝐴

𝑏
locally.

2: 𝑃𝑏 samples ⟨𝛿𝑥 ⟩𝐴𝑏 ∈𝑅 Z2𝑛 , and then parties compute

(⟨𝛿𝑧⟩𝐴
0
, ⟨𝛿𝑧⟩𝐴

1
) ← ΠMul (⟨𝛿𝑥 ⟩𝐴, ⟨𝛿𝑦⟩𝐴) s.t. 𝛿𝑧 = 𝛿𝑥 · 𝛿𝑦 .

3: 𝑃0 and 𝑃1 hold ⟨𝛿𝑥 ⟩𝐴, ⟨𝛿𝑦⟩𝐴, ⟨𝛿𝑧⟩𝐴 and ⟨ ˆ𝛿𝑦⟩𝐵 .
•Online Phase
1: 𝑃𝑏 locally computes ⟨𝑥⟩𝐴

𝑏
+ ⟨𝛿𝑥 ⟩𝐴𝑏 , ⟨𝑦⟩

𝐵
𝑏
⊕ ⟨ ˆ𝛿𝑦⟩𝐵𝑏 , and sends to

𝑃
1−𝑏 .

2: 𝑃𝑏 reconstructs Δ𝑥 = 𝑥 + 𝛿𝑥 ,Δ𝑦 = 𝑦 ⊕ ˆ𝛿𝑦 , and sets Δ′𝑦 = Δ𝑦

where Δ′𝑦 ∈ Z2𝑛 .
3: 𝑃𝑏 computes locally ⟨𝑧⟩𝐴

𝑏
= 𝑏 · Δ′𝑦 · Δ𝑥 + ⟨𝛿𝑦⟩𝐴𝑏 · Δ𝑥 − 2 · Δ

′
𝑦 ·

Δ𝑥 · ⟨𝛿𝑦⟩𝐴𝑏 − Δ
′
𝑦 · ⟨𝛿𝑥 ⟩𝐴𝑏 − ⟨𝛿𝑧⟩

𝐴
𝑏
+ 2 · Δ′𝑦 · ⟨𝛿𝑧⟩𝐴𝑏 .

Security Analysis. Theorem 3.1 captures the security of ΠBitXA,

and the full proof is given inAppendix B.1. The security ofHadamProd
follows in the FBitXA-hybrid model.

Theorem 3.1. In the FMul-hybrid model, ΠBitXA securely com-
putes the functionality FBitXA in the presence of semi-honest adver-
saries.

3.3 Construction of Secure Non-Linear Layers
In this section, we present the construction of non-linear layer

functions (i.e., DReLU and ReLU, § 3.3.1) by using a key-reduced

distributed comparison function (DCF) scheme with compact ad-

ditive construction (§ 3.3.2). To replace the trusted dealer in the

offline phase, we propose a DCF key generation scheme based on

MPC-friendly pseudorandom generators in § 3.3.3, which supports

a larger input domain. In this paper, we directly use the secure

maxpool algorithm proposed in [23] (see algorithm 7 in [23]) and

its derivative, but utilize our proposed DCF construction.

3.3.1 Secure DReLU and ReLU. ReLU is one of the most popular

activation functions in neural network training. For a signed value 𝑥 ,

ReLU is define asmax(0, 𝑥) and its derivative is defined as 1{𝑥 ≥ 0}.
Given an arithmetic share ⟨𝑥⟩, the functionality FReLU outputs the

arithmetic share ofmax(0, 𝑥), and the functionality FDReLU outputs

the Boolean share of 1{𝑥 ≥ 0}. It can be seen that ReLU (𝑥) =
𝑥 · DReLU (𝑥).

In this section, by leveraging the DDCF scheme constructed by

using the proposed DCF (§ 3.3.2), we first design a signed integer

comparison gate scheme to implement DReLU, and then compute

ReLU using ΠReLU (⟨𝑥⟩𝐴) = ΠBitXA (⟨𝑥⟩𝐴, ⟨ΠDReLU (⟨𝑥⟩𝐴)⟩
𝐵).
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Secure DReLU. To implement FDReLU, we first propose signed
integer comparison gate Comp in Algorithm 2 which is derived

from [2]. In the Algorithm 2, (GenDDCF
𝑛−1 , EvalDDCF

𝑛−1 ) is used to eval-

uate 𝑓 <
𝛼 (𝑛−1) ,𝛽0,𝛽1

(𝑥) that outputs 𝛽0 for 0 ≤ 𝑥 < 𝛼 (𝑛−1) and 𝛽1

for 𝑥 ≥ 𝛼 (𝑛−1) , and its detailed construction is shown in the Ap-

pendix A. Comp requires 1 call of DDCF and the key sizes are

(⌈𝑛 − 1 − log 𝜆⌉)(𝜆 + 3) + 2𝜆 bits per party where 𝜆 is the security

parameter.

Base on Comp, ΠDReLU is proposed to compute 1{𝑥 ≥ 0}, and
this protocol is in Algorithm 3 where a trusted dealer is used to pre-

compute FSS keys of Comp. The trusted dealer can be instantiated

via using our proposed distributed DCF key generation scheme (Al-

gorithm 5 in § 3.3.2). ΠDReLU requires 1 call of Comp in the offline

phase, and requires requires 1 round with 𝑛 bits in the online phase.

Algorithm 2 Signed Integer Comparison Gate Comp :

(GenComp
𝑛 , EvalComp

𝑛 )

•GenComp
𝑛 (1𝜆, rin

1
, rin
2
, rout)

1: Let 𝑟 = (2𝑛 − (rin
1
− rin

2
)) ∈ Z2𝑛 , and 𝛼 (𝑛−1) = 𝑟 [0,𝑛−1) .

2: (𝑘 (𝑛−1)
0

, 𝑘
(𝑛−1)
1

) ← GenDDCF
𝑛−1 (1

𝜆, 𝛼 (𝑛−1) , 𝛽0, 𝛽1), where 𝛽0 =

1 ⊕ 𝑟 [𝑛−1] , 𝛽1 = 𝑟 [𝑛−1] .
3: Sample randoms r0, r1 ∈𝑅 Z2, s.t. r0 ⊕ r1 = rout.
4: Let 𝑘𝑏 = 𝑘

(𝑛−1)
𝑏

| |r𝑏
5: return (𝑘0, 𝑘1).
• EvalComp

𝑛 (𝑏, 𝑘𝑏 , 𝑥,𝑦)
1: 𝑃𝑏 parses 𝑘𝑏 = 𝑘

(𝑛−1)
𝑏

| |r𝑏 , and lets 𝑧 = (𝑥 − 𝑦) ∈ Z2𝑛 .
2: 𝑃𝑏 computes 𝑚𝑏 ← EvalDDCF

𝑛−1 (𝑏, 𝑘
(𝑛−1)
𝑏

, 𝑧 (𝑛−1) ), where

𝑧 (𝑛−1) = 2
𝑛−1 − 𝑧 [0,𝑛−1) − 1.

3: 𝑃𝑏 lets 𝑣𝑏 = (𝑏 · 𝑧 [𝑛−1] ) ⊕𝑚𝑏 ⊕ r𝑏 .
4: return 𝑣𝑏 .

Algorithm 3 DReLU : ΠDReLU (⟨𝑥⟩𝐴)

Input: 𝑃0 and 𝑃1 hold arithmetic share ⟨𝑥⟩𝐴 .
Output: 𝑃0 and 𝑃1 obtain Boolean share ⟨𝑦⟩𝐵 , where ⟨𝑦⟩𝐵0 ⊕⟨𝑦⟩

𝐵
1
=

1{𝑥 ≥ 0}.
•Offline Phase
1: Dealer computes (𝑘0, 𝑘1) ← GenComp

𝑛 (1𝜆, rin
1
, rin
2
, rout).

2: Dealer sends 𝑘𝑏 , ⟨rin1 ⟩
𝐴
𝑏
,⟨rout⟩𝐵

𝑏
and rin

2
to 𝑃𝑏 .

•Online Phase
1: 𝑃𝑏 computes ⟨𝑥 + rin

1
⟩𝐴
𝑏
= ⟨𝑥⟩𝐴

𝑏
+ ⟨rin

1
⟩𝐴
𝑏
and sends ⟨𝑥 + rin

1
⟩𝐴
𝑏
to

𝑃
1−𝑏 .

2: 𝑃𝑏 computes 𝑥 + rin
1
= ⟨𝑥 + rin

1
⟩𝐴
0
+ ⟨𝑥 + rin

1
⟩𝐴
1
.

3: 𝑃𝑏 computes ⟨𝑦⟩𝐵
𝑏
← 𝑏 ⊕ EvalComp

𝑛 (𝑏, 𝑘𝑏 , 𝑥 + rin1 , r
in
2
) ⊕ ⟨rout⟩𝐵𝑏

locally.

4: return ⟨𝑦⟩𝐵
𝑏
.

SecureReLU. FReLU is implemented by computingΠReLU (⟨𝑥⟩𝐴) =
ΠBitXA (⟨𝑥⟩𝐴, ⟨ΠDReLU (⟨𝑥⟩𝐴)⟩

𝐵), which needs the same key sizes

as ΠDReLU and requires 1 round with 2𝑛 + 1 bits in the online phase.

SecurityAnalysis. Theorem 3.2 captures the security ofΠDReLU,

and the full proof is given in Appendix B.2. The security of ΠReLU
follows in (FBitXA, FDReLU)-hybrid model.

Theorem 3.2. In the F
GenComp

𝑛
-hybrid model, ΠDReLU securely

computes the functionality FDReLU in the presence of semi-honest
adversaries.

3.3.2 Key-reduced Distributed Comparison Function with
Compact Additive Construction. A central building block in

FssNN is a distributed comparison function (DCF), which is inten-

sively used in neural network to build activation functions like

ReLU (and its derivative). We examine the case of 𝑥, 𝛼 ∈ Z2𝑛 and

𝛽 ∈ Z2 and propose a key-reduced DCF scheme with compact addi-

tive construction for comparison function 𝑓 <
𝛼,𝛽
(𝑥). The proposed

DCF construction has the following two differences compared the

state-of-the-art work [2]: (1) we maintain input group Gin = Z2𝑛

but let the output group Gout = Z2 rather than G
out = Z2𝑚 where

𝑚,𝑛 are integers, and propose a key-reduced DCF construction by

integrating correction words and designing a more compact key

generation algorithm, (2) we apply the idea of early termination

in [4] to reduce the number of actually required correction words,

thereby further reducing the DCF key sizes. Therefore, our pro-

posed DCF construction only supports the output group Gout = Z2,
but it has smaller key sizes than [2] from 𝑛(𝜆 + 3) + 𝜆 + 1 bits to
(⌈𝑛 − log 𝜆⌉)(𝜆 + 3) + 2𝜆 bits where 𝜆 is the security parameter.

Intuition. our construction draws inspiration from the dis-

tributed point function of [4], which involves the algorithm (Gen<𝑛 ,
Eval<𝑛 ). In algorithm Gen<𝑛 , the pseudorandom generator (PRG)

𝐺 is used to generate two DCF keys (𝑘0, 𝑘1) such that ∀𝑏 ∈ {0, 1},
𝑘𝑏 includes an initial random PRG seed 𝑠

(0)
𝑏

and 𝑛 shared correc-

tion words (𝐶𝑊 (1) , · · · , 𝐶𝑊 (𝑛) ). The key 𝑘𝑏 implicitly defines a

Goldreich-Goldwasser-Micali(GGM)-style binary tree [14] with 2
𝑛

leaves, where the leaves are labeled by input 𝑥 . Each node in the

tree is associated with a label represented by a tuple (𝑠, 𝑣, 𝑡) ∈
{0, 1}𝜆 × {0, 1} × {0, 1}, where 𝑠 represents a PRG seed, 𝑣 represents

a resulting bit, and 𝑡 represents a state bit. The label of each node is

fully determined by the label of its parent node. We let the resulting

bit 𝑣 record the result of 𝑥 < 𝛼 to ensure that the “sum” 𝑣0 ⊕ 𝑣1
over all nodes leading to input 𝑥 is exactly equal to 𝑓 <

𝛼,𝛽
(𝑥). In ad-

dition, we take advantage of the correlation between these tuples

(𝑠, 𝑣, 𝑡) and only store the independent PRG seed, resulting bit and

state bit in correction words, thereby reducing the sizes of DCF key.

In algorithm Eval<𝑛 , 𝑃𝑏 evaluates key 𝑘𝑏 on an input 𝑥 where 𝑃𝑏
traverses the tree generated by 𝑘𝑏 from the root to the leaf node

representing 𝑥 and computes (𝑠𝑏 , 𝑣𝑏 , 𝑡𝑏 ) at each node, and finally

sums up the resulting bit 𝑣𝑏 .

Next, a comprehensive explanation of Gen<𝑛 and Eval<𝑛 is pro-

vided by detailing the key generation phase and the evaluation phase.

Key Generation Phase. Specifically, the algorithm Gen<𝑛 gen-

erates the secret share of 𝑓 <
𝛼,𝛽
(𝑥) (i.e., 𝑘0 and 𝑘1) by generating

distributed GGM-style binary trees. The two GGM-style trees gen-

erated by Gen<𝑛 are equivalent to the GGM-style trees representing

the function 𝑓 <
𝛼,𝛽
(𝑥) when taken together. In this construction, the

path from the root to a leaf node labeled by 𝑥 is referred to as the

evaluation path of 𝑥 , and the evaluation path of the special input 𝛼

7
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is referred to as the special evaluation path. When 𝑥 ≠ 𝛼 , the prefix

of 𝑥 diverges from the path to 𝛼 at a exact point, referred to as the

divergence node of 𝑥 relative to 𝛼 . To ensure the correct creation of

the two trees, we would like to maintain the invariant: 1) For each
node on the special evaluation path, two seeds (on the two trees)

are indistinguishable as random and independent, two resulting

bits are identical and two state bits differ, and 2) For each node

outside the special evaluation path, with the exception of the node

that is the left child of divergence node, the two labels are identical.

At the left child of the divergence node, two seeds and state bits

are the same, and the “sum” of two resulting bits equals to 𝛽 .

Note that since the label of a node is determined by that of its

parent, if the aforementioned invariant is satisfied for a node outside

the special path, it will automatically be upheld by its children. In

addition, we can easily meet the invariant for the root (which is

always on the special evaluation path) by simply including the

labels in the key. The challenge lies in ensuring that the invariant is

also upheld when leaving the special path. In order to describe the

construction, it is useful to view the two labels of a node as a Boolean

secret share of the label, consisting of shares ⟨𝑠⟩𝐵 = (𝑠0, 𝑠1) of the
𝜆-bit seed 𝑠 , ⟨𝑣⟩𝐵 = (𝑣0, 𝑣1) of the resulting bit 𝑣 and ⟨𝑡⟩𝐵 = (𝑡0, 𝑡1)
of the state bit 𝑡 . Suppose that the labels of the 𝑖-th node 𝑢𝑖 on

the evaluation path are (𝑠 (𝑖 )
𝑏

, 𝑣
(𝑖 )
𝑏

, 𝑡
(𝑖 )
𝑏
) (𝑏 = 0, 1). To compute the

labels of the (𝑖 + 1)-th node, the parties start by locally computing

𝐺 (𝑠 (𝑖 )
𝑏
) for a PRG 𝐺 and parsing 𝐺 (𝑠 (𝑖 )

𝑏
) as (𝑠𝐿

𝑏
, 𝑣𝐿
𝑏
, 𝑡𝐿
𝑏
; 𝑠𝑅
𝑏
, 𝑣𝑅
𝑏
, 𝑡𝑅
𝑏
).

The first three values correspond to labels of the left child and the

last three values correspond to labels of the right child. To maintain

the invariant, the keys will include a correction word (𝐶𝑊 ) for each

level 𝑖 . As previously discussed, we only need to take into account

the case where 𝑢𝑖 is on the special evaluation path. By the invariant

we have 𝑡 = 1, in which case the correction word will be applied.

Without loss of generality, let us assume that 𝛼𝑖 = 1. This implies

that the left child of 𝑢𝑖 is not on the special evaluation path, while

the right child is on the special evaluation path. To ensure that the

invariant is maintained, we can include in both keys the correction

word𝐶𝑊 (𝑖 ) = (𝑠𝐿, 𝑣𝐿 ⊕ 𝛽, 𝑡𝐿 ⊕1; 𝑠𝐿, 𝑣𝑅, 𝑡𝑅 ⊕1). Indeed, this ensures
that after the correctionword is applied, the labels of the left (i.e.,𝑏 =

0) and right child (i.e.,𝑏 = 1) are (⟨0𝜆⟩𝐵
𝑏
, ⟨𝛽⟩𝐵

𝑏
, ⟨0⟩𝐵

𝑏
; ⟨𝑠⟩𝐵

𝑏
, ⟨0⟩𝐵

𝑏
, ⟨1⟩𝐵

𝑏
)

as required. The 𝑛 correction words 𝐶𝑊 (𝑖 ) are computed by Gen
from the root labels by applying the above iterative computation

along the special path, and are included in both keys. Figure 3

illustrates a construction example of Gen<𝑛 when 𝑛 = 2, with the

case of 𝛼 = 𝛼1𝛼2 = 01 being depicted.

Evaluation Phase. In DCF, the evaluation process involves

comparing a public input 𝑥 ∈ Z2𝑛 to a private value 𝛼 , and it goes

as follows: two partie are each given a key which includes a distinct

initial seed 𝑠 (0) and 𝑛 correction words (𝐶𝑊 (1) , · · · ,𝐶𝑊 (𝑛) ). Each
party starts from the root, at each step 𝑖 goes down one node in the

tree and generate 𝑖 +1-th labels depending on the bit 𝑥𝑖 using a com-

mon correction word 𝐶𝑊 (𝑖 ) . At the end of the computation, each

evaluator outputs the resulting bit. Note that the tuple (𝑠𝑏 , 𝑣𝑏 , 𝑡𝑏 )
associated with node 𝑢𝑖 is a function of the seed associated with

the parent of 𝑢𝑖 and the correction words. Therefore, if 𝑠0 = 𝑠1 then

for any descendent of 𝑢𝑖 , 𝑘0 and 𝑘1 generate identical tuples. The

correction words are chosen such that when a path to 𝑥 departs
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Figure 3: A construction example of Gen<𝑛 when 𝑛 = 2

from the path to 𝛼 , the two seeds 𝑠0 and 𝑠1 on the first node off the

path are identical, and the sum of 𝑣0 ⊕ 𝑣1 along the whole path to 𝑢𝑖
is exactly 𝛽 if the departure is to the left of the path to 𝛼 , i.e. 𝑥 < 𝛼 ,

and is 0 if the departure is to the right of the path to 𝛼 . Finally, along

the path to 𝛼 any seed 𝑠𝑏 is computationally indistinguishable from

a random string given the key 𝑘
1−𝑏 , which ensures the security of

the construction.

Distributed Comparison Function. (Gen<𝑛 , Eval<𝑛 ) are pre-

sented by Algorithm 4, where 𝐺 : {0, 1}𝜆 → {0, 1}2(𝜆+2) be a PRG,
and | | is a concatenation operator. In Algorithm 4, the number of

PRG invocations in Gen<𝑛 is 2𝑛 and the number of PRG invocations

in Eval<𝑛 is 𝑛.

Early Termination Optimization. According to the descrip-
tion of the early termination technique in Boyle’s distributed point

function scheme [4], if the length of elements in the output group

of a point function is short than the length of random string gen-

erated for each node, then several outputs can be packed into a

single correction word. We can further improve the complexity

of (Gen<𝑛 , Eval<𝑛 ) by using the “early termination” optimization,

which works as follows: for any node𝑉 of depth 𝜐 in the tree, there

are 2
𝑛−𝜐

leaf nodes in its sub-tree, or 2
𝑛−𝜐

input elements with

a shared prefix that ends at 𝑉 . If the size of 𝐶𝑊 (𝜐+1) is at least
2
𝑛−𝜐

times the output length then the subsequent correction words,

especially 𝑣𝐿
𝐶𝑊

, can be computed and packed into a single𝐶𝑊 (𝜐+1)

instead of involving all subsequent correction words. In this case,

𝐶𝑊 (𝜐+1) will be a sequence of 𝑣𝐿,𝛼
𝐶𝑊

= 𝑣
𝐿,𝜐+1
𝐶𝑊

⊕ · · · ⊕ 𝑣
𝐿,𝑛
𝐶𝑊

where

𝛼 ∈ Z2𝑛−𝜐 and 𝑣
𝐿,𝑖
𝐶𝑊

is the last 𝑛 − 𝜐 values in all 𝑣𝐿
𝐶𝑊

s (i.e., 𝑣
𝐿,𝑖
𝐶𝑊

for 𝑖 = 𝜐 + 1, · · · , 𝑛) where 𝑣𝐿
𝐶𝑊

is defined in the line 11 in Algo-

rithm 4. The sequence will output 𝛽 in the location specified by

𝛼 [𝜐+1,𝑛] = 𝛼𝜐+1 | | · · · | |𝛼𝑛 , and 0 in every other location.

In this paper, we let𝜐 = ⌈𝑛−log 𝜆⌉ to satisfy the above conditions.
Therefore, there are only 𝜐 correction words of size 𝜆 + 3, plus a
𝐶𝑊 (𝜐+1) of size 2𝑛−𝜐 = 𝜆, thus the total DCF key sizes are (⌈𝑛 −
log 𝜆⌉)(𝜆 + 3) + 2𝜆 bits.
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Algorithm 4 DCF: (Gen<𝑛 , Eval<𝑛 )

•Gen<𝑛 (1𝜆, 𝛼, 𝛽)
1: Let 𝛼1 | | · · · | |𝛼𝑛 ∈ {0, 1}𝑛 be the bit decomposition of 𝛼 .

2: Sample randoms 𝑠
(0)
0
∈𝑅 {0, 1}𝜆 and 𝑠

(0)
1
∈𝑅 {0, 1}𝜆 , 𝑣 (0)

0
=

0, 𝑣
(0)
1

= 0, and 𝑡
(0)
0

= 0, 𝑡
(0)
1

= 1.

3: for 𝑖 = 1 to 𝑛 do
4: 𝑠𝐿

0
| |𝑣𝐿

0
| |𝑡𝐿

0
| |𝑠𝑅

0
| |𝑣𝑅

0
| |𝑡𝑅

0
← 𝐺 (𝑠 (𝑖−1)

0
), and 𝑠𝐿

1
| |𝑣𝐿

1
| |𝑡𝐿

1
| |𝑠𝑅

1
| |

𝑣𝑅
1
| |𝑡𝑅

1
← 𝐺 (𝑠 (𝑖−1)

1
).

5: if 𝛼𝑖 = 0 then
6: Keep← 𝐿, Lose← 𝑅.

7: else
8: Keep← 𝑅, Lose← 𝐿.

9: end if
10: 𝑠𝐶𝑊 ← 𝑠Lose

0
⊕ 𝑠Lose

1
.

11: 𝑣𝐿
𝐶𝑊
← 𝑣𝐿

0
⊕ 𝑣𝐿

1
⊕ (𝛼𝑖 · 𝛽).

12: 𝑡𝐿
𝐶𝑊
← 𝑡𝐿

0
⊕ 𝑡𝐿

1
⊕ 𝛼𝑖 ⊕ 1, and 𝑡𝑅

𝐶𝑊
← 𝑡𝑅

0
⊕ 𝑡𝑅

1
⊕ 𝛼𝑖 .

13: 𝐶𝑊 (𝑖 ) = 𝑠𝐶𝑊 | |𝑣𝐿𝐶𝑊 | |𝑡
𝐿
𝐶𝑊
| |𝑡𝑅
𝐶𝑊

.

14: 𝑠
(𝑖 )
0

= 𝑠
Keep
0
⊕ 𝑡 (𝑖−1)

0
· 𝑠𝐶𝑊 , 𝑠

(𝑖 )
1

= 𝑠
Keep
1
⊕ 𝑡 (𝑖−1)

1
· 𝑠𝐶𝑊 .

15: 𝑡
(𝑖 )
0

= 𝑡
Keep
0
⊕ 𝑡 (𝑖−1)

0
· 𝑡Keep
𝐶𝑊

, 𝑡
(𝑖 )
1

= 𝑡
Keep
1
⊕ 𝑡 (𝑖−1)

1
· 𝑡Keep
𝐶𝑊

.

16: end for
17: Let 𝑘𝑏 = 𝑠

(0)
𝑏
| |𝐶𝑊 (1) | | · · · | |𝐶𝑊 (𝑛) .

18: return (𝑘0, 𝑘1).
• Eval<𝑛 (𝑏, 𝑘𝑏 , 𝑥)
1: Parse 𝑘𝑏 = 𝑠 (0) | |𝐶𝑊 (1) | | · · · | |𝐶𝑊 (𝑛) , and let 𝑥 = 𝑥1 | | · · · | |𝑥𝑛 ,

𝑣 = 0, and 𝑡 (0) = 𝑏.

2: for 𝑖 = 1 to 𝑛 do
3: Parse 𝐶𝑊 (𝑖 ) = 𝑠𝐶𝑊 | |𝑣𝐿𝐶𝑊 | |𝑡

𝐿
𝐶𝑊
| |𝑡𝑅
𝐶𝑊

.

4: Compute 𝐺 (𝑠 (𝑖−1) ) = 𝑠𝐿 | |𝑣𝐿 | |𝑡𝐿 | |𝑠𝑅 | |𝑣𝑅 | |𝑡𝑅 .
5: 𝜏 (𝑖 ) ← [𝑠𝐿 | |𝑣𝐿 | |𝑡𝐿 | |𝑠𝑅 | |𝑣𝑅 | |𝑡𝑅] ⊕ (𝑡 (𝑖−1) · [𝑠𝐶𝑊 | |𝑣𝐿𝐶𝑊 | |

𝑡𝐿
𝐶𝑊
| |𝑠𝐶𝑊 | |𝑣𝐿𝐶𝑊 | |𝑡

𝑅
𝐶𝑊
]).

6: Parse 𝜏 (𝑖 ) = 𝑠𝐿 | |𝑣𝐿 | |𝑡𝐿 | |𝑠𝑅 | |𝑣𝑅 | |𝑡𝑅 .
7: if 𝑥𝑖 = 0 then
8: 𝑣 ← 𝑣 ⊕ 𝑣𝐿 .
9: 𝑠 (𝑖 ) ← 𝑠𝐿, 𝑡 (𝑖 ) ← 𝑡𝐿 .

10: else
11: 𝑠 (𝑖 ) ← 𝑠𝑅, 𝑡 (𝑖 ) ← 𝑡𝑅 .

12: end if
13: end for
14: return 𝑣

Security Analysis. Theorem 3.3 captures the correctness and

security of the DCF construction, and its full proof can be found in

Appendix B.3.

Theorem 3.3. (Correctness and Security) The scheme (Gen<𝑛 ,
Eval<𝑛 ) from Algorithm 4 is a DCF for the family of comparison
functions 𝑓 <

𝛼,𝛽
(𝑥) : Z2𝑛 → Z2 with key sizes (⌈𝑛− log 𝜆⌉)(𝜆+3) +2𝜆

bits, where 𝜆 is the security parameter.

3.3.3 Distributed DCF Key Generation. A trusted dealer is

required to execute the procedureGenComp
𝑛 forComp in Algorithm

3, and since Comp is constructed based on the proposed DCF, the

DCF key needs to be computed indeed. To instantiate the trusted

dealer, the work [2] gives a secure two-party generation scheme

of DCF key by extending the Doerner-Shelat [10] protocol, but the

scheme is restricted to a small domain size (e.g., Z
2
16 or smaller)

since computation costs grow exponentially with the domain size.

To support a larger domain size which is adopted in many practical

scenarios, we propose a distributed DCF key generation scheme

base on MPC-friendly pseudorandom generators (PRG) [9] where

two parties jointly emulate the role of the trusted dealer via using

a two-party computation protocol.

Distributed DCF Key Generation Scheme based on MPC-
friendly PRG. To realize the functionality FGenDCF , we present

ΠGenDCF based on a secure two-party PRG to generate DCF key, and

this protocol is in Algorithm 5, where FSecPRG can be realized by the

MPC-friendly PRG[9] and F2PC can be instantiate via using a secure

two-party protocol based on secret sharing [7, 8, 22]. Obliviously,

Algorithm 5 is naturally extended to the case of using the early

termination optimization.

Algorithm 5 ΠGenDCF (1
𝜆, 𝑏, {⟨𝛼𝑖 ⟩𝐵𝑏 }𝑖=1,· · · ,𝑛, ⟨𝛽⟩

𝐵
𝑏
)

Input: Party index 𝑏, and 𝑃𝑏 holds {⟨𝛼𝑖 ⟩𝐵𝑏 }𝑖=1,· · · ,𝑛 and ⟨𝛽⟩𝐵
𝑏
.

Output: 𝑃𝑏 gets DCF key 𝑘𝑏 .

1: 𝑃𝑏 samples randoms 𝑠
(0)
𝑏
∈𝑅 {0, 1}𝜆, 𝑡 (0)𝑏

= 𝑏.

2: 𝑃𝑏 invokes ΠShare (𝑠
(0)
𝑏
),ΠShare (𝑡

(0)
𝑏
) to generate

secret shares of 𝑠
(0)
𝑏

and 𝑡
(0)
𝑏

, then 𝑃𝑏 obtains

⟨𝑠 (0)
0
⟩𝐵
𝑏
, ⟨𝑡 (0)

0
⟩𝐵
𝑏
, ⟨𝑠 (0)

1
⟩𝐵
𝑏
, ⟨𝑡 (0)

1
⟩𝐵
𝑏
.

3: for 𝑖 = 1 to 𝑛 do
4: 𝑃0 and 𝑃1 engage in a secure two-party PRG to compute (for

𝑗 ∈ {0, 1}):

(⟨𝐺 (𝑠 (𝑖−1)
𝑗
)⟩𝐵
0
, ⟨𝐺 (𝑠 (𝑖−1)

𝑗
)⟩𝐵
1
) ← FSecPRG (⟨𝑠 (𝑖−1)𝑗

⟩𝐵
0
, ⟨𝑠 (𝑖−1)

𝑗
⟩𝐵
1
)

where ⟨𝐺 (𝑠 (𝑖−1)
𝑗
)⟩𝐵
0

⊕ ⟨𝐺 (𝑠 (𝑖−1)
𝑗
)⟩𝐵
1

=

𝑠
𝐿,𝑖−1
𝑗
| |𝑣𝐿,𝑖−1

𝑗
| |𝑡𝐿,𝑖−1

𝑗
| |𝑠𝐿,𝑖−1

𝑗
| |𝑣𝐿,𝑖−1

𝑗
| |𝑡𝐿,𝑖−1

𝑗
.

5: 𝑃0 and 𝑃1 make access to F2PC to compute:

(𝑠𝐶𝑊 , 𝑣𝐿𝐶𝑊 ) ←
{
(𝑠𝑅,𝑖−1
0

⊕ 𝑠𝑅,𝑖−1
1

, 𝑣
𝐿,𝑖−1
0

⊕ 𝑣𝐿,𝑖−1
1
) 𝛼𝑖 = 0

(𝑠𝐿,𝑖−1
0

⊕ 𝑠𝐿,𝑖−1
1

, 𝑣
𝐿,𝑖−1
0

⊕ 𝑣𝐿,𝑖−1
1

⊕ 𝛽) 𝛼𝑖 = 1

(𝑡𝐿𝐶𝑊 , 𝑡𝑅𝐶𝑊 ) ←
{
(𝑡𝐿,𝑖−1
0

⊕ 𝑡𝐿,𝑖−1
1

⊕ 1, 𝑡
𝑅,𝑖−1
0

⊕ 𝑡𝑅,𝑖−1
1
) 𝛼𝑖 = 0

(𝑡𝐿,𝑖−1
0

⊕ 𝑡𝐿,𝑖−1
1

, 𝑡
𝑅,𝑖−1
0

⊕ 𝑡𝑅,𝑖−1
1

⊕ 1) 𝛼𝑖 = 1

𝑃0 and 𝑃1 obtain 𝑠𝐶𝑊 ; 𝑣𝐿
𝐶𝑊

; 𝑡𝐿
𝐶𝑊

, 𝑡𝑅
𝐶𝑊

.

6: 𝑃𝑏 computes 𝐶𝑊 (𝑖 ) = 𝑠𝐶𝑊 | |𝑣𝐿𝐶𝑊 | |𝑡
𝐿
𝐶𝑊
| |𝑡𝑅
𝐶𝑊

locally.

7: 𝑃0 and 𝑃1 make access to F2PC to compute:

𝑠
(𝑖 )
𝑏
←

{
𝑠
𝐿,𝑖−1
𝑏

⊕ 𝑡 (𝑖−1)
𝑏

· 𝑠𝐶𝑊 𝛼𝑖 = 0

𝑠
𝑅,𝑖−1
𝑏

⊕ 𝑡 (𝑖−1)
𝑏

· 𝑠𝐶𝑊 𝛼𝑖 = 1

𝑡
(𝑖 )
𝑏
←

{
𝑡
𝐿,𝑖−1
𝑏

⊕ 𝑡 (𝑖−1)
𝑏

· 𝑡𝐿
𝐶𝑊

𝛼𝑖 = 0

𝑡
𝑅,𝑖−1
𝑏

⊕ 𝑡 (𝑖−1)
𝑏

· 𝑡𝑅
𝐶𝑊

𝛼𝑖 = 1

𝑃0 and 𝑃1 obtain (⟨𝑠 (𝑖 )𝑏
⟩𝐵
0
, ⟨𝑡 (𝑖 )

𝑏
⟩𝐵
0
), (⟨𝑠 (𝑖 )

𝑏
⟩𝐵
1
, ⟨𝑡 (𝑖 )

𝑏
⟩𝐵
1
) respec-

tively, where 𝑏 = 0, 1.

8: end for
9: 𝑃𝑏 lets 𝑘𝑏 ← 𝑠

(0)
𝑏
| |𝐶𝑊 (1) | |...| |𝐶𝑊 (𝑛) .
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The scheme in [2] (Fig. 9 in [2]) needs𝑂 (2𝑛) invocations of PRG
and is restricted to moderate domain sizes. By comparison, ΠGenDCF
only requires𝑂 (𝑛) invocations of PRG and can be used with larger

domain sizes. Although the Appendix A.2 in [2] also mentions a

distributed DCF key generation scheme via a generic 2PC with

𝑂 (𝑛) evaluations of PRG, it does not give a specific construction.
More importantly, the scheme mentioned in [2] is only applicable

to the DCF construction proposed in [2] and cannot be used to

generate the key of our proposed DCF construction, because our

proposed DCF construction is essentially different from the DCF

construction of [2].

4 THEORETICAL ANALYSIS AND
EXPERIMENT

In the section, we present the theoretical analysis of the communica-

tion and computation complexity in § 4.1, and show the experiment

results in § 4.2.

4.1 Theoretical Analysis
Online Round and Communication Complexity. The online

rounds and communication costs of each neural network operation

in ABY2.0 [22], AriaNN [23] and FssNN are presented in Table

2. The function MatMul𝑚1,𝑚2,𝑚3
denotes a matrix multiplication

of dimension 𝑚1 × 𝑚2 with 𝑚2 × 𝑚3, and HadamProd𝑚1,𝑚2
de-

notes a Hadamard product of dimension𝑚1 ×𝑚2. ReLU𝑚1,𝑚2
and

DReLU𝑚1,𝑚2
denotes ReLU and its derivative over a𝑚1×𝑚2 matrix,

and MaxPool𝑚,𝑘,𝑠 denotes maxpool with input the𝑚 ×𝑚 where 𝑘

stands for the kernel size and 𝑠 stands for the stride. All communi-

cation is measured for 𝑛-bit inputs and missing entries mean that

data was not available.

For round complexity, all neural network operators are com-

puted with constant online communication rounds in AriaNN and

FssNN, while linear functions (i.e., MatMul and HadamProd) com-

putation requires 1 round and non-linear (i.e., DReLU, ReLU and

MaxPool) computation requires 𝑂 (log𝑛) rounds in ABY2.0. For

online communication costs, FssNN achieves lower online commu-

nication costs in HadamProd and ReLU than AriaNN due to our

communication efficient protocol ΠBitXA.

Computation Complexity. In the online phase, ABY2.0[22],

AriaNN[23] and FssNN all have an order of magnitude of online

computation complexity since they all adopt the offline-online par-

adigm. In the offline phase, FssNN uses the same multiplication

triples generation scheme as ABY2.0[22] and AriaNN[23]. However,

FssNN needs to generate correlated randomness (i.e., DCF key) to

compute DReLU, ReLU and MaxPool, while ABY2.0[22] requires
smaller correlated randomness and it can be generated more effi-

ciently using 2PC-based offline phase (but leads to 4 − 5× more

rounds and 3 − 6× more communication of online communication

[2]) and AriaNN[23] relies on a trusted dealer to correlated ran-

domness (but leads to stronger assumptions). Therefore, FssNN

requires more computation in the offline phase, but has less online

communication compared with ABY2.0[22] and does not rely on

the trusted leader compared with AriaNN[23].

DCFKey Sizes. The communication criteria of DCF construction

is the sizes of key 𝑘𝑏 (i.e., the output of Gen<𝑛 ), so the DCF key

sizes in BCG+21[2], AriaNN[23] and FssNN are shown in Table 3.

It is clear that the DCF key sizes of FssNN is the smallest, which

improves the offline communication efficiency of protocols ΠDReLU,

ΠReLU and ΠMaxPool.

Table 3: The DCF key sizes in BCG+21[2], AriaNN[23] and
FssNN where 𝑛 = 32, 𝜆 = 127 is typical parameters.

Para. (bits) BCG+21 AriaNN FssNN

(𝑛, 𝜆) 𝑛(𝜆 + 3)
+𝜆 + 1

𝑛(𝜆 + 2𝑛 + 4)
+𝜆 + 2𝑛

(⌈𝑛 − log 𝜆⌉)(𝜆 + 3)
+2𝜆

(32, 127) 4424 6431 3634

4.2 Experiment
In this section, we present the implement of FssNN and the detailed

experiment results and analysis. We implement FssNN in Python

and run the experiments on Aliyun ESC using ecs.hfr7.xlarge ma-

chines with 32 cores and 256 GB of CPU RAM in a LAN setting. In

order to simplify comparison with existing works, we follow a setup

very close to AriaNN [23] and use same neural network models and

datasets. AriaNN [23] is the state-of-the-art seucre neural network

training and inference framework based on function secret sharing,

and outperform other works such as FALCON[25] and ABY2.0[22].

Evaluations for Secure Layer Functions. First, we present the
offline and online communication costs of linear layer functions

(i.e., MatMul and HadamProd) and non-linear layer functions (i.e.,

DReLU, ReLU andMaxPool) in Table 4.

Table 4: Offline and online communication of neural net-
work operators in AriaNN[23] and FssNN where (784, 128, 10),
(128, 128) and (24, 2, 2) are typical parameters.

Operators

(Input Sizes)

Offline Comm. (MB) Online Comm. (MB)

AriaNN FssNN AriaNN FssNN

MatMul𝑚1,𝑚2,𝑚3

(784, 128, 10) 0.842 0.842 0.775 0.775

HadamProd𝑚1,𝑚2

(128, 128) 0.381

0.272

(↓ 28.6%) 0.251

0.142

(↓ 43.4%)
DReLU𝑚1,𝑚2

(128, 128) 14.377

10.314

(↓ 28.3%) 0.126 0.126

ReLU𝑚1,𝑚2

(128, 128) 14.758

10.586

(↓ 28.3%) 0.377

0.268

(↓ 28.9%)
MaxPool𝑚,𝑘,𝑠

(24, 2, 2) 0.399

0.292

(↓ 26.8%) 0.020 0.020

For linear layer functions, compared with AriaNN, the offline

and online communication costs of HadamProd decreases by 28.6%

and 43.4% respectively. For non-linear layer functions, we improve

the offline communication costs by 26.8% − 28.3% over AriaNN due

to the proposed key-reduced DCF in FssNN. The online communi-

cation improvement of ReLU is attributed to our communication

efficient ΠBitXA.
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Table 2: Online round and communication complexity of ABY2.0[22], AriaNN[23] and FssNN

Operators

Rounds Communication

ABY2.0 AriaNN FssNN ABY2.0 AriaNN FssNN

MatMul𝑚
1
,𝑚

2
,𝑚

3
1 1 1 𝑚1𝑚3𝑛 (𝑚1𝑚2 +𝑚2𝑚3 )𝑛 (𝑚1𝑚2 +𝑚2𝑚3 )𝑛

HadamProd𝑚
1
,𝑚

2
1 1 1 2𝑚1𝑚2𝑛 2𝑚1𝑚2𝑛 𝑚1𝑚2 (𝑛 + 1)

DReLU𝑚
1
,𝑚

2
1 + log𝑛 1 1 ∼ 3𝑚1𝑚2𝑛 𝑚1𝑚2𝑛 𝑚1𝑚2𝑛

ReLU𝑚
1
,𝑚

2
2 + log𝑛 2 2 ∼ 5𝑚1𝑚2𝑛 3𝑚1𝑚2𝑛 𝑚1𝑚2 (2𝑛 + 1)

MaxPool𝑚,𝑘,𝑠 - 3 3 - (𝑚−𝑘
𝑠
+ 1)2 (𝑘4 + 2)𝑛 (𝑚−𝑘

𝑠
+ 1)2 (𝑘4 + 2)𝑛

Evaluations for Secure Neural Network. We benchmark se-

cure training and inference on MNIST (60,000 training samples and

10,000 test samples) and evaluate following 3 neural networks : (1) a

3-layer fully-connected network (FCNN), (2) a 4-layer convolutional

neural network (CNN) and (3) a 4-layer LeNet network (LeNet). It

should be noted that FssNN, like AriaNN[23], can support to more

machine learning tasks and datasets, such as models AlexNet and

VGG16 in datasets CIFAR10 and Tiny Imagenet.

Time, communication and accuracy of secure training and infer-

ence in the LAN setting are presented in Table 5, where accuracy

of plaintext training and inference are also reported for compar-

ison. The time and communication for secure training are given

in hours and GB per epoch, and secure inference is evaluated over

pre-trained neural network models and the total time and commu-

nication are reported.

Table 5: Time, communication and accuracy of secure train-
ing and inference in FssNN (batchsize = 128). The time is
reported in hours and the “comm.” is reported in GB.

FssNN Model Epochs Time Comm.

Private

Accuracy

Plaintext

Accuracy

Training

FCNN 15 0.23 27.35 98.00% 98.04%

CNN 10 2.24 439.78 98.60% 98.73%

LeNet 10 3.46 648.83 98.93% 99.03%

Inference

FCNN - 0.01 2.14 98.15% 98.17%

CNN - 0.30 72.84 98.95% 99.02%

LeNet - 0.56 107.63 99.22% 99.27%

It is observed that accuracy of secure training and inference are

a little lower than their plaintext counterparts, but the gap between

them isn’t significant.

Compare with AriaNN[23]. The total communication and time

for secure training and inference are presented in Table 6. Com-

pared with AriaNN[23], the communication for training declined

by 24.3% − 25.4% and the communication for inference decreased

by 22.9% − 26.4%. This is attributed to our online-efficient protocol

ΠBitXA, and key-reduced DCF scheme which improves the commu-

nication efficiency of protocols ΠDReLU, ΠReLU and ΠMaxPool.

Table 6: The communication and time for secure training
and inference in AiraNN[23] and FssNN (batchsize = 128)

Model

Training Inference

Comm. (GB) Time (h) Comm. (GB) Time (h)

AriaNN

FCNN 36.11 0.28 2.84 0.02

CNN 589.91 2.24 94.49 0.37

LeNet 869.75 3.50 146.24 0.56

FCNN 27.35 (↓ 24.3%) 0.23 2.14 (↓ 24.8%) 0.02

FssNN CNN 439.78 (↓ 25.4%) 2.24 72.84 (↓ 22.9%) 0.30

LeNet 648.83 (↓ 25.4%) 3.46 107.63 (↓ 26.4%) 0.56

5 CONCLUSION
Privacy-preserving neural network based on secure multiparty com-

putation has emerged as a flourishing research area in the past few

years, but its practicality is greatly limited due to the low efficiency

caused by massive communication costs and a deep dependence

on a trusted dealer. In this paper, we proposed a communication-

efficient secure neural network framework, FssNN, to enable prac-

tical training and inference. By designing a key-reduced distributed

comparison function with compact additive construction and lever-

aging additive secret sharing and function secret sharing, we reduce

offline and online communication costs, and then replace the trusted

dealer in the offline phase by designing a distributed key genera-

tion scheme. Experiment shows the practical performance of our

proposed FssNN, as well as the substantial performance advantage

over existing works. Compared with the state-of-the-art solution

AriaNN, the communication costs of secure training and inference

are decreased by approximately 25.4% and 26.4% respectively. More

attempts might be made to construct actively secure protocols to

defend against a malicious adversary.
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A DUAL DISTRIBUTED COMPARISON
FUNCTION

Dual distributed comparison function (DDCF) is a variant of DCF,

is defined as:

𝑓 <
𝛼,𝛽0,𝛽1

(𝑥) =
{
𝛽0 𝑥 < 𝛼

𝛽1 else

(1)

where 𝑥, 𝛼 ∈ Z2𝑛 , 𝛽0, 𝛽1 ∈ Z2, and 𝛽0 ≠ 𝛽1.

We present a DDCF scheme based on the DCF scheme, its de-

tailed construction is shown in Algorithm 6. Compared with [2],

our DDCF construction is slightly modified: the output group is

constrained to be Z2, and more importantly, our DDCF construc-

tion relies on the proposed key-reduced DCF (i.e., (Gen<𝑛 , Eval<𝑛 ),
§ 3.3.2). Our DDCF construction requires 1 call of DCF, and the

key sizes are (⌈𝑛 − log 𝜆⌉)(𝜆 + 3) + 2𝜆 bits where 𝜆 is the security

parameter.

Algorithm 6 DDCF: (GenDDCF𝑛 , EvalDDCF𝑛 )

•GenDDCF𝑛 (1𝜆, 𝛼, 𝛽0, 𝛽1)
1: Compute (𝑘 (𝑛)

0
, 𝑘
(𝑛)
1
) ← Gen<𝑛 (1𝜆, 𝛼, 𝛽0 ⊕ 𝛽1).

2: Sample 𝑟0, 𝑟1 ∈𝑅 {0, 1}, s.t. 𝑟0 ⊕ 𝑟1 = 𝛽1.

3: Let 𝑘𝑏 = 𝑘
(𝑛)
𝑏
| |𝑟𝑏 for 𝑏 ∈ {0, 1}.

4: return (𝑘0, 𝑘1).
• EvalDDCF𝑛 (𝑏, 𝑘𝑏 , 𝑥)
1: Parse 𝑘𝑏 = 𝑘

(𝑛)
𝑏
| |𝑟𝑏 , and compute 𝑦

(𝑛−1)
𝑏

← Eval<𝑛 (𝑏, 𝑘
(𝑛)
𝑏

, 𝑥).
2: Let 𝑣𝑏 = 𝑦

(𝑛−1)
𝑏

⊕ 𝑟𝑏 .
3: return 𝑣𝑏 .

B PROOF
B.1 Proof of Theorem 3.1

Proof. The protocol ΠBitXA is divided into two phase: the offline

phase and the online phase. In the offline phase, parties 𝑃0 and 𝑃1
only interact when invoking the functionalities FMul and FGenMT ,

and all other steps can be computed locally. When in the FMul and

FGenMT -hybrid model, 𝑃0 and 𝑃1 do not actually interact, but in-

stead call functions in a black-box manner. Therefore, the protocol

is secure against semi-honest adversaries in the offline phase. In the

online phase, parties 𝑃0 and 𝑃1 have one round of actual interaction

in step 1 of the online phase of Algorithm 1, Therefore, for a cor-

rupted party 𝑃𝑏 , we need to show a probabilistic polynomial-time

(PPT) simulator Sim𝑏 who can generate a simulated view that is

indistinguishable from 𝑃𝑏 ’s view in real world. Given the corrupted

party 𝑃𝑏 ’s inputs ⟨𝑥⟩𝐴𝑏 , ⟨𝑦⟩
𝐵
𝑏
and output ⟨𝑧⟩𝐴

𝑏
, the simulator Sim𝑏

works as follows:

(1) Sim𝑏 invokes FMul and FGenMT to get ⟨𝛿 ′𝑥 ⟩𝐴, ⟨𝛿 ′𝑦⟩𝐴, ⟨𝛿 ′𝑧⟩𝐴

and ⟨ ˆ𝛿 ′𝑦⟩
𝐴
.

(2) Sim𝑏 holds ⟨𝑥⟩𝐴𝑏 , ⟨𝑦⟩
𝐵
𝑏
and samples ⟨𝑥 ′⟩𝐴

1−𝑏 ∈ Z2𝑛 , ⟨𝑦
′⟩𝐵
1−𝑏 ∈

Z2.
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(3) Sim𝑏 computes Δ′𝑥 = (⟨𝑥⟩𝐴
𝑏
+ ⟨𝛿 ′𝑥 ⟩𝐴𝑏 ) + (⟨𝑥

′⟩𝐴
1−𝑏 + ⟨𝛿

′
𝑥 ⟩𝐴1−𝑏 )

and Δ′𝑦 = (⟨𝑦⟩𝐵
𝑏
⊕ ⟨𝛿 ′𝑦⟩𝐵𝑏 ) ⊕ (⟨𝑦

′⟩𝐵
1−𝑏 ⊕ ⟨𝛿

′
𝑦⟩𝐵

1−𝑏 ).
(4) Sim𝑏 lets ⟨𝑧′⟩𝐴

𝑏
= ⟨𝑧⟩𝐴

𝑏
(note that Sim𝑏 holds ⟨𝑧⟩𝐴

𝑏
) and

computes ⟨𝑧′⟩𝐴
1−𝑏 according to step 3 of the online phase of

Algorithm 1.

(5) Finally, Sim𝑏 outputs the ideal-world view (⟨𝑥⟩𝐴𝑏 , ⟨𝑦⟩
𝐵
𝑏
; ⟨𝑥 ′⟩𝐴

1−𝑏+
⟨𝛿 ′𝑥 ⟩𝐴1−𝑏 , ⟨𝑦

′⟩𝐵
1−𝑏 ⊕ ⟨ ˆ𝛿

′
𝑦⟩

𝐵

1−𝑏 ).

Since ⟨𝛿 ′𝑥 ⟩𝐴1−𝑏 , ⟨ ˆ𝛿
′
𝑦⟩

𝐴

1−𝑏 , ⟨𝑧
′⟩𝐴
1−𝑏 is indistinguishable from ⟨𝛿𝑥 ⟩𝐴

1−𝑏
, ⟨ ˆ𝛿𝑦⟩

𝐴

1−𝑏 , ⟨𝑧⟩
𝐴
1−𝑏 , the ideal world view are computationally indis-

tinguishable from the real world view. Therefore, the protocol is

secure against semi-honest adversaries. □

B.2 Proof of Theorem 3.2
Proof. For a corrupted party 𝑃𝑏 , we show a PPT simulator Sim𝑏

who can generate a simulated view that is indistinguishable from

𝑃𝑏 ’s view in real world. Given the corrupted party 𝑃𝑏 ’s inputs ⟨𝑥⟩𝐴𝑏
and output ⟨𝑦⟩𝐵

𝑏
, the simulator Sim𝑏 works as follows:

(1) Sim𝑏 invokesGenComp
𝑛 to generate DCF keys 𝑘′

0
, 𝑘′

1
, and gets

⟨r′in
1
⟩𝐴
𝑏
,⟨r′out⟩𝐵

𝑏
and r′in

2
in the offline phase.

(2) Sim𝑏 holds ⟨𝑥⟩𝐴
𝑏

and samples ⟨𝑥⟩𝐴
1−𝑏 ∈ Z2𝑛 , ⟨r

′in
1
⟩𝐴
1−𝑏 ∈

Z2𝑛 , ⟨r′out⟩𝐵
1−𝑏 ∈ Z2

(3) Sim𝑏 computes 𝑥 + r′in
1

= (⟨𝑥⟩𝐴
𝑏
+ ⟨r′in

1
⟩𝐴
𝑏
) + (⟨𝑥⟩𝐴

1−𝑏 +
⟨r′in

1
⟩𝐴
1−𝑏 ), then computes ⟨𝑦⟩𝐵

1−𝑏 according to step 3 of the

online phase of Algorithm 3.

(4) Finally, Sim𝑏 outputs the ideal-world view (⟨𝑥⟩𝐴𝑏 , ⟨𝑦⟩
𝐵
𝑏
; ⟨𝑥⟩𝐴

1−𝑏+
⟨r′in

1
⟩𝐴
1−𝑏 )

The same analysis as in Section B.1 shows that the simulation is

computationally indistinguishable from the real-world execution.

□

B.3 Proof of Theorem 3.3
Proof. we follow the correctness and security definition in [2],

and provide the correctness and security of (Gen<𝑛 , Eval<𝑛 ), which
is as follows:

Correctness. We demonstrate that the 𝑠 (𝑖 ) and 𝑡 (𝑖 ) generated
by Eval match those set by Gen. This can be proven using math-

ematical induction: Let 𝑥 = 𝑥1𝑥2 · · · 𝑥𝑛, 𝛼 = 𝛼1𝛼2 · · ·𝛼𝑛 , and 𝑣0 =

Eval<𝑛 (0, 𝑘0, 𝑥), 𝑣1 = Eval<𝑛 (1, 𝑘1, 𝑥).
1. When 𝑛 = 1, As per line 1 of the algorithm Eval<𝑛 (𝑏, 𝑘𝑏 , 𝑥),

the {𝑠 (0) , 𝑡 (0) } generated by Eval is consistentwith the {𝑠 (0) , 𝑡 (0) }
set by Gen. Since 𝑘𝑏 = 𝑠 (0) | |𝐶𝑊 (1) , it follows that 𝐶𝑊 (1) =
𝑠𝐶𝑊 | |𝑣𝐿𝐶𝑊 | |𝑡

𝐿
𝐶𝑊
| |𝑣𝑅

𝐶𝑊
| |𝑡𝑅
𝐶𝑊

and𝐺 (𝑠 (0) ) = 𝑠𝐿 | |𝑣𝐿 | |𝑡𝐿 | |𝑠𝑅 | |𝑣𝑅 | |𝑡𝑅 .
We know that 𝑣𝑏 = (1 − 𝑥1) · 𝑣𝐿 ⊕ 𝑥1 · 𝑣𝑅 , where 𝑣𝐿 =

𝑣𝐿⊕(𝑡 (0) ·𝑣𝐿
𝐶𝑊
) = 𝑣𝐿⊕(𝑏 ·𝑣𝐿

𝐶𝑊
) and 𝑣𝑅 = 𝑣𝑅⊕(𝑡 (0) ·𝑣𝑅

𝐶𝑊
) =

𝑣𝑅 ⊕ (𝑏 · 𝑣𝑅
𝐶𝑊
) according to line 4 and line 5 of Eval. And

according to the definition of 𝐶𝑊 (1) and 𝐺 (𝑠 (0) ) in Gen,
𝑣𝐿
𝐶𝑊

= 𝑣𝐿
0
⊕ 𝑣𝐿

1
⊕ (𝛼𝑖 · 𝛽), 𝑣𝑅𝐶𝑊 = 𝑣𝑅

0
⊕ 𝑣𝑅

1
and 𝑣𝐿 = 𝑣𝐿

𝑏
, 𝑣𝑅 =

𝑣𝑅
𝑏
, and then 𝑣𝑏 = ((1 − 𝑥1) · (𝑏 ⊕ 𝑣𝐿

0
)) ⊕ (𝑥1 · 𝑣𝑅

0
), thus

𝑣0 ⊕ 𝑣1 = (1 − 𝑥1) · (𝛼1 · 𝛽) = 𝛽 · 1{𝑥1 < 𝛼1} = 𝛽 · 1{𝑥 < 𝛼}.

2. Assuming 𝑛 = 𝑖 , {𝑠 ( 𝑗 ) , 𝑡 ( 𝑗 ) } 𝑗=1,· · · ,𝑖−1 generated by Eval are
consistent with those set by Gen. When 𝑛 = 𝑖 + 1, according
to lines 2 to 8 of Eval, when 𝑥𝑖 = 0 then 𝑠 (𝑖 ) = 𝑠𝐿, 𝑡 (𝑖 ) = 𝑡𝐿 ;

when 𝑥𝑖 = 1 then 𝑠 (𝑖 ) = 𝑠𝑅, 𝑡 (𝑖 ) = 𝑡𝑅 . Since 𝑠𝐿 = 𝑠𝐿⊕(𝑡 (𝑖−1) ·
𝑠𝐶𝑊 ), 𝑠𝑅 = 𝑠𝑅 ⊕ (𝑡 (𝑖−1) · 𝑠𝐶𝑊 ), 𝑡𝐿 = 𝑡𝐿 ⊕ (𝑡 (𝑖−1) · 𝑡𝐿

𝐶𝑊
), 𝑡𝑅 =

𝑡𝑅 ⊕ (𝑡 (𝑖−1) · 𝑡𝑅
𝐶𝑊
) where 𝑠𝐶𝑊 , 𝑡𝐿

𝐶𝑊
, 𝑡𝑅
𝐶𝑊

is an element of

𝐶𝑊 (𝑖 ) and 𝑠𝐿, 𝑠𝑅, 𝑡𝐿, 𝑡𝑅 are an element of 𝐺 (𝑠 (𝑖−1) ), it fol-
lows that {𝑠 ( 𝑗 ) , 𝑡 ( 𝑗 ) } 𝑗=1,· · · ,𝑖 are consistent with those gen-

erated by Gen<𝑛 (1𝜆, 𝛼, 𝛽). Finally, according to lines 14 to 15

in Gen, we can conclude that {𝑠 ( 𝑗 ) , 𝑡 ( 𝑗 ) } 𝑗=1,· · · ,𝑖 generated
by Eval is consistent with those set by Gen.

Therefore, it has been established that {𝑠 ( 𝑗 ) , 𝑡 ( 𝑗 ) } 𝑗=1,· · · ,𝑛 gener-

ated by algorithm Eval are consistent with those set byGen, As a re-
sult, 𝑣0⊕𝑣1 = 𝛽 when𝑥 < 𝛼 , and 0 otherwise. Thus, Eval<𝑛 (0, 𝑘0, 𝑥)⊕
Eval<𝑛 (1, 𝑘1, 𝑥) = 𝑓 <

𝛼,𝛽
(𝑥), that is, Pr[Eval(0, 𝑘0, 𝑥) ⊕Eval(1, 𝑘1, 𝑥) =

𝑓 <
𝛼,𝛽
(𝑥)] = 1.

Security. We prove that each party’s key 𝑘𝑏 is pseudorandom.

This will be done via a sequence of hybrids, where in each step we

replace another correction word 𝐶𝑊 (𝑖 ) within the key from being

honestly generated to being random.

The high-level argument for security is as follows. Each party𝑏 ∈
{0, 1} starts with a random seed 𝑠

(0)
𝑏

that is completely unknown

to the other party. In each level of key generation (for 𝑖 = 1 to 𝑛),

the parties apply a PRG to their seed 𝑠
(𝑖−1)
𝑏

to generate six items:

namely, two seeds 𝑠𝐿
𝑏
, 𝑠𝑅
𝑏
, two resulting bits 𝑣𝐿

𝑏
, 𝑣𝑅
𝑏
and two control

bits 𝑡𝐿
𝑏
, 𝑡𝑅
𝑏
. This process will always be performed on a seed that

appears completely random and unknown from the view of the

other party; because of this, the security of the PRG guarantees

that the six items appear similarly random and unknown given the

view of the other party. The 𝑖-th level correction word 𝐶𝑊 (𝑖 ) will
“use up” the secret randomness of 5 of these 6 pieces: the two bits

𝑡𝐿
𝑏
, 𝑡𝑅
𝑏
, the resulting bits 𝑣𝐿

𝑏
, 𝑣𝑅
𝑏
and the seed 𝑠Lose

𝑏
for Lose ∈ {𝐿, 𝑅}

corresponding to the direction exiting the special evaluation path

𝛼 : i.e. Lose = 𝐿 if 𝛼𝑖 = 1 and Lose = 𝑅 if 𝛼𝑖 = 0. However, given

this 𝐶𝑊 (𝑖 ) , the remaining seed 𝑠
Keep
𝑏

for Keep ≠ Lose still appears
random to the other party. The argument then continues in similar

fashion to the next level, beginning with seeds 𝑠
Keep
𝑏

.

For each 𝑗 ∈ {1, · · · , 𝑛}, we will consider a distribution Hyb𝑗
defined roughly as follows:

(1) 𝑠
(0)
𝑏
← {0, 1}𝜆 chosen at random (honestly), and let 𝑡

(0)
𝑏

= 𝑏.

(2) 𝐶𝑊 (1) , · · · ,𝐶𝑊 ( 𝑗 ) ← {0, 1}𝜆+1 chosen at random.

(3) For 𝑖 ≤ 𝑗 , 𝑠
(𝑖 )
𝑏
| |𝑣 (𝑖 )

𝑏
| |𝑡 (𝑖 )
𝑏

computed honestly, as a function of

𝑠
(0)
𝑏
| |𝑣 (0)

𝑏
| |𝑡 (0)
𝑏

and 𝐶𝑊 (1) , · · · ,𝐶𝑊 ( 𝑗 ) .
(4) For 𝑗 , the other party’s seed 𝑠

( 𝑗 )
1−𝑏 ← {0, 1}

𝜆
and the resulting

bit 𝑣
( 𝑗 )
1−𝑏 are chosen at random, and let 𝑡

( 𝑗 )
1−𝑏 = 1 − 𝑡 ( 𝑗 )

𝑏
.

(5) for 𝑖 > 𝑗 : the remaining values 𝑠
(𝑖 )
𝑏
| |𝑣 (𝑖 )

𝑏
| |𝑡 (𝑖 )
𝑏

, 𝑠
(𝑖 )
1−𝑏 | |𝑣

(𝑖 )
1−𝑏

| |𝑡 (𝑖 )
1−𝑏 ,𝐶𝑊

(𝑖 )
are all computed honestly as a function of the

previously chosen values.

(6) The output of the experiment is 𝑘𝑏 := 𝑠
(0)
𝑏
| |𝐶𝑊 (1) | | · · ·

| |𝐶𝑊 (𝑛) .
13
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Formally, Hyb𝑗 is fully described in algorithm. Note that when

𝑗 = 0, this experiment corresponds to the honest key distribution,

whereas when 𝑗 = 𝑛 this yields a completely random key 𝑘𝑏 . We

claim that each pair of adjacent hybrids 𝑗 − 1 and 𝑗 will be indistin-

guishable based on the security of the pseudorandom generator.

Our proof follows from the following three lemmas:

Lemma B.1. For every 𝑏 ∈ {0, 1}, 𝛼 ∈ {0, 1}𝑛, 𝛽 ∈ {0, 1}, it holds
that

{𝑘𝑏 ← Hyb
0
(1𝜆, 𝑏, 𝛼, 𝛽)} ≡ {𝑘𝑏 : (𝑘0, 𝑘1) ← Gen<𝑛 (1𝜆, 𝛼, 𝛽}

Lemma B.2. For every 𝑏 ∈ {0, 1}, 𝛼 ∈ {0, 1}𝑛, 𝛽 , it holds that

{𝑘𝑏 ← Hyb𝑛+1 (1𝜆, 𝑏, 𝛼, 𝛽)} ≡ {𝑘𝑏 ← 𝑈 }

Note that Lemma B.1 and Lemma B.2 follow directly by construc-

tion of Hyb𝑗 .

LemmaB.3. There exists a polynomial 𝑝′ such that for any (𝑇, 𝜖𝑃𝑅𝐺 )
-secure pseudorandom generator𝐺 , then for every 𝑗 ∈ {0, 1, · · ·𝑛 − 1},
every 𝑏 ∈ {0, 1}, 𝛼 ∈ {0, 1}𝑛, 𝛽 ∈ {0, 1}, and every non-uniform
adversary A running in time 𝑇 ′ ≤ 𝑇 − 𝑝′ (𝜆), it holds that��� Pr[𝑘𝑏 ← Hyb𝑗−1 (1𝜆, 𝑏, 𝛼, 𝛽); 𝑐 ← A(1𝜆, 𝑘𝑏 ) : 𝑐 = 1

]
− Pr

[
𝑘𝑏 ← Hyb𝑗 (1𝜆, 𝑏, 𝛼, 𝛽); 𝑐 ← A(1𝜆, 𝑘𝑏 ) : 𝑐 = 1

] ��� < 𝜖PRG

Proof. Fix an arbitrary 𝑗 ∈ {0, 1, · · ·𝑛−1}, 𝑏 ∈ {0, 1}, 𝛼 ∈ {0, 1}𝑛
and 𝛽 ∈ {0, 1}. Given a Hyb-distinguishing adversary A with

advantage 𝜖 for these values, we construct a corresponding PRG

adversary B. Recall that in the PRG challenge for 𝐺 , the adversary

B is given a value 𝑟 that is either computed by sampling a seed

𝑠 ← {0, 1}𝜆 and computing 𝑟 = 𝐺 (𝑠), or sampling a random 𝑟 ←
{0, 1}2(𝜆+2) .

Now, consider B’s success in the PRG challenge as a function of

A’s success in distinguishing Hyb𝑗−1 from Hyb𝑗 . If 𝑟 is computed

pseudorandomly, then it is clear the generated 𝑘𝑏 is distributed as

Hyb𝑗−1 (1𝜆, 𝑏, 𝛼, 𝛽).
It remains to show that if 𝑟 was sampled at random then the gen-

erated 𝑘𝑏 is distributed as Hyb𝑗 (1𝜆, 𝑏, 𝛼, 𝛽). That is, if 𝑟 is random,

then the corresponding computed values of 𝑠
( 𝑗 )
1−𝑏 and𝐶𝑊 ( 𝑗 ) are dis-

tributed randomly conditioned on the values of 𝑠
(0)
𝑏
| |𝑡 (0)
𝑏
| |𝐶𝑊 ( 𝑗 ) | |

· · · | |𝐶𝑊 ( 𝑗−1) , and the value of 𝑡
( 𝑗 )
1−𝑏 is given by 1 − 𝑡 ( 𝑗 )

𝑏
. Note that

all remaining values (for “level” 𝑖 > 𝑗 ) are computed as a function

of the values up to “level” 𝑗 .

First, consider 𝐶𝑊 ( 𝑗 ) , computed in four parts:

• 𝑠𝐶𝑊 = 𝑠Lose
𝑏
⊕ 𝑠Lose

1−𝑏 .

• 𝑣𝐿
𝐶𝑊

= 𝑣𝐿
𝑏
⊕ 𝑣𝐿

1−𝑏 ⊕ (𝛼 𝑗 · 𝛽).
• 𝑡𝐿

𝐶𝑊
= 𝑡𝐿

𝑏
⊕ 𝑡𝐿

1−𝑏 ⊕ 𝛼 𝑗 ⊕ 1.

• 𝑡𝑅
𝐶𝑊

= 𝑡𝑅
𝑏
⊕ 𝑡𝑅

1−𝑏 ⊕ 𝛼 𝑗 .
In the case that 𝑟 is random, then 𝑠Lose

1−𝑏 , 𝑣
𝐿
1−𝑏 , 𝑣

𝑅
1−𝑏 , 𝑡

𝐿
1−𝑏 , and

𝑡𝑅
1−𝑏 (no matter the value of Lose ∈ {𝐿, 𝑅}) are each perfect one-

time pads. So,𝐶𝑊 ( 𝑗 ) = 𝑠𝐶𝑊 | |𝑣𝐿𝐶𝑊 | |𝑡
𝐿
𝐶𝑊
| |𝑡𝑅
𝐶𝑊

is indeed distributed

uniformly.

Now, condition on𝐶𝑊 ( 𝑗 ) as well, and consider the value of 𝑠 ( 𝑗 )
1−𝑏 .

Depending on the value of 𝑡
( 𝑗−1)
1−𝑏 , 𝑠

( 𝑗 )
1−𝑏 is selected either as 𝑠

Keep
1−𝑏 or

Algorithm 7 𝑗-th Hybrids Hyb𝑗 and its sub-functions

•Hyb𝑗 (1𝜆, 𝑏, 𝛼, 𝛽)
1: Let 𝛼1 | | · · · | |𝛼𝑛 ∈ {0, 1}𝑛 be the bit decomposition of 𝛼 .

2: Sample random 𝑠
(0)
𝑏
∈𝑅 {0, 1}𝜆 and let 𝑣

(0)
𝑏

= 𝑣
(0)
1−𝑏 ← 0, 𝑡

(0)
𝑏

=

𝑏, 𝑡
(0)
1−𝑏 = 1 − 𝑏.

3: for 𝑖 = 1 to 𝑛 do
4: if 𝑖 < 𝑗 then
5: Sample 𝐶𝑊 ( 𝑗 ) ∈𝑅 {0, 1}𝜆 × {0, 1} × {0, 1}2.
6: else
7: if 𝑖 = 𝑗 then
8: Sample random 𝑠

( 𝑗−1)
1−𝑏 ∈𝑅 {0, 1}𝜆 and let 𝑡

( 𝑗−1)
1−𝑏 = 1 −

𝑡
( 𝑗−1)
𝑏

.

9: end if
10: 𝐶𝑊 (𝑖 ) = CompCW(𝑖, 𝛼𝑖 ,𝐺 (𝑠 (𝑖−1)𝑏

),𝐺 (𝑠 (𝑖−1)
1−𝑏 ), 𝛽).

11: (𝑠 (𝑖 )
1−𝑏 , (𝑡

(𝑖 )
1−𝑏 ) = NextST(1 − 𝑏, 𝑖, 𝑡

(𝑖−1)
1−𝑏 , 𝑠

Keep
1−𝑏 | |𝑡

Keep
1−𝑏 ,

𝐶𝑊 (𝑖 ) ).
12: end if
13: (𝑠 (𝑖 )

𝑏
, 𝑡
(𝑖 )
𝑏
) = NextST(𝑏, 𝑖, 𝑡 (1−𝑖 )

𝑏
, 𝑠
Keep
𝑏
| |𝑡Keep

1−𝑏 ,𝐶𝑊 (𝑖 ) ).
14: end for
15: Let 𝑘𝑏 = 𝑠

(0)
𝑏
| |𝐶𝑊 (1) | | · · · | |𝐶𝑊 (𝑛)

16: return 𝑘𝑏

•CompCW(𝑖, 𝛼𝑖 , 𝑆 (𝑖−1)𝑏
, 𝑆
(𝑖−1)
1−𝑏 , 𝛽)

1: Parse 𝑆
(𝑖−1)
1−𝑏 = 𝑠𝐿

1−𝑏 | |𝑣
𝐿
1−𝑏 | |𝑡

𝐿
1−𝑏 | |𝑠

𝑅
1−𝑏 | |𝑣

𝑅
1−𝑏 | |𝑡

𝑅
1−𝑏 .

2: Parse 𝑆
(𝑖−1)
𝑏

= 𝑠𝐿
𝑏
| |𝑣𝐿

𝑏
| |𝑡𝐿
𝑏
| |𝑠𝑅

𝑏
| |𝑣𝑅

𝑏
| |𝑡𝑅
𝑏
.

3: if 𝛼𝑖 = 0 then
4: Set Keep← 𝐿, Lose← 𝑅

5: else
6: Set Keep← 𝑅, Lose← 𝐿

7: end if
8: 𝑠𝐶𝑊 ← 𝑠Lose

0
⊕ 𝑠Lose

1
.

9: 𝑣𝐿
𝐶𝑊
← 𝑣𝐿

0
⊕ 𝑣𝐿

1
⊕ (𝛼𝑖 · 𝛽)

10: 𝑡𝐿
𝐶𝑊
← 𝑡𝐿

0
⊕ 𝑡𝐿

1
⊕ 𝛼𝑖 ⊕ 1, and 𝑡𝑅

𝐶𝑊
← 𝑡𝑅

0
⊕ 𝑡𝑅

1
⊕ 𝛼𝑖 .

11: return 𝐶𝑊 (𝑖 ) ← 𝑠𝐶𝑊 | |𝑣𝐿𝐶𝑊 | |𝑡
𝐿
𝐶𝑊
| |𝑡𝑅
𝐶𝑊

•NextST(𝑥, 𝑖, 𝑡 (𝑖−1)𝑥 , 𝑠
Keep
𝑥 | |𝑡Keep𝑥 ,𝐶𝑊 (𝑖 ) )

1: Parse 𝐶𝑊 (𝑖 ) = 𝑠𝐶𝑊 | |𝑣𝐿𝐶𝑊 | |𝑡
𝐿
𝐶𝑊
| |𝑡𝑅
𝐶𝑊

.

2: 𝑠
(𝑖 )
𝑥 ← 𝑠

Keep
𝑥 ⊕ 𝑡 (𝑖−1)𝑥 · 𝑠𝐶𝑊

3: 𝑡
(𝑖 )
𝑥 ← 𝑡

Keep
𝑥 ⊕ 𝑡 (𝑖−1)𝑥 · 𝑡Keep

𝐶𝑊
.

4: return (𝑠 (𝑖 )𝑥 , 𝑡
(𝑖 )
𝑥 )

𝑠Lose
1−𝑏 ⊕ 𝑠𝐶𝑊 . However, 𝑠

Keep
1−𝑏 is distributed uniformly conditioned

on the view thus far, and so in either case the resulting value is

again distributed uniformly.

Finally, consider the value of 𝑡
( 𝑗 )
1−𝑏 . Note that both 𝑡

( 𝑗 )
𝑏

and 𝑡
( 𝑗 )
1−𝑏

are computed as per NextST, as a function of 𝑡
( 𝑗−1)
1

and 𝑡
( 𝑗−1)
1−𝑏 ,

14
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Algorithm 8 PRG adversary B and its sub-function

• PRG adversary B(1𝜆, ( 𝑗, 𝑏, 𝛼, 𝛽), 𝑟 ) :
1: Let 𝛼1 | | · · · | |𝛼𝑛 ∈ {0, 1}𝑛 be the bit decomposition of 𝛼 .

2: Sample random 𝑠
(0)
𝑏
∈𝑅 {0, 1}𝜆 and let 𝑣

(0)
𝑏
← 0, 𝑡

(0)
𝑏

= 𝑏 for

𝑏 = 0, 1.

3: for 𝑖 = 1 to ( 𝑗 − 1) do
4: Sample 𝐶𝑊 (𝑖 ) ∈𝑅 {0, 1}𝜆 × {0, 1} × {0, 1}2.
5: Parse 𝐶𝑊 (𝑖 ) = 𝑠𝐶𝑊 | |𝑣𝐿𝐶𝑊 | |𝑡

𝐿
𝐶𝑊
| |𝑡𝑅
𝐶𝑊

.

6: Expand 𝑠𝐿
𝑏
| |𝑣𝐿

𝑏
| |𝑡𝐿
𝑏
| |𝑠𝑅

𝑏
| |𝑣𝑅

𝑏
| |𝑡𝑅
𝑏
= 𝐺 (𝑠 (𝑖−1)

𝑏
).

7: if 𝛼𝑖 = 0 then
8: Set Keep← 𝐿, Lose← 𝑅

9: else
10: Set Keep← 𝑅, Lose← 𝐿

11: end if
12: (𝑠 (𝑖 )

𝑏
, 𝑡
(𝑖 )
𝑏
) = NextST(𝑏, 𝑖, 𝑡 (1−𝑖 )

𝑏
, 𝑠
Keep
𝑏

, 𝑡
Keep
1−𝑏 ,𝐶𝑊 (𝑖 ) ).

13: Take 𝑡
(𝑖 )
1−𝑏 = 1 − 𝑡 (𝑖 )

𝑏
14: end for
15: Expand 𝑠𝐿

𝑏
| |𝑣𝐿

𝑏
| |𝑡𝐿
𝑏
| |𝑠𝑅

𝑏
| |𝑣𝑅

𝑏
| |𝑡𝑅
𝑏
= 𝐺 (𝑠 ( 𝑗−1)

𝑏
).

16: Set 𝑠𝐿
𝑏
| |𝑣𝐿

𝑏
| |𝑡𝐿
𝑏
| |𝑠𝑅

𝑏
| |𝑣𝑅

𝑏
| |𝑡𝑅
𝑏
= 𝑟 (the PRG challenge).

17: 𝐶𝑊 ( 𝑗 ) = CompCW( 𝑗, 𝛼 𝑗 , 𝑟 ,𝐺 (𝑠 ( 𝑗−1)𝑏
), 𝛽).

18: if 𝛼 𝑗 = 0 then
19: set Keep← 𝐿, Lose← 𝑅

20: else
21: Set Keep← 𝑅, Lose← 𝐿

22: end if
23: Compute (𝑠 ( 𝑗 )𝑥 , 𝑡

( 𝑗 )
𝑥 ) = NextST(𝑥, 𝑗, 𝑡 ( 𝑗−1)𝑥 , 𝑠

Keep
𝑥 | |𝑡Keep𝑥 ,

𝐶𝑊 ( 𝑗 ) ), for both 𝑥 ∈ {0, 1}.
24: Set 𝑃 = [𝑠𝐿

0
| |𝑣𝐿

0
| |𝑡𝐿

0
| |𝑠𝑅

0
| |𝑣𝑅

0
| |𝑡𝑅

0
; 𝑠𝐿
1
| |𝑣𝐿

1
| |𝑡𝐿

1
| |𝑠𝑅

1
| |𝑣𝑅

1
| |𝑡𝑅

1
].

25: Compute (𝐶𝑊 ( 𝑗+1) | | · · · | |𝐶𝑊 (𝑛) ) = RemainingKey(𝛼,
𝑗,𝐶𝑊 (1) | | · · · | |𝐶𝑊 ( 𝑗 ) , 𝑃).

26: return 𝑘𝑏 = 𝑠
(0)
𝑏
| |𝐶𝑊 (1) | | · · · | |𝐶𝑊 (𝑛) .

•RemainingKey(𝛼, 𝑗,𝐶𝑊 (1) | | · · · | |𝐶𝑊 ( 𝑗 ) , 𝑡 ( 𝑗 )
0

, 𝑡
( 𝑗 )
1

, 𝑃)
1: Parse 𝑃 = [𝑠𝐿

0
| |𝑣𝐿

0
| |𝑡𝐿

0
| |𝑠𝑅

0
| |𝑣𝑅

0
| |𝑡𝑅

0
; 𝑠𝐿
1
| |𝑣𝐿

1
| |𝑡𝐿

1
| |𝑠𝑅

1
| |𝑣𝑅

1
| |𝑡𝑅

1
].

2: for 𝑖 = ( 𝑗 + 1) to 𝑛 do
3: Expand 𝑠𝐿𝑥 | |𝑣𝐿𝑥 | |𝑡𝐿𝑥 | |𝑠𝑅𝑥 | |𝑣𝑅𝑥 | |𝑡𝑅𝑥 = 𝐺 (𝑠 (𝑖−1)𝑥 ) for both 𝑥 ∈

{0, 1}.
4: if 𝛼𝑖 = 0 then
5: set Keep← 𝐿, Lose← 𝑅

6: else
7: Set Keep← 𝑅, Lose← 𝐿

8: end if
9: 𝐶𝑊 (𝑖 ) = CompCW(𝑖, 𝛼𝑖 , [𝑠𝐿

0
| |𝑣𝐿

0
| |𝑡𝐿

0
| |𝑠𝑅

0
| |𝑣𝑅

0
| |𝑡𝑅

0
],

[𝑠𝐿
1
| |𝑣𝐿

1
| |𝑡𝐿

1
| |𝑠𝑅

1
| |𝑣𝑅

1
| |𝑡𝑅

1
], 𝛽).

10: Compute (𝑠 (𝑖 )𝑥 , 𝑡
(𝑖 )
𝑥 ) = NextST(𝑥, 𝑖, 𝑡 (𝑖−1)𝑥 𝑠

Keep
𝑥 | |𝑡Keep𝑥 ,

𝐶𝑊 (𝑖 ) ), for both 𝑥 ∈ {0, 1}.
11: end for
12: return (𝐶𝑊 ( 𝑗 ) | |𝐶𝑊 ( 𝑗+1) | | · · · | |𝐶𝑊 (𝑛) )

respectively (and 𝑡
( 𝑗−1
1−𝑏 was set to 1 − 𝑡 ( 𝑗−1)

𝑏
). In particular,

𝑡
( 𝑗 )
𝑏
⊕ 𝑡 ( 𝑗 )

1−𝑏 = (𝑡Keep
𝑏

⊕ 𝑡 (𝑖−1)
𝑏

· 𝑡Keep
𝐶𝑊
) ⊕ (𝑡Keep

1−𝑏 ⊕ 𝑡
(𝑖−1)
1−𝑏 · 𝑡Keep

𝐶𝑊
)

= 𝑡
Keep
𝑏

⊕ 𝑡Keep
1−𝑏 ⊕ (𝑡

(𝑖−1)
𝑏

⊕ 𝑡 (𝑖−1)
1−𝑏 ) · 𝑡

Keep
𝐶𝑊

= 𝑡
Keep
𝑏

⊕ 𝑡Keep
1−𝑏 ⊕ 1 · (𝑡Keep

0
⊕ 𝑡Keep

1
⊕ 1)

= 1

Combining these pieces, we have that in the case of a random

PRG challenge 𝑟 , the resulting distribution of 𝑘𝑏 as generated by B
is precisely distributed as is Hyb𝑗 (1𝜆, 𝑏, 𝛼, 𝛽). Thus, the advantage
ofB in the PRG challenge experiment is equivalent to the advantage

𝜖 of A in distinguishing Hyb𝑗−1 (1𝜆, 𝑏, 𝛼, 𝛽) from Hyb𝑗 (1𝜆, 𝑏, 𝛼, 𝛽).
The runtime of B is equal to the runtime of A plus a fixed poly-

nomial 𝑝′ (𝜆). Thus for any 𝑇 ′ ≤ 𝑇 − 𝑝′ (𝜆), it must be that the

distinguishing advantage 𝜖 of A is bounded by 𝜖PRG. □

This concludes the proof. □
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