
On the (Im)plausibility of Public-Key Quantum Money
from Collision-Resistant Hash Functions

Prabhanjan Ananth∗

UCSB
Zihan Hu†

Tsinghua University
Henry Yuen‡

Columbia University

Abstract

Public-key quantum money is a cryptographic proposal for using highly entangled quantum
states as currency that is publicly verifiable yet resistant to counterfeiting due to the laws of
physics. Despite significant interest, constructing provably-secure public-key quantum money
schemes based on standard cryptographic assumptions has remained an elusive goal. Even
proposing plausibly-secure candidate schemes has been a challenge.

These difficulties call for a deeper and systematic study of the structure of public-key quan-
tum money schemes and the assumptions they can be based on. Motivated by this, we present
the first black-box separation of quantum money and cryptographic primitives. Specifically, we
show that collision-resistant hash functions cannot be used as a black-box to construct public-
key quantum money schemes where the banknote verification makes classical queries to the hash
function. Our result involves a novel combination of state synthesis techniques from quantum
complexity theory and simulation techniques, including Zhandry’s compressed oracle technique.

1 Introduction

Unclonable cryptography is an emerging area in quantum cryptography that leverages the no-
cloning principle of quantum mechanics [WZ82; Die82] to achieve cryptographic primitives that are
classically impossible. Over the years, many interesting unclonable primitives have been proposed
and studied. These include quantum copy-protection [Aar09], one-time programs [BGS13], secure
software leasing [AL21], unclonable encryption [BL20], encryption with certified deletion [BI20],
encryption with unclonable decryption keys [GZ20; CLLZ21], and tokenized signatures [BS16].

One of the oldest and (arguably) the most popular unclonable primitives is quantum money,
which was first introduced in a seminal work by Wiesner [Wie83]. A quantum money scheme enables
a bank to issue digital money represented as quantum states. Informally, the security guarantee
states that it is computationally infeasible to produce counterfeit digital money states. That is, a
malicious user, given one money state, cannot produce two money states that are both accepted by
a pre-defined verification procedure. There are two notions we can consider here. The first notion
is private-key quantum money, where the verification procedure is private. That is, in order to
check whether a money state is valid, we need to submit the state to the bank which decides its
validity. A more useful notion is public-key quantum money, where anyone can verify the validity

∗prabhanjan@cs.ucsb.edu
†huzh19@mails.tsinghua.edu.cn
‡hyuen@cs.columbia.edu

1

of money states. While private-key money schemes have been extensively studied and numerous
constructions, including information-theoretic ones, have been proposed, the same cannot be said
for public-key quantum money schemes.

Aaronson and Christiano [AC13] first demonstrated the feasibility of information-theoretically
secure public-key quantum money in the oracle model; meaning that all algorithms in the scheme
(e.g., the minting and verification algorithms) query a black box oracle during their execution.
In the standard (i.e., non-oracle) model, there are two types of constructions known for building
quantum money:

• In the first category, we have constructions borrowing sophisticated tools from different areas of
mathematics, such as knot theory [FGH+12], quaternion algebras [KSS21] and lattices [Zha21;
KLS22]. The constructions in this category have been susceptible to cryptanalytic attacks as
demonstrated by a couple of recent works [Rob21; BDG22]. We are still in the nascent stages
of understanding the security of these candidates.

• In the second category, we have constructions based on well-studied (or perhaps better -studied)
cryptographic primitives. In this category, we have constructions [Zha21; Shm22a; Shm22b]
based on indistinguishability obfuscation, first initiated by Zhandry [Zha21].

We focus on the second category. Constructions from existing primitives, especially from those that
can be based on well-studied assumptions, would position public-key quantum money on firmer
foundations. Unfortunately, existing constructions of indistinguishability obfuscation are either
post-quantum insecure [AJL+19; JLS21; JLS22] or are based on newly introduced cryptographic
assumptions [GP21; BDGM20; WW21; DQV+21] that have been subjected to cryptanalytic at-
tacks [HJL21].

The goal of our work is to understand the feasibility of constructing public-key quantum money
from fundamental and well-studied cryptographic primitives. We approach this direction via the
lens of black-box separations. Black-box separations have been extensively studied in classical
cryptography [Rud91; Sim98; GKM+00; RTV04; BM09; DLMM11; GKLM12; BDV17]. We say
that a primitive 𝐴 cannot be constructed from another primitive 𝐵 in a black-box manner if there
exists a computational world (defined by an oracle) where 𝐵 exists but 𝐴 does not. Phrased another
way, these separations rule out constructions of primitive 𝐴 where primitive 𝐵 is used in a black-box
manner. In this case, we say that there is a black-box separation between 𝐴 and 𝐵. Black-box
separations have been essential in understanding the relationship between different cryptographic
primitives. Perhaps surprisingly, they have also served as a guiding light in designing cryptographic
constructions. One such example is the setting of identity-based encryption (IBE). A couple of
works [BPR+08; PRV12] demonstrated the difficulty of constructing IBE from the decisional Diffie
Hellman (DDH) assumption using a black-box construction which prompted the work of [DG17]
who used non-black-box techniques to construct IBE from DDH.

1.1 Our Work

Black-Box Separations for Unclonable Cryptography. We initiate the study of black-box
separations in unclonable cryptography. In this work, we study a black-box separation between
public-key quantum money and (post-quantum secure) collision-resistant hash functions. To the
best of our knowledge, our work takes the first step in ruling out certain approaches to constructing
public-key quantum money from well-studied assumptions.

2

Model. We first discuss the model in which we prove the black-box separation. We consider two
oracles with the first being a random oracle ℛ (i.e., a uniformly random function) and the second
being a 𝖯𝖲𝖯𝖠𝖢𝖤 oracle (i.e., one that can solve 𝖯𝖲𝖯𝖠𝖢𝖤-complete problems). We investigate the
feasibility of quantum money schemes and collision-resistant hash functions in the presence of ℛ
and 𝖯𝖲𝖯𝖠𝖢𝖤. That is, all the algorithms of the quantum money schemes and also the adversarial
entities are given access to the oracles ℛ and 𝖯𝖲𝖯𝖠𝖢𝖤.

There are two ways we can model a quantum algorithm to have access to an oracle. The first
is classical access, where the algorithms in the quantum money scheme can only make classical
queries to the oracle; that is, each query to the oracle is measured in the computational basis before
forwarding it to the oracle. If an algorithm 𝖠 has classical access to an oracle, say 𝒰 , we denote this
by 𝖠𝒰 . The second is quantum access, where the algorithms can make superposition queries. That
is, an algorithm can submit a state of the form

∑︀
𝑥,𝑦 𝛼𝑥,𝑦 |𝑥⟩ |𝑦⟩ to the oracle 𝒪 and it receives back∑︀

𝑥,𝑦 𝛼𝑥,𝑦 |𝑥⟩ |𝒪(𝑥)⊕ 𝑦⟩. If an algorithm 𝖠 has quantum access to an oracle 𝒰 , we denote this by
𝖠|𝒰⟩.

Our ultimate goal is to obtain black-box separations in the quantum access model, where the
algorithms in the quantum money scheme can query oracles in superposition. However, there are
two major obstacles to achieving this.

First, analyzing the quantum access model in quantum cryptography has been notoriously
challenging. For example, it is not yet known how to generalize to the quantum access setting
black-box separations between key agreement protocols – a classical cryptographic primitive – and
one-way functions [IR90]. Attempts to tackle special cases have already encountered significant
barriers [ACC+22], and has connections to long-standing conjectures in quantum query complexity
(like the Aaronson-Ambainis conjecture [AA09]).

Second, we have to contend with the difficulty that quantum money is an inherently quantum
cryptographic primitive. A black-box separation requires designing an adversary that can effectively
clone a quantum banknote given a single copy of it. Here one encounters problems of a uniquely
quantum nature, such as the No-Cloning Theorem [WZ82; Die82] and the fact that measuring the
banknote will in general disturb it.

We present partial progress towards the ultimate goal stated above by simplifying the problem
and focusing exclusively on this second obstacle: we prove black-box separations where the banknote
verification algorithm in the quantum money schemes makes classical queries to the random oracle
ℛ (but still can make quantum queries to the 𝖯𝖲𝖯𝖠𝖢𝖤 oracle), and the minting algorithm may
still make quantum queries to both ℛ and 𝖯𝖲𝖯𝖠𝖢𝖤 oracles. As we will see, even this special case
of quantum money schemes is already challenging and nontrivial to analyze. We believe that our
techniques may ultimately be extendable to the general setting (if there indeed exists a black-box
impossibility in the general setting!), where all algorithms can make quantum queries to all oracles,
and furthermore help prove black-box separations of other quantum cryptographic primitives.

Main Theorem. We will state our theorem more formally. A quantum money scheme consists
of three quantum polynomial-time (QPT) algorithms, namely (𝖪𝖾𝗒𝖦𝖾𝗇,𝖬𝗂𝗇𝗍,𝖵𝖾𝗋), where 𝖪𝖾𝗒𝖦𝖾𝗇
produces a public key-secret key pair, 𝖬𝗂𝗇𝗍 uses the secret key to produce money states and a serial
number associated with money states and finally, 𝖵𝖾𝗋 determines the validity of money states using
the public key. We consider oracle-aided quantum money schemes, where these algorithms have
access to a random oracle ℛ and a 𝖯𝖲𝖯𝖠𝖢𝖤 oracle, defined above.

3

Theorem 1 (Informal). Any public-key quantum money scheme (𝖪𝖾𝗒𝖦𝖾𝗇|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩,𝖬𝗂𝗇𝗍|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩,
𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩) is insecure.

By insecurity, we mean the following. There exists a quantum polynomial-time (QPT) adversary 𝒜
such that 𝒜ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩, given a money state (𝗉𝗄, 𝜌𝑠, 𝑠), where 𝗉𝗄 is the public key and 𝑠 is a serial
number, with non-negligible probability, can produce two (possibly entangled) states that both pass
the verification checks with respect to the same serial number 𝑠. The probability is taken over the
randomness of ℛ and also over the randomness of 𝖪𝖾𝗒𝖦𝖾𝗇,𝖬𝗂𝗇𝗍 and 𝒜. We note that only 𝖪𝖾𝗒𝖦𝖾𝗇
and 𝖬𝗂𝗇𝗍 can have quantum access to ℛ, while 𝖵𝖾𝗋 only has classical access. On the other hand,
we show that the adversary 𝒜 only needs classical access to ℛ.

Furthermore, we note that the random oracle ℛ constitutes a collision-resistant hash function
against QPT adversaries that can make queries to (ℛ, |𝖯𝖲𝖯𝖠𝖢𝖤⟩) [Zha15]. We note that ℛ still
remains collision-resistant even when the adversaries can make quantum queries to ℛ, not just
classical ones.

Implications. Our main result rules out a class of public-key quantum money constructions that
(a) base their security on collision-resistant hash functions, (b) use the hash functions in a black-box
way, and (c) where the verification algorithm makes classical queries to the hash function. Clearly,
it would be desirable to generalize the result to the case where the verification algorithm can make
quantum queries to the hash function. However, there are some conceptual challenges to going
beyond classical verification queries (which we discuss in more detail in Section 2.2.3).

The class of quantum money schemes in this hybrid classical-quantum query model is quite
interesting on its own and a well-motivated setting. For example, in Zhandry’s public-key quantum
money scheme [Zha21], the mint procedure only needs classical access to the underlying crypto-
graphic primitives (when the component that uses cryptographic primitives is viewed as a black-box)
while the verification procedure makes quantum queries. In the constructions of copy-protection
due to Coladangelo et al. [CLLZ21; CMP20], the copy-protection algorithm only makes classical
queries to the cryptographic primitives in the case of [CLLZ21] and the random oracle in the case
of [CMP20] whereas the evaluation algorithm in both constructions make quantum queries. Finally,
in the construction of unclonable encryption in [AKL+22], all the algorithms only make classical
queries to the random oracle. Given these constructions, we believe it is important to understand
what is feasible or impossible for unclonable cryptosystems in the hybrid classical-quantum query
model.

Secondly, we believe that the hybrid classical-quantum query model is a useful testbed for
developing techniques needed for black-box separations, and for gaining insight into the structure
of unclonable cryptographic primitives. Even in this special case, there are a number of technical
and conceptual challenges to overcome in order to get our black-box separation of Theorem 1. We
believe that the techniques developed in this paper will be a useful starting point for future work
in black-box separations in unclonable cryptography.

Other Separations. As a corollary of our main result, we obtain black-box separations between
public-key quantum money and many other well-studied cryptographic primitives such as one-way
functions, private-key encryption and digital signatures.

Our result also gives a separation between public-key quantum money and collapsing hash
functions in the same setting as above; that is, when 𝖵𝖾𝗋 makes classical queries to ℛ. This follows
from a result due to Unruh [Unr16] who showed that random oracles are collapsing. Collapsing

4

hash functions are the quantum analogue of collision-resistant hash functions. Informally speaking,
a hash function is collapsing if an adversary cannot distinguish a uniform superposition of inputs, say
|𝜓⟩, mapping to a random output 𝑦 versus a computational basis state obtained by measuring |𝜓⟩
in the computational basis. Zhandry [Zha21] showed that hash functions that are collision-resistant
but not collapsing imply the existence of public-key quantum money. Thus our result rules out a
class of constructions of quantum money from collapsing functions, improving our understanding of
the relationship between them.

Acknowledgments. We thank anonymous conference referees, Qipeng Liu, Yao Ching Hsieh,
and Xingjian Li for their helpful comments. HY is supported by AFOSR award FA9550-21-1-0040
and NSF CAREER award CCF-2144219.

2 Our Techniques in a Nutshell

We present a high-level overview of the techniques involved in proving Theorem 1. But first, we
will briefly discuss the correctness guarantee of oracle-aided public-key quantum money schemes.

Reusability. In a quantum money scheme (𝖪𝖾𝗒𝖦𝖾𝗇,𝖬𝗂𝗇𝗍,𝖵𝖾𝗋), we require that 𝖵𝖾𝗋 accepts a state
and a serial number produced by 𝖬𝗂𝗇𝗍 with overwhelming probability. However, for all we know,
𝖵𝖾𝗋, during the verification process, might destroy the state. In general, a more useful correctness
definition is reusability, which states that a money state can be repeatedly verified without losing
its validity. In general, one can show that the gentle measurement lemma [Win99] does prove
that correctness implies reusability. However, as observed in [AK22], this is not the case when 𝖵𝖾𝗋
has classical access to an oracle. Specifically, 𝖵𝖾𝗋 has classical access to ℛ. Hence, we need to
explicitly define reusability in this setting. Roughly speaking, we require the following: suppose
we execute 𝖵𝖾𝗋 on a money state 𝜌(0) produced using 𝖬𝗂𝗇𝗍 and the verification algorithm accepts
with probability 𝛿. The residual state is (possibly) a different state 𝜌(1) which when executed upon
by 𝖵𝖾𝗋 is also accepted with probability close to 𝛿. In fact, even if we run the verification process
polynomially many times, the state obtained at the end of the process should still be accepted by
𝖵𝖾𝗋 with probability close to 𝛿.

2.1 Warmup: Insecurity when ℛ is absent

Towards developing techniques to prove Theorem 1, let us first tackle a simpler statement. Suppose
we have a secure public-key quantum money scheme (𝖪𝖾𝗒𝖦𝖾𝗇,𝖬𝗂𝗇𝗍,𝖵𝖾𝗋). This means that any QPT
adversary cannot break the security of this scheme. But what about oracle-aided adversaries? In
more detail, we ask the following question: Does there exist a QPT algorithm, given quantum access
to a 𝖯𝖲𝖯𝖠𝖢𝖤 oracle, that violates the security of (𝖪𝖾𝗒𝖦𝖾𝗇,𝖬𝗂𝗇𝗍,𝖵𝖾𝗋)? That is, given (𝑠, 𝜌𝑠), where
𝑠 is a serial number and 𝜌𝑠 is a valid banknote produced by 𝖬𝗂𝗇𝗍, it should be able to produce two
states, with respect to the same serial number 𝑠, that are both accepted by the verifier.

Even this seemingly simple question seems challenging! Let us understand why. Classical
cryptographic primitives (even post-quantum secure ones) such as encryption schemes or digital
signatures can be broken by efficient adversaries who have access to even 𝖭𝖯 oracles. This follows
from the fact that we can efficiently reduce the problem of breaking the scheme to the problem of
determining membership in a language. For instance, in order to succeed in breaking an encryption

5

scheme, the adversary has to decide whether the instance (𝗉𝗄, 𝖼𝗍,𝗆) ∈ 𝐿, where 𝗉𝗄 is a public key,
𝖼𝗍 is a ciphertext, 𝗆 is a message and 𝐿 consists of instances of the form (𝗉𝗄, 𝖼𝗍,𝗆), where 𝖼𝗍 is an
encryption of 𝗆 with respect to the public key 𝗉𝗄. Implicitly, we are using the fact that 𝗉𝗄, 𝖼𝗍,𝗆
are binary strings. Emulating a similar approach in the case of quantum money would result in
quantum instances and it is not clear how to leverage 𝖯𝖲𝖯𝖠𝖢𝖤, or more generally a decider for any
language, to complete the reduction.

Synthesizing Witness States. Towards addressing the above question, we reduce the task of
breaking the security of the quantum money scheme using 𝖯𝖲𝖯𝖠𝖢𝖤 to the task of finding states
accepted by the verifier in quantum polynomial space. This reduction is enabled by the following
observation, due to Rosenthal and Yuen [RY21]: a set of pure states computable by a quantum
polynomial space algorithm (which may in general include intermediate measurements) can be
synthesized by a QPT algorithm with quantum access to a 𝖯𝖲𝖯𝖠𝖢𝖤 oracle. Implicit in the result
of [RY21] is the following important point: in order to synthesize the state using the 𝖯𝖲𝖯𝖠𝖢𝖤 oracle,
it is important that we know the entire description of the quantum polynomial space algorithm
generating the pure states.

In more detail, we show the following statement: for every1 verification key 𝗉𝗄, serial number 𝑠,
there exists a pure state2 𝜌𝗉𝗄,𝑠 that is accepted by 𝖵𝖾𝗋(𝗉𝗄, 𝑠, ·) with non-negligible probability and
moreover, can be generated by a quantum polynomial space algorithm.

The first attempt is to follow the classical brute-force search algorithm. Namely, we repeat the
following for exponential times: guess a quantum state 𝜌 uniformly at random and if 𝜌 is accepted
by 𝖵𝖾𝗋(𝗉𝗄, 𝑠, ·) with non-negligible probability, output 𝜌 and terminate. (Output an arbitrary state
if we run out of times.) However, there are two problems with this attempt. Firstly, in general, it’s
not clear how to calculate the acceptance probability of 𝖵𝖾𝗋(𝗉𝗄, 𝑠, 𝜌) in polynomial space (𝜌 needs
exponential bits to represent). Secondly, 𝜌 might be destroyed when we calculate the acceptance
probability.

To fix the first problem, we note that an estimation of the acceptance probability is already good
enough and it can be done by using a method introduced by Marriott and Watrous [MW05] (called
MW technique). The MW technique allows us to efficiently estimate the acceptance probability of a
verification algorithm on a state with only one copy of that state. Furthermore, it does not disturb
the state too much in the sense that the expected acceptance probability of the residual state does
not decay too significantly, which fixes the second problem.

This brings us to our second attempt. We repeat the following process for exponentially many
times: apply MW technique on a maximally mixed state and if the estimated acceptance probability
happens to be non-negligible, output the residual state and terminate. (Output an arbitrary state
if all the iterations fail.)

As the MW technique is efficient, this algorithm only uses polynomial space. Furthermore,
intuitively we can get a state that is accepted by 𝖵𝖾𝗋 with non-negligible acceptance probability
given the fact that such a state exists. Because if such state exists, by a simple convexity argument,
we can assume that without loss of generality that it’s pure. Maximally mixed state can be treated as
a uniform mixture of a basis containing that pure state. Thus roughly speaking, we start from that
pure state with inverse exponential probability, so we can find it in exponentially many iterations
with overwhelming probability. This attempt almost succeeds except that it outputs a mixed state

1Technically, we show a weaker statement which holds for an overwhelming fraction of (𝗉𝗄, 𝑠).
2Technically, we require that the reduced density matrix of 𝜌𝗉𝗄,𝑠 is accepted by 𝖵𝖾𝗋.

6

in general, but the known approach in [RY21] can only deal with pure states. There are two reasons
for this. Firstly, we start with a maximally mixed state and secondly, MW technique involves
intermediate measurements.

Our final attempt makes the following minor changes compared to the second attempt. To fix
the first issue, it starts with a maximally entangled state (instead of maximally mixed state) and
only operates on half of it. To fix the second issue, it runs the MW process coherently by deferring
all the intermediate measurements. Then we will end up with a pure state whose reduced density
matrix is the same as the output state of the second attempt.

2.2 Insecurity in the presence of ℛ

So far, we considered the task of violating the security of a quantum money scheme where the
algorithms did not have access to any oracle. Let us go back to the oracle-aided quantum money
schemes, where, all the algorithms (honest and adversarial) have access to ℛ and |𝖯𝖲𝖯𝖠𝖢𝖤⟩. Our
goal is to construct an adversary that violates the security of quantum money schemes. But didn’t
we just solve this problem? Recall that when invoking [RY21], it was crucial that we knew the entire
description of the polynomial space algorithm in order to synthesize the state. However, when we
are considering oracle-aided verification algorithms, denoted by 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩, we don’t have the
full description of3 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩. Thus, we cannot carry out the synthesizing process.

A naive approach is to sample our own oracle ℛ′ and synthesize the state with respect to
𝖵𝖾𝗋ℛ

′,|𝖯𝖲𝖯𝖠𝖢𝖤⟩. However, this does not help. Firstly, there is no guarantee that 𝖵𝖾𝗋ℛ
′,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝗉𝗄, 𝑠, ·)

accepts any state with high enough probability. Without this guarantee, the synthesizing process
does not work. For now, let us take for granted that there does exist some witness state 𝜎′ that
is accepted by 𝖵𝖾𝗋ℛ

′,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝗉𝗄, 𝑠, ·) with high enough probability. However, there is no guarantee
that 𝜎′ is going to be accepted by 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝗉𝗄, 𝑠, ·) with better than negligible probability.

Towards addressing these hurdles, we first focus on a simple case when 𝖪𝖾𝗒𝖦𝖾𝗇 and 𝖬𝗂𝗇𝗍 make
classical queries to ℛ and we later, focus on the quantum queries case.

2.2.1 𝖪𝖾𝗒𝖦𝖾𝗇 and 𝖬𝗂𝗇𝗍: Classical Queries to ℛ

Compiling out ℛ. Suppose we can magically find a database 𝐷, using only polynomially many
queries to ℛ, such that all the query-answer pairs made by 𝖵𝖾𝗋 to ℛ are contained in 𝐷. In this
case, there is a QPT adversary 𝒜ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ that given (𝗉𝗄, 𝑠, 𝜌𝑠), can find two states (𝑠, 𝜎′𝑠) and
(𝑠, 𝜎′′𝑠) such that 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ accepts both the states. 𝒜 does the following: it first finds the
database 𝐷 and constructs another circuit 𝖵𝖾𝗋𝐷,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ such that 𝖵𝖾𝗋𝐷,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ runs 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩

and when 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ makes a query to ℛ, the query is answered by 𝐷. Then, 𝒜 synthesizes two
states (𝑠, 𝜎′𝑠) and (𝑠, 𝜎′′𝑠), using 𝖯𝖲𝖯𝖠𝖢𝖤, such that both the states are accepted by 𝖵𝖾𝗋𝐷,|𝖯𝖲𝖯𝖠𝖢𝖤⟩.
By definition of the database 𝐷, these two states are also accepted by 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩.

Of course, it is wishful for us to hope that we can find a database 𝐷 by making only polynomially
many queries to ℛ that is perfectly consistent with the queries made by 𝖵𝖾𝗋. Instead, we hope to
recover a good enough database 𝐷. In more detail, we aim to recover a database 𝐷 that captures
all the relevant queries made by 𝖪𝖾𝗒𝖦𝖾𝗇 and 𝖬𝗂𝗇𝗍.

Let 𝐷𝖪𝖾𝗒𝖦𝖾𝗇 and 𝐷𝖬𝗂𝗇𝗍 be the collection of query-answer pairs made by 𝖪𝖾𝗒𝖦𝖾𝗇 and 𝖬𝗂𝗇𝗍 re-
spectively. A query made by 𝖵𝖾𝗋 is called bad if this query is in 𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪ 𝐷𝖬𝗂𝗇𝗍 and moreover,
this query was not recorded in 𝐷. If 𝖵𝖾𝗋 makes bad queries then the answers returned will likely

3The fact that we don’t have the description of ℛ is the problem here.

7

be inconsistent with ℛ and thus, there is no guarantee that 𝖵𝖾𝗋 will work. Our hope is that the
probability of 𝖵𝖾𝗋 making bad queries is upper bounded by an inverse polynomial.

Once we have such a database 𝐷, by a similar argument, we can conclude that the states
synthesized using 𝖵𝖾𝗋𝐷,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ are also accepted by 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩.

But how do we recover this database 𝐷? To see how, we will first focus on a simple case before
dealing with the general case.

State-independent database simulation. Note that the queries made by 𝖵𝖾𝗋 could potentially
depend on its input state. For now, we will assume that the distribution of queries made by 𝖵𝖾𝗋 is
independent of the input state. We will deal with the state-dependent query distributions later.

The first attempt to generate 𝐷 would be to rely upon techniques introduced by Canetti, Kalai
and Paneth [CKP15] who, in a different context – that of proving impossibility of obfuscation in
the random oracle model – showed how to generate a database that is sufficient to simulate the
queries made by the evaluation algorithm. Suppose (𝑠, 𝜌𝑠) is the state generated by 𝖬𝗂𝗇𝗍. Then, run
𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, 𝑠, 𝜌𝑠) a fixed polynomially many times, referred to as test executions, by querying
ℛ. In each execution of 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩, record all the queries made by 𝖵𝖾𝗋 along with their answers.
The union of queries made in all the executions of 𝖵𝖾𝗋 will be assigned the database 𝐷. In the
context of obfuscation for classical circuits, [CKP15] argue that, except with inverse polynomial
probability, the queries made by the evaluation algorithm can be successfully simulated by 𝐷. This
argument is shown by proving an upper bound on the probability that the evaluation algorithm
makes bad queries.

A similar analysis can also be made in our context to argue that 𝐷 suffices for successful
simulation. That is, we can argue that the state we obtain after all the executions of 𝖵𝖾𝗋 (which
could be very different from the state we started off with) can be successfully simulated using 𝐷.
However, it is crucial for our analysis to go through that 𝐷𝖵𝖾𝗋 (the query-answer pairs made during
𝖵𝖾𝗋) is independent of the state input to 𝖵𝖾𝗋.

State-dependent database simulation. For all we know, 𝐷𝖵𝖾𝗋 could indeed depend on the
input state. In this case, we can no longer appeal to the argument of [CKP15]. At a high level, the
reason is due to the fact that after each execution of 𝖵𝖾𝗋, the money state could potentially change
and this would affect the distribution of 𝐷𝖵𝖾𝗋 in the further executions of 𝖵𝖾𝗋 in such a way that
the execution of 𝖵𝖾𝗋 on the final state (which could be different from the input state in the first
execution of 𝖵𝖾𝗋) cannot be simulated using the database 𝐷.

Instead, we will rely upon a technique due to [AK22], who studied a similar problem in the
context of copy-protection. They showed that by randomizing the number of executions, one can
argue that the execution of 𝖵𝖾𝗋 on the state obtained after all the test executions can be successfully
simulated using 𝐷, except with inverse polynomial probability. That is, suppose the initial state is
(𝑠, 𝜌

(0)
𝑠) and after running 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩, 𝑡 number of times where 𝑡 $←− {0, 1, · · · , 𝑇}, let the resulting

state be (𝑠, 𝜌
(𝑡)
𝑠). Let 𝐷 be as defined before. Then, we have the guarantee that 𝖵𝖾𝗋 accepts (𝑠, 𝜌(𝑡)𝑠),

except with inverse polynomial probability, even when ℛ is simulated using 𝐷. This is because
the sum of the number of bad queries we encounter during 𝑇 + 1 verifications is bounded by
|𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍|. Then there are only at most 𝜖−1|𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍| points 𝑡′ ∈ {0, 1, · · · , 𝑇} such
that the probability of making a bad query during the (𝑡′+1)𝑡𝑕 verification is at least 𝜖. So when 𝑇
is large enough, there is a good chance that we choose 𝑡 such that the probability of making a bad

8

query during the next verification (i.e. the (𝑡+ 1)𝑡𝑕 verification if you count from the beginning) is
small, in which case 𝐷 can simulate ℛ well.

This suggests the following attack on the quantum money scheme. On input a money state
(𝑠, 𝜌𝑠), do the following:

• Run 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩, 𝑡 times, also referred to as test executions. The number of times we need
to run 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩, namely 𝑡, is randomized as per [AK22]. Let 𝐷 be the set of query-answer
pairs made by 𝖵𝖾𝗋 to ℛ during the test executions. Denote 𝜌(𝑡)𝑠 to be the state obtained after
𝑡 executions of 𝖵𝖾𝗋.

• Let 𝖵𝖾𝗋𝐷,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ be the verification circuit as defined earlier.

• Using quantum access to 𝖯𝖲𝖯𝖠𝖢𝖤, synthesize two states (𝑠, 𝜎′𝑠) and (𝑠, 𝜎′′𝑠), as per Section 2.1,
such that both the states are accepted by 𝖵𝖾𝗋𝐷,|𝖯𝖲𝖯𝖠𝖢𝖤⟩.

• Output (𝑠, 𝜎′𝑠) and (𝑠, 𝜎′′𝑠).

From the witness synthesis method, we have the guarantee that (𝑠, 𝜎′𝑠) and (𝑠, 𝜎′′𝑠) are both accepted
by 𝖵𝖾𝗋𝐷,|𝖯𝖲𝖯𝖠𝖢𝖤⟩. However, this is not sufficient to prove that the above attack works. Remember
that the adversary is supposed to output two states that are both accepted by 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩. Un-
fortunately, there is no guarantee that 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ accepts these two states. Indeed, both 𝜎′𝑠 and
𝜎′′𝑠 could be quite different from 𝜌

(𝑡)
𝑠 . Hence, the above attack does not work.

Every mistake we make is progress. Let us understand why the above attack does not work.
Note that as long as 𝖵𝖾𝗋 does not make any bad query (i.e., a query in 𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪ 𝐷𝖬𝗂𝗇𝗍 but not
contained in 𝐷), it cannot distinguish whether its queries are being simulated by 𝐷 or ℛ. However,
when 𝖵𝖾𝗋 is executed on (𝑠, 𝜎′𝑠) or (𝑠, 𝜎′′𝑠), we can no longer upper bound the probability that 𝖵𝖾𝗋
will not make any bad queries.

We modify the above approach as follows: whenever 𝖵𝖾𝗋 makes bad queries, we can update the
database 𝐷 to contain the bad queries along with the correct answers (i.e., answers generated using
ℛ). Once 𝐷 is updated, we can synthesize two new states using 𝖵𝖾𝗋𝐷,|𝖯𝖲𝖯𝖠𝖢𝖤⟩. We repeat this
process until we have synthesized two states that are accepted by 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩.

Is there any guarantee that this process will stop? Our key insight is that whenever we make a
mistake and synthesize states that are not accepted by 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ then we necessarily learn a new
query in 𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍 that is not contained in 𝐷. Thus, with each mistake, we make progress.
Since there are only a polynomial number of queries in 𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍, we will ultimately end up
synthesizing two states that are accepted by 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩.

Our Attack. With this modification, we have the following attack. On input a money state
(𝑠, 𝜌𝑠), do the following:

• Test phase: Run 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩, 𝑡 times, also referred to as test executions. The number of
times we need to run 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩, namely 𝑡, is randomized as per [AK22]. Let 𝐷 be the
set of query-answer pairs made by 𝖵𝖾𝗋 to ℛ during the test executions. Denote 𝜌(𝑡)𝑠 to be the
state obtained after 𝑡 executions of 𝖵𝖾𝗋.

9

• Update phase: Repeat the following polynomially many times. Let 𝖵𝖾𝗋𝐷,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ be the veri-
fication circuit as defined earlier. Using quantum access to 𝖯𝖲𝖯𝖠𝖢𝖤, synthesize a state (𝑠, 𝜎𝑠)
as per Section 2.1, such that the state is accepted by 𝖵𝖾𝗋𝐷,|𝖯𝖲𝖯𝖠𝖢𝖤⟩. Run 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ on this
state and include any new queries made by 𝖵𝖾𝗋 to ℛ in 𝐷.

• Let 𝐷1, . . . , 𝐷poly be the databases obtained after every execution during the update phase.

• Using quantum access to 𝖯𝖲𝖯𝖠𝖢𝖤, synthesize two states (𝑠, 𝜎′𝑠) and (𝑠, 𝜎′′𝑠) such that both the
states are accepted by 𝖵𝖾𝗋𝐷𝑗 ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ for some randomly chosen 𝑗.

• Output (𝑠, 𝜎′𝑠) and (𝑠, 𝜎′′𝑠).

In the technical sections, we analyze the above attack and prove that it works.

2.2.2 𝖪𝖾𝗒𝖦𝖾𝗇 and 𝖬𝗂𝗇𝗍: Quantum Queries to ℛ

The important point to note here is the form of our aforementioned attacker. It only takes advantage
of the fact that 𝖵𝖾𝗋 makes classical queries to ℛ. When 𝖪𝖾𝗒𝖦𝖾𝗇 and 𝖬𝗂𝗇𝗍 make quantum queries
to ℛ while 𝖵𝖾𝗋 makes classical queries to ℛ, we can still run the attacker. What is left is to show
that the same attacker works even when 𝖪𝖾𝗒𝖦𝖾𝗇 and 𝖬𝗂𝗇𝗍 make quantum queries to ℛ.

The main difficulty in carrying out the intuitions in Section 2.2.1 to the case where 𝖪𝖾𝗒𝖦𝖾𝗇 and
𝖬𝗂𝗇𝗍 make quantum queries to ℛ is that it’s difficult to define analogue of 𝐷𝖪𝖾𝗒𝖦𝖾𝗇 and 𝐷𝖬𝗂𝗇𝗍. To
give a flavour of the difficulty, let’s first consider two naive attempts.

The first attempt is to define 𝐷𝖪𝖾𝗒𝖦𝖾𝗇 and 𝐷𝖬𝗂𝗇𝗍 to be those query-answer pairs asked (with
non-zero amplitudes) during 𝖪𝖾𝗒𝖦𝖾𝗇 and 𝖬𝗂𝗇𝗍. However, this attempt suffers from the problem
that in this way, 𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍 can have exponential elements. So even if each time we can make
progress in the sense that we recover some new elements in 𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍, there is no guarantee
that the update phase will terminate in polynomial time.

The second attempt is to only include queries that are asked “heavily” during 𝖪𝖾𝗒𝖦𝖾𝗇 and 𝖬𝗂𝗇𝗍.
To be more specific, let 𝐷𝖪𝖾𝗒𝖦𝖾𝗇 and 𝐷𝖬𝗂𝗇𝗍 be query-answer pairs asked with inverse polynomial
squared amplitudes during 𝖪𝖾𝗒𝖦𝖾𝗇 and 𝖬𝗂𝗇𝗍. However, with this plausible definition, the claim does
not hold that whenever the acceptance probability of 𝖵𝖾𝗋𝐷,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ is far from that of 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩,
then we can recover a query in 𝐷𝖪𝖾𝗒𝖦𝖾𝗇∪𝐷𝖬𝗂𝗇𝗍−𝐷, which is a crucial idea underlying our intuitions
in Section 2.2.1. Let us understand why this claim is not true if we adopt this definition of 𝐷𝖪𝖾𝗒𝖦𝖾𝗇

and 𝐷𝖬𝗂𝗇𝗍.
Consider the following contrived counterexample (𝖪𝖾𝗒𝖦𝖾𝗇|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩,𝖬𝗂𝗇𝗍|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩,𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩).

Suppose there exists a quantum money scheme (𝖪𝖾𝗒𝖦𝖾𝗇′|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩,𝖬𝗂𝗇𝗍′|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩,𝖵𝖾𝗋′ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩).
We modify this scheme into (𝖪𝖾𝗒𝖦𝖾𝗇|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩,𝖬𝗂𝗇𝗍|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩,𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩) as follows:

• 𝖪𝖾𝗒𝖦𝖾𝗇|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(1𝑛): outputs the secret key-public key pair of 𝖪𝖾𝗒𝖦𝖾𝗇′|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩.

• 𝖬𝗂𝗇𝗍|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑠𝑘): takes as input 𝑠𝑘, makes quantum query to ℛ on state 1√
2𝑛

∑︀2𝑛−1
𝑠=0 |𝑠⟩ |0⟩

to get a state 1√
2𝑛

∑︀2𝑛−1
𝑠=0 |𝑠⟩ |ℛ(𝑠)⟩, and then measures the first register to get a value 𝑠. It

also runs 𝖬𝗂𝗇𝗍′|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑠𝑘) to get a serial number 𝑠′ along with a state 𝜌𝑠′ . It outputs
(𝑠, 𝑠′) as the serial number and (ℛ(𝑠), 𝜌𝑠′) as the banknote.

• 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, ((𝑠, 𝑠′), (𝑕, 𝜌𝑠′))): takes as input 𝑝𝑘 and an alleged banknote ((𝑠, 𝑠′), (𝑕, 𝜌𝑠′)),
makes classical query to ℛ on the input 𝑠 to get 𝑅(𝑠) and checks if 𝑕 = ℛ(𝑠). It also checks if

10

(𝑠′, 𝜌𝑠′) is a valid money state with respect to 𝖵𝖾𝗋′ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩. Accepts if and only if both the
checks pass.

In the above counterexample, it is possible that there is no query-answer pair that is asked
with inverse polynomial squared amplitudes and thus 𝐷𝖪𝖾𝗒𝖦𝖾𝗇∪𝐷𝖬𝗂𝗇𝗍 = ∅. At the beginning 𝐷 = ∅
because we have not started to record query-answer pairs. In this case, the acceptance probability of
𝖵𝖾𝗋𝐷,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, ((𝑠, 𝑠′), (ℛ(𝑠), 𝜌𝑠′))) is smaller than or equal to 1

2𝑚 where 𝑚 is the output length of
ℛ on input length 𝑛 while the acceptance probability of 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, ((𝑠, 𝑠′), (ℛ(𝑠), 𝜌𝑠′))) is 1 if
(𝖪𝖾𝗒𝖦𝖾𝗇′|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩,𝖬𝗂𝗇𝗍′|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩,𝖵𝖾𝗋′ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩) is (perfectly) correct. However, it’s impossible
to recover a new query in 𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍 −𝐷 because it’s empty.

Purified View. Our insight is to consider an alternate world called the purified view. In this
alternate world, we run everything coherently; in more detail, we consider a uniform superposition
of ℛ, run 𝖬𝗂𝗇𝗍, 𝖪𝖾𝗒𝖦𝖾𝗇 and even the attacker coherently (i.e., no intermediate measurements). If
the attacker is successful in this alternate world then he is also successful in the real world where
ℛ and the queries made by 𝖵𝖾𝗋 to ℛ are measured. We then employ the the compressed oracle
technique by Zhandry [Zha18] to coherently recover the database of query-answer pairs recorded
during 𝖪𝖾𝗒𝖦𝖾𝗇,𝖬𝗂𝗇𝗍 and relate this with the database recorded during 𝖵𝖾𝗋. Using an involved
analysis, we then show many of the insights from the case when 𝖪𝖾𝗒𝖦𝖾𝗇,𝖬𝗂𝗇𝗍 make classical queries
to ℛ can be translated to the quantum query setting.

2.2.3 Challenges To Handling Quantum Verification Queries

It is natural to wonder whether we can similarly use the compressed oracle technique to handle
quantum queries made by 𝖵𝖾𝗋. Unfortunately, there are inherent limitations. Recall that in our
attack, the adversary records the verifier’s classical query-answer pairs in a database, uses this
to produce a classical description of a verification circuit (that does not make any queries to the
random oracle), and submits the circuit description to a 𝖯𝖲𝖯𝖠𝖢𝖤 oracle in order to synthesize a
money state. If the verifier instead makes quantum queries, then a natural idea is to use Zhandry’s
compressed oracle technique to record the quantum queries. However, there are two conceptual
challenges to implementing this idea.

First, in the compressed oracle technique, the queries are being recorded by the oracle itself in
a “database register”, and not the adversary in the cryptosystem. In our setting, we are trying to
construct an adversary to record the queries, but it does not have access to the oracle’s database
register. In general, any attempts by the adversary to get some information about the query posi-
tions of 𝖵𝖾𝗋 could potentially disturb the intermediate states of the 𝖵𝖾𝗋 algorithm; it is then unclear
how to use the original guarantees of 𝖵𝖾𝗋. Another way of saying this is that Zhandry’s compressed
oracle technique is typically used in the security analysis to show limits on the adversary’s ability
to break some cryptosystem. In our case, we want to use some kind of quantum recording technique
in the adversary’s attack.

Secondly, the natural approach to using the 𝖯𝖲𝖯𝖠𝖢𝖤 oracle is to leverage it to synthesize alleged
banknotes. However, since the 𝖯𝖲𝖯𝖠𝖢𝖤 oracle is a classical function (which may be accessed in su-
perposition), it requires polynomial-length classical strings as input. In our approach, the adversary
submits a classical description of a verification circuit with query/answer pairs hardcoded inside.
On the other hand if 𝖵𝖾𝗋 makes quantum queries, it may query exponentially many positions of the

11

random oracle ℛ in superposition, and it is unclear how to “squeeze” the relevant information about
the queries into a polynomial-sized classical string that could be utilized by the 𝖯𝖲𝖯𝖠𝖢𝖤 oracle.

This suggests that we may need a fundamentally new approach to recording quantum queries
in order to handle the case when the verification algorithm makes quantum queries.

2.3 Related Work

Quantum Money. The notion of quantum money was first conceived in the paper by Wies-
ner [Wie83]. In the same work, a construction of private-key quantum money was proposed. Wies-
ner’s construction has been well studied and its limitations [Lut10] and security guarantees [MVW12]
have been well understood. Other constructions of private-key quantum money have also been stud-
ied. Ji, Liu and Song [JLS18] construct private-key quantum money from pseudorandom quantum
states. Radian and Sattath [RS22] construct private-key quantum money with classical bank from
quantum hardness of learning with errors.

With regards to public-key quantum money, Aaronson and Christiano [AC13] present a construc-
tion of public-key quantum money in the oracle model. Zhandry [Zha21] instantiated this oracle
and showed how to construct public-key quantum money based on the existence of post-quantum
indistinguishability obfuscation (iO) [BGI+01]. Recently, Shmueli [Shm22a] showed how to achieve
public-key quantum money with classical bank, assuming post-quantum iO and quantum hardness
of learning with errors. Constructions [FGH+12; KSS21; KLS22] of public-key quantum money
from newer assumptions have also been explored although they have been susceptible to quantum
attacks [Rob21; BDG22].

Black-box Separations in Quantum Cryptography. So far, most of the existing black-box
separations in quantum cryptography have focused on extending black-box separations for classical
cryptographic primitives to the quantum setting. Hosoyamada and Yamakawa [HY20] extend the
black-box separation between collision-resistant hash functions and one-way functions [Sim98] to the
quantum setting. Austrin, Chung, Chung, Fu, Lin and Mahmoody [ACC+22] showed a black-box
separation between key agreement and one-way functions in the setting when the honest parties
can perform quantum computation but only have access to classical communication. Cao and
Xue [CX21] extended classical black-box separations between one-way permutations and one-way
functions to the quantum setting.

3 Preliminaries

For a string 𝑥, let |𝑥| denote its length. Let [𝑛] denote the set {0, 1, · · · , 𝑛 − 1} for any positive
integer 𝑛. Define the symmetric difference of two sets 𝑋 and 𝑌 to be the set of elements contained
in exactly one of 𝑋 and 𝑌 , i.e. 𝑋Δ𝑌 = (𝑋 − 𝑌) ∪ (𝑌 −𝑋).

3.1 Quantum States, Algorithms, and Oracles

A register 𝖱 is a finite-dimensional complex Hilbert space. If 𝖠,𝖡,𝖢 are registers, for example, then
the concatenation 𝖠𝖡𝖢 denotes the tensor product of the associated Hilbert spaces. For a linear
transformation 𝐿 and register 𝖱, we sometimes write 𝐿𝖱 to indicate that 𝐿 acts on 𝖱, and similarly
we sometimes write 𝜌𝖱 to indicate that a state 𝜌 is in the register 𝖱. We write Tr(·) to denote trace,
and Tr𝖱(·) to denote the partial trace over a register 𝖱.

12

For a pure state |𝜙⟩, we write 𝜙 to denote the density matrix |𝜙⟩⟨𝜙|. Let 𝐼 denote the identity
matrix. Let TD(𝜌, 𝜎) denote the trace distance between two density matrices 𝜌, 𝜎.

For a pure state |𝜙⟩ =
∑︀

𝑖 𝑎𝑖 |𝑖⟩ written in computational basis, we write |𝜙⟩ =
∑︀

𝑖 𝑎𝑖 |𝑖⟩ to denote
the conjugate of |𝜙⟩ where 𝑎𝑖 is the complex conjugate of the complex number 𝑎𝑖. The following
observation shows that what the maximally entangled state looks like in other basis.

Lemma 1. For two registers 𝖠 and 𝖡 of the same dimension 𝑁 , let (|𝑖⟩)𝑁𝑖=1 be the computational
basis and (|𝑣𝑖⟩)𝑁𝑖=1 be an arbitrary basis. Then 1√

𝑁

∑︀𝑁
𝑖=1 |𝑖⟩𝖠 |𝑖⟩𝖡 = 1√

𝑁

∑︀𝑁
𝑖=1 |𝑣𝑖⟩𝖠 |𝑣𝑖⟩𝖡 .

Proof. It’s easy to show that (|𝑣𝑖⟩)𝑁𝑖=1 also forms a basis. Suppose |𝑣𝑗⟩ =
∑︀𝑁

𝑖=1 𝑎𝑗,𝑖 |𝑖⟩. Then

1√
𝑁

𝑁∑︁
𝑖=1

|𝑖⟩𝖠 |𝑖⟩𝖡 =
𝑁∑︁
𝑗=1

|𝑣𝑗⟩⟨𝑣𝑗 |𝖠
𝑁∑︁

𝑗′=1

|𝑣𝑗′⟩⟨𝑣𝑗′ |𝖡
1√
𝑁

𝑁∑︁
𝑖=1

|𝑖⟩𝖠 |𝑖⟩𝖡

=
1√
𝑁

𝑁∑︁
𝑗=1

𝑁∑︁
𝑗′=1

𝑁∑︁
𝑖=1

𝑎𝑗,𝑖𝑎𝑗′,𝑖 |𝑣𝑗⟩𝖠 |𝑣𝑗′⟩𝖡

=
1√
𝑁

𝑁∑︁
𝑗=1

𝑁∑︁
𝑗′=1

⟨𝑣𝑗 |𝑣𝑗′⟩ |𝑣𝑗⟩𝖠 |𝑣𝑗′⟩𝖡

=
1√
𝑁

𝑁∑︁
𝑗=1

|𝑣𝑗⟩𝖠 |𝑣𝑗⟩𝖡

where we use the fact that
∑︀𝑁

𝑗=1 |𝑣𝑗⟩⟨𝑣𝑗 |𝖠 and
∑︀𝑁

𝑗′=1 |𝑣𝑗′⟩⟨𝑣𝑗′ |𝖡 are identity.

Quantum Circuits We specify the model of quantum circuits that we work with in this paper.
For convenience we fix the universal gate set {𝐻,𝐶𝑁𝑂𝑇 , 𝑇} [NC00, Chapter 4] (although our results
hold for any universal gate set consisting of gates with algebraic entries). Quantum circuits can
include unitary gates from the aforementioned universal gate set, as well as non-unitary gates that
(a) introduce new qubits initialized in the zero state, (b) trace them out, or (c) measure them in
the standard basis. We say that a circuit uses space 𝑠 if the total number of qubits involved at
any time step of the computation is at most 𝑠. The description of a circuit is a sequence of gates
(unitary or non-unitary) along with a specification of which qubits they act on.

We call a sequence of quantum circuits 𝐶 = (𝐶𝑥)𝑥∈{0,1}* a quantum algorithm. We say that 𝐶
is polynomial-time if there exists a polynomial 𝑝 such that 𝐶𝑥 has size at most 𝑝(|𝑥|). We say that
𝐶 is polynomial-space if there exists a polynomial 𝑝 such that 𝐶𝑥 uses at most 𝑝(|𝑥|) space.

Let 𝐶 = (𝐶𝑥)𝑥∈{0,1}* denote a quantum algorithm. Given a string 𝑥 ∈ {0, 1}* and a state 𝜌
whose number of qubits matches the input size of the circuit 𝐶𝑥, we write 𝐶(𝑥, 𝜌) to denote the
output of circuit 𝐶𝑥 on input 𝜌. The output will in general be a mixed state as the circuit 𝐶𝑥 can
perform measurements.

We say that a quantum algorithm 𝐶 = (𝐶𝑥)𝑥∈{0,1}* is time-uniform (or simply uniform) if there
exists a polynomial-time Turing machine that on input 𝑥 outputs the description of 𝐶𝑥. Similarly
we say that 𝐶 is space-uniform if there exists a polynomial-space Turing machine that on input 𝑥
outputs the description of 𝐶𝑥.

13

Oracle Algorithms Oracle algorithms are quantum algorithms whose circuits, in addition to
having the gates as described above, have the ability to query (perhaps in superposition) a function
𝑂 (called an oracle) which may act on many qubits. This is essentially the same as the standard
quantum query model [NC00, Chapter 6], except the circuits may perform non-unitary operations
such as measurement, reset, and tracing out. Each oracle call is counted as a single gate towards the
size complexity of a circuit. The notion of time- and space-uniformity for oracle algorithms is the
same as with non-oracle algorithms: there is a polynomial-time/polynomial-space Turing machine
– which does not have access to the oracle – that outputs the description of the circuits.

Given an oracle 𝒪 = (𝒪𝑛)𝑛∈ℕ where each 𝒪𝑛 : {0, 1}𝑛 → {0, 1} is an 𝑛-bit boolean function,
we write 𝐶𝒪 = (𝐶𝒪𝑥)𝑥∈{0,1}* to denote an oracle algorithm where each circuit 𝐶𝑥 can query any of
the functions (𝒪𝑛)𝑛∈ℕ (provided that the oracle does not act on more than the number of qubits of
𝐶𝑥).

In this paper we distinguish between classical and quantum queries. We say that an oracle
algorithm 𝐶𝒪 makes quantum queries if it can query 𝒪 in superposition; this is akin to the standard
query model. We say that 𝐶𝒪 makes classical queries if, before every oracle call, the input qubits
to the oracle are measured in the standard basis. In this case, the algorithm would be querying the
oracle on a probabilistic mixture of inputs. For clarity, we write 𝐶 |𝒪⟩ to denote 𝐶 making quantum
queries, and 𝐶𝒪 to denote 𝐶 making classical queries.

A specific oracle that we consider throughout is the 𝖯𝖲𝖯𝖠𝖢𝖤 oracle. What we mean by this
is a sequence of functions (𝖯𝖲𝖯𝖠𝖢𝖤𝑛)𝑛∈ℕ where for every 𝑛, the function 𝖯𝖲𝖯𝖠𝖢𝖤𝑛 decides 𝑛-bit
instances of a 𝖯𝖲𝖯𝖠𝖢𝖤 complete language (such as Quantified Satisfiability [Pap94]).

We state the following observation.

Lemma 2. Let 𝐶 |𝖯𝖲𝖯𝖠𝖢𝖤⟩ = (𝐶
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
𝑥)𝑥∈{0,1}* denote a polynomial-time oracle algorithm (not

necessarily uniform) that makes quantum queries to 𝖯𝖲𝖯𝖠𝖢𝖤 and has one-bit classical output. Then
there exists a polynomial-space algorithm 𝐷 = (𝐷𝑥)𝑥∈{0,1}* such that for all 𝑥 ∈ {0, 1}*, 𝐷𝑥 is a
unitary and the functionality of 𝐶 |𝖯𝖲𝖯𝖠𝖢𝖤⟩𝑥 is exactly the same as introducing polynomial number
of qubits initialized in the zero state, applying unitary 𝐷𝑥 and then measuring the first qubit in
computational basis to get a classical output. Furthermore if 𝐶 is uniform, then 𝐷 is space-uniform.

Proof. This follows because for a polynomial-time (oracle) algorithm, we can always introduce new
qubits only at the beginning and defer measurements and tracing out to the end, and each oracle
query in 𝐶

|𝖯𝖲𝖯𝖠𝖢𝖤⟩
𝑥 to the 𝖯𝖲𝖯𝖠𝖢𝖤 oracle can be computed by first introducing several ancillas

initialized in the zero state and then applying a unitary that implements the classical polynomial
space algorithm for the PSPACE-complete language and uncomputes all the intermediate results.
Furthermore, the description of the unitary can be generated by polynomial-space Turing machines.

Finally, we will consider hybrid oracles 𝒪 that are composed of two separate oracles ℛ and the
|𝖯𝖲𝖯𝖠𝖢𝖤⟩ oracle. In this model, the oracle algorithm 𝐶𝒪 makes classical queries to ℛ, and quantum
queries to 𝖯𝖲𝖯𝖠𝖢𝖤. We abuse the notation and refer to algorithms having access to hybrid oracles
as oracle algorithms.

State Synthesis We define the following “state complexity class”. Intuitively it captures the set
of quantum states that can be synthesized by polynomial-space quantum algorithms.

14

Definition 1 (𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤). 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤 is the class of all sequences (𝜌𝑥)𝑥∈𝑆 for some set 𝑆 ⊆
{0, 1}* (called the promise) such that there is a polynomial 𝑝 where each 𝜌𝑥 is a density matrix
on 𝑝(|𝑥|) qubits, and for every polynomial 𝑞 there exists a space-uniform polynomial-space quantum
algorithm 𝐶 = (𝐶𝑥)𝑥∈{0,1}* such that for all 𝑥 ∈ 𝑆, the circuit 𝐶𝑥 takes no inputs and outputs a
density matrix 𝜎 such that TD(𝜎, 𝜌𝑥) ≤ exp(−𝑞(|𝑥|)).

We say that the state sequence (𝜌𝑥)𝑥∈𝑆 is pure if each 𝜌𝑥 is a pure state |𝜓𝑥⟩⟨𝜓𝑥|; in that case
we usually denote the sequence by (|𝜓𝑥⟩)𝑥∈𝑆.

The following theorem says that, for 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤 sequences that are pure, there in fact is a
polynomial-time oracle algorithm that makes quantum queries to a 𝖯𝖲𝖯𝖠𝖢𝖤 oracle to synthesize
the state sequence.

Theorem 2 (Section 5 of [RY21]). Let (|𝜓𝑥⟩)𝑥∈𝑆 be a 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤 family of pure states. Then
there exists a polynomial-time oracle algorithm 𝐴|𝖯𝖲𝖯𝖠𝖢𝖤⟩ such that on input 𝑥 ∈ 𝑆, the algorithm
outputs a pure state that is exp(−|𝑥|)-close in trace distance to |𝜓𝑥⟩.

3.2 Public Key Quantum Money Schemes

Definition 2 (Oracle-aided Public Key Quantum Money Schemes). A oracle-aided public key quan-
tum money scheme 𝒮𝒪 consists of three uniform polynomial-time oracle algorithms

(︀
𝖪𝖾𝗒𝖦𝖾𝗇𝒪,𝖬𝗂𝗇𝗍𝒪,𝖵𝖾𝗋𝒪

)︀
:

• 𝖪𝖾𝗒𝖦𝖾𝗇𝒪(1𝑛): takes as input a security parameter 𝑛 in unary notation and generates secret
key-public key pair (𝑠𝑘, 𝑝𝑘).

• 𝖬𝗂𝗇𝗍𝒪(𝑠𝑘): takes as input 𝑠𝑘 and mints banknote 𝜌𝑠 associated with the serial number 𝑠.

• 𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜌𝑠)): takes as inputs 𝑝𝑘 and an alleged banknote (𝑠, 𝜌𝑠) and outputs 𝜌′𝑠 ⊗ |𝐱⟩⟨𝐱|,
where 𝐱 ∈ {𝖠𝖼𝖼𝖾𝗉𝗍,𝖱𝖾𝗃𝖾𝖼𝗍}.

For simplicity, when we don’t care about the output 𝜌′𝑠 in 𝖵𝖾𝗋𝒪, we sometimes denote the event that
𝜌′𝑠 ⊗ |𝖠𝖼𝖼𝖾𝗉𝗍⟩⟨𝖠𝖼𝖼𝖾𝗉𝗍| ← 𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜌𝑠)) as 𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜌𝑠)) accepts.

We require the above oracle-aided public key quantum money scheme to satisfy both correctness
and security properties.

3.2.1 Correctness

We first consider the traditional definition of correctness considered by prior works. Roughly speak-
ing, correctness states that the verification algorithm accepts the money state produced by the
minting algorithm. Later, we consider a stronger notion called reusability which stipulates that the
verification process on a valid money outputs another valid money state (not necessarily the same
as before).

Definition 3 (Correctness). An oracle-aided public key quantum money scheme
(︀
𝖪𝖾𝗒𝖦𝖾𝗇𝒪,𝖬𝗂𝗇𝗍𝒪,𝖵𝖾𝗋𝒪

)︀
is 𝛿-correct if the following holds for every 𝑛 ∈ ℕ:

𝖯𝗋
[︁
𝜌′𝑠 ⊗ |𝖠𝖼𝖼𝖾𝗉𝗍⟩⟨𝖠𝖼𝖼𝖾𝗉𝗍| ← 𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜌𝑠)) : (𝑠𝑘,𝑝𝑘)←𝖪𝖾𝗒𝖦𝖾𝗇𝒪(1𝑛)

(𝑠,𝜌𝑠)←𝖬𝗂𝗇𝗍𝒪(𝑠𝑘)

]︁
≥ 𝛿,

where the probability is also over the randomness of 𝒪.
We omit 𝛿 when 𝛿 ≥ 1− 𝗇𝖾𝗀𝗅(𝑛).

15

Reusability. In this work, we consider quantum money schemes satisfying the stronger notion of
reusability.

Definition 4 (Reusability). An oracle-aided public key quantum money scheme
(︀
𝖪𝖾𝗒𝖦𝖾𝗇𝒪,𝖬𝗂𝗇𝗍𝒪,𝖵𝖾𝗋𝒪

)︀
is 𝛿-reusable if the following holds for every 𝑛 ∈ ℕ and for every polynomial 𝑞(𝑛):

𝖯𝗋

⎡⎣𝜌(𝑞(𝑛))𝑠 ⊗ |𝖠𝖼𝖼𝖾𝗉𝗍⟩⟨𝖠𝖼𝖼𝖾𝗉𝗍| ← 𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜌(𝑞(𝑛)−1)𝑠)) :

(𝑠𝑘,𝑝𝑘)←𝖪𝖾𝗒𝖦𝖾𝗇𝒪(1𝑛)

(𝑠,𝜌
(0)
𝑠)←𝖬𝗂𝗇𝗍𝒪(𝑠𝑘)

∀𝑖∈[𝑞(𝑛)−1], 𝜌
(𝑖+1)
𝑠 ⊗|𝐱⟩⟨𝐱|←𝖵𝖾𝗋𝒪(𝑝𝑘,(𝑠,𝜌

(𝑖)
𝑠))

⎤⎦ ≥ 𝛿,
where the probability is also over the randomness of 𝒪.

We omit 𝛿 when 𝛿 ≥ 1− 𝗇𝖾𝗀𝗅(𝑛).

In general, gentle measurement lemma [Win99] can be invoked to prove that correctness generically
implies reusability. However, this is not the case in our context. The reason being that the ver-
ification algorithm performs intermediate measurements whenever it makes classical queries to an
oracle and these measurements cannot be deferred to the end.

3.2.2 Security

We consider the following security notion. Basically, it says that no efficient adversary can produce
two alleged banknotes from one valid banknote with the same serial number.

Definition 5 (Security). An oracle-aided public key quantum money scheme
(︀
𝖪𝖾𝗒𝖦𝖾𝗇𝒪,𝖬𝗂𝗇𝗍𝒪,𝖵𝖾𝗋𝒪

)︀
is 𝛿-secure if the following holds for every 𝑛 ∈ ℕ and for every uniform polynomial-time oracle
algorithm 𝒜𝒪:

𝖯𝗋

[︃
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜑1)) accepts and 𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜑2)) accepts :

(𝑠𝑘,𝑝𝑘)←𝖪𝖾𝗒𝖦𝖾𝗇𝒪(1𝑛)

(𝑠,𝜌𝑠)←𝖬𝗂𝗇𝗍𝒪(𝑠𝑘)

𝜑←𝒜𝒪(𝑝𝑘,(𝑠,𝜌𝑠))

]︃
≤ 𝛿,

where the probability is also over the randomness of 𝒪. By 𝜑𝑖, we mean the reduced density matrix
of 𝜑 on the 𝑖𝑡𝑕 register.

We omit 𝛿 when 𝛿 ≤ 𝗇𝖾𝗀𝗅(𝑛).

3.3 Jordan’s Lemma and Alternating Projections

In this section, we analyze alternating projection algorithm, a tool for estimating the acceptance of
the verification algorithm on a state with only one copy of that state, which was introduced by Mar-
riott and Watrous [MW05] for witness-preserving error reduction. This section follows section 4.1
in [CMSZ22] mostly.

For two binary-outcome projective measurements 𝑀1 = {Π1, 𝐼 − Π1},𝑀2 = {Π2, 𝐼 − Π2}, the
alternating projection algorithm applies measurements𝑀1 and𝑀2 alternatively (Π1,Π2 corresponds
to outcome 1) until a stopping condition is met. The following lemma can help us analyze the
distribution of the outcomes by decomposing it into several small subspaces.

Lemma 3 (Jordan’s Lemma). For any two projectors Π1, Π2, there exists an orthogonal decompo-
sition of the Hilbert space into one-dimensional and two-dimensional subspaces 𝑆𝑖 that are invariant
under both Π1 and Π2. Moreover, if 𝑆𝑖 is a one-dimensional subspace, then Π1 and Π2 act as
identity or rank-zero projectors inside 𝑆𝑖. If 𝑆𝑖 is a two-dimensional subspace, then Π1 and Π2 are
rank-one projectors inside 𝑆𝑖. To be more specific, there are two unit vectors |𝑣𝑖⟩ and |𝑤𝑖⟩ such that
inside 𝑆𝑖, Π1 projects on |𝑣𝑖⟩ and Π2 projects on |𝑤𝑖⟩.

16

Let measurement 𝑀𝖩𝗈𝗋 = {𝑃𝑖}𝑖 where 𝑃𝑖 is the projector onto the subspace 𝑆𝑖 defined above.
Then both 𝑀1 and 𝑀2 commute with 𝑀𝖩𝗈𝗋. Therefore the distribution of outcomes of each 𝑀1 and
𝑀2 will not change if we insert 𝑀𝖩𝗈𝗋 at any point of the alternating projections. We can analyze the
distribution of outcome sequence by first applying 𝑀𝖩𝗈𝗋 and then applying 𝑀1, 𝑀2 alternatively.
For each two-dimensional subspace 𝑆𝑖, denote 𝑝𝑖 := |⟨𝑣𝑖|𝑤𝑖⟩|2. (This can be seen as a quantity that
measures the angle between Π1 and Π2 inside 𝑆𝑖.)

For now, let’s assume that there are only two-dimensional subspaces in the decomposition. The
general case where there exist one-dimensional subspaces is essentially the same and can be handled
similarly. Then, Π1 =

∑︀
𝑖 |𝑣𝑖⟩⟨𝑣𝑖| ,Π2 =

∑︀
𝑖 |𝑤𝑖⟩⟨𝑤𝑖|.4

Now let’s state a result first proven in [MW05] and restated in many later works (e.g., [CMSZ22]).

Proposition 1. If initially the state is |𝑣𝑖⟩5 and we apply 𝑀2, 𝑀1 alternatively for 𝑁 times, then
the outcome sequence 𝑏1, 𝑏2, 𝑏3, · · · , 𝑏2𝑁 will follow the distribution below

1. Set 𝑏0 = 1 (because applying 𝑀1 to |𝑣𝑖⟩ will give outcome 1).

2. For each 𝑗, we set 𝑏𝑗 to be 𝑏𝑗−1 with probability 𝑝𝑖, and 1− 𝑏𝑗−1 otherwise.

Moreover, whenever we measure 𝑀1 and get outcome 1, we will go back to state |𝑣𝑖⟩.

Then the fraction of bit-flips in the outcome sequence will be a good estimation of 1− 𝑝𝑖 if we
start from |𝑣𝑖⟩.

3.4 Compressed Oracle Techniques

In this section, we present some basics of compressed oracle techniques introduced by Zhandry [Zha18].
For a quantum query algorithm 𝐴 interacting with a random oracle, let’s assume that 𝐴 only

queries the random oracle with 𝑛-bit input and gets 1-bit output for simplicity. By the deferred
measurement principle, without loss of generality we can write 𝐴 in the form of a sequence of
unitaries 𝑈0, 𝑈𝑓 , 𝑈1, 𝑈𝑓 , · · · , 𝑈𝑘−1, 𝑈𝑓 , 𝑈𝑘 where 𝑈𝑖 is the unitary that prepares the (𝑖+ 1)𝑡𝑕 query
of 𝐴 to 𝑅 and 𝑈𝑓 maps |𝑥⟩ |𝑦⟩ to |𝑥⟩ |𝑦 ⊕ 𝑓(𝑥)⟩ where 𝑓 is the chosen random function from all the
functions with 𝑛-bit input and 1-bit output.

Then the behavior of 𝐴 when it is interacting with a random oracle can be analyzed in the
following purified view :

• Initialize register 𝖠 to be the input for 𝐴 (along with enough ancillas |0⟩) and initialize regis-
ter 𝖥 to be a uniform superposition of the truth tables of all functions from [2𝑛] to {0, 1} (to be
more specific, 𝖥 is initialized to 1√

22𝑛

∑︀
𝑓 is a 2𝑛-bit string |𝑓⟩ where |𝑓⟩ = |𝑓(0)⟩ |𝑓(1)⟩ · · · |𝑓(2𝑛 − 1)⟩

and |𝑓(𝑖)⟩ consists of one qubit).

• Apply 𝑈0, 𝑈𝐹 , 𝑈1, 𝑈𝐹 , · · · , 𝑈𝑘−1, 𝑈𝐹 , 𝑈𝑘 where 𝑈𝑖 is acting on 𝖠 and 𝑈𝐹 maps |𝑥⟩ |𝑦⟩ |𝑓⟩𝖥 to
|𝑥⟩ |𝑦 ⊕ 𝑓(𝑥)⟩ |𝑓⟩𝖥.

4Generally, for each one-dimensional subspace 𝑆𝑖 on which Π1 acts as identity, we can set |𝑣𝑖⟩ to be the vector that
spaces 𝑆𝑖. Let 𝐴 be the set of index 𝑖 such that Π1 is not a rank-zero projector inside 𝑆𝑖. Then Π1 =

∑︀
𝑖∈𝐴 |𝑣𝑖⟩⟨𝑣𝑖|.

Similarly Π2 =
∑︀

𝑖∈𝐵 |𝑤𝑖⟩⟨𝑤𝑖| where 𝐵 and |𝑤𝑖⟩ are defined in a similar way.
5The same holds for each |𝑣𝑖⟩ (𝑖 ∈ 𝐴) generally where we define 𝑝𝑖 = 1 if Π1 and Π2 act both as identity in

subspace 𝑆𝑖 and we define 𝑝𝑖 = 0 if Π1 acts as identity while Π2 acts as zero-projector in subspace 𝑆𝑖.

17

In fact, the output (mixed) state of 𝐴 (we also take the randomness of 𝑓 into account) equals to
the reduced density matrix on the output register of the state we obtain from the above procedure as
𝑈𝑖, 𝑈𝐹 commutes with computational basis measurement on 𝖥. More generally, the output (mixed)
state of a sequence of algorithms with access to random oracle can also be analyzed in the same
way.

Definition 6 (Fourier basis). |0̂⟩ := |+⟩ = 1√
2
(|0⟩+ |1⟩). |1̂⟩ := |−⟩ = 1√

2
(|0⟩ − |1⟩).

One can easily check that {|0̂⟩ , |1̂⟩} is a basis because it’s just the result of applying hermitian
matrix 𝐻 to |0⟩ , |1⟩. We call this basis as Fourier basis.

The following fact is simple and easy to check, but crucial in compressed oracle techniques.
Roughly speaking, it says that if we see 𝐶𝑁𝑂𝑇 in Fourier basis, its control bit and target bit swaps.

Fact 1. The operator defined by |𝑦⟩ |𝑦′⟩ → |𝑦 ⊕ 𝑦′⟩ |𝑦′⟩ for all 𝑦, 𝑦′ ∈ {0, 1} is the same as the
operator defined by |̂︀𝑦⟩ |̂︀𝑦′⟩ → |𝑦⟩ |𝑦′ ⊕ 𝑦⟩ for all 𝑦, 𝑦′ ∈ {0, 1}.

By Fact 1, when we look at the last two registers in Fourier basis, 𝑈𝐹 becomes

|𝑥⟩ |̂︀𝑦⟩ | ̂︀𝑦0⟩ | ̂︀𝑦1⟩ · · · |𝑦2𝑛−1⟩ → |𝑥⟩ |̂︀𝑦⟩ | ̂︀𝑦0⟩ | ̂︀𝑦1⟩ · · · |̂︂𝑦𝑥−1⟩ |𝑦𝑥 ⊕ 𝑦⟩ |̂︂𝑦𝑥+1⟩ · · · |𝑦2𝑛−1⟩ .

Initially, 𝖥 is |0̂⟩ |0̂⟩ · · · |0̂⟩ and each call of 𝑈𝐹 only changes one position if we look at the last
two registers in Fourier basis. So after 𝑘 calls of 𝑈𝐹 , the state can be written as∑︁

𝑎,𝑦0,𝑦1,··· ,𝑦2𝑛−1
such that there are at most 𝑘 non-zero

in 𝑦0, 𝑦1, · · · , 𝑦2𝑛−1

𝛼𝑎,𝑦0,𝑦1,··· ,𝑦2𝑛−1
|𝑎⟩𝖠 | ̂︀𝑦0⟩ | ̂︀𝑦1⟩ · · · |𝑦2𝑛−1⟩ .

We can record those non-0̂ into a database. To be more specific, there exists a unitary that maps
those | ̂︀𝑦0⟩ | ̂︀𝑦1⟩ · · · |𝑦2𝑛−1⟩ (perhaps along with some ancillas) to a database |𝑥1⟩ |̂︁𝑦𝑥1⟩ · · · |𝑥𝑙⟩ |̂︁𝑦𝑥𝑙

⟩
(perhaps along with some unused space) where 𝑥1 < 𝑥2 < · · · < 𝑥𝑙, ̂︁𝑦𝑥𝑖 ̸= 0̂ and 𝑙 ≤ 𝑘. That is,
there exists a unitary that can compress the oracle. Furthermore, the inverse of the unitary can
decompress the database back to the oracle.

Chernoff bound Finally, we state here a variant of the Chernoff bound that we will use.

Theorem 3 (Chernoff Bound). Suppose 𝑋1, 𝑋2, · · · , 𝑋𝑛 are independent random variables taking
values from {0, 1} such that each 𝑋𝑖 = 1 with probability 𝑝. Let 𝜇 = 𝑝𝑛. Then for any 𝛿 > 0,

𝖯𝗋

[︃
𝑛∑︁

𝑖=1

𝑋𝑖 ≥ (1 + 𝛿)𝜇

]︃
≤ 𝑒−𝛿2𝜇/(2+𝛿),

𝖯𝗋

[︃
𝑛∑︁

𝑖=1

𝑋𝑖 ≤ (1− 𝛿)𝜇

]︃
≤ 𝑒−𝛿2𝜇/2.

18

4 Synthesizing Witness States In Quantum Polynomial Space

In the classical setting it is easy to see that given a (classical) verifier circuit 𝑉 (which may make
oracle queries to 𝖯𝖲𝖯𝖠𝖢𝖤), one can find in polynomial space a witness string 𝑦 that is accepted by
𝑉 : one can simply perform brute-force search over all strings and check whether 𝑉 𝖯𝖲𝖯𝖠𝖢𝖤 accepts
𝑥.

In the section, we prove the quantum counterpart, where now the verifier circuit is quantum
and can make quantum queries to the 𝖯𝖲𝖯𝖠𝖢𝖤 oracle. We show that given the description of such
a verifier circuit, with the help of the quantum |𝖯𝖲𝖯𝖠𝖢𝖤⟩ oracle, we can efficiently synthesize a
witness state 𝜌 that is accepted by 𝑉 with probability greater than the desired guarantee (provided
that there exists a witness state with acceptance probability greater than the threshold). Formally:

Theorem 4. Let 𝑎 (called the guarantee), 𝑏 (called the threshold) be functions such that 𝑏(𝑛) −
𝑎(𝑛) ≥ 1

𝑝(𝑛) for every 𝑛 where 𝑝 is a polynomial. Let 𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩ denote a uniform oracle algorithm.
Then there exists a uniform oracle algorithm 𝖲𝗒𝗇 (called the synthesizer) such that for every 𝑥 ∈ 𝑆,

𝖯𝗋
[︁
𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑥,𝖲𝗒𝗇|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑥)) accepts

]︁
≥ 𝑎(|𝑥|)

where 𝑆 :=
{︀
𝑥 : max𝜌 𝖯𝗋

[︀
𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑥, 𝜌) accepts

]︀
≥ 𝑏(|𝑥|)

}︀
.

This theorem follows directly from Theorem 2 and the following lemma.

Lemma 4. Let 𝑎, 𝑏 be functions such that 𝑏(𝑛)− 𝑎(𝑛) ≥ 1
𝑝(𝑛) for every 𝑛 where 𝑝 is a polynomial.

Let 𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩ denote a uniform oracle algorithm, and let 𝑆 be the corresponding set as in Theorem 4.
Then there exists a 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤 family of pure states (|𝜓𝑥⟩)𝑥∈𝑆 where each state |𝜓𝑥⟩ is bipartite
on two registers (labeled 𝖬 and 𝖤) such that for every 𝑥 ∈ 𝑆,

𝖯𝗋
[︁
𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑥, 𝜌𝖬) accepts

]︁
≥ 𝑎(|𝑥|)

where 𝜌𝖬 is the reduced density matrix of |𝜓𝑥⟩ on register 𝖬, i.e. 𝜌𝖬 = Tr𝖤(𝜓𝑥).

Proof of Theorem 4. Let 𝑎′(𝑛) = 𝑎(𝑛) + exp(−𝑛) and 𝑏′(𝑛) = 𝑏(𝑛), where 𝑎(𝑛), 𝑏(𝑛) are as given
by the conditions in Theorem 4. Applying Lemma 4 with functions 𝑎′(𝑛), 𝑏′(𝑛), we obtain a
𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤 state sequence (|𝜓𝑥⟩)𝑥∈𝑆 such that for every 𝑥 ∈ 𝑆,

𝖯𝗋
[︁
𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑥, 𝜌𝖬) accepts

]︁
≥ 𝑎(|𝑥|) + exp(−|𝑥|)

where 𝑆 :=
{︀
𝑥 : max𝜌 𝖯𝗋

[︀
𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑥, 𝜌) accepts

]︀
≥ 𝑏(|𝑥|)

}︀
.

Theorem 2 implies that there exists a polynomial-time oracle algorithm 𝐴|𝖯𝖲𝖯𝖠𝖢𝖤⟩ that on input
𝑥 ∈ 𝑆, outputs a pure state |𝜙𝑥⟩ that is exp(−|𝑥|)-close to |𝜓𝑥⟩. This implies that the reduced
density matrix of 𝐴|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑥) on register 𝖬, which we denote by 𝜎𝖬, is also exp(−|𝑥|)-close to
𝜌𝖬 = Tr𝖤(𝜓𝑥) (this follows from the fact that trace distance is non-increasing when you discard
subsystems). Thus for every 𝑥 ∈ 𝑆, we have

𝖯𝗋
[︁
𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑥, 𝜎𝖬) accepts

]︁
≥ 𝑎(|𝑥|)

because otherwise 𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩ would be able to distinguish between 𝜌𝖬 and 𝜎𝖬 with more than
exp(−|𝑥|) bias.

19

The synthesizer 𝖲𝗒𝗇 works as follows: on input 𝑥 ∈ 𝑆 it runs the oracle algorithm 𝐴|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑥)
to obtain a pure state |𝜙𝑥⟩, and then traces out the 𝖤 register and returns the remaining state on
the 𝖬 register as output.

The remainder of Section 4 will be devoted to the proof of Lemma 4. We will use the techniques
and results from [MW05] (also presented in Section 3.3 for completeness). In Section 4.1 we present
the description of the state family along with the description of a circuit family that generates
(an approximation of) the state family. In Section 4.2 we prove that the state family satisfies the
requirements.

4.1 Description of the State Family and Circuit Family

In this section, we implement our ideas from Section 2.1 in a formal way. Recall that our algorithm
in Section 2.1 repeatedly does the following (which we will call a trial): start from a maximally
entangled state, estimate the acceptance probability coherently using MW technique and if the
estimated acceptance probability high, then output the remaining state. Roughly speaking, the
target state we aim to generate will be the remaining state after a successful trial (a trial is successful
if the estimated acceptance probability is high). Looking ahead, in order to prove Lemma 4, we
only need to show two things. Firstly, our algorithm actually outputs a good approximation of the
target state, so our target state forms a 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤 family; Secondly, our target state will indeed
be accepted with high probability.

Now let’s start by giving a formal description of the state family.

The state family Let 𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩ be the uniform oracle algorithm given in the condition of
Lemma 4. From Lemma 2, there exists a space-uniform polynomial-space algorithm ̂︀𝖵 = (̂︀𝖵𝑥)𝑥∈{0,1}*

such that ̂︀𝖵𝑥 is unitary and the functionality of 𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩𝑥 is exactly the same as introducing 𝑘(|𝑥|)
new ancilla qubits in |0⟩, applying unitary ̂︀𝖵𝑥 and then measuring the first qubit in computational
basis where 𝑘 is a polynomial. Let 𝑚(|𝑥|) be the number of qubits that 𝖵𝑥 takes as input, which is
also a polynomial.

Fix 𝑥 ∈ 𝑆, 𝑛 = |𝑥|. We sometimes omit subscript 𝑥 when it is clear from the context. For
convenience, we write 𝑚(𝑛), 𝑘(𝑛) as 𝑚, 𝑘 respectively from now on.

Let 𝖬 denote the register containing the𝑚 input qubits. Let 𝖪 denote the register containing the
𝑘 ancilla qubits. Let 𝖠𝗇𝗌 denote the first qubit (i.e. the one that will be measured in computational
basis to decide whether 𝖵

|𝖯𝖲𝖯𝖠𝖢𝖤⟩
𝑥 accepts or rejects, and outcome 1 means accept while outcome 0

means reject). Let 𝖠𝗎𝗑 denote a register containing another 𝑚 fresh qubits.
Here we define two binary-outcome projective measurements on 𝖬𝖪. Define 𝑃 1 := |0𝑘⟩⟨0𝑘|𝖪,

𝑃 0 := 𝐼𝖬𝖪 − 𝑃 1 and 𝑃 := {𝑃 0, 𝑃 1}. Intuitively, 𝑃 1 corresponds to “valid input subspace” (i.e.,
the ancilla qubits are initialized properly). Define 𝑄1 := ̂︀𝖵†𝑥 |1⟩⟨1|𝖠𝗇𝗌 ̂︀𝖵𝑥, 𝑄

0 := ̂︀𝖵†𝑥 |0⟩⟨0|𝖠𝗇𝗌 ̂︀𝖵𝑥 and
𝑄 := {𝑄0, 𝑄1}. Intuitively, 𝑄1 corresponds to the state that will be accepted if we apply ̂︀𝖵𝑥 to it
and then measure 𝖠𝗇𝗌 in computational basis. So 𝑄 checks whether 𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩𝑥 will accept as long as
register 𝖪 is initialized properly. The following simple observation is implicitly shown in [MW05].

Observation 1. The maximum acceptance probability of 𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑥, ·) is exactly the largest eigen-
value of 𝑃 1𝑄1𝑃 1.

20

Proof. First, we show that the maximum eigenvalue of 𝑃 1𝑄1𝑃 1 is upper bounded by the maximum
acceptance probability of 𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑥, ·).

For any pure state |𝜑⟩ on register 𝖬𝖪, let 𝜌𝖬 = 1
‖𝑃 1|𝜑⟩‖2Tr𝖪(𝑃

1 |𝜑⟩⟨𝜑|𝑃 1). Then

⟨𝜑|𝑃 1𝑄1𝑃 1 |𝜑⟩ =Tr(𝑄1𝑃 1 |𝜑⟩⟨𝜑|𝑃 1) = ‖𝑃 1 |𝜑⟩ ‖2Tr(𝑄1 1

‖𝑃 1 |𝜑⟩ ‖2
𝑃 1 |𝜑⟩⟨𝜑|𝑃 1)

=‖𝑃 1 |𝜑⟩ ‖2Tr(𝑄1(𝜌𝖬 ⊗ |0𝑘⟩⟨0𝑘|𝖪))

=𝖯𝗋
[︁
𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑥, 𝜌𝖬) accepts

]︁
≤max

𝜌
𝖯𝗋

[︁
𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑥, 𝜌) accepts

]︁
Second, we show that the maximum eigenvalue of 𝑃 1𝑄1𝑃 1 is lower bounded by the maximum

acceptance probability of 𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑥, ·). By a simple convexity argument, we can assume without
loss of generality, the acceptance probability of 𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑥, ·) achieves its maximum on pure state
|𝜑0⟩. Let |𝜑⟩ = |𝜑0⟩ |0𝑘⟩. Then

⟨𝜑|𝑃 1𝑄1𝑃 1 |𝜑⟩ = 𝖯𝗋
[︁
𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑥, 𝜑0) accepts

]︁
= max

𝜌
𝖯𝗋

[︁
𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑥, 𝜌) accepts

]︁
Therefore, this observation holds true.

We first define a subroutine 𝖳𝗋𝗂𝖺𝗅 where 𝑁 := max
(︁

3𝑎+𝑏
(𝑏−𝑎)2 (𝑚+ 2− log(𝑏− 𝑎)) , 16𝑏

(𝑏−𝑎)2

)︁
is poly-

nomial in 𝑛 (recall that 𝑏(𝑛)− 𝑎(𝑛) ≥ 1
𝑝(𝑛) where 𝑝 is a polynomial).

1: Initialize register 𝖬𝖠𝗎𝗑 to be 1√
2𝑚

∑︀
𝑖∈{0,1}𝑚 |𝑖⟩𝖬 |𝑖⟩𝖠𝗎𝗑

2: Initialize register 𝖪 to be |0𝑘⟩𝖪
3: Introduce a new 2𝑁 + 1 qubit register 𝖸 := 𝖸𝟢 · · ·𝖸𝟤𝖭 initialized to be |1⟩ |02𝑁 ⟩
4: Introduce a new register 𝖢𝗇𝗍 initialized in |0⟩
5: for 𝑖 = 1, 2, · · · , 𝑁 do
6: Measure 𝖬𝖪 with 𝑄 coherently, store the outcome in 𝖸2𝑖−1
7: Measure 𝖬𝖪 with 𝑃 coherently, store the outcome in 𝖸2𝑖

8: end for
9: Compute the number of times that 𝑦𝑗 = 𝑦𝑗−1 in superposition and store the result in 𝖢𝗇𝗍

10: Do the projective measurement 𝖳𝖾𝗌𝗍 := {𝖸𝖾𝗌 :=
∑︀

𝑗≥𝑁(𝑎+𝑏) |𝑗⟩⟨𝑗|𝖢𝗇𝗍⊗ |1⟩⟨1|𝖸2𝑁
,𝖭𝗈 := 𝐼 −𝖸𝖾𝗌}

Define 𝖤 := 𝖪⊗ 𝖠𝗎𝗑⊗ 𝖸 ⊗ 𝖢𝗇𝗍 (i.e., all registers except 𝖬).

Definition 7 (State family (|𝜓𝑥⟩)𝑥∈𝑆). Let 𝑆 be the set defined in Lemma 4. When 𝑥 ∈ 𝑆, let |𝜓𝑥⟩
denote the state in register 𝖬 ⊗ 𝖤 after a successful implementation of 𝖳𝗋𝗂𝖺𝗅 (i.e., the outcome of
𝖳𝖾𝗌𝗍 is 𝖸𝖾𝗌). When 𝑥 are clear from the context, we also write it as |𝜓⟩.

Observe that in 𝖳𝗋𝗂𝖺𝗅, we initialize a pure state in register 𝖬⊗ 𝖤 (line 1 - line 4), then apply a
unitary on it (line 5- line 9) as all measurements are conducted coherently, and finally do a projective
measurement (line 10). So the definition above indeed gives us a family of states (|𝜓𝑥⟩)𝑥∈𝑆 such
that each |𝜓𝑥⟩ is a pure state on 𝑙(𝑛) qubits where 𝑙 is a polynomial.

21

The circuit family Now let’s construct a circuit family (or algorithm) that can generate efficiently
an approximation of the state family (|𝜓𝑥⟩)𝑥∈𝑆 . For any polynomial 𝑞 and approximation factor
exp(−𝑞(𝑛)), the circuit 𝐶𝑥 operates as follows where 𝑇 := 2𝑚+2𝑞(𝑛) is exponential in 𝑛.
1: for 𝑡 = 1, · · · , 𝑇 do
2: Run 𝖳𝗋𝗂𝖺𝗅
3: if it is successful then
4: return the state in the register 𝖬𝖤
5: end if
6: end for
7: return an arbitrary state with 𝑙(𝑛) qubits

4.2 Proof of Lemma 4

In the section, we prove that the pure state family (|𝜓𝑥⟩)𝑥∈𝑆 satisfies the requirements in Lemma 4
by applying known result in Section 3.3.

Fix 𝑥 ∈ 𝑆. We associate Π1 with 𝑃 1, Π2 with 𝑄1, 𝑀1 with 𝑃 and 𝑀2 with 𝑄, and adopt the
notations in Section 3.3. Then 𝑃 1𝑄1𝑃 1 =

∑︀
𝑖 |𝑣𝑖⟩⟨𝑣𝑖|

∑︀
𝑖 |𝑤𝑖⟩⟨𝑤𝑖|

∑︀
𝑖 |𝑣𝑖⟩⟨𝑣𝑖| =

∑︀
𝑖 𝑝𝑖 |𝑣𝑖⟩⟨𝑣𝑖|. From

𝑥 ∈ 𝑆 and Observation 1, we can assume 𝑝1 = max𝑖 𝑝𝑖 ≥ 𝑏. 6

To begin with, let’s prove that the state family (|𝜓𝑥⟩)𝑥∈𝑆 satisfies the first requirement in
Lemma 4. That is, it is a 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤 family, which can be approximately generated by the circuit
family. Notice that 𝐶𝑥 outputs |𝜓𝑥⟩ whenever one of the exponential 𝖳𝗋𝗂𝖺𝗅s succeeds. So we first
analyze the success probability of one 𝖳𝗋𝗂𝖺𝗅.

Lemma 5. 𝖯𝗋 [𝖳𝗋𝗂𝖺𝗅 succeeds] ≥ 1
2𝑚+2 .

Proof. The success probability of 𝖳𝗋𝗂𝖺𝗅 doesn’t change if we measure each qubit of 𝖸 once the outcome
is stored in it because computational basis measurements on 𝖸 commutes with the operations in line
9 and 10 of 𝖳𝗋𝗂𝖺𝗅. Thus we can think of it as measure 𝖬𝖪 directly with 𝑃 and 𝑄 alternatively, get
a classical outcome sequence 𝑦 := 𝑦1𝑦2 · · · 𝑦2𝑁 and return 𝖸𝖾𝗌 if 𝑦2𝑁 = 1 and the number of times
that 𝑦𝑗 = 𝑦𝑗−1(1 ≤ 𝑗 ≤ 2𝑁) is at least 𝑁(𝑎+ 𝑏) (where 𝑦0 = 1), which is an alternating projection
algorithm. For simplicity, we will denote by 𝖦𝗈𝗈𝖽 the set of 𝑦 that corresponds to outcome 𝖸𝖾𝗌.
Now let’s analyze the probability of 𝑦 ∈ 𝖦𝗈𝗈𝖽.

An important observation is that the initial state can also be written in forms of |𝑣𝑖⟩. Because
𝑃 1 =

∑︀
𝑖 |𝑣𝑖⟩⟨𝑣𝑖|, |𝑣𝑖⟩ forms a basis for the Hilbert space ℋ𝖬 ⊗ |0𝑘⟩⟨0𝑘|𝖪. Let |𝑢𝑖⟩ be a truncation

on 𝖬 of |𝑣𝑖⟩, i.e. |𝑣𝑖⟩𝖬𝖪 = |𝑢𝑖⟩𝖬 |0𝑘⟩𝖪. Then |𝑢𝑖⟩ forms a basis for ℋ𝖬. Thus by Lemma 1, the state

1√
2𝑚

2𝑚−1∑︁
𝑖=0

|𝑖⟩𝖬 |𝑖⟩𝖠𝗎𝗑 =
1√
2𝑚

∑︁
𝑖

|𝑢𝑖⟩𝖬 |𝑢𝑖⟩𝖠𝗎𝗑

Consequently, 1√
2𝑚

∑︀2𝑚−1
𝑖=0 |𝑖⟩𝖬 |0𝑘⟩𝖪 |𝑖⟩𝖠𝗎𝗑 =

1√
2𝑚

∑︀
𝑖 |𝑣𝑖⟩𝖬𝖪 |𝑢𝑖⟩𝖠𝗎𝗑 . 7

Notice that we can apply 𝑀𝖩𝗈𝗋 on register 𝖬𝖪 before the alternating projections without chang-
ing the distribution of 𝑦. Applying 𝑀𝖩𝗈𝗋 to the above state, the post-measurement state will

6Generally 𝑃 1𝑄1𝑃 1 =
∑︀

𝑖∈𝐴∩𝐵 𝑝𝑖 |𝑣𝑖⟩⟨𝑣𝑖|. We can assume 𝑝1 = max𝑖∈𝐴∩𝐵 𝑝𝑖 ≥ 𝑏.
7In the general case, the summation is over 𝑖 ∈ 𝐴. That is, 1√

2𝑚

∑︀2𝑚−1
𝑖=0 |𝑖⟩𝖬 |0𝑘⟩𝖪 |𝑖⟩𝖠𝗎𝗑 =

1√
2𝑚

∑︀
𝑖∈𝐴 |𝑣𝑖⟩𝖬𝖪 |𝑢𝑖⟩𝖠𝗎𝗑 .

Thus for each 𝑖 ∈ 𝐴, we will be in subspace 𝑆𝑖 with probability 1
2𝑚

if we apply 𝑀𝖩𝗈𝗋.

22

be |𝑣𝑖⟩𝖬𝖪 |𝑢𝑖⟩𝖠𝗎𝗑 with probability 1
2𝑚 . And by Proposition 1, when we start from |𝑣𝑖⟩𝖬𝖪 |𝑢𝑖⟩𝖠𝗎𝗑,

𝑦𝑗 = 𝑦𝑗−1 with probability 𝑝𝑖 for each 𝑗 independently.
In particular, we will start from |𝑣1⟩𝖬𝖪 |𝑢1⟩𝖠𝗎𝗑 with probability 1

2𝑚 . And when we start from
|𝑣1⟩𝖬𝖪 |𝑢1⟩𝖠𝗎𝗑, 𝑦𝑗 = 𝑦𝑗−1 with probability 𝑝1 for each 𝑗 independently. This can be seen as per-
forming 2𝑁 independent coin flips with bias 𝑝1 ≥ 𝑏. And 𝑦 ∈ 𝖦𝗈𝗈𝖽 if the number of heads (denote
as 𝑐𝑛𝑡) is an even greater than or equal to 𝑁(𝑎+ 𝑏).

By Chernoff bound,

𝖯𝗋 [𝑐𝑛𝑡 < (𝑎+ 𝑏)𝑁] ≤ exp(−𝑁𝑝1(1−
𝑎+ 𝑏

2𝑝1
)2) ≤ exp(−𝑁 (𝑏− 𝑎)2

4𝑏
) ≤ 1

4

𝖯𝗋 [𝑐𝑛𝑡 is an odd] =
𝑁−1∑︁
𝑗=0

(︂
2𝑁

2𝑗 + 1

)︂
𝑝2𝑗+1
1 (1− 𝑝1)2𝑁−2𝑗−1

=
1

2
((𝑝1 + 1− 𝑝1)2𝑁 − (𝑝1 − (1− 𝑝1))2𝑁)

≤1

2

Thus by union bound, when the post-measurement state after 𝑀𝖩𝗈𝗋 is |𝑣1⟩𝖬𝖪 |𝑢1⟩𝖠𝗎𝗑, 𝑦 ∈ 𝖦𝗈𝗈𝖽
with probability at least 1

4 .
So 𝖯𝗋 [𝖳𝗋𝗂𝖺𝗅 succeeds] = 𝖯𝗋 [𝑦 ∈ 𝖦𝗈𝗈𝖽] ≥ 1

2𝑚
1
4 = 1

2𝑚+2 .

Claim 1. (|𝜓𝑥⟩)𝑥∈𝑆 is a 𝗌𝗍𝖺𝗍𝖾𝖯𝖲𝖯𝖠𝖢𝖤 [𝑆] family.

Proof. We only need to show that our construction 𝐶𝑥 satisfies the requirements in Definition 1.
From the construction, 𝐶𝑥 can be generated by polynomial space Turing machine on input 𝑥

and 𝐶𝑥 uses at most polynomial space at any time. Thus 𝐶 = (𝐶𝑥)𝑥∈{0,1}* is a space-uniform
polynomial-space quantum algorithm. It is obvious from the construction that 𝐶𝑥 takes no inputs.
The only remaining thing is to prove 𝐶𝑥 outputs a good approximation of |𝜓𝑥⟩ when 𝑥 ∈ 𝑆.

Fix 𝑥 ∈ 𝑆. Whenever there is a successful implementation of 𝖳𝗋𝗂𝖺𝗅, 𝐶𝑥 will output |𝜓𝑥⟩. More-
over, by Lemma 5, recall that 𝑇 = 2𝑚+2𝑞(𝑛),

𝖯𝗋 [𝑇 independent repetitions of 𝖳𝗋𝗂𝖺𝗅 all fail] = (1− 𝖯𝗋 [𝖳𝗋𝗂𝖺𝗅 succeeds])𝑇 ≤ (1− 1

2𝑚+2
)𝑇 ≤ 𝑒−𝑞(𝑛)

That is, except with probability 𝑒−𝑞(𝑛), 𝐶𝑥 outputs |𝜓𝑥⟩.
As a result, the state outputted by 𝐶𝑥 is 𝑒−𝑞(𝑛)-close to |𝜓𝑥⟩ in trace distance.

The second requirement in Lemma 4 that (|𝜓𝑥⟩)𝑥∈𝑆 needs to satisfy is that the reduced density
matrix of |𝜓𝑥⟩ will be accepted by 𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑥, ·) with high probability. This is intuitively cor-
rect because the real acceptance probability should not be too far from the estimated acceptance
probability. Now let’s prove it formally.

Claim 2. For every 𝑥 ∈ 𝑆, 𝖯𝗋
[︁
𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
𝑥 (𝜌𝖬) accepts

]︁
≥ 𝑎 where 𝜌𝖬 is the reduced density matrix

of 𝜓𝑥 on register 𝖬.

23

Proof. Fix 𝑥 ∈ 𝑆. We will omit subscripts when it is clear from the context.
Similar with what we did in Lemma 5, this probability doesn’t change if in the generation of

𝜓𝑥 (i.e. 𝖳𝗋𝗂𝖺𝗅), we measure 𝖸 directly instead (as we only care about the part in 𝖬). Let 𝜓′𝑥 be the
state we obtain from a successful implementation of 𝖳𝗋𝗂𝖺𝗅 if we measure directly instead. Then the
reduced density matrices of 𝜓𝑥 and 𝜓′𝑥 are the same on register 𝖬.

Notice that 𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
𝑥 (𝜌𝖬) is just applying ̂︀𝖵𝑥 to 𝜌𝖬 ⊗ |0𝑘⟩⟨0𝑘|𝖪 and then measuring the first

qubit in computational basis, or equivalently, it is just measuring 𝜌𝖬 ⊗ |0𝑘⟩⟨0𝑘|𝖪 with 𝑄. By the
definition, 𝜓′𝑥 is |0𝑘⟩ on register 𝖪 (because the outcome 𝑦2𝑁 should be 1). So the reduced density
matrix of 𝜓′𝑥 on register 𝖬𝖪 is exactly 𝜌𝖬 ⊗ |0𝑘⟩⟨0𝑘|𝖪.

Consider the following alternating projection algorithm:
We start from 1√

2𝑚

∑︀
𝑖∈{0,1}𝑚 |𝑖⟩𝖬 |0𝑘⟩𝖪 |𝑖⟩𝖠𝗎𝗑, apply 𝑄,𝑃 to the state alternatively for 𝑁 times

to obtain a classical outcome sequence 𝑦 := 𝑦1𝑦2 · · · 𝑦2𝑁 and if 𝑦 meets the requirement (to be more
accurate, 𝑦 ∈ 𝖦𝗈𝗈𝖽 where 𝖦𝗈𝗈𝖽 is defined in Lemma 5), we will additionally apply 𝑄 to get an
outcome 𝑧 and accept if 𝑧 = 1.

In the above algorithm, if 𝑦 ∈ 𝖦𝗈𝗈𝖽, the (mixed) state remaining is exactly 𝜓′𝑥, whose reduced
density matrix on 𝖬𝖪 is 𝜌𝖬⊗|0𝑘⟩⟨0𝑘|𝖪. Recall that 𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩𝑥 (𝜌𝖬) is just measuring 𝜌𝖬⊗|0𝑘⟩⟨0𝑘|𝖪
with 𝑄. Therefore,

𝖯𝗋
[︁
𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩𝑥 (𝜌𝖬) accepts

]︁
= 𝖯𝗋 [𝑧 = 1 | 𝑦 ∈ 𝖦𝗈𝗈𝖽]

From Section 3.3, 𝖯𝗋 [𝑧 = 1 | 𝑦 ∈ 𝖦𝗈𝗈𝖽] will not change if we insert𝑀𝖩𝗈𝗋 in front of the alternating
projections. So we can calculate it by projecting the initial state 1√

2𝑚

∑︀2𝑚−1
𝑖=0 |𝑖⟩𝖬 |0𝑘⟩𝖪 |𝑖⟩𝖠𝗎𝗑 to one

of the subspaces 𝑆𝑖, getting the post-measurement state |𝑣𝑖⟩𝖬𝖪 |𝑢𝑖⟩𝖠𝗎𝗑 and then sampling 𝑦 and 𝑧 as
if we start from this state (here we also use the fact that 1√

2𝑚

∑︀2𝑚−1
𝑖=0 |𝑖⟩𝖬 |0𝑘⟩𝖪 |𝑖⟩𝖠𝗎𝗑 can be written

in the form 1√
2𝑚

∑︀
𝑖 |𝑣𝑖⟩𝖬𝖪 |𝑢𝑖⟩𝖠𝗎𝗑). Denote 𝐸𝑖 be the event that we get the post-measurement state

|𝑣𝑖⟩𝖬𝖪 |𝑢𝑖⟩𝖠𝗎𝗑. Then 𝖯𝗋 [𝐸𝑖] =
1
2𝑚

8. Therefore,

𝖯𝗋 [𝑧 = 1 | 𝑦 ∈ 𝖦𝗈𝗈𝖽] =
𝖯𝗋 [𝑧 = 1 ∧ 𝑦 ∈ 𝖦𝗈𝗈𝖽]

𝖯𝗋 [𝑦 ∈ 𝖦𝗈𝗈𝖽]

=

∑︀
𝑖 𝖯𝗋 [𝐸𝑖]𝖯𝗋 [𝑦 ∈ 𝖦𝗈𝗈𝖽 | 𝐸𝑖]𝖯𝗋 [𝑧 = 1 | 𝐸𝑖 ∧ 𝑦 ∈ 𝖦𝗈𝗈𝖽]∑︀

𝑖 𝖯𝗋 [𝐸𝑖]𝖯𝗋 [𝑦 ∈ 𝖦𝗈𝗈𝖽 | 𝐸𝑖]

=

∑︀
𝑖 𝑝𝑖𝖯𝗋 [𝑦 ∈ 𝖦𝗈𝗈𝖽 | 𝐸𝑖]∑︀
𝑖 𝖯𝗋 [𝑦 ∈ 𝖦𝗈𝗈𝖽 | 𝐸𝑖]

Same as Lemma 5, when we start from |𝑣𝑖⟩𝖬𝖪 |𝑢𝑖⟩𝖠𝗎𝗑, the probability of 𝑦 ∈ 𝖦𝗈𝗈𝖽 is the same
as the probability that during 2𝑁 independent coin flips with bias 𝑝𝑖, the number of heads (denote
as 𝑐𝑛𝑡) is an even greater than or equal to 𝑁(𝑎+ 𝑏).

So if 𝑝𝑖 < 𝑎, by Chernoff bound,

𝖯𝗋 [𝑦 ∈ 𝖦𝗈𝗈𝖽 | 𝐸𝑖] ≤ 𝖯𝗋 [𝑐𝑛𝑡 ≥ 𝑁(𝑎+ 𝑏)] ≤ exp(−2𝑁𝑝𝑖(
𝑎+ 𝑏

2𝑝𝑖
−1)2/(1+𝑎+ 𝑏

2𝑝𝑖
)) ≤ exp(−𝑁 (𝑏− 𝑎)2

3𝑎+ 𝑏
)

8Generally, 𝖯𝗋 [𝐸𝑖] =
1

2𝑚
for each 𝑖 ∈ 𝐴. And thus all the summations below will be only over 𝑖 ∈ 𝐴.

24

From Lemma 5, 𝖯𝗋 [𝑦 ∈ 𝖦𝗈𝗈𝖽 | 𝐸1] ≥ 1
4 . As a result,

∑︁
𝑝𝑖≥𝑎

(𝑝𝑖 − 𝑎)𝖯𝗋 [𝑦 ∈ 𝖦𝗈𝗈𝖽 | 𝐸𝑖]−
∑︁
𝑝𝑖<𝑎

(𝑎− 𝑝𝑖)𝖯𝗋 [𝑦 ∈ 𝖦𝗈𝗈𝖽 | 𝐸𝑖] ≥ (𝑏− 𝑎)1
4
− 2𝑚𝑎 exp(−𝑁 (𝑏− 𝑎)2

3𝑎+ 𝑏
) > 0

where we use the fact that there are only 2𝑚 |𝑣𝑖⟩s because 𝑃 1 has rank 2𝑚.9

The above inequality can be rearranged into
∑︀

𝑖 𝑝𝑖𝖯𝗋 [𝑦 ∈ 𝖦𝗈𝗈𝖽 | 𝐸𝑖] > 𝑎
∑︀

𝑖 𝖯𝗋 [𝑦 ∈ 𝖦𝗈𝗈𝖽 | 𝐸𝑖] .

Therefore, 𝖯𝗋
[︁
𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
𝑥 (𝜌𝖬) accepts

]︁
≥ 𝑎, which ends the proof of this claim.

Lemma 4 follows directly from the above two claims.

5 Insecurity of Oracle-Aided Public-Key Quantum Money

In this section, we will use the synthesizer from Section 4 as a building block to attack the oracle-
aided public key quantum money scheme where 𝒪 is a hybrid oracle composed of random oracle ℛ
and |𝖯𝖲𝖯𝖠𝖢𝖤⟩. Formally:

Theorem 5. Reusable and secure oracle-aided public key quantum money scheme (𝖪𝖾𝗒𝖦𝖾𝗇ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩,
𝖬𝗂𝗇𝗍ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩,𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩) does not exist where ℛ is a random oracle.

Informally speaking, our synthesizer in Theorem 4 works for uniform oracle algorithm 𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩.
However, in the oracle-aided public key quantum money scheme we aim to attack, the verification
algorithm has access to random oracle ℛ in addition to |𝖯𝖲𝖯𝖠𝖢𝖤⟩. Inspired by [CKP15; AK22], we
try to remove ℛ and simulate it with a good database. Based on the ideas in Section 2.2, we give
the following attacker.

Let 𝒪 be the hybrid oracle composed of random oracle ℛ and |𝖯𝖲𝖯𝖠𝖢𝖤⟩. For a 𝛿𝑟-reusable 𝛿𝑠-
secure oracle-aided quantum money scheme

(︀
𝖪𝖾𝗒𝖦𝖾𝗇𝒪,𝖬𝗂𝗇𝗍𝒪,𝖵𝖾𝗋𝒪

)︀
where 𝛿𝑟 = 0.99, 𝛿𝑠 = 𝗇𝖾𝗀𝗅(𝑛),

denote 𝑙(𝑛) to be the number of queries toℛmade by one execution of 𝖪𝖾𝗒𝖦𝖾𝗇𝒪 and one execution of
𝖬𝗂𝗇𝗍𝒪. By efficiency of 𝖵𝖾𝗋𝒪, there exists a uniform oracle algorithm 𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩ = (𝖵

|𝖯𝖲𝖯𝖠𝖢𝖤⟩
𝑥)𝑥∈{0,1}*

such that running 𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷,𝑠) (𝜌) is the same as running 𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜌)) where ℛ is simulated with

database 𝐷.
Let 𝜖 = 0.01, 𝑏 = 1 −

√
1− 𝛿𝑟 + 𝜖, 𝑎 = 0.99𝑏. By Theorem 4, there exists a polynomial-

time uniform oracle algorithm 𝖲𝗒𝗇|𝖯𝖲𝖯𝖠𝖢𝖤⟩ which can generate an “almost optimal” witness state of
𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷,𝑠) with guarantee 𝑎 and threshold 𝑏. Now let’s construct the adversary 𝒜𝒪.

Adversary 𝒜𝒪. It takes as input a valid banknote (𝑠, 𝜌𝑠) and public key 𝑝𝑘, and behaves as
follows.

1. Let 𝑡 $←− {0, . . . , ⌈ 𝑙𝜖⌉ − 1}. Let 𝐷 = ∅, 𝜌(0)𝑠 = 𝜌𝑠. Run the following 𝑡 times. In 𝑖𝑡𝑕 iteration,

(a) 𝜌(𝑖)𝑠 ⊗ |𝐱⟩⟨𝐱| ← 𝖵𝖾𝗋𝒪(𝑝𝑘, 𝑠, 𝜌
(𝑖−1)
𝑠).

(b) Add query-answer pairs to ℛ in item (a) into 𝐷.
9For the general case, we only sum over 𝑖 ∈ 𝐴 and |𝐴| equals to the rank of 𝑃 1, which is 2𝑚.

25

2. Denote 𝐷0 = 𝐷.

3. For 𝑘 = 0, 1, · · · , 𝑁(𝑛)− 1 where 𝑁(𝑛) = 100𝑙(𝑛)

(1−
√
1−𝛿𝑟+𝜖)

2 is polynomial in 𝑛,

(a) 𝜎𝐷𝑘
← 𝖲𝗒𝗇|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘,𝐷𝑘, 𝑠).

(b) Run 𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜎𝐷𝑘
)).

(c) Let 𝐷𝑘+1 consist of all the query-answer pairs to ℛ in item (b) and the pairs in 𝐷𝑘.

4. 𝑗 $←− {0, 1, . . . , 𝑁(𝑛)− 1}.

5. Output 𝜑 = 𝜑1 ⊗ 𝜑2 where 𝜑𝑖 ← 𝖲𝗒𝗇|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘,𝐷𝑗 , 𝑠) (𝑖 = 1, 2).

Analysis of 𝒜𝒪 Now let’s prove that 𝒜𝒪 outputs what we want. We will use the notations
defined in the construction of 𝒜𝒪.

Theorem 6. Given input (𝑝𝑘, (𝑠, 𝜌𝑠)) generated by 𝖪𝖾𝗒𝖦𝖾𝗇𝒪 and 𝖬𝗂𝗇𝗍𝒪, 𝒜𝒪 outputs two alleged
banknotes associated with the serial number 𝑠 that will be accepted with high probability. Formally:

𝖯𝗋
[︀
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜑1)) accepts and 𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜑2)) accepts

]︀
≥ 1.8

(︁
1−

√︀
1− 𝛿𝑟 + 𝜖

)︁2
− 1,

where the probability is over the randomness of ℛ, the randomness of the generation of the input
for 𝒜𝒪 (that is, the randomness of 𝖪𝖾𝗒𝖦𝖾𝗇𝒪 and 𝖬𝗂𝗇𝗍𝒪) and the randomness of our adversary 𝒜𝒪.

Proof of Theorem 6. The proof will be divided into two parts. Informally speaking, in the first part,
we will show that for every 𝑘, 𝜎𝐷𝑘

works well on the simulation, i.e. 𝖵𝖯𝖲𝖯𝖠𝖢𝖤
(𝑝𝑘,𝐷𝑘,𝑠)

(𝜎𝐷𝑘
) accepts with

high probability; In the second part, we will show that for every 𝑘, if 𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, ·)) behaves far
from 𝖵𝖯𝖲𝖯𝖠𝖢𝖤

(𝑝𝑘,𝐷𝑘,𝑠)
on input 𝜎𝐷𝑘

, then we make progress. Then we will combine the results to prove
Theorem 6.

The first part The synthesizer 𝖲𝗒𝗇 in Theorem 4 works well provided that good witness state
for 𝖵

|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷𝑘,𝑠)

exists. Our candidate for the good witness state is 𝜌(𝑡)𝑠 as it is accepted by 𝖵𝖾𝗋𝒪 with
high probability by the definition of reusability. We begin by arguing that with high probability,
our databases contain necessary information for running verification on 𝜌

(𝑡)
𝑠 and thus 𝖵𝖾𝗋 can not

distinguish whether it is interacting with random oracle ℛ or the simulated one. Formally:

Claim 3. Let 𝐷𝖪𝖾𝗒𝖦𝖾𝗇, 𝐷𝖬𝗂𝗇𝗍 be the query-answer pairs made during the generation of the input 𝑝𝑘
and (𝑠, 𝜌𝑠) (that is, the execution of 𝖪𝖾𝗒𝖦𝖾𝗇𝒪 and 𝖬𝗂𝗇𝗍𝒪). Then

𝖯𝗋
[︁
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜌(𝑡)𝑠)) queries in 𝐷𝖬𝗂𝗇𝗍 ∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇 −𝐷

]︁
≤ 𝜖,

where the probability is over the randomness of ℛ, the randomness of the generation of the input
for 𝒜𝒪 and the randomness of our adversary 𝒜𝒪.

Proof. We only care about 𝑙(𝑛) query positions (those inside 𝐷𝖬𝗂𝗇𝗍 ∪ 𝐷𝖪𝖾𝗒𝖦𝖾𝗇) and we repeatedly

sample 𝑡 $←− {0, . . . , ⌈ 𝑙𝜖⌉−1} times. Thus intuitively 𝐷 should reveal all the positions we care about.
Formally,

26

𝖯𝗋
[︁
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜌(𝑡)𝑠)) queries in 𝐷𝖬𝗂𝗇𝗍 ∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇 −𝐷

]︁

≤
∑︁

𝑞∈𝐷𝖬𝗂𝗇𝗍∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇

𝖯𝗋

[︂
𝑡 = min

𝑗

[︁
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜌(𝑗)𝑠)) queries 𝑞

]︁]︂
≤ 𝑙 · 1

⌈ 𝑙𝜖⌉
≤𝜖

where the probabilities are only over the randomness of our adversary 𝒜𝒪 and we use the fact that 𝑡
is picked uniformly random from {0, 1, . . . , ⌈ 𝑙𝜖⌉−1}, so it matches min𝑗

[︁
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜌

(𝑗)
𝑠)) queries 𝑞

]︁
(which may follow some distribution, but is independent of 𝑡 anyway) with probability less or equal
1
⌈ 𝑙
𝜖
⌉ .

After taking the randomness of ℛ and the randomness of the generation of the input for 𝒜𝒪
into account, we can get the claim.

The random oracle ℛ can be implemented by on-the-fly simulation. Thus 𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜌(𝑡)𝑠)) can
be implemented by simulating ℛ with database 𝐷𝖬𝗂𝗇𝗍∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇∪𝐷. If 𝖵𝖾𝗋 doesn’t make queries in
(𝐷𝖬𝗂𝗇𝗍∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇∪𝐷)Δ𝐷 = 𝐷𝖬𝗂𝗇𝗍∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇−𝐷, then it can not distinguish whether ℛ is simulated
with 𝐷𝖬𝗂𝗇𝗍∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇∪𝐷 or 𝐷. That is, 𝐷 is a good database to simulate the verification process on
input 𝜌(𝑡)𝑠 if 𝖵𝖾𝗋 doesn’t make queries inside 𝐷𝖬𝗂𝗇𝗍 ∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇 −𝐷. Thus the acceptance probability
of 𝖵

|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷,𝑠) (𝜌

(𝑡)
𝑠) should be close to that of 𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜌

(𝑡)
𝑠)), which is high by the definition of

reusability. On average, the performance of the simulation on input 𝜌(𝑡)𝑠 can only increase if we
include more queries into the database. Thus for every 𝑘, 𝜌(𝑡)𝑠 should be a good witness state for
𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷𝑘,𝑠)

. The intuition above is captured by the following claim.

Claim 4. We use the same definition of 𝐷𝖪𝖾𝗒𝖦𝖾𝗇 and 𝐷𝖬𝗂𝗇𝗍 as in Claim 3. ∀𝑘 ∈ [𝑁(𝑛)] ,

𝖯𝗋
[︁
𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷𝑘,𝑠)

(𝜌(𝑡)𝑠) accepts
]︁
≥ 𝛿𝑟 − 𝜖

where the probability is over the randomness of ℛ, the randomness of the generation of the input
for 𝒜𝒪 and the randomness of our adversary 𝒜𝒪.

Proof. This claim follows from Definition 4 and Claim 3. The following probabilities are over the
same randomness as the probability in the above claim.

27

𝖯𝗋
[︁
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜌(𝑡)𝑠)) accepts

]︁

=𝖯𝗋
[︁
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜌(𝑡)𝑠)) accepts and queries in 𝐷𝖬𝗂𝗇𝗍 ∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇 −𝐷𝑘

]︁
+ 𝖯𝗋

[︁
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜌(𝑡)𝑠)) accepts and never queries in 𝐷𝖬𝗂𝗇𝗍 ∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇 −𝐷𝑘

]︁

≤𝖯𝗋
[︁
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜌(𝑡)𝑠)) queries in 𝐷𝖬𝗂𝗇𝗍 ∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇 −𝐷

]︁
+ 𝖯𝗋

[︁
𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷𝑘,𝑠)

(𝜌(𝑡)𝑠) accepts and never queries in 𝐷𝖬𝗂𝗇𝗍 ∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇 −𝐷𝑘

]︁

≤𝜖+ 𝖯𝗋
[︁
𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷𝑘,𝑠)

(𝜌(𝑡)𝑠) accepts
]︁

where we use the fact that 𝐷 ⊆ 𝐷𝑘 and the fact that we can use on-the-fly simulation to implement
ℛ. As a result, 𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜌

(𝑡)
𝑠)) can also be seen as simulating ℛ with 𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪ 𝐷𝖬𝗂𝗇𝗍 ∪ 𝐷𝑘,

which is different from 𝐷𝑘 only on (𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍 ∪𝐷𝑘)Δ𝐷𝑘 = 𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍 −𝐷𝑘. Thus 𝖵𝖾𝗋
can not distinguish whether ℛ is simulated with 𝐷𝑘 or 𝐷𝖬𝗂𝗇𝗍 ∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝑘 if it never queries in
𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍 −𝐷𝑘. The above inequality can be rearranged as

𝖯𝗋
[︁
𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷𝑘,𝑠)

(𝜌(𝑡)𝑠) accepts
]︁
≥ 𝖯𝗋

[︁
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜌(𝑡)𝑠)) accepts

]︁
− 𝜖 ≥ 𝛿𝑟 − 𝜖.

Intuitively, from Claim 4, for a large fraction of 𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘,𝐷𝑘,𝑠)
, good witness state exists. Therefore,

our synthesizer can find an “almost optimal” one. Formally:

Claim 5. For every 𝑘 ∈ [𝑁(𝑛)],

𝖯𝗋
[︁
𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷𝑘,𝑠)

(𝜎𝐷𝑘
) accepts

]︁
≥ 0.99

(︁
1−

√︀
1− 𝛿𝑟 + 𝜖

)︁2

where the probability is over the randomness of ℛ, the randomness of the generation of the input
for 𝒜𝒪 and the randomness of our adversary 𝒜𝒪.

Proof. The following probabilities are over the same randomness as the probability in the above
claim unless otherwise stated.

Define 𝑆 := {(𝑝𝑘,𝐷𝑘, 𝑠) : max𝑤 𝖯𝗋
[︁
𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷𝑘,𝑠)

(𝑤) accepts
]︁
≥ 1−

√
1− 𝛿𝑟 + 𝜖} where the proba-

bility is only over the randomness of 𝖵. Then by Claim 4 and averaging argument,

𝖯𝗋 [(𝑝𝑘,𝐷𝑘, 𝑠) ∈ 𝑆] ≥ 1−
√︀

1− 𝛿𝑟 + 𝜖

By Theorem 4, ∀(𝑝𝑘,𝐷𝑘, 𝑠) ∈ 𝑆, 𝖯𝗋
[︁
𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷𝑘,𝑠)

(𝜎𝐷𝑘
) accepts

]︁
≥ 0.99(1−

√
1− 𝛿𝑟 + 𝜖) where the

probability is only over the randomness of 𝖵. Therefore,

𝖯𝗋
[︁
𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷𝑘,𝑠)

(𝜎𝐷𝑘
) accepts

]︁
≥ 0.99

(︁
1−

√︀
1− 𝛿𝑟 + 𝜖

)︁2
.

28

The second part We already know that 𝜎𝐷𝑘
is accepted by 𝖵

|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷𝑘,𝑠)

with high probability. The

next step is to associate the acceptance probability of 𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘,𝐷𝑘,𝑠)
and that of 𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, ·)) on 𝜎𝐷𝑘

.
If the difference of these two terms is large, the simulation with 𝐷𝑘 is not good enough. That is,
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜎𝐷𝑘

)) asks some important queries outside 𝐷𝑘. So in this case, 𝐷𝑘+1 will contain more
important queries and we make progress. Formally:

Claim 6. We use the same notation as above. For every 𝑘 ∈ [𝑁(𝑛)],

𝖯𝗋
[︁
𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷𝑘,𝑠)

(𝜎𝐷𝑘
) accepts

]︁
− 𝖯𝗋

[︀
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜎𝐷𝑘

)) accepts
]︀

≤𝐄 [|𝐷𝑘+1 ∩ (𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍)|]−𝐄 [|𝐷𝑘 ∩ (𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍)|]

where the probabilities and the expectations are over the randomness of ℛ, the randomness of the
generation of the input for 𝒜𝒪 and the randomness of our adversary 𝒜𝒪.

Proof. The following probabilities and expectations are over the same randomness of those in the
above claim unless otherwise stated.

Similar as the arguments in Claim 4, 𝖵|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘,𝑠,𝐷𝑘)
(𝜎𝐷𝑘

) and 𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜎𝐷𝑘
)) behave differently

only when they make queries in (𝐷𝖬𝗂𝗇𝗍 ∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝑘)Δ𝐷𝑘 = 𝐷𝖬𝗂𝗇𝗍 ∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇 −𝐷𝑘. Therefore,

𝖯𝗋
[︁
𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷𝑘,𝑠)

(𝜎𝐷𝑘
) accepts

]︁

=𝖯𝗋
[︁
𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷𝑘,𝑠)

(𝜎𝐷𝑘
) accepts and queries in 𝐷𝖬𝗂𝗇𝗍 ∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇 −𝐷𝑘

]︁
+ 𝖯𝗋

[︁
𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷𝑘,𝑠)

(𝜎𝐷𝑘
) accepts and never queries in 𝐷𝖬𝗂𝗇𝗍 ∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇 −𝐷𝑘

]︁

≤𝖯𝗋
[︁
𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷𝑘,𝑠)

(𝜎𝐷𝑘
) queries in 𝐷𝖬𝗂𝗇𝗍 ∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇 −𝐷𝑘

]︁
+ 𝖯𝗋

[︀
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜎𝐷𝑘

)) accepts and never queries in 𝐷𝖬𝗂𝗇𝗍 ∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇 −𝐷𝑘

]︀
=𝖯𝗋

[︀
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜎𝐷𝑘

)) queries in 𝐷𝖬𝗂𝗇𝗍 ∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇 −𝐷𝑘

]︀
+ 𝖯𝗋

[︀
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜎𝐷𝑘

)) accepts and never queries in 𝐷𝖬𝗂𝗇𝗍 ∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇 −𝐷𝑘

]︀
≤𝖯𝗋 [(𝐷𝑘+1 −𝐷𝑘) ∩ (𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍) ̸= ∅] + 𝖯𝗋

[︀
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜎𝐷𝑘

)) accepts
]︀

≤𝐄 [|(𝐷𝑘+1 −𝐷𝑘) ∩ (𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍)|] + 𝖯𝗋
[︀
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜎𝐷𝑘

)) accepts
]︀

Note that 𝐷𝑘 ⊆ 𝐷𝑘+1,

𝐄 [|(𝐷𝑘+1 −𝐷𝑘) ∩ (𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍)|] = 𝐄 [|𝐷𝑘+1 ∩ (𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍)|]−𝐄 [|𝐷𝑘 ∩ (𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍)|]

Therefore, the claim holds true.

29

Now let’s combine the above results to prove Theorem 6. The probabilities and expectations
below are over the randomness of ℛ, the randomness of the generation of the input for 𝒜𝒪 and the
randomness of our adversary 𝒜𝒪 (thus over the randomness of 𝑡 and 𝑗) unless otherwise stated.

By our construction and the union bound,

𝖯𝗋
[︀
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜑1)) accepts and 𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜑2)) accepts

]︀
≥2𝖯𝗋

[︀
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜎𝐷𝑗)) accepts

]︀
− 1

=
2

𝑁(𝑛)

𝑁(𝑛)−1∑︁
𝑘=0

𝖯𝗋
[︀
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜎𝐷𝑘

)) accepts
]︀
− 1

From Claim 5 and Claim 6,

1

𝑁(𝑛)

𝑁(𝑛)−1∑︁
𝑘=0

𝖯𝗋
[︀
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜎𝐷𝑘

)) accepts
]︀

≥ 1

𝑁(𝑛)

𝑁(𝑛)−1∑︁
𝑘=0

(︁
𝖯𝗋

[︁
𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷𝑘,𝑠)

(𝜎𝐷𝑘
) accepts

]︁
−𝐄 [|𝐷𝑘+1 ∩ (𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍)|] +𝐄 [|𝐷𝑘 ∩ (𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍)|]

)︁

≥ 1

𝑁(𝑛)

𝑁(𝑛)−1∑︁
𝑘=0

𝖯𝗋
[︁
𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷𝑘,𝑠)

(𝜎𝐷𝑘
) accepts

]︁
− 1

𝑁(𝑛)
𝐄
[︀
|𝐷𝑁(𝑛) ∩ (𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍)|

]︀
≥ 1

𝑁(𝑛)

𝑁(𝑛)−1∑︁
𝑘=0

𝖯𝗋
[︁
𝖵
|𝖯𝖲𝖯𝖠𝖢𝖤⟩
(𝑝𝑘,𝐷𝑘,𝑠)

(𝜎𝐷𝑘
) accepts

]︁
− 𝑙(𝑛)

𝑁(𝑛)

≥0.99
(︁
1−

√︀
1− 𝛿𝑟 + 𝜖

)︁2
− 0.01

(︁
1−

√︀
1− 𝛿𝑟 + 𝜖

)︁2

≥0.9
(︁
1−

√︀
1− 𝛿𝑟 + 𝜖

)︁2

Therefore,

𝖯𝗋
[︀
𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜑1)) accepts and 𝖵𝖾𝗋𝒪(𝑝𝑘, (𝑠, 𝜑2)) accepts

]︀
≥ 1.8

(︁
1−

√︀
1− 𝛿𝑟 + 𝜖

)︁2
− 1,

which ends our proof of Theorem 6.

Proof of Theorem 5. The proposed adversary 𝒜𝒪 is a valid attack because when 𝜖 = 0.01, 𝛿𝑟 = 0.99,

1.8
(︁
1−

√︀
1− 𝛿𝑟 + 𝜖

)︁2
− 1 ≥ 1.8(1− 0.2)2 − 1 ≥ 0.1,

which is non-negligible.

6 Extensions to Quantum Access

In this section, we will explore a special case where some algorithms can have quantum access to
the random oracle. We consider reusable secure oracle-aided public key quantum money scheme
(𝖪𝖾𝗒𝖦𝖾𝗇|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩,𝖬𝗂𝗇𝗍|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩,𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩). Formally:

30

Theorem 7. Reusable and secure oracle-aided public key quantum money scheme (𝖪𝖾𝗒𝖦𝖾𝗇|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩,
𝖬𝗂𝗇𝗍|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩,𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩) does not exist where ℛ is a random oracle.

Without loss of generality, we can suppose the algorithms only make queries to the random
oracle on input length 𝑙(𝑛) and receive 1 bit output where 𝑙 is a polynomial. (If they make queries
to ℛ on various input lengths, suppose the maximal input length is 𝑙′(𝑛). Let 𝑙(𝑛) = 𝑙′(𝑛)+log 𝑙′(𝑛).
We can modify the algorithms so that their queries on input length 𝑘(𝑛) will be made on input
length 𝑙(𝑛) where the first 𝑘(𝑛) bits stores the true query position, the middle 𝑙′(𝑛)− 𝑘(𝑛) bits are
0, and the last log 𝑙′(𝑛) bits indicates 𝑘(𝑛).)

Let 𝖵𝖾𝗋 make 𝑞(𝑛) classical queries to ℛ. Let 𝖪𝖾𝗒𝖦𝖾𝗇 and 𝖬𝗂𝗇𝗍 make 𝑞′(𝑛) quantum queries to
ℛ in total. Denote the reusability and the security of the scheme as 𝛿𝑟 and 𝛿𝑠 respectively where
𝛿𝑟 = 1−𝗇𝖾𝗀𝗅(𝑛), 𝛿𝑠 = 𝗇𝖾𝗀𝗅(𝑛). When it is clear from the context, we sometimes omit 𝑛 for simplicity.

It’s worth noting that the attacker in Section 5 doesn’t take advantage of the fact that 𝖪𝖾𝗒𝖦𝖾𝗇
and 𝖬𝗂𝗇𝗍 there can only make classical queries to ℛ. In fact, the same attacker works even when
𝖪𝖾𝗒𝖦𝖾𝗇 and 𝖬𝗂𝗇𝗍 can make quantum queries to ℛ (with some modifications on the number of
iterations). To be more specific, here is our construction of the attacker where 𝑇 (𝑛), 𝑁(𝑛), the
guarantee 𝑎 and the threshold 𝑏 of 𝖲𝗒𝗇 will be determined later.

𝒜ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ It takes as input a valid banknote (𝑠, 𝜌𝑠) and public key 𝑝𝑘, and behaves as follows.

1. Test phase: Let 𝑡 $←− {0, 1, . . . , 𝑇 (𝑛) − 1}. Let 𝐷 = ∅, 𝜌(0)𝑠 = 𝜌𝑠. Run the following 𝑡 times.
In 𝑖𝑡𝑕 iteration,

(a) 𝜌(𝑖)𝑠 ⊗ |𝐱⟩⟨𝐱| ← 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, 𝑠, 𝜌
(𝑖−1)
𝑠).

(b) Add query-answer pairs to ℛ in item (a) into 𝐷.

2. Update phase: Let 𝑗 $←− {0, 1, . . . , 𝑁(𝑛) − 1}. Let 𝐷0 = 𝐷. Run the following 𝑗 times. In
𝑘𝑡𝑕 iteration,

(a) 𝜎𝐷𝑘−1
← 𝖲𝗒𝗇|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘,𝐷𝑘−1, 𝑠).

(b) Run 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, 𝜎𝐷𝑘−1
)).

(c) Let 𝐷𝑘 consist of all the query-answer pairs to ℛ in item (b) and the pairs in 𝐷𝑘−1.

3. Synthesize phase: Output 𝜑 = 𝜑1 ⊗ 𝜑2 where 𝜑𝑖 ← 𝖲𝗒𝗇|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘,𝐷𝑗 , 𝑠) (𝑖 = 1, 2).

This description of 𝒜ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ is actually equivalent to our adversary in Section 5. We move
the line 𝑗 $←− {0, 1, . . . , 𝑁(𝑛)− 1} to the front because it will be easier to analyze.

What is left is to prove an analogue of Theorem 6. That is, the output states of 𝒜 will be
accepted with high probability.

Theorem 8. Given input (𝑝𝑘, (𝑠, 𝜌𝑠)) generated by 𝖪𝖾𝗒𝖦𝖾𝗇|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ and 𝖬𝗂𝗇𝗍|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩, 𝒜ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩

outputs two alleged banknotes associated with the serial number 𝑠 that will be accepted with high prob-
ability. Formally:

𝖯𝗋
[︁
𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, 𝜑1)) accepts and 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, 𝜑2)) accepts

]︁
≥ 1.8

(︁
1−

√︀
1− 𝛿𝑟 + 𝜖

)︁2
−1,

31

where the probability is over the randomness of ℛ, the randomness of the generation of the input for
𝒜ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ (that is, the randomness of 𝖪𝖾𝗒𝖦𝖾𝗇|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ and 𝖬𝗂𝗇𝗍|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩) and the randomness
of our adversary 𝒜ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩.

Similar to Theorem 6, we will show that the verification on 𝜎𝐷𝑗 ← 𝖲𝗒𝗇|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘,𝐷𝑗 , 𝑠) accepts
with high probability and then prove the theorem by union bound.

In Section 5, we crucially rely on the fact that whenever we make a mistake, we make progress
in the sense that we recover a query inside 𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍 −𝐷𝑘. However, now 𝖪𝖾𝗒𝖦𝖾𝗇,𝖬𝗂𝗇𝗍 can
make quantum queries. As a result, 𝖪𝖾𝗒𝖦𝖾𝗇 and 𝖬𝗂𝗇𝗍 could “touch” exponentially many positions.
Fortunately, the compressed oralce technique introduced by Zhandry [Zha18] can be seen as a
quantum analogue of recording queries into a database. Basically, if we run all the algorithms in
the purified view and see the register containing the oracle (labeled 𝖥) in Fourier basis, then all
except polynomial positions are |0̂⟩ after polynomial quantum queries, and thus the register can be
compressed using a unitary. In this work, in order to better mimic 𝐷𝑘 and 𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍−𝐷𝑘 in
Section 5, we take advantage of the fact that 𝖵𝖾𝗋 only makes classical queries. To be more specific,
we will maintain a register to store a database for all the classical queries and only record those
non-|0̂⟩ positions outside the database into 𝖥. These two registers will be our analogue of 𝐷𝑘 and
𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍 −𝐷𝑘. We will elaborate on this idea in Section 6.2.

6.1 A Purified View of the Algorithms

From Section 3.4, for any sequence of algorithms that only make queries to the random oracle on
input length 𝑙(𝑛) and receive 1 bit output, we can analyze the output using a pure state that we
obtain by running all the algorithms in the purified view instead. By purified view, we mean that
we will purify the execution of the algorithms in the following way:

• We will introduce a register 𝖥 that contains the truth table of the oracle. Before the execution
of the first algorithm, it is initialized to a uniform superposition of all the possible truth tables
of the oracle, i.e. |0̂⟩⊗2

𝑙

.

• Instead of quantum query to ℛ, we apply a unitary 𝑈𝑄 : |𝑥⟩𝖰 |𝑦⟩𝖠 |𝑓⟩𝖥 → |𝑥⟩𝖰 |𝑦 ⊕ 𝑓(𝑥)⟩𝖠 |𝑓⟩𝖥
where 𝖰 stores the query position and 𝖠 is for the answer bit. (The subscript 𝑄 in 𝑈𝑄 is for
Quantum queries.)

• Instead of computational basis measurements, we apply 𝐶𝑁𝑂𝑇 to copy it to a fresh ancilla.

Without loss of generality, we can suppose for any classical query to ℛ, the register for query
answer is always set to |0⟩ before the query. Notice that a classical query to ℛ is equivalent to a
computational basis measurement on the query position followed by a quantum query to ℛ. An
extra computational basis measurement on the answer of the query won’t change the view. So a
classical query in the purified view can be treated as applying the unitary

𝑈𝐶 : |𝑥⟩𝖰 |0⟩𝖠 |𝑓⟩𝖥 |𝐷ℛ⟩𝖣ℛ
→ |𝑥⟩𝖰 |𝑓(𝑥)⟩𝖠 |𝑓⟩𝖥 |𝐷ℛ, (𝑥, 𝑓(𝑥))⟩𝖣ℛ

where 𝖣ℛ is a register that we will use to purify the computational basis measurements in the classi-
cal queries. By |𝐷ℛ⟩, we mean a sequence of pairs |(𝑥1, 𝑧1), (𝑥2, 𝑧2), · · · (𝑥𝑘, 𝑧𝑘)⟩ where 𝑥1, 𝑥2, · · · , 𝑥𝑘
are not necessary to be distinct but if 𝑥𝑖 = 𝑥𝑗 , then we have the guarantee that 𝑧𝑖 = 𝑧𝑗 . Here 𝖣ℛ has
enough space. That is, by |(𝑥1, 𝑧1), · · · (𝑥𝑘, 𝑧𝑘)⟩, we actually mean |(𝑥1, 𝑧1), · · · (𝑥𝑘, 𝑧𝑘),⊥, · · · ,⊥⟩

32

where ⊥ is a special symbol that represents empty. Despite not being standard, we sometimes call
𝐷ℛ database. (The subscript 𝐶 in 𝑈𝐶 is for Classical queries.)

Another convenient way to think of the purified view is to treat the execution of the algorithms
as an interaction between two parties, the algorithm and the oracle. The oracle will maintain two
private registers 𝖥 and 𝖣ℛ (and also some ancillas initialized to be |0⟩). If the algorithm is allowed
to make quantum queries to ℛ, the algorithm will submit 𝖰𝖠 to the oracle, and then the oracle will
apply 𝑈𝑄 and send 𝖰𝖠 back to the algorithm. If the algorithm is only allowed to make classical
queries, the algorithm will submit 𝖰 to the oracle, and then the oracle will put a fresh ancilla on 𝖠,
apply 𝑈𝐶 and send 𝖰𝖠 to the algorithm.

We will use 𝑈𝖪𝖾𝗒𝖦𝖾𝗇,𝑛, 𝑈𝖬𝗂𝗇𝗍,𝑛, 𝑈𝖵𝖾𝗋,𝑛 and 𝑈𝖲𝗒𝗇,𝑛 to denote the unitary corresponding to the puri-
fied version of 𝖪𝖾𝗒𝖦𝖾𝗇, 𝖬𝗂𝗇𝗍, 𝖵𝖾𝗋 and 𝖲𝗒𝗇 on security number 𝑛 respectively. Then 𝑈𝖪𝖾𝗒𝖦𝖾𝗇,𝑛, 𝑈𝖬𝗂𝗇𝗍,𝑛

and 𝑈𝖵𝖾𝗋,𝑛 are all in the form of preparing the first query and then repeatively answering the query
by applying 𝑈𝑄 or 𝑈𝐶 and preparing the next query (or the final output if there is no further query).
In particular, we will write 𝑈𝖵𝖾𝗋,𝑛 as 𝑈𝑞(𝑛)𝑈𝐶𝑈𝑞(𝑛)−1 · · ·𝑈𝐶𝑈0. We will omit the subscript 𝑛 when
it is clear from the context.

Let 𝑈 ′𝖵𝖾𝗋 := 𝑈𝑞𝑈𝑅𝑈𝑞−1 · · ·𝑈𝑅𝑈0 where 𝑈𝑅 (the subscript 𝑅 is for Recording) is a unitary that
in addition to a classical query 𝑈𝐶 , it records the query-answer pair into a database maintained by
𝒜. That is,

𝑈𝑅 : |𝑥⟩𝖰 |0⟩𝖠 |𝐷𝒜⟩𝖣𝒜
|𝑓⟩𝖥 |𝐷ℛ⟩𝖣ℛ

→ |𝑥⟩𝖰 |𝑓(𝑥)⟩𝖠 |𝐷𝒜, (𝑥, 𝑓(𝑥))⟩𝖣𝒜
|𝑓⟩𝖥 |𝐷ℛ, (𝑥, 𝑓(𝑥))⟩𝖣ℛ

where 𝖣𝒜 is the register that stores the database maintained by 𝒜. Again by |𝐷𝒜⟩ and |𝐷ℛ⟩, we
mean a sequence of query-answer pairs where the query positions are not necessary to be distinct,
but the pairs are consistent. 𝖣𝒜 has enough space.

It’s easy to see that 𝑈 ′𝖵𝖾𝗋 corresponds to running 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ while the adversary records the
query-answer pairs made by 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩.

Then in the purified view, 𝒜ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ is the following (we will denote by 𝑈𝒜):

1. Given input public key, serial number, the alleged banknote along with the register containing
the truth table of the oracle, introduce a register 𝖳 initialized to be 1√

𝑇 (𝑛)

∑︀𝑇 (𝑛)−1
𝑡=0 |𝑡⟩𝖳 and

introduce a register 𝖩 initialized to be 1√
𝑁(𝑛)

∑︀𝑁(𝑛)−1
𝑗=0 |𝑗⟩𝖩.

2. Test phase: Conditioned on the content in 𝖳 is 𝑡, apply 𝑈 ′𝖵𝖾𝗋 on the banknote for 𝑡 times in
sequential. (Or equivalently apply unitary 𝑈𝖳𝖾𝗌𝗍 :=

∑︀𝑇 (𝑛)−1
𝑡=0 𝑈 ′𝑡𝖵𝖾𝗋 ⊗ |𝑡⟩⟨𝑡|𝖳 where 𝑈 ′𝑡𝖵𝖾𝗋 means

applying 𝑈 ′𝖵𝖾𝗋 for 𝑡 times.)

3. Update phase: Conditioned on the content in 𝖩 is 𝑗, apply the following for 𝑗 times:

(a) Apply 𝑈𝖲𝗒𝗇 on all the query-answer pairs we learn so far (i.e. the contents in 𝖣𝒜).

(b) Apply 𝑈 ′𝖵𝖾𝗋 on the state synthesized in item (a).

(Or equivalently apply unitary 𝑈𝖴𝗉𝖽 :=
∑︀𝑁(𝑛)−1

𝑗=0 (𝑈 ′𝖵𝖾𝗋𝑈𝖲𝗒𝗇)
𝑗⊗|𝑗⟩⟨𝑗|𝖩 where (𝑈 ′𝖵𝖾𝗋𝑈𝖲𝗒𝗇)

𝑗 means
alternatively applying 𝑈𝖲𝗒𝗇 and 𝑈 ′𝖵𝖾𝗋 for 𝑗 times.)

4. Synthesize phase: Apply 𝑈𝖲𝗒𝗇1 and 𝑈𝖲𝗒𝗇2 on the query-answer pairs in 𝖣𝒜 to obtain two
alleged banknotes where 𝑈𝖲𝗒𝗇1 and 𝑈𝖲𝗒𝗇2 are 𝑈𝖲𝗒𝗇 that acts on different registers.

33

Then the acceptance probability of the following algorithms on the corresponding states (taking
the randomness of ℛ into account) can be analyzed by running the following sequence of algorithms
in the purified view.

𝗩𝗲𝗿R,|𝗣𝗦𝗣𝗔𝗖𝗘⟩(𝒑𝒌, (𝒔, ·)) on 𝝆
(𝒕)
𝒔 The acceptance probability is the probability that

1. Run the algorithms 𝖪𝖾𝗒𝖦𝖾𝗇|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩,𝖬𝗂𝗇𝗍|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ and 𝒜ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ in a purified view
sequentially where the input of 𝖪𝖾𝗒𝖦𝖾𝗇 is the security parameter in unary notion, the input
of 𝖬𝗂𝗇𝗍 is the output register corresponding to secret key of 𝖪𝖾𝗒𝖦𝖾𝗇, and the input of 𝒜 is the
output register of 𝖬𝗂𝗇𝗍 and the register for the public key.

2. Furthermore run 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ in a purified view where the input of 𝖵𝖾𝗋 is the register for the
public key, the register for the serial number and the register for 𝜌(𝑡)𝑠 (It’s inside working space
register of 𝒜).

3. Measure the outcome register of the above 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ and obtain 𝖠𝖼𝖼𝖾𝗉𝗍.

𝗩𝗲𝗿𝑫𝒋 ,|𝗣𝗦𝗣𝗔𝗖𝗘⟩(𝒑𝒌, (𝒔, ·)) on 𝝆
(𝒕)
𝒔 Here 𝖵𝖾𝗋𝐷𝑗 ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ means running 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ where the

queries to ℛ is answered by the database 𝐷𝑗 (all the query-answer pairs in 𝖣𝒜).
Define a unitary

𝑈𝐷 : |𝑥⟩𝖰 |0⟩𝖠 |𝐷𝑗⟩𝖣𝒜
→

{︃
|𝑥⟩𝖰 |𝐷𝑗(𝑥)⟩𝖠 |𝐷𝑗 , (𝑥,𝐷𝑗(𝑥))⟩𝖣𝒜

, 𝑥 ∈ 𝐷𝑗

|𝑥⟩𝖰
∑︀1

𝑧=0
1√
2
|𝑧⟩𝖠 |𝐷𝑗 , (𝑥, 𝑧)⟩𝖣𝒜

, 𝑥 /∈ 𝐷𝑗

where by |𝐷𝑗⟩, we mean a sequence of query-answer pairs |(𝑥1, 𝑧1), (𝑥2, 𝑧2), · · · (𝑥𝑘, 𝑧𝑘)⟩ where the
query positions 𝑥1, 𝑥2, · · · , 𝑥𝑘 are not necessary to be distinct, but the pairs are consistent. By
𝑥 ∈ 𝐷𝑗 , we mean there exists 𝑧 such that (𝑥, 𝑧) is a pair in 𝐷𝑗 and we will denote this 𝑧 as 𝐷𝑗(𝑥).
By 𝑥 /∈ 𝐷𝑗 , we mean for all 𝑧, (𝑥, 𝑧) is not a pair in 𝐷𝑗 . (The subscript 𝐷 in 𝑈𝐷 is for simulating
with Database.)

Then applying 𝑈𝐷 is exactly answering the query 𝑥 using 𝐷𝑗 (If 𝑥 is in the database, then
answer the query using 𝐷𝑗 ; Otherwise, give a random answer while recording this query-answer
pair into the database for later use). Thus the purified version of 𝖵𝖾𝗋𝐷𝑗 ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ is

𝑈𝖲𝗂𝗆 := 𝑈𝑞𝑈𝐷𝑈𝑞−1 · · ·𝑈𝐷𝑈0.

So the acceptance probability of 𝖵𝖾𝗋𝐷𝑗 ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, ·)) on 𝜌(𝑡)𝑠 is the probability that

1. Run the first step in the case 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, ·)) on 𝜌(𝑡)𝑠 .

2. Furthermore run 𝖵𝖾𝗋𝐷𝑗 ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ in a purified view where the input of 𝖵𝖾𝗋 is the register for
the public key, the register for the serial number, and the register for 𝜌(𝑡)𝑠 (The input is the
same as the case 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, ·)) on 𝜌(𝑡)𝑠).

3. Measure the outcome register of the above 𝖵𝖾𝗋𝐷𝑗 ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ and obtain 𝖠𝖼𝖼𝖾𝗉𝗍.

34

𝗩𝗲𝗿R,|𝗣𝗦𝗣𝗔𝗖𝗘⟩(𝒑𝒌, (𝒔, ·)) on 𝝈𝑫𝒋
The acceptance probability is the probability that

1. Run the first step in the case 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, ·)) on 𝜌(𝑡)𝑠 .

2. Furthermore run 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ in a purified view where the input of 𝖵𝖾𝗋 is the register for the
public key, the register for the serial number, and the register for 𝜎𝐷𝑗 (It’s the first register of
the output state of 𝒜).

3. Measure the outcome register of the above 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ and obtain 𝖠𝖼𝖼𝖾𝗉𝗍.

𝗩𝗲𝗿𝑫𝒋 ,|𝗣𝗦𝗣𝗔𝗖𝗘⟩(𝒑𝒌, (𝒔, ·)) on 𝝈𝑫𝒋
The acceptance probability is the probability that

1. Run the first step in the case 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, ·)) on 𝜌(𝑡)𝑠 .

2. Furthermore run 𝖵𝖾𝗋𝐷𝑗 ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ in a purified view where the input of 𝖵𝖾𝗋 is the register for
the public key, the register for the serial number, and the register for 𝜎𝐷𝑗 (The input is the
same as the case 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, ·)) on 𝜎𝐷𝑗).

3. Measure the outcome register of the above 𝖵𝖾𝗋𝐷𝑗 ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ and obtain 𝖠𝖼𝖼𝖾𝗉𝗍.

6.2 Compress and Decompress

Intuitively, |0̂⟩ position in 𝖥 is a uniform superposition of the range and it is unentangled with all
other things, so it can be seen as choosing a value from the range uniformly at random independently,
which is exactly what the simulation does. It is an analog of those positions that are never asked
during the sequence of algorithms in the purely classical query case.

In this subsection, we will show how to extract an analog of 𝐷𝑘 and 𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪ 𝐷𝖬𝗂𝗇𝗍 − 𝐷𝑘

from the pure state. Roughly speaking, the recorded classical queries are an analog of 𝐷𝑘 and we
will compress the register 𝖥 to extract those non-|0̂⟩ positions outside 𝐷𝑘 to form our analog of
𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍 −𝐷𝑘.

As it’s easier to write down and analyze the inverse operation of compress, we first give a formal
description of decompress unitary 𝖣𝖾𝖼𝗈𝗆𝗉. Recall that 𝖣ℛ stores all the classical queries to ℛ. 𝖥
is a register for the random function. Define

𝖣𝖾𝖼𝗈𝗆𝗉 : |𝐷𝐹 ⟩𝖥 |𝐷ℛ⟩𝖣ℛ
→ |𝑓0, 𝑓1, · · · , 𝑓2𝑙−1⟩𝖥 |𝐷ℛ⟩𝖣ℛ

where |𝐷𝐹 ⟩𝖥 can be written as a sequence of pairs |(𝑥1, ̂︀𝑦1), (𝑥2, ̂︀𝑦2), · · · , (𝑥𝑘′ ,̂︁𝑦𝑘′)⟩𝖥, |𝐷ℛ⟩𝖣ℛ
can be

written as a sequence of pairs |(𝑥′1, 𝑧1), (𝑥′2, 𝑧2), · · · , (𝑥′𝑘, 𝑧𝑘)⟩ and the input |𝐷𝐹 ⟩𝖥 |𝐷ℛ⟩𝖣ℛ
satisfies

• if 𝑥′𝑖 = 𝑥′𝑗 , then 𝑧𝑖 = 𝑧𝑗 ;

• 𝑥1 < 𝑥2 < · · · < 𝑥𝑘′ , ̂︀𝑦𝑖 ̸= ̂︀0;
• ∀𝑖, 𝑗, 𝑥𝑗 ̸= 𝑥′𝑖;

and the output satisfies

• If 𝑥′𝑗 = 𝑖, then 𝑓𝑖 = 𝑧𝑗 ;

• If 𝑥𝑗 = 𝑖, then 𝑓𝑖 = ̂︀𝑦𝑗 ;
35

• If ∀𝑗, 𝑥𝑗 ̸= 𝑖, 𝑥′𝑗 ̸= 𝑖, then 𝑓𝑖 = ̂︀0.
Roughly speaking, we fill 𝑓0, 𝑓1, · · · , 𝑓2𝑙−1 by looking at the pairs (𝑥′1, 𝑧1), (𝑥

′
2, 𝑧2), · · · , (𝑥′𝑘, 𝑧𝑘)

and (𝑥1, ̂︀𝑦1), (𝑥2, ̂︀𝑦2), · · · , (𝑥𝑘′ ,̂︁𝑦𝑘′). And we fill all the remaining positions with 0̂.
Here our register 𝖥 also have enough space. As our random function only has one-bit outputs,

𝑧1, 𝑧2, · · · , 𝑧𝑘, 𝑦1, 𝑦2, · · · , 𝑦𝑘′ ∈ {0, 1}. Recall that |0̂⟩ = |+⟩ = 1√
2
(|0⟩+|1⟩), |1̂⟩ = |−⟩ = 1√

2
(|0⟩−|1⟩).

One can check that each two inputs in the above form are orthogonal and they are mapped to
orthogonal outputs. So we can define the outputs of other inputs that are not in the above form so
that 𝖣𝖾𝖼𝗈𝗆𝗉 is a unitary.

More Notations For simplicity, when we write 𝐷ℛ, we mean a sequence of consistent pairs
(𝑥′1, 𝑧1), (𝑥

′
2, 𝑧2), · · · , (𝑥′𝑘, 𝑧𝑘) by default. By 𝑥 ∈ 𝐷ℛ, we mean ∃𝑖, 𝑥′𝑖 = 𝑥. By 𝐷ℛ(𝑥) where 𝑥 ∈ 𝐷ℛ,

we mean 𝑧𝑖 where 𝑥′𝑖 = 𝑥. When we write 𝐷𝐹 , we mean a sequence (𝑥1, ̂︀𝑦1), (𝑥2, ̂︀𝑦2), · · · , (𝑥𝑘′ ,̂︁𝑦𝑘′)
that satisfies the second item of the input requirements above. By 𝑥 ∈ 𝐷𝐹 , we mean ∃𝑖, 𝑥𝑖 = 𝑥.
By 𝐷𝐹 (𝑥) where 𝑥 ∈ 𝐷𝐹 , we mean ̂︀𝑦𝑖 where 𝑥𝑖 = 𝑥. By 𝐷𝐹 (𝑥) where 𝑥 ∈ 𝐷𝐹 , we mean 𝑦𝑖 where
𝑥𝑖 = 𝑥. By 𝐷𝐹 − 𝑥, we mean the sequence we obtain after deleting 𝑥𝑖, ̂︀𝑦𝑖 from the sequence 𝐷𝐹

where 𝑥𝑖 = 𝑥. Define 𝐷ℛ ∩𝐷𝐹 = {𝑥 : 𝑥 ∈ 𝐷ℛ and 𝑥 ∈ 𝐷𝐹 }.
The inverse operation of the above unitary 𝖣𝖾𝖼𝗈𝗆𝗉 is compress, which can take our database

𝐷ℛ and the truth table in register 𝖥 as inputs and compress them into two databases 𝐷ℛ and
𝐷𝐹 . Define it as 𝖢𝗈𝗆𝗉 := 𝖣𝖾𝖼𝗈𝗆𝗉†. These two unitaries enable us to change our view between
the decompressed one (a database for classical queries and a truth table) and the compressed one
(a database for classical queries and another database). Here is a picture to illustrate this. |𝜃⟩ is
an arbitrary state without compression. 𝑈 is a unitary in the decompressed view (It takes a state
without compression as input and outputs a state without compression). Then ̃︀𝑈 := 𝖢𝗈𝗆𝗉𝑈𝖣𝖾𝖼𝗈𝗆𝗉
is a compressed view version of 𝑈 (It takes a state after compression as input and outputs a state
after compression). From now on, when we write unitary ̃︀·, we mean it is in the compressed view.

|𝜃⟩ 𝖢𝗈𝗆𝗉 |𝜃⟩

𝑈 |𝜃⟩ 𝖢𝗈𝗆𝗉𝑈 |𝜃⟩

𝖢𝗈𝗆𝗉

𝖣𝖾𝖼𝗈𝗆𝗉

𝑈

𝖢𝗈𝗆𝗉

𝖣𝖾𝖼𝗈𝗆𝗉

̃︀𝑈 = 𝖢𝗈𝗆𝗉𝑈𝖣𝖾𝖼𝗈𝗆𝗉

Readers can treat 𝐷ℛ as an analog of database 𝐷𝑘 in Section 5 and treat 𝐷𝐹 as an analog of
databases 𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪ 𝐷𝖬𝗂𝗇𝗍 − 𝐷𝑘 in Section 5. Roughly speaking, 𝐷ℛ stores our classical queries.
The query positions in 𝐷𝐹 are those asked by 𝖪𝖾𝗒𝖦𝖾𝗇 and 𝖬𝗂𝗇𝗍, but not recorded in 𝐷ℛ. We can
understand this analog better after taking a look of the following query unitaries in the compressed
view.

Recall the unitaries 𝑈𝐶 , 𝑈𝑅 and 𝑈𝐷 from Section 6.1. They are for classical query, classical
query while recording and simulated classical query respectively. Their compressed versions are the
unitaries ̃︁𝑈𝐶 := 𝖢𝗈𝗆𝗉𝑈𝐶𝖣𝖾𝖼𝗈𝗆𝗉, ̃︁𝑈𝑅 := 𝖢𝗈𝗆𝗉𝑈𝑅𝖣𝖾𝖼𝗈𝗆𝗉 and ̃︁𝑈𝐷 := 𝖢𝗈𝗆𝗉𝑈𝐷𝖣𝖾𝖼𝗈𝗆𝗉.

36

From the description of 𝖣𝖾𝖼𝗈𝗆𝗉, we can get for 𝐷𝐹 ∩𝐷ℛ = ∅,

̃︁𝑈𝐶(|𝑥⟩𝖰 |0⟩𝖠 |𝐷𝐹 ⟩𝖥 |𝐷ℛ⟩𝖣ℛ
)

=

⎧⎪⎪⎨⎪⎪⎩
|𝑥⟩𝖰 |𝐷ℛ(𝑥)⟩𝖠 |𝐷𝐹 ⟩𝖥 |𝐷ℛ, (𝑥,𝐷ℛ(𝑥))⟩𝖣ℛ

𝑥 ∈ 𝐷ℛ
|𝑥⟩𝖰

1√
2

∑︀1
𝑧=0 |𝑧⟩𝖠 |𝐷𝐹 ⟩𝖥 |𝐷ℛ, (𝑥, 𝑧)⟩𝖣ℛ

𝑥 /∈ 𝐷ℛ, 𝑥 /∈ 𝐷𝐹

|𝑥⟩𝖰
1√
2

∑︀1
𝑧=0(−1)𝑧𝐷𝐹 (𝑥) |𝑧⟩𝖠 |𝐷𝐹 − 𝑥⟩𝖥 |𝐷ℛ, (𝑥, 𝑧)⟩𝖣ℛ

𝑥 /∈ 𝐷ℛ, 𝑥 ∈ 𝐷𝐹

̃︁𝑈𝑅(|𝑥⟩𝖰 |0⟩𝖠 |𝐷𝒜⟩𝖣𝒜
|𝐷𝐹 ⟩𝖥 |𝐷ℛ⟩𝖣ℛ

)

=

⎧⎪⎪⎨⎪⎪⎩
|𝑥⟩𝖰 |𝐷ℛ(𝑥)⟩𝖠 |𝐷𝒜, (𝑥,𝐷ℛ(𝑥))⟩𝖣𝒜

|𝐷𝐹 ⟩𝖥 |𝐷ℛ, (𝑥,𝐷ℛ(𝑥))⟩𝖣ℛ
𝑥 ∈ 𝐷ℛ

|𝑥⟩𝖰
1√
2

∑︀1
𝑧=0 |𝑧⟩𝖠 |𝐷𝒜, (𝑥, 𝑧)⟩𝖣𝒜

|𝐷𝐹 ⟩𝖥 |𝐷ℛ, (𝑥, 𝑧)⟩𝖣ℛ
𝑥 /∈ 𝐷ℛ, 𝑥 /∈ 𝐷𝐹

|𝑥⟩𝖰
1√
2

∑︀1
𝑧=0(−1)𝑧𝐷𝐹 (𝑥) |𝑧⟩𝖠 |𝐷𝒜, (𝑥, 𝑧)⟩𝖣𝒜

|𝐷𝐹 − 𝑥⟩𝖥 |𝐷ℛ, (𝑥, 𝑧)⟩𝖣ℛ
𝑥 /∈ 𝐷ℛ, 𝑥 ∈ 𝐷𝐹

Since 𝑈𝐷 does not act on 𝖥 and 𝖣ℛ, ̃︁𝑈𝐷 = 𝑈𝐷. Thus

̃︁𝑈𝐷(|𝑥⟩𝖰 |0⟩𝖠 |𝐷𝒜⟩𝖣𝒜
)

=

{︃
|𝑥⟩𝖰 |𝐷𝒜(𝑥)⟩𝖠 |𝐷𝒜, (𝑥,𝐷𝒜(𝑥))⟩𝖣𝒜

, 𝑥 ∈ 𝐷𝒜
|𝑥⟩𝖰

1√
2

∑︀1
𝑧=0 |𝑧⟩𝖠 |𝐷𝒜, (𝑥, 𝑧)⟩𝖣𝒜

, 𝑥 /∈ 𝐷𝒜

By the description of ̃︁𝑈𝐶 and ̃︁𝑈𝑅, whenever we ask a classical query on input 𝑥 ∈ 𝐷ℛ, we answer
it with our database 𝐷ℛ and record (𝑥,𝐷ℛ(𝑥)) for another time; whenever we ask a classical query
on input 𝑥 /∈ 𝐷ℛ∪𝐷𝐹 , we answer it with a random 𝑧 and record (𝑥, 𝑧) in our database for later use;
whenever we ask a classical query on input 𝑥 ∈ 𝐷𝐹 , we actually copy the answer from the 𝐷𝐹 , record
it, and remove 𝑥 from 𝐷𝐹 . The above three cases is analogous to the classical on-the-fly simulation
where the query to ℛ inside 𝐷𝑘 can be answered by 𝐷𝑘, the query to ℛ inside 𝐷𝖪𝖾𝗒𝖦𝖾𝗇∪𝐷𝖬𝗂𝗇𝗍−𝐷𝑘

should be answered consistently by 𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍 −𝐷𝑘 and we can give a random answer to the
query to outside (𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍 −𝐷𝑘) ∪𝐷𝑘. It is worth pointing out that ̃︁𝑈𝐶 and ̃︁𝑈𝑅 maintain
the property that 𝐷ℛ ∩𝐷𝐹 is empty (analogous to (𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍 −𝐷𝑘) ∩𝐷𝑘 = ∅).

Furthermore, recall that 𝑈𝖵𝖾𝗋 = 𝑈𝑞𝑈𝐶𝑈𝑞−1 · · ·𝑈1𝑈𝐶𝑈0 and 𝑈𝑖 does not act on 𝖥 or 𝖣ℛ. Thus̃︀𝑈𝑖 = 𝑈𝑖, ̃︂𝑈𝖵𝖾𝗋 = ̃︁𝑈𝑞
̃︁𝑈𝐶𝑈𝑞−1 · · ·̃︁𝑈1

̃︁𝑈𝐶
̃︁𝑈0 = 𝑈𝑞

̃︁𝑈𝐶𝑈𝑞−1 · · ·𝑈1
̃︁𝑈𝐶𝑈0. Similarly, recall that the purified

version of 𝖵𝖾𝗋𝐷𝑗 ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ is 𝑈𝖲𝗂𝗆 = 𝑈𝑞𝑈𝐷𝑈𝑞−1 · · ·𝑈𝐷𝑈0. Thus ̃︂𝑈𝖲𝗂𝗆 = 𝑈𝑞
̃︁𝑈𝐷𝑈𝑞−1 · · · ̃︁𝑈𝐷𝑈0 = 𝑈𝖲𝗂𝗆

(Because ̃︁𝑈𝐷 = 𝑈𝐷).

6.3 Analysis of 𝒜ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩

Here we analyze the acceptance probability of 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ on the output of our 𝒜ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩. We
reuse our ideas in Section 5. Readers are encouraged to refer to our notation table in Appendix C
when confused about the notations.

The following proposition can be seen as an analog of Claim 6 except that we work on a general
state instead of solely analyzing 𝜎𝐷𝑘

. It basically says that when the behavior of 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩

(corresponding to ̃︂𝑈𝖵𝖾𝗋 = 𝑈𝑞
̃︁𝑈𝐶 · · · ̃︁𝑈𝐶𝑈0) is far from a simulation 𝖵𝖾𝗋𝐷,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ (corresponding tõ︂𝑈𝖲𝗂𝗆 = 𝑈𝑞𝑈𝐷 · · ·𝑈𝐷𝑈0), then the number of pairs in 𝖥 (analogous to |𝐷𝖪𝖾𝗒𝖦𝖾𝗇 ∪𝐷𝖬𝗂𝗇𝗍 −𝐷𝑘|) will

drop a lot after the verification. The intuition is that roughly speaking, ̃︁𝑈𝐶 and 𝑈𝐷 only behave

37

differently when given a query position 𝑥 ∈ 𝐷𝐹 , in which case 𝑥 will be excluded from 𝐷𝐹 after
applying ̃︁𝑈𝐶 . So it results in a decrement of the number of pairs in 𝖥. Formally:

Proposition 2. Denote 𝑂 to be the observable corresponding to the number of pairs in 𝖥. To be
more specific, 𝑂 =

∑︀
𝐷𝐹
|𝐷𝐹 | |𝐷𝐹 ⟩⟨𝐷𝐹 |𝖥 where |𝐷𝐹 | is the number of pairs in 𝐷𝐹 .

For a state |𝜑⟩ in the following form (i.e. it’s in the compressed view and the contents in 𝖣ℛ
and 𝖣𝒜 are the same),

|𝜑⟩ =
∑︁

𝑝𝑘,𝑠,𝑚,𝐷,𝐷𝐹 ,𝑔
s.t. 𝐷∩𝐷𝐹=∅

𝛼𝑝𝑘,𝑠,𝑚,𝐷,𝐷𝐹 ,𝑔 |𝑝𝑘⟩𝖯𝗄 |𝑠⟩𝖲 |𝑚⟩𝖬 |𝐷⟩𝖣𝒜
|𝐷𝐹 ⟩𝖥 |𝐷⟩𝖣ℛ

|𝑔⟩𝖦 .

Let 𝖯𝗋
[︁̃︂𝑈𝖵𝖾𝗋 accepts when running on |𝜑⟩

]︁
be the acceptance probability of ̃︂𝑈𝖵𝖾𝗋 when the public

key, the serial number and the alleged money state are in 𝖯𝗄,𝖲 and 𝖬 respectively (It also equals
to the acceptance probability of 𝑈𝖵𝖾𝗋 on 𝖣𝖾𝖼𝗈𝗆𝗉 |𝜑⟩ because ̃︂𝑈𝖵𝖾𝗋 |𝜑⟩ = 𝖢𝗈𝗆𝗉𝑈𝖵𝖾𝗋(𝖣𝖾𝖼𝗈𝗆𝗉 |𝜑⟩) and
𝖢𝗈𝗆𝗉 does not act on the output bit).

Let 𝖯𝗋
[︁ ̃︂𝑈𝖲𝗂𝗆 accepts when running on |𝜑⟩

]︁
be the acceptance probability of ̃︂𝑈𝖲𝗂𝗆 when the public

key, the serial number, the alleged money state and the database for simulating the random oracle are
in 𝖯𝗄,𝖲,𝖬 and 𝖣𝒜 respectively (It also equals to the acceptance probability of 𝑈𝖲𝗂𝗆 on 𝖣𝖾𝖼𝗈𝗆𝗉 |𝜑⟩).⃒⃒⃒

𝖯𝗋
[︁̃︂𝑈𝖵𝖾𝗋 accepts when running on |𝜑⟩

]︁
− 𝖯𝗋

[︁ ̃︂𝑈𝖲𝗂𝗆 accepts when running on |𝜑⟩
]︁⃒⃒⃒

≤TD
(︁
Tr𝖥𝖣𝒜𝖣ℛ(

̃︂𝑈𝖵𝖾𝗋 |𝜑⟩⟨𝜑|̃︂𝑈𝖵𝖾𝗋
†
),Tr𝖥𝖣𝒜𝖣ℛ(

̃︂𝑈𝖲𝗂𝗆 |𝜑⟩⟨𝜑| ̃︂𝑈𝖲𝗂𝗆
†
)
)︁

≤6
√︂
𝑞
(︁
Tr(𝑂 |𝜑⟩⟨𝜑|)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋 |𝜑⟩⟨𝜑|̃︂𝑈𝖵𝖾𝗋

†
)
)︁

Proof. The first inequality follows immediately from the fact that we can measure a qubit (not
in 𝖥𝖣𝒜𝖣ℛ) of ̃︂𝑈𝖵𝖾𝗋 |𝜑⟩ and ̃︂𝑈𝖲𝗂𝗆 |𝜑⟩ to obtain whether they accept and the fact that we can not
distinguish two states with probability greater than their trace distance.

As for the second inequality, recall that ̃︂𝑈𝖵𝖾𝗋 = 𝑈𝑞
̃︁𝑈𝐶 · · · ̃︁𝑈𝐶𝑈0 and ̃︂𝑈𝖲𝗂𝗆 = 𝑈𝑞𝑈𝐷 · · ·𝑈𝐷𝑈0. Let

𝑈 ′𝐷 be the same as 𝑈𝐷 except that it uses the contents in 𝐷ℛ for simulation instead of the contents
in 𝐷𝒜. To be more specific,

𝑈 ′𝐷(|𝑥⟩𝖰 |0⟩𝖠 |𝐷ℛ⟩𝖣ℛ
) =

{︃
|𝑥⟩𝖰 |𝐷ℛ(𝑥)⟩𝖠 |𝐷ℛ, (𝑥,𝐷ℛ(𝑥))⟩𝖣ℛ

, 𝑥 ∈ 𝐷ℛ
|𝑥⟩𝖰

1√
2

∑︀1
𝑧=0 |𝑧⟩𝖠 |𝐷ℛ, (𝑥, 𝑧)⟩𝖣ℛ

, 𝑥 /∈ 𝐷ℛ

Define |𝜑𝑗⟩ = ̃︁𝑈𝐶𝑈𝑗−1 · · · ̃︁𝑈𝐶𝑈0 |𝜑⟩ where 0 ≤ 𝑗 ≤ 𝑞. In order to analyze the difference of ̃︂𝑈𝖵𝖾𝗋

and ̃︂𝑈𝖲𝗂𝗆 on |𝜑⟩, it’s enough to analyze the difference between one true query and one simulated
query. Formally,

TD
(︁
Tr𝖥𝖣𝒜𝖣ℛ(

̃︂𝑈𝖵𝖾𝗋 |𝜑⟩⟨𝜑|̃︂𝑈𝖵𝖾𝗋
†
),Tr𝖥𝖣𝒜𝖣ℛ(

̃︂𝑈𝖲𝗂𝗆 |𝜑⟩⟨𝜑| ̃︂𝑈𝖲𝗂𝗆
†
)
)︁

=TD
(︁
Tr𝖥𝖣𝒜𝖣ℛ(𝑈𝑞 |𝜑𝑞⟩⟨𝜑𝑞|𝑈 †𝑞),Tr𝖥𝖣𝒜𝖣ℛ(𝑈𝑞𝑈

′
𝐷 · · ·𝑈 ′𝐷𝑈0 |𝜑0⟩⟨𝜑0|𝑈 †0𝑈

′†
𝐷 · · ·𝑈

′†
𝐷𝑈
†
𝑞)
)︁

≤
𝑞−1∑︁
𝑗=0

TD
(︁
Tr𝖥𝖣𝒜𝖣ℛ(𝑈𝑞𝑈

′
𝐷 · · ·𝑈𝑗+1 |𝜑𝑗+1⟩⟨𝜑𝑗+1|𝑈 †𝑗+1𝑈

′†
𝐷 · · ·𝑈

†
𝑞),Tr𝖥𝖣𝒜𝖣ℛ(𝑈𝑞𝑈

′
𝐷 · · ·𝑈𝑗 |𝜑𝑗⟩⟨𝜑𝑗 |𝑈 †𝑗𝑈

′†
𝐷 · · ·𝑈

†
𝑞)
)︁

≤
𝑞−1∑︁
𝑗=0

TD
(︁̃︁𝑈𝐶𝑈𝑗 |𝜑𝑗⟩⟨𝜑𝑗 |𝑈 †𝑗 ̃︁𝑈𝐶

†
, 𝑈 ′𝐷𝑈𝑗 |𝜑𝑗⟩⟨𝜑𝑗 |𝑈 †𝑗𝑈

′†
𝐷

)︁

38

where we use the fact that |𝜑⟩ have the same contents on 𝖣𝒜 and 𝖣ℛ and thus Tr𝖥𝖣𝒜𝖣ℛ(
̃︂𝑈𝖲𝗂𝗆 |𝜑⟩⟨𝜑| ̃︂𝑈𝖲𝗂𝗆

†
)

equals to Tr𝖥𝖣𝒜𝖣ℛ(𝑈𝑞𝑈
′
𝐷 · · ·𝑈 ′𝐷𝑈0 |𝜑0⟩⟨𝜑0|𝑈 †0𝑈

′†
𝐷 · · ·𝑈

′†
𝐷𝑈
†
𝑞).̃︁𝑈𝐶 and 𝑈 ′𝐷 act differently only when the query position is inside 𝐷𝐹 . So the difference between

one true query and one simulated query can be bounded by the weight of queries inside 𝐷𝐹 , which
equals the decrement of the number of pairs in 𝖥 after the query. Formally, we give the following
lemma, whose proof is deferred to Appendix A.

Lemma 6. TD
(︁̃︁𝑈𝐶𝑈𝑗 |𝜑𝑗⟩⟨𝜑𝑗 |𝑈 †𝑗 ̃︁𝑈𝐶

†
, 𝑈 ′𝐷𝑈𝑗 |𝜑𝑗⟩⟨𝜑𝑗 |𝑈 †𝑗𝑈

′†
𝐷

)︁
≤ 6

√︀
Tr(𝑂 |𝜑𝑗⟩⟨𝜑𝑗 |)− Tr(𝑂 |𝜑𝑗+1⟩⟨𝜑𝑗+1|).

We can insert Lemma 6 into the above inequality and obtain

TD
(︁
Tr𝖥𝖣𝒜𝖣ℛ(

̃︂𝑈𝖵𝖾𝗋 |𝜑⟩⟨𝜑|̃︂𝑈𝖵𝖾𝗋
†
),Tr𝖥𝖣𝒜𝖣ℛ(

̃︂𝑈𝖲𝗂𝗆 |𝜑⟩⟨𝜑| ̃︂𝑈𝖲𝗂𝗆
†
)
)︁

≤
𝑞−1∑︁
𝑗=0

6
√︁

Tr(𝑂 |𝜑𝑗⟩⟨𝜑𝑗 |)− Tr(𝑂 |𝜑𝑗+1⟩⟨𝜑𝑗+1|)

≤6

⎯⎸⎸⎷𝑞

𝑞−1∑︁
𝑗=0

(Tr(𝑂 |𝜑𝑗⟩⟨𝜑𝑗 |)− Tr(𝑂 |𝜑𝑗+1⟩⟨𝜑𝑗+1|)) (Cauchy–Schwarz inequality)

=6

√︂
𝑞
(︁
Tr(𝑂 |𝜑⟩⟨𝜑|)− Tr(𝑂̃︁𝑈𝐶𝑈𝑞−1 · · · ̃︁𝑈𝐶𝑈0 |𝜑⟩⟨𝜑|𝑈 †0 ̃︁𝑈𝐶

†
· · ·𝑈 †𝑞−1̃︁𝑈𝐶

†
)
)︁

=6

√︂
𝑞
(︁
Tr(𝑂 |𝜑⟩⟨𝜑|)− Tr(𝑂𝑈𝑞

̃︁𝑈𝐶 · · · ̃︁𝑈𝐶𝑈0 |𝜑⟩⟨𝜑|𝑈 †0 ̃︁𝑈𝐶
†
· · · ̃︁𝑈𝐶

†
𝑈 †𝑞)

)︁
=6

√︂
𝑞
(︁
Tr(𝑂 |𝜑⟩⟨𝜑|)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋 |𝜑⟩⟨𝜑|̃︂𝑈𝖵𝖾𝗋

†
)
)︁

where we use again the fact that 𝑈𝑞 does not act on 𝖥 and thus 𝑂 commutes with 𝑈𝑞.

The next claim is an analog of Claim 4. Basically, it argues that on average, 𝜌(𝑡)𝑠 is a good
witness state for the simulation with database 𝐷𝑗 even when 𝖪𝖾𝗒𝖦𝖾𝗇 and 𝖬𝗂𝗇𝗍 can make quantum
queries to ℛ.

The intuition of the proof is the following: from Section 6.1, the difference between the accep-
tance probabilities of 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, ·)) and 𝖵𝖾𝗋𝐷𝑗 ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, ·)) on 𝜌

(𝑡)
𝑠 is the difference

between running 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ and 𝖵𝖾𝗋𝐷𝑗 ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ in the purified view on the same state (i.e. the
difference between applying 𝑈𝖵𝖾𝗋 and 𝑈𝖲𝗂𝗆 on the same state), which can be transformed to the
compressed view and by Proposition 2 can be bounded by the decrement of the number of pairs
in 𝖥 after the verification. Roughly speaking, the decrement equals to the number of pairs in 𝐷𝐹

asked during the verification. But we randomize 𝑡, so running another verification on 𝜌
(𝑡)
𝑠 should

not decrease the number of pairs in 𝖥 too much on average. Formally:

Claim 7.⃒⃒⃒
𝖯𝗋

[︁
𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, 𝜌(𝑡)𝑠)) accepts

]︁
− 𝖯𝗋

[︁
𝖵𝖾𝗋𝐷𝑗 ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, 𝜌(𝑡)𝑠)) accepts

]︁⃒⃒⃒
≤ 6

√︃
𝑞(𝑛)𝑞′(𝑛)

𝑇 (𝑛)

where the probabilities are taken over the randomness of ℛ, the randomness of the inputs to the
adversary and the randomness of the adversary (so 𝑡 and 𝑗 are both randomized).

39

Proof. From Section 6.1, these two probabilities can be analyzed by running a sequence of algo-
rithms in the purified view. As 𝖢𝗈𝗆𝗉𝖣𝖾𝖼𝗈𝗆𝗉 = 𝐼, we can insert 𝖢𝗈𝗆𝗉 and 𝖣𝖾𝖼𝗈𝗆𝗉 between the
algorithms. So these two probabilities can also be analyzed by running the sequence of algorithms
in the compressed view.

Let |𝜑⟩ be the whole pure state we obtain by applying the unitaries 𝑈𝖪𝖾𝗒𝖦𝖾𝗇 = 𝖢𝗈𝗆𝗉𝑈𝖪𝖾𝗒𝖦𝖾𝗇𝖣𝖾𝖼𝗈𝗆𝗉,
𝑈𝖬𝗂𝗇𝗍 = 𝖢𝗈𝗆𝗉𝑈𝖬𝗂𝗇𝗍𝖣𝖾𝖼𝗈𝗆𝗉 and ̃︁𝑈𝒜 = 𝖢𝗈𝗆𝗉𝑈𝒜𝖣𝖾𝖼𝗈𝗆𝗉 to the state |1𝑛⟩ |∅⟩𝖣𝒜

|∅⟩𝖥 |∅⟩𝖣ℛ
along with

enough ancillas (i.e. the compressed version of the first step of “𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, ·)) on 𝜌
(𝑡)
𝑠 ” in

Section 6.1). Let 𝖬 be the register corresponding to 𝜌(𝑡)𝑠 .
It’s easy to see that every classical query is recorded by the adversary. That is, |𝜑⟩ has the same

contents in 𝖣𝒜 and 𝖣ℛ. From Proposition 2,⃒⃒⃒
𝖯𝗋

[︁
𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, 𝜌(𝑡)𝑠)) accepts

]︁
− 𝖯𝗋

[︁
𝖵𝖾𝗋𝐷𝑗 ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, 𝜌(𝑡)𝑠)) accepts

]︁⃒⃒⃒
≤6

√︂
𝑞
(︁
Tr(𝑂 |𝜑⟩⟨𝜑|)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋 |𝜑⟩⟨𝜑|̃︂𝑈𝖵𝖾𝗋

†
)
)︁

Denote 𝑈𝖴𝗉𝖽 to be unitary that describes our update phase in the compressed view. Formally,
𝑈𝖴𝗉𝖽 = 𝖢𝗈𝗆𝗉𝑈𝖴𝗉𝖽𝖣𝖾𝖼𝗈𝗆𝗉 =

∑︀𝑁(𝑛)−1
𝑗=0 (̃︂𝑈 ′𝖵𝖾𝗋 ̃︂𝑈𝖲𝗒𝗇)

𝑗 ⊗ |𝑗⟩⟨𝑗|𝖩 where ̃︂𝑈 ′𝖵𝖾𝗋 is running on the state
synthesized by ̃︂𝑈𝖲𝗒𝗇.

Let |𝜓⟩ be the whole pure state we obtain by applying the unitaries 𝑈𝖪𝖾𝗒𝖦𝖾𝗇, 𝑈𝖬𝗂𝗇𝗍 and 𝑈𝖳𝖾𝗌𝗍 :=

𝖢𝗈𝗆𝗉𝑈𝖳𝖾𝗌𝗍𝖣𝖾𝖼𝗈𝗆𝗉 to the state |1𝑛⟩ |∅⟩𝖣𝒜
|∅⟩𝖥 |∅⟩𝖣ℛ

1√
𝑇 (𝑛)

∑︀𝑇 (𝑛)−1
𝑡=0 |𝑡⟩𝖳

1√
𝑁(𝑛)

∑︀𝑁(𝑛)−1
𝑗=0 |𝑗⟩𝖩 along

with enough ancillas (i.e. running the compressed version of the first step of “𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, ·))
on 𝜌(𝑡)𝑠 ” until the end of the test phase of 𝒜). That is to say, |𝜑⟩ = 𝑈𝖲𝗒𝗇2𝑈𝖲𝗒𝗇1𝑈𝖴𝗉𝖽 |𝜓⟩ where 𝑈𝖲𝗒𝗇𝑖
synthesizes the 𝑖𝑡𝑕 alleged banknote. Notice that 𝑈𝖲𝗒𝗇𝑖 only reads the public key, the serial number
and acts on 𝖣𝒜 and some fresh ancillas. So 𝑈𝖲𝗒𝗇𝑖 commutes with 𝑂 and ̃︂𝑈𝖵𝖾𝗋. (Recall that ̃︂𝑈𝖵𝖾𝗋 is
the one that does not record queries for 𝒜. That is, it does not act on 𝖣𝒜.) Thus

Tr(𝑂 |𝜑⟩⟨𝜑|)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋 |𝜑⟩⟨𝜑|̃︂𝑈𝖵𝖾𝗋
†
)

=Tr(𝑂𝑈𝖲𝗒𝗇2𝑈𝖲𝗒𝗇1𝑈𝖴𝗉𝖽 |𝜓⟩⟨𝜓|𝑈𝖴𝗉𝖽
†
𝑈𝖲𝗒𝗇1

†
𝑈𝖲𝗒𝗇2

†
)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋𝑈𝖲𝗒𝗇2𝑈𝖲𝗒𝗇1𝑈𝖴𝗉𝖽 |𝜓⟩⟨𝜓|𝑈𝖴𝗉𝖽

†
𝑈𝖲𝗒𝗇1

†
𝑈𝖲𝗒𝗇2

†̃︂𝑈𝖵𝖾𝗋
†
)

=Tr(𝑂𝑈𝖴𝗉𝖽 |𝜓⟩⟨𝜓|𝑈𝖴𝗉𝖽
†
)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋𝑈𝖴𝗉𝖽 |𝜓⟩⟨𝜓|𝑈𝖴𝗉𝖽

†̃︂𝑈𝖵𝖾𝗋
†
)

The next step is to bound the decrement of the pairs in 𝖥 during the verification on 𝑈𝖴𝗉𝖽 |𝜓⟩.
However, the update phase between ̃︂𝑈𝖵𝖾𝗋 and the randomized number of verifications in the test
phase may bring some trouble. So we give the following lemma, which is the counterpart of the fact
that in the classical case, the number of queries in 𝐷𝖬𝗂𝗇𝗍 ∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇−𝐷𝑘 asked during a verification
is no more than the number of queries in 𝐷𝖬𝗂𝗇𝗍 ∪𝐷𝖪𝖾𝗒𝖦𝖾𝗇 −𝐷 asked during a verification.

Lemma 7. We use the same notation as above. Then

Tr(𝑂𝑈𝖴𝗉𝖽 |𝜓⟩⟨𝜓|𝑈𝖴𝗉𝖽
†
)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋𝑈𝖴𝗉𝖽 |𝜓⟩⟨𝜓|𝑈𝖴𝗉𝖽

†̃︂𝑈𝖵𝖾𝗋
†
)

≤Tr(𝑂 |𝜓⟩⟨𝜓|)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋 |𝜓⟩⟨𝜓|̃︂𝑈𝖵𝖾𝗋
†
)

The proof of the lemma is deferred to Appendix B.

40

Now let’s bound the decrement of the pairs in 𝖥 during the verification. From Lemma 7,⃒⃒⃒
𝖯𝗋

[︁
𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, 𝜌(𝑡)𝑠)) accepts

]︁
− 𝖯𝗋

[︁
𝖵𝖾𝗋𝐷𝑗 ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, 𝜌(𝑡)𝑠)) accepts

]︁⃒⃒⃒
≤6

√︃
𝑞

(︂
Tr(𝑂𝑈𝖴𝗉𝖽 |𝜓⟩⟨𝜓|𝑈𝖴𝗉𝖽

†
)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋𝑈𝖴𝗉𝖽 |𝜓⟩⟨𝜓|𝑈𝖴𝗉𝖽

†̃︂𝑈𝖵𝖾𝗋
†
)

)︂
≤6

√︂
𝑞
(︁
Tr(𝑂 |𝜓⟩⟨𝜓|)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋 |𝜓⟩⟨𝜓|̃︂𝑈𝖵𝖾𝗋

†
)
)︁

=6

√︃
𝑞

(︂
Tr(𝑂 |𝜓⟩⟨𝜓|)− Tr(𝑂̃︂𝑈 ′𝖵𝖾𝗋 |𝜓⟩⟨𝜓|̃︂𝑈 ′𝖵𝖾𝗋†))︂

where we use the fact that ̃︂𝑈 ′𝖵𝖾𝗋 is the same as ̃︂𝑈𝖵𝖾𝗋 except that it records the query-answer pairs
for 𝒜.

Note that we can also write |𝜓⟩ as 1√
𝑇 (𝑛)

∑︀𝑇 (𝑛)−1
𝑡=0 |𝜓(𝑡)⟩ |𝑡⟩𝖳 where |𝜓(𝑡)⟩ is the state after we

run 𝑡 iterations in the test phase. Then |𝜓(𝑡+1)⟩ = ̃︂𝑈 ′𝖵𝖾𝗋 |𝜓(𝑡)⟩. As 𝑂 and ̃︂𝑈 ′𝖵𝖾𝗋 do not run on 𝖳,
tracing out 𝖳 does not change the quantity. Therefore,

⃒⃒⃒
𝖯𝗋

[︁
𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, 𝜌(𝑡)𝑠)) accepts

]︁
− 𝖯𝗋

[︁
𝖵𝖾𝗋𝐷𝑗 ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, 𝜌(𝑡)𝑠)) accepts

]︁⃒⃒⃒
≤6

√︃
𝑞

(︂
Tr(𝑂 |𝜓⟩⟨𝜓|)− Tr(𝑂̃︂𝑈 ′𝖵𝖾𝗋 |𝜓⟩⟨𝜓|̃︂𝑈 ′𝖵𝖾𝗋†))︂

=6

√︃
𝑞

(︂
Tr(𝑂Tr𝖳(|𝜓⟩⟨𝜓|))− Tr(𝑂̃︂𝑈 ′𝖵𝖾𝗋Tr𝖳(|𝜓⟩⟨𝜓|)̃︂𝑈 ′𝖵𝖾𝗋†))︂

=6

⎯⎸⎸⎸⎷𝑞

⎛⎝ 1

𝑇 (𝑛)

𝑇 (𝑛)−1∑︁
𝑡=0

Tr
(︀
𝑂 |𝜓(𝑡)⟩⟨𝜓(𝑡)|

)︀
− 1

𝑇 (𝑛)

𝑇 (𝑛)−1∑︁
𝑡=0

Tr

(︂
𝑂̃︂𝑈 ′𝖵𝖾𝗋 |𝜓(𝑡)⟩⟨𝜓(𝑡)|̃︂𝑈 ′𝖵𝖾𝗋†)︂

⎞⎠

=6

⎯⎸⎸⎸⎷𝑞

⎛⎝ 1

𝑇 (𝑛)

𝑇 (𝑛)−1∑︁
𝑡=0

Tr
(︀
𝑂 |𝜓(𝑡)⟩⟨𝜓(𝑡)|

)︀
− 1

𝑇 (𝑛)

𝑇 (𝑛)−1∑︁
𝑡=0

Tr
(︀
𝑂 |𝜓(𝑡+1)⟩⟨𝜓(𝑡+1)|

)︀⎞⎠
≤6

√︂
𝑞

𝑇 (𝑛)
Tr

(︀
𝑂 |𝜓(0)⟩⟨𝜓(0)|

)︀
≤6

√︃
𝑞𝑞′

𝑇 (𝑛)

where we use the property of compressed oracle techniques that after 𝑞′(𝑛) quantum queries, there
are at most 𝑞′(𝑛) non-0̂ elements in 𝖥. |𝜓(0)⟩ is just the state we obtain after we run 𝖪𝖾𝗒𝖦𝖾𝗇 and
𝖬𝗂𝗇𝗍 (so there are at most 𝑞′(𝑛) quantum queries) and then apply the unitary 𝖢𝗈𝗆𝗉. So there are
at most 𝑞′(𝑛) pairs in 𝖥 of |𝜓(0)⟩. Hence Tr

(︀
𝑂 |𝜓(0)⟩⟨𝜓(0)|

)︀
≤ 𝑞′(𝑛).

The next claim is an analog of summing over 𝑘 of Claim 6 to get a bound for how well
𝖵𝖾𝗋𝐷𝑗 ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ behaves on 𝜎𝐷𝑗 . The intuition of the proof is similar to Claim 7.

41

Claim 8.⃒⃒⃒
𝖯𝗋

[︁
𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, 𝜎𝐷𝑗)) accepts

]︁
− 𝖯𝗋

[︁
𝖵𝖾𝗋𝐷𝑗 ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, 𝜎𝐷𝑗)) accepts

]︁⃒⃒⃒
≤ 6

√︃
𝑞(𝑛)𝑞′(𝑛)

𝑁(𝑛)

where the probabilities are taken over the randomness of ℛ, the randomness of the inputs to the
adversary and the randomness of the adversary (so 𝑡 and 𝑗 are both randomized).

Proof. Similar to the proof of Claim 7, these two probabilities can be analyzed by running a sequence
of algorithms specificed in Section 6.1 in the compressed view. Let |𝜑⟩ be the same state as in
Claim 7 except that now 𝖬 is the first output register of 𝒜 (corresponding to the first synthesized
state 𝜎𝐷𝑗). Let |𝜓⟩ be the state we obtain by running the compressed version of the first step of
“𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, ·)) on 𝜌(𝑡)𝑠 ” in Section 6.1 until the end of the update phase of 𝒜. That is to
say, |𝜑⟩ = 𝑈𝖲𝗒𝗇2𝑈𝖲𝗒𝗇1 |𝜓⟩. Then |𝜑⟩ has the same contents in 𝖣𝒜 and 𝖣ℛ.

Recall that ̃︂𝑈𝖵𝖾𝗋 and ̃︂𝑈 ′𝖵𝖾𝗋 both run the verification for the state in 𝖬, i.e. the first synthesized
state 𝜎𝐷𝑗 . Recall the fact that ̃︂𝑈 ′𝖵𝖾𝗋 is the same as ̃︂𝑈𝖵𝖾𝗋 except that it also records query-answer
pairs for 𝒜 and that 𝑂 only acts on 𝖥. From Proposition 2,⃒⃒⃒

𝖯𝗋
[︁
𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, 𝜎𝐷𝑗)) accepts

]︁
− 𝖯𝗋

[︁
𝖵𝖾𝗋𝐷𝑗 ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, 𝜎𝐷𝑗)) accepts

]︁⃒⃒⃒
≤6

√︂
𝑞
(︁
Tr(𝑂 |𝜑⟩⟨𝜑|)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋 |𝜑⟩⟨𝜑|̃︂𝑈𝖵𝖾𝗋

†
)
)︁

=6

√︂
𝑞
(︁
Tr(𝑂𝑈𝖲𝗒𝗇2𝑈𝖲𝗒𝗇1 |𝜓⟩⟨𝜓|𝑈

†
𝖲𝗒𝗇1

𝑈 †𝖲𝗒𝗇2
)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋𝑈𝖲𝗒𝗇2𝑈𝖲𝗒𝗇1 |𝜓⟩⟨𝜓|𝑈𝖲𝗒𝗇1𝑈

†
𝖲𝗒𝗇2

̃︂𝑈𝖵𝖾𝗋
†
)
)︁

=6

√︂
𝑞
(︁
Tr(𝑂 |𝜓⟩⟨𝜓|)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋𝑈𝖲𝗒𝗇1 |𝜓⟩⟨𝜓|𝑈

†
𝖲𝗒𝗇1

̃︂𝑈𝖵𝖾𝗋
†
)
)︁

=6

√︃
𝑞

(︂
Tr(𝑂 |𝜓⟩⟨𝜓|)− Tr(𝑂̃︂𝑈 ′𝖵𝖾𝗋𝑈𝖲𝗒𝗇1 |𝜓⟩⟨𝜓|𝑈

†
𝖲𝗒𝗇1

̃︂𝑈 ′𝖵𝖾𝗋†))︂
This is because 𝑈𝖲𝗒𝗇2 acts on the second output register, and thus it commutes with ̃︂𝑈𝖵𝖾𝗋 (it verifies
the first output state). Moreover, both 𝑈𝖲𝗒𝗇1 and 𝑈𝖲𝗒𝗇2 do not act on 𝖥, and thus commute with 𝑂.

Note that we can write |𝜓⟩ = 1√
𝑁(𝑛)

∑︀𝑁(𝑛)−1
𝑗=0 |𝜓(𝑗)⟩ |𝑗⟩𝖩 where |𝜓(𝑗)⟩ is the state we obtain after

we run a randomized number of iterations in the test phase and 𝑗 iterations in the update phase.
Then |𝜓(𝑗+1)⟩ = ̃︂𝑈 ′𝖵𝖾𝗋𝑈𝖲𝗒𝗇 |𝜓(𝑗)⟩. Notice that 𝑂, 𝑈𝖲𝗒𝗇1 and ̃︂𝑈 ′𝖵𝖾𝗋 do not run on 𝖩. So tracing out 𝖩

42

won’t change the value. Therefore,⃒⃒⃒
𝖯𝗋

[︁
𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, 𝜎𝐷𝑗)) accepts

]︁
− 𝖯𝗋

[︁
𝖵𝖾𝗋𝐷𝑗 ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, 𝜎𝐷𝑗)) accepts

]︁⃒⃒⃒
≤6

√︃
𝑞

(︂
Tr(𝑂 |𝜓⟩⟨𝜓|)− Tr(𝑂̃︂𝑈 ′𝖵𝖾𝗋𝑈𝖲𝗒𝗇1 |𝜓⟩⟨𝜓|𝑈

†
𝖲𝗒𝗇1

̃︂𝑈 ′𝖵𝖾𝗋†))︂

=6

√︃
𝑞

(︂
Tr(𝑂Tr𝖩(|𝜓⟩⟨𝜓|))− Tr(𝑂̃︂𝑈 ′𝖵𝖾𝗋𝑈𝖲𝗒𝗇1Tr𝖩(|𝜓⟩⟨𝜓|)𝑈

†
𝖲𝗒𝗇1

̃︂𝑈 ′𝖵𝖾𝗋†))︂

=6

⎯⎸⎸⎸⎷𝑞

⎛⎝ 1

𝑁(𝑛)

𝑁(𝑛)−1∑︁
𝑗=0

Tr
(︀
𝑂 |𝜓(𝑗)⟩⟨𝜓(𝑗)|

)︀
− 1

𝑁(𝑛)

𝑁(𝑛)−1∑︁
𝑗=0

Tr

(︂
𝑂̃︂𝑈 ′𝖵𝖾𝗋𝑈𝖲𝗒𝗇1 |𝜓(𝑗)⟩⟨𝜓(𝑗)|𝑈 †𝖲𝗒𝗇1

̃︂𝑈 ′𝖵𝖾𝗋†)︂
⎞⎠

=6

⎯⎸⎸⎸⎷𝑞

⎛⎝ 1

𝑁(𝑛)

𝑁(𝑛)−1∑︁
𝑗=0

Tr
(︀
𝑂 |𝜓(𝑗)⟩⟨𝜓(𝑗)|

)︀
− 1

𝑁(𝑛)

𝑁(𝑛)−1∑︁
𝑗=0

Tr
(︀
𝑂 |𝜓(𝑗+1)⟩⟨𝜓(𝑗+1)|

)︀⎞⎠
≤6

√︂
𝑞

𝑁(𝑛)
Tr

(︀
𝑂 |𝜓(0)⟩⟨𝜓(0)|

)︀
≤6

√︃
𝑞𝑞′

𝑁(𝑛)

where we use the property of compressed oracle techniques that after 𝑞′(𝑛) quantum queries, there
are at most 𝑞′(𝑛) non-0̂ elements in 𝖥. |𝜓(0)⟩ is just the state we obtain after we run 𝖪𝖾𝗒𝖦𝖾𝗇 and
𝖬𝗂𝗇𝗍 (so there are at most 𝑞′(𝑛) quantum queries) and run the test phase of 𝒜 (only classical queries
with recording) in the compressed view. By the description of ̃︁𝑈𝑅, the number of pairs in 𝖥 can not
increase when we make classical queries and record them. So there are at most 𝑞′(𝑛) pairs in 𝖥 of
|𝜓(0)⟩. Hence Tr

(︀
𝑂 |𝜓(0)⟩⟨𝜓(0)|

)︀
≤ 𝑞′(𝑛).

Now let’s combine the above results to prove Theorem 8.

Proof. Let 𝜖 = 0.01, 𝑏 = 1−
√
1− 𝛿𝑟 + 𝜖, 𝑎 = 0.99𝑏, 𝑇 (𝑛) = 36𝑞(𝑛)𝑞′(𝑛)

𝜖2
and 𝑁(𝑛) = 𝑞(𝑛)𝑞′(𝑛)

𝜖2(1−
√
1−𝛿𝑟+𝜖)4

.

From Claim 7, 𝖯𝗋
[︁
𝖵𝖾𝗋𝐷𝑗 ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, 𝜌

(𝑡)
𝑠)) accepts

]︁
≥ 𝛿𝑟 − 𝜖. Hence using the same argu-

ment in Claim 5, 𝖯𝗋
[︁
𝖵𝖾𝗋𝐷𝑗 ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, 𝜎𝐷𝑗)) accepts

]︁
≥ 0.99(1−

√
1− 𝛿𝑟 + 𝜖)2. From Claim 8,

𝖯𝗋
[︁
𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, 𝜎𝐷𝑗)) accepts

]︁
≥ 0.99(1−

√
1− 𝛿𝑟 + 𝜖)2−6

√︁
𝑞(𝑛)𝑞′(𝑛)
𝑁(𝑛) ≥ 0.9(1−

√
1− 𝛿𝑟 + 𝜖)2.

Thus by union bound, the outputs of our adversary pass two verifications simultaneously with prob-
ability at least 1.8(1−

√
1− 𝛿𝑟 + 𝜖)2 − 1, which is non-negligible when 𝛿𝑟 ≥ 0.99.

That is, the adversary we construct gives a valid attack to (𝖪𝖾𝗒𝖦𝖾𝗇|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩,𝖬𝗂𝗇𝗍|ℛ⟩,|𝖯𝖲𝖯𝖠𝖢𝖤⟩,
𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩) where 𝛿𝑟 ≥ 0.99 and 𝛿𝑠 = 𝗇𝖾𝗀𝗅(𝑛), which establishes Theorem 7.

References

[AA09] Scott Aaronson and Andris Ambainis. “The need for structure in quantum speedups”.
In: arXiv preprint arXiv:0911.0996 (2009) (cit. on p. 3).

43

[Aar09] Scott Aaronson. “Quantum copy-protection and quantum money”. In: 24th Annual
IEEE Conference on Computational Complexity. IEEE Computer Soc., Los Alamitos,
CA, 2009, pp. 229–242. doi: 10.1109/CCC.2009.42. url: https://doi.org/10.
1109/CCC.2009.42 (cit. on p. 1).

[AC13] Scott Aaronson and Paul Christiano. “Quantum money from hidden subspaces”. In:
Theory Comput. 9 (2013), pp. 349–401. doi: 10.4086/toc.2013.v009a009. url:
https://doi.org/10.4086/toc.2013.v009a009 (cit. on pp. 2, 12).

[ACC+22] Per Austrin, Hao Chung, Kai-Min Chung, Shiuan Fu, Yao-Ting Lin, and Moham-
mad Mahmoody. “On the Impossibility of Key Agreements from Quantum Random
Oracles”. In: Cryptology ePrint Archive (2022) (cit. on pp. 3, 12).

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. “Indis-
tinguishability obfuscation without multilinear maps: new paradigms via low degree
weak pseudorandomness and security amplification”. In: Annual International Cryp-
tology Conference. Springer. 2019, pp. 284–332 (cit. on p. 2).

[AK22] Prabhanjan Ananth and Fatih Kaleoglu. A Note on Copy-Protection from Random
Oracles. Cryptology ePrint Archive, Paper 2022/1109. https://eprint.iacr.org/
2022/1109. 2022. url: https://eprint.iacr.org/2022/1109 (cit. on pp. 5, 8, 9,
25).

[AKL+22] Prabhanjan Ananth, Fatih Kaleoglu, Xingjian Li, Qipeng Liu, and Mark Zhandry. “On
the feasibility of unclonable encryption, and more”. In: Annual International Cryptology
Conference. Springer. 2022, pp. 212–241 (cit. on p. 4).

[AL21] Prabhanjan Ananth and Rolando L La Placa. “Secure Software Leasing”. In: Eurocrypt
(2021) (cit. on p. 1).

[BDG22] Andriyan Bilyk, Javad Doliskani, and Zhiyong Gong. “Cryptanalysis of Three Quan-
tum Money Schemes”. In: arXiv preprint arXiv:2205.10488 (2022) (cit. on pp. 2, 12).

[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. “Factoring and
pairings are not necessary for iO: circular-secure LWE suffices”. In: Cryptology ePrint
Archive (2020) (cit. on p. 2).

[BDV17] Nir Bitansky, Akshay Degwekar, and Vinod Vaikuntanathan. “Structure vs. hard-
ness through the obfuscation lens”. In: Annual International Cryptology Conference.
Springer. 2017, pp. 696–723 (cit. on p. 2).

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. “On the (im) possibility of obfuscating programs”. In: Annual
international cryptology conference. Springer. 2001, pp. 1–18 (cit. on p. 12).

[BGS13] Anne Broadbent, Gus Gutoski, and Douglas Stebila. “Quantum one-time programs”.
In: Annual Cryptology Conference. Springer. 2013, pp. 344–360 (cit. on p. 1).

[BI20] Anne Broadbent and Rabib Islam. “Quantum encryption with certified deletion”. In:
Theory of Cryptography Conference. Springer. 2020, pp. 92–122 (cit. on p. 1).

44

https://doi.org/10.1109/CCC.2009.42
https://doi.org/10.1109/CCC.2009.42
https://doi.org/10.1109/CCC.2009.42
https://doi.org/10.4086/toc.2013.v009a009
https://doi.org/10.4086/toc.2013.v009a009
https://eprint.iacr.org/2022/1109
https://eprint.iacr.org/2022/1109
https://eprint.iacr.org/2022/1109

[BL20] Anne Broadbent and Sébastien Lord. “Uncloneable Quantum Encryption via Oracles”.
In: 15th Conference on the Theory of Quantum Computation, Communication and
Cryptography (TQC 2020). Ed. by Steven T. Flammia. Vol. 158. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2020, 4:1–4:22. doi: 10.4230/LIPIcs.TQC.2020.4 (cit. on
p. 1).

[BM09] Boaz Barak and Mohammad Mahmoody-Ghidary. “Merkle puzzles are optimal—an o
(n 2)-query attack on any key exchange from a random oracle”. In: Annual Interna-
tional Cryptology Conference. Springer. 2009, pp. 374–390 (cit. on p. 2).

[BPR+08] Dan Boneh, Periklis Papakonstantinou, Charles Rackoff, Yevgeniy Vahlis, and Brent
Waters. “On the impossibility of basing identity based encryption on trapdoor permu-
tations”. In: 2008 49th Annual IEEE Symposium on Foundations of Computer Science.
IEEE. 2008, pp. 283–292 (cit. on p. 2).

[BS16] Shalev Ben-David and Or Sattath. “Quantum tokens for digital signatures”. In: arXiv
preprint arXiv:1609.09047 (2016) (cit. on p. 1).

[CKP15] Ran Canetti, Yael Tauman Kalai, and Omer Paneth. “On obfuscation with random
oracles”. In: Theory of Cryptography Conference. Springer. 2015, pp. 456–467 (cit. on
pp. 8, 25).

[CLLZ21] Andrea Coladangelo, Jiahui Liu, Qipeng Liu, and Mark Zhandry. “Hidden cosets and
applications to unclonable cryptography”. In: Annual International Cryptology Con-
ference. Springer. 2021, pp. 556–584 (cit. on pp. 1, 4).

[CMP20] Andrea Coladangelo, Christian Majenz, and Alexander Poremba. “Quantum copy-
protection of compute-and-compare programs in the quantum random oracle model”.
In: arXiv preprint arXiv:2009.13865 (2020) (cit. on p. 4).

[CMSZ22] Alessandro Chiesa, Fermi Ma, Nicholas Spooner, and Mark Zhandry. “Post-quantum
succinct arguments: breaking the quantum rewinding barrier”. In: 2021 IEEE 62nd An-
nual Symposium on Foundations of Computer Science—FOCS 2021. IEEE Computer
Soc., Los Alamitos, CA, [2022] ©2022, pp. 49–58. doi: 10.1109/FOCS52979.2021.
00014. url: https://doi.org/10.1109/FOCS52979.2021.00014 (cit. on pp. 16, 17).

[CX21] Shujiao Cao and Rui Xue. “Being a permutation is also orthogonal to one-wayness in
quantum world: Impossibilities of quantum one-way permutations from one-wayness
primitives”. In: Theoretical Computer Science 855 (2021), pp. 16–42 (cit. on p. 12).

[DG17] Nico Döttling and Sanjam Garg. “Identity-based encryption from the Diffie-Hellman
assumption”. In: Annual International Cryptology Conference. Springer. 2017, pp. 537–
569 (cit. on p. 2).

[Die82] DGBJ Dieks. “Communication by EPR devices”. In: Physics Letters A 92.6 (1982),
pp. 271–272 (cit. on pp. 1, 3).

[DLMM11] Dana Dachman-Soled, Yehuda Lindell, Mohammad Mahmoody, and Tal Malkin. “On
the black-box complexity of optimally-fair coin tossing”. In: Theory of Cryptography
Conference. Springer. 2011, pp. 450–467 (cit. on p. 2).

45

https://doi.org/10.4230/LIPIcs.TQC.2020.4
https://doi.org/10.1109/FOCS52979.2021.00014
https://doi.org/10.1109/FOCS52979.2021.00014
https://doi.org/10.1109/FOCS52979.2021.00014

[DQV+21] Lalita Devadas, Willy Quach, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs.
“Succinct LWE sampling, random polynomials, and obfuscation”. In: Theory of Cryp-
tography Conference. Springer. 2021, pp. 256–287 (cit. on p. 2).

[FGH+12] Edward Farhi, David Gosset, Avinatan Hassidim, Andrew Lutomirski, and Peter Shor.
“Quantum money from knots”. In: Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference. 2012, pp. 276–289 (cit. on pp. 2, 12).

[GKLM12] Vipul Goyal, Virendra Kumar, Satya Lokam, and Mohammad Mahmoody. “On black-
box reductions between predicate encryption schemes”. In: Theory of Cryptography
Conference. Springer. 2012, pp. 440–457 (cit. on p. 2).

[GKM+00] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh Viswanathan.
“The relationship between public key encryption and oblivious transfer”. In: Pro-
ceedings 41st Annual Symposium on Foundations of Computer Science. IEEE. 2000,
pp. 325–335 (cit. on p. 2).

[GP21] Romain Gay and Rafael Pass. “Indistinguishability obfuscation from circular security”.
In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Comput-
ing. 2021, pp. 736–749 (cit. on p. 2).

[GZ20] Marios Georgiou and Mark Zhandry. “Unclonable decryption keys”. In: Cryptology
ePrint Archive (2020) (cit. on p. 1).

[HJL21] Sam Hopkins, Aayush Jain, and Huijia Lin. “Counterexamples to new circular security
assumptions underlying iO”. In: Annual International Cryptology Conference. Springer.
2021, pp. 673–700 (cit. on p. 2).

[HY20] Akinori Hosoyamada and Takashi Yamakawa. “Finding collisions in a quantum world:
quantum black-box separation of collision-resistance and one-wayness”. In: Interna-
tional Conference on the Theory and Application of Cryptology and Information Se-
curity. Springer. 2020, pp. 3–32 (cit. on p. 12).

[IR90] Russell Impagliazzo and Steven Rudich. “Limits on the provable consequences of one-
way permutations”. In: Advances in cryptology—CRYPTO ’88 (Santa Barbara, CA,
1988). Vol. 403. Lecture Notes in Comput. Sci. Springer, Berlin, 1990, pp. 8–26. doi:
10.1007/0-387-34799-2_2. url: https://doi.org/10.1007/0-387-34799-2_2
(cit. on p. 3).

[JLS18] Zhengfeng Ji, Yi-Kai Liu, and Fang Song. “Pseudorandom quantum states”. In: Annual
International Cryptology Conference. Springer. 2018, pp. 126–152 (cit. on p. 12).

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. “Indistinguishability obfuscation from well-
founded assumptions”. In: Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing. 2021, pp. 60–73 (cit. on p. 2).

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. “Indistinguishability Obfuscation from LPN
over, DLIN, and PRGs in NC”. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer. 2022, pp. 670–699 (cit. on p. 2).

[KLS22] Andrey Boris Khesin, Jonathan Z Lu, and Peter W Shor. “Publicly verifiable quantum
money from random lattices”. In: arXiv preprint arXiv:2207.13135 (2022) (cit. on
pp. 2, 12).

46

https://doi.org/10.1007/0-387-34799-2_2
https://doi.org/10.1007/0-387-34799-2_2

[KSS21] Daniel M Kane, Shahed Sharif, and Alice Silverberg. “Quantum money from quater-
nion algebras”. In: arXiv preprint arXiv:2109.12643 (2021) (cit. on pp. 2, 12).

[Lut10] Andrew Lutomirski. “An online attack against Wiesner’s quantum money”. In: arXiv
preprint arXiv:1010.0256 (2010) (cit. on p. 12).

[MVW12] Abel Molina, Thomas Vidick, and John Watrous. “Optimal counterfeiting attacks and
generalizations for Wiesner’s quantum money”. In: Conference on Quantum Compu-
tation, Communication, and Cryptography. Springer. 2012, pp. 45–64 (cit. on p. 12).

[MW05] Chris Marriott and John Watrous. “Quantum arthur–merlin games”. In: computational
complexity 14.2 (2005), pp. 122–152 (cit. on pp. 6, 16, 17, 20).

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum informa-
tion. Cambridge University Press, Cambridge, 2000, pp. xxvi+676. isbn: 0-521-63235-
8; 0-521-63503-9 (cit. on pp. 13, 14).

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994 (cit. on
p. 14).

[PRV12] Periklis A Papakonstantinou, Charles W Rackoff, and Yevgeniy Vahlis. “How powerful
are the DDH hard groups?” In: Cryptology ePrint Archive (2012) (cit. on p. 2).

[Rob21] Bhaskar Roberts. “Security analysis of quantum lightning”. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer.
2021, pp. 562–567 (cit. on pp. 2, 12).

[RS22] Roy Radian and Or Sattath. “Semi-quantum money”. In: Journal of Cryptology 35.2
(2022), pp. 1–70 (cit. on p. 12).

[RTV04] Omer Reingold, Luca Trevisan, and Salil Vadhan. “Notions of reducibility between
cryptographic primitives”. In: Theory of Cryptography Conference. Springer. 2004,
pp. 1–20 (cit. on p. 2).

[Rud91] Steven Rudich. “The Use of Interaction in Public Cryptosystems.” In: Annual Inter-
national Cryptology Conference. Springer. 1991, pp. 242–251 (cit. on p. 2).

[RY21] Gregory Rosenthal and Henry Yuen. “Interactive Proofs for Synthesizing Quantum
States and Unitaries”. In: arXiv preprint arXiv:2108.07192 (2021) (cit. on pp. 6, 7,
15).

[Shm22a] Omri Shmueli. “Public-key Quantum money with a classical bank”. In: Proceedings of
the 54th Annual ACM SIGACT Symposium on Theory of Computing. 2022, pp. 790–
803 (cit. on pp. 2, 12).

[Shm22b] Omri Shmueli. “Semi-Quantum Tokenized Signatures”. In: Cryptology ePrint Archive
(2022) (cit. on p. 2).

[Sim98] Daniel R Simon. “Finding collisions on a one-way street: Can secure hash functions
be based on general assumptions?” In: International Conference on the Theory and
Applications of Cryptographic Techniques. Springer. 1998, pp. 334–345 (cit. on pp. 2,
12).

[Unr16] Dominique Unruh. “Computationally binding quantum commitments”. In: Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2016, pp. 497–527 (cit. on p. 4).

47

[Wie83] Stephen Wiesner. “Conjugate coding”. In: ACM Sigact News 15.1 (1983), pp. 78–88
(cit. on pp. 1, 12).

[Win99] Andreas Winter. “Coding theorem and strong converse for quantum channels”. In:
IEEE Transactions on Information Theory 45.7 (1999), pp. 2481–2485 (cit. on pp. 5,
16).

[WW21] Hoeteck Wee and Daniel Wichs. “Candidate obfuscation via oblivious LWE sampling”.
In: Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer. 2021, pp. 127–156 (cit. on p. 2).

[WZ82] William K Wootters and Wojciech H Zurek. “A single quantum cannot be cloned”. In:
Nature 299.5886 (1982), pp. 802–803 (cit. on pp. 1, 3).

[Zha15] Mark Zhandry. “A note on the quantum collision and set equality problems”. In: Quan-
tum Information & Computation 15.7-8 (2015), pp. 557–567 (cit. on p. 4).

[Zha18] Mark Zhandry. How to Record Quantum Queries, and Applications to Quantum In-
differentiability. Cryptology ePrint Archive, Paper 2018/276. https://eprint.iacr.
org/2018/276. 2018. url: https://eprint.iacr.org/2018/276 (cit. on pp. 11, 17,
32).

[Zha21] Mark Zhandry. “Quantum lightning never strikes the same state twice. Or: quantum
money from cryptographic assumptions”. In: J. Cryptology 34.1 (2021), Paper No. 6,
56. issn: 0933-2790. doi: 10.1007/s00145-020-09372-x. url: https://doi.org/
10.1007/s00145-020-09372-x (cit. on pp. 2, 4, 5, 12).

A Missing Proof of Lemma 6

The proof consists of two parts. In the first part, we will bound TD
(︁̃︁𝑈𝐶𝑈𝑗 |𝜑𝑗⟩⟨𝜑𝑗 |𝑈 †𝑗 ̃︁𝑈𝐶

†
, 𝑈 ′𝐷𝑈𝑗 |𝜑𝑗⟩⟨𝜑𝑗 |𝑈 †𝑗𝑈

′†
𝐷

)︁
by the weight of queries inside 𝐷𝐹 . In the second part, we will show that the weight equals the
decrement of the number of pairs in 𝖥 after the query.

Proof. Let’s begin the first part with some notations.
For 0 ≤ 𝑗 ≤ 𝑞 − 1, 𝑈𝑗 prepares the (𝑗 + 1)𝑡𝑕 query, thus we can write 𝑈𝑗 |𝜑𝑗⟩ as follows,

𝑈𝑗 |𝜑𝑗⟩ =
∑︁

𝑥,𝐷𝐹 ,𝐷ℛ,𝑕
s.t. 𝐷𝐹∩𝐷ℛ=∅

𝛼𝑥,𝐷𝐹 ,𝐷ℛ,𝑕 |𝑥⟩𝖰 |0⟩𝖠 |𝐷𝐹 ⟩𝖥 |𝐷ℛ⟩𝖣ℛ
|𝑕⟩𝖧

where 𝖰 is the next query position, 𝖠 is for the query answer and 𝖧 contains all other registers
including the public key, serial number, 𝖣𝒜, etc. We can divide these terms into two categories,
one is 𝑥 /∈ 𝐷𝐹 , and the other one is 𝑥 ∈ 𝐷𝐹 . That is, 𝑈𝑗 |𝜑𝑗⟩ =

√
1− 𝛼 |𝑢⟩ +

√
𝛼 |𝑣⟩ where

𝛼 :=
∑︀

𝑥,𝐷𝐹 ,𝐷ℛ,𝑕
s.t. 𝐷𝐹∩𝐷ℛ=∅,𝑥∈𝐷𝐹

|𝛼𝑥,𝐷𝐹 ,𝐷ℛ,𝑕|2 is the weight of queries inside 𝐷𝐹 ,

√
1− 𝛼 |𝑢⟩ =

∑︁
𝑥,𝐷𝐹 ,𝐷ℛ,𝑕

s.t. 𝐷𝐹∩𝐷ℛ=∅,𝑥/∈𝐷𝐹

𝛼𝑥,𝐷𝐹 ,𝐷ℛ,𝑕 |𝑥⟩𝖰 |0⟩𝖠 |𝐷𝐹 ⟩𝖥 |𝐷ℛ⟩𝖣ℛ
|𝑕⟩𝖧

√
𝛼 |𝑣⟩ =

∑︁
𝑥,𝐷𝐹 ,𝐷ℛ,𝑕

s.t. 𝐷𝐹∩𝐷ℛ=∅,𝑥∈𝐷𝐹

𝛼𝑥,𝐷𝐹 ,𝐷ℛ,𝑕 |𝑥⟩𝖰 |0⟩𝖠 |𝐷𝐹 ⟩𝖥 |𝐷ℛ⟩𝖣ℛ
|𝑕⟩𝖧

48

https://eprint.iacr.org/2018/276
https://eprint.iacr.org/2018/276
https://eprint.iacr.org/2018/276
https://doi.org/10.1007/s00145-020-09372-x
https://doi.org/10.1007/s00145-020-09372-x
https://doi.org/10.1007/s00145-020-09372-x

Recall that

̃︁𝑈𝐶(|𝑥⟩𝖰 |0⟩𝖠 |𝐷𝐹 ⟩𝖥 |𝐷ℛ⟩𝖣ℛ
)

=

⎧⎪⎪⎨⎪⎪⎩
|𝑥⟩𝖰 |𝐷ℛ(𝑥)⟩𝖠 |𝐷𝐹 ⟩𝖥 |𝐷ℛ, (𝑥,𝐷ℛ(𝑥))⟩𝖣ℛ

𝑥 ∈ 𝐷ℛ
|𝑥⟩𝖰

1√
2

∑︀1
𝑧=0 |𝑧⟩𝖠 |𝐷𝐹 ⟩𝖥 |𝐷ℛ, (𝑥, 𝑧)⟩𝖣ℛ

𝑥 /∈ 𝐷ℛ, 𝑥 /∈ 𝐷𝐹

|𝑥⟩𝖰
1√
2

∑︀1
𝑧=0(−1)𝑧𝐷𝐹 (𝑥) |𝑧⟩𝖠 |𝐷𝐹 − 𝑥⟩𝖥 |𝐷ℛ, (𝑥, 𝑧)⟩𝖣ℛ

𝑥 /∈ 𝐷ℛ, 𝑥 ∈ 𝐷𝐹

So when 𝑥 /∈ 𝐷𝐹 , ̃︁𝑈𝐶 and 𝑈 ′𝐷 act exactly the same. As a result, ̃︁𝑈𝐶 |𝑢⟩ = 𝑈 ′𝐷 |𝑢⟩. Therefore,

TD
(︁̃︁𝑈𝐶𝑈𝑗 |𝜑𝑗⟩⟨𝜑𝑗 |𝑈 †𝑗 ̃︁𝑈𝐶

†
, 𝑈 ′𝐷𝑈𝑗 |𝜑𝑗⟩⟨𝜑𝑗 |𝑈 †𝑗𝑈

′†
𝐷

)︁
=
⃦⃦⃦̃︁𝑈𝐶𝑈𝑗 |𝜑𝑗⟩⟨𝜑𝑗 |𝑈 †𝑗 ̃︁𝑈𝐶

†
− 𝑈 ′𝐷𝑈𝑗 |𝜑𝑗⟩⟨𝜑𝑗 |𝑈 †𝑗𝑈

′†
𝐷

⃦⃦⃦
1

=‖̃︁𝑈𝐶

(︁
(1− 𝛼) |𝑢⟩⟨𝑢|+ 𝛼 |𝑣⟩⟨𝑣|+

√︀
𝛼(1− 𝛼) (|𝑢⟩⟨𝑣|+ |𝑣⟩⟨𝑢|)

)︁ ̃︁𝑈𝐶
†

− 𝑈 ′𝐷
(︁
(1− 𝛼) |𝑢⟩⟨𝑢|+ 𝛼 |𝑣⟩⟨𝑣|+

√︀
𝛼(1− 𝛼) (|𝑢⟩⟨𝑣|+ |𝑣⟩⟨𝑢|)

)︁
𝑈 ′†𝐷‖1

=‖̃︁𝑈𝐶

(︁
𝛼 |𝑣⟩⟨𝑣|+

√︀
𝛼(1− 𝛼) (|𝑢⟩⟨𝑣|+ |𝑣⟩⟨𝑢|)

)︁ ̃︁𝑈𝐶
†
− 𝑈 ′𝐷

(︁
𝛼 |𝑣⟩⟨𝑣|+

√︀
𝛼(1− 𝛼) (|𝑢⟩⟨𝑣|+ |𝑣⟩⟨𝑢|)

)︁
𝑈 ′†𝐷‖1

≤2
⃦⃦⃦
𝛼 |𝑣⟩⟨𝑣|+

√︀
𝛼(1− 𝛼) (|𝑢⟩⟨𝑣|+ |𝑣⟩⟨𝑢|)

⃦⃦⃦
1

≤2(𝛼+ 2
√︀
𝛼(1− 𝛼))

≤6
√
𝛼

where we use properties of trace norm of matrices ‖𝐴+𝐵‖1 ≤ ‖𝐴‖1+‖𝐵‖1,
⃦⃦
𝑈𝐴𝑈 †

⃦⃦
1
= ‖𝐴‖1 and

‖𝐴‖1 =
∑︀

𝑖|𝜆𝑖| if 𝐴 =
∑︀

𝑖 𝜆𝑖 |𝑠𝑖⟩⟨𝑣𝑖| where |𝑠𝑖⟩ , |𝑣𝑖⟩ are two bases.
Now let’s move to the second part. We will show that 𝛼 equals to the difference of the number

of pairs in 𝖥 on |𝜑𝑗⟩ and |𝜑𝑗+1⟩ = ̃︁𝑈𝐶𝑈𝑗 |𝜑𝑗⟩.
First, let’s calculate the number of pairs in 𝖥 on state |𝜑𝑗⟩.
Notice that 𝑈𝑗 does not act on 𝖥, so it commutes with𝑂. Then Tr(𝑂 |𝜑𝑗⟩⟨𝜑𝑗 |) = Tr(𝑂𝑈𝑗 |𝜑𝑗⟩⟨𝜑𝑗 |𝑈 †𝑗).

Recall that
𝑈𝑗 |𝜑𝑗⟩ =

∑︁
𝑥,𝐷𝐹 ,𝐷ℛ,𝑕

s.t. 𝐷𝐹∩𝐷ℛ=∅

𝛼𝑥,𝐷𝐹 ,𝐷ℛ,𝑕 |𝑥⟩𝖰 |0⟩𝖠 |𝐷𝐹 ⟩𝖥 |𝐷ℛ⟩𝖣ℛ
|𝑕⟩𝖧

In the summation, the terms are orthogonal to each other. Thus the expected number of pairs in 𝖥
of 𝑈𝑗 |𝜑𝑗⟩ is

∑︀
𝑥,𝐷𝐹 ,𝐷ℛ,𝑕

s.t. 𝐷𝐹∩𝐷ℛ=∅
|𝐷𝐹 | |𝛼𝑥,𝐷𝐹 ,𝐷ℛ,𝑕|2. So

Tr(𝑂 |𝜑𝑗⟩⟨𝜑𝑗 |) =
∑︁

𝑥,𝐷𝐹 ,𝐷ℛ,𝑕
s.t. 𝐷𝐹∩𝐷ℛ=∅

|𝐷𝐹 | |𝛼𝑥,𝐷𝐹 ,𝐷ℛ,𝑕|2

Next, let’s calculate the number of pairs in 𝖥 on state |𝜑𝑗+1⟩.

49

By definition of |𝜑𝑗+1⟩ and ̃︁𝑈𝐶

|𝜑𝑗+1⟩

=̃︁𝑈𝐶𝑈𝑗 |𝜑𝑗⟩

=
∑︁

𝑥,𝐷𝐹 ,𝐷ℛ,𝑕
s.t. 𝐷𝐹∩𝐷ℛ=∅,𝑥∈𝐷ℛ

𝛼𝑥,𝐷𝐹 ,𝐷ℛ,𝑕 |𝑥⟩𝖰 |𝐷ℛ(𝑥)⟩𝖠 |𝐷𝐹 ⟩𝖥 |𝐷ℛ, (𝑥,𝐷ℛ(𝑥))⟩𝖣ℛ
|𝑕⟩𝖧

+
∑︁

𝑥,𝐷𝐹 ,𝐷ℛ,𝑕
s.t. 𝐷𝐹∩𝐷ℛ=∅,𝑥/∈𝐷ℛ,𝑥/∈𝐷𝐹

𝛼𝑥,𝐷𝐹 ,𝐷ℛ,𝑕
1√
2

1∑︁
𝑧=0

|𝑥⟩𝖰 |𝑧⟩𝖠 |𝐷𝐹 ⟩𝖥 |𝐷ℛ, (𝑥, 𝑧)⟩𝖣ℛ
|𝑕⟩𝖧

+
∑︁

𝑥,𝐷𝐹 ,𝐷ℛ,𝑕
s.t. 𝐷𝐹∩𝐷ℛ=∅,𝑥∈𝐷𝐹

𝛼𝑥,𝐷𝐹 ,𝐷ℛ,𝑕
1√
2

1∑︁
𝑧=0

(−1)𝑧𝐷𝐹 (𝑥) |𝑥⟩𝖰 |𝑧⟩𝖠 |𝐷𝐹 − 𝑥⟩𝖥 |𝐷ℛ, (𝑥, 𝑧)⟩𝖣ℛ
|𝑕⟩𝖧

̃︁𝑈𝐶 is a unitary, so the terms |𝑥⟩𝖰 |𝐷ℛ(𝑥)⟩𝖠 |𝐷𝐹 ⟩𝖥 |𝐷ℛ, (𝑥,𝐷ℛ(𝑥))⟩𝖣ℛ
|𝑕⟩𝖧 where 𝐷𝐹 ∩𝐷ℛ = ∅

and 𝑥 ∈ 𝐷ℛ, 1√
2

∑︀1
𝑧=0 |𝑥⟩𝖰 |𝑧⟩𝖠 |𝐷𝐹 ⟩𝖥 |𝐷ℛ, (𝑥, 𝑧)⟩𝖣ℛ

|𝑕⟩𝖧 where 𝐷𝐹 ∩𝐷ℛ = ∅ and 𝑥 /∈ 𝐷ℛ ∪𝐷𝐹 ,

and 1√
2

∑︀1
𝑧=0(−1)𝑧𝐷𝐹 (𝑥) |𝑥⟩𝖰 |𝑧⟩𝖠 |𝐷𝐹 − 𝑥⟩𝖥 |𝐷ℛ, (𝑥, 𝑧)⟩𝖣ℛ

|𝑕⟩𝖧 where 𝐷𝐹 ∩𝐷ℛ = ∅ and 𝑥 ∈ 𝐷𝐹 in
the above summation are orthogonal to each other.

Thus the expected number of pairs in 𝖥 of |𝜑𝑗+1⟩ is

Tr(𝑂 |𝜑𝑗+1⟩⟨𝜑𝑗+1|)

=
∑︁

𝑥,𝐷𝐹 ,𝐷ℛ,𝑕
s.t. 𝐷𝐹∩𝐷ℛ=∅,𝑥/∈𝐷𝐹

|𝐷𝐹 | |𝛼𝑥,𝐷𝐹 ,𝐷ℛ,𝑕|2 +
∑︁

𝑥,𝐷𝐹 ,𝐷ℛ,𝑕
s.t. 𝐷𝐹∩𝐷ℛ=∅,𝑥∈𝐷𝐹

|𝐷𝐹 − 𝑥| |𝛼𝑥,𝐷𝐹 ,𝐷ℛ,𝑕|2

=
∑︁

𝑥,𝐷𝐹 ,𝐷ℛ,𝑕
s.t. 𝐷𝐹∩𝐷ℛ=∅

|𝐷𝐹 | |𝛼𝑥,𝐷𝐹 ,𝐷ℛ,𝑕|2 −
∑︁

𝑥,𝐷𝐹 ,𝐷ℛ,𝑕
s.t. 𝐷𝐹∩𝐷ℛ=∅,𝑥∈𝐷𝐹

|𝛼𝑥,𝐷𝐹 ,𝐷ℛ,𝑕|2

=Tr(𝑂 |𝜑𝑗⟩⟨𝜑𝑗 |)− 𝛼

So 𝛼 = Tr(𝑂 |𝜑𝑗⟩⟨𝜑𝑗 |) − Tr(𝑂 |𝜑𝑗+1⟩⟨𝜑𝑗+1|). That is to say, the weight of queries outside 𝐷𝐹

equals the decrement of the number of pairs in 𝖥 after the query.
Combine the above two parts, and we can obtain

TD
(︁̃︁𝑈𝐶𝑈𝑗 |𝜑𝑗⟩⟨𝜑𝑗 |𝑈 †𝑗 ̃︁𝑈𝐶

†
, 𝑈 ′𝐷𝑈𝑗 |𝜑𝑗⟩⟨𝜑𝑗 |𝑈 †𝑗𝑈

′†
𝐷

)︁
≤ 6

√︁
Tr(𝑂 |𝜑𝑗⟩⟨𝜑𝑗 |)− Tr(𝑂 |𝜑𝑗+1⟩⟨𝜑𝑗+1|).

B Missing Proof of Lemma 7

We prove Lemma 7 by first showing that for two parallel queries, we can remove one of them without
decreasing the value and then extending the result to ̃︂𝑈𝖵𝖾𝗋 on 𝜌

(𝑡)
𝑠 and 𝑈𝖴𝗉𝖽 (each has polynomial

queries).

50

Proof. Let ̃︁𝑈𝑅 act on the first query position register 𝖰1, the first query answer register 𝖠1,𝖣𝒜,𝖥
and 𝖣ℛ while ̃︁𝑈𝐶 acts on the second query position register 𝖰2, the second query position register
𝖠2,𝖥 and 𝖣ℛ.

We first show that for any state

|𝜙⟩ =
∑︁

𝑥1,𝑥2,𝐷𝒜,𝐷𝐹 ,𝐷ℛ,𝑕
s.t. 𝐷𝐹∩𝐷ℛ=∅

𝛼𝑥1,𝑥2,𝐷𝒜,𝐷𝐹 ,𝐷ℛ,𝑕 |𝑥1⟩𝖰1
|0⟩𝖠1

|𝑥2⟩𝖰2
|0⟩𝖠2

|𝐷𝒜⟩𝖣𝒜
|𝐷𝐹 ⟩𝖥 |𝐷ℛ⟩𝖣ℛ

|𝑕⟩𝖧 ,

we have the inequality

Tr(𝑂̃︁𝑈𝑅 |𝜙⟩⟨𝜙| ̃︁𝑈𝑅
†
)− Tr(𝑂̃︁𝑈𝐶

̃︁𝑈𝑅 |𝜙⟩⟨𝜙| ̃︁𝑈𝑅
†̃︁𝑈𝐶

†
) ≤ Tr(𝑂 |𝜙⟩⟨𝜙|)− Tr(𝑂̃︁𝑈𝐶 |𝜙⟩⟨𝜙| ̃︁𝑈𝐶

†
).

In fact, from the same argument in Lemma 6, Tr(𝑂 |𝜙⟩⟨𝜙|)−Tr(𝑂̃︁𝑈𝐶 |𝜙⟩⟨𝜙| ̃︁𝑈𝐶
†
) is exactly the

probability that we get outcome (𝑥2, 𝐷𝐹) such that 𝑥2 ∈ 𝐷𝐹 when we measure the registers 𝖰2 and
𝖣𝐹 on state |𝜙⟩. That is

Tr(𝑂 |𝜙⟩⟨𝜙|)− Tr(𝑂̃︁𝑈𝐶 |𝜙⟩⟨𝜙| ̃︁𝑈𝐶
†
) =

∑︁
𝑥1,𝑥2,𝐷𝒜,𝐷𝐹 ,𝐷ℛ,𝑕

s.t. 𝐷𝐹∩𝐷ℛ=∅,𝑥2∈𝐷𝐹

|𝛼𝑥1,𝑥2,𝐷𝒜,𝐷𝐹 ,𝐷ℛ,𝑕|2 .

Similarly, Tr(𝑂̃︁𝑈𝑅 |𝜙⟩⟨𝜙| ̃︁𝑈𝑅
†
) − Tr(𝑂̃︁𝑈𝐶

̃︁𝑈𝑅 |𝜙⟩⟨𝜙| ̃︁𝑈𝑅
†̃︁𝑈𝐶

†
) is exactly the probability that we

get outcome (𝑥2, 𝐷𝐹) such that 𝑥2 ∈ 𝐷𝐹 when we measure the registers 𝖰2 and 𝖣𝐹 on state ̃︁𝑈𝑅 |𝜙⟩.
Notice that we can write ̃︁𝑈𝑅 |𝜙⟩ as∑︁
𝑥1,𝑥2,𝐷𝒜,𝐷𝐹 ,𝐷ℛ,𝑕

s.t. 𝐷𝐹∩𝐷ℛ=∅

𝛼𝑥1,𝑥2,𝐷𝒜,𝐷𝐹 ,𝐷ℛ,𝑕 |𝑥2⟩𝖰2
|0⟩𝖠2

|𝑥1⟩𝖰1
𝑈𝑥1,𝐷𝐹

(|0⟩𝖠1
|𝐷𝒜⟩𝖣𝒜

|𝐷ℛ⟩𝖣ℛ
) |𝐷𝐹 − 𝑥1⟩𝖥 |𝑕⟩𝖧

where 𝑈𝑥1,𝐷𝐹
is a unitary that only depends on 𝑥1, 𝐷𝐹 . ̃︁𝑈𝑅 is a unitary, so the terms in the above

summation are orthogonal. Thus

Tr(𝑂̃︁𝑈𝑅 |𝜙⟩⟨𝜙| ̃︁𝑈𝑅
†
)− Tr(𝑂̃︁𝑈𝐶

̃︁𝑈𝑅 |𝜙⟩⟨𝜙| ̃︁𝑈𝑅
†̃︁𝑈𝐶

†
) =

∑︁
𝑥1,𝑥2,𝐷𝒜,𝐷𝐹 ,𝐷ℛ,𝑕

s.t. 𝐷𝐹∩𝐷ℛ=∅,𝑥2∈𝐷𝐹−𝑥1

|𝛼𝑥1,𝑥2,𝐷𝒜,𝐷𝐹 ,𝐷ℛ,𝑕|2 .

As a result, Tr(𝑂̃︁𝑈𝑅 |𝜙⟩⟨𝜙| ̃︁𝑈𝑅
†
)−Tr(𝑂̃︁𝑈𝐶

̃︁𝑈𝑅 |𝜙⟩⟨𝜙| ̃︁𝑈𝑅
†̃︁𝑈𝐶

†
) ≤ Tr(𝑂 |𝜙⟩⟨𝜙|)−Tr(𝑂̃︁𝑈𝐶 |𝜙⟩⟨𝜙| ̃︁𝑈𝐶

†
).

That is to say, an extra query ̃︁𝑈𝑅 on another part of the state can only decrease the chance of making
a bad query in ̃︁𝑈𝐶 because that extra query can only make the set of bad queries smaller.̃︂𝑈𝖵𝖾𝗋 and 𝑈𝖴𝗉𝖽 are composed of ̃︁𝑈𝐶 and ̃︁𝑈𝑅. In fact, the above argument can also be extended
to ̃︂𝑈𝖵𝖾𝗋 and 𝑈𝖴𝗉𝖽 to capture our intuition that 𝑈𝖴𝗉𝖽 can only decrease the number of bad queries
made during ̃︂𝑈𝖵𝖾𝗋 because 𝑈𝖴𝗉𝖽 can only make the set of bad queries smaller.

We will first show a fixed number of iterations of the update phase can only decrease the number
of bad queries made during ̃︂𝑈𝖵𝖾𝗋 and then show it holds for 𝑈𝖴𝗉𝖽.

Let |𝜓⟩ be the state |𝜓⟩ as in Claim 7. We can write it as |𝜓0⟩ ⊗ 1√
𝑁(𝑛)

∑︀𝑁(𝑛)−1
𝑗=0 |𝑗⟩𝖩.

For any 𝑗 ≥ 1, for unitary ̃︂𝑈 ′𝖵𝖾𝗋 that acts on the synthesized state and records the query for
𝒜, and unitary ̃︂𝑈𝖵𝖾𝗋 that acts on 𝜌

(𝑡)
𝑠 , denote |𝜇⟩ = ̃︂𝑈𝖲𝗒𝗇(̃︂𝑈 ′𝖵𝖾𝗋 ̃︂𝑈𝖲𝗒𝗇)

𝑗−1 |𝜓0⟩. Let 𝑈 (1)
𝑖 prepare the

51

next query for 𝜌(𝑡)𝑠 and 𝑈
(2)
𝑖 prepare the next query for the synthesized state. For every 𝑖, denote

𝑈
(1)
𝑖,𝐶 = 𝑈

(1)
𝑖

̃︁𝑈𝐶 · · ·𝑈 (1)
0 and 𝑈 (2)

𝑖,𝑅 = 𝑈
(2)
𝑖

̃︁𝑈𝑅 · · ·𝑈 (2)
0 . Apply the above inequality, and we can get that

Tr(𝑂(̃︂𝑈 ′𝖵𝖾𝗋 ̃︂𝑈𝖲𝗒𝗇)
𝑗 |𝜓0⟩⟨𝜓0| (̃︂𝑈𝖲𝗒𝗇

†̃︂𝑈 ′𝖵𝖾𝗋†)𝑗)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋(̃︂𝑈 ′𝖵𝖾𝗋 ̃︂𝑈𝖲𝗒𝗇)
𝑗 |𝜓0⟩⟨𝜓0| (̃︂𝑈𝖲𝗒𝗇

†̃︂𝑈 ′𝖵𝖾𝗋†)𝑗 ̃︂𝑈𝖵𝖾𝗋
†
)

=Tr(𝑂𝑈
(2)
𝑞,𝑅 |𝜇⟩⟨𝜇|𝑈

(2)
𝑞,𝑅

†
)− Tr(𝑂𝑈

(1)
𝑞,𝐶𝑈

(2)
𝑞,𝑅 |𝜇⟩⟨𝜇|𝑈

(2)
𝑞,𝑅

†
𝑈

(1)
𝑞,𝐶

†
)

=Tr(𝑂𝑈 (2)
𝑞

̃︁𝑈𝑅𝑈
(2)
𝑞−1,𝑅 |𝜇⟩⟨𝜇|𝑈

(2)
𝑞−1,𝑅

†̃︁𝑈𝑅
†
𝑈 (2)
𝑞

†
)

− Tr(𝑂𝑈 (1)
𝑞 𝑈 (2)

𝑞
̃︁𝑈𝐶

̃︁𝑈𝑅𝑈
(1)
𝑞−1,𝐶𝑈

(2)
𝑞−1,𝑅 |𝜇⟩⟨𝜇|𝑈

(2)
𝑞−1,𝑅

†
𝑈

(1)
𝑞−1,𝐶

†̃︁𝑈𝑅
†̃︁𝑈𝐶

†
𝑈 (2)
𝑞

†
𝑈 (1)
𝑞

†
)

=Tr(𝑂̃︁𝑈𝑅𝑈
(2)
𝑞−1,𝑅 |𝜇⟩⟨𝜇|𝑈

(2)
𝑞−1,𝑅

†̃︁𝑈𝑅
†
)− Tr(𝑂̃︁𝑈𝐶

̃︁𝑈𝑅𝑈
(1)
𝑞−1,𝐶𝑈

(2)
𝑞−1,𝑅 |𝜇⟩⟨𝜇|𝑈

(2)
𝑞−1,𝑅

†
𝑈

(1)
𝑞−1,𝐶

†̃︁𝑈𝑅
†̃︁𝑈𝐶

†
)

≤Tr(𝑂𝑈 (2)
𝑞−1,𝑅 |𝜇⟩⟨𝜇|𝑈

(2)
𝑞−1,𝑅

†
)− Tr(𝑂̃︁𝑈𝐶𝑈

(1)
𝑞−1,𝐶𝑈

(2)
𝑞−1,𝑅 |𝜇⟩⟨𝜇|𝑈

(2)
𝑞−1,𝑅

†
𝑈

(1)
𝑞−1,𝐶

†̃︁𝑈𝐶
†
)

=Tr(𝑂𝑈
(2)
𝑞−1,𝑅 |𝜇⟩⟨𝜇|𝑈

(2)
𝑞−1,𝑅

†
)− Tr(𝑂𝑈

(1)
𝑞,𝐶𝑈

(2)
𝑞−1,𝑅 |𝜇⟩⟨𝜇|𝑈

(2)
𝑞−1,𝑅

†
𝑈

(1)
𝑞,𝐶

†
)

That is, we can delete a query for the synthesized state without decreasing the number of bad
queries made during ̃︂𝑈𝖵𝖾𝗋 on 𝜌

(𝑡)
𝑠 . Repetitively removing the queries for the synthesized state, we

can get that

Tr(𝑂(̃︂𝑈 ′𝖵𝖾𝗋 ̃︂𝑈𝖲𝗒𝗇)
𝑗 |𝜓0⟩⟨𝜓0| (̃︂𝑈𝖲𝗒𝗇

†̃︂𝑈 ′𝖵𝖾𝗋†)𝑗)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋(̃︂𝑈 ′𝖵𝖾𝗋 ̃︂𝑈𝖲𝗒𝗇)
𝑗 |𝜓0⟩⟨𝜓0| (̃︂𝑈𝖲𝗒𝗇

†̃︂𝑈 ′𝖵𝖾𝗋†)𝑗 ̃︂𝑈𝖵𝖾𝗋
†
)

≤Tr(𝑂𝑈 (2)
0,𝑅 |𝜇⟩⟨𝜇|𝑈

(2)
0,𝑅

†
)− Tr(𝑂𝑈

(1)
𝑞,𝐶𝑈

(2)
0,𝑅 |𝜇⟩⟨𝜇|𝑈

(2)
0,𝑅

†
𝑈

(1)
𝑞,𝐶

†
)

=Tr(𝑂 |𝜇⟩⟨𝜇|)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋 |𝜇⟩⟨𝜇|̃︂𝑈𝖵𝖾𝗋
†
)

where we use the fact that 𝑈 (1)
𝑖 commutes with 𝑈

(2)
𝑗 and ̃︁𝑈𝐶 , 𝑈 (2)

𝑖 commutes with ̃︁𝑈𝑅, and both

𝑈
(1)
𝑖 and 𝑈 (2)

𝑗 commute with 𝑂.

We successfully removed one ̃︂𝑈 ′𝖵𝖾𝗋 on the synthesized state. We can do it until we remove all of̃︂𝑈 ′𝖵𝖾𝗋 on the synthesized state. That is,

Tr(𝑂(̃︂𝑈 ′𝖵𝖾𝗋 ̃︂𝑈𝖲𝗒𝗇)
𝑗 |𝜓0⟩⟨𝜓0| (̃︂𝑈𝖲𝗒𝗇

†̃︂𝑈 ′𝖵𝖾𝗋†)𝑗)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋(̃︂𝑈 ′𝖵𝖾𝗋 ̃︂𝑈𝖲𝗒𝗇)
𝑗 |𝜓0⟩⟨𝜓0| (̃︂𝑈𝖲𝗒𝗇

†̃︂𝑈 ′𝖵𝖾𝗋†)𝑗 ̃︂𝑈𝖵𝖾𝗋
†
)

≤Tr(𝑂̃︂𝑈𝖲𝗒𝗇(̃︂𝑈 ′𝖵𝖾𝗋 ̃︂𝑈𝖲𝗒𝗇)
𝑗−1 |𝜓0⟩⟨𝜓0| (̃︂𝑈𝖲𝗒𝗇

†̃︂𝑈 ′𝖵𝖾𝗋†)𝑗−1 ̃︂𝑈𝖲𝗒𝗇
†
)

− Tr(𝑂̃︂𝑈𝖵𝖾𝗋
̃︂𝑈𝖲𝗒𝗇(̃︂𝑈 ′𝖵𝖾𝗋 ̃︂𝑈𝖲𝗒𝗇)

𝑗−1 |𝜓0⟩⟨𝜓0| (̃︂𝑈𝖲𝗒𝗇
†̃︂𝑈 ′𝖵𝖾𝗋†)𝑗−1 ̃︂𝑈𝖲𝗒𝗇

†̃︂𝑈𝖵𝖾𝗋
†
)

=Tr(𝑂(̃︂𝑈 ′𝖵𝖾𝗋 ̃︂𝑈𝖲𝗒𝗇)
𝑗−1 |𝜓0⟩⟨𝜓0| (̃︂𝑈𝖲𝗒𝗇

†̃︂𝑈 ′𝖵𝖾𝗋†)𝑗−1)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋(̃︂𝑈 ′𝖵𝖾𝗋 ̃︂𝑈𝖲𝗒𝗇)
𝑗−1 |𝜓0⟩⟨𝜓0| (̃︂𝑈𝖲𝗒𝗇

†̃︂𝑈 ′𝖵𝖾𝗋†)𝑗−1 ̃︂𝑈𝖵𝖾𝗋
†
)

≤ · · ·

≤Tr(𝑂 |𝜓0⟩⟨𝜓0|)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋 |𝜓0⟩⟨𝜓0|̃︂𝑈𝖵𝖾𝗋
†
)

where we use the fact that ̃︂𝑈𝖲𝗒𝗇 uses the database in 𝐷𝒜 and ̃︂𝑈𝖵𝖾𝗋 does not record query for 𝒜.
Thus ̃︂𝑈𝖲𝗒𝗇 and ̃︂𝑈𝖵𝖾𝗋 commute. ̃︂𝑈𝖲𝗒𝗇 does not act on 𝖥 and 𝖣ℛ, so it commutes with 𝑂.

Finally, we will show a randomized number of iterations of the update phase can not increase the
number of bad queries made during ̃︂𝑈𝖵𝖾𝗋. As both ̃︂𝑈𝖵𝖾𝗋 and 𝑂 do not act on register 𝖩, tracing out 𝖩

52

after 𝑈𝖴𝗉𝖽 does not change the quantity. Recall that 𝑈𝖴𝗉𝖽 |𝜓⟩ = 1√
𝑁(𝑛)

∑︀𝑁(𝑛)−1
𝑗=0 (̃︂𝑈 ′𝖵𝖾𝗋 ̃︂𝑈𝖲𝗒𝗇)

𝑗(|𝜓0⟩) |𝑗⟩𝖩.
Thus

Tr(𝑂𝑈𝖴𝗉𝖽 |𝜓⟩⟨𝜓|𝑈𝖴𝗉𝖽
†
)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋𝑈𝖴𝗉𝖽 |𝜓⟩⟨𝜓|𝑈𝖴𝗉𝖽

†̃︂𝑈𝖵𝖾𝗋
†
)

=Tr(𝑂Tr𝖩(𝑈𝖴𝗉𝖽 |𝜓⟩⟨𝜓|𝑈𝖴𝗉𝖽
†
))− Tr(𝑂̃︂𝑈𝖵𝖾𝗋Tr𝖩(𝑈𝖴𝗉𝖽 |𝜓⟩⟨𝜓|𝑈𝖴𝗉𝖽

†
)̃︂𝑈𝖵𝖾𝗋

†
)

=
1

𝑁(𝑛)

𝑁(𝑛)−1∑︁
𝑗=0

(︂
Tr(𝑂(̃︂𝑈 ′𝖵𝖾𝗋 ̃︂𝑈𝖲𝗒𝗇)

𝑗 |𝜓0⟩⟨𝜓0| (̃︂𝑈𝖲𝗒𝗇
†̃︂𝑈 ′𝖵𝖾𝗋†)𝑗)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋(̃︂𝑈 ′𝖵𝖾𝗋 ̃︂𝑈𝖲𝗒𝗇)

𝑗 |𝜓0⟩⟨𝜓0| (̃︂𝑈𝖲𝗒𝗇
†̃︂𝑈 ′𝖵𝖾𝗋†)𝑗 ̃︂𝑈𝖵𝖾𝗋

†
)

)︂
≤Tr(𝑂 |𝜓0⟩⟨𝜓0|)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋 |𝜓0⟩⟨𝜓0|̃︂𝑈𝖵𝖾𝗋

†
)

=Tr(𝑂 |𝜓⟩⟨𝜓|)− Tr(𝑂̃︂𝑈𝖵𝖾𝗋 |𝜓⟩⟨𝜓|̃︂𝑈𝖵𝖾𝗋
†
)

C Notation Tables

Table 1: Parameters in Section 6.3

𝑞(𝑛), 𝑞′(𝑛) 𝑛 is the security number. 𝖵𝖾𝗋 makes 𝑞(𝑛) classical queries. 𝖪𝖾𝗒𝖦𝖾𝗇 and 𝖬𝗂𝗇𝗍 make
𝑞′(𝑛) quantum queries in total. We sometimes omit 𝑛.

𝑇 (𝑛), 𝑁(𝑛) two polynomials that will decide the maximal possible number of iterations we run
in the test phase and the update phase.

Table 2: Registers in Section 6.3

𝖯𝗄 the register storing the public key
𝖲 the register storing the serial number
𝖬 the register storing the alleged money state
𝖣𝒜 the register storing the classical queries database maintained by 𝒜
𝖣ℛ the register storing the classical queries we made so far along with their answers

(maintained by the oracle)
𝖥 the register storing the oracle if in the decompressed view or the register storing

𝐷𝐹 (the database for non-|0̂⟩ elements) if in compressed view
𝖦, 𝖧 the register storing unimportant things for the analysis. For example, it may include

the secret key, working space for 𝖪𝖾𝗒𝖦𝖾𝗇 and 𝖬𝗂𝗇𝗍, and some unused fresh ancillas.
𝖳 the register storing the number of iterations for test phase.
𝖩 the register storing the number of iterations for update phase.
𝖰,𝖰1,𝖰2 the register storing the next query position.
𝖠,𝖠1,𝖠2 the register to store the next query answer.

53

Table 3: States in Section 6.3

|𝜑⟩ A state in the following form (i.e. it’s in the compressed view and the contents in
𝖣ℛ and 𝖣𝒜 are the same),

|𝜑⟩ =
∑︁

𝑝𝑘,𝑠,𝑚,𝐷,𝐷𝐹 ,𝑔
s.t. 𝐷∩𝐷𝐹=∅

𝛼𝑝𝑘,𝑠,𝑚,𝐷,𝐷𝐹 ,𝑔 |𝑝𝑘⟩𝖯𝗄 |𝑠⟩𝖲 |𝑚⟩𝖬 |𝐷⟩𝖣𝒜
|𝐷𝐹 ⟩𝖥 |𝐷⟩𝖣ℛ

|𝑔⟩𝖦 .

In Claim 7 and Claim 8, we will instantiate it with the pure state we obtain
by applying the unitaries 𝑈𝖪𝖾𝗒𝖦𝖾𝗇, 𝑈𝖬𝗂𝗇𝗍 and ̃︁𝑈𝒜 to the state |1𝑛⟩ |∅⟩𝖣𝒜

|∅⟩𝖥 |∅⟩𝖣ℛ
along with enough ancillas.

|𝜑𝑗⟩ |𝜑𝑗⟩ = ̃︁𝑈𝐶𝑈𝑗−1 · · · ̃︁𝑈𝐶𝑈0 |𝜑⟩. It’s the state when we run 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ on |𝜑⟩ in the
compressed view until we have answered the 𝑗𝑡𝑕 query.

|𝜓⟩ We abuse the notation. |𝜓⟩ is the pure state we obtain by running the first step
in the compressed view in the case 𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, ·)) on 𝜌(𝑡)𝑠 until the end of
the test phase (in Claim 7) or the update phase (in Claim 8) of 𝒜.

|𝜙⟩ an arbitary state ready for two “parallel” classical queries on different registers.
|𝜓0⟩ the pure state we obtain by running the first step in the compressed view in the case

𝖵𝖾𝗋ℛ,|𝖯𝖲𝖯𝖠𝖢𝖤⟩(𝑝𝑘, (𝑠, ·)) on 𝜌
(𝑡)
𝑠 until we finish the test phase and then truncating

𝖩.
|𝜓(𝑡)⟩ , |𝜓(𝑗)⟩ We abuse the notation. In Claim 7, |𝜓(𝑡)⟩ is the state after we run 𝑡 iterations in

the test phase but not run the update phase in the compressed view. In Claim 8,
|𝜓(𝑗)⟩ is the state we obtain after we run a randomized number of iterations in the
test phase and 𝑗 iterations in the update phase in the compressed view.

54

Table 4: Observable and Unitaries in Section 6.3

𝑂 the observable corresponding to the number of pairs in 𝖥 (i.e. half of the nonempty
length in 𝖥). Formally, 𝑂 =

∑︀
𝐷𝐹
|𝐷𝐹 | |𝐷𝐹 ⟩⟨𝐷𝐹 |𝖥 where |𝐷𝐹 | is the number of

pairs in 𝐷𝐹 . It will only be applied to those states in compressed view.
𝖣𝖾𝖼𝗈𝗆𝗉 the unitary defined in Section 6.2. It acts on 𝖣ℛ and 𝖥 and decompresses two

databases to one database and the oracle.
𝖢𝗈𝗆𝗉 the inverse of the unitary 𝖣𝖾𝖼𝗈𝗆𝗉.̃︀𝑈 ̃︀𝑈 = 𝖢𝗈𝗆𝗉𝑈𝖣𝖾𝖼𝗈𝗆𝗉. It’s the compressed view version of 𝑈 for a general unitary

𝑈 . See the figure in Section 6.2 for more details.
𝑈𝑄 the unitary corresponding to answering a quantum query with the real oracle.
𝑈𝐶 the unitary corresponding to answering a classical query with the real oracle.
𝑈𝑅 the same as 𝑈𝐶 except that it records the query-answer for 𝒜 at the same time.
𝑈𝐷 the unitary corresponding to answering a classical query with the database in

register 𝖣𝒜 while recording the query-answer to 𝖣𝒜 for later use.
𝑈 ′𝐷 the unitary corresponding to answering a classical query with the database in

register 𝖣ℛ while recording the query-answer to 𝖣ℛ for later use.
𝑈𝑖 When 0 ≤ 𝑖 ≤ 𝑞 − 1, it’s the unitary corresponding to the preparation of the

(𝑖+ 1)𝑡𝑕 query of 𝖵𝖾𝗋. When 𝑖 = 𝑞, it’s the unitary after the final query of 𝖵𝖾𝗋.
𝑈𝖪𝖾𝗒𝖦𝖾𝗇, 𝑈𝖬𝗂𝗇𝗍 the unitary 𝑈𝖪𝖾𝗒𝖦𝖾𝗇,𝑛, 𝑈𝖬𝗂𝗇𝗍,𝑛 defined in Section 6.1.
𝑈𝖵𝖾𝗋, 𝑈𝖲𝗒𝗇 the unitary 𝑈𝖵𝖾𝗋,𝑛, 𝑈𝖲𝗒𝗇,𝑛 defined in Section 6.1, 𝑈𝖵𝖾𝗋 = 𝑈𝑞𝑈𝐶𝑈𝑞−1 · · ·𝑈𝐶𝑈0.
𝑈 ′𝖵𝖾𝗋 the unitary corresponding to doing the verification while recording the query-

answer pair for 𝒜, 𝑈 ′𝖵𝖾𝗋 = 𝑈𝑞𝑈𝑅𝑈𝑞−1 · · ·𝑈𝑅𝑈0.
𝑈𝖲𝗂𝗆 the unitary corresponding to running 𝖵𝖾𝗋𝐷,|𝖯𝖲𝖯𝖠𝖢𝖤⟩ where 𝐷 is the content in 𝖣𝒜,

𝑈𝖲𝗂𝗆 = 𝑈𝑞𝑈𝐷𝑈𝑞−1 · · ·𝑈𝐷𝑈0.
𝑈𝖴𝗉𝖽 the unitary defined in Section 6.1 that describes our update phase. Formally, it’s

the unitary
∑︀𝑁(𝑛)−1

𝑗=0 (𝑈𝖵𝖾𝗋𝑈𝖲𝗒𝗇)
𝑗 |𝑗⟩⟨𝑗|𝖩 .

55

	Introduction
	Our Work

	Our Techniques in a Nutshell
	Warmup: Insecurity when R is absent
	Insecurity in the presence of R
	KeyGen and Mint: Classical Queries to R
	KeyGen and Mint: Quantum Queries to R
	Challenges To Handling Quantum Verification Queries

	Related Work

	Preliminaries
	Quantum States, Algorithms, and Oracles
	Public Key Quantum Money Schemes
	Correctness
	Security

	Jordan's Lemma and Alternating Projections
	Compressed Oracle Techniques

	Synthesizing Witness States In Quantum Polynomial Space
	Description of the State Family and Circuit Family
	Proof of Lemma 4

	Insecurity of Oracle-Aided Public-Key Quantum Money
	Extensions to Quantum Access
	A Purified View of the Algorithms
	Compress and Decompress
	Analysis of AR, |PSPACE

	Missing Proof of lemma:diffofquery
	Missing Proof of RemoveUpd
	Notation Tables

