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Abstract. Embedded systems are a cornerstone of the ongoing digiti-
zation of our society, ranging from expanding markets around IoT and
smart-X devices over to sensors in autonomous driving, medical equip-
ment or critical infrastructures. Since a vast amount of embedded systems
are safety-critical (e.g., due to their operation site), security is a necessity
for their operation. However, unlike mobile, desktop, and server systems,
where adversaries typically only act have remote access, embedded sys-
tems typically face attackers with physical access. Thus embedded system
require an additional set of defense techniques, preferably leveraging hard-
ware acceleration to minimize the impact on their stringent operation
constraints. Over the last decade numerous defenses have been explored,
however, they have often been analyzed in isolation. In this work, we first
systematically analyze the state of the art in defenses for both software
exploitation and fault attacks on embedded systems. We then carefully
design a holistic instruction set extension to augment the RISC-V in-
struction set architecture with instructions to deter against the threats
analyzed in this work. Moreover we implement our design using the gems
simulator system and a binary translation approach to arm software with
our instruction set extension. Finally, we evaluate performance overhead
on the MiBench2 benchmark suite. Our evaluation demonstrates a ROM
overhead increase of 20% to defeat the aforementioned attacks.
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1 Introduction

With the ubiquitously expanding Internet of Things (IoT), the demand for em-
bedded devices continuously increases. However, such an ubiquitous presence of
embedded systems in also security-relevant appliances inevitably increases the
potential for attacks. Through physical access, adversaries can particularly attack
digital devices and security-critical systems through implementation attacks,
such as Side-Channel Analysis (SCA), Fault Injection Attack (FIA). Along with
(limited) software-induced attacks, the range of threats that modern embedded
devices face is broad and multifaceted. Physical access allows adversaries to
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perform glitching attacks, which may lead to bit flips in the fetched instructions.
These faulty bits may cause erroneous instructions to be executed or may even
change the semantics to a No-Operation (NOP), effectively skipping an instruc-
tion [2]|. Especially in the context of cryptography, such glitches can have severe
consequences such as key leakage via Differential Fault Attack (DFA) [24]. Fur-
thermore, glitch-induced NOPs by physical adversary may violate the control-flow
of the program, which in term can leak secrets. On the software side, adversaries
can mount software-based attacks to manipulate the control flow of the program,
for example, by overwriting the return address. Over the last decades, many
countermeasures [3[1115}/22,/33134] to these threats have been developed, but
have mostly been studied in isolation. However, as seen above, in the case of
embedded systems, the adversary can mount an attack using many different
techniques. Therefore, an embedded system has to employ a combination of
defenses to deter these adversaries. Simply stacking different approaches on top
of each other may give rise to inefficiencies, as they may reimplement similar
primitives instead of sharing a common base. Instead it is preferable to determine
an efficient set of instructions which can achieve a maximum of security by reusing
primitives.

Goal and Contributions. In this work, we focus on a embedded system
defenses to protect against both software-based exploitation and glitching at-
tacks simultaneously. Our goal is to design an instruction set extension with
a particular focus on RISC-V to minimize performance impacts. To this end,
we first systematically analyze the state of the art for both aforementioned
attack strategies. Based on elaborated insights, we then carefully design our
instruction set extension to leverage synergies between different defenses, i.e.
employing a glitching defense to facilitate higher-level defenses. By hashing the
current instruction stream, we create a label-based Control Flow Integrity (CFI)
scheme to protect forward-edges as well as a pointer protection scheme to defend
backward-edges against Return-Oriented Programming (ROP) attacks. Finally,
we implement and evaluate our instruction set extension using binary translation
and demonstrate an average memory overhead of 20% and average performance
overhead of 28%. In summary our contributions are:

— Systematic Analysis. We carefully analyze state-of-the-art hardware-
accelerated defenses against instruction glitching attacks and memory cor-
ruption vulnerabilities. Based on our analysis, we then work out defense
combinations to leverage their advantages to maximize security guarantees,
while minimizing potential performance impact.

— Novel Hardware Extension. Based on our systematic analysis, we design
a novel instruction set extension for RISC-V that defeats the aforementioned
attacks and induces minimal overhead. In particular, our extension leverages
an anti-glitching defense that ensures basic block instruction stream integrity.
Each basic block hash is then used to implement a label-based CFI defense to
protect forward control-flow edges. Furthermore, we use a pointer protection
to secure backward control-flow edges.
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— Evaluation. We evaluate our recommendation using the gem5 simulator and
the MiBench?2 benchmark suite. We then compare our solution to existing
works, which aim to secure embedded systems against similar threats, and
find that our solution has a 39% lower memory overhead while having a 81%
higher performance overhead.

2 Technical Background

In the following, we provide a concise background on most prominent attack vec-
tors for embedded systems, namely (1) software-based attacks via code injection
and re-use, and (2) fault attacks via glitching.

2.1 Code Injection & Reuse Attacks

Even though processing technology made significant progress, embedded systems
are still typically constrained in both resources and features. Moreover, C and
C++ are still the predominant languages and they do not provide any memory
safety features and thus improper use of memory allocations leads to catastrophic
exploits (e.g., buffer overflows on both the stack and heap can be used to mount
code injection attacks). Advances in the last 20 years, such as DEP and Stack
Canaries, made this type of attack more challenging to perform. Nowadays, these
countermeasures can also be found in embedded CPUs, which usually offer basic
memory protection in form of non-executable memory regions. This restricts
attackers to leverage so-called code reuse attacks, f.i., ROP-based exploitation [9].

2.2 Glitching Attacks

Adversaries are especially powerful when granted physical access to the target
device as this enables to challenges various assumptions (e.g., the integrity of the
instruction stream). By performing a fault attack, for example, via glitching the
clock source or via electromagnetic pulse, an adversary can disturb instruction
stream integrity. Bitflips caused by glitches manipulate the data embedded into
instructions or change instruction semantics entirely. For example, under certain
conditions an instruction can be changed to an NOP instruction. Note that this
has severe impacts on the control flow of the program if the skipped instruction
is a branch or a comparison [26|. In cryptographic algorithms, such glitches can
induce exploitable weaknesses to break all security guarantees. For example,
flipping bits during the key addition step may allow attackers to perform a DFA.
The possibility of glitching attacks and their effects on program execution have
been studied extensively times in literature. Most recently, Spensky et al. [206]
analyzed physical attacks under simulated and real conditions. For already existing
hardware architectures, special programming techniques are use to prevent such
vulnerabilities. Defensive programming techniques were previously analyzed by
Wittemann et al. [30]. Furthermore, compiler modifications such as presented by
Barry et al. [3] deter glitching, for example, via instruction duplication. Spensky
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et al. |26] combined different methods to defend against glitches as a LLVM
extension, including the previously mentioned techniques of code redundancy. A
major problem of these approaches is the induced overhead both in the code size
and time domain.

3 Preliminaries

We now introduce the fundamentals for the scope of our work, including the
assumed system model and adversary model. Based on the models, we then
define the security goals that should be achieved by a holistic Instruction Set
Architecture (ISA) extension in the context of embedded systems.

3.1 System Model

As outlined before, we focus on a common embedded system model (e.g., typical
for many IoT applications): a resource-constrained System-on-a-Chip (SoC)
including a processor and other important peripherals such as Random-access
memory (RAM) and Read-only memory (ROM), f.i. with memory in the sub one
megabyte range and processing speeds of up to 200 MHz. Moreover we assume
a system with an Memory Protection Units (MPUs) to offer basic memory
protection. Examples of such systems are the Cortex-M range by ARM and many
RISC-V based products. Throughout this work, we assume that the software
runs in a bare-metal fashion on the embedded systems, i.e. no real-time operating
system is available for the sake of simplicity. However, we want to emphasize
that the with a context switch, the real-time operating system support can be
added as well.

3.2 Adversary Model

We assume an attacker with physical access to the target system, i.e. to analyze
the Printed Circuit Board (PCB) and peripherals. Moreover, we assume that
the attacker is able to mount physical attacks by means of fault injection via
glitching. However, attacks on the microarchitecture itself and fault injection
via laser are out-of-scope of our work. Consequently, we assume the integrity of
the integrated RAM/ROM. Exploitation is thus only possible by manipulating
signals or sending malicious inputs to the device, i.e. to leverage a software bug
for exploitation. The high-level goal of the adversary is to exploit a given device
because of private or economic incentive (e.g., forcefully unlock (unintended)
features).

3.3 Security Goals

The nature of our adversary model implies protection against various attacks
vectors that can be leveraged for exploitation.
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Anti-Glitching. Firstly, the integrity of executing instructions should be guaran-
teed. Otherwise, an adversary can introduce disturbances via glitching to affect
the execution. Note that in the context of embedded systems, anti-glitching
techniques should be tightly coupled to other defenses, such as CFI, as glitches
itself are able to lead to an invalid control flow.

Control Flow Integrity. Secondly, (arbitrary) attacker-controlled code execution
should be prevented. Note that a properly configured Physical Memory Protection
(PMP) on RISC-V processors can already stop basic code injection attacks by
disallowing execution in certain regions, such as the stack. However, code-reuse
attacks, such as ROP, are still possible. Thus, CFI is a vital requirement for
system security. Especially on resource constrained devices, hardware-accelerated
CFI on the ISA level may be viable, as code instrumentation creates significant
performance impact.

Memory Safety. Lastly, memory corruption should be prevented. Memory unsafe
languages such as C facilitate exploitation of software bugs (e.g., to overflow
memory buffers or write to unwanted memory locations). Note this leads to
control-flow changes that may not be detectable by a CFI scheme. Under our
adversary model, memory safety has to be combined with other defenses, since
perfect memory safety does not eliminate CFI violations as instruction-skips may
also be used to mount attacks.

4 Literature Study

We now provide a concise summary of the state of the art of various defenses
that have been proposed over the years. Based on our summary, we then discuss
which defenses achieve best synergy effects in our system and adversary model.

4.1 Glitching Defenses

The increasing reliance on embedded systems in, for example, IoT appliances
or critical infrastructure also prompts for increased security measures in these
devices. Considering the potentially severe consequences of glitching attacks as
mentioned in [Section 2.2] several hardware accelerated countermeasures have been
developed. In the context of embedded systems, defenses against fault attacks
are often combined with other techniques to facilitate CFI. This stems from the
fact that skipping control flow instructions can cause control flow violations. In
this section, we exclude CFI and focus on instruction stream integrity. Note that
we discuss how these primitives may facilitate CFI in detail in

In general, we divide glitching attack defenses into three groups based on their
underlying mechanism: anomaly detection, instruction chaining and instruction
hashing. As noted before, we focus especially on instruction skips caused by
glitching.
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Anomaly detection. This defense techniques aims to alert the processor about a
possible glitch attack by observing its environment and scanning it for potential
indicators of an attack, such as voltage drops. Yuce et al. [33] demonstrated
FAME, a co-processor which triggers a software handler upon detecting a fault.
The co-processor is composed of a fault detection unit, which monitors several
aspects of the Central Processing Unit (CPU), such as the clock signal. After
detecting a fault, FAME stops the execution of the main processor. It enters a
safe mode, where a trap handler can recover the fault. A major advantage of
this approach is its low footprint in code size and execution time. The original
program does not have to be recompiled and only a fault handler has to be added.

Instruction chaining. Bitflips manifest themselves in a changed instruction
word, for example, changing a branch to a NOP. These changes usually only
have a limited impact on the surrounding instructions, as each instruction is
essentially executed in isolation. Therefore, making instructions depend on each
other can spread the effects of glitching attacks out, which usually leads to
unrecoverable corruption of the instruction stream and thus deter a possible
attack. This approach is used by Werner et al. [27] to protect processors from
physical attacks. They describe a mechanism based on authenticated encryption,
which accumulates a state based on the execution history and is used to decrypt
each instruction as it enters the pipeline. A fault will be detected when an invalid
instruction is decoded. Alternatively, an integrity verification may be performed
to stop randomly decrypted instructions from executing. Similarly the works by
Savry et al. |22] and de Clercq et al. |8] use a mask to decrypt instructions. The
first approach uses a static mask, which changes based on a permutation during
the execution, the latter work uses a mask based on several values such as the
previous program counter location. Notably, the masks employed by Savry et
al. are not depending on the execution history, which may allow for malicious
modifications using dedicated managing instructions. However, the integrity of
the initial mask is secured via a Message Authentication Code (MAC).

Instruction hashing. Hashes are commonly used to check the integrity of data.
Thus, hashing instructions is a straightforward method to monitor the integrity
of the instruction stream. Fei et al. [13] employ a standalone hardware monitor,
which accumulates a hash during the execution of a single basic block. At the end
of each block, the hash is compared to an internal table storing the expected hash.
In case of a mismatch, an exception is raised. The authors mention the use of
MD5 or SHA-1, however, their demonstration uses a simple XOR hash. Rodriguez
et al. [21] developed an architecture, which stores the expected hash and further
attributes in the instruction stream. Similarly to the previous solution, the
computed hash is compared to the expected hash. The block length is encoded
into the attributes to prevent attackers from skipping the hash comparison.
The authors suggest a XOR or Linear-Feedback Shift Register (LFSR) as the
hash function. A similar approach was used by Ohlsson et al. [19], who use a
Cyclic Redundancy Check (CRC) as the hashing function. Werner et al. 28]
systematically evaluated the requirements for an appropriate hash function and
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found that a CRC is best suited for instruction hashing. A major problem of these
approaches compared to the other fault defenses, is their latency. As the hash is
only checked at the end of a block, the fault goes unnoticed for the remainder
of the basic block. This can be accounted for by embedding a small hash into
each instruction, which is checked during the execution of each instruction, as
proposed by Wilken et al. [29]. However, this approach either requires a complete
ISA redesign or some kind of hardware unit with access to each hash. The latter
was implemented by Werner et al. [28] as a memory-mapped peripheral on a
ARM processor.

Discussion Compared to software-only solutions, ISA and hardware-level can
offer considerable overhead reductions. Nevertheless, not all of the previously
mentioned techniques may be combined intuitively with other solutions or come
with other downsides. Standalone hardware monitors such as FAME |[33| or
the proposal by Fei et al. [13] have the advantage that they do not require
modification to the ISA itself. However, these monitors have to constantly detect
basic blocks, for example, by scanning for branch instructions. It would thus be
preferable to give the processor built-in capabilities to differentiate between basic
blocks. Furthermore, internal storage required by these solutions is limited and
needs managing and data swapping, as described by Fei et al.. In contrast to
this, integrated instruction chaining or hashing avoid these problems and come
with the advantage of being building blocks for other structures. Many of the
previously proposed schemes are used to implement protection mechanisms such
as CFI. They are thus ideal candidates for a holistic security extension. The
main differences between chaining and hashing lie in their latency. Compared
to hashing, chaining inhibits low latency as a bitflip will immediately result in
randomly decrypted instructions. Yet this behavior may not always be desirable,
especially if the processor may be in an elevated execution state. Therefore, further
modifications are required to prevent random instruction execution. Furthermore,
chaining is often based on encryption, which by itself usually results in major
performance degradation or hardware overhead. Instruction hashing avoids these
specific problems by leaving the individual instructions intact and performing
the hashing operating in parallel. Additionally, the hashing function may be
more compact in hardware than an encryption scheme. The latency problems of
instruction hashing may be solved by using continuous hashing at the cost of a
major ISA redesign.

4.2 CFI

Not only physical attacks pose a serious threat to embedded devices, but also more
conventional software-based attacks. Whereas straight-forward code injection
attacks are stopped by using technologies such as the MPU, more complex
attacks like Code Reuse Attack (CRA) require additional defenses. CFI has been
thoroughly explored as a countermeasure against such CRAs. This technique
aims to enforce the Control Flow Graph (CFG) of a program by checking the
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forward edges, created by jumps, and the backward edges, caused by returns.
A fine-grained approach strictly enforces the CFG, but usually creates a large
performance overhead, whereas coarse-grained CFI relaxes the rules to gain
performance at the cost of security [9).

We divide existing hardware accelerated solutions into three categories: State-
based, Policy-based and Heuristics-based. However, in practice many solutions
combine techniques from two or all categories.

Policy-based. During its normal execution, a program usually follows some
predictable patterns. For example, by definition, a branch targets the entry of a
basic block. This rule is broken by CRAs, which execute small code snippets within
basic blocks. Thus, enforcing this rule thwarts some control-flow attacks and is
used in many solutions like Intel CET [25|, which uses the ENDBRANCH instruction
to terminate an indirect branch. Alternative solutions prohibit arbitrary branches
between functions, for example, via a label, which is placed at each call/return
site and is checked during each control-flow transfer. If the expected label does
not match, a control-flow violation occurs. This approach is used by Christoulakis
et al. |7] who employ the branch-delay slot to efficiently load the expected label
during a branch. The label can also be generated implicitly using the Instruction

hashing explained in based on the execution history.

State-based. If an attack follows the rules outlined above, it will stay undetected
degrading the security of the system. This may happen if two functions have the
same label, which allows for two legit backward edges. To overcome this problem
many CFI solutions include a state, which is checked on a regular basis. The
most popular solution is a Shadow Call Stack (SCS) [6]. Every call pushes the
return address to the regular stack as well as to the SCS. Upon a return, the
addresses on the stack and SCS are compared. If they do not match, an exception
is thrown. The SCS may be implemented as a hardware stack or as a second stack
located in RAM. Davi et al. |[11] introduced an alternative approach by forcing the
function to return to an active call site. Each function is assigned a label, which
is activated by an instruction at the start of the function. When returning from
a callee it is checked if the label is still active. If not, an adversary changed the
return address to a function which was not previously active. Alternatively, the
instruction chaining approaches from can be used to implement CFIL.
Encrypting instructions and making them dependent on the previous instructions
stops the attacker from arbitrary executing existing code.

Heuristics-based. Lastly, hardware monitors can be employed, which screen the
execution history for unusual behaviour, such as short instruction sequences
followed by returns indicating a ROP attack. A major problem however is the
correct selection of the underlying heuristic. Solutions such as by Kayaalp et
al. |15] use multiple thresholds to allow for variable gadget length, which lowers
the false positive rate.
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Discussion A good CFI solution should provide some form of forward as well as
backward-edge protection. Heuristic-based solutions cannot provide such a protec-
tion as they detect attacks based on the execution characteristics. Furthermore,
it has been shown that monitors which aim to detect short instruction sequences
between branches, which are typical for short gadgets, can be circumvented.
Thus, heuristics do not seem to be a viable candidate for general-purpose micro-
controllers. Most CFI solutions use a mixture of different techniques to achieve
both backward- and forward-edge protection. The most promising candidates
for backward-edge protection are SCSs as well as HAFIX [11]. However, both
require special attention to support common programming paradigms such as
recursion and, in the case of SCSs, exceptions. Ideally, SCS data should be placed
in processor internal memory, which however is limited, in term requiring some
kind of on-demand loading. Therefore, to minimize overhead, a label-based policy
seems viable for embedded systems. This also allows us to reuse instruction
hashing. Notably, this only protects forward edges. Backward-edge violations
occur when overwriting the return address, thus requiring a memory protection
as discussed below.

4.3 Memory Integrity

In case of a remote attacker in a IoT scenario, a memory vulnerability, such as a
buffer overflow, may be used to overwrite data like return addresses on which
the control-flow depends. In this paper we refer defenses which guard against
such memory attacks as memory integrity. As before, we divide existing work
into three categories: detection, pointer protection and tagging.

Detection. Buffer overflows actively change the data surrounding the original
buffer. Many solutions aim to detect such overflows by placing control values in
front of important data like the return address. These are commonly referred
to as stack canaries. Before each return, the control value is compared to its
expected value. If the values do not match an exception is raised [10].

De et al. |[12| developed a RISC-V extension, which employs a Physically Unclon-
able Function (PUF) and a binary secret to generate canaries which are placed
at each buffer. Thus, their detection method can detect buffer overflows even if
they do not overwrite the return address, which is usually the only the checked
location.

Pointer Protection. Alternatively, pointers may be protected so that they cannot
be simply overwritten by the attacker. In 2016 ARM introduced Pointer Authen-
tication as an ISA extension to ARMv8.3-A [23]. It is based on the realization
that the upper bytes of a 64-bit pointer are essentially unused and can store
additional information. They place a short MAC, also referred to as Pointer
Authentication Code (PAC) into the upper bits of the pointer, which is computed
using the current context, such as the stack pointer, and domain specific keys.
Before using the pointer, an authentication instruction verifies the PAC and
makes the pointer invalid if the process fails. On the contrary, Pointer Encryption
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modifies the whole pointer by encrypting it before placing it into memory. The
approach by Zhu et al. [34], uses a GCC' extension which automatically protects
relevant pointers by applying a XOR-encryption with a key derived from the
memory location and a dynamic runtime key. A downside of this approach is
the random execution which is inevitably caused by any kind of corruption or
manipulation of the encrypted pointer, as the plaintext pointer will be random.
Lastly, Pointer Capabilities add specific access rights and constraints to each
pointer, so that out of bounds writes become impossible. The CHERI ISA [32]
represents a major project which uses a 256-bit pointer format to encode various
information about each pointer, such as the base address, length and permissions.

Isolation. In the following, we briefly describe approaches which isolate memory
regions from each other, so that they cannot interfere. Most microcontrollers
already offer basic functionality for memory isolation through a MPU on ARM or
the PMP on RISC-V. However, the amount of memory regions as well as available
access (e.g., user-mode and supervisor-mode) are limited. Furthermore, even in the
presence of unique process identifiers, process internal memory isolation remains
a problem. The ARM MTE extensions [1] introduced in ARMv8 provide memory
tagging by assigning a 4-bit tag to every 16 bytes in memory. Additionally, each
64-bit pointer stores a corresponding tag in its most significant byte. Only if the
tags match, a read or write are possible. This can not only protect against buffer
overflows, but also against use-after-free attacks. The approach by Bradbury et
al. [5], implements tagging for RISC-V and uses 2-bit tags for every 8 bytes in
memory. Unlike ARM’s solution, the tags do not correspond to a key, but to access
permissions such as read- or write-only. Kim et al. [16] presented RIMI, which
extends upon RISC-V’s PMP and add instructions which only allow control-
transfers and load/stores inside one of two domains. All relevant instructions
are duplicated for domain0 and domaini. This approach is especially viable on
embedded systems with limited resources, as no additional tag bits are required.
Instead, the isolation is achieved through specialized instructions as well as
existing and added hardware units.

Discussion Many memory protection schemes are built with larger systems in
mind, which becomes a problem in the context of resource-constrained embedded
systems. Capability-based systems can offer a fine-grained protection at the cost
of increasing the necessary space required for a single pointer and increased
complexity. Even compressed capability formats such as CHERI Concentrate 31|
take up 64 bits for 32-bit architectures. A similar problem applies to ARM PAC
as well as ARM MTE as they abuse the fact, that the upper bytes of 64-bit
pointers are typically unused. On embedded 32-bit platforms placing a sufficiently
secure MACs becomes impossible. Most of the time, the whole 32-bit space is
used with only a few bits being available. Isolation through mechanisms such
as RIMI are suitable for embedded systems, but require a general rewrite of the
software. Memory Tagging in general seems to be a good fit for embedded systems
but comes with some downsides such as limited tag space. Naturally, a trade-off
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must be made between available tag bits, which allows for more fine-grained
control, and the acceptable memory overhead. For example, ARM’s solution
using 4 bits for every 16 bytes necessarily occupies 8 kB out of a 256 kB RAM
module. Furthermore, a software or hardware component is required to manage
the tags and schedule them accordingly. Therefore, to keep the original pointer
size on 32-bit systems only pointer encryption and overflow detection are viable.
Both solutions can be made context dependent, which is easily possible by using,
for example, the current CFI state creating a strong synergy between previously
discussed defense components. However, as the attacker can deduce the current
CFI state, it necessary to introduce some kind of processor secret, so that the
attacker cannot guess the canary or decrypt the pointer. An advantage of pointer
encryption is that no memory overhead is created, as long as the cipher has the
same block size as the pointer.

5 Our Recommendation

Based on the results of our literature study we now present our recommendation
for a holistic ISA extension. We explain our approach by dividing programs into
their individual levels mainly the basic block level, the functional level and the
global level. For each level we name the main threat and show how it can be
countered using our extension. Using a bottom-up approach, we show how we
can reuse primitives from lower levels to facilitate other higher-level protection
mechanisms.

5.1 Basic Block Level

We start by analyzing a single basic block, which on its own, consists only of
sequence of instructions. On this level, an adversary may be interested in either
changing the semantics of one or multiple instructions or skipping them entirely
using glitches. In we showed several defenses against glitch attacks.

In accordance with our discussion in we propose the usage of
instruction hashing as a countermeasure on this level. Compared to the other
proposed solutions, hashing allows us to keep the original instructions unchanged
and only add the operations necessary for the hashing process. Furthermore, the
hash does not only give us information about the integrity of a basic block, but
also a value which characterizes the execution history, albeit in a limited form.
This can later be used for different protection mechanisms. Thus, several additions
have to be made to the processor: Firstly, we have to provide a hardware unit
that is closely connected to the processor pipeline which is responsible for the
hashing. Secondly, each basic block has to augmented with a CHECK instruction,
which embeds an expected hash which is compared to the actual computed
hash. If they do not match, an error will be raised. The CHECK instruction can
theoretically be placed arbitrarily, however, in this context only two positions
make sense. Either the hash is checked at the end of a basic block or at the start.
A position between the start and the end of a basic block would not cover the
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whole instruction sequence. We placed the CHECK instruction at the beginning of
each block as shown in[Figure 1] so that it can be later used as a CFI mechanism.
Therefore, in practice the integrity of basic block BB; is checked in the following
block BB 1. A straightforward approach for the hashing itself would be a simple
XOR function, however, as pointed out by Werner et al. 28], a CRC function
can provide better security by increasing the complexity for the attacker to mask
his glitch attempt.

CHECK 0x5189, ...
BB

check computed
hash

v

CHECK 0xABSS5, ...

BB,

Fig. 1. The CHECK instruction provides a simple interface to determine the correctness
of the previous basic block.

5.2 Function Level

A function is comprised of several basic blocks, however the execution path
between them may not be linear but consist of more complex paths created,
which may cause some blocks not to be executed. Here, an attacker can try to
manipulate the intra-functional control flow, for example, by skipping branch
instructions and causing a fall-through.

The CHECK instruction introduced in the previous section already implicitly
provides a protection mechanism against intra-functional control flow violations.
However, typical functions do usually not consist of a pure linear execution path
but incorporate branches and loops. In this case, a simple scheme consisting of
CHECK instructions is not sufficient, because the execution history differs for each
side of a branch resulting in two different hashes. Thus, once the execution rejoins
the common path of the function, the CHECK instruction will fail. Consequently,
we need to be able to synchronize the hashes. Therefore, if we identify a basic
block with multiple predecessors, we select the hash of one predecessor as the
expected hash and add a CORRECT instruction to each other predecessor, which
synchronizes the hash to match the expected one. Similarly to other proposal, we
may use the XOR function to correct the hash. An overview is given in

The above approach exhibits several weaknesses, which have to be addressed
to make it suitable as an effective defense method. First, in case of a branch
both successors of the basic block will necessarily have the same hash. Therefore,
it may be possible to glitch the processor state and execute, for example, the
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CHECK 0x5189, ...

BB, H(BB,) = 0x0
CHECK 0x0, ... CHECK 0xFFFFF, ...
BB BB

2 3

CORRECT 0x49EF

\f

CHECK 0x5189, ...

BB

4

Fig. 2. Example of a CORRECT instruction being issued to synchronize the hashes. Note
that BB»> and BBs have inverted hashes to prevent a simple branch target change.

not taken path instead the taken path. However, it is possible to diversify the
hash by taking the taken / not taken decision into account when generating
the hash. We want to note, that this may make hash synchronization more
complicated in case of a complex control flow. This problem may be resolved
by the compiler by inserting small trampolines including additional CORRECT
instructions to properly synchronize the hash. Second, if the attacker can cause
the execution of CORRECT instructions, he can change the hash state arbitrarily.
In consequence, the placement of these instructions should be limited. The
processor can be augmented with a Finite State Machine (FSM), which only
allows corrections when in a specific state. From the previous description it is
clear, that a correction should only be issued before a basic block ends. A basic
block either ends in a fall-through, in which case the following instruction is a
CHECK, or in a branch, which then it term is also followed by a CHECK. Enforcing
these rules via a FSM restricts the attacker from freely executing corrections.
However, there are several other attack vectors which can be closed by enforcing
additional rules. As an example, an adversary can attempt to skip the branch
at the end of a basic block and the following CHECK instruction, thus creating a
linear control flow. This can be counteracted by making the processor aware of
the basic block length and throwing an exception if it does not encounter a CHECK
after the specified length similarly to ISIS |20]. Here, a trade-off has to be made.
Encoding the length into the CHECK instruction leads to a shorter hash length or
scarifies other information bits, which potentially makes it easier to cause hash
collisions. Instead, we propose to add an internal counter to the processor, which
counts the instructions of each basic block and specifies a maximum amount.
If the basic block does not reach its end before hitting the specified threshold,
we assume that a manipulation took place and throw an error. This has the
advantage, that we do not sacrifice encoding space and furthermore, the counter
may be accessible to the programmer via fuse-bits to allow for device-specific
modifications.
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5.3 Global level

On a global level a program consists of multiple functions. Here, well-known
software-based attacks may take place, such as CRAs or code-injection attacks.
Additionally, control-flow bending may be used to divert the execution along an
alternative but valid path along the CFG. Thus, CFI as well as memory integrity
as described in [Section 4.2| and [Section 4.3| are of most importance on this level.

32-Bit Word Aligned Pointer

| [ 1]
b Lu'Parity
Code/Data

Fig. 3. Structure of a protected pointer exploiting the aligned property to store addi-
tional information.

The included CHECK and CORRECT instructions already provide an CFI pro-
tection mechanism. Each hash can be treated as the label of a specific basic
block or function. The coarseness of this CFI protection is dependent on the
hash length. For example, an 8-bit hash only allows for 256 values. It is safe to
assume, that complex embedded software consists of more than 256 basic blocks,
which will inevitably lead to some form of CFG relaxation. This means, that
multiple blocks will be assigned the same label. Therefore, the control flow can be
diverted to any basic block which shares the label of the original destination. Even
with larger hash sizes, this can become problematic. According to our previously
explained mechanism, a synchronization has to take place at the source locations
and/or at the end of the target function. Therefore, all source locations create the
same target label using corrections and the function creates one label which is
shared between all return destinations. To protect against this threat we propose
the introduction of a pointer encryption scheme to hinder the attacker from
injection valid return addresses. Pointer Authentication akin to ARM’s PACs are
only feasible on systems with unused address bits. On embedded systems, the
predominate architecture is however 32-bits of which almost all bits are required.
However, we can combine elements of both approaches to facilitate a mechanism
which can be used in the same way as ARM’s PAC. Whenever a function is
entered, we encrypt the return address in the link register using a key comprised
of the expected hash at the usage location and an internal secret, which may
be a random number generated during the boot process of the microcontroller.
Then, at the intended usage location, e.g. the end of the function, we decrypt
the return address using the hash of the current location and the internal secret.
Only if the hashes match, the correct decryption key is generated. Therefore,
the attacker has no direct control over pointer. Under the assumption of an
architecture which only allows word-aligned accesses, this mechanism can be
enhanced even further. In this case, the two least significant bits are always
zero. Therefore, we can encode further information into the pointer as shown
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in One bit can be used to indicate whether the pointer refers to code
or data and the other bit can be used to perform a simple parity check. This
allows programs to differentiate between pointer types and create secured data

and code pointers which are only usable at their intended locations similar to
ARM PAC. The protection mechanism can be seen in

key hash
Aligned Insert . Protected
Pointer Control Bits Encryption Pointer
Protected : Check & Strip Aligned
Pointer Decryption Control Bits Pointer
key hash

Fig. 4. Overview of the pointer protection process.

Furthermore, we can enforce some stricter CFI rules using our FSM and
additional information in each CHECK instruction as seen in We can
use one bit each to encode whether the basic block is an function entry, which
prevents targeting arbitrary basic blocks using a call, and we can mark all basic
blocks which are a return target. Thus, disallowing arbitrary returns to basic
blocks which are not actual return locations.

CHECK Instruction

st [ [ ] ] ] ovie |

31

all Target
Return Target
——»Fall-Through
‘——»Branch
————»Unused

Fig. 5. Internals of the CHECK instruction showing the hash as well as bitfields specifying
basic block specifics.

6 Proof-of-concept

We now demonstrate the practicability of our approach by implementing the
proposed instruction set extension design for RISC-V and evaluate it using the
cycle-accurate gem5 simulator [17].
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Instruction Operands Description

CHECK 20-bit hash, 5-bit properties Checks hash and defines properties of current block

CORRECT 20-bit value Performs a correction to synchronize hash

ENCCPTR 20-bit hash, register Generates a code pointer out of aligned pointer and encrypts it
ENCDPTR 20-bit hash, register Generates a data pointer out of aligned pointer and encrypts it
DECCPTR register Decrypts pointer and strips code pointer data

DECDPTR register Decrypts pointer and strips data pointer data

Table 1. Instructions required to implement our recommendation.

6.1 ISA Implementation and Simulation

We chose the RISC-V 32-bit standard as our target ISA because of its built-
in support for user-defined instructions and its rising popularity in embedded
systems. In total, we require six new instructions: two instructions to implement
anti-glitching and CFT as well as four instructions to handle the pointer protection.
Furthermore two new registers are added which hold the current hash state and
the processor secret, see for an overview of the additional instructions.
The hash length was set to 20 bits, so that the CHECK instruction is able to hold
the hash as well as state information for each basic block. We added support for
these custom instructions and registers to the gemd simulator. Note that at the
time of writing, gem& only supports the 64-bit RISC-V standard, however, all 32-
bit opcodes stay valid, thus allowing us to simulate 32-bit code. Furthermore, we
also added the required FSM and encryption/decryption module to the simulated
processor to enforce the rules outlined in as well as and to
enable support for the pointer encryption. As we operate on 32-bit pointers, we
chose the hardware-optimized SIMON cipher [4] with a block length of 32 bits
and a key length of 64 bits. The encryption uses a connotation of the expected
hash with a 44-bit processor secret to form the 64-bit key.

6.2 Code Transformation

Our ISA extension can be implemented as a compiler extension or via a binary
translation approach. For this work, we chose the latter approach. We achieve
this by using a proprietary binary transformation framework that is capable of
analyzing and manipulating existing binaries. The framework first lifts the code
into an intermediate language. On this abstraction level, we analyze the control
flow of the program. Furthermore, we are able to add instructions without being
constrained by the basic block placement in the memory layout. During code
generation, the intermediate language instructions are resolved into a memory
layout and adapted to the updated basic block locations. The transformation
itself takes place in 3 passes. In the first pass, we add an empty CHECK instruction
to each basic block. During this pass we identify functions for the return address
protection. However, other code or data pointers are not automatically protected
and have to be secured manually by the programmer. The second pass simulates
the hashing process and identifies possible conflicts, i.e. a basic block is targeting
another block which already has an assigned hash resolves them by adding
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corrections. The third pass performs the actual hashing and inserts the expected
values and correction values in the empty placeholder instructions thus creates
the finalized program. During this process it may happen, that the framework
requires a yet not computed hash, for example, during the pointer encryption
and decryption process. Therefore, the framework picks a random known hash
for the target location and issues a correction before the decryption takes place.
We modified the FSM to cover this case.

Our chosen approach naturally exhibits some weaknesses. For example, during
automated program analysis it may not be possible to extract all targets of an
indirect call. However, we assume that the benign user wants to protect software.
Therefore, the call graph information can be provided as an additional input
to the binary transformation framework to resolve such issues. Note that for
general-purpose software and a benign user, this problem does not occur if a
compiler-based approach is chosen to arm the software with our instruction set
extension.

6.3 Software and Hardware Considerations

Until now, we only considered the protection of a single program. However, a
complex embedded system may execute multiple processes with shared libraries
and interrupts. Therefore, some modifications would have to be done to the
software and hardware. In case a (real-time) operating system is used, the context
switch has to be altered to include the internal hash register, as the hash state
differs for each program. To increase the security, the processor secret may also
be different for each process, which would require saving the key register as well.
On the hardware side, the unit responsible for saving the execution state when
entering an interrupt also has to store the internal hash register (and key register
if desired). Additionally, an encryption and hash unit have to be integrated into
the processor. To achieve a high throughput both should include an unrolled
implementation, which trades space overhead for a shorter execution time. It
should be noted, that the hashing can be performed in parallel instead of being
a pipeline stage.

6.4 Security Evaluation

In the following section, we systematically evaluate the security of our proposed
solution by discussing each potential attack vector and how our design defends
against it.

Glitching Attacks Our hashing approach decreases the success probability of a
glitching attack by introducing regular checks into the instruction stream. As it
is improbable that the hash will still match the expected value when skipping or
glitching a single instruction, the glitch will be detected with a latency of ¢t — i
where ¢ is the length of the basic block and i the index of the glitched instruction
within the block. To circumvent the detection, the attacker is forced to perform
multiple glitches. Additionally, the choice of the hash function can restrict the
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attacker even further as shown by Werner et al. [28], because the subsequent
bitflips required to hide a fault may be located far apart making it likely that a
check happens before a correction is possible.

Control-Flow Attacks The proposed solution can deter glitching-based control-
flow attacks as well as traditional software-based attacks. In the first case, the
attacker may try to change the target of a branch by forcing a fall through by
glitching the processor state. However, by letting the branch result influence the
expected state and by introducing a counter, these kind of attacks are severely
hampered. For software-based attacks, the gadget-space is drastically reduced, as
the return target must be a basic block entry point. Chaining such relatively long
instruction sequences together will induce various side-effects. Furthermore, the
hash state must match and is influenced by the executed basic blocks. RISC-V
specific ROP attacks demonstrated by Jaloyan et al. [14] which abuse the mixing
of compressed and uncompressed instructions are also unfeasible, as they alter
the hash state. Control-flow bending stays possible, as the hash space is limited.
However, by employing our pointer protection, the attacker cannot arbitrarily
change the return address. Under the assumption that a encryption gadget does
not exist, the attacker cannot create his own protected pointers. Instead, he would
require an information leak and a write gadget to possibly exchange the return
address for another valid return address. Table jumps form a special case, because
all targets share the same hash and our pointer protection cannot applied. Here,
special precautions have to be made by the programmer in software. However,
arbitrary jumps stay impossible as the target must be designated as a jump
target.

Memory Attacks Our extension only partially covers memory attacks, as we
do not prevent writing or reading from memory. Instead, by using our pointer
protection scheme we can stop buffer overflows from being an attack vector. On
its own a buffer overflow or any other writing gadget only present a risk, if the
attacker is able to overwrite control-flow critical data.

6.5 Evaluation

To evaluate our solution, we chose the MiBench?2 [18] benchmark suite, which
contains various workloads that are commonly found on embedded devices. We
compiled them using the -0s compile flag to creates space efficient code. As we are
only interested in overhead produced both in the binary and during the execution,
we chose to run our gemd implementation using the Atomic-Simple CPU model,
which simulates a rudimentary single-issue processor, and the System Emulation
mode to easily load and execute binaries. The results of our evaluation can be seen
in On average we observe a size overhead of 20.13% and an execution
overhead of 28.00%. We note that the overhead created is highly dependent on
the size of the basic blocks, as one instruction is added at least for each basic
block with the possibility of an additional correction instruction. Small basic
blocks will lead to a high amount of additional instructions, whereas large basic



Recommendation for a holistic secure embedded ISA extension 19

Benchmark Size Overhead Execution Overhead

adcpm__encode 37.50% 43.64%
aes 19.86% 21.87%
blowfish 18.18% 11.60%
cre 30.51% 45.60%
fft 26.32% 21.45%
rsa 21.71% 26.89%
sha 19.12% 24.94%
Average 20.13% 28.00%

Table 2. Size and runtime overhead created by our recommendation when compiling
with -0Os.

blocks only require few additional instructions but may give the attacker the
possibility to mask his glitch attempt. Therefore, a trade-off must be found. We
measured the average basic block length of the aes benchmark using different
compiler optimizations and found that -01, -02 and -0s produce smaller basic
blocks with an overage length of 8 instructions. On the contrary, -00, so no
optimization, as well as -03 produce larger basic blocks with an average size of
17 instructions. Consequently, protecting the aes benchmark compiled using -03
only results in an size overhead of 9.15% and a execution overhead of 2.72%.

Several works exist which implement some parts of our solution. For example,
the authors of ISIS [20] add to a control word to each basic block, state a memory
overhead of 12% to 15%. However, ISIS misses some protection mechanisms such
as the pointer protection and can also not cover all possible branches. The work
by Werner et al. [27], is the only work at the time of writing, which tries to
achieve a holistic protection against faults. However, their protection is based on
multiple approaches which do not build upon each other. A mixture of instruction
encryption, branch encoding as well as pointer protection is used to protect
against glitches. The authors state an average size overhead of 19.8% for the
instruction encryption and an average runtime overhead of 9.1%. The branch
encoding occurs an additional size overhead of 2.5%. Lastly the pointer protection
costs on average 9.99% in binary size and 6.34% in runtime. Thus, a combination
of their approaches results in a higher size overhead compared to our solution,
whereas our extension increases the amount of executed instructions. Furthermore,
a downside of their approach is the encryption process, which is costly and may
lead to unpredictable behaviour in case of a glitch, as the decryption may result
in a valid but random instruction.

7 Future Work

In this work, we focused on developing a holistic secure ISA extension and
implemented it in a simulated environment to determine its overhead. Future
work may explore how to implement our recommendation in hardware and analyze
its effectiveness by performing clock and voltage glitches. We want to emphasize
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that this research direction is especially relevant in the context of silicon root-of-
trust where a glitch-induced instruction skip can have severe consequences, i.e.
to manipulate a secure boot verification check.

8 Conclusion

The rising popularity of resource-constrained embedded devices in security-
relevant areas increases the necessity for efficient and effective countermeasures,
in particular to protect against attackers with physical access. In this work, we
systematically analyzed the state-of-the-art for fault attacks and software-based
attacks on embedded systems. We then discussed defense technique combinations
and designed a novel approach to form a small instruction set extension that ex-
hibits effective security against the aforementioned threats. We then implemented
our approach using binary translation to arm software with our instruction
set extension and then evaluated our approach using gemd and MiBench2. In
summary, our results showed that our extension is a competitive candidate for a
holistic secure embedded ISA extension.
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