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Abstract. Previous studies on fault analysis have demonstrated promising potential
in compromising cryptographic security. However, these fault analysis methods are
limited in practical impact due to methodological constraints and the substantial
requirement of faulty information such as correct and faulty ciphertexts. Additionally,
while deep learning techniques have been widely applied to side-channel analysis
(SCA) in recent years and have shown superior performance compared with traditional
methods, there has been minimal research focusing on the application of deep learning
techniques in fault analysis to date. This paper proposes an innovative approach
named deep learning-based fault analysis (DLFA) by incorporating deep learning
techniques into fault analysis, which enhances the efficiency and versatility of the
analysis. DLFA is equipped with a novel feature selection method to extract valuable
information for neural networks from faulty ciphertexts. Besides, optimized hyper-
parameters for MLP and CNN are presented as the benchmarks. Experimental
results on advanced encryption standard (AES) reveal that DLFA achieves outstanding
performance. Notably, DLFA requires only 683 minimum and 1488 average ciphertexts
with an average analysis time of 0.12s, surpassing previous works in terms of efficiency.
IACR Transactions.
Keywords: Deep Learning · Multi-Layer Perceptron · Convolutional Neural Network
· Fault Analysis · Advanced Encryption Standard

1 Introduction
To provide a reliable and efficient computing environment, cryptographic algorithms are
implemented in particular cryptographic devices. Security in such devices relies not only
on the mathematical security of the cryptographic algorithm, but also on the physical
security of the cryptographic implementation. Nowadays, implementation-based attacks
have attracted intensive attention. Such attacks pose a serious threat to cryptographic
security, as they can exploit leakage of physical information that is neglected in conventional
cryptanalysis.

Depending on the leakage of physical information, implementation-based attacks can
be classified into passive and active attacks. For passive attacks, the adversary does
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not interfere with the work of the cryptographic device. The adversary plays the role of
an observer and collects key-related information from the power consumption [KJJ99],
electromagnetic emanation [GMO01] and other leakages of physical information while the
cryptographic device is in operation. As a representative of passive attacks, side-channel
analysis (SCA) attracted wide attention. Different methods, such as simple power analysis
(SPA) [Man02], correlation power analysis (CPA) [BCO04] and template analysis (TA)
[CRR02], can be launched to recover the key. On the other hand, fault analysis (FA), which
is the representative of active attacks, aims to induce faults on the cryptographic device
using some physical methods, such as changing the power supply voltage [BMM00], varying
the temperature [GA03] and using the pulsed laser [CLFT14]. The adversary analyzes
the faulty outputs of the cryptographic device to recover the secret key. Differential
fault analysis (DFA) [BS97] and statistical fault analysis (SFA) [FJLT13] are the most
prominent fault analysis over the years. Additionally, statistical ineffective fault analysis
(SIFA) [DEK+18] and persistent fault analysis (PFA) [ZLZ+18] also show their tremendous
potential as new analysis methods in recent years.

In the traditional FA, the exploitation of fault leakage is solely dependent on the
chosen analysis method, which is primarily focused on successfully recovering the key
under specific restrictions. Moreover, these methods struggle to fully harness the potential
of fault leakage and consequently necessitate a substantial number of faulty encryptions.

In this study, we apply deep learning techniques to fault analysis to improve the
efficiency and versatility of the attack. Our primary objective is to recover the internally
processed secret key by utilizing feature information obtained from the faulty cryptographic
implementation. To address this intricate problem, we propose a novel approach called
deep learning-based fault analysis (DLFA) using a divide-and-conquer strategy.

1.1 Related Works

In 1991, Rivest first formulated how provable machine learning techniques and cryptography
related to one another in [Riv91]. The combination of machine learning techniques and
SCA was first proposed by Backes et al. [BDG+10], who recovered the printed text from
a printer using an acoustic side channel. Hospodar et al. proposed the first study on the
application of machine learning techniques in SCA [HGM+11]. From here, a large number
of works have been proposed to break both unprotected [BL12, LPB+15] and protected
cryptographic implementations [GHO15, LBM15] using machine learning techniques.

In recent years, more researchers have focused on deep learning techniques, such
as multilayer perceptron networks (MLP) [MZVT15, MDM16] and convolutional neural
networks (CNN) [PSK+18] to go with the trend in the machine learning community. Of
the various SCA, profiled attacks, represented by TA, are the most powerful ones and in
some cases can recover the key with only one power trace. These attacks can be composed
of two phases: profiling and matching, which are similar to the training phase and test
phase in deep learning. On this basis, deep learning techniques have been introduced
into SCA as an alternative to TA [KPH+19, CDP17, BPS+20]. Compared to TA, deep
learning-based SCA is more robust to noise and shows comparable or better performance
[Tim19].

On the other hand, there is less research on the combination of machine learning or
deep learning techniques with FA. Several researchers have introduced FA into deep neural
networks for misclassification [LWLX17, BHJ+18]. Moreover, Saha et al. [SAB+20] have
applied deep learning techniques to the leakage assessment of FA. However, to the best of
our knowledge, the investigation of the application of machine learning or deep learning
techniques in the key recovery of FA is a void in the field of cryptography.
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Table 1: Comparison with Related Works on AES-128

Analysis Method Average Nc Nf Analysis Time(s) Ciphertext Access Middle Round Attack
PFA[ZLZ+18] 2273 1 10.48 ✓ ×

PFA-MLE[ZZJ+20] 1641 1 11.03 ✓ ×
EPFA [XZY+21] 970 1 8.64 ✓ ✓
SPFA [ESP20] 1643 16 66.22 ✓ ×
SFA [PCNM15] 304 633 2649.83 ✓ ×
FTA [SBR+20] - 4112 0.96 × ✓

DLFA 1488 1 0.12 ✓ ×

1.2 Contributions
Our contributions in this paper can be summarized as follows:

• To improve the efficiency and versatility of FA, we undertake a comprehensive
investigation into the application of deep learning-based key recovery within the
framework of fault analysis and propose DLFA as an innovative FA method. We
select MLP and CNN as neural network models and comb the attack process. The
intricate problem of key recovery is decomposed into two tractable sub-problems:
feature selection and classification.

• We analyze the impact of faults and propose an effective method for selecting features.
The probability distributions of the faulty outputs of the S-box, which contain a
substantial amount of pertinent information regarding the key, are chosen as the
feature set. Additionally, the dataset is prepared for subsequent training and testing
steps of the neural network model.

• To comprehensively assess the effectiveness of our attack, we conduct DLFA on
advanced encryption standard (AES). We explore various parameterization options
in our experiments and present optimized hyper-parameters for MLP and CNN
models, which can serve as a valuable reference for future researchers when designing
novel deep learning models.

One of the most significant contributions of DLFA is that it can efficiently recover
the key with only a few required ciphertexts Nc and only one fault, within a short
analysis time. Table 1 gives a summary of our results on AES-128 in comparison with
related works, including the original PFA [ZLZ+18], the improved PFA with Maximum
Likelihood Estimation (PFA-MLE) [ZZJ+20], the extended PFA with GPU acceleration
(EPFA) [XZY+21], the statistical PFA (SPFA) [ESP20], SFA[PCNM15] and FTA[SBR+20].
Compared with previous work, DLFA achieves a suitable trade-off among Nc, the required
number of faults Nf and analysis time.

1.3 Organizations
The remainder of the paper is organized as follows: We begin with the selection of the
fault model and feature set in Section 2. Section 3 introduces the neural network models
employed in this work and provides a comprehensive description of DLFA. The experimental
results are presented in Section 4. Additionally, within this section, we discuss the impact
of hyper-parameters on the results and highlight the superiority of our attack. Some brief
discussions on the performance of machine learning techniques and the impact of the
position and value of the fault are presented in Section 5. Finally, we conclude this paper
with a summary of our attack and an outlook for future work in Section 6.
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2 Fault Model and Feature Selection
In this section, we initially give a brief introduction to the fault model selected in this
article. Then, we provide a brief overview of the characteristics of the fault. Subsequently,
we elucidate the methodology for feature selection, which serves as an essential preliminary
step in deep learning. Finally, we present the dataset to facilitate resolution of the
classification problem.

2.1 Fault Model
For a systematic study of FA, faults are categorized by effects, such as modifying the
control flow, skipping commands, or altering storage information. The most typical one in
each category is chosen as the representative to build the fault model. The fault model
explains the position (e.g. before or after a specific operation), the property (e.g. transient,
permanent and persistent), the effect of the fault and the ability of the adversary.

In this article, we focus on the fault model of PFA in [ZLZ+18], which can be described
as follows:

1. The faults are injected into the cryptographic device before the encryption of the
block cipher.

2. The injected faults randomly corrupt the stored constants of the algorithm (i.e. the
elements in the S-box) in the storage of the device.

3. The injected faults are persistent, meaning that the faulty constants are used during
the encryption until the storage is refreshed or the device is rebooted.

4. The adversary is able to feed plaintexts into the faulty device and collect ciphertexts
for subsequent fault analysis.

Such a choice of fault model has several advantages. In contrast to traditional fault
models, which are mostly transient, the fault model of PFA places minor restrictions on
the adversary’s capabilities, such as his ability to inject faults within a relatively loose time
window. Then, according to the persistence property, the fault can be exploited multiple
times with only one injection. Also, note that the faults lead to a non-uniform distribution
of the outputs of the S-box. This non-uniform distribution favors feature selection, as will
be explained in detail below.

2.2 Characteristic of the Fault
While the fault categories in FA may vary, they all share a common characteristic: from the
circuit point of view, every fault can be perceived as a transition of a specific intermediate
variable from its correct value x to a faulty value x′. This transition disrupts the distribution
of the intermediate variable by introducing an abnormal bias.

Indeed, this characteristic has already been leveraged in the case of SFA [FJLT13]
and SIFA [DEK+18]. In both studies, the adversary evaluates the disparity between the
expected uniform distribution in the fault-free scenario and the practical distribution
affected by byte-level faults using a metric named Squared Euclidean Imbalance (SEI),
which can be described as follows:

SEI(k̂) =
2s−1∑
δ=0

#
{

i | x(k̂) = δ
}

N
− 1

2s

2

, (1)

where k̂ denotes the hypothesis of the key and s denotes the bit length of the intermediate
variable x(k̂) which correlates to k̂. Thus the number of different values of x(k̂) can be
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expressed as 2s. We use
#

{
i|x(k̂)=δ

}
N and 1

2s to denote the practical distribution of x and
the uniform distribution, respectively. The SEI of each k̂ is computed as the sum of the
squared difference between the practical and the uniform distribution in all values of x. In
the fault-free scenario, with the increase of encryption, the two distributions are almost
equal thus the SEI of each k̂ is close to 0. In the faulty scenario, for the wrong hypothesis
of the key, each value of x(k̂) occurs randomly in the same probability. However, for the
correct hypothesis of the key, with the bias caused by the fault, the distribution of x(k̂)

becomes non-uniform, which leads to the increase of the SEI. Hence, the hypothesis that
the key has the highest SEI can be considered correct.

The aforementioned key recovery approach based on the SEI demonstrates that the dis-
parity of the intermediate variable induced by the fault encompasses accessible information
regarding the key. A detailed exposition of feature selection based on the characteristic of
the fault will be presented subsequently.

2.3 Feature Selection
Before solving the classification problem, feature selection is used as a preliminary step in
deep learning, which filters out and preprocesses the given raw data. The significance of
feature selection can mainly be represented in two aspects. On one hand, this step filters
out erroneous features and thus improves the accuracy of the neural network. On the other
hand, the features containing larger relevant pieces of information are extracted, which
reduce the computational cost of the neural network.

Unfortunately, in the field of FA, the problem of feature selection is more intricate
compared to SCA, where features can be directly selected from power traces. The effects of
faults are diverse, resulting in a wide range of data used in different fault analysis methods.
For instance, DFA conducts an analysis based on the differential values between the correct
and faulty ciphertexts generated from the same plaintext. SFA exploits biases caused by
the fault to recover the key. Moreover, the adversary of PFA pays more attention to the
distribution of ciphertexts after numerous encryptions. Consequently, finding a uniform
criterion for feature selection becomes challenging.

In this paper, we focus on the SPN-based block ciphers (e.g. AES and PRESENT)
and the fault is injected into the S-box of the cipher. Reviewing the characteristic of the
fault, the output of the S-box can be considered as the intermediate variable affected by
the fault. Due to the avalanche effect, for the correct encryption, the distribution of the
output of the S-box converges to a uniform distribution, which is consistent with the SEI
requirement. Unfortunately, the SEI is merely a calculated value that is too brief to be
directly selected as the feature. However, the feature selection problem can be solved with
the help of the concept of SEI. Note that the distribution of the intermediate variable
in the fault-free scenario is a fixed value (i.e. 1

2s ), which is associated only with the bit
length of the intermediate variable. Thus, from the information-theoretic point of view,
the key-related information is contained in the practical distribution of the intermediate
variable. That is, the adversary can select the practical distribution of the intermediate
variables as the features.

2.4 Details of the Dataset
At the completion of feature selection, the dataset is prepared for the training and testing
of the neural network in the next stage. As mentioned above, we select the distribution of
the output of the S-box of the SPN-based block cipher as the features. More specifically,
the distribution of the output of the S-box in the last round is selected to reduce the
computational overhead. The key of the last round is selected as the label for each group
of features. Due to the nature of the block cipher, the features and labels are processed
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in bytes or nibbles. For the sake of simplicity, the term sample is used to denote a set of
features. The examples of the sample on each cipher are given in Fig. 1.

Figure 1: Examples of the samples on AES.

In addition to this, other relevant information, such as the plaintext, the ciphertext and
the master key, can also be selected as the metadata. The efficiency of the neural network
in deep learning techniques can be confirmed by the mere use of the labels. However,
since these data are necessary to check for the correctness of the features and labels, the
metadata are helpful for the adversary.

3 Deep Learning-Based Fault Analysis
In this section, we first introduce the basic information about MLP and CNN, which are
the two neural network models used in this paper. The method of how to implement FA
using deep learning techniques is shown later. Finally, we provide a general description of
DLFA in detail.

3.1 MLP and CNN
MLP and CNN are two widely used neural network models in deep learning techniques.
Both of them fall into supervised learning, where a neural network is trained on data
labeled with the corresponding labels. When the training phase is complete, the neural
network is able to give the prediction for another set of inputs based on the rank of some
indicators, such as probability or likelihood score.

MLP is a classical artificial neural network, inspired by the human nervous system.
The artificial neuron (i.e. perceptron), whose basic structure is shown in Fig. 2(a), is the
basic element of the network. In a mathematical sense, an artificial neuron consists of an
affine transformation nested in an activation function, which can be defined as follows:

y = α(w⃗ · x⃗ + b), (2)
where x⃗, y, α denote the input, output, and activation function of the artificial neuron,
respectively. The weight and bias parameters of the affine transformation are denoted as
w⃗ and b. Naturally, a single artificial neuron is powerless to deal with complex problems.
Therefore, MLP is designed by joining artificial neurons together to adapt to complicated
situations. As shown in Fig. 2(b), the output of one layer is connected to the following
layer as input. Let λ denote the fully-connected layer, which is the set of the affine
transformation with the same input, then the model M of MLP can be defined as follows:

M(x⃗) = s ◦ λn ◦ αn−1 ◦ λn−1 ◦ ... ◦ α1 ◦ λ1(x⃗). (3)
Note that s denotes the last activation function which is the special one. The activation
functions from α1 to αn−1 have a variety of options, such as sigmoid or ReLU. However, s
is invariably chosen from the softmax function or its variants, which can be written as:
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Figure 2: Structure of the artificial neuron and MLP. (a) Structure of single artificial
neuron. (b) Structure of a four-layer MLP.

s(zj) = ezj∑C
i=1 ezi

, (4)

where C denotes the number of classes of the network’s output. The softmax function ren-
ders the output of the network as a probability distribution of all classes. The classification
problem can be solved by choosing the class with the highest one or several probabilities
as the final output of the neural network model.

Compared to MLP, CNN is better at learning the internal representations of two-
dimensional images. On one hand, CNN inherits the hierarchical structure from MLP. On
the other hand, CNN broadens the type of layers to improve the efficiency of the network.
In general, a CNN starts from the convolutional layer followed by the activation function.
The convolutional layer extracts high-level abstract features from the input through the
filters, and the activation function introduces non-linearities to increase the goodness-of-fit
of the network. Then, the pooling layer is introduced to restrict the number of neurons.
The convolutional layer, the activation function and the pooling layer form the main block
of the CNN, which is reused in the network until desired output. Moreover, the batch
normalization layer is sometimes used as an option to improve the generalization ability of
the network. After that, the flatten layer compresses the data into one dimension, and
some fully-connected layers followed by a softmax function at the end of the network are
added to summarize the global information and produce the final output. The structure of
CNN is given in Fig. 3.

Figure 3: Structure of CNN.

Similarly, the model C of CNN can be characterized as follows:

C : s ◦ [λ]n1 ◦ [ρ ◦ α ◦ ι]n2 , (5)
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where ι denotes the convolutional layer and ρ denotes the pooling layer. We recall that α,
λ and s denote the activation function, the fully-connected layer and the softmax function,
respectively. Moreover, n1 and n2 denote the repetition times of the fully-connected layer
and the main block, respectively.

3.2 Combination of Fault Analysis and Deep Learning
To combine fault analysis and deep learning, our attack can be composed of two phases:
the training phase and the attack phase. Thus, two independent datasets, the training set
and the attack set, are prepared for the analysis. As mentioned above, the training set ST

of size NT consists of a quantity of independent identically distributed samples and the
corresponding labels, which can be described as:

ST : {(s⃗i, k)|1 ≤ i ≤ NT }, (6)

where s⃗i denotes the sample, and k denotes the label as it represents the last round key in
our dataset. In the training phase, the adversary aims to construct a generative model. The
parameters of the network, denoted by θ, will be updated iteratively to fit the estimation
gk of every k from the key space K. The model Mθ can be described with the following
conditional probability distribution function:

Mθ : {gk : (s⃗, k) → Pr[S⃗ = s⃗|K = k]}k∈K, (7)

where the upper-case letter S⃗ and K denote the random variables over the set of s⃗ and k,
respectively.

After the training phase, the adversary is able to perform the fault analysis in the
attack phase with the attack set SA, which can be described as:

SA : {(s⃗i)|1 ≤ i ≤ NA}. (8)

Unlike the training set, the label (i.e. the key) of the attack set is unknown to the
adversary. The goal of the attack phase is to recover the key from the dataset. Since the
generative model has been constructed, the adversary needs to determine which one of
the key candidates is the most likely correct key. This problem is normally solved via
the maximum likelihood method, which calculates a likelihood score dSA

[k] for every key
candidate k ∈ K with the help of Bayes’ theorem as follows:

dSA
[k] =

NA∏
i=1

Pr[K = k|S⃗ = s⃗i]

=
NA∏
i=1

Pr[S⃗ = s⃗i|K = k]
fS⃗(s⃗i)

× fK(k),

(9)

where fS⃗ and fK denote the probability distribution function of S⃗ and K respectively.
The key candidate with the highest dSA

[k] can be selected as the correct key.

3.3 General Description of DLFA
Consistent with the previous analysis, we can give a general description of DLFA as shown
in Fig. 4. To perform DLFA, the following stages are required for the adversary:

Stage 1: Injection. In the beginning, the adversary injects the fault into the S-box
of the block cipher prior to the encryption. The faulty S-box will be used in the following
encryption. The fault does not only affect a single output of the S-box, but all outputs of
the S-box in all rounds. However, we only focus on the effect of the fault in the last round.
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Figure 4: Overview of DLFA.

Similar to TA, we assume that the adversary possesses the capability to manipulate the
target cryptographic device (or a cloned device) for encryption. Therefore, both the target
and cloned device should be subjected to fault injection.

Stage 2: Preparation. When the injection is complete, the next task of the adversary
is to prepare the training dataset. For one sample in the dataset, the adversary performs
encryption several times with the same key and random plaintexts. The metadata are
collected to compute the distribution of the output of the S-box in the last round as
features and the key of the last round as the label.

Stage 3: Training. After that, the adversary needs to select the model and train the
neural network offline. The parameters of the network are initialized with random values.
These parameters are then updated to ensure that the predictions of the network are close
to the labels. The loss function and the optimizer are usually used as hyper-parameters to
aid training. The former measures the difference between the prediction and the label,
and the latter determines the range of parameters to update based on the difference. The
choice of the hyper-parameters will be discussed later, as it has a huge impact on the
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performance of the network.
Stage 4: Attack. Eventually, the adversary is able to use the trained network to

mount a practical attack. The attack set is prepared from the target device using the same
way as that of the training set. One sample of the attack set is input into the network at
a time, and the network computes a score vector containing the likelihood scores of all the
key candidates. The candidate achieving the highest score is deemed to be the correct key.
The adversary can evaluate the performance of the attack based on the metric, which is
similar to the loss function but has no effect on the update of the parameters.

4 Evaluation

The experiments of DLFA on AES are presented in this section. Firstly, we introduce the
experimental setups employed in our study. Subsequently, a concise overview of AES is
provided. We investigate the impact of the choice of the hyper-parameters on the training
phase and present the corresponding experimental results. Moreover, we evaluate the
superiority of DLFA compared to state-of-the-art FA methods.

4.1 Experimental Setups

The experiments are implemented on an ordinary computer with the following configuration:
IntelCore i5-12400 CPU at 3.20 GHz, 32-GB DDR5 memory, 1-TB Samsung SSD-980-PRO
drive and Nvidia GeForce RTX 3060 GPU. The development language is Python (version
3.9.7) and the development environment is Jupyter Notebook (version 6.4.5).

Our implementations of the deep learning neural network are developed with Keras
library (version 2.9.0) as the frontend and Tensorflow library (version 2.9.1) as the backend.
CUDA (version 11.7) is used to accelerate the training process. The entire computation of
the tuning process takes approximately 300 hours.

The fault injection in our experiments is achieved through the utilization of hardware
trojan (HT). For a more comprehensive understanding of HT, we refer the reader to [PP23].
We assume that the persistent faults are injected into the S-box during the outsourcing
fabrication process of the cryptographic circuit.

For simplicity, a serial cryptographic implementation is considered in our experiments.
The initial size of dataset is 50000, where the training set size is 45000 and the attack set
size is 5000.

4.2 AES Block Cipher

AES is a widely used block cipher, which was published by NIST in 2001 as a standard for
symmetric encryption. It comes with a block size of 128 bits and three standard key sizes
of 128, 192 and 256 bits. In this paper, we focus on the 128-bit version AES-128, which
consists of 10 rounds.

The round function of AES-128 operates on a 4 × 4-byte matrix (i.e. state matrix) and
includes four byte-oriented operations: AddRoundKey (AK), SubBytes (SB), ShiftRows
(SR) and MixColumns (MC). AK combines the state with the round key via bitwise
exclusive-or. SB substitutes the state byte by byte with the S-box. SR cyclically shifts each
row of the state by a different offset. MC mixes each column of the state by multiplying it
with a fixed matrix. Note that the MC operation is missing in the last round based on
the specification. Moreover, a KeyExpansions operation is applied to generate round keys
from the master key using a key generation schedule.
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4.3 Choice of the Hyper-Parameters
The discussion of tuning the hyper-parameters can be divided into two parts. We first
focus on the parameters that define the network architecture (i.e. architecture parameters).
Then the parameters that affect the training phase (i.e. training parameters) are discussed
in the second part.

In the experiments of MLP model, three parameters are selected to characterize
the architecture of MLP: the number of layers, the number of units in each layer
and the activation function. The parameterization of an MLP architecture can be de-
scribed as MLParch(nlayers, nunits, function). In the same way, we select the number
of epochs, the batch size and the optimizer as the three training parameters and use
MLPtrain(nepochs, batch_size, optimizer) to denote the parameterization of a training
procedure.

The strategy of selecting the hyper-parameters for CNN model is inherited from the
research in MLP context for fair comparison. However, the number of hyper-parameters
of CNN model is too large for an exhaustive test of all the possible configurations. Hence,
some representative parameters are selected to be tuned and the others are set up utilizing
the work of Benadjila et al. in [BPS+20]. We consider a convolutional layer followed by
a pooling layer as a block. Then the number of blocks, the number of fully-connected
layers and the activation functions are selected as architecture parameters, which can be
described as CNNarch(nblocks, nF C_layers, function). Moreover, we fix the optimizer to
Adam and select the number of epochs and the batch size as training parameters with the
description of CNNtrain(nepochs, batch_size).

4.4 Evaluation Metrics
To evaluate the performance of our attack, we choose guessing entropy (GE) [SMY09] as the
metric in this paper. GE is a widely used metric in SCA, which can give information about
the trend of the attack and the size of data required for a successful attack. Compared with
traditional deep learning metrics like success rate (SR), GE can give a fairer evaluation of
the attack as it assesses the attack by the mean rank of the secret key, which gives a more
objective assessment of the failed attack.

As mentioned above, for an attack set SA of size NT with the correct key k∗, the
adversary is able to calculate the likelihood score dSA

[k] for every key candidate k. Then
the adversary can sort the scores from the largest to the smallest to get a rank vector.
GE calculates the mean position of the correct key k∗ in the rank vector, which can be
described as:

GE = E
SA

[|{k ∈ K|dSA
[k] > dSA

[k∗]}|] (10)

4.5 Experiments of MLP Model
For the sake of fairness, we tune the architecture parameters with the fixed training
parameters MLPtrain(40, 150, Adam), which denotes 40 epochs, batch size 150 and the
Adam optimizer. Then in the second part of the experiment, different training parameters
are tested with the tuned architecture parameters.

Choice of Architecture Parameters: We start the experiment with an evaluation
of the number of layers. We fix the number of units at 200 and select the eLU as the
activation function. Then MLP model is trained with different nlayers ∈ {3, · · · 8}. As
shown in Fig. 5(a), the 3-layer MLP has the lowest GE.

The number of units in each layer is then evaluated. We train a 3-layer MLP model
with the eLU activation function and different nunits ∈ {50, 100, · · · , 250, 300}. As Fig.
5(b) shows, our attack has a better performance with the increase of nunits. However, the
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larger value of nunits will lead to higher computational complexity of the model. Taking
the trade-off between efficiency and complexity into account, a compromise of nunits is
150.

The last architecture parameter we tune is the activation function. We select three
activation functions as candidates: sigmoid, tanh and eLU. The first two are common deep
learning activation functions and the last one is a modified version of ReLU, which has
achieved remarkable performance in the field of image recognition. Experimental results
depicted in Fig. 5(c) indicate that all three candidates exhibit strong performance, with
tanh exhibiting a slight advantage over the other two activation functions.
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Figure 5: GE of MLParch(nlayers, nunits, function) trained with MLPtrain(40, 150, Adam)
for different nlayers, nF C_layers and activation function.

Choice of Training Parameters: When the choice of architecture parameters is
finished, the training parameters are tuned with the determined architecture parameters
MLParch(3, 150, tanh). Initially, we fix the batch size at 150 and the optimizer at Adam to
select the best value for the number of epochs. Based on the experimental results in Fig.
6(a), we choose nepochs = 40 as a good trade-off between efficiency and computation time.

The next training parameter we tune is the batch size. As shown in Fig. 6(b), 100 is a
sound choice of batch size due to its efficiency in small data size and stability in large data
size.

Finally, we evaluate the effect of the optimizer on the performance of the neural network.
We provide three options: RMSprop, SGD and Adam. The learning rate for the first two
is fixed to 10−5 and the last one is an adaptive optimizer that can dynamically adjust
the learning rate by itself. The experimental results in Fig. 6(c) show that the choice of
optimizer has a significant effect on GE. We manage to obtain good results with the Adam
optimizer.
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Figure 6: GE of MLPtrain(nepochs, batch_size, optimizer) trained with
MLParch(3, 150, tanh) for different nepochs, batch size and optimizer.
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4.6 Experiments of CNN Model
Due to the large search space of the hyper-parameters of CNN model, the goal of the
following experiments is not to find the optimal value, but rather to obtain a better value
that leads to satisfactory results. Before starting the experiment, some initial configurations
should be set up following the experience of the predecessors. We initially fix the kernel size
of the convolutional layer at 11. Then the number of filters in the i-th convolutional layer
is set to 64×2i−1 with an upper limit of 512. We choose the average pooling as the pooling
method and set the padding option to the same padding. Ultimately, the number of units
in a fully-connected layer is fixed at 4096. We start the experiment with the architecture
parameters CNNarch(1, 1, eLU) and the training parameters CNNtrain(40, 100).

Choice of Architecture Parameters: We first evaluate the impact of the number
of blocks. As Fig. 7(a) shows, the efficiency of the model is dimly impacted by nblocks.
One block is sufficient for CNN model to mount a successful attack. Hence, we set the
number of blocks to 1 and fix the number of filters in the convolutional layers at 64.

We then investigate the effect of the number of fully-connected layers. Unexpectedly,
Fig. 7(b) shows that the network without fully-connected layers performs equally well. This
fact can be explained by the functionality of the fully-connected layer. The fully-connected
layer integrates and reduces the dimensionality of the characteristics extracted by the
network. Since the dataset is lower dimensional and the network model is compact, the
fully-connected layer is unnecessary for our experiments. However, the best results are
obtained with one fully-connected layer. We recommend keeping the value nF C_layers = 1
to improve the performance of our CNN model.

Finally, the effect of the activation function is evaluated. Results given in Fig. 7(c)
show that all the activation functions are suitable for our attack. We select eLU as it has
less overhead than the other two functions.
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Figure 7: GE of CNNarch(nblocks, nF C_layers, function) trained with CNNtrain(40, 100)
for different nblocks, nF C_layers and activation function.

Choice of Training Parameters: We first investigate the impact of the number of
epochs on the model efficiency. The experimental results are plotted in Fig. 8(a). Similar
to MLP model, the efficiency of the model increases when the number of epochs increases.
However, the experiments need to be performed in a reasonable amount of time. We select
40 as an appropriate value of nepochs.

Then we evaluate the performance of CNN model with different values of the batch
size. Fig. 8(b) shows that each batch size can perform well with a large training set size.
However, when the size of the training set is smaller than 5000, GE decreases more steeply
for smaller batch size. Therefore, we recommend fixing the batch size to 50 to obtain
decent global results.

The tuned hyper-parameters of MLP and CNN models are summarized in Tables 2
and 3. However, since the optimization of the hyper-parameters is not our goal, we believe
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Figure 8: GE of CNNtrain(nepochs, batch_size) trained with CNNarch(1, 1, eLU) for dif-
ferent nepochs and batch size.

that more appropriate parameters may be found to obtain better results in the following
studies. Additionally, we recommend employing more sophisticated models to enhance
training phase efficiency.

Table 2: Summary of the Tuned Hyper-Parameters of MLP Model

Type Hyper-Parameters Reference Range Choice

Architecture Parameters
Layers nlayer {3,4, · · · ,7,8} 3
Units nunits {50,100, · · · ,250,300} 150

Activation Function - eLU, Sigmoid, tanh tanh

Training Parameters
Epochs nepochs {20 ,40, · · · ,80,100} 40

Batch Size - {50,100, · · · ,200,250} 100
Optimizer - Adam, SGD, RMSprop Adam

Table 3: Summary of the Tuned Hyper-Parameters of CNN Model

Type Hyper-Parameters Reference Range Choice

Architecture Parameters
Blocks nblocks {1,2,3} 1

FC Layers nF C_layers {0,1,2} 1
Activation Function - eLU, Sigmoid, Tanh eLU

Training Parameters Epochs nepochs {20,40, · · · ,80,100} 40
Batch Size - {50,100, · · · ,200,250} 50

4.7 Comparisons with State-of-the-art Methods
After completing the offline training with tuned hyper-parameters, we evaluate the attack
performance of DLFA by comparing it with some state-of-the-art FA methods. The
experiments are repeated 1000 times to find the average number of ciphertexts required
and the analysis time needed for key recovery. Note that the number of ciphertexts required
in our attack refers to the number of ciphertexts utilized for generating the sample that
is fed into the trained deep learning model. Specifically, we initially compare our attack
approach to the persistent fault-based methods due to their similar chosen fault model.
Three counterparts are selected for comparison: the original PFA [ZLZ+18], the improved
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PFA with Maximum Likelihood Estimation [ZZJ+20], and the extended PFA with GPU
acceleration [XZY+21]. The results are shown in Table 4, where Nc denotes the number
of ciphertexts that are required for fully recovering the master key. We can see that DLFA
can crack ciphers using the least ciphertexts and spending the least analysis time.

Table 4: Comparison with Persistent Fault-Based Methods

Method Minimum Nc Average Nc Analysis Time(s)
PFA 1493 2273 10.48

PFA-MLE 926 1641 11.03
EPFA 896 970 8.64
DLFA 683 1488 0.12

Subsequently, DLFA is compared with SFA[PCNM15] and statistical PFA [ESP20] due
to their shared utilization of SEI. Table 5 shows the results, where Nf denotes the number
of faults the attack required. While SFA exhibits the lowest average Nc, it necessitates
a significantly longer time, nearly 1 hour, due to the laborious fault injection process
involving the large number of faults. In contrast, DLFA only requires one fault and achieves
a significant trade-off between Nc and analysis time.

Table 5: Comparison with SFA and SPFA

Method Average Nc Nf Analysis Time(s)
SFA 304 633 2649.83

SPFA 1643 16 66.22
DLFA 1488 1 0.12

Furthermore, we explore the comparison between DLFA and Fault Template Attacks
[SBR+20], which is another prominent profiled fault attack constructed from fault activation
and propagation. The strongest feature of FTA is that it can enable attacks in the middle
round of a cipher without requiring any explicit access to the ciphertexts. However, as
shown in Table 6, an extensive number of 4112 faults are required to recover the master
key of AES, imposing a substantial burden on the adversary.

Table 6: Comparison with FTA

Method Nf Ciphertext Access Middle Round Attack
FTA 4112 × ✓

DLFA 1 ✓ ×

5 Discussions
The applicability and efficiency of DLFA have been validated in section 4. In this section,
we further expand our study by discussing the performance of machine learning techniques
and investigating the impact of fault position and value.
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5.1 Performance of Machine Learning Techniques
Given the validated success of applying deep learning techniques to FA key recovery, it
is worthwhile to investigate whether simpler machine learning techniques can achieve
comparable performance. The performance of two classical machine learning techniques,
Support Vector Machine (SVM) and Random Forest, have been chosen for evaluation in
the context of FA key recovery.

The experimental results indicate that, utilizing a dataset comprising 2000 ciphertexts,
which is deemed sufficient for our DLFA method, the accuracy scores of SVM and Random
Forest models are 0.008 and 0.601 respectively. When the number of ciphertexts increases
to 4500, which is nearly three times greater than our proposed method’s requirement, the
Random Forest model demonstrates a satisfactory accuracy score of 0.847. However, the
SVM model exhibits a limited ability to recover the key with an accuracy score of 0.054.
The poor performance can be attributed primarily to the limited applicability of SVM,
which is mainly designed for binary classification problems. However, its effectiveness
diminishes when applied to multi-class classification tasks like ours.

5.2 Impact of the Position and Value of the Fault
The position and value of the fault are the two requirements of the original PFA. In
DLFA, we ignore these requirements and assume that the adversary has no knowledge of
these information. However, the position and value of the fault can affect our attack in
another way. The randomization of the position and value implies a variety of faults in
the dataset. Given a fixed-size dataset, the more types of faults there are in the dataset,
the less information each fault provides for the training of the neural network.

To evaluate our attack in stages, we prepare four different datasets representing four
levels of restriction on the position and value of the fault. The first dataset, named
FPFV dataset, assumes that the position and value of the fault are fixed. That is, all
samples in the dataset are collected under a fixed fault condition, which aligns with the
underlying assumption shared by other persistent fault-based analyses. The FPRV and
RPFV datasets are then prepared for the case where the position or value of the fault
is random, respectively. Finally, in the RPRV dataset, we assume that the position and
value of the fault are random, which is the highest level of restriction.

The experiments demonstrate that MLP and CNN models can mount successful attacks
as expected on the FPFV, FPRV and RPFV datasets. GEs of the three experiments
eventually approximately converge to 1. Unfortunately, these models perform poorly on
the RPRV dataset. The experimental results indicate that the oscillation of GE converges
around 128, implying a lack of learning capability in the network when exposed to the
given dataset. We attribute the failure to the increased randomness of the dataset. The
randomness can be roughly quantified in terms of the possibility of the fault. Reviewing
the configuration of the dataset, there is only one possibility of the fault in the FPFV
dataset as the position and value of the fault are fixed. According to the characteristics of
AES, the faults of the S-box have 256 random values and 256 random positions. Thus,
there are 256 possible faults in the FPRV and RPFV datasets and 65536 possible faults in
the RPRV dataset.

To validate our point of view, we extend our attack to the lightweight SPN-based
cipher PRESENT[BKL+07] due to its pint-sized S-box. We perform the experiments of
MLP and CNN models with the hyper-parameters tuned in the previous section. The
experimental results demonstrate that both models exhibit satisfactory performance on the
RPRV dataset. GE eventually approximately converges to 3, which implies the existence
of an average of three possible key candidates. The adversary can easily recover the key
with a brute-force search.

For future work, it might be interesting to enhance the performance of DLFA on
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the RPRV dataset on AES. This issue bears resemblance to the cross-device scenario
encountered in SCA, where training and attack data are acquired from disparate devices.

6 Conclusion
In this paper, we conduct a thorough study on the application of deep learning-based key
recovery in the field of fault analysis. We propose DLFA as an innovative FA method and
mount successful attacks with MLP and CNN models. In particular, we discuss the choice
of hyper-parameters and present the tuned parameterization options as a reference for the
design of new models. The comparisons with state-of-the-art methods demonstrate the
superiority of DLFA. Given that current deep learning theory does not yet provide a clear
foundation for such analysis, we believe that establishing a methodology is an essential
initial step that paves the way for further research in this domain.
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