
Delegated Private Matching for Compute

Dimitris Mouris1, Daniel Masny2, Ni Trieu3, Shubho Sengupta2, Prasad Buddhavarapu2, and Benjamin Case2

1 University of Delaware
2 Meta Inc.

3 Arizona State University

Abstract. Private matching for compute (PMC) establishes a match between two datasets owned by
mutually distrusted parties (C and P ) and allows the parties to input more data for the matched records
for arbitrary downstream secure computation without rerunning the private matching component. The
state-of-the-art PMC protocols only support two parties and assume that both parties can participate
in computationally intensive secure computation. We observe that such operational overhead limits the
adoption of these protocols to solely powerful entities as small data owners or devices with minimal
computing power will not be able to participate.

We introduce two protocols to delegate PMC from party P to untrusted cloud servers, called delegates,
allowing multiple smaller P parties to provide inputs containing identifiers and associated values. Our
Delegated Private Matching for Compute protocols, called DPMC and DsPMC, establish a join between
the datasets of party C and multiple delegators P based on multiple identifiers and compute secret shares
of associated values for the identifiers that the parties have in common. We introduce a rerandomizable
encrypted oblivious pseudorandom function (OPRF) primitive, called EO, which allows two parties
to encrypt, mask, and shuffle their data. Note that EO may be of independent interest. Our DsPMC
protocol limits the leakages of DPMC by combining our EO scheme and secure three-party shuffling.
Finally, our implementation demonstrates the efficiency of our constructions by outperforming related
works by approximately 10× for the total protocol execution and by at least 20× for the computation
on the delegators.

Keywords: Oblivious pseudorandom function · private identity matching · private record linkage · secure
multiparty computation

1 Introduction

Cloud computing has become a prominent solution for storage and analytics since it enables clients to outsource
their data and not have to worry about scalability, data availability, and most importantly maintaining
their own infrastructure. Gathering data from multiple input providers and computing statistics over all of
their data enables a plethora of useful applications such as gathering real-time location data and notifying
users of possible exposure to highly infectious diseases [25,53]. In certain applications, linking client data
to proprietary information owned by multiple larger entities may unlock unique insights that are otherwise
not possible. Users should not have to trust that the cloud servers will not store their sensitive personal
data for use for purposes other than it’s intended. The problem of computing meaningful analytics across
multiple input parties while preserving user privacy from cloud server providers becomes significantly more
challenging.

Secure multi-party computation (MPC) offers prominent cryptographic solutions for jointly comput-
ing on private data from multiple input providers [55,37,27]. Although general-purpose MPC frameworks
[6,54,21,29,32] enable running arbitrary computations over private data (e.g., medical data analytics [26]), they
generally incur significant performance overheads compared to solutions that are tailored to one application
(e.g., machine learning [33] and statistics [15,42,7,41,20]). Similarly, specialized private set intersection (PSI)
protocols [49,34,14,46,47,24,13,51,50,12] introduce significantly more efficient solutions than generic MPC
but focus solely on private matching and disregard associated metadata.

A few recent protocols inspired by [38] that are based on the hardness of Decisional Diffie–Hellman (DDH)
have attempted to securely link private records and allow general-purpose secure computation on the common
data. More specifically, private matching for compute (PMC) [10,8,43] from Meta, private set intersection

1



(PSI) [4] from Apple, and private join and compute (PJC) [31,36] from Google enable computing intersections
and unions between two parties while protecting the privacy of the underlying users. After the private
linkage is computed, these protocols enable downstream secure computation based on the matched records.
Unfortunately, prior works only focus on two parties and require both of them to actively participate in the
private matching, which restricts the adoption of these protocols to solely powerful entities as non-crypto-savvy
data owners or devices with minimal computing power will not be able to engage in secure computation
protocols.

We motivate our work by focusing on the example of ad attribution, a crucial business application for
tracking the effectiveness of online advertising campaigns and increasing revenue generated by ads. An ad
conversion refers to the situation where a user interacts with an online ad for a particular product on the
ad publisher’s website (which we call party C) and then goes on to make a purchase on the advertiser’s
website (which we call party Pt for t ∈ {1, . . . , T}). Of course, a large ad publisher may host ads from multiple
advertisers, each of which would like to know how their ad campaigns are performing and which purchases
can be attributed to their online ads. However, the data required to compute these statistics are split across
multiple parties: the ad publisher knows the users who have seen a particular ad, and each advertiser knows
who made a purchase and what they spent.

Table 1. Comparisons with related works in terms of functionality, number of parties, threat model, and multi-key
support.

Protocol Functionality
Input Parties Computing Parties

Delegated Multi-key
No. Model No. Model

PMC [10] Join (Union) 2 Semi-honest Same as Input Parties ✗ ✗
MK-PMC [8] Join (Union) 2 Semi-honest Same as Input Parties ✗ ✓

PS3I [10]
Join (Union) & Secret

2 Semi-honest Same as Input Parties ✗ ✗
Share Associated Data

PJC [31]
PSI-Sum (Sum Associated

2 Semi-honest Same as Input Parties ✗ ✗
Data in Intersection)

Circuit-PSI [48,47,50,12]
PSI & Secret Share

2 Semi-honest Same as Input Parties ✗ ✗
Associated Data

Catalic [25]
PSI-CA (Count Items

2 Semi-honest ≥ 2 Semi-honest ✓ ✗
in Intersection)

DB Joins [40] Join and Select Statements 2 Semi-honest 3 Semi-honest ✓ ✗

DPMC
Join (Left-Join) & Secret

T + 1 Semi-honest 2 Semi-honest ✓ ✓
Share Associated Data

DsPMC
Join (Left-Join) & Secret

T + 1 Semi-honest 3 Semi-honest ✓ ✓
Share Associated Data

Additionally, in the case of multiple advertisers, the secure ad attribution protocol needs to be repeated
for each advertiser, which can be both inefficient and not allow for elaborate statistics. To address this,
we propose a delegated setting where all advertisers securely delegate the computation to a delegate party,
which computes the ad attribution securely with the ad publisher. This approach reduces the computational
burden from individual advertisers and also allows for computing cross-advertiser connections, which leads to
more advanced applications such as personalization. Users that appear in multiple advertiser datasets are
combined into the same row of the final join instead of having multiple joins between the ad publisher and
each advertiser. Now the ad publisher and the delegate party can run a secure downstream computation over
all advertisers’ data. In a real-world instantiation, the ad publisher (e.g., Google, Meta) can collaborate with
non-profits (e.g., ISRG) or other companies (e.g., Cloudflare, Mozilla) and allow advertisers to delegate their
computation.

To improve match rates, our work considers multi-key matching [8], which involves matching users across
multiple identifiers such as email, phone number, and other personal information. By using multiple keys, we
can achieve a more accurate match and increase the likelihood of finding a connection between the user who
saw the ad and the user who made the purchase. As shown in Fig. 1, User A may be indexed by both an
email address and a phone number in party C, whereas, in other data owners, the combination of identifiers
may differ (e.g., name, email). In Section 5, we demonstrate the applicability of our work in several domains
such as private ad attribution, privacy-preserving analytics, and private machine learning. Note that our
approach is not limited to these specific applications and can be extended to other use cases as well.

We ask the following motivating question:

2



Party P1

User A
Email: alice@email.com

Party P2

User B
Email: bob@email.com
Phone: 9876543210

Party C

User A
Email: alice@email.com

Phone: 9876543210

Email
matched

Phone
matched

Fig. 1. Many to many connections. P1 and P2 have different views about User A and B, whereas Party C has
listed them as one user. Notably, P1 and P2 might also be the same party.

How can we design delegated private record linkage protocols that allow multiple entities to outsource their
records and perform secure computation on the associated metadata of the matched records?

1.1 Previous Works

We now discuss relevant works for private record linkage protocols that allow for computing over associated
data. A comparison of our protocols with related works can be found in Table 1.

Private Matching for Compute (PMC) introduced DDH-based constructions for private matching that
compute a union of two datasets held by mutually distrusting parties C and P without revealing which items
belong to the intersection [10,8]. After the matching phase, both parties can input associated data for each
row in the union and engage in a downstream secure computation. The core idea of PMC is to have each
party first hash their records and then exponentiate them to random secret scalars. After exchanging the
hashed and exponentiated records, each party exponentiates the other party’s records to their secret scalar
and they both arrive at the same random identifiers.

Multi-key PMC [8] assumes that each record may have multiple identifiers (as shown in Fig. 1) and
leverages a ranked deterministic join logic that collapses many-to-many connections and achieves a one-to-one
mapping. The idea is that each identifier has a predefined weight and the matching is first performed on all the
records based on the first identifier (as the single-key PMC) before continuing to the other identifiers. PMC
leaks the intersection size to the two parties and in case of multiple keys per row, they learn the bipartite
graph of matches up to an isomorphism. Additionally, PMC supports computing on the match between two
datasets and requires both parties to actively participate in both the matching and the downstream secure
computation, which significantly limits the adoption in real-world applications. Contrary to PMC, our work
allows matching between any number of parties and shifts the cost away from the parties by delegating the
computation to a server.

Private secret-shared set intersection (PS3I) [10] is a natural extension of PMC that allows the two parties
to input associated data to the matching protocol. Instead of learning a mapping to original inputs, the
two parties only learn additive secret shares of those records which they can feed into any general-purpose
MPC framework. PS3I is realized using Paillier additive homomorphic encryption (HE) scheme [45] and
incurs significant performance overheads. Additionally, PS3I only works between two parties and requires
both parties to be online for the whole protocol execution.

Private Join and Compute (PJC) [31,36] computes the intersection between two datasets and aggregates
the associated data for all the rows in the intersection using additive HE. Contrary to our work that computes
secret shares for all the associated data, PJC only allows computing a sum of the data in the intersection.
Furthermore, as with all the previous related works, PJC only supports two parties whereas our protocols
scale to multiple parties.

Mohassel et al. [40] utilize cuckoo hash tables and perform SQL-like queries over two secret shared
databases in the honest majority three-party setting. Both the input and output tables are secret shared
between the computing parties. Because the cuckoo hash tables do not support duplicates, [40] has leakages
in the presence of non-unique identifiers. Additionally, the join protocols focus on two parties and in order to
compute joins between multiple parties the protocol has to be iterated multiple times. Each party’s database
has to be joined with the output of the previous join or they can be combined in a binary-tree-like structure.
Contrary, our delegated protocols are designed to support multiple delegators and do not have to be repeated
for each input party.

3



Circuit-PSI relies on oblivious Pseudorandom Functions (OPRF) for computing PSI between two parties
and then computing a function over the common data [48,47,50,12]. Both parties learn secret shares of 1 or
0, representing record presence in the intersection. These shares are used to input associated data as both
parties actively participate in the protocol. These works focus on the two-party setting and it is not clear how
to extend them to the delegated setting where multiple parties outsource their data for matching along with
encrypted associated data to a helper party. One could imagine that the input parties compute hash tables
but then they would need to privately combine these tables which goes beyond what has been studied in the
literature. On the other hand, Catalic [25] uses OPRFs between two parties but allows one party to delegate
its computation to a powerful server. All the aforementioned works allow two-party matching which is solely
based on a single key, while our work supports matching based on datasets of multiple parties where each can
have multiple keys (e.g., name, email). Finally, our protocols enable multiple input parties to delegate their
computation and then go offline instead of requiring them to participate in expensive protocols.

Miao et al. [39] introduced a shuffled distributed OPRF (DOPRF) for computing PSI between two parties
and the shuffling is performed in the clear by one of the parties. Similarly, the authors of [5] propose a DDH-
based PRF combined with ElGamal encryption that allows for shuffling by one of the parties. ScrambleDB [35]
introduces a three-party OPRF, which evaluates the OPRF on encrypted inputs and also uses re-randomizable
encryption to break up the relation of inputs and outputs. As in previous works, ScrambleDB performs
shuffling in the clear when data is uploaded, whereas our protocols perform secure shuffling under MPC.
We introduce an encrypted oblivious pseudorandom function (OPRF) primitive, called EO, which allows
two parties to encrypt, mask, and shuffle their data. While [39,5] seem to be similar to our EO primitive,
we emphasize that they are quite different. First of all, our EO primitive performs shuffling under MPC
for security contrary to their shuffled protocol. Additionally, although EO could be instantiated with a
combination of ElGamal and DH-OPRF, EO is an abstraction that can fit many possible instantiations (e.g.,
from codes, lattices, isogenies). Finally, in this work, we are in the delegated setting to allow multiple parties
to outsource the private matching and go offline instead of solely focusing on the two-party setting.

1.2 Our Contributions

Delegated Protocols. We propose a new family of Delegated Private Matching for Compute protocols,
called DPMC and DsPMC, that build upon PMC [10,8] and lift the burden of engaging in secure computation
from parties with less computational power. Our protocols rely on a powerful server (which we call party
C) and on a delegate node (which we refer to as party D) to perform private record linkage between the
records of C and input parties, which we call delegators or parties P . Contrary to previous works that focus
on linking data only between two parties, our work enables linkage between C and multiple delegators (P1 to
PT ) and aims to make the computation in the delegators lightweight to foster wide-scale adoption. Parties C
and D engage in a two-party computation to compute a private left join of party’s C and all the delegators’
data.4 C’s input is a multi-key dataset where each row contains multiple identifiers (i.e., keys) that can be
matched. The delegators’ inputs are multi-key datasets with associated data, which comprise both identifiers
and metadata that can be in any form (e.g., numbers, strings). C learns a mapping from its users to the
left join but does not learn which of its users have been matched. For each row in the left join, both C and
D receive secret shares that correspond to the delegators’ associated data if that row maps to one of the
delegators’ identifiers or a share of NULL (i.e., zero), otherwise.

Left Join. Our motivation for performing left join compared to a union or an intersection is that party C
learns a mapping from all their users into the join, which allows them to input additional associated metadata
without re-executing the matching protocol and without learning which users matched or not. These data can
either be labels (in the clear) that could be used to filter the secret shared values (e.g., in a GROUP BY fashion),
or they can be additional secret shares for the downstream MPC computation. After the matching process
and the secret shares have been established, parties C and D only need to know the relative order of their
shares, which can then be used for any downstream secure computation such as privacy-preserving analytics
and machine learning. Our goal in this work is to create efficient protocols that can be realized in real-world
applications for private left join and allow the delegators to outsource the computation to delegates.

4 Our core protocol computes the left join between party’s C data and all delegators’ data. We show in Appendix E
how to modify it to compute the inner join.

4



Threat Model. We assume semi-honest security, which we prove in the Appendices. Party C follows the
protocol specification but tries to exfiltrate information about the delegators’ data. Similarly, the delegate D
tries to exfiltrate information about all parties’ data. Finally, delegators are semi-honest and outsource their
real data.

Multi-key Datasets. To increase matching rates, we adopt multi-key datasets [8] and consider matching
between records on more than one identifier (i.e., key) that inherently generates many-to-many connections.
We use a ranking-based technique to collapse multiple connections into one-to-many (C-to-P ) connections.
Although we do not claim this contribution, it is an important feature that increases match rates and
complicates the protocols; note that it is not straightforward to add this to related works. We operate over
unique keys (e.g., email) to avoid inference attacks [44].

Rerandomizable Encrypted OPRF (EO). We introduce a concept called EO that captures the tasks
of encrypting identifiers, shuffling ciphertexts, homomorphically evaluating a PRF on the ciphertexts, and
decrypting a homomorphically evaluated ciphertext to the PRF output with the identifier as input. More
specifically, one party can evaluate the OPRF both on clear data (e.g., x) and encrypted data (e.g., Enc(x)),
and then delegate the matching to another party that can decrypt the evaluated OPRF of the encrypted data
and get Dec(PRF(Enc(x))) = PRF(x) (keys are omitted here, see Section 3.3). Further, EO allows shuffling
encrypted inputs such that the third party cannot correlate PRF outputs and the initially received ciphertexts.
Notice that EO is more powerful than an OPRF since it allows encrypting inputs for the PRF and sends the
ciphertexts to a third party (i.e., delegate the evaluation) whereas an OPRF asks that the input provider
directly interacts with the PRF evaluator. This allows us to reduce the leakage to the third party (i.e.,
Party D). Furthermore, the PRF evaluation can be distributed between Party C, who owns the key and
homomorphically evaluates the PRF, and Party D, who decrypts the homomorphically evaluated ciphertext
and obtains the PRF output.

In Section 3.3, we define the EO primitive and we provide an instantiation based on DDH and ElGamal in
Appendix B. Note that EO is an abstraction and can fit various instantiations (possibly from codes, lattices,
etc.). Finally, the EO construction might be of independent interest and can facilitate other protocols as well.

DsPMC Protocol. We use our EO primitive to extend DPMC to DsPMC, a protocol that uses two delegates
(party D and a shuffler S). DsPMC performs an honest majority shuffling protocol between parties C, D, and
S and achieves stronger security guarantees in the case of a corruption of Party D and multiple delegators.

Applications. We envision multiple applications that may leverage our delegated setup of merging multiple
private datasets and securely computing analytics on metadata. A healthcare provider holding patient records
may gain critical insights such as calculating the risk of a health condition by merging with data stored
on individual smart devices or other healthcare providers, without needing to access identifiable user data.
An ad publisher holding user-provided information may be able to measure advertising efficacy and offer
personalized ads by merging with data held by millions of businesses while still preserving user privacy.

Our contributions are summarized as follows:

– We introduce a novel DPMC protocol for securely computing left join between multiple distrusting
parties.

– Design of a new rerandomizable encrypted OPRF (EO) primitive that enables encrypting inputs, shuffling
ciphertexts, homomorphically evaluating a PRF on ciphertexts, and decrypting ciphertexts to PRF
outputs. EO is of independent interest.

– We combine EO and secure three-party shuffling to extend DPMC to DsPMC, a protocol that reduces
DPMC’s leakage.

– We detail applications in online advertising such as privacy-preserving ad attribution, analytics, and
personalization.

2 Preliminaries

2.1 Notation

We denote the computational security parameter by κ. We use [m] to refer to the set {1, . . . ,m}. We denote
the concatenation and exclusive OR (XOR) of two-bit strings x and y by x ∥ y and x⊕ y, respectively. We use

5



r
R← R to refer to a randomly chosen element r from set R. We use ppt to denote probabilistic polynomial

time. We use {} for unordered and () for ordered sets.

2.2 Definitions

Definition 1 (Multi-Key Key-Value Store). A multi-key key-value store KV is a set of key sets ci, i.e.,
KV := {ci}i∈[m]. Each set ci contains mi keys, i.e., ci := {ci,j}j∈[mi]. When the key set is ordered, we denote
it with ci := (ci,j)j∈[mi]. Further, KV might contain m values vi for i ∈ [m], one associated with each key set.
In this case, we denote the key sets as KV := {pi, vi}i∈[m] = {{pi,j}j∈[mi], vi}i∈[m]. Note, we use pi instead of
ci when the set includes associated data vi. Furthermore, each key ci,j in a set KV is unique, i.e., there does
not exist an (i′, j′) ̸= (i, j) s.t. ci′,j′ = ci,j.

Informally, a multi-key left join with associate data between KVC and KVP results in a set of values with
as many rows as the set on the left (i.e., KVC in our case) and the associated values of KVP for the rows that
matched and zero, otherwise.

Definition 2 (Multi-Key Left Join With Associated Data Between Two Key-Value Stores). Let
KVC := {ci}i∈[mC ] be a multi-key set of party C that contains ordered key sets, i.e., ci := (ci,j)j∈[mC,i]. Let
KVP := {pi, vi}i∈[mP ] be a multi-key key-value set of P that contains both key sets, i.e., pi := {pi,j}j∈[mP,i]

and associated values vi. The left join between KVC and KVP is defined by KVC ▷◁ KVP := (v̂i)i∈[mC ], where
v̂i := vi′ s.t. ji is the smallest element in [mC,i] for which there exists an i′ ∈ [mP ] and ji′ ∈ [mP,i′ ] with
ci,ji = pi′,ji′ . If there does not exist such an ji, i

′ and ji′ , we define v̂i := 0.

With multiple delegators, we extend Def. 2 as follows.

Definition 3 (Multi-Key Left Join With Associated Data Between T + 1 Key-Value Stores). Let
for all t ∈ [T ], KVt := {pt,i, vt,i}i∈[mt] be a multi-key key-value set of party Pt that contains both key sets,
i.e., pt,i := {pt,i,j}j∈[mt,i], and values, i.e., vt,i. Also, let KVC := {ci}i∈[mC ] be a multi-key set of party C that
contains only ordered key sets, i.e., ci := {ci,j}j∈[mC,i]. The left join between KVC and {KVt}t∈[T ] is defined
as:

KVC ▷◁ {KV1, . . . ,KVT } := (πi(v̂i,1, . . . , v̂i,T ))i∈[mC ],

where for each t ∈ [T ] and i ∈ [mC ], v̂i,t is defined as follows. Let for each j ∈ [mC,i], Si,j,t := {i′ ∈ [mt] |
∃j′ ∈ [mt,i′ ] s.t. ci,j = pt,i′,j′}. If

⋃
j Si,j,t ̸= ∅, we define ji,t := min(j ∈ [mC,i] s.t. Si,j,t ̸= ∅), i′ is defined as

the unique i′ ∈ Si,ji,t,t and v̂i,t := vt,i′ . If
⋃

j Si,j,t = ∅, we define v̂t,i := 0. Finally, the values v̂i,1, . . . , v̂i,T are
permuted by a random permutation πi for each row i ∈ [mC ].

This definition ensures that value v̂i,t is associated with delegator t such that each row in the join corresponds
to T values, one for each delegator. There might be multiple possible matching rows for each delegator with
one of the identifiers in ci. In that case, we include the row that matches with ci,j with the smallest j in the
join. Since each identifier is unique in each set, there is only one identifier that matches with ci,j .

We adjust Def. 3 in case values cannot be assigned to specific delegators anymore. Therefore a row might
contain multiple values of the same delegator while other delegators might not be represented with a value.
Changing the definition of the join allows us to reduce the overall leakage for the DsPMC protocol.

Definition 4 (Multi-Key Left Join With Associated Data and Minimal Leakage Between T + 1
Key-Value Stores). Let for all t ∈ [T ], KVt := {pt,i, vt,i}i∈[mt] be a multi-key key-value store of party Pt

that contains both key sets, i.e., pt,i := {pt,i,j}j∈[mt,i], and values, i.e., vt,i. Also, let KVC := {ci}i∈[mC ] be a
multi-key set of party C that contains only ordered key sets, i.e., ci := {ci,j}j∈[mC,i]. The left join between
KVC and {KVt}t∈[T ] is defined as:

KVC ▷◁ {KV1, . . . ,KVT } := (πi(v̂i,1, . . . , v̂i,T ))i∈[mC ],

where for each i ∈ [mC ], v̂i,t is defined as follows. Let for each j ∈ [mC,i], Si,j := {(t′, i′) ∈ ([T ], [mt′ ]) |
∃j′ ∈ [mt′,i′ ] s.t. ci,j = pt′,i′,j′}. Further, we define the set of indices that have not been included in the
join yet as Si,j,<t := Si,j \ {(t′, i′) ∈ ([T ], [mt′ ]) | ∃t′′ < t s.t. v̂i,t′′ = vt′,i′}. If

⋃
j Si,j,<t ̸= ∅, we define

ji,t := min(j ∈ [mC,i] s.t. Si,j,<t ̸= ∅), (t′, i′) is defined as a random (t′, i′)
R← Si,ji,t,<t and v̂i,t := vt′,i′ . If⋃

j Si,j,<t = ∅, we define v̂t,i := 0. Finally, the values v̂i,1, . . . , v̂i,T are permuted by a random permutation πi

for each row i ∈ [mC ].

6



Def. 4 defines the join as follows. It defines value v̂i,t by matching ci,j for the smallest j with a match that
has not yet been included in the join and takes the value of a random row i′ of a random delegator t′ that
matches with ci,j . If there is no such a match left, v̂i,t is defined as 0.

We provide Algs. 1 and 2 for Defs. 3 and 4 in Appendix A.

Definition 5 (Key Encapsulation Mechanism (KEM)). A key encapsulation with security parameter κ
is a triplet of algorithms (KEM.KG,KEM.Enc,KEM.Dec) with the following syntax.

– KEM.KG(1κ): On input 1κ output a key pair (KEM.pk,KEM.sk).
– KEM.Enc(KEM.pk): On input KEM.pk, KEM.Enc outputs an encapsulation KEM.cp and key KEM.k.
– KEM.Dec(KEM.sk,KEM.cp): On input (KEM.sk,KEM.cp), KEM.Dec outputs a key KEM.k.

For correctness, we ask that

Pr[KEM.Dec(KEM.sk,KEM.cp) = KEM.k] ≥ 1− negl,

where the probability is taken over (KEM.pk,KEM.sk)← KEM.KG(1κ) and (KEM.cp,KEM.k)← KEM.Enc(KEM.pk).

We need simulatable KEMs, which is true for commonly used KEMs. A KEM is simulatable if there
exists a ppt algorithm KEM.Sim with KEM.cp← KEM.Sim(KEM.sk,KEM.k), where KEM.cp is computationally
indistinguishable from KEM.cp′ ← KEM.Enc( KEM.pk) under the constraint that KEM.k = KEM.Dec(KEM.sk,
KEM.cp′). Further, we need standard key indistinguishability.

Definition 6 (Key Indistinguishability). We call a KEM key indistinguishable if for any ppt algorithm
A, ∣∣Pr[A(KEM.pk,KEM.cp,KEM.k) = 1]− Pr[A(KEM.pk,KEM.cp, u) = 1]

∣∣ ≤ negl,

where (KEM.pk,KEM.sk)← KEM.KG(1κ), (KEM.cp,KEM.k)← KEM.Enc(KEM.pk) and u← {0, 1}∗.

Definition 7 (Secret Sharing). We call two values sh1, sh2 ∈ {0, 1}∗ a two-out-of-two XOR secret sharing
of a secret value a if sh1 ⊕ sh2 = a and for i ∈ {0, 1} shi is uniform and independent of a.

Secret sharing schemes allow a dealer to distribute shares of her data to multiple parties so that each share
does not reveal anything about the original data [2]. In MPC, each party creates secret shares of their data
and shares them with the other parties. Then, each party computes a function of the shares and combines
them to reconstruct the final output. MPC utilizes secret sharing to compute arbitrary arithmetic functions
as arithmetic circuits [52,19,2,32]. In this work, we utilize binary (XOR) secret sharing as in Def. 7, but our
protocols can also support arithmetic shares. To compute arbitrary functions as arithmetic circuits, XOR
shares can be converted to arithmetic as in [16,33].

Definition 8 (IND-CPA Security). We call an encryption scheme indistinguishable under chosen plaintext
attacks (IND-CPA secure) if for any ppt algorithm A,∣∣Pr[A(pk, ct0) = 1]− Pr[A(pk, ct1) = 1]

∣∣ ≤ negl,

where (pk, sk) ← PKE.KG(1κ), (x0, x1)A(pk), ∀i ∈ {0, 1} : cti ← PKE.Enc(pk, xi). In case of a symmetric
key encryption, we replace A’s access to pk with access to an encryption oracle for key sk. We also replace
(PKE.KG,PKE.Enc,PKE.Dec) with (SKE.KG,SKE.Enc, SKE.Dec).

We include additional definitions such as the DDH assumption, pseudorandom generator, random oracle,
and symmetric and public key encryption in Appendix A.

2.3 Ideal Functionality for Delegated PMC

We present the ideal functionality FDPMC for Delegated PMC in Fig. 2. In the ideal world, FDPMC is composed
of a functionality for join FJOIN and a functionality for compute FCMP. FJOIN gets input from party C a
multi-key set KVC and from parties P1 to PT multi-key key-value sets KV1, . . . ,KVT with associated values
v1, . . . , vT and computes a left join J with associated data as described in Def. 3 (or alternatively Def. 4).

7



Ideal FJOIN

J := KVC ▷◁ {KV1, . . . ,KVT } =

= (v̂i,1, . . . , v̂i,T )i∈[mC ]

Sample SHC , SHD s.t. SHC ⊕ SHD = J
Lx,y for x, y ∈

{
KVC , {KVt}t∈[T ]

}

Ideal FCMP

J := SHC ⊕ SHD

y := f (J )

C

P1

PT

D

.

.

.KVC := {ci}i∈[mC ]

SHC

KV1 := {p1,i, v1,i}i∈[m1]

KVT := {pT,i, vT,i}i∈[mT ]

⊥
Lx,y , SHD

SHC
SHD

y

Fig. 2. Ideal functionality FDPMC of private join for compute is composed by FJOIN and FCMP. Parties C and P1, . . . , PT

provide inputs. FJOIN computes a left join with associated data J := KVC ▷◁ {KV1, . . . ,KVT } as described in Def. 3
(or alternatively Def. 4). Later on, C and D can query FCMP with their secret shares (SHC and SHD) and FCMP will
reconstruct J := SHC ⊕ SHD and compute y := f(J ) and send it to party C. Party D gets leakage Lx,y, where x and
y are the sets of any party in {KVC ,KV1, . . . ,KVT }.

That is, for each record ci and for each party t ∈ [T ], J holds v̂i,t which represents either the associated
metadata (if there was a match) or a zero (if no match was found for ci) as (v̂i,1, . . . , v̂i,T )i∈[mC ]. Next, FJOIN

samples secret shares SHC and SHD such that J = SHC ⊕ SHD and sends SHC to party C and SHD to D.
Later, C and D can query FCMP with their secret shares and FCMP first reconstructs J := SHC ⊕ SHD and
then computes y := f(J ). Our ideal functionality FDPMC is composed of the functionality of join FJOIN and
compute FCMP.

Parties P1 to PT do not get any output from FJOIN or FCMP, whereas C and D learn secret shares of the
associated data of matched values from FJOIN. Finally, C learns the output y from FCMP which depends on
function f . Even in the ideal world, if f returns all the associated values without performing any computation
(e.g., aggregation), C does not learn which value corresponds to which user, or even which of the users in KVC

have been matched. Finally, D learns a leakage function Lx, y, where x and y each represent any of KVC or
KV1, . . . ,KVT . We extend our FDPMC functionality to FDsPMC that limits the aforementioned leakage between
sets KVC and KVP , where KVP := {KV1, . . . ,KVT }. We provide a formal definition of the leakage function
when introducing the different protocols. In the case of a single identifier per row, the leakage corresponds to
the cardinality of the intersection.

Note that the MPC functions computed in the FCMP phase should be carefully considered for privacy
reasons. Without making any assumptions about the inputs, using differential privacy seems to be the only
option to protect individual users being signaled out. We discuss realistic applications in Section 5.

3 Left Join Delegated PMC Protocols

3.1 Overview

Our goal is to join records that represent the same entities across datasets that are held by different parties
without revealing any information about the individual records. We focus on performing a left join between
the datasets of multiple parties and computing secret shares of the associated data of the matched records so
they can be fed into downstream general-purpose MPC.

We realize FDPMC with two novel protocols that compute left join with associated data. We introduce a
delegate party D that enables multiple delegators (parties P1, . . . , PT ) to securely delegate their data and go
offline, similarly to FJOIN in Fig. 2. Parties C and D engage in our proposed delegated protocols to privately
link C’s and all the delegators’ records and compute secret shares of the associated data for the matched
records. Both C and D learn T secret shares for each row in the left join that corresponds to either the
delegators’ associated data (i.e., vt) if that row maps to a record in KVt or a secret share of zero (if that row
is only in KVC). C also receives a mapping from its users into the join but does not learn which of its users
have been matched.

8



(345) 678-9012williamfulmore@example.net

(901) 234-5678cindymeiners@example.net

(123) 456-7890lanastasiades@example.com

(890) 123-4567carljohnson44@example.com

. . .

Party C

carljohnson44@example.com - $225

annelopez82@example.net (234) 813-1908 $250

sebastian@example.com (214) 654-1312 $100

. . .

Party P1

cindymeiners@example.com (901) 234-5678 $20

cpaynter@example.com (567) 605-936 $200

. . .

Party P2

(a) Input parties multi-key key-value sets containing emails, phone numbers, and dollar amounts.

(345) 678-9012williamfulmore@example.net $0 1011011010110110

cindymeiners@example.com (901) 234-5678(901) 234-5678cindymeiners@example.net $20 0001001100000111

(123) 456-7890lanastasiades@example.com $0 0001001100010011

carljohnson44@example.com -(890) 123-4567carljohnson44@example.com $225 0110101110001010

JoinParty C Party D AD XOR AD ShareXOR AD Share

. . .

(b) Multi-key left join (result of FJOIN). All records of C are matched. The records of P1 and P2 that do not match with C do not
appear in the left join.

Fig. 3. Multi-key left-join overview. Parties C and D compute a left-join of the multi-key sets of C, P1, and P2

and the XOR secret shares of the associated data (AD) of the delegators (P1 and P2). In (a), we show an example
with three parties (C, P1, and P2). P1 and P2 have associated data (shown as $ amounts; note that they might have
more associated data). In (b), parties C and D have performed the left-join and ended up with secret shares of the
associated data of the matched records (shown in blue). For readability, we show the associated data (AD) in (b) to
indicate the value of the XOR shares, note that this remains secret.

Having the secret shares as the protocol output allows parties C and D to realize FCMP and jointly
compute a function f on the secret shared associated data. An intuition of our delegated protocols is shown
in Fig. 3. In Fig. 3 (a), we show the multi-key datasets of party C and two delegators P1 and P2. In Fig. 3
(b), we show the matching performed on both e-mail addresses and phone numbers (Def. 3), as well as the
generated XOR shares. Interestingly, our protocols are compatible with both XOR and arithmetic secret shares.
To keep things simple, we use XOR shares exclusively. Note that in Fig. 3 (b) we show the AD for readability –
Party D does not learn the associated data (only the secret shares of them).

3.2 Delegated PMC (DPMC)

For simplicity, we start with a strawman DPMC protocol that does not operate over multi-key databases
(e.g., has only email addresses). Our first variant for left join between T + 1 databases is shown in Fig. 4 and
consists of three stages: “key generation”, “identify match”, and “recover shares”. Both parties C and D learn
a left join size (mC) set of XOR shares (JC and JD, respectively) for each row in the join that corresponds to
the delegators’ associated data if that row maps one of parties’ P1 to PT records or a secret share of zero (if
that row is only present in KVC). Additionally, C receives a mapping from its users into JC but does not
learn which of its users are in the intersection. The two parties can use the secret shares JC and JD for any
general-purpose MPC computation.

Intuitively, the protocol works as follows. Each party Pt hashes its identifiers pt,i (for each row i) using
HG and masks them with a random at. The associated values vt,i are secret shared where the share for C
(i.e., shC,t,i) is the key of a KEM. Each party encrypts the shares for Party D, the mask at and the key
encapsulation towards party D using pkD, and sends it to C. It also sends the masked hashes of the identifiers

9



Setup: All parties agree on a g be a generator of a cyclic group G with order q where DDH is hard and hash functions
HG(·) : {0, 1}∗ → G,

H(·) : {0, 1}∗ → {0, 1}|vt,i|. All parties Pt have access to the public key pkD of party D, and party D has secret key
skD.

1 Key-Generation (Party C)
1: (KEM.pk,KEM.sk)← KEM.KG(1κ)
Send to Pt and D: KEM.pk

2 Identity Match (Party Pt)
Input: KVt = {(pt,i, vt,i)}i∈[mt] for data set size mt.
Messages: KEM.pk

1: at
R← Zq, skt ← SKE.KG(1κ) ▷ Random scalar at and

secret key skt.
2: ctat := PKE.Enc(pkD, skt), ctbt := SKE.Enc(skt, at)
3: For i ∈ [mt]: ▷ For each row in KVt.
4: (KEM.cpt,i,KEM.kt,i)← KEM.Enc(KEM.pk) ▷ New

encaps.
5: hat,i := HG(pt,i)

at ▷ Hash and exponentiate to at.
6: shC,t,i := KEM.kt,i ▷ Share of vt,i for party C.
7: shD,t,i := vt,i ⊕ shC,t,i ▷ Share of vt,i for party D.
8: ctct,i := SKE.Enc(skt, (KEM.cpt,i, shD,t,i))
Send to C: ctat, ctbt and {{hat,i}, ctct,i}i∈[mt]

3 Identity Match (Party C)
Input: KVC = {ci}i∈[mC ] for data set size mC .
Messages: {ctat, ctbt, {{hat,i}, ctct,i}i∈[mt]}t∈[T ]

1: aC
R← Zq ▷ Random scalar aC .

2: For t ∈ [T ], i ∈ [mt]: ▷ For each Pt and each row.
3: hcat,i := (hat,i)

aC ▷ Hash and exponentiate Pt’s
data to aC .

4: Pick random permutation π, t̂ := π(t).
5: For i ∈ [mC ]: ▷ For each row in KVC .
6: hC,i := HG(ci)

aC▷ Hash and exponentiate own data
to aC .

Send to D: {hC,i}i∈[mC ] and {ctat̂, ctbt̂, {hcat̂,i,
ctct̂,i}i∈[mt̂]

}t̂∈[T ]

4 Identity Match and Recover Shares (Party D)
Messages: KEM.pk, {hC,i}i∈[mC ] and
{ctat̂, ctbt̂, {hcat̂,i, ctct̂,i}i∈[mt̂]

}t̂∈[T ]

1: For t̂ ∈ [T ]: ▷ For each delegator party Pt̂.
2: skt̂ := PKE.Dec(skD, ctat̂)
3: at̂ := SKE.Dec(skt̂, ctbt̂)
4: For i ∈ [mt̂]: ▷ For each row in KVt̂.
5: (KEM.cpt̂,i, shD,t̂,i) := SKE.Dec(skt̂, ctct̂,i)

6: hct̂,i := hca
1/at̂

t̂,i
▷ Remove at̂.

7: Join J := (hC,i)i∈[mC ] ▷◁ (hct,i)t∈[T ],i∈[mt]▷ Details in
Alg. 1.

8: For each row i and delegator t̂ in J :▷ For each row in
the join.

9: If record matched:
10: K̂EM.cpi,t̂ := KEM.cpt̂,i′ ▷ Use encaps. from Pt̂.

11: ŝhD,i,t̂ := shD,t̂,i′ ▷ Use share of vt̂,i generated by
Pt̂.

12: Else: ▷ no match found
13: (K̂EM.cpi,t̂,KEM.ki,t̂)← KEM.Enc(KEM.pk) ▷

New encaps.
14: ŝhD,i,t̂ := KEM.ki,t̂ ▷ Use share of 0.
15: Pick mC random permutations {πi}i∈[mC ].

16: JD := (πi({ŝhD,i,t̂}t̂∈[T ]))i∈[mC ] ▷ D’s permuted XOR

shares.
Send to C: {πi({K̂EM.cpi,t̂}t̂∈[T ])}i∈[mC ]

5 Recover Shares (Party C)
Input: KEM.sk

Messages: {K̂EM.cpi,t̂}i∈[mC ],t̂∈[T ]

1: For i ∈ [mC ], t̂ ∈ [T ]: ▷ For each row and each
delegator.

2: ŝhC,i,t̂ := KEM.Dec(KEM.sk, K̂EM.cpi,t̂) ▷ Get
KEM.ki,t̂.

3: JC := (ŝhC,i,t̂)i∈[mC ],t̂∈[T ] ▷ Aligned with (ci)i∈[mC ]

Fig. 4. Single-key DPMC. Party C and the delegators P1 to PT compute the left-join of their records with the help
of D. Parties C and D receive JC and JD, respectively. These sets contain XOR secret shares for each row in the join.
For each delegator Pt, if a row is in the intersection, the parties hold XOR shares of the delegator’s associated data,
otherwise, XOR shares zero. Party C additionally learns a mapping from its users into the join a but does not learn
which of its users have been matched.

(i.e., HG(pt,i)
at) to C. Note that this does not leak any information to C since HG(pt,i)

at could be seen as a
PRF evaluation and is therefore pseudorandom based on DDH.

Party C permutes the messages and uses a random aC
R← Zq to compute hcat,i := HG(pt,i)

at·aC . aC can
be seen as a PRF key. It forwards the permuted messages including hcat,i and sends the PRF evaluation of
its own identifiers, i.e., hci := HG(ci)

aC to D.

Party D decrypts all the ciphertexts and unmasks HG(pt,i)
at·aC to HG(pt,i)

aC using at. It then matches the
results with the hci’s sent by Party C. If there is a match, it just forwards the key encapsulation KEM.cpt̂,i′
from delegator Pt and uses the decrypted share shD,t,i as its own share. Otherwise, it generates a new
encapsulation and uses the generated key KEM.ki,t̂ as its own share. In this step, we do not leak C’s share
and therefore value vt,i to Party D, due to the key indistinguishability of the key encapsulation.

10



In the final step, C uses the secret key of the key encapsulation received by D to recover its own shares.
Observe that for the unmatched records, we get secret shares of zero as JC ⊕ JD = ŝhC,i,t̂ ⊕ ŝhD,i,t̂ =
KEM.ki,t̂ ⊕ KEM.ki,t̂ = 0, while for the matched records we get secret shares of the delegators associated

data as JC ⊕ JD = ŝhC,i,t̂ ⊕ ŝhD,i,t̂ = KEM.ki,t̂ ⊕ shD,t̂,i = KEM.ki,t̂ ⊕ vt,i ⊕ shC,t̂,i = vt,i. Party D cannot
distinguish shares of vt,i from shares of 0 since the encapsulations generated by parties P1 to PT have the
same distribution as the ones generated by D.

Leakage. We define DPMC’s leakage in Def. 9, where D learns the sizes of the intersection between each
two parties. For instance, for parties C, P1, and P2, party D will learn |KVC ∩ KV1|, |KVC ∩ KV2|, and
|KV1 ∩KV2| but without knowing which party is P1 and which is P2 due to the permutation performed by C.
With multiple keys, D will also learn a graph of matches as defined by Lx,y next. We give a formal security
theorem (Theorem 1) and prove it in Appendix D.1.

Definition 9 (DPMC Leakage). Given KVC and KV1, . . . ,KVT , the leakage Lx,y of the ideal functionality
in Fig. 2 for the DPMC protocol in Fig. 4 is defined as follows. Define KVu,C by replacing ci,j ∈ KVC with

ui,j
R← {0, 1}κ. Define KVu,t by replacing pt,i,j ∈ KVt with ui′,j′ if there exist t′, i′, j′ with pt,i,j = ci′,j′

or an already replaced pt′,i′,j′ with pt,i,j = pt′,i′,j′ , otherwise replace it with u′t,i,j
R← {0, 1}κ. Lx,y :=

{(C,KVu,C), π(t,KVu,t)t∈[T ]}.
Theorem 1. Let the secret key encryption and the PKE scheme be IND-CPA secure, the KEM simulatable
and key indistinguishable, and the DDH assumption hold.

Then, the protocol in Fig. 4 securely realizes ideal functionality in Fig. 2 for the join defined in Def. 3
for semi-honest corruption of one of the two parties C, D and any amount of parties P1 to PT . In case of a
corruption of D, the leakage graph of Def. 9 is leaked.

3.3 Rerandomizable Encrypted OPRF (EO)

OPRFs allow a client to obliviously evaluate a function PRF on their private input x with the server’s secret
key sk (i.e., PRFsk(x)) [11]. We introduce a new rerandomizable encrypted OPRF (EO) primitive with more
powerful functionality that allows: (a) multiple input providers to encrypt their inputs, (b) an output receiver
to shuffle and rerandomize the ciphertexts, (c) a server to obliviously evaluate a PRF on encrypted as well as
plaintext identifiers, and (d) the output receiver to decrypt the encrypted PRF evaluations. Our EO primitive
consists of a collection of seven algorithms:

Definition 10 (EO). A rerandomizable encrypted OPRF (EO) parameterized with security parameter κ is a
collection of algorithms (KG,EKG,Eval,Enc,Rnd, OEval,Dec) with the following syntax.

– KG(1κ): On input 1κ output a public key, secret key pair (pk,sk).
– EKG(1κ): On input 1κ output a public function key, evaluation key pair (pf, ek).
– Eval(ek, x): On input (ek, x), output a PRF output y.
– Enc(pk, pf, x): On input (pk, pf, x), output a ciphertext ct.
– Rnd(pk, pf, ct): On input (pk, pf,ct), output a ciphertext ct′.
– OEval(ek, ct): On input (ek, ct), output evaluated ciphertext ect.
– Dec(sk, ect): On input (sk, ect), output y.

For correctness, we ask that for any x ∈ {0, 1}∗,
Pr[Dec(sk,OEval(ek,Rnd(pk, pf,Enc(pk, pf, x))) = Eval(ek, x)] ≥ 1− negl,

where (pk, sk)← KG(1κ) and (pf, ek)← EKG(1κ).

We use EO as shown in Fig. 5. Each Input Provider t invokes EO.Enc to encrypt identifier xt. Afterward,
an Output Receiver rerandomizes and shuffles the ciphertexts using EO.Rnd. We remark that for security,
we require that neither possession of EO.sk nor EO.ek is sufficient to distinguish encryptions of two different
messages. After the shuffle, the Server uses EO.OEval to homomorphically evaluate a PRF on the encrypted
identifier. The Server also evaluates the PRF on plaintext identifiers without knowledge of EO.sk by using
EO.Eval and knowledge of EO.ek. Finally, the Output Receiver uses EO.Dec to decrypt the PRF evaluation.
Observe that both the Server and the Output Receiver end up with the same PRF evaluation y for the same
input x (or xt). In order to have a PRF, we require that the EO.Eval outputs are pseudorandom given EO.pk,
EO.sk, and EO.pf. In Appendix B, we define several security notions and show how to construct this primitive
from DDH.

11



(pf, ek)← EKG(1κ) (pk, sk)← KG(1κ) foo

Publish pf Publish pk

ct← Enc(pk, pf, xt)

ct′ ← Rnd(pk, pf, ct)
ect← OEval(ek, ct′)

y ← Dec(sk, ect)
y ← Eval(ek, x)

ct

ct′

ect

Server Output Receiver Input Provider t

Fig. 5. Rerandomizable Encrypted OPRF (EO).

3.4 DPMC with Secure Shuffling (DsPMC)

In DPMC, party D performs the left join on the hashed and exponentiated data between C and multiple
delegators denoted as Pt. This process enables D to learn the full bipartite graph of correlations of matches
up to an isomorphism due to shared identifiers. We address this issue with an enhanced version called DsPMC
that utilizes our novel EO scheme and employs two delegates: party D and a new shuffler party S. DsPMC
relies on EO to perform a secure three-party shuffling protocol between C, D, and S that combines and
shuffles the data from all delegator parties Pt. In the process of secure shuffling, the data from the delegators
are reordered in a way that no single party knows the applied permutation. Additionally, the delegators’ data
undergo two forms of rerandomization. First, the encrypted identifiers are refreshed with new ciphertexts
using the EO.Rnd algorithm, generating new ciphertexts that correspond to the same plaintexts. Second, the
secret shares of the associated data are reshared, creating new secret shares of the same plaintext values.
Notably, these rerandomization steps do not reveal the underlying data and are meant to break any link
between the data that the delegators provide and the data that are used for the join and the secret sharing.
This way, the leakage to party D is only between C’s data and the combined data of parties P1 to PT ,
contrary to the pairwise leakages of DPMC. Since C combines the inputs of all delegators, party D (who
performs the join) only sees two encrypted datasets (i.e., encrypted KVC and encrypted KVP ).

Due to our shuffling and rerandomization steps, in a potential corruption of the delegators and one of
C,D, S, the corrupted parties cannot infer any information as the data have been permuted and rerandomized.
Our shuffling scheme is secure in the honest-majority setting, which is the case with multiple applications
from both academia [1,15,40] and industry. For instance, Mozilla recently deployed a service that relies on
the Prio protocol to collect telemetry data about Firefox [30], while Crypten [33] and TF Encrypted [17]
build privacy-preserving machine learning frameworks for PyTorch and TensorFlow, respectively. We delve
into the details of the security of DsPMC in Appendix D.2.

DsPMC follows a similar approach as DPMC, with the difference that it leverages our EO primitive. We
formally present our DsPMC protocol in Fig. 6; intuitively, it works as follows. The delegator parties use EO
to encrypt their identifiers and generate XOR shares as in the DPMC protocol. Then, the delegators encrypt
the shares for party D using pkD and send them to Party C along with C’s shares and all of the ciphertexts.
C then forwards D’s encrypted shares to Party D who decrypts them. Then parties C, D, and S run a secure

shuffling protocol in which C receives rerandomized EO ciphertexts (ẼO.ct), S obtains the rerandomized

shares for C (s̃hC), and D receives its randomized shares (s̃hD).
Next, S generates new key encapsulations and uses C’s shares to generate new shares for D. It sends the

updated shD,i to party D that allows D to adjust their shares to be consistent with the new shares of C. S
also sends the encapsulations (KEM.cp) to D.

Party C proceeds by homomorphically evaluating the PRF on the EO ciphertexts and the PRF on its
own identifiers ci,j and sends the outcomes to D. Recall from Fig. 5 that all the output receiver (D in this
case) needs to do now is to decrypt the evaluated EO ciphertexts and compute the matches. D computes
the left join with associated data, where for each matched record it ends up with T shares of either the
delegators’ associated data or zero. Note that D does not know which decrypted PRF identifier belongs to
which delegator. The matching logic is described in more detail in Def. 4 in the Appendix A. Similar to DPMC,
D it replaces the encapsulation with a fresh encapsulation when no match is found and keeps KEM.k as its

12



Setup: All parties Pt have access to the public key pkD of party D, party D has secret key skD. M :=
∑T

t=1 mt.

1 Key-Generation (Party C)
1: (KEM.pk,KEM.sk)← KEM.KG(1κ)
2: (EO.pf,EO.ek)← EO.EKG(1κ)
Send to Pt, S, D: KEM.pk,EO.pf

2 Key-Generation (Party D)
1: (EO.pk,EO.sk)← EO.KG(1κ)
Send to Pt: EO.pk

3 Identity Match (Party Pt)
Input: KVt = {{pt,i,j}j∈[mt,i]vt,i}i∈[mt] for data set size

mt.
Messages: EO.pk,EO.pf

1: seedt
R← {0, 1}κ ▷ Random seedt.

2: ctat := PKE.Enc(pkD, seedt)

3: (shD,t,1, . . . shD,t,mt)
R← PRG(seedt) ▷ Share of vt,i for

party D.
4: For i ∈ [mt]: ▷ For each row in KVt.
5: For j ∈ [mt,i]: ▷ For each column.
6: EO.ctt,i,j ← EO.Enc(EO.pk,EO.pf, pt,i,j) ▷

Encrypt data using EO.
7: shC,t,i := vt,i ⊕ shD,t,i ▷ Share of vt,i for party C.
Send to C: ctat, {{EO.ctt,i,j}j∈[mt,i], shC,t,i}i∈[mt]

4 Forward Shares to D (Party C)
Messages: {{{EO.ctt,i,j}j∈[mt,i], shC,t,i}i∈[mt],

ctat, }t∈[T ]

Send to D: {ctat}t∈[T ]

5 Reconstruct Shares (Party D)
Messages: {ctat} for all T parties P
1: For t ∈ [T ]: ▷ For each delegator Pt

2: seedt := PKE.Dec(skD, ctat) ▷ Get seed seedt.
3: shD,t,1, . . . , shD,t,mt := PRG(seedt) ▷ Share of vt,i

for party D.

6 Shuffling – Appendix C (Parties C, S,D)
Note: The EO.ct ciphertexts as well as the shC and shD

secret shares are: a) reordered such that no party

knows the permutation, and b) rerandomized to ẼO.ct,

s̃hC , and s̃hD. These rerandomizations correspond to
fresh encryptions and fresh secret shares of the same
underlying data.

C Input: {{EO.ctt,i,j}j∈[mt,i], shC,t,i}i∈[mt],t∈[T ]

S Input: −
D Input: {shD,t,i}i∈[mt],t∈[T ]

C receives output: {ẼO.cti,j}î∈[M ],j∈[m
î
] ▷

Rerandomized ciphertexts.
S receives output: {s̃hC,̂i}î∈[M ]▷ Rerandomized shares

for party C.
D receives output: {s̃hD,̂i}î∈[M ] ▷ Rerandomized

shares for party D.

7 Mask Shares (Party S)

Input: {s̃hC,̂i}î∈[M ]

Messages: KEM.pk
1: For i in [M ]: ▷ For all delegators rows.
2: (KEM.cpi,KEM.ki)← KEM.Enc(KEM.pk) ▷ New

encaps.
3: shD,i := s̃hC,i ⊕ KEM.ki ▷ Updated shares for party

D.
Send to D: {KEM.cpî, shD,̂i}î∈[M ]

8 Prepare Match Keys (Party C)
Input: KVC = {(ci,j)j∈[mC,i]}i∈[mC ], EO.ek and

{ẼO.cti,j}î∈[M ],j∈[m
î
].

1: For i ∈ [M ], j ∈ [mi]: ▷ For all delegators rows and
columns.

2: EO.ecti,j := EO.OEval(EO.ek, ẼO.cti,j)
3: For i ∈ [mC ], j ∈ [mC,i]: ▷ For all rows and columns

in KVC .
4: hC,i,j := EO.Eval(EO.ek, ci,j)
5: Use ci := (ci,j)j∈[mC,i] to order (hC,i,j)j∈[mC,i].
Send to D: (hC,i,j)i∈[mC ],j∈[mC,i],
{EO.ectî,j}î∈[M ],j∈[m

î
]

9 Identity Match and Recover Shares (Party D)

Input: EO.sk and {s̃hD,̂i}î∈[M ]

Messages: KEM.pk, {KEM.cpî, shD,̂i}î∈[M ],
{hC,i,j}i∈[mC ],j∈[mC,i], {EO.ectî,j}î∈[M ],j∈[m

î
]

1: For i ∈ [M ], j ∈ [mi]: ▷ For all delegators rows and
columns.

2: hi,j := EO.Dec(EO.sk,EO.ecti,j)
3: J := (hC,i,j)i∈[mC ],j∈[mC,i] ▷◁ (hci,j)i∈[M ],j∈[Mi] ▷

Details in Alg. 2.
4: For each row i in J , repeat for t ∈ [T ]:▷ For each row

in the join.
5: If record matched:
6: K̂EM.cpi := KEM.cpi′ ▷ Use encaps. from Pt̂.

7: ŝhD,i,t := s̃hD,i′ ⊕ shD,i′ ▷ Final shares for party
D.

8: Else: ▷ no match found
9: (K̂EM.cpi,KEM.ki)← KEM.Enc(KEM.pk) ▷ New

encaps.
10: ŝhD,i,t := KEM.ki ▷ Use share of 0.
11: Pick mC random permutations {πi}i∈[mC ].

12: JD := (πi({ŝhD,i,t}t∈[T ]))i∈[mC ] ▷ D’s permuted XOR

shares.
Send to C: {πi({K̂EM.cpi,t}t∈[T ])}i∈[mC ]

10 Recover Shares (Party C)
Input: KEM.sk

Messages: {K̂EM.cpi,t}i∈[mC ],t∈[T ]

1: For i ∈ [mC ], t ∈ [T ]

2: ŝhC,i,t := KEM.Dec(KEM.sk, K̂EM.cpi,t) ▷
(KEM.ki,t) Shares for C.

3: JC := (ŝhC,i,t)i∈[mC ],t∈[T ] ▷ Aligned with (ci)i∈[mC ]

Fig. 6. Multi-key DsPMC. This protocol uses two delegate parties (S and D) and is based on secure shuffling and EO.

13



share ŝhD. It then forwards the encapsulations K̂EM.cp to C. Party C finalizes the protocol by recovering
the encapsulated keys and using them as its shares ŝhC . Observe that for the unmatched records, C and D
end up with secret shares of zero as JC ⊕ JD = ŝhC,i,t̂ ⊕ ŝhD,i,t̂ = KEM.ki,t̂ ⊕ KEM.ki,t̂ = 0, while for the

matched records we get secret shares of the delegators’ associated data as JC ⊕ JD = ŝhC,i,t̂ ⊕ ŝhD,i,t̂ =

KEM.ki ⊕ s̃hD,i ⊕ shD,i = KEM.ki ⊕ (shD,i ⊕ s̃hC,i)⊕ KEM.ki = shD,i ⊕ shC,i) = vi.
We describe our protocol’s leakage in Def. 11. DsPMC limits the leakage of DPMC from pairwise intersection

sizes between each party to one intersection size between party C and the union of all delegators. For instance,
for parties C, P1, and P2, party D will learn |KVC ∩ KVP |, where KVP := {KV1 ∪ KV2}. Notably, these
intersection sizes also contain the number of times that keys are matched (i.e., 1 to T ). In case multiple keys
are used, D will additionally learn a graph of matches as defined by Lx,y in Def. 11. We provide the security of
DsPMC in Theorem 2 and prove it in Appendix D.2. Note that we do not need ciphertext indistinguishability
for the secret key owner (Lemma 4) since D does not handle any EO ciphertexts, only evaluated ciphertext.
This might change when a different shuffle protocol is used.

Definition 11 (DsPMC Leakage). Given KVC and KV1, . . . ,KVT , the leakage Lx,y of the ideal functionality
in Fig. 2 for the DsPMC protocol in Fig. 6 is defined as follows. Merge KV1, . . . ,KVT to KVP :=

⋃
t∈[T ] KVt.

Define KVu,C by replacing ci,j ∈ KVC with ui,j
R← {0, 1}κ. Define KVu,P by replacing pi,j ∈ KVP with ui′,j′

if there exists an i′, j′ pair with pi,j = ci′,j′ or an already replaced pi′,j′ with pi,j = pi′,j′ , otherwise replace it

with u′i,j
R← {0, 1}κ. Lx,y := {(C,KVu,C), (D,KVu,P )}.

Theorem 2. Let PKE be an IND-CPA secure and correct PKE scheme, KEM a correct and key-indistinguishable
key encapsulation mechanism, PRG as secure pseudorandom generator, and EO be a correct and satisfy sta-
tistical rerandomized ciphertext indistinguishability, the (semi-honest) ciphertext indistinguishability for the
evaluation key and secret key owner and ciphertext well-formedness.

Then, the protocol in Fig. 6 securely realizes ideal functionality in Fig. 2 for the join defined in Def. 4 for
semi-honest corruption of one of the three parties C, D, S, and any amount of parties P1 to PT . In case of a
corruption of D, the leakage graph of Def. 11 is leaked.

4 Matching Strategy

Recall from Fig. 1 that the view of each party for a specific record may be different and a record may have
multiple identifiers (e.g., email address, phone). When combining datasets from multiple delegators, the
uniqueness of the identifiers cannot be guaranteed as the same record might appear in more than one dataset.
Thus, potential matches for each row can occur based on different identifiers across different delegators. For
instance, a match on the jth identifier of record ci may occur for keys in different positions between different
parties (e.g., with pt,i′,j′ with i ̸= i′ and j ̸= j′). Parties C and D in our protocols compute the left join as
described in Def. 3 and acquire JC and JD, respectively. To capture all the aforementioned matches, for T
delegators, JC and JD have T permuted columns of secret shares which either correspond to shares of the
associated metadata of one of the input parties (if a match was found) or to shares of NULL (in case no match
was found).

As the number of delegators P1 to PT grows, it is natural for our resulting JC and JD tables to contain
multiple secret shares of NULL. This becomes more evident if each individual dataset KVt is relatively small
compared to KVC ; even if all the records of KVt match with records in KVC , there would still be multiple
unmatched records in KVC which will get secret shares of NULL. To optimize both our matching and our
downstream computation, we now delve into a matching strategy to generate one-to-many connections that
do not depend on T and minimize the number of NULL secret shares.

First, C and D agree on a maximum number of connections K to capture. D performs a ranked left join
by starting from the identifier with the highest priority in KVC and checking whether it appears in each KVt

before moving to the next record in KVC . After searching by the first key of each record in KVC , D continues
with the next identifier, and so on. If a record from Pt is matched, we mark that record as done and continue
to the next record in order to avoid counting the same associated values more than once. For each record ci, if
K or more matches are found, D creates secret shares of the associated data of the first K records, otherwise
(if less than K matches are found), D pads the remaining columns (up to K) with secret shares of NULL.

14



We note that this is an implementation-specific detail that can be trivially extended to different matching
strategies. Each of the resulting tables JC and JD has K columns and captures a one-to-K matches for each
record in the left join.

5 Real-World Applications

Recall that our ideal functionality FDPMC (and FDPMC) consists of FJOIN and FCMP. Our delegated protocols
realize FJOIN and output secret shares to parties C and D for the left join of parties C and P1, . . . , PT .
Next, FCMP can be realized by running any general-purpose MPC between C and D. We foresee multiple
real-world applications for FCMP that may leverage our architecture merging multiple private datasets across
distrusting parties with a centralized entity (party C) to securely compute analytics. For instance, DPMC
enables calculating the risk of a health condition by merging information held by a larger healthcare provider
with data stored on millions of individual smart devices. In another example, an ad publisher holding
user-provided information can measure advertising efficacy and offer personalization by merging with data
held by multiple advertisers while still preserving user privacy. In this section, we focus on the latter and
outline how DPMC enables privacy-preserving ad measurement and delivery of personalized advertising
leveraging privacy-preserving machine learning. The former provides advertisers useful insights about how
their ad campaigns are performing, while the latter enables delivering personalized ads while preserving user
privacy.

5.1 Privacy-Preserving Ad Attribution

Inputs. We assume the following input data held by an ad publisher, denoted by C and T advertisers,
denoted by P1, . . . , PT .

– Party C is a company that holds a dataset of ad actions (i.e., clicks) performed by individuals on
product-related advertisements. These ads were shown to users after they expressed an intent via an
online search engine. Users may be shown ads related to multiple products owned by hundreds of
advertisers.

– Advertisers P1 to PT , hold conversion information for their customers, such as purchase amount and
time of the purchase.

– All parties (C, P1, . . . , PT ) also hold annotated sets of common identifiers (e.g., email addresses and
phone numbers).

FJOIN phase. Executing the DPMC protocol for FJOIN with the above input data from C and multiple P
parties, the following output is available at the ad publisher C and the delegate servers.

– Party C holds a mapping of secret shares of conversion data to a dataset of ad actions. This mapping
does not reveal any new information to C apart from random-looking secret shares. In the case of no
matches, party C receives secret shares of zero.

– Party D receives a set of secret shares of the conversion data or a dummy value (e.g., zero) that is also
aligned to party’s C records (i.e., left join). D gains insights into pairwise intersection sizes (in DPMC)
or the intersection size of C with the union of all advertisers’ sets (in DsPMC). For example, when users
have unique phone numbers and email addresses, in DsPMC D learns the intersection sizes of records
where at least phone number, email address, or both matched between the company and the union of all
advertisers’ data. In a real-world scenario where D is a privacy-conscious non-profit organization, this
level of leakage has fairly low privacy implications. If the uniqueness of identifiers cannot be assumed,
the sizes of groups with the same identifiers are leaked.

– Parties P1 to PT , receive nothing.

FCMP phase. Parties C and D now hold secret shares of conversion metadata such as conversion time and
values. C can then further input metadata of ad actions, such as click timestamp, as secret shares using the
link to the original records that were established by the DPMC protocol. Now, parties C and D engage in
multi-party computation to compute the attribution function that flags when a conversion (product was

15



bought) occurred within a pre-specified time window from the ad action. Note that the MPC computation is
embarrassingly parallel given the row-wise output structure of DPMC. The output of the privacy-preserving
ad attribution remains at the ad action level, hence remains secret shared between parties C and D and is
used as an input into further downstream computations such as private measurement or personalization,
described next.

5.2 Privacy-Preserving Analytics

Measuring the efficacy of advertising first requires computing aggregated conversion outcomes such as the
total number of attributed conversions per campaign. Note that DPMC maintains the left join of the ad actions
without revealing any user-level information to party C at any stage. Party C may attach campaign-level
identifiers with limited entropy ensuring sufficient K-anonymity guarantees. At this point, parties C and D
engage in another round of MPC (i.e., a new FCMP phase) to compute aggregated conversion outcomes per
campaign. Finally, differentially private noise can be added to the aggregated outcomes within MPC before
revealing the results to party C, so that C only learns noisy aggregates for each ad campaign.

5.3 Privacy-Preserving Personalization

Privacy-preserving personalization typically entails training a model to be able to estimate the relevance of
potential ads for users. Note that privacy-preserving ad attribution during the data pre-processing phase
generates secret shares of ad attribution outcomes for both parties C and D. Leveraging the mapping produced
by DPMC from secret shares to original ad actions, party C may attach any private features to the private
attribution outcomes without revealing any individually identifiable information. At this stage, parties C and
D can run a new FCMP in multi-party computation for model training with privately input features (from
party C) and secret shared labels (from both parties C and D). For example, CrypTen [33], a multi-party
computation framework for machine learning, may be leveraged between the parties C and D downstream to
the DPMC protocol. Similarly to the aforementioned analytics example, privacy-preserving personalization
would also include differential privacy guarantees and we point avid readers to one such implementation [56].

6 Evaluations

Implementation & Setup. We implemented our protocols in Rust (1.62) and used the Dalek library for
Elliptic Curve Cryptography with Ristretto for Curve25519 [18,28].5 This enables the use of a fast curve while
avoiding high-cofactor vulnerabilities. For symmetric encryption, we use the Fernet library with AES-128 in
CBC mode, for public key encryption we use ElGamal with elliptic curves, and for the key encapsulation
mechanism, we use ElGamal KEM.

We created artificial datasets where each record has one 128-bit identifier and two 64-bit associated values.
The performance measurements were carried out on AWS m5.12xlarge EC2 instances (Intel Xeon at 3.1GHz,
48 vCPU, 192GB RAM). To simulate C, D, and multiple P parties we leverage three separate EC2 instances
in the same region, where C and D are hosted by two separate instances, and the third instance hosts all
parties P1 to PT . For our WAN experiments, we used three m5.12xlarge EC2 instances in N. Virginia, Ohio,
and N. California. All parties communicate via RPC over TLS v1.3 using Protocol Buffers.

Varying number of delegators. In Fig. 7, we fixed the size of KVC to 1 million and varied both the number
of delegators and their dataset sizes. In the orange and red trends, we used a single delegator for DPMC and
DsPMC with dataset sizes indicated by the x-axis. In the blue and green trends, we split the dataset into ten
delegators, where each party has 1/10 of the input size shown on the x-axis. Although the combined size of
the dataset of the ten parties is the same, the local computation for each delegator is significantly less. In
this case, the performance time for each delegator is about ten times faster than having a single P1 party
with a bigger dataset.

Protocol time for delegator. Next, we fixed the input of party C to 1 million with a single identifier per
record and varied the size of the dataset of the delegator. In Fig. 8 we show the execution times for party

5 Our protocols are open-source at https://github.com/facebookresearch/Private-ID.

16

https://github.com/facebookresearch/Private-ID


103 104 105 106

Input Size for P

10−2

10−1

100

101

102

W
al

l C
lo

ck
 R

un
tim

e 
(s

) DPMC - P1, … , P10
DPMC - P1
DsPMC - P1, … , P10
DsPMC - P1

Fig. 7. Measured execution time of delegator for DPMC and DsPMC with mC = 106 and and increasing KVP with
intersection sizes of 50% of KVP .

103 104 105 106

Input Size for P

10−1

100

101

102

103

104

W
al

l C
lo

ck
 R

un
tim

e 
(s

)

DPMC
DsPMC
PJC

PS3I
C-PSI

Fig. 8. Measured time of P for DPMC, DsPMC, PJC, PS3I, and Circuit-PSI with mC = 106 and intersection sizes of
50% of mt. All protocols are evaluated with a single delegator.

P for DPMC, DsPMC, PJC, PS3I, and Circuit-PSI. We use the PS3I [10] and PJC [31] implementations
from [9], which both use Paillier with a 2048-bit public key. Similarly to our protocols, both these protocols
assume that party P has associated metadata: PS3I generates additive secret shares, whereas PJC aggregates
the associated values of the items in the intersection. Additionally, for fair comparisons, we implemented
over-the-network communication between the sender and the receiver on the Circuit-PSI implementation of
[50] (the implementation of [12] crashes with different dataset sizes). The blue and orange trends in Fig. 8
show the execution time of a single delegator running the DPMC and the DsPMC protocols, respectively,
which are approximately the same. We observe that the execution time for both is approximately 10× faster
than party P in PJC and multiple orders of magnitude faster than PS3I. The runtime in PJC scales linearly
with P ’s dataset size, however, this is not the case with PS3I as P ’s execution time is also affected by C’s
dataset. The runtime for Circuit-PSI is linear in the input of both parties, so it incurs high overheads when
mC ≫ mP . Both this and the previous experiments (Figs. 7 and 8) demonstrate the benefits of our delegated
protocols for the delegator parties compared to the two-party protocols.

Varying intersection size. In our next experiment, we fixed the input size at 1 million records for both
parties and the number of identifiers at 2 per record and varied the intersection size (1%, 25%, 50%, and
100%). We observed negligible performance variations (i.e., less than a second) for the different intersection
sizes since our protocol always outputs the left join and depends on KVC size.

Varying number of identifiers. We now show how the number of keys affects the performance of our
protocols. We fixed the input size to 105 records for both parties and the intersection size to 50%. Fig. 9
shows the total time for DPMC (light green trend) and DsPMC (light blue trend) as well as the input and
output traffic for each party for DPMC. Notably, the communication of DsPMC is similar for an increasing
number of identifiers as the matching strategy is very similar for the two protocols.

Communication. In Table 2 we present the asymptotic costs (communication and number of exponentiations)
of each protocol for each party. C and D incur similar communication overhead which scales with the size of

17



1 2 4 8
Number of Keys

101

102

103

W
al

l C
lo

ck
 R

un
tim

e 
(s

) DPMC
DsPMC

0

20

40

60

80

M
B

C In
C Out

D In
D Out

Pt In
Pt Out

Fig. 9. Wall clock time for DPMC and DsPMC. DPMC network traffic for each party C, D, and Pt with an increasing
number of keys per row for mC = mt = 105 and an intersection size of 50% of mC .

Table 2. Communication cost & number of exponentiation. T is the number of delegators; mC and mt are the set sizes
of C and each delegator Pt, respectively, and M :=

∑T
t=1 mt. I := |KVC∩KVP |, where KVP := {KV1∪KV2∪. . .∪KVT }.

Party C D S Pt

D
P
M
C Communication O(mC +M) O(mC +M) - O(mt)

Num. of Exp. 2mC +M M +mC − I - 2mt + 1

D
s
P
M
C Communication O(mC +M) O(mC +M) O(M) O(mt)

Num. of Exp. 2mC + 3M M +mC − I 4M 2mt

KVC and the delegators’ datasets. The communication cost for each delegator Pt is linear to their dataset. In
DsPMC, party S incurs a linear communication to the size of all the delegators’ datasets. Finally, we observe
that the number of exponentiations of DPMC and DsPMC are similar.

Table 3 shows each party’s incoming and outgoing traffic in MBs. We observe a linear increase in the
communication for each party as we increase the input sizes. Interestingly, we see that although DsPMC
performs more rounds than DPMC, the communication for each party is lower than DPMC. This happens
because each Pt encrypts their XOR shares in order to prevent C from accessing them during the fourth step
of the protocol. Finally, our protocols have similar communication as Circuit-PSI, which showed a linear
increase with the dataset sizes. For reference, the outgoing communication for datasets of 106 elements was
424 MBs (344 from the sender and 80 from the receiver).

Table 3. For each party C,P,D, S we show In/Out in MB with mC = mP and intersection size I = 50% of mC .

Size C [In/Out] D [In/Out] S [In/Out] Pt [In/Out]

D
P
M
C

103 0.3/0.3 0.3/0.1 - 0.1/0.3
104 3.7/3.7 3.4/2.8 - 0.1/2.8
105 33/33 33/4.8 - 0.1/28
106 312/312 320/44 - 0.1/279

D
s
P
M
C 103 0.2/0.2 0.1/0.1 0.1/0.1 0.1/0.1

104 2.3/2.5 1.5/0.4 1/1 0.1/0.8
105 22/24 14/4.3 9.5/9.5 0.1/8.5
106 220/241 145/42 94/94 0.1/84.7

Two-party related works. We also compare our protocols with two-party works and vary the input size
of each party from 103 to 106 while fixing the intersection size to 50%. As a baseline, we compare with
multi-key Private-ID [8] which only focuses on private matching and does not consider associated data. To be
in a similar setting, we run our protocols with a single party P . Fig. 10 shows how our delegated protocols
significantly outperform both PS3I and PJC by more than a factor of 10x. On the other hand, our delegated
protocols are only ≈ 1.8x slower than Private-ID although the latter does not include associated values and

18



103 104 105 106

Input Size

10−1

100

101

102

103

104

W
al

l C
lo

ck
 R

un
tim

e 
(s

) DPMC
DsPMC
PMC

PS3I
PJC
C-PSI

Fig. 10. Comparisons of DPMC and DsPMC with two-party protocols: PJC, Private-ID (PMC), PJC, PS3I, and
Circuit-PSI with an increasing number of dataset sizes (mC = mP ) and an intersection of 50%mC . We use PMC as a
baseline as it only performs matching and does not consider associated values.

is only between two parties. This means that our protocols process approximately twice the amount of data
that Private-ID processes since for each row of KVP , DPMC and DsPMC also create secret shares of the
associated data. Circuit-PSI is 3-4x times faster than our protocols but, as the other related works, only
considers two parties who are both assumed to be online throughout the entire protocol execution and do not
take into account any delegation methods.

103 104 105 106

Input Size

100

101

102

103

104

W
al

l C
lo

ck
 R

un
tim

e 
(s

) DPMC
DsPMC
PMC

PS3I
PJC
C-PSI

Fig. 11. Comparisons as in Fig. 10 over WAN.

In Fig. 11, we repeated the same experiments over WAN and observed a similar scaling for all the protocols.
Interestingly, the margin between Circuit-PSI and our protocols became smaller as Circuit-PSI requires
significantly more communication. Finally, note that these experiments do not offer a balanced assessment of
our protocols as the benefits of the delegated setting are shown in Figs. 7 and 8. In the former, we observe
that each delegator performs work proportional to their dataset size, while in the latter, the delegators have
smaller datasets than C and they go offline after they outsource their datasets.

7 Concluding Remarks

We presented two delegated protocols that establish relations between datasets that are held by multiple
distrusting parties and enable them to run any arbitrary secure computation. Our protocols allow the input
parties to submit their records along with associated values and generate secret shares of the associated
values for the matched records and secret shares of NULL otherwise. Notably, they facilitate the delegation of
both the matching process and downstream secure computation to delegate parties. In contrast with prior
works that only support two parties, our work is designed to scale to multiple input parties.

In addition, our delegated protocols enable one of the input parties to provide more data after the
matching has been established which can be used for the downstream computation without requiring

19



rerunning the private matching process. We further introduced a rerandomizable encrypted OPRF (EO)
primitive that extends beyond the classic two-party OPRF setting and allows multiple input providers to
interact with an output receiver and a server and perform oblivious PRF evaluations. While prior works
mostly focused on intersection and union, we focused on left-join matching and we demonstrated its benefits
in privacy-preserving online advertising by performing private ad attribution measurement, privacy-preserving
analytics, and personalization. Finally, our implementation demonstrates the efficiency of our constructions
by outperforming related works.

Acknowledgments

The authors would like to thank Anderson Nascimento, Erik Taubeneck, Gaven Watson, Sanjay Saravanan,
Shripad Gade, Pratik Sarkar, and Charles Gouert for the fruitful discussions and the anonymous reviewers
for their feedback. The third author was partially supported by NSF awards #2101052, #2200161, #2115075,
and ARPA-H SP4701-23-C-0074.

References

1. Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-throughput semi-honest
secure three-party computation with an honest majority. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Computer and
Communications Security, pages 805–817, Vienna, Austria, October 24–28, 2016. ACM Press.

2. Amos Beimel. Secret-sharing schemes: A survey. In International Conference on Coding and Cryptology, pages
11–46, Berlin, Heidelberg, 2011. Springer.

3. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS 93:
1st Conference on Computer and Communications Security, pages 62–73, Fairfax, Virginia, USA, November 3–5,
1993. ACM Press.

4. Abhishek Bhowmick, Dan Boneh, Steve Myers, Kunal Talwar, and Karl Tarbe. The Apple PSI system, 2021.
5. Erik-Oliver Blass and Florian Kerschbaum. Private collaborative data cleaning via non-equi psi. In 2023 IEEE

Symposium on Security and Privacy, pages 1419–1434, San Francisco, CA, USA, May 2023. IEEE Computer
Society Press.

6. Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-preserving computations.
In Sushil Jajodia and Javier López, editors, ESORICS 2008: 13th European Symposium on Research in Computer
Security, volume 5283 of Lecture Notes in Computer Science, pages 192–206, Málaga, Spain, October 6–8, 2008.
Springer, Heidelberg, Germany.

7. Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Lightweight techniques for private
heavy hitters. In 2021 IEEE Symposium on Security and Privacy, pages 762–776, San Francisco, CA, USA,
May 24–27, 2021. IEEE Computer Society Press.

8. Prasad Buddhavarapu, Benjamin M Case, Logan Gore, Andrew Knox, Payman Mohassel, Shubho Sengupta, Erik
Taubeneck, and Min Xue. Multi-key private matching for compute. Cryptology ePrint Archive, Report 2021/770,
2021. https://eprint.iacr.org/2021/770.

9. Prasad Buddhavarapu, Andrew Knox, Payman Mohassel, Shubho Sengupta, Erik Taubeneck, and Vlad Vlaskin.
Private-ID. https://github.com/facebookresearch/Private-ID, 2020.

10. Prasad Buddhavarapu, Andrew Knox, Payman Mohassel, Shubho Sengupta, Erik Taubeneck, and Vlad Vlaskin.
Private matching for compute. Cryptology ePrint Archive, Report 2020/599, 2020. https://eprint.iacr.org/
2020/599.

11. Śılvia Casacuberta, Julia Hesse, and Anja Lehmann. SoK: Oblivious pseudorandom functions. Cryptology ePrint
Archive, Report 2022/302, 2022. https://eprint.iacr.org/2022/302.

12. Nishanth Chandran, Divya Gupta, and Akash Shah. Circuit-PSI with linear complexity via relaxed batch OPPRF.
Proceedings on Privacy Enhancing Technologies, 2022(1):353–372, January 2022.

13. Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from fully homomorphic encryption with
malicious security. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS
2018: 25th Conference on Computer and Communications Security, pages 1223–1237, Toronto, ON, Canada,
October 15–19, 2018. ACM Press.

14. Michele Ciampi and Claudio Orlandi. Combining private set-intersection with secure two-party computation.
In Dario Catalano and Roberto De Prisco, editors, SCN 18: 11th International Conference on Security in
Communication Networks, volume 11035 of Lecture Notes in Computer Science, pages 464–482, Amalfi, Italy,
September 5–7, 2018. Springer, Heidelberg, Germany.

20

https://eprint.iacr.org/2021/770
https://github.com/facebookresearch/Private-ID
https://eprint.iacr.org/2020/599
https://eprint.iacr.org/2020/599
https://eprint.iacr.org/2022/302


15. Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computation of aggregate statistics. In
Proceedings of the 14th USENIX Conference on Networked Systems Design and Implementation, NSDI’17, page
259–282, USA, 2017. USENIX Association.

16. Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion, pseudorandom secret-sharing and applications
to secure computation. In Joe Kilian, editor, TCC 2005: 2nd Theory of Cryptography Conference, volume 3378
of Lecture Notes in Computer Science, pages 342–362, Cambridge, MA, USA, February 10–12, 2005. Springer,
Heidelberg, Germany.

17. Morten Dahl, Jason Mancuso, Yann Dupis, Ben Decoste, Morgan Giraud, Ian Livingstone, Justin Patriquin, and
Gavin Uhma. Private Machine Learning in TensorFlow using Secure Computation. CoRR, abs/1810.08130:1–6,
2018.

18. Dalek-Cryptography. Dalek library for elliptic curve cryptography. GitHub, 2020. https://github.com/dalek-
cryptography/curve25519-dalek.

19. Ivan Damg̊ard and Yuval Ishai. Scalable secure multiparty computation. In Cynthia Dwork, editor, Advances in
Cryptology – CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science, pages 501–520, Santa Barbara,
CA, USA, August 20–24, 2006. Springer, Heidelberg, Germany.

20. Hannah Davis, Christopher Patton, Mike Rosulek, and Phillipp Schoppmann. Verifiable Distributed Aggregation
Functions. Proceedings on Privacy Enhancing Technologies, 2023(4):1–20, July 2023.

21. Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework for efficient mixed-protocol secure
two-party computation. In ISOC Network and Distributed System Security Symposium – NDSS 2015, pages 1–15,
San Diego, CA, USA, February 8–11, 2015. The Internet Society.

22. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 22(6):644–654, 1976.

23. Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs and keys. In Serge
Vaudenay, editor, PKC 2005: 8th International Workshop on Theory and Practice in Public Key Cryptography,
volume 3386 of Lecture Notes in Computer Science, pages 416–431, Les Diablerets, Switzerland, January 23–26,
2005. Springer, Heidelberg, Germany.

24. Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big data: an efficient and scalable
protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013: 20th Conference on
Computer and Communications Security, pages 789–800, Berlin, Germany, November 4–8, 2013. ACM Press.

25. Thai Duong, Duong Hieu Phan, and Ni Trieu. Catalic: Delegated PSI cardinality with applications to contact
tracing. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2020, Part III,
volume 12493 of Lecture Notes in Computer Science, pages 870–899, Daejeon, South Korea, December 7–11, 2020.
Springer, Heidelberg, Germany.

26. Thanos Giannopoulos and Dimitris Mouris. Privacy preserving medical data analytics using secure multi party
computation. an end-to-end use case. Master’s thesis, National and Kapodistrian University of Athens, 2018.

27. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness theorem for
protocols with honest majority. In Alfred Aho, editor, 19th Annual ACM Symposium on Theory of Computing,
pages 218–229, New York City, NY, USA, May 25–27, 1987. ACM Press.

28. Mike Hamburg et al. Ristretto, 2020. https://ristretto.group.
29. Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic. SoK: General purpose compilers for

secure multi-party computation. In 2019 IEEE Symposium on Security and Privacy, pages 1220–1237, San
Francisco, CA, USA, May 19–23, 2019. IEEE Computer Society Press.

30. Robert Helmer, Anthony Miyaguchi, and Eric Rescorla. Testing Privacy-Preserving Telemetry with Prio. https:
//hacks.mozilla.org/2018/10/testing-privacy-preserving-telemetry-with-prio, 2018.

31. Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth, Mariana Raykova,
David Shanahan, and Moti Yung. On deploying secure computing: Private intersection-sum-with-cardinality. In
EuroS&P, pages 370–389, Genoa, Italy, 2020. IEEE.

32. Marcel Keller. MP-SPDZ: A versatile framework for multi-party computation. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020: 27th Conference on Computer and Communications
Security, pages 1575–1590, Virtual Event, USA, November 9–13, 2020. ACM Press.

33. Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark Ibrahim, and Laurens van der
Maaten. CrypTen: Secure Multi-Party Computation Meets Machine Learning. Advances in Neural Information
Processing Systems, 34, 2021.

34. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched oblivious PRF with
applications to private set intersection. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Computer and Communications Security,
pages 818–829, Vienna, Austria, October 24–28, 2016. ACM Press.

35. Anja Lehmann. ScrambleDB: Oblivious (chameleon) pseudonymization-as-a-service. Proceedings on Privacy
Enhancing Technologies, 2019(3):289–309, July 2019.

21

https://github.com/dalek-cryptography/curve25519-dalek
https://github.com/dalek-cryptography/curve25519-dalek
https://ristretto.group
https://hacks.mozilla.org/2018/10/testing-privacy-preserving-telemetry-with-prio
https://hacks.mozilla.org/2018/10/testing-privacy-preserving-telemetry-with-prio


36. Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Karn Seth, and Ni Trieu. Private join and compute from PIR
with default. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2021,
Part II, volume 13091 of Lecture Notes in Computer Science, pages 605–634, Singapore, December 6–10, 2021.
Springer, Heidelberg, Germany.

37. Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party computation. Journal of
Cryptology, 22(2):161–188, April 2009.

38. Catherine Meadows. A more efficient cryptographic matchmaking protocol for use in the absence of a continuously
available third party. In 1986 IEEE Symposium on Security and Privacy, pages 134–134, Oakland, CA, USA,
1986. IEEE.

39. Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung. Two-sided malicious security for private
intersection-sum with cardinality. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology
– CRYPTO 2020, Part III, volume 12172 of Lecture Notes in Computer Science, pages 3–33, Santa Barbara, CA,
USA, August 17–21, 2020. Springer, Heidelberg, Germany.

40. Payman Mohassel, Peter Rindal, and Mike Rosulek. Fast database joins and PSI for secret shared data. In Jay
Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020: 27th Conference on Computer
and Communications Security, pages 1271–1287, Virtual Event, USA, November 9–13, 2020. ACM Press.

41. Dimitris Mouris, Pratik Sarkar, and Nektarios Georgios Tsoutsos. PLASMA: Private, Lightweight Aggregated
Statistics against Malicious Adversaries. Cryptology ePrint Archive, Report 2023/080, 2023. https://eprint.
iacr.org/2023/080.

42. Dimitris Mouris and Nektarios Georgios Tsoutsos. Masquerade: Verifiable multi-party aggregation with secure
multiplicative commitments. Cryptology ePrint Archive, Report 2021/1370, 2021. https://eprint.iacr.org/
2021/1370.

43. Mahnush Movahedi, Benjamin M. Case, James Honaker, Andrew Knox, Li Li, Yiming Paul Li, Sanjay Saravanan,
Shubho Sengupta, and Erik Taubeneck. Privacy-preserving randomized controlled trials: A protocol for industry
scale deployment. In Proceedings of the 2021 on Cloud Computing Security Workshop, CCSW ’21, page 59–69,
New York, NY, USA, 2021. Association for Computing Machinery.

44. Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference attacks on property-preserving encrypted
databases. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015: 22nd Conference on
Computer and Communications Security, pages 644–655, Denver, CO, USA, October 12–16, 2015. ACM Press.

45. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Jacques Stern, editor,
Advances in Cryptology – EUROCRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages 223–238,
Prague, Czech Republic, May 2–6, 1999. Springer, Heidelberg, Germany.

46. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-light: Lightweight private set intersection
from sparse OT extension. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology –
CRYPTO 2019, Part III, volume 11694 of Lecture Notes in Computer Science, pages 401–431, Santa Barbara, CA,
USA, August 18–22, 2019. Springer, Heidelberg, Germany.

47. Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient circuit-based PSI with
linear communication. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019,
Part III, volume 11478 of Lecture Notes in Computer Science, pages 122–153, Darmstadt, Germany, May 19–23,
2019. Springer, Heidelberg, Germany.

48. Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient circuit-based PSI via cuckoo
hashing. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018,
Part III, volume 10822 of Lecture Notes in Computer Science, pages 125–157, Tel Aviv, Israel, April 29 – May 3,
2018. Springer, Heidelberg, Germany.

49. Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection based on OT extension. In
Kevin Fu and Jaeyeon Jung, editors, USENIX Security 2014: 23rd USENIX Security Symposium, pages 797–812,
San Diego, CA, USA, August 20–22, 2014. USENIX Association.

50. Peter Rindal and Phillipp Schoppmann. VOLE-PSI: Fast OPRF and circuit-PSI from vector-OLE. In Anne
Canteaut and Franccois-Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT 2021, Part II, volume
12697 of Lecture Notes in Computer Science, pages 901–930, Zagreb, Croatia, October 17–21, 2021. Springer,
Heidelberg, Germany.

51. Mike Rosulek and Ni Trieu. Compact and malicious private set intersection for small sets. In Giovanni Vigna
and Elaine Shi, editors, ACM CCS 2021: 28th Conference on Computer and Communications Security, pages
1166–1181, Virtual Event, Republic of Korea, November 15–19, 2021. ACM Press.

52. Adi Shamir. How to share a secret. Communications of the Association for Computing Machinery, 22(11):612–613,
November 1979.

53. Silvia Vermicelli, Livio Cricelli, and Michele Grimaldi. How can crowdsourcing help tackle the covid-19 pandemic?
an explorative overview of innovative collaborative practices. R&D Management, 51(2):183–194, 2021.

54. Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient MultiParty computation toolkit.
https://github.com/emp-toolkit, 2016.

22

https://eprint.iacr.org/2023/080
https://eprint.iacr.org/2023/080
https://eprint.iacr.org/2021/1370
https://eprint.iacr.org/2021/1370
https://github.com/emp-toolkit


55. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd Annual Symposium on
Foundations of Computer Science, pages 160–164, Chicago, Illinois, November 3–5, 1982. IEEE Computer Society
Press.

56. Sen Yuan, Milan Shen, Ilya Mironov, and Anderson C. A. Nascimento. Practical, label private deep learning
training based on secure multiparty computation and differential privacy. IACR Cryptol. ePrint Arch., 1:835,
2021.

A Additional Definitions

Below, we provide Algs. 1 and 2 for Defs. 3 and 4. For simplicity, our DPMC protocol in Fig. 4 uses single
keys. Alg. 1 computes the join as outlined in Def. 3 for multiple keys but it can be easily adjusted for single
keys. Alg. 2 computes the join as outlined in Def. 4.

Algorithm 1 Join for DPMC (Fig. 4 and Def. 3).

Match on: {hct̂,i,j}j∈[mt̂,i],i∈[mt̂],t̂∈[T ]} and {(hC,i,j)j∈[mC,i]}i∈[mC ]

1: J := ∅ ▷ Initialize join.
2: For i ∈ [mC ], t̂ ∈ [T ]: ▷ Perform the join.
3: For j ∈ [mC,i]: ▷ Set of matched indices.
4: Si,j,t̂ := {i′ ∈ [mt̂] | ∃j′ ∈ [mt̂,i′ ] s.t. hct̂,i′,j′ = hC,i,j}
5: If

⋃
j Si,j,t̂ ̸= ∅: ▷ If a match was found.

6: ji,t̂ := min(j ∈ [mC,i] s.t. Si,j,t̂ ̸= ∅)
7: Pick i′ ∈ Si,ji,t̂,t̂

▷ i′ is unique for each i.

8: Add (i′, t̂) to J .

Algorithm 2 Join for DsPMC (Fig. 6 and Def. 4).

Match on: {hi,j}i∈[M ],j∈[mi]} and {hC,i,j}i∈[mC ],j∈[mC,i]

1: J := ∅ ▷ Initialize join.
2: For i ∈ [mC ] : ▷ Perform the join.
3: For j ∈ [mC,i]: ▷ For each column.
4: Si,j := {i′ ∈ [M ] | ∃j′ ∈ [mi′ ] s.t. hi′,j′ = hC,i,j}
5: ti := 1 ▷ Keep track of number of matches for row i.
6: ST := ∅
7: For j ∈ [mC,i]: ▷ For each column.
8: If

⋃
j∈[mC,i]

Si,j \ ST ̸= ∅ and ti < T : ▷ If a match was found.

9: i′
R← Si,j \ ST

10: ST := ST ∪ {i′}
11: ti := ti + 1 ▷ ti matches for row i.
12: Add (i′, ti) to J .

Definition 12 (DDH Assumption). [22] Let G(κ) be a group parameterized by security parameter κ and
g be a generator. We say that the Decisional Diffie–Hellman (DDH) assumption holds in group G(κ) if for
every ppt adversary A: ∣∣Pr[A(g, ga, gb, gab) = 1]− Pr[A(g, ga, gb, gc) = 1]

∣∣ ≤ negl,

where the probability is taken over a
R← Zq, b

R← Zq, c
R← Zq and the random coins of A.

Definition 13 (Pseudorandom Generator). We call a deterministic polynomial time algorithm PRG a
pseudorandom generator if for any ppt adversary A,∣∣Pr[A(x) = 1]− Pr[A(u) = 1]

∣∣ ≤ negl,

23



where ℓ > κ, u
R← {0, 1}ℓ, seed R← {0, 1}κ and x = PRG(seed).

Definition 14 (Random Oracle). [3] A random oracle RO is a family of functions that maps an input
from {0, 1}∗ to an ℓ-bit image {0, 1}ℓ s.t. each output is selected uniformly and independently.

Definition 15 (Symmetric Key Encryption). A symmetric encryption scheme parameterized with security
parameter κ is a triplet of algorithms (SKE.KG,SKE.Enc,SKE.Dec) with the following syntax.

– SKE.KG(1κ): On input 1κ output secret key sk.
– SKE.Enc(sk, x): On input (sk, x), SKE.Enc outputs a ciphertext ct.
– SKE.Dec(sk, ct): On input (sk, ct), SKE.Dec outputs a message x.

For correctness, we ask that for any message x ∈ {0, 1}∗,

Pr
sk←SKE.KG(1κ)

[SKE.Dec(sk,SKE.Enc(sk, x)) = x] ≥ 1− negl.

Definition 16 (Public Key Encryption). A public encryption scheme parameterized with security param-
eter κ is a triplet of algorithms (PKE.KG,PKE.Enc,PKE.Dec) with the following syntax:

– PKE.KG(1κ): On input 1κ output a key pair (pk, sk).
– PKE.Enc(pk, x): On input (pk, x), PKE.Enc outputs a ciphertext ct.
– PKE.Dec(sk, ct): On input (sk, ct), PKE.Dec outputs a message x.

For correctness, we ask that for any message x ∈ {0, 1}∗,

Pr
(pk,sk)←PKE.KG(1κ)

[PKE.Dec(sk,PKE.Enc(pk, x)) = x] ≥ 1− negl.

B Rerandomizable Encrypted OPRF (EO)

B.1 EO Definition

In Def. 10, we introduce a new construction called rerandomizable encrypted OPRF (EO) that allows two
parties to encrypt, mask, and shuffle their data.

Definition 17 (Pseudorandomness of the Evaluation). We say that the evaluation is pseudorandom if
for any ppt adversary A with query access to OEval(sk,·) (Ou(·)),∣∣Pr[AOEval(sk,·)(pk, pf) = 1]− Pr[AOu(·)(pk, pf) = 1]

∣∣ ≤ negl,

where (pk, sk)← KG(1κ), (pf, ek)← EKG(1κ), and for x ∈ {0, 1}κ, Ou outputs a uniform y whereas OEval(sk,·)
outputs y = Eval(sk, x).

A stronger definition of pseudorandomness of the evaluation is malicious pseudorandomness of the
oblivious evaluation. We add the definition for completeness even though our construction only satisfies the
pseudorandomness of the evaluation.

Definition 18 (Malicious Pseudorandomness of the Oblivious Evaluation). We say that the oblivious
evaluation is pseudorandom if for any ppt adversary A with query access to ODec(sk,OEval(ek,·)) (Ou(·)),∣∣Pr[AODec(sk,OEval(ek,·))(pk, pf) = 1]− Pr[AOu(·)(pk, pf) = 1]

∣∣ ≤ negl,

where (pk, sk)← KG(1κ), (pf, ek)← EKG(1κ), and for ct← AO(pk, pf) with Dec(sk,OEval(ek, ct)) ̸= ⊥, Ou

outputs a uniform y whereas ODec(sk,OEval(ek,·)) outputs y = Dec(sk,OEval( ek, ct)).

Definition 19 (Ciphertext Indistinguishability for Evaluation Key (ek) Owner). We call EO
ciphertext indistinguishable for the evaluation key owner if for any ppt algorithm A,∣∣Pr[A(pk, ct0) = 1]− Pr[A(pk, ct1) = 1]

∣∣ ≤ negl,

where (pk, sk)← KG(1κ). In the adaptive malicious setting (m0,m1, pf)← A(pk) whereas in the semi-honest
setting (pf, ek)← EKG(1κ) and (m0,m1)← A(pk, pf, ek). ∀i ∈ {0, 1} : cti ← Enc(pk, pf, xi).

24



Definition 20 (Ciphertext Indistinguishability for Secret Key Owner). We call EO ciphertext
indistinguishable for the secret key owner if for any ppt algorithm A,∣∣Pr[A(pk, ct0) = 1]− Pr[A(pk, ct1) = 1]

∣∣ ≤ negl,

where (pf, ek)← KG(1κ). In the adaptive malicious setting (m0,m1, pk)← A(pf) whereas in the semi-honest
setting (pk, sk)← KG(1κ) and (m0,m1)← A(pk, pf, sk). ∀i ∈ {0, 1} : cti ← Enc(pk, pf,mi).

Definition 21 (Rerandomized Ciphertext Indistinguishability). We call EO rerandomized ciphertext
indistinguishable if for any ppt algorithm A,∣∣Pr[A(pk, ct0) = 1]− Pr[A(pk, ct1) = 1]

∣∣ ≤ negl,

(x, pk, pf)← A(1κ), ct0 ← Rnd(pk, pf,Enc( pk, pf, x)) and ct1 ← Enc( pk, pf, x).

Definition 22 (Ciphertext Well-Formedness). We call an EO scheme ciphertext well-formed if for any
x0, x1 with OEval(ek, x0) = OEval(ek, x1)

∆s(ct0, ct1) ≤ negl,

where (pk, sk)← KG(1κ), (pf, ek)← EKG(1κ) and ∆s is the statistical distance.

Definition 23 (Evaluated Ciphertext Simulatability). We call an EO scheme evaluated ciphertext
simulatable if there exists an ppt algorithm EO.Sim such that for any x,

∆s(ect0, ect1) ≤ negl,

where (pk, sk)← KG(1κ), (pf, ek)← EKG(1κ), ect0 ← OEval(ek,Enc(pk, pf, x)), ect1 ← EO.Sim(pk, pf, sk,Eval(ek,x))
and ∆s is the statistical distance.

B.2 EO Construction and Security Analysis

In this section, we instantiate our EO construction in cyclic groups and prove its security against semi-honest
adversaries.

Definition 24 (EO Construction in Cyclic Groups). Let g be a generator of a cyclic group G with order
q and HG(·) : {0, 1}∗ → G a hash function. Then the EO collection of algorithms is constructed as follows.

– KG(1κ): Sample a
R← Zq and output (pk := ga, sk := a).

– EKG(1κ): Sample b
R← Zq and output (pf := gb, ek := b).

– Eval(ek, x): Output y = HG(x)
ek.

– Enc(pk, pf, x): Sample r
R← Zq and define ct1 := pfr, ct2 := pkr · HG(x). If pk ̸= pf output ciphertext

ct := (ct1, ct2) otherwise output ⊥.
– Rnd(pk, pf, ct): Let ct = (ct1, ct2). Sample r

R← Zq and define ct′1 := ct1 · pfr, ct′2 := ct2 · pkr and output
ciphertext ct′ := (ct′1, ct

′
2).

– OEval(ek, ct): Let ct = (ct1, ct2). Define ect2 := ctek2 and output ect := (ct1, ect2).
– Dec(sk, ect): Let ect = (ect1, ect2). Output y := ect2/ect

sk
1 .

For correctness, we ask that for any x ∈ {0, 1}∗,

Pr[Dec(sk,OEval(ek,Rnd(pk, pf,Enc(pk, pf, x))) = Eval(ek, x)] ≥ 1− negl,

where (pk, sk)← KG(1κ) and (pf, ek)← EKG(1κ).

Lemma 1. Def. 24 defines a correct EO scheme.

25



Proof. Let (ga, a)← KG(1κ) and (gb, b)← EKG(1κ). The correctness of the EO construction is satisfied as
shown below:

Dec(a,OEval(b,Rnd(ga, gb,Enc(ga, gb, x)))) = Eval(b, x)⇔
Dec(a,OEval(b,Rnd(ga, gb, (gbr, gar ·HG(x))))) = HG(x)

b ⇔

Dec(a,OEval(b, (gbr · gbr
′
, gar · gar

′
·HG(x)))) = HG(x)

b ⇔

Dec(a,OEval(b, (gb(r+r′), ga(r+r′) ·HG(x)))) = HG(x)
b ⇔

Dec(a, (gb(r+r′), (ga(r+r′) ·HG(x))
b)) = HG(x)

b ⇔

Dec(a, (gb(r+r′), gab(r+r′) ·HG(x)
b)) = HG(x)

b ⇔

gab(r+r′) ·HG(x)
b/(gb(r+r′))a = HG(x)

b.

The construction is secure against semi-honest adversaries under the DDH assumption. The bottleneck
that prevents malicious security is the OPRF H(x)k. This OPRF only provides semi-honest security since a
malicious delegator might send an arbitrary group element X instead of H(x). In that case, it does not result
in an OPRF since it satisfies linear relations, e.g., Xk · Y k = (X · Y )k.

We have outlined what is needed from the EO for malicious security in Defs. 18-20. The main bottleneck for
our H(x)k based construction is Def. 18 (Defs. 19 and 20 seem to hold when making stronger assumptions than
DDH). Other PRF candidates seem significantly less efficient (i.e., lowMC) or require stronger assumptions
(e.g., Dodis-Yampolskiy PRF [23]). In Appendix C, we show that our EO primitive is compatible with the
MPC shuffle protocol of [40] by relying on the EO rerandomization procedure.

Lemma 2. Def. 24 satisfies pseudorandomness of the evaluation under the DDH assumption in the Random
Oracle Model.

Proof. We use a sequence of hybrids in which we replace step by step (based on the order of random oracle
queries) Eval(ek, x) with a uniform group element. If there is a distinguisher against the pseudorandomness of
Eval with probability ϵ then there is a distinguisher against at least two consecutive intermediate hybrids
with probability ϵ/Q, where Q is the maximum between the amount of random oracle and Eval oracle queries.
Given such a distinguisher, we build a distinguisher against DDH as follows. The DDH distinguisher receives
challenge A,B,C and sets pf := A. Once the random oracle query is made that differentiates the two hybrids
(let that be the i∗th query), it programs HG(x) := B. For all following queries i > i∗ program HG(x) := gri ,

where ri
R← Zq. When a query for x to the Eval oracle is made, query x to the random oracle if it has not

been made yet. If x matches the query i∗, respond with C. If x corresponds to a query i < i∗, respond with a
uniform group element. Otherwise respond with Bri .

If A = ga, B = gb, C = gc then the DDH distinguisher simulates the first of the two hybrids. In case
of uniform A,B,C it simulates the second of the two hybrids where the output of the Eval oracle that
corresponds to the i∗th message is uniform.

Since Q is polynomial and the distinguishing probability against DDH is negligible, the probability to
break the pseudorandomness of Eval is also negligible. ⊓⊔

Lemma 3. Def. 24 is ciphertext indistinguishable for the evaluation key owner in the semi-honest setting
under the DDH assumption.

Proof. We use three hybrids, the first hybrid uses x0 for the challenge ciphertext. In the second hybrid, the
ciphertext is independent of the message. The third hybrid uses x1 for the challenge ciphertext. We show now
that these three hybrids cannot be distinguished based on the DDH assumption.

We build a DDH distinguisher for hybrid one and two (two and three) as follows. It receives DDH challenge
A,B,C and samples (pf, ek)← EKG(1κ). It defines pk := A and sends (pk, ek, pf) to the distinguisher against
the ciphertext indistinguishability. It receives x0 and x1. Return challenge ciphertext ct1 := Bek, ct2 := C · x0

(ct2 := C · x1). Output the output of the ciphertext indistinguishability distinguisher.
If A = ga, B = gb, C = gc then the challenge ciphertext follows the output distribution of Enc for x0 as

in the first hybrid (and m1 in the third hybrid). Otherwise, the challenge ciphertext is independent of the
message as in the second hybrid. ⊓⊔

26



Lemma 4. Def. 24 is ciphertext indistinguishable for the secret key owner in the semi-honest setting under
the DDH assumption for prime groups (every element is a generator).

Proof. We use three hybrids, the first hybrid uses x0 for the challenge ciphertext. In the second hybrid, the
ciphertext is independent of the message. The third hybrid uses x1 for the challenge ciphertext. We show now
that these three hybrids cannot be distinguished based on the DDH assumption.

We build a DDH distinguisher for hybrid one and two (two and three) as follows. It receives DDH challenge
A,B,C and samples (pk, sk)← KG(1κ). It defines pf := A and sends (pk, sk, pf) to the distinguisher against
the ciphertext indistinguishability. It receives x0 and x1. Return challenge ciphertext ct1 := C, ct2 := Bsk · x0

(ct2 := Bsk · x1). Output the output of the ciphertext indistinguishability distinguisher.

If A = ga, B = gb, C = gc then the challenge ciphertext follows the output distribution of Enc for x0 (x1)
as in the first hybrid (third hybrid). Otherwise, the challenge ciphertext is independent of the message as in
the second hybrid as long as B is a generator of the group and thus Bsk is uniform for a uniform B. ⊓⊔

Lemma 5. Def. 24 is statistically randomized ciphertext indistinguishable.

Proof. Let ct := (gbr, gar · HG(x)) be an encryption of x for some random r ∈ Zq. Then the randomized

ciphertext Rnd(ga, gb, ct) is defined as (gbr · gbr′ , gar · gar′ ·HG(x)) = (gb(r+r′), ga(r+r′) ·HG(x)) for random
r′ ∈ Zq. Since both r and r′ are random elements in Zq, r + r′ is also a random element in Zq and the
ciphertext is statistically randomized ciphertext indistinguishable. ⊓⊔

Lemma 6. Let sk and q be coprime. Then Def. 24 is ciphertext well formed.

Proof. Ciphertext well-formedness demands that messages that result in the same PRF evaluation have an
identical ciphertext distribution. In the construction of Def. 24 the ciphertext only depends on HG(x) and
the output of Eval is HG(x)

ek. Now, let there be x0 and x1 with HG(x0)
ek = HG(x1)

ek and let for b ∈ {0, 1},
HG(xb) = grb . Then (r − r′) · ek = 0 mod q and therefore (r − r′) = 0 such that HG(x0) = HG(x1) and the
ciphertexts have the same distribution or ek would divide the group order q and therefore not be coprime. ⊓⊔

Lemma 7. Def. 24 is evaluated ciphertext simulatable.

Proof. EO.Sim takes as input pk = ga, pf = gb, sk = a and y = HG(x)
b. It outputs ect = (ect0, ect1) where

ect0 = pfr, ect1 = pfar ·y. This identically distributed as ect = OEval(ek,Enc(pk, pf, x)) = (gr
′b, gr

′ab ·HG(x)).
⊓⊔

Theorem 3. Def. 24 is a secure and correct EO scheme. More precisely, it is correct, satisfies pseudoran-
domness of the evaluation and ciphertext well-formedness, evaluated ciphertext simulatability, is randomized
ciphertext indistinguishable as well as ciphertext indistinguishable for the evaluation and secret key owner.
The latter two are semi-honest secure under the DDH assumption.

Proof. Follows from Lemma 1, 2, 3, 4, 5, 6, and 7. ⊓⊔

C Three-Party Secure Shuffling for DsPMC

C.1 Ideal Shuffle Functionality

The ideal shuffle functionality from Fig. 12 gets inputs from parties C and D secret shares and generates fresh
shuffled shares and sends them back to parties S and D. Additionally, FShuffle gets multiple EO ciphertexts
from C, generates fresh shuffled ciphertexts, and sends them back to C. Parties P1 to PT do not participate
in the protocol but do have information about the encrypted and secret shared information and might be
corrupted.

27



Ideal FShuffle

{EO.cti,j}i∈[M],j∈[mi]
:= {EO.ctt,i,j}t∈[T ],i∈[mt],j∈[mt,i]

{shC,i}i∈[M] := {shC,t,i}t∈[T ],i∈[mt]

{shD,i}i∈[M] := {shD,t,i}t∈[T ],i∈[mt]

•Recover inputs:

Brute force {EO.cti,j}j∈[mi],i∈[M] to {pi,j}j∈[mi],j∈[M] s.t.

EO.Eval(EO.ek, pi,j) = EO.Dec(EO.sk, EO.OEval(EO.ek, EO.cti,j))

Recover {vi}i∈[M] s.t. vi = shC,i ⊕ shD,i

•Generate new shares:

∀i ∈ [M ] : sample sh′C,i, sh
′
D,i

R← {0, 1}∗ s.t. sh′C,i ⊕ sh′D,i = vi

∀i ∈ [M ], j ∈ [mi] : EO.ct′i,j := EO.Enc(EO.pk, EO.pf, pi,j)

•Permute:

π
R← Perm(M)

ẼO.CT := π({EO.ct′1,j}j∈[m1], . . . , {EO.ct′M,j}j∈[mM ])

S̃HC := π(sh′C,1, . . . , sh
′
C,M )

S̃HD := π(sh′D,1, . . . , sh
′
D,M ).

C

P1

PT

S D

.

.

.

{{EO.ctt,i,j}j∈[mt,i]
,

shC,t,i}i∈[mt],t∈[T ]

ẼO.CT

⊥

S̃HC

⊥

⊥

⊥

⊥

{shD,t,i}i∈[mt],t∈[T ]

S̃HD

Fig. 12. The figure shows the ideal FShuffle functionality. We define M :=
∑T

t=1 mt. We treat EO.pk and EO.pf as
publicly known to all parties. Party C has access to EO.ek and Party D to EO.sk. Further, any amount of Parties P1

to PT can be corrupted who have access to {EO.ctt,i,j}j∈[mt,i], {shC,t,i}i∈[mt],t∈[T ] and {shD,t,i}i∈[mt],t∈[T ].

C.2 Shuffle Protocol

We define a permutation of size mC as an injective function π : [N ]→ [N ]. We denote as πAB a permutation
generated from party A and sent to B. Fig. 13 demonstrates the honest majority shuffling protocol utilized by
DsPMC. Our shuffling protocol performs two iterations of a permutation network and reshares C’s and D’s
inputs (shC and shD, respectively). Parties C and D have T shC and shD vectors (indicated as shC,t, shD,t

for t ∈ [T ]), each of which has mt elements. Additionally, the shuffling protocol reshares EO.ct to prevent
leakage of honest parties’ data in the presence of an adversary that has corrupted D and multiple parties P .

The first iteration of the permutation network is demonstrated in steps 1-3 in Fig. 13 and reshares shC , shD
to SHC ,SHS and EO.ct to EO.CT. Party C generates two permutations (πCS and πCD) as well as two vectors
of scalars (VCS and VCD) to rerandomize shC and shD. C locally applies the two permutations and XORs with
the vectors of scalars. C then sends one permutation and one vector of scalars to each of D and S. D first
permutes and XORs shD with VCD and sends the result to S who, in turn, permutes it with πCS and XORs it
with VCS to compute SHS .

In the second iteration, party S generates two more permutations (πSC and πSD) as well as two vectors of
scalars (VSC and VSD) to rerandomize the outputs of the first iteration (i.e., SHC and SHS). Next, S applies
both permutations on SHS and XORs it with both vectors VSC and VSD, while parties C and D communicate

to apply the same operations on SHC . At the end of the protocol, S gets S̃HC and D gets S̃HD such that

S̃HC ⊕ S̃HD = shC ⊕ shD. Finally, party C gets ẼO.CT, which is the blinded and rerandomized EO.ct.
Observe that the communication in the aforementioned protocol is only linear to the size of EO.CT. We

can further optimize the communication by having each two parties (C with D, C with S, and S with D)
pre-share some randomness and use it as a PRF key. These PRF keys can then be used to generate both the
random permutations and the random vectors of scalars which will be consistent between the parties.

C.3 Security Analysis of Secure Shuffling

Theorem 4. Let EO be a correct Rerandomizable Encrypted OPRF scheme that satisfies statistical reran-
domized ciphertext indistinguishability, ciphertext indistinguishability (for evaluation key or secret key owner)
and ciphertext well-formedness. Then, the shuffling protocol in Fig. 13 realizes the ideal shuffling functionality

28



We define M :=
∑T

t=1 mt.

1 First Shuffling (Party C)
Input: {{EO.ctt,i,j}j∈[mt,i], shC,t,i}i∈[mt],t∈[T ]

1: VCD, VCS
R← {0, 1}M·|v|

2: πCD, πCS
R← Perm(M)

3: For t ∈ [T ], i ∈ [mt], j ∈ [mt,i]: ▷ Randomize
4: EO.ct′t,i,j := EO.Rnd(EO.pk,EO.pf,EO.ctt,i,j)
5: SHC := (shC,1,1, . . . , shC,mT ,T )
6: EO.CT := ({EO.ct′1,1,j}j , . . . , {EO.ct′T,mT ,j}j)
7: SHC := πCS(πCD(SHC)⊕ VCD)⊕ VCS ▷ Perm. &

Rand.
8: EO.CT := πCS(πCD(EO.CT)) ▷ Permute
Send to S: πCS , VCS ,EO.CT
Send to D: πCD, VCD

Output of first shuffle: SHC

2 First Shuffling (Party D)
Input: {shD,t,i}i∈[mt],t∈[T ]

Messages: VCD, πCD

1: SHD := (shD,1,1, . . . , shD,T,mT )
2: SHD := πCD(SHD)⊕ VCD ▷ Permute and Randomize
Send to S: SHD

Output of first shuffle: –

3 First Shuffling (Party S)
Input: –
Messages: πCS , VCS ,SHD,EO.CT
1: SHS := πCS(SHD)⊕ VCS ▷ Permute and Randomize
Output of first shuffle: SHS ,EO.CT

4 Second Shuffling (Party S)
Input: SHS ,EO.CT
1: ({EO.ct1,j}j , . . . , {EO.ctM,j}j) := EO.CT

2: VSC , VSD
R← {0, 1}M·|v|

3: πSC , πSD
R← Perm(M)

4: For i ∈ [M ], j ∈ [mi]: ▷ Randomize

5: EO.ct
′
i,j := EO.Rnd(EO.pk,EO.pf,EO.cti,j)

6: EO.CT
′
:= ({EO.ct1,j}j , . . . , {EO.ctM,j}j)

7: S̃HC = πSD(πSC(SHS)⊕ VSC)⊕ VSD ▷ Perm. &
Rand.

8: ẼO.CT := πSD(πSC(EO.CT)) ▷ Permute

Send to C: πSC , VSC , ẼO.CT
Send to D: πSD, VSD

Output: S̃HC

5 Second Shuffling (Party C)
Input: SHC

Messages: πSC , VSC , ẼO.CT
1: ŜHC := πSC(SHC)⊕ VSC ▷ Permute and Randomize.

Send to D: ŜHC

Output: ẼO.CT

6 Second Shuffling (Party D)
Input: –
Messages: πSD, VSD, ŜHC

1: S̃HD := πSD(ŜHC)⊕ VSD ▷ Permute and Randomize

Output: S̃HD

Fig. 13. Three-Party Shuffling. Parties C and D get secret shares shC and shD of a vector v as inputs such that
v = shC ⊕ shD. Party C additionally inputs a Rerandomizable Encrypted OPRF ciphertext vector EO.ct of same
length as shC and shD. The protocol reshares (shC , shD) to (S̃HC , S̃HD) and carries along EO.ct and reshares it to

ẼO.CT.

in Fig. 12 when at most one of the parties C, D and S and any amount of the parties P1 to Pt are corrupted
and semi-honest.

Proof. We prove the theorem by showing that for each party, there exists a simulator that produces a view
that is indistinguishable from the view of the corrupted party in the real shuffle protocol.

Claim. Let EO be correct, satisfy statistical randomized ciphertext indistinguishability and ciphertext well-
formedness. Then, there is a simulator that produces a view of Party C that is indistinguishable from the
real view of Party C for any amount of corrupted parties P1 to PT . We emphasize that the distinguisher also
receives the in and outputs to and from the ideal functionality (which is identical to the real output) of the
honest parties.

Proof. We first show the simulator in case none of the parties P1 to PT is corrupted. The view of Party

C can be generated from its input {{EO.ctt,i,j}j∈[mt,i], shC,t,i}i∈[mt],t∈[T ], output ẼO.CT and the message

πSC , VSC , ẼO.CT from Party S. Our simulator emulates these messages and otherwise follows the description
of the computation of Party C.

Our simulator receives input {{EO.ctt,i,j}j∈[mt,i], shC,t,i}i∈[mt],t∈[T ], ẼO.CT and generates Party S’s mes-

sage as follows. It uses ẼO.CT that was part of the input and samples πSC
R← Perm(M) and VSC

R← {0, 1}M ·|v|.

29



We now show that this simulator emulates the correct distribution. Let

ẼO.CT = π({{EO.ctt,i,j}j∈[mt,i]}i∈[mt],t∈[T ]) = π′SD(π′SC(π
′
CS(π

′
CD({{EO.ctt,i,j}j∈[mt,i]}i∈[mt],t∈[T ])))),

where π′SD, π′SC , π
′
CS , π

′
CD are defined as in the original protocol and π′SC , π

′
CS , π

′
CD are part of party C’s

view. Sampling π′SD, π′SC , π
′
CS , π

′
CD

R← Perm(M) and defining π as their composition results in the same

distribution as when sampling π, π′SC , π
′
CS , π

′
CD

R← Perm(M) and defining π′SD such that it is consistent with
the protocol specification. The former is the distribution during a real protocol execution while the later is
the distribution during the simulated run where the ideal functionality samples π and the simulator samples
π′SC , π

′
CS , π

′
CD. π and π′SD remain hidden from the view of Party C.

We follow this argument for the distribution of VSC . There exists a unique V ∈ {0, 1}M ·|v| such that
SHD = SH′D ⊕ V , where SHD denotes the original shares sent by Party D to the ideal functionality and SH′D
are the shares generated and output by the ideal functionality. The same holds for SHC and SH′C . Further,
as specified by the protocol V can also be defined as V := VSD ⊕ VSC ⊕ VCS ⊕ VCD. Here we ignore the
fact that V is actually impacted by the permutations πSD, πSC , πCS , πCD since it can simply be accounted
for by permuting VSD, VSC , VCS , VCD. Both definitions of V are consistent since any two two out of two
secret shares result in the same shares up to an offset vector in {0, 1}M ·|v|. As previously sampling first
VSD, VSC , VCS , VCD results in the same distribution as sampling first V, VSC , VCS , VCD.

The last part to show is that the output ẼO.CT of the ideal functionality is identically distributed as the
Party C’s output in the real execution. From the statistical randomized ciphertext indistinguishability of EO
follows that any rerandomized ciphertext for input pi,j is indistinguishable from a fresh encryption of pi,j
even when given EO.ek (and EO.sk). Using a hybrid argument over all N =

∑M
i=1(mi) (i.e., M total rows and

each row i has mi identifiers) distinguishing the real from the simulated view with advantage ϵ results in a ϵ/N
distinguishing advantage in the randomized ciphertext indistinguishability game. Now, we show that brute
forcing a p′i,j from a ciphertext and encrypting it is except negligible probability identically distributed as a
ciphertext of pi,j . By the correctness property it follows that except negligible probability, both ciphertexts
evaluate to the same OPRF evaluation, i.e., EO.Eval(EO.ek, pi,j) = EO.Eval(EO.ek, p′i,j). Now, we can invoke

the ciphertext well-formedness which ensures that the rerandomized ẼO.CT is with overwhelming probability

identically distributed as the fresh ẼO.CT generated by the ideal functionality.
In case some of the parties P1 to PT are corrupted we actually do not need to adapt our simulator. The

difference is that when adding the views of the corrupted parties among P1 to PT to the view of C, Party C
has access to some of the shares {SHD,t,i}i∈[mt],t∈[T ]. However, knowing these shares do not have impact on
the distribution of the view generated by our simulator and can therefore simply added to the view. ⊓⊔

Claim. There exists a simulator that produces a view of Party D that is indistinguishable from the real view
of Party D for any amount of corrupted parties P1 to PT .

Proof. We start with the case where there is no corruption among parties P1 to PT . Party D’s view can be

generated from its input {shD,t,i}i∈[mt]t∈[T ], output S̃HD and the messages (πCD, VCD), ŜHC from Party C
and πSD, VSD from Party S. Therefore it suffices for our simulator to emulate these messages and generate
the view from these messages according to the protocol description.

Our simulator on input {shD,t,i}i∈[mt]t∈[T ], S̃HD samples πCD, πSD
R← Perm(M), VCD, VSD,

R← {0, 1}M ·|v|.
ŜHC is picked such that S̃HD = πSD(ŜHC) ⊕ VSD. We define π as in the previous claim. As previously,
sampling first πSD, πSC , πCS , πCD and defining π as their composition as done in the real protocol execution
results in the same distribution as when sampling π, πSD, πCD first and then defining and sampling πSC , πCS

(not part of the view) such that they are consistent with the real protocol distribution. Using the same
approach, we can show that VCD, VSD are also correctly distributed.

Similar to the previous claim, corrupting any amount of parties P1 to PT and adding them to the view of
Party D does not impact the distribution of the view generated by the simulator. Again, we can simply add
{{EO.ctt,i,j}j∈[mt,i], shC,t,i}i∈[mt],t∈[T ] of the corrupted parties to the view generated by our simulator. ⊓⊔

Claim. Let EO satisfy statistical rerandomized ciphertext indistinguishability and ciphertext indistinguisha-
bility (for evaluation key or secret key owner). Then, there is a simulator that produces a view of Party S
that is indistinguishable from the real view of Party S for any amount of corrupted parties P1 to PT .

30



Proof. Let {{EO.ct′t,i,j}j∈[mt,i], sh
′
C,t,i, sh

′
D,t,i}i∈[mt],t∈C⊆[T ] be the views of the corrupted parties among

P1 to PT . The view of Party S and the corrupted parties among P1 and PT can be generated from

{{EO.ct′t,i,j}j∈[mt,i], sh
′
C,t,i, sh

′
D,t,i}i∈[mt],t∈C⊆[T ], S’s output S̃HC , the messages πCS , VCS ,EO.CT from Party

D and SHD from Party D.

Our simulator has inputs {{EO.ct′t,i,j}j∈[mt,i], sh
′
C,t,i, sh

′
D,t,i}i∈[mt],t∈C⊆[T ] and S̃HC . It samples πCS

R←
Perm(M), VCS

R← {0, 1}M ·|v| and generates EO.CT as encryptions of 0.
We now show that the simulator generates the correct distribution. We define π as in the previous claims.

πSD, πSC , πCS , πCD are part of the simulated view except π and πCD. By using the same sampling argument
as before, πCS and VCS follow the correct distribution.

It remains to show that EO.CT are distributed correctly. We use a hybrid argument to show this.

Hybrid0: The first hybrid defines EO.CT according to the real execution. In the real execution, Party C uses
the EO.Rnd procedure to rerandomize {EO.ct′t,i,j}j∈[mt,i],i∈[mt],t∈[T ] and applies the permutations πCD

and πCS the outcome is EO.CT.
Hybrid1 This hybrid generates EO.CT as a fresh encryption of pt,i,j using EO.Enc(EO.pk,EO.pf, pt,i,j).
Hybrid2: The last hybrid generates EO.CT as an encryption of 0 using EO.Enc(EO.pk,EO.pf, 0).

Based on the statistical ciphertext indistinguishability of EO, Hybrid0 and Hybrid1 generate up to negligible
probability the same distribution. We can use a standard hybrid argument to show this. Let ϵ be the
distinguishing probability between Hybrid0 and Hybrid1 and let N =

∑M
i=1 mi be the amount of ciphertexts,

then the statistical ciphertext indistinguishability can be broken with probability ϵ
N .

We show now that Hybrid1 and Hybrid2 are computationally indistinguishable based on the ciphertext
indistinguishability (for secret key or evaluation key owner). The two notions give the adversary access to
either EO.sk or EO.ek. Since the corrupted parties among P1 to PT as well as Party S do not have access to
either of the keys, a weaker notion suffices in which no access to EO.sk, EO.ek is given. This weaker notion is
implied by both of the ciphertext indistinguishability notions of an EO scheme.

We use a standard hybrid in which we replace step by step one of the N ciphertexts with an encryption
with 0. The last hybrid matches Hybrid2 and the first hybrid Hybrid1. For each step we use a reduction to the
ciphertext indistinguishability game in which given EO.pk, EO.pf, we need to construct a distinguisher D′ that
distinguishes between an encryption of x0 = pt,i,j and x1 = 0. We construct this distinguisher by invoking
the distinguisher D between two intermediate hybrids. D′ forwards EO.pk and EO.pf, it generates the view of
the corrupted parties as specified by the hybrids with the exception of the one ciphertext that is different in
the hybrids. D′ uses the challenge ciphertext for this ciphertext. Finally D′ outputs the output of D.

If D successfully distinguishes two intermediate hybrids, D′ breaks the ciphertext indistinguishability for
the secret key and evaluation key owner of the EO scheme. Let ϵ be an upper bound on the distinguishing
probability in the ciphertext indistinguishability game. Then the distinguishing probability between Hybrid1
and Hybrid2 is upper bounded by ϵ/N.

The indistinguishability between Hybrid0, Hybrid1, and Hybrid2 concludes our claim. ⊓⊔
⊓⊔

D Security Analysis

D.1 Security Analysis of DPMC

Proof. We prove Theorem 1 by proving the following two claims.

Claim. Let the secret key encryption and the PKE scheme be IND-CPA secure, the KEM simulatable and
the DDH assumption hold.

Then there exists a simulator that generates the joint view of Party C and any subset of parties P1 to PT

that is computationally indistinguishable from the real view.

Proof. The joint view of Party C and the subset of corrupted parties among P1 to PT , identified by C ⊆ [T ] can
be generated from their inputs KVC , KVtt∈C, the outputs SHC , and the messages {ctat, ctbt, {{hat,i,j}j∈[mt,i],

ctct,i}i∈[mt]}t∈[T ], {K̂EM.cpi,t}i∈[mC ],t∈[T ].

31



The simulator on input KVC , {KVt}t∈C, and SHC simulates the messages as follows. It samples (KEM.pk,

KEM.sk)← KEM.KG(1κ) and uses KEM.Sim on input KEM.sk, SHC to compute message {K̂EM.cpi,t}i∈[mC ],t∈[T ].
For all t ̸∈ C, it samples skt ← SKE.KG(1κ), ctat ← PKE.Enc(pkD, 0), ctbt ← SKE.Enc(skt, 0), ctct,i ←
SKE.Enc( skt, 0), rt,i,j

R← Zq and defines hat,i,j := grt,i,j .
We use the following sequence of hybrids to show that the joint view during the real execution is

indistinguishable from the view generated by the simulator.

Hybrid1: Identical to the view during the real protocol execution.
Hybrid2: Computes (KEM.pk,KEM.sk)← KEM.KG(1κ) as output of KEM.Sim on input KEM.sk, SHC .
Hybrid3: For all t ∈ C, compute ctat as ctat ← PKE.Enc(pkD, 0).
Hybrid4: For all t ∈ C, compute ctbt, ctct,i as ctbt ← SKE.Enc(skt, 0), ctct,i ← SKE.Enc(skt, 0).

Hybrid5: For all t ∈ C, compute hat,i,j as hat,i,j := grt,i,j where rt,i,j
R← Zq.

Hybrid1 and Hybrid2 are indistinguishable except with negligible probability based on the simulatability of
the key encapsulation scheme.

Hybrid2 and Hybrid3 are indistinguishable based on the IND-CPA security of the PKE scheme. Notice
that only party D has access to skD. The reduction works as follows. Let there be a distinguisher against
Hybrid2 and Hybrid3 with probability ϵ. Then, we define a sequence of T + 1 hybrids in which we step by
step replace ctat with encryptions of 0. The distinguisher can distinguish at least one of the hybrids with at
least probability ϵ/T . We can use it to construct a distinguisher against the IND-CPA game as follows. The
distinguisher receives pk from the IND-CPA game and defines pkD := pk. It sets x0 := skt and x1 := 0 and
receives back a challenge ciphertext ct. It defines ctat := ct. It outputs whatever the distinguisher between
Hybrid2 and Hybrid3 outputs. This distinguisher breaks the IND-CPA security with probability ϵ/T . By the
security of the PKE scheme, this must be negligible and therefore Hybrid2 and Hybrid3 can be distinguished
with at most negligible probability as well.

Since cta is independent of the symmetric key, we can now use the IND-CPA security of the symmetric
key encryption to replace ctb and ctc with encryptions of 0. Again, we define a sequence of hybrids in which
we replace step by step the ciphertexts by encryptions of 0. The distinguisher against Hybrid3 and Hybrid4
can distinguish at least two consecutive intermediate hybrids with at least probability ϵ/(T +

∑
t∈C mt). The

distinguisher against the IND-CPA game can use x0 := at (x0 := shD,t,i) and x1 in the IND-CPA game for
the challenge ciphertext. Then, the distinguisher can use the challenge ciphertext to either simulate the first
or second consecutive intermediate hybrid and output whatever the distinguisher against the hybrids outputs.
Therefore, Hybrid3 and Hybrid4 can be distinguished at most with negligible probability.

Notice that the ciphertexts are now independent of scalar at. We can use the DDH assumption (Def. 12)
to argue that Hybrid4 and Hybrid5 are indistinguishable. Again, we use a sequence of hybrids in which we

replace step by step hat,i,j with a uniform group element, i.e., hat,i,j := grt,i,j where rt,i,j
R← Zq. There are∑

t∈C,i∈[mt]
mt,i hybrids. Let there be a distinguisher between Hybrid4 and Hybrid5 with probability ϵ. Then,

there are two consecutive intermediate hybrids that this distinguisher distinguishes with at least probability
ϵ/(

∑
t∈C,i∈[mt]

mt,i). The reduction to DDH works as follows. The DDH distinguisher receives challenge A,B,C.
Before invoking the hybrid distinguisher, it programs HG(pt,i,j) := B and defines ht,i,j := C. For all other ht,i,j
that are not uniform yet, it programs HG(pt,i,j) := gxt,i,j , where xt,i,j

R← Zq and defines ht,i,j := Axt,i,j . The
DDH distinguisher outputs the output of the hybrid distinguisher. When A = ga, B = gb, C = gab, all ht,i,j
are correctly defined as in the first consecutive hybrid. When A,B,C are uniform group elements, ht,i,j = C
is uniform while all other ht,i,j are distributed according to the second (and first) of the consecutive hybrids.
Therefore, Hybrid4 and Hybrid5 can be distinguished with at most negligible probability which concludes the
proof of our claim. ⊓⊔

Claim. Let the KEM scheme be key indistinguishable and the DDH assumption hold.
Then there exists a simulator with access to the leakage defined in Def. 9 that generates the joint view of

Party C and any subset of parties P1 to PT that is computationally indistinguishable from the real view.

Proof. The joint view of Party D and the subset of corrupted parties among P1 to PT , i.e., defined by C ⊆ [T ]
can be generated by the inputs skD, {KVt}t∈C, output SHD and messages KEM.pk, {(hC,i,j)j∈[mC,i]}i∈[mC ]

and {ctat, ctbt, {{hcat,i,j}j∈[mt,i], ctct,i}i∈[mt]}t∈[T ].

32



Given the leakage defined in Def. 9 and inputs skD, {KVt}t∈C, SHD, the simulator works as follows. The
simulator uses the leakage to define {(hC,i,j)j∈[mC,i]}i∈[mC ] and {hct,i,j}j∈[mt,i],i∈[mt],t∈[T ]. For all t ̸∈ C, it
samples at

R← Zq (for all other t, at is already defined when generating the view for Pt). hcat,i,j := hcat
t,i,j .

For all t ̸∈ C, sample skt ← SKE.KG(1κ) and use skt and pkD to define cta, ctb and ctc according to the
protocol description, where shD,t,i is defined s.t. it is consistent with SHD and (KEM.cpt,i,KEM.kt,i) ←
KEM.Enc(KEM.pk).

We prove that the view generated by the simulator is indistinguishable from the real view using the
following hybrids.

Hybrid1: Is identical to the view during the protocol.
Hybrid2: For all t ̸∈ C, generate (KEM.cpt,i,KEM.kt,i)← KEM.Enc( KEM.pk). (Now KEM.kt,i is independent

of shC).
Hybrid3: Use the leakage to define {(hC,i,j)j∈[mC,i]}i∈[mC ] and {hct,i,j}j∈[mt,i],i∈[mt],t∈[T ].

Hybrid1 and Hybrid2 are indistinguishable based on the key indistinguishability of the key encapsulation.
To show this, we use a sequence of hybrids in which we replace KEM.cpt,i generated by Pt for t ̸∈ C and related

to shC,t,i with (KEM.cp′t,i,KEM.k′t,i)← KEM.Enc(KEM.pk). We use the triangular inequality which implies
that if KEM.cp,KEM.k cannot be distinguished with more than probability ϵ from KEM.cp, u for a uniform u,
KEM.cp,KEM.k cannot be distinguished from KEM.cp′,KEM.k with more than probability 2ϵ. Let there be a
distinguisher that distinguishes Hybrid1 and Hybrid2 with probability ϵ. Then it distinguishes at least two
consecutive intermediate hybrids with probability ϵ/(

∑
t∈C mt). Given this distinguisher, we build a distinguisher

against the key indistinguishability which receives challenge KEM.cp,KEM.k and sets shC,t,i := KEM.k. The
distinguisher outputs the output of the hybrid distinguisher. When KEM.k is consistent with KEM.cp, the
distinguisher simulates Hybrid1 and otherwise Hybrid2. This distinguisher breaks the key indistinguishability
with probability ϵ/(2

∑
t∈C mt). Since this is negligible, Hybrid1 and Hybrid2 cannot be distinguished except

negligible probability.
Hybrid2 and Hybrid3 are indistinguishable based on the DDH assumption. We show this by using a sequence

of intermediate hybrids in which we replace {(hC,i,j)j∈[mC,i]}i∈[mC ] and {hct,i,j}j∈[mt,i],i∈[mt],t∈[T ] with uniform
group elements. If there is a distinguisher that distinguishes Hybrid2 and Hybrid3 with probability ϵ, then it
distinguishes at least two consecutive intermediate hybrids with probability ϵ/(

∑
i∈[mC ] mC,i +

∑
t∈[T ],i∈[mt]

mt,i).

The distinguisher against DDH receives A,B,C and defines hca
1/at

t,i,j := C (hC,i,j := C), programs HG(pt,i,j) :=
B (HG(ci,j) := B). For all hcat,i,j , hC,i,j that are not uniform yet, programHG(pt,i,j) := gxt,i,j ,HG(ci,j) := gxi,j

and define hca
1/at

t,i,j := Axt,i,j , hC,i,j := Axi,j . When A = ga, B = gb, C = gab, the DDH distinguisher simulates

the first of the intermediate hybrids otherwise the second one. Notice that in the latter case, hct,i,j := hca
1/at

t,i,j

(hC,i,j) is uniform. This concludes the proof of our claim. ⊓⊔
⊓⊔

D.2 Security Analysis of DsPMC

Proof. We prove Theorem 2 by constructing a simulator that can generate a view of the corrupted parties
from their inputs and outputs that is indistinguishable from their view during a real execution. We emphasize
that the distinguisher has access to the inputs and outputs of the honest parties specified by the ideal
functionality in Fig. 2, which matches the outputs of the real protocol. We show this in the following three
claims.

Claim. Let PKE be an IND-CPA secure and correct PKE scheme, PRG a secure pseudorandom generator
and EO be a correct and satisfy statistical rerandomized ciphertext indistinguishability, the (semi-honest)
ciphertext indistinguishability for the evaluation key owner and ciphertext well-formedness.

Then, there exists a simulator that generates the joint view of Party C and any subset of parties P1 to
PT that is indistinguishable from the joint view during the protocol execution.

Proof. The joint view can be generated from the input and messages received by party C and the subset of
parties P1 to PT . Let this subset be C ⊆ [T ]. Notice that the parties do not have any outputs as specified in
the ideal functionality in Fig. 2.

33



The inputs are KVC and {KVt}t∈C and the output is SHC . The parties P1 to PT receive messages
EO.pk,EO.pf and have access to pkD, where EO.pf is generated by Party C. Party C receives the messages

{{{EO.ctt,i,j}j∈[mt,i], shC,t,i}i∈[mt], ctat}t∈[T ] and {K̂EM.cpi,t}i∈[mc],t∈[T ].
The simulator receives input KVC , {KVt}t∈C, SHC and emulates the view as follows. It samples (KEM.pk,

KEM.sk) ← KEM.KG(1κ), (EO.pk,EO.sk) ← EO.KG(1κ) and (pkD, skD) ← PKE.KG(1κ). It samples ctat ←
PKE.Enc(pk, 0) for all t ̸∈ [T ]. It samples shC,t,i

R← {0, 1}|v| for all t ̸∈ C. It defines ŝhC,i,t consistently

with SHC for all t ∈ [T ] and defines K̂EM.cpi,t ← KEM.Sim(KEM.sk, ŝhC,i,t). Further, it defines EO.ctt,i,j ←
EO.Enc(EO.pk,EO.pf, 0) for all t ̸∈ C. For t ∈ C, EO.ctt,i,j ← EO.Enc(EO.pk,EO.pf, pt,i,j), where pt,i,j ∈ KVt.

We use the following sequence of hybrids to show that the simulated view is indistinguishable from the
view during the real protocol execution.

Hybrid0: Identical to the view during the real protocol execution.

Hybrid1: Samples ctat
PKE.Enc←−−−−− (pk, 0) for all t ̸∈ C.

Hybrid2: Samples shD,t,i
R← {0, 1}|v| for all t ̸∈ C (instead of using PRG).

Hybrid3: Invoke the simulator of the shuffling protocol to simulate the view during the shuffling. The input

{{EO.ctt,i,j}j∈[mt,i], shC,t,i}i∈[mt], {ẼO.cti,j}i∈[M ],j∈[mi] of the simulator is distributed as in Hybrid2.
Notice that the simulator also receives EO.pk, EO.pf and EO.ek.

Hybrid4: Replaces {EO.ctt,i,j}j∈[mt,i] for all t ̸∈ C and all {ẼO.cti,j }i∈[M ],j∈[mi] with independent encryptions

of 0. More precisely, EO.ctt,i,j ← EO.Enc(EO.pk,EO.pf, 0) and ẼO.cti,j ← EO.Enc(EO.pk,EO.pf, 0).

Hybrid5: Samples shC,t,i
R← {0, 1}|v| for all t ̸∈ C. Further, defines ŝhC,i,t consistently with SHC and samples

K̂EM.cpi,t ← KEM.Sim(KEM.sk, ŝhC,i,t).

Notice that the view in Hybrid5 is identically distributed as the view generated by the simulator.
We now show that the hybrids are indistinguishable. Let Hybrid0 and Hybrid1 be distinguishable with prob-

ability ϵ. We define a sequence of intermediate hybrids that replaces the ciphertexts ctat ← PKE.Enc(pk, seedt)

with ctat
PKE.Enc←−−−−− (pk, 0). Then there is a distinguisher that distinguishes one of the intermediate hybrids with

at least probability ϵ/T . Such a distinguisher would directly distinguish challenge ciphertexts for x0 := seedt
from x1 := 0 in the IND-CPA game of the PKE scheme. Therefore the distinguishing probability between
Hybrid0 and Hybrid1 is upper bounded by the IND-CPA security of PKE.

Let Hybrid1 and Hybrid2 be distinguishable with probability ϵ. We define a sequence of intermediate hybrids
in which we step by step replace (shD,t,1, . . . , shD,t,mt

) = PRG(seedt) with (shD,t,1, . . . , shD,t,mt
)← {0, 1}mt·|v|.

Then, there would be a distinguisher that distinguishes two consecutive intermediate hybrids with at least
probability ϵ/T . This would imply a distinguisher that breaks the security of the PRG with the same probability.
Since the PRG is indistinguishable except negligible probability, Hybrid0 and Hybrid1 cannot be distinguished
except negligible probability.

Let Hybrid2 and Hybrid3 be distinguishable with probability ϵ. Then, this would allow to distinguish
the simulated view during the shuffle protocol from the real view. However, as shown in Theorem 4 this
probability is upper bounded the correctness, the statistical rerandomized ciphertext indistinguishability,
the (semi-honest) ciphertext indistinguishability (for evaluation key or secret key owner) and ciphertext
well-formedness of the EO scheme. Therefore Hybrid2 and Hybrid3 cannot be distinguished beyond the bound
given in the proof of Theorem 4.

We use the (semi-honest) ciphertext indistinguishability for the evaluation key owner to argue that
Hybrid3 and Hybrid4 are indistinguishable. Notice that in the ideal shuffle functionality (see Fig. 12), the

ciphertext sets {EO.ctt,i,j}j∈[mt,i] and {ẼO.cti,j}i∈[M ],j∈[mi] are independent encryptions. Therefore, we can
replace them independently with encryptions of 0. We need to use the ciphertext indistinguishability for
the evaluation key owner since the simulator need access to EO.ek which is also used by the simulator of
the shuffling protocol. The indistinguishability between Hybrid3 and Hybrid4 follows from a straightforward
reduction to the ciphertext indistinguishability using a hybrid argument in which we replace step by step each
ciphertext with an encryption of 0 until all ciphertexts are encryptions of 0. If there exists a distinguisher
between Hybrid3 and Hybrid4 that distinguishes them with probability ϵ, then there is a distinguisher that
distinguishes one of the intermediate hybrids with at least probability ϵ/2N, where N is the size of {KVt}t∈[T ].
The distinguisher for the intermediate hybrids would then lead to a distinguisher against the ciphertext
indistinguishability for the evaluation key owner of the EO scheme.

34



We finalize the claim by showing the indistinguishability of Hybrid4 and Hybrid5. Similar as in case of the

ciphertexts, the ideal shuffle functionality samples the shares shC,t,i and ŝhC,i,t independently. Therefore, we
can also sample them independently. Hybrid5 generates statistically the same view as Hybrid4 for the following

reason. Sampling shC
R← {0, 1}|v| and shD

R← {0, 1}|v| under the constraint that shC ⊕ shD = v (Hybrid4)

results in the same distribution as when sampling shC
R← {0, 1}|v| and defining shD := v ⊕ shC (Hybrid5),

where shD and v are not known to the simulator. Thus, shC can be sampled independently of shD and v by

sampling shC
R← {0, 1}|v|. Further, by the property of KEM.Sim, K̂EM.cpi,t has the same distribution when

being an output of KEM.Enc and KEM.Sim. This concludes our claim.

Claim. Let PKE be a correct PKE scheme, KEM a secure and correct key encapsulation scheme and EO
secure, correct and evaluated ciphertext simulatable.

Then, there exists a simulator with access to the leakage graph of Def. 11 that generates the joint view of
Party D and any subset of parties P1 to PT that is indistinguishable from the joint view during the protocol
execution.

Proof. The joint view of PartyD and the subset of parties P1 to PT (defined by C ⊆ [T ]) can be generated from
inputs (pkD, skD), {KVt}t∈C, output SHD and messages KEM.pk, EO.pf, {ctat}t ̸∈C and {KEM.cpi, shD,i}i∈[M ],
{hC,i,j}i∈[mC ],j∈[mC,i], {EO.ecti,j}i∈[M ],j∈[mi]. Further, the view depends on the leakage graph defined in
Def. 11.

The simulator emulates the joint views as follows. It samples (KEM.pk,KEM.sk) ← KEM.KG(1κ) and
(EO.pf,EO.ek)← EO.EKG. The simulator defines {hC,i,j}i∈[mC ],j∈[mC,i] and {hi,j}i∈[M ],j∈[mi] such that they
are consistent with the leakage graph. It then defines EO.ecti,j ← EO.Sim(EO.pk,EO.sk, hi,j). It samples

shD,i
R← {0, 1}|v| and (KEM.cpi,KEM.ki) ← KEM.Enc(KEM.pk). Define s̃hD,i s.t. that it is consistent with

SHD and shD,i. For all s̃hD,i that are not defined yet, sample s̃hD,i
R← {0, 1}|v|. For t ̸∈ C, it samples

seedt
R← {0, 1}κ and ctat ← PKE.Enc(pk, seedt), which is identical to the protocol description.

We prove the claim by using the following sequence of hybrids.

Hybrid0: Is identical to the views during the real execution of the protocol.
Hybrid1: Simulates the view during the shuffling by using the simulator of the shuffle protocol.
Hybrid2: Sample EO.ecti,j ← EO.Sim(EO.pk,EO.sk, hi,j), where hi,j := EO.Eval(EO.ek, pi,j) and pi,j is the

reshuffled pt,i,j , which can be computed from the shuffle permutation π and {KVt}t∈[T ].
Hybrid3: It defines {hC,i,j}i∈[mC ],j∈[mC,i] and {hi,j}i∈[M ],j∈[mi] such that they are consistent with the leakage

graph.
Hybrid4: Samples (KEM.cpi,KEM.ki)← KEM.Enc(KEM.pk) s.t. it is independent of shD,i, s̃hD,i and SHD.

Hybrid5: Samples shD,i
R← {0, 1}|v| and defines s̃hD,i s.t. that it is consistent with SHJ ,D and shD,i. For all

s̃hD,i that are not defined yet, sample s̃hD,i
R← {0, 1}|v|.

If Hybrid0 and Hybrid1 can be distinguished with probability ϵ, then there is a distinguisher against the
simulator of the shuffle protocol with probability ϵ. Since such a distinguishing probability is negligible (based
on the security of EO, see Theorem 4), distinguishing Hybrid0 from Hybrid1 is also negligible.

If Hybrid1 and Hybrid2 can be distinguished with probability ϵ, we can define a sequence of hybrids that
step by step replaces EO.ecti,j with outputs of EO.Sim. Now, there are at least two consecutive intermediate
hybrids that can be distinguished with probability ϵ/(

∑M
i=1 mi). Since this probability is negligible due to the

evaluated ciphertext simulatability of EO, Hybrid1 and Hybrid2 can also only be distinguished with negligible
probability.

In Hybrid2 hi,j and hC,i,j are the outputs of EO.Eval whereas in Hybrid3 they are uniform in {0, 1}κ.
We prove that Hybrid2 and Hybrid3 are indistinguishable except with negligible probability by a reduction
to the pseudorandomness of EO.Eval. Let there be a distinguisher distinguishing Hybrid2 and Hybrid3 with
probability ϵ, then we can build a distinguisher against the pseudorandomness of EO.Eval with probability ϵ.
The latter requests all hi,j and hC,i,j from the EO.Eval oracle, uses them to simulate Hybrid2, Hybrid3 and
outputs the output of the former distinguisher. When they are actual EO.Eval outputs, it simulates Hybrid2
and when they are uniform, it simulates Hybrid3.

If Hybrid3 and Hybrid4 can be distinguished with probability ϵ, we can define a sequence of hybrids that
step by step replaces (KEM.cpi,KEM.ki) with (KEM.cpi, KEM.k′i) where (KEM.cpi,KEM.ki)← KEM.Enc(pk).

35



Now there exist two consecutive intermediate hybrids that can be distinguished which implies a distinguisher
for (KEM.cp,KEM.k) and KEM.cp,KEM.k′ with probability ϵ/M. By the triangular inequality, we can then

build a distinguisher for (KEM.cp,KEM.k) and (KEM.cp, u) with probability ϵ/2, where u
R← {0, 1}|v|. Such a

distinguisher breaks the key indistinguishability for the KEM. Since this is negligible, Hybrid3 and Hybrid4
cannot be distinguished except with negligible probability.

Hybrid4 and Hybrid5 produce identically distributed views. Note that s̃hD,i, s̃hD,i and SHJ ,D are indepen-
dent of (KEM.cpi,KEM.ki). Further, due to the simulator of the shuffling, they are independent of shC,t,i and
shD,t,i. Therefore, they can be sampled independently which concludes the proof of our claim. ⊓⊔

Claim. Let EO be a secure and correct randomizable encrypted OPRF scheme. Then, there exists a simulator
that generates the joint view of Party S and any subset of parties P1 to PT that is indistinguishable from the
joint view during the protocol execution.

Proof. The joint view of Party S and the corrupted subset of parties P1 to PT (defined by set C ⊆ [T ]) can

be generated from their input {KVt}t∈C and the received messages {s̃hC,i}i∈[M ] and KEM.pk.

The simulator samples s̃hC,i
R← {0, 1} and uses the simulator of the shuffle protocol to simulate the view

during the shuffling.
The view generated by the simulator is indistinguishable from the view during the real protocols by the

indistinguishability of the simulated view of shuffling from the real view of the shuffling. Notice that in case
of using the simulated view of the shuffling, {s̃hC,i}i∈[M ] are independent of {shC,t,i}i∈[mt],t∈[T ]. Therefore,

s̃hC,i can be sampled independently when using the simulated view during the shuffling. ⊓⊔
⊓⊔

E Extending Left Join to Inner Join

DPMC and DsPMC can be extended to support other types of joins such as an inner join instead of a left join.
In both protocols, party D performs the join based on the encrypted datasets of C and all delegators (i.e., in
DPMC in step 4 and in DsPMC in step 9 ). Performing the left join in party D hides from party C which
of its rows have been matched with one of the delegators’ rows and which have not. It is straightforward to
extend our delegated protocols to compute the inner join (i.e., intersection) between KVC and KVP and secret
share the associated metadata for these rows. This can be performed very efficiently using hash join over

the encrypted identifiers and sending the K̂EM.cp value to C only for the records present in both datasets.
Notably, computing the inner join leaks the intersection size to party C but also renders the downstream
MPC computation more efficient since it does not have to process secret shares of NULL.

36


	Delegated Private Matching for Compute

