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Abstract. Developers of computer-aided cryptographic tools are opti-
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standardisation Process. From our case study we draw conclusions about
the practical applicability of these methods to the development of novel

cryptography.
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1 Introduction

Computer-aided cryptography [10] is the field of study which “develops and ap-
plies formal, machine-checkable approaches to the design, analysis, and imple-
mentation of cryptography”. This can be categorised into three strands:

— Establishing security guarantees at the design level, using symbolic and com-
putational approaches.

— Verifying that implementations (new or pre-existing) are both efficient and
functionally correct, by showing they conform to the design about which
security guarantees have been established.

— Establishing security guarantees at the implementation level, such as constant-
time execution and secret-data-independent memory accesses, both of which
indicate resistance to timing attacks.

Panelists in a recent roundtable [29] on computer-aided cryptography ex-
pressed broad optimism on the future of the field, citing the success of tools
and projects like HACL* [32], Fiat Cryptography [24], and Cryptoline [26]. One
participant expressed the view that, within a few years, “the state of the art
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in program proofs will have advanced enough that verifying primitives will be
considered mundane and a strong requirement for any new proposed algorithm”.

Despite this optimism, most submissions to the NIST Post-Quantum Cryp-
tography standardisation Process [5] made no documented use of computer-aided
cryptography in their development. Indeed, only two submissions — NTRU
Prime [15] and Classic McEliece [8] — made mention of any potential use of
formal methods in improving their designs. The NTRU Prime supporting docu-
mentation stated [15] that the design choices of the scheme enabled easier formal
verification of its security properties, and that the authors had begun work on
verifying the optimised NTRU Prime implementation against the reference im-
plementation [14]. The Classic McEliece specification suggested a need for for-
mally verified proofs of quantum security, and also mentioned the potential of
formal verification of defences against timing attacks. Moreover, there has not
been much use of computer-aided formal techniques in the evaluation of any of
the schemes proposed for standardisation thus far.

Recently, NIST concluded the third round of their standardisation process.
After round three, none of the remaining code-based candidates were selected
for standardisation, but all of them were moved forward to the fourth round [1].
The isogeny-based scheme SIKE was also advanced to the fourth round, but has
subsequently seen a successful attack on its underlying hard problem [21]. If any
fourth-round candidates for KEM are selected for standardisation, they are thus
likely to be a code-based, which motivates further scrutiny of these candidates.

The security of the remaining code-based candidates is reasonably well-
understood, especially Classic McEliece, which has been long studied. Therefore,
other criteria will play an important role in evaluating and distinguishing these
schemes. We argue that applying the tools of computer-aided cryptography to
study these schemes is vital at this stage. Firstly, the amenability of each scheme
to being scrutinised and verified using these tools could be a criterion for their
evaluation. Secondly, demonstrating that the design or an implementation of a
scheme has been verified gives further confidence in this scheme.

In this work, we focus on applying computer-aided cryptography techniques
for developing efficient verified implementations to the Classic McEliece scheme.
Our main focus is an application of the SAW /Cryptol toolchain [25,20] to the
Classic McEliece reference implementation. We also report on our recent efforts
using the interactive theorem prover Lean in the verification of the mathematics
underlying aspects of the Classic McEliece design.

1.1 Related work

Verification of code-based cryptography To the best of our knowledge,
there are only two other works [4, 3] whose goal, as in this work, is to create a
formal specification of Classic McEliece. The first is a partial specification [4]
written in Cryptol, which, as far as we are aware, has not been used for the
verification of an implementation. The specification is comparable in size to the
one we produced in this work, but is incomplete in different ways. Moreover,
it does not seem to correspond to a named version of the Classic McEliece
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implementation, and targets a different parameter set that the one we aimed at.
Thus, we did not derive our own specification from it.

The second is a specification [3] written in Lean 4, that was made public
only after this work was concluded. As with our work, the goal of that work
was to investigate the use of Lean 4 for cryptographic specification. The spec-
ification [3] compiled to an implementation of the Round 3 version of Classic
McEliece which passes the Known Answer Tests, and some of its functions have
proven properties.

Considering the formalisation of code-based cryptography more broadly, the
HOL Light theorem prover was used in [13] to formally verify an algorithm to cal-
culate the “control-bits” of a permutation. The implementation of this algorithm
is a key component of Classic McEliece. We also note that there are formali-
sations in Coq of linear error-correcting codes [7], but they are not orientated
towards cryptography.

Applications of the SAW /Cryptol toolchain While our application of the
SAW /Cryptol toolchain to Classic McEliece is novel, we draw inspiration from
prior work applying this toolchain to other cryptographic schemes. The primary
work we build on is a work from Galois and Amazon [19]. The paper takes
two highly-optimised, trusted implementations of two current primitives, AES-
256-GCM and SHA-384, and describes the process of proof engineering and
tool development that led to high-level functional correctness proofs for these
primitives. It demonstrates some of the current capabilities and limits of the
toolchain; as we will discuss, our own work demonstrates different limits.

Developing verified implementations While our work focuses on verifying
an existing implementation, another approach [9, 18] is to generate verified code
directly from the specification. For example, a framework for building verified
cryptographic implementations is provided in [9]; delivering assembly code that
is provably functionally correct, protected against side-channels, and as efficient
as hand-written assembly. The framework is illustrated in [9] by an application
to the ChaCha20-Poly1305 cipher suite.

1.2 Our contributions towards Classic McEliece implementation
verification

In our work, our primary goal is explore to what extent the Classic McEliece
reference implementation submitted to the NIST standardisation process can be
formally specified and verified using the SAW /Cryptol toolchain. Our secondary
goal is to see if it is possible to find improvements on the implementation that
make it easier to specify and verify, while not impacting performance or its
security properties.

To this end, we offer in this paper:
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— Formal specifications and verification proofs for large parts of the Classic
McEliece reference implementation as of the Round 3 submission, available
at [31].

— A revised implementation for one of the core encryption routines in Classic
McEliece which both runs faster and admits a verification proof.

— A set of recommendations for designers and those setting standardisation
criteria for engaging with computer-aided cryptography.

As an additional contribution, we also report on recent efforts to apply the
interactive theorem prover Lean [27] [30] to produce verified proofs of certain
mathematical constructions used in the design of Classic McEliece.

Our attack model assumes that an attacker has full access to the implemen-
tation source code, and is acting as a man-in-the-middle between a client and
server attempting to perform key agreement using this KEM. Bugs in the im-
plementation are relevant only when they cause the implementation to deviate
from the theoretical design sufficiently that the IND-CCA2 security guaranteed
by the design is violated. Deviations between the specification and implementa-
tion that do not cause a weakening of security in practice are less relevant. Qur
verification target, therefore, was the equivalence of parts of the Classic McEliece
implementation with equivalent parts of the design.

2  Our toolchain and its target

The SAW /Cryptol toolchain consists of Cryptol [25], a domain-specific language
for specifying cryptographic algorithms, and the Software Access Workbench
(SAW) [20], a tool for verifying compiled bytecode against specifications defined
using Cryptol. They have both been developed, and are maintained, by Galois
Inc. Cryptol is a size-polymorphic and strongly typed functional programming
language, and a Cryptol specification of an algorithm can resemble its mathe-
matical specification more closely than an implementation in a general purpose
language. The SAW /Cryptol toolchain is suitable for verifying pre-existing code
against a specification. Thus, it could be applied to code that is highly trusted
and so cannot be changed. The SAW /Cryptol toolchain could also form part of
a continuous integration framework, where changes to the underlying program
are run against tests that include SAW proof scripts.

The Classic McEliece key-establishment scheme is derived from the code-
based public-key cryptosystem introduced in 1978 by McEliece [28]. The public
key in the McEliece cryptosystem specifies a random binary Goppa code — a
linear binary code with certain useful mathematical properties. The private key
contains information necessary to perform efficient decoding from an input that is
within a bounded error of a codeword. It is the claim of the designers that Classic
McEliece is not “new” in any sense: it aims to be a conservative implementation
of an established scheme. Where there are relatively novel elements, such as the
storage of permutations in the form of control bits, they are not core to the PKE
encryption and decryption operations.
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Our target system for verification was the reference implementation for the
version of Classic McEliece submitted in Round 3 of the NIST process [8], using
the mceliece348864 parameter set (the smallest parameter set). This reference
implementation was created by the Classic McEliece team to be the definitive
reference for their scheme’s operation. It formed a key part of their submission
to the NIST process, and has been available for manual public review since its
initial release. Its operation and the rationale for its design have been fairly well-
documented in the literature by its creators [16] [22], as have the operation of
the optimised implementations released alongside it. Our decision to target the
reference implementation was partly based on its status as a “golden reference”
for the scheme, and partly because as a reference implementation we hoped to
avoid verifying too much low-level optimisation, which can be extremely chal-
lenging [19].

We aimed to create a specification for this system in Cryptol, using SAW
to create proofs of equivalency between the abstract Cryptol specification and
the compiled bytecode of key functions used in the implementation. It should
be noted that SAW and Cryptol were not originally designed for specifying and
verifying asymmetric cryptography, but rather block ciphers, hash functions, and
other forms of symmetric cryptography. As such, Cryptol is not a very expressive
language for describing complex algebraic constructions, and specifying a scheme
in this way can lead to unusably slow performance. On the other hand, expressing
asymmetric ciphers in terms of bitwise operations as might suit Cryptol better
could obscure the rich mathematical structures that often underlie them. This
issue is not specific to Cryptol and reflects a general pattern in the computer-
aided cryptography literature: it is a lot easier to find verifications of symmetric
cryptographic schemes and implementations. We therefore expected that the
task of applying the SAW /Cryptol toolchain to Classic McEliece to be very
challenging, and this is why our primary goal was to test the capability limits of
SAW /Cryptol in this task.

We emphasise that our SAW /Cryptol work sits in the ‘second strand’ of re-
search in computer-aided cryptography (see Section 1). It does not cover aspects
in the ‘first strand’ (such as formal verification of the Classic McEliece security
proofs) or the ‘third strand’ (such as verifying that the implementations possess
the claimed resistance to constant-time attacks).

3 Verifying Classic McEliece with SAW /Cryptol

We begin with an overview of what was successfully verified and what was not.
Discounting those functions that are part of the RNG or that call the external
hash function used in Classic McEliece, there are 41 different functions that make
up the mceliece348864 reference implementation. Of these, 18 were completely
specified and verified; a further five were partially verified. All verifications were
performed within WSL2 on a Windows 10 PC with 16GB of RAM and an Intel
i5-8400 2.8Ghz processor. The limit on performance was generally memory: it
is conceivable that, in a few cases, with a higher-specification machine it would
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have been possible for some additional proofs to complete, but this would require
further testing to verify. This work represents around 5.5 months of person-time.

In general, the lower-level “utility” functions were easily verifiable. The most
substantial successes on cryptographically-relevant functions were in verifying
the implementation of the finite field operations, both against a mathematically-
defined specification and a literal translation of the C source, which we could
prove were equivalent under relevant preconditions. The PKE encryption and
decryption functions were where we found partial success, with full verification
of the key calculation loops. We found little success with the KEM wrapper,
which needed functions that Cryptol could not implement efficiently, and so it
was impractical to test them.

Of the five functions that we partially verified, these can be split into three
categories. Firstly, there were two functions for which it was possible to ver-
ify the core loop used in the function but not the function’s effect across all
loops. Secondly, there were two functions for which we found errors in the orig-
inal code. These were the two sorting functions, which contain small but vital
bugs in their comparators. Our discovery of these issues — which do not im-
pact Classic McEliece directly but are nevertheless real bugs in these functions
— demonstrates that verification can find problems that current methods of
scrutiny might miss. Finally, there was one function that we found we could
rewrite into a form that appears both slightly higher in performance and possi-
ble to verify. This function is especially interesting as it demonstrates that it is
possible to write implementations that are “more verifiable”, and this does not
have to come at the cost of performance (in this case, quite the opposite) or,
indeed, security.

The above information is summarised in Figure 1, which shows the call graph
of functions in the implementation, with functions and their groupings colour-
coded to signify the level of verification achieved. Green denotes that the contents
of that box have been fully specified and verified, orange that the contents have
been partially verified, red that the contents have been verified and a bug found,
purple that a refactored version of the contents has been verified, and blue that
the contents have not been specified or verified. A standalone version of this di-
agram is available at https://github.com/linesthatinterlace/verifying-
cmce/blob/main/docs/graph.pdf

It should also be noted that all functions for which it was possible to sym-
bolically execute them using SAW — which include all verified functions but
also some that could not be fully verified — are thus guaranteed to be memory-
safe and free of undefined behaviour, simply by virtue of having been executed
through SAW’s internal model.

3.1 Verification details

In the following, we highlight certain representative examples to demonstrate the
different classes of function we considered. These are chosen in order to illustrate
the strengths and weaknesses of the tools we used. Details of the specifications
and proof scripts are omitted here but are available in a public repository [6].
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Transposition The function transpose_64x64 transposes a 64 x 64 matrix
over the binary field Fy, represented as a sequence of 64 64-bit unsigned integers
taken as little-endian bitstrings. In the reference implementation, this is 33 lines-
of-code, with the method of its operation being non-obvious, using masks to avoid
any branching. We produced a two-line specification for this. This specification
exactly captures the mathematical definition of transpose_64x64, adjusting
for Cryptol’s big-endian representation of 64-bit integers. There were multiple
functions with simple definitions that had complex implementations (often to
avoid branching for constant-time reasons), and these often admitted simple
specifications against which they could be easily verified. The SAW /Cryptol
toolchain excels at handling situations like these.

Field operations There is a set of low-level functions for performing operations
over a finite field of prime order and one of its extensions. At the lowest level,
these use simple bit operations, but for an operation like field division, a com-
bination of field inversion and field multiplication is needed. SAW /Cryptol has
the facility for compositional proofs, which means it can use equivalence proofs
for functions that have already been proved or assumed in order to simplify a
new proof that uses those functions. This lends itself well to proving facts about
field arithmetic, where this is a common pattern.

For many of these field functions, we created two specifications: a low-level
specification corresponding to the original implementation, and a higher-level one
closer to the arithmetic implementation. The higher-level one is only equivalent
to the low-level one under the condition that the inputs are valid members of the
field. That this invariant is preserved — that is, that valid field members remain
valid field members under all field operations — is a fact that it is possible and
desirable to prove, but which was slightly out of scope of our own work (though
we were able to do so in some cases). We were able to prove this equivalence
under the assumption of this invariant using both SAW’s symbolic execution
and the native SMT support within Cryptol.

Loop functions There were some functions that took the form of loops op-
erating on a large array. For these, it was possible to prove that the body of
the loop (or a large section of it) was equivalent to the specification, but it was
not possible to then use that equivalence to prove equivalence across all loop
iterations.

We theorised that it might be possible to re-write one of these functions in
some cases, re-factoring it to avoid one or more of the issues that cause SAW
to stumble. In particular, a large amount of state needed to be carried across
the loops — the entire current state of the array. We theorised that if the data
flow could be isolated and split into smaller operations — removing the need to
carry a large state — it would result in a more verifiable implementation. This
turned out to be correct in at least one case.

The core component of encryption under Classic McEliece is the multiplica-
tion, in the ring of matrices over Fy, of a vector e of length n by an (n — k) x n
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matrix H, producing the result s := He of length (n — k); this vector s is the
syndrome of e. The values n and k are parameters of the scheme. For a given
parameter set, n is the code length and &k the code dimension of the underlying
permuted Goppa code, the linear code on which Classic McEliece is based. H
has the form (I,,_x | T'), where I,,_j is the identity matrix of dimension (n — k),
and T, the public key, is a (n — k) x k matrix.

For all parameter sets, n and k divide by 8, and thus so too does n — k. The
data for e, T, and s are stored in the implementation as byte arrays, treating
bytes as little-endian as with transpose_64x64. These byte arrays have length

2, (n—k)x g, and ("gk) respectively.

The implementation version of the function syndrome takes the byte array
storing T and e and the pointer of the byte array that will store s, reconstructs
H, and loops over its (n — k) rows. Each iteration of the loop sets a bit in s,
performing the appropriate row multiplication of H for the current index with

e. This is done using bit-manipulation to avoid branching.

The issue for verification is that this means each loop stores the entire state
of s. We found that while we could verify that one loop correctly modified s per
the specification, the symbolic execution of all of syndrome could not complete
when we applied the compositional override. As each loop sets the appropri-
ate bit of s by performing an accumulative OR on the appropriate byte with a
suitably shifted weight-1 byte, every iteration was storing more and more accu-
mulative information about the byte array s that SAW had to keep track of in
the execution. We suspect that the loop became too large for SAW to support.

However, we were able to rewrite syndrome to avoid this issue. The key insight
was the following one: each eight rows, a byte in s is completely determined, and
thereafter plays no role in what follows. This is easy to see as a human reader,
but is not information that SAW can derive. This is possibly because the index
of the byte set each loop is calculated each time as %, where in our loop function
we simply model the row index i as a 16-bit integer. It is possible that SAW,
internally, cannot conclude that this implies that as ¢ is incremented by one
each time, after eight values of 7 a byte in s is fixed. Our idea was to implement
not only a row-multiplication function, but also a function to take a block of
eight rows and perform the corresponding multiplications across all of them,
producing the resultant byte.

In addition, we noted that because e is multiplied by the identity matrix,
it can be split into (e;q, epr) = €, where e;q and e,y are stored as byte arrays
of length ”T_k and g respectively. This means that s = e;q + Tepr, and so we
can focus on performing Tepy, with no need to reconstruct H. We can calculate
Tep, a byte at a time, exclusive-or this byte to the corresponding byte of e;q,
and this gives the corresponding byte of s.

This means that we are performing "T’k loops rather than (n — k), but at
each loop we perform eight row multiplications instead of one, albeit also on a
smaller matrix. The crucial part is that then each loop sets a byte of s without
reference to the current state of s. This is unlike the original implementation,
which modifies s each loop by performing an OR operation on one of its bytes.
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void syndrome (unsigned char *s, const unsigned char #*pk,
unsigned char *e)

{ unsigned char b, row[SYS_N/8];
const unsigned char *pk_ptr = pk;

int i, j;

for (i = 0; i < SYND_BYTES; i++)
s[i]

]
o

for (i = 0; i < PK_NROWS; i++)
{ for (j = 0; j < SYS_N/8; j++)
row[j]l = 0;

for (j = 0; j < PK_ROW_BYTES; j++)
row[ SYS_N/8 - PK_ROW_BYTES + j 1 = pk_ptr[jl;

row[i/8] = 1 << (i%8);

o

b = 5
for (j = 0; j < SYS_N/8; j++)
b ~= rowl[jl & eljl;

b “= b > 4;
b "= b > 2;
b "= b > 1;
b &= 1;

s[ 1/8 1 |= (b << (i%8));

pk_ptr += PK_ROW_BYTES; } }

Listing 1: Original syndrome implementation.

Not only does this implementation of syndrome actually allow efficient sym-
bolic execution and a verification proof, but our re-implementation appears to
result in a modest performance improvement over the original. In testing on
random data, we found it ran in an average of 1.4ms as opposed to an average
of 1.5ms for the original implementation. We should note that this implemen-
tation is also used in the scheme’s optimised implementation, though not the
additionally optimised implementation that uses assembly-level code. In addi-
tion, we believe we have maintained the side-channel resistance properties of
the original — in testing, there did not appear to be an appreciable difference in
performance with different random inputs, and there is no branching or memory
accesses indexed with secret data.
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unsigned char bytes_bit_dotprod(const unsigned char *u,
const unsigned char *v, size_t n)
{ unsigned char b;

int 1i;

b = 0;

for (i = 0; i < n; i++)
b ~= uli] & v[i];

return b_func(b); }

unsigned char bytes_bit_mul_block(const unsigned char *u,
const unsigned char *v, size_t n)

{ const unsigned char *u_ptr = u;
unsigned char b;
int 1i;
b = 0;
for (i = 0; i < 8; i++)
{

b += (bytes_bit_dotprod(u_ptr, v, n) << i);
u_ptr += n;

}
return b; }

void syndrome_bytewise (unsigned char *s, const unsigned
char *pk, unsigned char #*e)
{ const unsigned char #*pk_ptr = pk;
const unsigned char *eid = e;
const unsigned char *epk = e + SYND_BYTES;
int 1i;
for (i = 0; i < SYND_BYTES; i++)
{

s [i] eid[i] ~ bytes_bit_mul_block (pk_ptr, epk,
PK_ROW_BYTES) ;

pk_ptr += 8*PK_ROW_BYTES;
o}

Listing 2: Revised syndrome implementation.

11
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In summary, we were able to produce an implementation of syndrome that
was faster, as secure, and, crucially, more verifiable than the original. This is
evidence for the following claim: it is meaningful to consider one implementation
being more verifiable than another, and there are properties a function can have
that make it inherently easier to find a more verifiable implementation. If it was
not the case that the data flow for syndrome could be separated as we did here,
then the above approach would not have worked. Thus, at the design stage,
such “separability” could be considered as a desirable attribute that can make
an implementation more verifiable (for some chosen definition of verifiability).

Sorting comparator bugs We discovered bugs in the sorting functions used
by the Classic McEliece implementation, which do not directly affect the imple-
mentation but could certainly present an issue in code reuse. The bugs we found
were in macros used by the sorting functions as element comparators. These
macros take two variables, and place the minimum value in the first variable
and the maximum one in the second without performing a branch. The first acts
on two unsigned 64-bit integers, and the second acts on two signed 32-bit inte-
gers. In the former case, it simply does not produce the right output for certain
inputs. In the latter, signed integer overflow can occur for certain inputs, which
leads to implementation-defined and possibly undefined behaviour.

uint64 MINMAX(a,b) = min(a,b), max(a,b) <
(max(a,b) — min(a, b) < 263) V(b<a)A(a—b= 263))

Fig.2: Conditions for uint64 MINMAX to behave correctly.

The problem in both cases is the most significant bit; the sign bit in the
signed case. Using a Cryptol implementation of the unsigned case, and careful,
iterative use of its SMT-solving capabilities, we were able to isolate a condition
(Fig. 2) for the first macro to work correctly. That is, the first macro only works
when the inputs have the same most significant bit.

We did not detect the bug with the second macro Cryptol directly, but in-
stead when verifying the sorting algorithm in SAW. This is because Cryptol’s
behaviour for integer overflow is always that it wraps, which is also the assump-
tion of the macro. However, SAW’s symbolic execution models the C specifi-
cation itself, in which it is implementation-defined whether signed integers are
treated as modular or if they overflow, and an overflow is undefined behaviour.
Therefore, SAW detects the possibility of undefined behaviour and terminates
the symbolic execution. The condition for avoiding any possibility of overflow
is exactly that b — a can be stored in a 32-bit integer, which admits a similar
condition to that for the 64-bit case.

By looking at where these functions are used and what is stored in them,
it appears that the troublesome bit will only ever be set to 0 in practice, and
thus these bugs appear to be of limited, if at all, impact to Classic McEliece.
However, another implementor might re-use these sorting functions in another
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context. Indeed, these functions are derived from a separate library, the djbsort
library [11], and thus the bugs could have a wider impact. These functions could
be fixed by applying input validation to check for the problematic cases.

This sort of subtle issue is one that is very hard to see with casual human
review, but was easy to spot once the formal tool drew our attention to it.
Thus this example further motivates the use of formal verification tools in the
development of cryptographic schemes.

4 Verifying aspects of Classic McEliece with Lean

In this section, we report on our efforts to apply the interactive theorem prover
Lean 3 and its mathlib library [27] to produce verified proofs relating to Classic
McEliece. Lean aims to be both a functional programming language, in which it
is easy to write correct and maintainable code; and also an interactive theorem
prover, similar to Coq [17]. Like Coq and its MathComp library, Lean has its
own mathematical components library, mathlib. The mathlib library has enjoyed
extensive interest from the pure mathematics community and has been growing
and updating at a rapid pace in the last few years. The style in Lean and mathlib
is generalised and abstract; in contrast to Coq formalisations, which tend towards
a concrete approach [7].

Verification of control bit constructions In [13], Bernstein uses the HOL
Light tool to gives proofs, and formal verifications of those proofs, for the control
bit constructions used in Classic McEliece. As a proof of concept, we decided to
attempt to re-implement the same proofs in Lean. The proofs we were able to
obtain verified more theorems than the verifications in [13]; in addition, unlike
HOL Light, it is relatively easy in Lean to talk about permutations of {0, 1, ...,n}
rather than permutations of {0, 1, ...} that fix {n,n +1,...,}, or indeed permu-
tations defined on any well-ordered type. As such, unlike the verifications in
HOL Light, the theorems we verified were closer to the original mathematical
statements, with no translations required.

However, these proofs are not compatabile in the most recent version of Lean
and mathlib, because the library itself has advanced since then. While they are
available [2], they would require further work to update to the latest version of
the library. This illustrates an issue with formal methods in general and ones
based on unstable libraries in particular: they create an extra technical debt
as they require maintenance. Nevertheless, the relative ease at which our work
proceeded made us optimistic to try more experiments in proving aspects of
Classic McEliece’s design using Lean in future.

Verification of coding theory We also investigated the use of Lean to verify
the correctness of the decoding methods used in Classic McEliece. We targeted a
recent monograph of Bernstein [12] setting out the necessary theorems of coding
theory used in the proof of correctness. In theory, Lean’s mathlib contains all
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the mathematics necessary to prove these theorems. In practice, there were a
number of hurdles to overcome, for example in edge cases that need to be formally
specified even though they may appear not to matter on paper, and this work
is still in progress.

Towards this goal, we have provided to mathlib a refactor of theorems about
Lagrange interpolation, and an implementation of the Hamming distance and
theorems around it. These theorems are a building block towards verifying Goppa
codes and Classic McEliece. Given the recent publishing of a Lean 4 specification
of Classic McEliece [3], the possibility (even if a difficult one) of joining this
work with proofs about the abstract design of the scheme is an interesting and
potentially exciting one. This would be ‘first strand‘ verification — in that it
is verifying the mathematical correctness of the design itself — combined with
‘second strand‘ verification — as it would be verifying an implementation against
the constraints of a design.

5 Conclusions and perspectives

5.1 Recommendations

Our work adds to the increasing body of work showing that formal approaches
can and should be incorporated into cryptographic design evaluation. In particu-
lar, we demonstrate that it is meaningful to talk of the verifiability of a particular
implementation, and, by extension, of a particular design. Such verifiability can
be treated as evidence in favour of a proposed design or implementation. Advo-
cates for the use of computer-aided cryptography should aim to play a role in
the setting of common standards around verifiability.

Designers and implementers of cryptographic schemes can follow two main
approaches to incorporate computer-aided cryptography techniques. The first
approach is using tools that aim to verify existing code. In this case, we recom-
mend engaging with the limits of the chosen tool before beginning implementa-
tion. For instance, with SAW /Cryptol, we found that large loops that carried
large amounts of state between each loop iteration were not feasibly verifiable.
Other tools will have different limitations. Such tools can be incorporated into
the software development cycle, as prior work has demonstrated [19,23]. It is
easier to adjust the design of an implementation at an earlier stage in its de-
velopment, and our experience in this study demonstrates that seemingly-small
alterations in a design can make a real difference to verifiability.

The second approach is for implementors to choose a synthesis-first ap-
proach [9, 18]. Novel cryptography has the advantage that it is necessarily based
on “fresh” code, and has the flexibility to support verified code synthesis. More-
over, such implementations can be as efficient as hand-written code, if not more
SO.

5.2 Future work using similar approaches

Verification of Classic McEliece The functions that we could verify or par-
tially verify with SAW /Cryptol constitute the core of the decryption and en-
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cryption operations of Classic McEliece. It would be interesting to extend this
to the higher-level encapsulation or decapsulation functions. For example, their
memory safety could be determined by checking that SAW could symbolically
execute them. In addition, some components of the implementation were tech-
nically challenging to specify in Cryptol. For instance, whilst we were able to
produce a specification for the function that calculates permutation control bits,
we were not successful at using it in verification. Prior work has explored for-
mally proving the design of the formulae used for the control bit calculation [13].
Future work should seek to explore this further, perhaps porting these proofs to
a language like Project Everest’s F* [18] which has the facility for code synthesis.

Verification using Lean Lean is a relatively new theorem prover, and as such
has seen relatively little attention from the cryptographic community. Lean’s
strong support for Unicode and the tendency of mathlib towards abstraction and
generality means that statements and even proofs in mathlib can look closer to
their “pen and paper” equivalents in, say, Coq. This is of interest for forms of
cryptography in which the underlying constructions are often abstract and math-
ematical, even though the instantiations are necessarily concrete. The rapid de-
velopment of Lean and mathlib means there is an opportunity for cryptographers
to “get in at the ground floor” and shape the implementation choices behind key
concepts. We see this as an important direction for future work.
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