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Abstract. Deep learning is very efficient at breaking masked implemen-
tations even when the attacker does not assume knowledge of the masks.
However, recent works pointed out a significant challenge: overcoming the
initial learning plateau. This paper discusses the advantages of multi-task
learning to break through the initial plateau consistently. We investi-
gate different ways of applying multi-task learning against masked AES
implementations (via the ASCAD-r, ASCAD-v2, and CHESCTF-2023
datasets) under the assumption that the attacker cannot access masks
during training. We offer evidence that multi-task learning significantly
increases the consistency of convergence and performance of deep neural
networks. Our work provides a wide range of experiments to understand
the benefits of multi-task strategies over the current single-task state-
of-the-art. Furthermore, such strategies achieve novel milestones against
protected implementations as we propose models that defeat all masks
of the affine masking on ASCAD-v2 for the first time.
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1 Introduction

Deep learning techniques have quickly become an alternative to classical statis-
tics in the context of profiled side-channel attacks because of their unrivaled
ability to utilise information across many tracepoints efficiently. The approach
taken by many deep learning architectures still somewhat depends on the think-
ing found in traditional statistics-based attacks: a single intermediate target is
learned at a time (thus, a network is trained for each intermediate).

Recent publications have begun to move beyond this single-task learning
paradigm towards a multi-task learning approach: Mahgrebi [6] explores a deep
learning architecture to learn two intermediate values (bit-wise) on an AES im-
plementation simultaneously; Masure and Strullu [9] revisit Mahgrebi’s idea and
learn many intermediate values simultaneously. They set a new record for a “non-
dissecting” approach for the ASCAD-v2 dataset and successfully recovered the
key bytes with 60 traces when assuming knowledge of the masks during profiling.



Their paper concludes by reflecting on the potential power of multi-task learn-
ing: “A further study of the advantages and drawbacks of such paradigm is yet
to be done. Still, this could lead the SCA practitioner towards new milestones
against protected implementations.” (p. 21, [9]). Marquet et Oswald [7] further
explore this multi-task learning and provide evidence that multi-task learning
models have an edge over single-task models in a scenario where knowledge of
the masks during training is not assumed.

1.1 Breaking free of the “Plateau”

The “plateau” effect is a common problem when training deep learning models.
This situation happens when the network encounters challenging topographies
during the gradient descent, for example, being stuck in a local minimum. Masure
et al. [8] discuss this problem in a side-channel context in the presence of masking.
The authors link related works reporting similar learning curves. During the first
epochs, the loss function marginally decreases until a sudden exponential drop
happens for a few epochs before returning to ”linear” learning. The authors
interpret this phenomenon using the stochastic nature of deep learning. The
gradient descent is stuck at the beginning, as no single point in the trace gives
up information about the target in a straightforward manner (no first-order
leakage), and the weights are initialised at random. This leads to very weak
feedback from the back-propagation and indicates that a certain amount of luck
on the initial starting point is involved.

Masure et al. [§] empirically demonstrate that the complexity of passing the
plateau is exponential with the number of shares, as the feedback signal given
by the labels is less and less related to the given inputs. Backed with classical
deep learning literature, the authors hypothesize that the complexity of passing
the plateau does not come from the choice of hyperparameters but rather the
number of steps needed by the gradient descent to reach sufficient learning. This
leaves the deep learning practitioners hints on how to improve model design.

1.2 Summary of Contributions and Outline

We discuss the ability of multi-task learning to break through the initial plateau
consistently regardless of the initialization. We propose a novel idea for improving
multi-task designs to focus the gradient flow and further improve deep learning
models in a side-channel context. We focus on the application of multi-task
learning in the context of the masked AES-128 implementations that are the
basis of the ASCAD-r and ASCAD-v2 databases introduced in Prouff et al. [14]
and Masure et Strullu [9]. We continue those experiments on the new CHESCTF-
2023 dataset [16]. After providing some notation and background in Sect. 2| we
introduce multi-task learning in Sect. [3] and our multi-task designs in Sect.
Finally, we present our experimental results in Sect. [5| on both datasets. Our
innovations can be succinctly listed as follows:



Contributions

— We show that multi-task models reduce the variance introduced by the ini-
tialisation of the weights in the convergence of models.

— We propose to leverage multi-task learning to enable collaboration between
different intermediates and/or different bytes of the same intermediates.

— We provide evidence that multi-task learning allows an attacker to leverage
constraints to ”guide” the learning of the model.

— We provide experimental evidence that such constraints are beneficial to the
overall performance of the model but also its convergence speed.

— We compare novel multi-task architectures against state-of-the-art single-
task designs.

With profiled attacks, the most challenging setting is the one where knowl-
edge of the countermeasures is not assumed. In the context of masked imple-
mentations, we would then assume that —because of a lack of access to internal
randomness— the training data cannot be labeled with masks or masked values,
but only the (unmasked) intermediate values. Again, due to the absence of ran-
domness information, a point of interest selection might not be feasible. Given
that the application of multi-task learning to masked implementations is based
on designing branches that learn masks and masked values, it is non-trivial to
come up with a way to apply multi-task learning when masks are unknown. For
this reason, we target multiple bytes at the same time to leverage common fea-
tures between the masks of the targets. For example, a mask might be shared
across bytes, but also, in the case of a state mask, the leakage of each byte of
the mask might depend on the same underlying operations.

Reproducing experiments. In order to make our experiments reproducible,
we provide our code via a git repository (see link below). For convenience, we
provide links to all utilsed data below as well.

— [ASCAD-r
— [ASCAD-v2
— |Github

1.3 Related works

Hu et al. [5] explains that it can be beneficial to use the data from the processing
of the AES state bytes to train a single model representing an intermediate
value. This is possible in the case of many software implementations because
each state byte undergoes the same operations (the same sequence of Assembly
instructions), which means that their leakage is very similar. Ngo et al. [T0J1]
shows a similar technique to reduce the size of the dataset to attack a masked
Saber implementation.

Ngo et al. [I0] and later on, Masure et al. [§] consider the possibility of assum-
ing the presence of masking during the training of two models and propagating a


https://drive.google.com/file/d/1Y44zvuohznNqxaDXht7y4Z1EQJWf1nhQ/view
https://drive.google.com/file/d/1I-LLqYpTRuHGXmzFRPDyp8zBrj3GBnUG/view
https://github.com/sca-research/exploring-multi-task-SCA

loss on the combined probabilities from both outputs. Such training relieves the
network by giving it a better understanding of what it should learn. The first
authors, however, present bit-wise designs, while the latter’s designs are over one
hot encoded byte.

In the side-channel community, Mahgrebi [6] was the first to pick up on the
idea of multi-task learning. Followed by Masure and Strullu [J] along with the
first attacks on the ASCAD-v2 database. The core idea behind the existing ar-
chitectures in these two previous works is that each intermediate value is learned
by an independent branch of the deep net and that all branches are connected
to several shared layers dealing with the higher-level features. This is the canon-
ical design of multi-task networks, as summarised in [I5]. Even though the work
Masure and Strullu [9] introduces multi-task learning in a scenario where ran-
domness is not known, their designs do not take advantage of the idea of Masure
et al. [8], which demonstrate the benefits of layers that perform combined proba-
bilities between two branches of a network to encode the masking scheme in the
architecture. Marquet et Oswald. [7] showcase the benefits of said principles in a
multi-task architecture. In a scenario where masks are unknown but shared, they
demonstrate the superiority of multi-task learning over single-task learning. Fi-
nally, Bursztein et al. [1] presents SCANET, a multi-task architecture defeating
multiple countermeasures against protected implementations of ECC. They also
complete their investigation by discussing the performance of their architecture
on the ASCAD-v2 dataset with full knowledge of the countermeasures during
profiling.

2 Preliminaries

We stick to as simple notation as possible and stay with the variable naming
conventions of the ASCAD databases: upper case letters denote sets (which we
overload and simultaneously use as random variables), and lower case letters
denote realisations of the random variables (and equivalently elements of a set).
All variable/set names are taken (without renaming) from the original papers
(implementations/data sets), such that “matching up” of our work with these
original implementations is straightforward. The index ¢ refers to the ith state
byte, and we generally drop any indexing referring to points within a trace from
our notation.

2.1 Profiling based on Deep Learning

We consider side-channel attacks that operate in two stages: a leakage identifi-
cation stage, where (if necessary) points of interest are selected and deep neural
networks are trained, and a leakage exploitation stage, where the trained nets are
used as classifiers in the context of differential side-channel attacks. During the
leakage identification stage, traces are collected from a clone of the target device
using random keys and plaintexts. After a variable amount of pre-processing,
depending on the dataset, a model my, with hyperparameters 6, is trained to



recover the intermediate information Z = (P, K) about one or multiple 8-bit
key chunks (single-task or multi-task). Once the classifiers are trained, an attack
dataset of N, traces is collected on the target device, but this time with an
unknown fixed key k* and random plaintexts p. The i-th trace [; is fed to the
classifiers in order to recover the predictions g; = my(l;). Finally the key guesses
d[k] is recovered using :

Na
dlk] = Zlog(gi[zi]), where z; = p(p;, k)
i=1

Training Methodology We use the same methodology across all datasets. To
enable meaningful comparisons, we train each approach with the same learning
rate and optimizer. We compare each approach’s abilities to learn a given task x
with a given set of hyperparameters 6, initialized with the same weight values.
This means that regardless of whether it is a single-task or a multi-task, each task
x; is learned using the same amount of weights and biases. The only difference
between models is how the branches are connected.

As per good practice, we divide the available data into training data, vali-
dation data, and attack data. All training happens on the training data set. We
validate a learned model on a validation set of size IN,. During this validation
phase, we monitor the validation accuracy. Our best training model is selected
based on the best validation loss, and we use a Tensorflow callback to retrieve
this model.

2.2 Data Sets and Corresponding Notation

Our work is based on the ASCAD datasets as well as the new CHESCTF-
2023 dataset, which are all based on masked AES implementations. We assume
familiarity with low-order masking, as we keep the following text as short as
possible.

ASCAD-r The original ASCAD database (v1) features one data set of a masked
AES implementation (on a simple 8-bit microcontroller) with varying keys, which
we utilize in our work. The database is generous; each side channel trace offers
many data points for inclusion in training. The dataset contains the information
that relates to the masked computation of the AES SubBytes operation. The
masking scheme is a simple two-share scheme, which precomputes a masked AES
S-Box Table SubBytes™ prior to encryption. The accompanying write-up for the
database already performs an analysis to highlight the leakiest intermediate
variables, which are the masked input and output of the SubBytes operation
(t; ® rin, s;i ® ;) as well as the two involved masks r; and r;, respectively the
state mask, and the SubBytes input mask. We select in the dataset 60k traces
from the random key split for training (N; = 50k traces) and validation (N, =
10k traces), and 10k from the fixed key split for the attack dataset (N, = 10k
traces).



Several papers have reported results for this database for a variety of network
architectures and approaches. Our approach is to work with the raw traces (thus
no points of interest selection take place). With this setting in mind, the best
previous work is Perin et al. [I3], which reached single trace success for some
key bytes — culminating in 3 traces for the most resilient key bytes.

ASCAD-v2 The ASCAD-v2 dataset contains traces from a masked and shuffled
AES implementation (on a more complex 32-bit architecture); however, the
shuffling is disabled in this work. The full dataset contains 800k traces with
random keys and inputs. Each trace has 1 million sample points. The masking
scheme is slightly more complex. It uses both a non-zero multiplicative mask
B, as well as a Boolean mask «, i.e., each intermediate value z is represented
by three shares: (z ® 8 @ «,83, «) (the multiplication must be understood over
the appropriate finite field). We take a special interest in the masked SubBytes
inputs 7, ® t; @ 14, outputs r, @ 55 O Tout, the multiplicative mask r,,, and
the corresponding additive masks 1, and ry.:. We craft our dataset with a
subsampling using a moving average in the way of Perin et al. [I3] on ASCAD-
r. This divides the number of total samples by 4. We extract from the traces
the points of interest of the masks using SnR analysis and the samples related
to the first round of SubBytes operation. After shuffling all traces, we split the
available data into training (N; = 450k traces), validation (N, = 45k traces),
and attack (N, = 5k traces) data sets.

This dataset has successful attacks in two situations where the countermea-
sures are toned down. The first one by Masure et Strullu. [9] has a successful
attack without requiring the knowledge of the permutations but also without
requiring the knowledge of the multiplicative mask. The paper Marquet et Os-
wald. [7] provides successful attacks when the additive mask 7, is unknown. The
best results for a full key recovery attack depend on the scenario. For a scenario
where knowledge of masks and permutations is assumed during profiling but
not during an attack, the best attack of Masure et Strullu. [9] takes 60 traces.
In the same scenario, Bursztein et al. [I] reach full key recovery with around
80 traces. Wu et al. [2]] present two non-profiled attacks on the dataset. The
first utilises the fact that each byte shares the same masks to perform collision
attacks and recover most of the key bytes with around 70k traces. The second
attack takes advantage of the fact that an intermediate value of 0 effectively
removes the multiplicative mask. Using correlations between the SubBytes pat-
terns and the pattern of the additive mask, they show decreasing key ranks with
around 500k attack traces. Finally, the best attacks of Marquet et Oswald. [7]
take 21 traces, assuming knowledge of permutations and the multiplicative mask
rm during attack and profiling.

CHESCTF-2023 (Spartan-6). The CHESCTF-2023 contained two datasets.
Both are based on an AES implementation, using a 32-bit datapath with state-
of-the-art Hardware Private Circuits (HPC) masking [3] (two shares). We elect
to use the dataset that was released without information about the masks: this



requires training without the knowledge of masks (thus, the situation is akin
to what we have in the selected ASCAD datasets). This dataset was sampled
from a Spartan-6 FPGA. Adopting the notation from the ASCAD datasets, the
S-box inputs can be represented as t; @ r; for each 8-bit chunk. We do not pre-
process the traces, but we extract the samples related to the clock cycles of
the S-box computation. The winning strategy on this target is taking advantage
of the transition leakages on the S-box input wires. On the last column bytes
(1,6,11,12), the transitions leak the full value of the bytes since they transition to
zero. Therefore, those specific bytes leak significantly stronger than the others,
and our discussion will be limited to those bytes. There is no state of the art on
this dataset besides the challenge participants, with the winner reaching a full
key rank of 2% with 901k traces [16].

2.3 Custom layers: Xor and inverse multGF256

Masure et al. [§] introduced the idea of using custom layers. They calculate the
conditional probabilities using FFTs between the softmax layers of two models
trained during the same process. Our implementation calculates the conditional
probabilities directly using a parallelized version of the following computations.
Given two vectors x and y of size 256 :

255
fol@, )il =Y aljl xyli®j] Vi € [0,255] (1)
§=0
255
felw,y)li] = [0+ aljl x yli®j] Vi € [0,255] (2)
j=1
The function fg has to discriminate the first case where j = 0, being a

null element. We decided that, in this case, the probabilities of x should be
unchanged.

2.4 Single-task designs

We define a single-task model as a model that is trained using the knowledge
of only one label. In our scenario, where access to internal randomness is not
assumed, this means that we have a model labeled with the unmasked value of
an intermediate. State-of-the-art single-task designs against masked implemen-
tations are composed of d-branches networks in the like of Masure et al. [9] and
Ngo et al. .[I0], one for each share. We note each branch’s hyperparameters
01, ..., 84. If points of interest from each share cannot be extracted and fed di-
rectly to the respective branch, the same trace points are fed to all the branches
after passing through a shared part of the network used to process the inputs
6. Examples of such architectures are given in Figure [I}
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Fig. 1: Single-task architectures using d = 2 branches.

3 Multi-Task Learning

Multi-task learning has been introduced by Caruana [2] and has become state-
of-the-art in many pattern recognition domains. Multi-task models benefit from
the knowledge of multiple labels during training through collaboration among all
tasks. Given N tasks x;, the respective set of hyperparameters 0,,, the resulting
loss £, and the associated weight A;, the multi-task learning objective can be
defined as the weighted sum:

N
Ln1(0) = Z AilLy, (0z;)
i=1

Hard-parameter sharing. To enable collaboration of tasks within the net-
work, one must introduce relationships between each task’s hyperparameters.
One way to achieve this is through hard-parameter sharing. Considering two
tasks x1 and x9, with the underlying hyperparameters 6,,, 6,, related to their
respective tasks, hard-parameter sharing can be defined as the requirement that
at least some hyperparameters are shared between the tasks: 6, N 6., # 0.
By this logic, sharing convolutions or layers at the beginning of the network
is already hard-parameter sharing. However, sharing layers close to the input is
usually made to share higher-level features. Going further down the network with
shared layers means, on the contrary, sharing lower-level features. The difficulty
of sharing the latter comes from the fact that the output must be different but
obtained with similar inputs and the same weights. Once relationships are estab-
lished between the hyperparameters of different tasks, according to Caruana [2]
and Ruder [15], multi-task learning brings potential benefits such as :

— Input explainability: Assuming two tasks x; and x5, the inputs [ given to
the network could be explained using I = f(z1, z2) + €noise- Approximating
the function f through the weights of the network is expected to be easier
if it has knowledge of x; and .

— Noise cancellation: If x; and x5 share features, the gradient will be aver-
aged over both tasks, therefore reducing the noise.



— Eavesdropping: If z; has a stronger signal-to-noise ratio than x5 and both
share features. Then, training both at the same time is beneficial for zo, as
the shared features will be highlighted by .

— Representation bias: Constraining the network by encoding relationships
between tasks prevents the gradient from falling into local minima that do
not benefit all tasks. This reduces the search problem by removing unfitting
weight representations.

4 Multi-task designs

4.1 Competition or collaboration

One of the main drawbacks of multi-task learning is the possibility of two tasks
competing against each other. Understanding the potential collaboration be-
tween tasks is key to successful multi-task design. It is not clear if straight-
forward multi-task learning using high-level parameter sharing as presented in
Caruana [2], and then applied to the side-channel domain [GIT9/T9] is beneficial.
The potential competition between multiple gradients can damage the learning
of one or multiple tasks, as explained in Standley et al. [I7] or in Yu et al. [22].
Special care has to be ensured so that tasks are effectively collaborating with
each other. Marquet et Oswald [7] introduce the idea that one can utilise the
knowledge of a shared mask between multiple bytes of a targeted intermediate.
It is by encoding known relationships into the network that the superiority of
multi-task learning can be leveraged. With this philosophy in mind, we expand
on the idea of masks that are not shared.

4.2 Parameter sharing

The idea of using d-branch networks can be utilized in the context of multi-task
learning. If we call n; the number of tasks, then the corresponding multi-task
network has n; x d branches. In this section, we explain three different ways
to connect the different tasks through hard-parameter sharing, with the aim of
enabling positive collaboration between the tasks.

To compare these multi-task designs with a suitable single-task reference de-
sign, we proceed as follows: if leakages are extracted, and no shared layer 6y is
introduced in the network, then parts related to each task are completely inde-
pendent of each other. Training the resulting network is equivalent to training
ng single-task models in parallel, and we will use this strategy to train suitable
single-task reference networks.

High-level parameter sharing. The classical use of multi-task learning
introduced by Caruana [2] is based on the utilization of shared layers to process
the input. In our designs, we use a set of layers Oy close to the inputs to perform
extraction of interesting information and propagate this information to each
branch of the network. The intuition is that the multiple tasks will collaborate
to explain the given inputs and share their knowledge at this level. In the case



of the ASCAD-v2 dataset, those layers are not used because the inputs are
extracted manually, like in Figure. [TH

Shared randomness. In a single-task context, regardless of whether (or
not) a mask is shared between multiple intermediates, the information gained
about the common randomness cannot be transmitted to the other classifiers.
In a multi-task context where all intermediates share the same randomness, one
can design a network with n; + (d — 1) branches. Each task z;, will benefit
from the individual hyperparameters 6;, while sharing the common randomness
hyperparameters such that 0, = {0;, 0,41, -, On,+d—1} and 6, N...N Oz, =
{0n,4+1, -+ On,+a—1}. For the shared randomness, each branch connects the
tasks to allow collaboration. The fq layer acts as a constraint, forcing each
branch to take a very specific representation (conditional probabilities). The
cumulative effect of those constraints, thanks to multi-task learning, is a natural
improvement.

R
e/
\ Je Tn,

0n7+1
(a) Architecture with shared random- (b) Architecture with high-level and
ness and high-level parameter sharing low-level parameter sharing

Fig.2: Examples of multi-task architectures using different parameter sharing
with d = 2 shares

Low-level parameter sharing. To maximize the sharing of weights for all
tasks, we design models that share the same weights for the resp. prediction
head leading to the introduction of 64, in Figure. The resulting network
possesses d-branches even though it is learning n; tasks. This additional layer
encourages the preceding layers to agree on weights that are consistent across all
bytes. This strategy may help, especially initially, when the network is initialized
to a random initial state, which may, in turn, enable it to overcome the initial
“plateau”.

Strategies, where one leverages the common features between bytes, are very
successful in a single-task scenario [BII0J4/IT]. Our strategy is an adaptation of
such a technique in a multi-task learning scenario. Since a single-task scenario
requires extraction and alignment of the related samples, a direct adaptation
would also require such a constraint. However, we can design models in case such



extraction is not possible. At least n; X d individual layers have to be introduced
in order to create n; channels that will be fed to the shared layers. Therefore,
our modeling does not need the extraction and alignment of each byte leakage
in the trace, as it is done by the network instead of being a pre-processing step.

5 Results

Overcoming the initial plateau is the main interest of this paper. With this in
mind, we take a special interest in which epoch the model converges. Throughout
our experiments, we wish to discuss the performance of our designs against
single-task learning but also the improvement from sharing weights at a lower
level of the network. To do so, we train our designs ten times using a different
seed for the initialization of each weight. We then observe the properties of the
different architectures with respect to multiple starting points. Initialisation of
the training procedure has a significant impact on the potential convergence of
a deep learning architecture, especially in SCA, as showed in Wu et al. [20].
Each design possesses the same number of weights for each task; the difference
is the total amount of weights, as some weights are used multiple times. This
technique aims to efficiently utilize all the information available in one trace to
maximize the chances of breaking through the initial plateau. We take a special
interest in the following metrics: the number of traces Ty, to recover the key,
ratio of seeds nyin/Nseeds leading to a full recovery of the key and finally the
epoch of convergence e.. The epoch e. can be clearly identified manually on
the ASCAD datasets, as the learning slope drastically changes when the model
reaches convergence. Examples of such slopes are given in Masure et al. [§],
Timon [I8], Perin and Picek [12]. To automate the process, we regress the next
epoch loss value based on the previous epochs and observe when the squared
difference between the regressed loss and the real value is above a threshold.
We give an example of such a process in Figure [3] where we plot the losses and
the selected epochs of convergence for each seed of one model type. However,
the loss changes on the CHESCTF are minimal because of the low learning rate
used to capture the weak signal. Therefore, on this dataset, we note the epoch of
convergence e, as the first epoch where the validation loss is under the random
guess of cross entropy. This method of acquisition is less meaningful as a model
can converge and not immediately generalise to the validation split.

5.1 Leveraging common masks with a shared branch

In the special case where each byte of an intermediate shares a mask, we can
take advantage of architectures with a shared branch. Such weaknesses are found
in both ASCAD datasets. On ASCAD-r, all bytes of the SubBytes inputs share
a strongly leaking mask r;,, and on ASCAD-v2, all bytes share r,,, and r;, for
the S-box inputs, and r,, and r,,; for the S-box outputs.
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Fig.3: Examples of the acquisition of the epoch of convergence for all seeds of
one model type.

ASCAD-r The targeted leakage pair is (t @ 7ip, 7). Using the raw traces,
we train a baseline multi-task model in the likes of Figure noted My, 4(d—1)
which posses high-level parameter sharing, and share the mask branch across all
intermediates. We extend this design with low-level parameter sharing that we
note my. Finally, we train 14 single-task models mg according to the design in
Figure We show a scatter plot of the epochs of convergence for each target
byte and all approaches in Figure [fal Then, we perform a full key recovery
attack, 1000 times over 100 randomly picked raw traces from the attack dataset,
and note the results in Table [I

ASCAD-v2 To further investigate the impact of constraints on multi-task mod-
els, we experiment with a scenario where only the additive mask r,,; is unknown.
Knowledge of r, is given to the network during profiling and attack, reducing the
masking scheme’s complexity. The targets are the S-box outputs, 7, ® s @ rout,
and the mask 7,,:. To increase the difference in performance between each ap-
proach, we reduce the size of the training dataset to only 225k traces. The
architectures used in this experiment are the same as in the previous one, with a
multi-input design in the likes of Figure [Ih]since the dataset is extracted. Again,
we show a scatter plot of the epochs of convergence for each target byte and all
approaches in Figure [4bland note the performance metrics of an attack with 200
traces over 1000 experiments in Table

On the ASCAD-r dataset Figure [a] we first see that the learning of single-
task models varies greatly. Depending on the seed, the st converges around the
epoch 20, 30, or 70, or not at all. The baseline multi-task model my, 4 —1)
converges consistently between epochs 40 and 60 for the successful seeds. We
can observe that once a few bytes converge, it triggers the convergence of the
others since the learning about the mask is shared. This is especially true for
the multi-task models my, converging consistently under 35 epochs with a few
outliers.

Looking at Figure we observe a similar scenario on the ASCAD-v2
dataset. The baseline model does not converge systematically, either struggling
to make sense of the samples or needing more epochs. The performance of the
mg model also coincides with the previous dataset, as it consistently outper-
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Fig.4: Epoch of convergence for all seeds and targeted bytes in the scenario
where the mask is shared across them.

forms the baseline model and manages to converge on all seeds. Finally, on this
intermediate, only one single-task model managed to learn its target byte. This
is another example of the superiority of multi-task approaches, especially in this
scenario where masks are shared among different intermediates.

Table 1: Performance metrics for the experiment leveraging a shared mask

ASCAD-r ASCAD-v2

Model type| fr |[Nwin/Mseeds| Twin [0€St Twin| fr |Pwin/Nsceds| Twin |best Twin
ms 0.56 0.0 >100{ >100 |0.99 0.0 >200| >200

M a1y | 04 0.6 |4.33] 4 |04 0.6 134 98
md 0.0 1.0 5.8 2 0.0 1.0 118.1 92

No seed allowed the single-task models to recover all bytes on both datasets.
The baseline multi-task model m,,,  (4—1) recovers the full key with six seeds also
on both datasets, while the multi-task model with low-level parameter sharing
myq is successful on all seeds. Trace-wise, the baseline multi-task model is, on
average, more performant than the mg model on the ASCAD-r dataset. This
is a bias in the mean calculation from more difficult seeds that are excluded
since they are not successful with the baseline multi-task model. The baseline
multi-task model is also outperformed by the model with low-level parameter
sharing.

We can observe in that scenario that multi-task learning is vastly superior to
single-task learning in terms of consistency. Moreover, the more the multi-task
models are constrained through parameter sharing, the more consistent they



are. Many multi-task-induced effects can be the cause of this improvement in
consistency. The first one is the regularisation from the shared mask. All bytes
collaborate to learn the mask, and therefore, the branch of the mask benefits
from multiple gradients. In addition, the weights from individual bytes are not
free to explore representations that do not benefit others. This effect is further
reinforced by the sharing of low-level weights. As the model mitoq4 improves sig-
nificantly, the baseline model my, in convergence speed, but also in the success
of convergence.

5.2 Leveraging different masks using low-level parameter sharing

When masks are not shared, it is not possible to train one expert shared among
all tasks as in the previous section. However, it is still possible to use low-
level parameter sharing on both sides of the masking scheme in the manner
of Figure |7_'5l We note this model my. The baseline multi-task model my,, 4 is
naturally the same model but without low-level parameter sharing. The single
models st are again submodels of the latter design.

ASCAD-r. The targeted leakage pair in this experiment is the S-box outputs
with the state mask (s @ r, r), which is the most common target point on this
dataset. We continue with the scatter plot of the epochs of convergence for each
target byte and for all approaches in Figure and note the metrics and the
performance of a full key recovery targeting the S-boxes output in the same
setup as the previous experiment in Table 2]

CHESCTF The targeted leakage pair can be noted as (t ®r, r), corresponding
to the S-box inputs with the state mask. The specificity of this dataset is that
both share leaks at the same samples, and all targeted bytes are within the same
32-bit word. Since each 8-bit chunk is not a ”repetition” of the same piece of code
or wire, their leakage features are different. This allows us to observe the impact
of low-level parameter sharing in a case where it is not optimal. Moreover, since
we are only targeting four tasks at a time, we benefit less from multi-tasking
than in the previous experiments. We plot the epoch where the validation loss
crosses the random guess threshold in Figure [5b| and the rank evolution of each
targeted byte over 100 iterations of an attack using 102400 traces in Figure [6]
Figure[5a]shows similar results to those in the previous scenario on ASCAD-r.
Single-task models mg are inconsistent and mostly converge after the multi-task
models. Looking closely, one can see that some bytes do not possess even one
successful seed in this experiment. Moving on to the multi-task models, we can
see, overall, the epoch of convergence being a lot more inconsistent than in the
previous experiments where the mask was shared by all bytes. This indicates that
the shared mask strongly benefits the training process. While for the single-task
models, the number of successful convergences is inferior to the previous ex-
periment, the baseline model m,, 4 learns overall seeds, more bytes. This can
be explained by the highest signal-to-noise ratio. The design mg successfully
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Fig. 5: Epoch of convergence for all seeds and targeted bytes, in a scenario where
randomness is not shared

converges on all seeds. The sharing of weights managed to force collaboration
between each byte, leading to consistent learning. We also observe a faster con-
vergence for the latter model than any other one, once again hinting at its
superior learning ability.

Table 2: Performance metrics for the experiment leveraging a shared mask
ASCAD-r
Model type| fr |Nwin/Mseeds| Twin |b€Sst Twin
M 0.69 0.0 >100| >100
Mnea  [0.21] 04 6 5
mq 0.0 1.0 2.13 2

From Table [2| we observe that no seed led to successful key recovery using
the single-task models mg. Furthermore, no seed allowed byte 12 to converge,
and therefore, even by picking the best models across all seeds, a successful
attack would not have been possible. The baseline model m,,, 4 succeeded on four
seeds to recover the key, with an average performance of 6 traces. Finally, hard-
parameter sharing successfully improved the success rate of multi-task models,
as mgq recovers the full key with around two traces on average. However, even
though all seeds led to convergence, 100 traces were not enough for two seeds,
as the learning suffered from too much overfitting.

On the CHESCTF dataset Figure[5D] we observe when the model generalizes
enough to be better than a random guess. All approaches generalise enough, if
they do, around the same epochs, with a slight advantage for multi-task learning.



This is due to the relatively high number of traces and low number of tasks.
Additionally, said tasks are not expected to collaborate at a low level since they
are different chunks from the same 32-bit word. Still, the model mg4, benefiting
from the regularization induced by having to share more weights, generalize
over all seeds, while 21% of the time, the model m,, 4 fail to gather enough
information. This failure rate is even more considerable for single-task models
with 69%.
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Fig. 6: Key rank evolution for all targeted bytes and for each seed

Looking at the key ranking Figure [ we can observe first that the two lower
bytes in the word, bytes 12 and 1, are harder to learn and recover than the
two higher bytes, 6 and 11. We can observe a clear ranking of the designs, the
best being the model with low-level parameter sharing mg, which takes full
advantage of the regularization induced by having fewer weights. Second, the
baseline multi-task model my, 4, struggling to recover the designated key byte
only on a couple of seeds. Finally, the single-task model is able to reduce the
key ranks. The difference between the two multi-task models is small; however,
as they learn the full word and not a single 8-bit chunk, they clearly outperform
the single-task approach thanks to the high-level shared parameters.

5.3 Leveraging different targets masked by the same randomness

On the ASCAD-v2 dataset, the affine masking scheme shares the multiplicative
mask between 7, ® s; ® 1oyt and ry, ® t; © 14, We design multi-target models
that learn the unmasked S-box input and output at the same time, allowing



us to take advantage of the shared multiplicative mask. We expect branches
learning the different intermediates to collaborate on how to fit r,,. Based on
this idea, we train the two usual models, m,, 4 (4—1) and its counterpart mgq
using low-level parameter sharing. Finally, to understand the impact of training
multiple intermediates, we additionally train a model without this ”multi-target”
approach. In this section, only multi-task models are trained. We note
this model mg;,_q, as it learns only ¢, through the triplet (7, ®t;E7in , Tm , Tin)
using low-level parameter sharing. We note the main performance metrics after
performing the usual full key recovery in Table [3| and plot the evolution of the
losses in Figure [7H]
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Fig. 7: Epoch of convergence for all seeds and targeted intermediates

The single-target model mg;_4, trained using only the labels from the un-
masked S-box inputs, fails to converge consistently, even though the leakage from
the S-box inputs triplet is considerably higher than the second triplet linked to
the S-box outputs. Moreover, the model m,,,  (4—1), using a multi-target strategy
during training but no low-level parameter sharing, also fails to converge consis-
tently. Only the model my leveraging a multi-target strategy during training
and low-level hard-parameter sharing converge multiple times. This feat, re-
peated five times while the other model never converges, is a testimony to the
importance of linking potential collaboration between intermediates even during
training.

Observing the performances of the different models on a full key recovery
attack, we see that every seed leading to convergence during training also leads
to successful attacks with good performances. Our best model recovers the full
key in only 16 traces and is, to the best of our knowledge, the best attack on



Table 3: Performance metrics against the full affine masking on ASCAD-v2

Model type|nwin/Nseeds| Twin |best Twin
Mst_d 0.0 >200{ >200
Mmaa—1y | 0.0 |>200] >200
mq 0.5 17.6 16

ASCAD-v2, even in this simplified scenario, where Pols from the masks are
assumed and permutations are disabled.

6 Conclusion

Among all our experiments, we can observe that hard-parameter sharing allows
to focus the propagation of losses towards fewer weights. This reduces redun-
dancy inside the network and increases the quality of the learning. However, one
has to be assured of the collaboration between the targets of the network, as
losses can compete as much as they can collaborate. Overall, multi-task learning
seems to have a clear edge over single-task approaches, especially in the context
of a side-channel evaluation. The key takeaways are the following :

— Multi-task learning is a natural improvement of single-task learning in a
scenario where the knowledge of randomness cannot be accessed.

— Low-level parameter sharing allows multi-task learning to benefit from the
learning of multiple bytes at the same time, even when the masks are not
shared.

— Multi-task learning breaks through the initial plateau more consistently

Constraints on the network further increase the previous point.

— Multi-task learning allows an attacker to take advantage of multi-target
strategies even during profiling.

Our results contribute to the research of multi-task deep learning models
in the context of side-channel key recovery attacks. We extend previous results
from Marquet et Oswald [7] to more challenging scenarios where masks are not
shared by multiple potential targets but also show positive interaction between
intermediates. We show that linking potential common features and accumu-
lating constraints on the network benefits the network by reducing overfitting
and further enables models to lead successful attacks. In addition, we target
the multiple masks of the ASCAD-v2 and successfully build an attack using the
previously introduced concepts. We suggest that more complex architectures,
adding helpful constraints on the network, would further improve the chances of
an attacker finding successful attacks.
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