
Ring Verifiable Random Functions and Zero-Knowledge
Continuations

Jeffrey Burdges1, Oana Ciobotaru2, Handan Kılınç Alper1, Alistair Stewart1, and Sergey Vasilyev1

1 Web 3.0 Foundation
2 OpenZeppelin

October 19, 2023

Abstract. We introduce a new cryptographic primitive, named ring verifiable random func-
tion (ring VRF). Ring VRF combines properties of VRF and ring signatures, offering verifiable
unique, pseudorandom outputs while ensuring anonymity of the output and message authenti-
cation. We design its security in the universal composability (UC) framework and construct two
protocols secure in our model. We also formalize a new notion of zero-knowledge (ZK) continu-
ations allowing for the reusability of proofs by randomizing and enhancing the efficiency of one
of our ring VRF schemes. We instantiate this notion with our protocol SpecialG which allows a
prover to reprove a statement in a constant time and be unlikable to the previous proof(s).

1 Introduction

We introduce a novel cryptographic primitive called a ring verifiable random function (ring VRF).
Ring VRF operates in a manner akin to both VRF [37] and ring signatures [5,36,35,3,14], leveraging
the properties of uniqueness, pseudorandomness, and anonymity. In ring VRF, a user can generate
a ring VRF output, which is a unique pseudorandom number, with their key and input similar to
VRF. They also sign the input and any message (e.g., auxiliary data) with a set of public keys (ring)
including their key, similar to the ring signatures. The ring signature assures that the ring VRF output
is the unique output of the input generated with one of the public keys and the same key signs also
the message. The verification process does not reveal the signer’s key except that their key is in the
public key set.

The distinctive properties of ring VRF such as pseudorandomness, anonymity and uniqueness offer
an efficient alternative for anonymous access control systems. Imagine an identity system where a user
registers with their public key. Assuming that the system maintains a fixed input for a given service
(e.g., urls) and provides a public commitment of the registered public keys, a registered user can create
a ring VRF output using the fixed input and their key, which serves as their pseudonym. The user can
then use this pseudonym as an identity while accessing a service provided by the system. At the same
time, they can prove that their pseudonyms are legitimate all without revealing their true identity.
Namely, they generate a ring VRF signature which shows that their pseudonym is associated with
one of the registered users. In this way, the identity system protects the user’s privacy. Moreover, the
system is protected against the Sybil behaviour, as the ring VRF protocol ensures that a user can pro-
duce only one pseudonym per input. This protection enables the system to ban certain pseudonyms in
cases of abusive behaviours. Thus, the abusive user loses the access since they cannot generate another
legitimate pseudonym for this particular service. In current anonymous systems, user accountability
is primarily addressed through two main approaches: (1) allowing users to authenticate for a fixed
duration [43,38,8], and (2) incorporating mechanisms for privacy revocation administered by a central
authority [9,33,20,44], or through privacy revocation using anonymous committees [7,17]. In contrast,
Ring VRF offers a straightforward, efficient and succinct solution for user accountability when com-
pared to existing methods as it neither imposes limitations on user behaviours nor necessitates the

involvement of central authorities or anonymous committees to revoke the privacy of a malicious user.
In addition to facilitate anonymous authentication, ring VRF serves as a potent tool for the concept of
proof-of-personhood (PoP) [19,6,18] to establish a connection between the physical entities and virtual
identities by preserving the accountability and anonymity of the entity.

Unique ring signature (URS) schemes [21] aim to address similar challenges as ring VRF in the
context of anonymous identity applications. Both generate a unique identifier within the ring signature
for each input, which corresponds to the ring VRF output in our case. Unlike ring VRF, where a party
can sign any message with a ring VRF signature, unique ring signature schemes do not include the
capability to sign such messages. Therefore, leveraging these identifiers for practical authentication,
such as in a TLS session, is not straightforward. Beyond this, we demand from a ring VRF output
to be a pseudorandom even if the signer’s key is maliciously generated. This property distinguishes
it from unique ring signatures. Although this property may not find immediate use in the identity
applications we mentioned, it holds critical significance in applications that grant privileges to parties
based on specific criteria associated with their ring VRF output, such as leader elections or lotteries.
For instance, blockchain protocols often select leaders to produce a block based on the VRF output of a
party, with parties having a VRF output below a certain threshold being chosen as leaders [16,1]. Since
ring VRF provides the same pseudorandomness property required in these leader election mechanisms,
a ring VRF scheme can potentially replace VRF in these protocols to provide also anonymity to leaders
even after they produce their blocks. We remark that VRF cannot provide this level of anonymity, as
verifying the correctness of the VRF output of a leader, which is necessary to verify the block of the
leader, requires knowledge of the leader’s public key.

We design two efficient ring VRF protocols that can be applied to real-world scenarios. In simple
terms, our ring VRF signatures has components dedicated to verifying the output and confirming the
key membership. Some scenarios require the generation of multiple ring VRF signatures for different
inputs for the same ring. In these scenarios, since the ring does not change only the output changes,
an optimized approach to generate a new signature given another signature generated for the same
ring would be as follows: generate a new component only for the aspects directly associated with
the correctness of the ring VRF output and rerandomize the relevant component of a prior signature
indicating the existence of the signing key in the ring. This optimized solution at the same time should
preserve both verifiability and anonymity of the optimized signature. To this end, we introduce a new
notion called zero-knowledge continuations. It provides a way to efficiently prove a statement with a
simple transformation of an existing proof of the same statement. After this transformation the new
proof remains unlinkable to the other proofs.

In short, our contributions in this paper are as follows:

– We formally define the security of a ring VRF in the universal composability (UC) model. For this,
we construct a functionality Frvrf and verify the security properties that Frvrf provides.

– We introduce a new notion called zero-knowledge (ZK) continuations which defines the transforma-
tion of a valid proof into another valid and unlinkable proof of the same statement through efficient
operations. Essentially, this allows a prover to generate an initially costly proof and subsequently
reuse it by simply rerandomizing it, while maintaining unlinkability with other proofs.

– We construct two distinct ring VRF protocols. The first protocol is designed to be utilized with a
non-interactive zero-knowledge (NIZK) proving system with our specific relations. The second pro-
tocol is more specialized, allowing instantiation with any zero-knowledge continuations. The latter
offers an efficient solution for ring VRF applications that necessitate the generation of multiple
signatures for the same ring. We show that both of our protocols are UC-secure.

– We construct a protocol called SpecialG which is a simple transformation of any Groth16 proof
into a new proof by deploying the rerandomization idea of LegoSNARK ccGro16 [10]. We show
that SpecialG is a zero-knowledge continuation, making it suitable for deployment in instantiating

our second protocol. SpecialG’s reproving time is reduced to constant after running once a linear
time proving algorithm.

1.1 Ring VRF Overview

As a beginning, we introduce a ring VRF interface, give a straightforward unamortised ring VRF
protocol realising the desired security properties, and give some intuition for our later amortization
technique. Similar to VRF [37], a ring VRF construction needs:

– rVRF.KeyGen outputs secret and public keys (sk, pk).
– rVRF.Eval(sk, in) 7→ out: deterministically computes the VRF output out from a secret key sk and

an input in.

We demand a pseudorandomness property from the output of Eval for all sk.
In contrast to VRF, a ring VRF scheme has the following algorithms operating directly upon set

of public keys ring:

– rVRF.Sign(sk, ring, in, ad) 7→ σ : returns a ring VRF signature σ which is a proof for the ring VRF
output of in as well as a signature signing ad.

– rVRF.Verify(ring, in, ad, σ) 7→ out∨ ⊥: returns either an output out or else failure ⊥. It returns out
if σ signs ad with one of the keys in ring and out is the ring VRF output of in and the same key
that signs ad.

Ring VRF protocols deviate from VRF protocols in that they do not need the public key of the
signer during the verification process. Instead, they use a set of public keys including the signer’s
key, like ring signatures. However, ring VRF protocols distinguish themselves from ring signatures in
the verification process as well in which the unique ring VRF output of the signer is revealed if the
signature is successfully verified with ring. In essence, a verified ring VRF signature of an input in
actually proves that out is the evaluation output of in generated by the signer’s key.

We want to achieve anonymity in ring VRF protocols meaning that the verifier learns nothing about
the signer except that the evaluation value of the signed input in is out and the signer’s public key is
in ring. An intuitive ring VRF protocol could be instantiated by making rVRF.Eval a pseudorandom
function, and using a NIZK protocol NIZK where rVRF.Sign runs the proving algorithm and rVRF.Verify
runs the verification algorithm of NIZK for a relation consisting of statement and witness pairs as
follows:

Rrvrf =

 (out, in, ring); (sk, pk)

∣∣∣∣∣∣∣
(pk, sk)← rVRF.KeyGen,

pk ∈ ring

out = rVRF.Eval(sk, in)


The zero-knowledge property of the NIZK ensures that our verifier learns nothing about the specific

signer, except that their key is in the ring and maps in to out. Importantly, pseudorandomness also
says that out is an anonymous identity for the specific signer, but only within the context of in. We
ignore ad in Rrvrf for now just for the sake of simplicity. Otherwise, we note that it is imperative to
incorporate rVRF.Sign and rVRF.Verify to sign associated data ad.

If one used the ring VRF interface described above, then one needs time O(|ring|) in rVRF.Sign and
rVRF.Verify merely to read their ring argument, which severely limits applications. Instead, we replace
ring with a commitment to the ring such as Merkle tree root and run asymptotically faster. Therefore,
we introduce the following algorithms for rVRF.

– rVRF.CommitRing : (ring, pk) 7→ (comring, opring) returns a commitment for a set ring of public
keys, and the opening opring if pk ∈ ring as well.

– rVRF.OpenRing : (comring, opring) 7→ pk∨ ⊥ returns a public key pk, provided opring correctly
opens the ring commitment comring, or failure ⊥ otherwise.

Together with these algorithms, we can replace the membership condition pk ∈ ring in Rrvrf by
the opening condition pk = rVRF.OpenRing(comring, opring) and replace ring in the statement with
comring and add opring to the witness.

Our Approach: Although an asymptotic improvement with rVRF.CommitRing, the intuitive scheme can
be computationally expensive to prove the evaluation value together with the membership condition.
Therefore, in our first ring VRF protocol, we divide the relation into two relations. The first relation
Reval is designed to show the validity of the evaluation value with a proof that can be efficiently
generated using discrete logarithm equality proofs. We integrate ad in this proof so that the proof
serves as a signature of ad signed by the same key used to generate the ring VRF output. The second
relation Rring is designed to show that the key used in the evaluation and signing ad is in the ring.
Its statement therefore has one part of the evaluation proof which is the Pedersen commitment to the
secret key in order to relate the key in Rring and Reval.

The most computationally expensive part of our first protocol is generating a proof for Rring during
signing. Therefore, we deploy a further optimization on this and design the second protocol. For this,
we consider optimising the cases where a party generates ring VRF signatures of different inputs for
the same ring. In this case, actually, the main change in the new signature is caused by the cheapest
part of the signing process which generates proof for the ring VRF output and signature for ad because
the input changes so the evaluation value changes. Consequently, it raises the question of why a party
should re-execute the ring membership proving. In light of this, we deploy in the second protocol our
new notion ZK continuation that allows us to generate proofs forRrvrf by reusing a previously generated
proof for ring membership with simple operations. In a nutshell, if a party once generates a ring VRF
signature for ring in our second scheme, this signature has a Pedersen commitment to the secret key
sk i.e., compk = skG+ bK as a part of the proof for the output similar to our first scheme. When this
party generates another signature for a different input with ring, they (re)randomize the existing proof
for the ring membership with a random number b′ rather than running the proving algorithm for the
ring membership from scratch. Then, they generate a new proof for the ring VRF output by running
the proving algorithm for the ring VRF output by setting the new Pedersen commitment to the secret
key with compk′ = skG+ b′K which is the new Pedersen commitment to the secret key generated with
the same randomness b′ used in ring membership.

1.2 Related Works

Security Models: The unique ring signature framework [21] is the closest model to our ring VRF
framework particularly in terms of the presence of a deterministic component known as the unique
identifier for the signed message. This identifier remains constant for the same signed message even
when the ring changes. Essentially, the unique identifier in the unique ring signature model and the
ring VRF evaluation value function equivalently in both models. However, a fundamental distinction
lies in the treatment of this identifier. In our ring VRF model, we impose the requirement of pseudo-
randomness, as defined in [2,16], on this unique identifier, even in the case of malicious parties. This
requirement is crucial for applications such as lotteries or leader elections where the unique identifier
plays a privileged or reward-based role based on predefined conditions. Another definitional difference
is that a ring VRF signature not only prove the correctness of the evaluation value of an input but
also signs an auxiliary data independent from the input. This property is needed for anonymous ac-
cess mechanisms to prevent replay attacks because auxiliary data can be used to effectively bind the
ring VRF signature to e.g., a TLS session. The signature size of unique ring signature schemes scales
either linearly [21,22] or logarithmically [42,39] with the size of the ring. In contrast, our ring VRF

constructions maintain a constant signature size while providing stronger security guarantees. Also
our signing and verification algorithms show better asymptotic scalability compared to existing unique
ring signatures because they operate with a constant-size commitment to the ring.

Other related models are linkable ring signature [35,34] and traceable ring signature [25,24]. Link-
able ring signatures allows a third party to link whether two ring signatures of two inputs are signed
by the same party in the same ring without revealing the identity. This type of linkability property is
valuable in applications that impose restrictions on authentications, such as preventing double spend-
ing or multiple voting. Akin to ring VRF and unique ring signatures, if a signer signs the same message
twice for the same ring and issuer, it becomes evident that both signatures are produced by the same
party, although the specific party’s identity remains secret. Both ring VRF and unique ring signature
schemes have this property in a single context through the unique identifier for each party. Differently
than ring VRF, traceable ring signatures disclose the identity of the signer when the signer generates
two signatures for two different inputs within the same ring and from the same issuer.

Another related informal design is Semaphore [31], which also provides a ”nullifier”, unique per
identity and context but anonymous, (akin to a ring VRF output in our formalism) along with a
signature on a message. However, the security properties of Semaphore are not fully formalized, and
our constructions distinguishes themselves by offering more efficient proving times and the potential
for proof reuse.

Anonymous VRF [45] is a special type of VRF designed to enable verification of the VRF output
without dependence on the party’s key. Differently than ring VRF, the verification is executed with
another public key which is generated from the public key of the party. A crucial distinction lies in their
uniqueness definitions, as anonymous VRFs ensure the uniqueness of VRF outputs for each (updated)
public key and input. Consequently, anonymous VRFs are not suitable for identity applications where
the VRF output serves as a unique and anonymous identifier, as each updated public key generates a
different VRF output. Another notable difference is related to the pseudorandomness definition, which
does not guarantee pseudorandomness even when the key belongs to a malicious party. This limitation
can pose challenges in applications like consensus mechanisms as described in [45], making their use
potentially infeasible.
Commit and Prove SNARKs: ZK Continuations are an example of the commit and prove ap-
proach [10], linking in a way similar to the ccGroth16 construction from LegoSNARK [10]. Our work
extends this concept by formalizing the reuse of previously generated proofs through simple transfor-
mations while maintaining the zero-knowledge property. Our protocol SpecialG is very similar to the
ccGroth16 construction from LegoSNARK [10] with the additional feature of providing an interface
for rerandomizing previously generated proofs, all while preserving the zero-knowledge property.

2 Preliminaries

We give definitions of some primitives that help us to construct our protocols.
We let (R, z) denote the output of a relation generator R(1λ). R is a polynomial time decidable

relation and z is an auxiliary input. For (x;ω) ∈ R, we call that x is the statement and ω is the witness.
A non-interactive zero-knowledge system for R (NIZKR) consists of the following algorithms:

– NIZKR.Setup(1λ)→ (crsR, tdR, ppR) : It outputs a common reference string crsR, a trapdoor tdR
and a l public parameters ppR with respect to R.

– NIZKR.Prove(crsR, ppR, x;ω)→ π : It creates a proof π for (x;ω) ∈ R.
– NIZKR.Verify(crsR, ppR, x;π) returns either 1 (verified) of 0 (not verified).
– NIZKR.Simulate(tdR, ppR, x)→ π returns a proof π.

NIZK satisfies the following:

Definition 1. [Perfect Completeness] We say NIZKR has perfect completeness if ∀λ,R generated by
R and ∀(x;ω) ∈ R, Pr[NIZKR.Verify(crsR, ppR, x, π) → 1|NIZKR.Setup(1λ) → (crsR, tdR, ppR), π ←
NIZKR.Prove(crsR, ppR, x;ω)] = 1.

Definition 2. [Perfect Zero-Knowledge] We say NIZKR is perfect zero-knowledge if ∀λ, (R, z) gen-
erated by R and ∀(x;ω) ∈ R and all adversaries A the following holds given that (crsR, tdR, ppR) ←
NIZKR.Setup(1λ):

Pr[A(crsR, ppR, z, π,R) = 1 |π ← NIZKR.Prove(crsR, ppR, x;ω)]

= Pr[A(crsR, ppR, z, π,R) = 1 |π ← NIZKR.Simulate(tdR, ppR, x)]

Definition 3. [Knowledge Soundness] We say NIZKR is knowledge sound if for any non-uniform PPT
adversary A there exists a PPT extractor E such that

Pr[NIZKR.Verify(crsR, ppR, x, π) = 1 ∧ (x;ω) /∈ R|(R, z)← R,

(crsR, tdR, ppR)← NIZKR.Setup(1λ), ((x, π);ω)← (A||E)(R, z, crsR, ppR)] = negl(λ)

where (oA; oB)← A||B(input) denote the algorithms that run on the same input and B has access to
the random coins of A.

In our NIZK definition above the corresponding algorithms have more parameters that generally
needed. This statement refers to the fact that not all crsR, ppR or tdR may be needed by a NIZKR
algorithm for a given R. In the rest of the work, we adhere to the convention that when instanti-
ating the general NIZKR api for a specific R, for simplicity, we will leave out the parameters which
in that particular instantiation are the empty set. We do this in order to aggregate in one definition
the different types of NIZK that we need and use in this work. Indeed, in case of the non-interactive
version of a Sigma protocol, we have that crsR = ∅ and ppR = ∅. For a NIZKR such as Groth16 [29],
ppR = ∅. However, for our particular instantiation of NIZKR in Section 6 with R defined in Section 5,
the NIZKR.Setup outputs all three parameters crsR, tdR, ppR. Thus our definition allows for maximum
flexibility. Finally, for each of our instantiations, we consider only benign auxiliary inputs as defined
in [4].

Definition 4 (Non-interactive knowledge of arguments (NARK)). NARKR for a relation R
consists of the same algorithms in NIZK but satisfies only completeness (Definition 1) and knowledge
soundness (Definition 3).

Definition 5 (Commitment Scheme). Com consists of the algorithms:

– Com.Commit(x) 7→ c, r outputs a commitment c to x and an opening r.
– Com.Open(c;x, r) 7→ x′ opens the commitment c with the openings x, r to x′.

If Com is a deterministic commitment scheme, we ignore r.

3 Security Model of Ring VRF

In this section, we define a ring VRF scheme in the UC framework, covering both real-world and
ideal-world executions.

Definition 6 (Ring VRF). It is defined with public parameters pp generated by a setup algorithm
rVRF.Setup(1λ) and with the following PPT algorithms. All algorithms below include pp as part of their
input, although it may not always be explicitly stated.

– rVRF.KeyGen(pp)→ (sk, pk): It generates a secret key and public key pair (sk, pk) given input pp.
– rVRF.Eval(ski, in)→ out: It is a deterministic algorithm that outputs an evaluation value out ∈ Seval

given ski and an input in. Here, Seval ∈ pp and is the domain of evaluation values.

The following algorithms need an input ring = {pk1, pk2, . . . , pkn} that we call ring:

– rVRF.CommitRing(ring, pki)→ (comring, opring): It outputs a commitment of ring with the opening
opring given input ring and pk ∈ ring.

– rVRF.OpenRing(comring, opring) → pk: It outputs a public key pk given commitment comring and
an opening opring of comring to pk.

– rVRF.Sign(ski, comring, opring, in, ad) → σ: It outputs a signature σ of in, ad ∈ {0, 1}∗ given
ski, opring and comring

– rVRF.Verify(comring, in, ad, σ)→ (b, out): It is a deterministic algorithm that outputs b ∈ {0, 1} and
out ∈ Seval ∪ {⊥}. b = 1 means σ and out are verified.

We note that rVRF.CommitRing and rVRF.OpenRing are optional algorithms of a ring VRF scheme.
If they are not defined, we should let comring = ring and opring = pk. rVRF.CommitRing and
rVRF.OpenRing are useful for a succinct verification process in the case of a large ring.

We summary the security properties for rVRF informally as follows:

– correctness; when an honest signer with key (ski, pki) outputs σ by running
rVRF.Sign(ski, comring, opring, in, ad), rVRF.Verify(comring, in, ad, σ) must output 1, out =
rVRF.Eval(ski, in) given rVRF.OpenRing(comring, opring) → pki ∈ ring. Indeed, while verify-
ing the ring VRF signature, a verifier verifies that ad is signed by one of the keys is in the ring
and also verifies that out is the evaluation value of in generated with the same key.

– randomness; out is random and independent from the input and the key.
– anonymity meaning that the output of rVRF.Sign does not leak any information about the key of

its signer except that the key is in the ring.
– unforgeability ; an adversary should not be able to forge a ring VRF signature
– uniqueness; the number of verified evaluation values should not be more than the number of the

keys in the ring.

We remark that the output of rVRF.Eval is independent of any specific ring. Consequently, the
verification of two signatures for a given input using different rings results in the same evaluation
value. This property allows a party to disclose their identity as needed. For instance, suppose out ←
rVRF.Eval(ski, in) is verified via a ring VRF signature σ with a ring containing pki. Later, if the
corresponding party wishes to affirm that out was generated using their key, they simply need to sign
the same input with a ring which consists of only their key i.e., ring = {pki}.

The ring VRF in the ideal world: We introduce a ring VRF functionality Frvrf to model execution of
a ring VRF protocol in the ideal world. In other words, we define a ring VRF protocol in the case of
having a trusted entity Frvrf. There are many straightforward ways of defining a ring VRF protocol
in the ideal world satisfying the desired security properties. However, defining simple and intuitive
functionality while being as expressive and realizable in the real world execution is usually at odds
[11]. Therefore, we have a lengthy Frvrf (See Figure 4) which satisfies the security properties that we
expect from a ring VRF scheme and at the same time as faithful to the reality as possible. For the sake
of clarity and accessibility, we split each execution part of Frvrf while we introduce our functionality.
The composition of all parts is in Figure 4. We first describe how Frvrf works and then show which
security properties it achieves.
Frvrf has tables to store the data generated from the requests from honest parties and the adversary

Sim. The table signing keys keeps the keys of parties. The other table anonymous key map stores an

anonymous key that corresponds to an input of a party with a key pk. We note that the real execution
of a ring VRF (Definition 6) does not have a concept of an anonymous key but Frvrf needs this internally
to execute the verification of a ring signature. Related to anonymous keys, Frvrf also stores all malicious
anonymous keys in a tableW. Finally, Frvrf stores the evaluations values of all parties in evaluations.
In a nutshell, given pk and in, Frvrf generates an anonymous key W as explained below and sets
anonymous key map[in,W] to pk. Then, it generates an evaluation value out as explained below and
sets evaluations[in,W] to out. In short, given honestly generated secret, public key pair (sk, pk) in
the real world, the algorithm rVRF.Eval(sk, in) that outputs evaluation value corresponds to generating
an anonymous key W for pk, in and obtaining the evaluation value stored in evaluations[in,W] in the
ideal world. The necessity and usage of all these tables and anonymous keys will be more clear while
we explain Frvrf in detail. Frvrf consists of the following execution parts.

Key Generation: When an honest party requests a key, Frvrf obtains a key pair (sk, pk) from Sim. Frvrf

stores them if they have not been recorded. If it is the case, Frvrf gives only pk to the honest party. Frvrf

will later use sk during signature generation. One can imagine sk as a secret key and pk as a public
key but retrieving sk from Sim poses no issue in the ideal model. This is due to the fact that each
evaluation value is randomly sampled, and a signature generated by an honest party can be considered
valid if and only if they request it, as guaranteed by the verification process of Frvrf.

[Key Generation.] upon receiving a message (keygen, sid) from Pi, send (keygen, sid,Pi) to the
simulator Sim. Upon receiving a message (verificationkey, sid, sk, pk) from Sim, verify that sk or pk
has not been recorded before for sid in signing keys. If it is the case, store the value sk, pk in the
table signing keys under Pi and return (verificationkey, sid, pk) to Pi.

Honest Ring VRF Signature and Evaluation: This part of Frvrf functions for honest parties who evaluate
an input ∈ and sign a message ad and in. An honest party Pi provides to Frvrf a ring, its own public
key pki, ad and in to be evaluated. Afterwards, Frvrf generates the evaluation value of in and pki and
signs in and ad for a given ring if pki ∈ ring. The evaluation for honest parties works as follows: If Frvrf

did not select any anonymous key for in and pki before, it samples randomly an anonymous key W and
samples randomly the evaluation value out. The ring signature generation works as follows: Frvrf runs
a PPT algorithm Gensign(ring, sk, pk, ad, in) where (sk, pk) ∈ signing keys and obtains a signature σ.
It records [in, ad,W, ring, σ, 1] for verification. Here, 1 indicates that σ is a valid ring signature of in
and ad generated for ring with the anonymous key W .

[Honest Ring VRF Signature and Evaluation.] upon receiving a message
(sign, sid, ring, pki, ad, in) from Pi, verify that pki ∈ ring and that there exists a public key
pki associated to Pi in signing keys. If it is not the case, just ignore the request. If there
exists no W ′ such that anonymous key map[in,W ′] = pki, let W ←$ SW and let out ←$ Seval.
Set anonymous key map[in,W] = pki and set evaluations[in,W] = out. In any case (except
ignoring), obtain W, out where anonymous key map[in,W] = pki, evaluations[in,W] = out and
(sk, pk) is in signing keys. Then run Gensign(ring, sk, pk, ad, in) → σ. Let σ = (σ,W) and record
[in, ad,W, ring, σ, 1]. Return (signature, sid, ring,W, ad, in, out, σ) to Pi.

Malicious Ring VRF Evaluation: This part is designed for Sim to evaluate an input in with an anony-
mous key. For this, it provides to Frvrf in, a malicious key pk and an anonymous key W . Then, Frvrf

evaluates in with pk if an anonymous key W ′ 6= W is not assigned to in and pk before. If it is the
case, it returns the randomly selected evaluation value stored in evaluations[in,W]. The reason of

conditioning on a unique anonymous key for in and pk is to prevent Sim to obtain more than one
evaluation values for in and pk. This is necessary for the uniqueness property. We remark that it is
possible for Sim to obtain the same evaluation value of in with two different malicious keys pki, pkj by
sending (eval, sid, pki,W, in) and (eval, sid, pkj ,W, in). However, this does not break the uniqueness.

[Malicious Ring VRF Evaluation.] upon receiving a message (eval, sid, pki,W, in) from
Sim, if pki is recorded under an honest party’s identity or if there exists W ′ 6= W where
anonymous key map[in,W ′] = pki, ignore the request. Otherwise, record in the table signing keys

the value (⊥, pki) under Sim if (., pki) is not in signing keys. If anonymous key map[in,W]
is not defined before, set anonymous key map[in,W] = pki and let out ←$ Seval and set
evaluations[in,W] = out. In any case (except ignoring), obtain out = evaluations[in,W] and
return (evaluated, sid, in, pki,W, out) to Pi.

We remark that if Sim provides an anonymous key W of any honest party during the evalua-
tion process, Sim can learn the evaluation of in for this honest party without needing to know who
is this party. For this, it just needs to send the message (eval, sid, pki,W, in) where pki is any verifi-
cation key. In such a case, Frvrf returns immediately evaluations[in,W] without checking whether
anonymous key map[in,W] = pki. So if anonymous key map[in,W] belongs to an honest party, Sim
learns the evaluation value of some honest party but does not who they are. We note that this leak-
age does not contradict the desired security properties and helps us to prove our ring VRF protocols
realizes Frvrf.

Requests of Signatures: If Sim provides W, ad, in, Sim obtains all valid and stored ring signatures of in
and ad generated with an anonymous key W .

[Malicious Requests of Signatures.] upon receiving a message (signs, sid,W, ad, in) from Sim,
obtain all existing valid signatures σ such that [in, ad,W, ., σ, 1] is recorded and add them in a list
Lσ. Return (signs, sid,W, ad, in,Lσ) to Sim.

Ring VRF Verification: This part of Frvrf is to check whether σ signs in and ad for ring with anonymous
key W . This part corresponds to rVRF.Verify in the real world ring VRF protocol. Therefore, Frvrf first
checks various conditions to decide if the signature is valid. If the signature is verified, Frvrf outputs
b = 1 and out = evaluations[in,W]. Otherwise, it outputs b = 0 and out =⊥.

For the verification of the signature, Frvrf first checks its records to see whether this signature is
verified or unverified in its records i.e., checks whether [in, ad,W, ring, σ, b′] is recorded (See C1). If it
is recorded, Frvrf lets b = b′ to be consistent. Otherwise, it checks whether W is an anonymous key of
an honest party generated for in (See C2). If it is the case, Frvrf checks its records whether this honest
party requested signing in and ad for ring. If there exists such record i.e., [in, ad,W, ring, ., 1], it stores
the new signature σ as a valid signature in its records and lets b = 1. We remark that Sim can create
arbitrary verified signatures that sign any in and ad for ring with W once the honest party owning
W has requested signing in and ad for ring. This does not break the forgeability property because the
honest party has already signed for it. If none of the above conditions (C1 and C2) holds, it means
that σ could be a signature generated for a malicious party. Therefore, Frvrf asks about it to Sim and
Sim replies with a public key pkSim and an indicator bSim showing that σ is valid or invalid. Then, Frvrf

checks various conditions to prevent Sim forging and violating the uniqueness. To prevent forging, it
lets directly b = 0, if pkSim is a key of an honest party. If pkSim is not an honest key, then Frvrf checks
its table W[in, ring] which stores the anonymous keys of valid malicious signatures of in for ring. If the
number of anonymous keys in W[in, ring] is greater than or equal to the number of malicious keys in

ring, then Frvrf invalidates σ by letting b = 0. This condition guarantees uniqueness meaning that the
number of verifying evaluation values that Sim can generate for in with ring is at most the number of
malicious keys in ring. If the number of malicious anonymous keys of valid signatures does not exceed
the number of malicious keys in ring, then Frvrf checks whether W is a unique anonymous key assigned
to in, pkSim as in the “Malicious Ring VRF Evaluation”. If W is unique then Frvrf lets b = bSim.

After deciding b, Frvrf records it as [in, ad,W, ring, σ, b] to be able to reply with the same b for the
same verification query later. If b = 1, Frvrf returns evaluations[in,W] as well.

[Ring VRF Verification.] upon receiving a message (verify, sid, ring,W, ad, in, σ) from a party, do
the following:

C1 If there exits a record [in, ad,W, ring, σ, b′], set b = b′.
C2 Else if anonymous key map[in,W] is an honest verification key and there exists a record

[in, ad,W, ring, σ′, 1] for any σ′, then let b = 1 and record [in, ad,W, ring, σ, 1].
C3 Else relay the message (verify, sid, ring,W, ad, in, σ) to Sim and receive back the message

(verified, sid, ring,W, ad, in, σ, bSim, pkSim). Then check the following:

1. If pkSim is an honest verification key, set b = 0.
2. Else if W /∈ W[in, ring] and |W[in, ring]| ≥ |ringmal| where ringmal is a set of malicious keys in

ring, set b = 0. .
3. Else if there exists W ′ 6= W where anonymous key map[in,W ′] = pkSim, set b = 0.
4. Else set b = bSim.

In the end, record [in, ad,W, ring, σ, 0] if it is not stored. If b = 0, let out =⊥. Otherwise, do the
following:

– if W /∈ W[in, ring], add W to W[in, ring].
– if evaluations[in,W] is not defined, sample y ←$ Seval. Then, set anonymous key map[in,W] =

pkSim and evaluations[in,W] = out.
– otherwise, set out = evaluations[in,W].

Finally, output (verified, sid, ring,W, ad, in, σ, out, b) to the party.

In the real-world ring VRF, the verification algorithm outputs the corresponding evaluation value
of the signer. Therefore, Frvrf outputs the signer’s evaluation value if the signature is verified. However,
it achieves this together with the anonymous key which is not defined in the ring VRF in the real world.
If Frvrf did not define an anonymous key for each signature, then there would be no way that Frvrf

determines the signer’s key and outputs the evaluation value because σ does not need to be unique for
each key. Therefore, Frvrf maps a random and independent anonymous key to each in and pk so that
this key behaves as if it is the verification key of the signature. Since it is random and independent
from in and pk, it does not leak any information about the party during the verification but it still
allows Frvrf to distinguish the signer.

We remark that when Frvrf is in C3, it does not check whether the provided public key pkSim is in
the ring. This allows Sim to generate a signature of in for ring that is signed by pkSim, even if pkSim
is not necessarily a part of ring. However, it does not break any security properties that we aim for a
ring VRF scheme as it can be seen in the analysis of Frvrf below.

Corruption: Sim can corrupt any honest party at any time. So, Frvrf provides security against an
adaptive adversary.

[Corruption:] upon receiving (corrupt, sid,Pi) from Sim, remove (xi, pki) from signing keys[Pi]
and store them to signing keys under Sim. Return (corrupted, sid,Pi).

This is the end of description Frvrf. It is not immediately evident which security properties our
functionality provides. Therefore, we now proceed to analyse these properties. Throughout our analysis,
the evaluation value of (in, pki) refers to evaluations[in,W] where anonymous key map[in,W] = pki.

Randomness: Frvrf satisfies the following randomness property: The evaluation value of (in, pki) is
independently and randomly selected for all honest keys pki. Likewise, the evaluation value of pairs
(in, pki) with an anonymous key W provided by Sim is also randomly selected independently for all
malicious keys pki. We remark that since Sim can provide the same anonymous key for different public
keys for the same input in, we consider the randomness of an evaluation value that is generated for all
pairs {(in, pki)} sharing the same anonymous key in the case of malicious evaluations.

Determinism: Frvrf satisfies that the evaluation value of (in, pki), once it has been evaluated, is unique
and cannot be changed.

The reason of it is that once an anonymous key W is assigned to (in, pki), it cannot be updated.
Therefore, when this happen, evaluations[in,W] is fixed leading to output always the same evaluation
value.

Unforgeability: If an honest party with a public key pk never signs an input in and an associated data
ad for a ring, then no other party can generate a forgery of in and ad for ring signed by pk. Formally,
if an honest party with pk never sends a message (sign, sid, ring, pk, ad, in) for some ring, in, ad, then no
party can create a record [in, ad,W, ring, ., 1] in Frvrf where anonymous key map[in, pk] = W .

To analyse this, we need to check the places where Frvrf records a valid signature for an honest
party. The first place is during the process of honest ring VRF signature and evaluation. Here, Frvrf

records a valid signature if an honest party having a key pk sends a message (sign, sid, ring, pk, ad, in) to
Frvrf. Therefore, Sim cannot create a forgery there. The other place is during the verification process.
Frvrf creates a valid signature record in C2 if the corresponding honest party has already signed for
in, ad for ring. So, forgery is not possible in C2 as well. It also creates a valid signature record in C3.
However, Frvrf never records a valid signature for an honest party here because it forbids it by C3-1.

Uniqueness: An evaluation value out for an input in is verified with ring, if there exists a signature σ
such that Frvrf returns (out, 1) for a query (verify, sid, ring,W, ad, in, σ) for some anonymous key W and
message ad. The uniqueness property guarantees that the number of verified evaluation values of an
input in with ring is not more than |ring|. Frvrf satisfies uniqueness:

If Frvrf outputs (1, out) for a query (verify, sid, ring,W, ., in, σ), it means that there exists a record
[in, .,W, ring, σ, 1] and out = evaluations[in,W], anonymous key map[in,W] = pk. If pk is an honest
key, then it means that pk ∈ ring because Frvrf generates a signature for an honest party with a key
if pk ∈ ring. Now, let’s assume Frvrf does not satisfy uniqueness i.e., there exist t different verified
evaluation values O = {out1, out2, . . . , outt} of an input in with ring where |ring| = t− 1. This implies
that for each outi ∈ O, there exists a record [in, .,Wi, ring, σi, 1] such that evaluations[in,Wi] = outi
where anonymous key map[in,Wi] = pki and Wi 6= Wj for all i, j ∈ [1, t]. Since Frvrf makes sure that
there cannot be two different anonymous keys mapping to same (in, pk), pki 6= pkj for all i 6= j ∈ [1, t].
If pki is an honest key, it means that σi is not a forgery so pki ∈ ring. Therefore, each honest evaluation
value in O maps to one honest public key in ring meaning that honest evaluation values in O is at
most |ring\ ringmal| = nh. If pki is not an honest key, Wi ∈ W[in, ring] since Frvrf adds Wi toW[in, ring]
whenever it creates such record for a malicious signature. Frvrf makes sure that in the condition C3-2
that W[in, ring] ≤ |ringmal| = nm. Therefore, t ≤ nh + nm = |ring| which is a contradiction.

Robustness: Sim cannot prevent an honest party to evaluate, sign or verify. The only place that Frvrf

does not respond any query is when it aborts. It happens when it selects an honest anonymous key
which already existed. This happens in negligible probability in λ.

Anonymity: We expect from an anonymous Frvrf to adhere to the condition that an honest signature σ
generated for an input in with Gensign along with its associated anonymous key W should not give any
information regarding the honest party’s key, except for the fact that it is a member of ring. However,
this condition should hold unless in has been signed by the same party for any other ring. In such a
case, since both signatures includes W , the anonymity may be compromised i.e., Sim learns the party’s
key is in the intersection of ring and ring′. We note that this design choice is intentional, as it provides
parties with the flexibility to reveal their identity when necessary.

It is evident that anonymous keys do not give any information related to honest party’s key as
they are randomly sampled by Frvrf. However, this cannot be conclusively asserted for the signatures,
because it depends on the specification of Gensign. Therefore, we introduce an anonymity definition
(See Definition 7) for Gensign and establish that Frvrf is anonymous if Gensign is anonymous according
to this definition.

Definition 7 (Anonymity of Gensign). We define an anonymity game between a PPT distinguisher
D and a challenger. In the game, D sends the query (challenge, ring, (sk0, pk0), (sk1, pk1), in, ad). Then
the challenger checks if pk0, pk1 ∈ ring. If it is the case, the challenger samples randomly b ∈ {0, 1}
and runs Gensign(ring, skb, pkb, ad, in)→ σb. It gives σb as a challenge to D. In the end of the game, if
D outputs b′ = b, then wins the game.

We say that Gensign is anonymous if any PPT distinguisher D has a negligible advantage in λ to
win the anonymity game.

4 The First Ring VRF Construction

rVRF.Setup(1λ) generates the public parameters pprvrf = (crsring, crscomring, p,G, G,K,Seval = Fp).
Here, p is a prime order of the group G with generators G,K. crsring, crscomring are generated by
NIZKRring

.Setup(1λ) and NARKRcomring .Setup(1λ), respectively. Our ring VRF construction deploys ran-
dom oracles Hp, H : {0, 1}∗ → Fp, HG : {0, 1}∗ → G.

We build our ring VRF protocol with an efficient evaluation proof, which we call the Pedersen VRF
denoted PedVRF.

Pedersen VRF: We construct PedVRF following a similar approach as other VRF constructions
[40,41,28]. The distinctions in PedVRF are that it does not expose any public key and the public
key in these constructions used for verification is replaced by a Pedersen commitment to the secret key
sk.

– PedVRF.KeyGen outputs sk←$ Fp.
– PedVRF.Eval(sk, in)→ out: It outputs the evaluation value of in which is out = H(in, preout) where

preout = skHG(in).
– PedVRF.CommitKey(sk) → (compk, b): It selects randomly a blinding factor b ∈ Fp and outputs

the Pedersen commitment compk = skG+ bK and b.

Sign and Verify algorithms of PedVRF are directly aligned with the proving system of Chaum-
Pedersen DLEQ for relation Reval (see below), instantiated by a Fiat-Shamir transform of a sigma
protocol.

Reval =

{
(compk, preout, in);

(sk, b)

∣∣∣∣∣ compk = skG+ bK,

preout = skHG(in)

}
.

– PedVRF.Sign(sk, b, in, ad) → σ: It receives as an input a secret key sk, a blinding factor b ∈ Fp,
an input in to prove its evaluation and an associated data ad to sign. It first computes preout :=
skHG(in) and compk = skG + bK. Then, it runs NIZKReval .Prove(compk, preout, in; sk, b) which
generates a Chaum-Pedersen DLEQ proof for relation Reval i.e., let r1, r2 ←$ Fp and compute R =
r1G+ r2K,Rm = r1HG(in) and c = Hp(ad, in, compk, preout, R,Rm), finally compute s1 = r1 + c sk
and s2 = r2 + c b and let π = (c, s1, s2). In the end, it returns the signature σ = (π, preout).

– PedVRF.Verify(compk, in, ad, σ) → (out ∨ ⊥): It verifies σ with compk by running
NIZKReval .Verify(compk, preout, in;πeval) i.e., parse σ = (preout, c, s1, s2) and check if c =
Hp(ad, in, compk, preout, R,Rm) where R = s1G + s2K − c compk and Rm = s1HG(in) − c preout.
If this verifies, it outputs H(in, preout). Otherwise, it outputs failure ⊥.

The verifier in PedVRF verifies that the secret key computed to generate preout and the secret key
used to generate compk are the same. Therefore, H(in, preout) is the correct evaluation value of in with
this secret key since preout is correct. In addition to this, they verify that ad is signed by the same
key since π functions akin to a Schnorr-like signature. We note that PedVRF is not a VRF due to the
absence of a public key but it can be transformed into EC-VRF [40,41,28] if the conditions b = r2 = 0
in Sign and pk = skG are imposed.

Now, we are ready to describe our first ring VRF construction.

The Ring VRF Construction: The main building blocks of our construction are PedVRF,
NIZKRring

,NARKRcomring (relations defined below) and two commitment schemes Com and Com∗ which
is a deterministic commitment scheme.

– rVRF.KeyGen(pprvrf) → (sk, pk): It outputs as secret key sk = (x, r) where x, r ←$ Fp and pk as
public key where pk = Com.Commit(x, r). We deploy this key generation algorithm based on a
commitment scheme to be consistent with the key generation algorithm of our second construction
in §6 which necessitates commitment to sk to run securely. However, we note that an alternative
definition for pk is possible, where pk = skG and sk = x.

– rVRF.Eval(sk, in) runs PedVRF.Eval(x, in). We remark that the evaluation value is generated with
only the first part of the secret key which is x.

– rVRF.CommitRing(ring, pk) → (comring, opring): It runs Com∗.Commit(ring) and obtains comring
as a deterministic commitment to ring. Then, it runs NARKRcomring .Prove(comring, pk; ring) which
outputs πcomring. In the end, it outputs opring = (pk, πcomring).

Rcomring = {(comring, pk; ring) : Com∗.Commit(ring)→ comring ∧ pk ∈ ring}
– rVRF.OpenRing(comring, opring) → (pk ∨ ⊥): It runs NARKRcomring .Verify(comring, opring) where

opring = (pk, πcomring). If it verifies it outputs pk. Otherwise, it outputs ⊥.
Here, we deploy NARK to show that committed ring contains a given public key. This enables
us to instantiate the signing and verification algorithms of our protocols without requiring full
knowledge of the ring. It is particularly crucial for applications that involve large-scale rings with
millions of users.

The Sign and Verify for our rVRF are a combination of Sign and Verify from PedVRF and Prove and
Verify from NIZKRring

, as follows:

– rVRF.Sign(sk, comring, opring, in, ad) → σ: It returns a ring VRF signature σ =
(compk, πring, comring, σ′). For this, it obtains (b, compk) by running PedVRF.CommitKey(sk) and
runs NIZKRring

.Prove(compk, comring; b, opring, pk, sk) → πring, then obtains the Pedersen VRF
signature σ′ by running PedVRF.Sign(x, b, in, ad′) where ad′ ← ad ++ πring ++ comring. Here,

Rring =

 (compk, comring; b, opring, sk = (x, r))

∣∣∣∣∣∣∣
pk = OpenRing(comring, opring),

x = Com.Open(pk, r),

compk = xG+ bK



We note that if pk = skG then Rring does not need sk as a part of its witness. In this case, we
need to replace the last two conditions by compk = pk + bK.

– rVRF.Verify(comring, in, ad, σ) → (1, out) ∨ (0,⊥): It parses σ as (compk, πring, comring, σ′), sets
ad′ ← ad ++ πring ++ comring and runs NIZKRring

.Verify((compk, comring);πring). If it fails, returns
(0,⊥). Otherwise, returns PedVRF.Verify(compk, in, ad′, σ).

We prove in Theorem 1 that our first ring VRF construction realizes Frvrf in Figure 4 but we want
to give an intuition first why our scheme is secure. Intuitively, the randomness and the determinism
of rVRF.Eval come from the random oracles H and HG. The anonymity of our ring VRF signature
(σ = (compk, πring, preout, πeval, comring)) comes from the perfect hiding property of Pedersen com-
mitment i.e., compk is independent from the signer’s key, the zero-knowledge property of NIZKRring
and NIZKReval and the difficulty of DDH in G (Lemma 2) so that preout is indistinguishable from a
random element in G. The unforgeability and uniqueness come from the fact that CDH is hard in G
(Lemma 3).

Algorithm 1 Gensign(ring, sk = (x, r), pk, ad, in)

1: c, s1, s2 ←$ Fp
2: πeval ← (c, s1, s2)
3: b←$ Fp
4: compk = xG+ bK
5: comring, opring← rVRF.CommitRing(ring, pk)
6: πring ← NIZKRring .Prove(crsRring , ppRring

, comring, compk; b, opring, sk)

7: return σ = (πring, compk, comring, πeval)

Security Analysis of Our First Protocol: We should first define Gensign for Frvrf and show that Gensign
satisfies the anonymity defined in Definition 7 so that Frvrf gives anonymity.

Lemma 1. Gensign in Algorithm 1 satisfies the anonymity defined in Definition 7 assuming NIZKRring

is ZK and Pedersen commitment is perfectly hiding.

Proof. Assume that D wins the anonymity game for Gensign with an advantage ε. We reduce the
anonymity game to a game where we remove the line 4 and change the line 6 of Algorithm 1 with
πring ← NIZKRring

.Simulate(tdRring
, ppRring

, comring, compk) where comring = Com∗(ring). Our new
game is indistinguishable since NIZKRring

is ZK. Since in the new game, proofs are generated without

the keys and compk is perfectly hiding, D wins the new game with probability 1
2 . Thus, ε is negligible.

Below, we give the security statement for our first construction when pk is defined as
Com.Commit(x, r) where sk = (x, r) is the secret key (Alternative 1) and when pk is defined as pk = skG
where sk = x (Alternative 2).

Theorem 1. Our first protocol realizes [11,12] Frvrf running Gensign in Algorithm 1 in the ran-
dom oracle model assuming that NIZKReval and NIZKRring are zero-knowledge and knowledge sound,
NARKRcomring is knowledge sound, the decisional Diffie-Hellman (DDH) problem are hard in G (so the
CDH problem is hard as well).

Proof. We construct a simulator Sim that simulates the honest parties in the execution of our protocol
and simulates the adversary in Frvrf.

– [Simulation of keygen:] Upon receiving (keygen, sid,Pi) from Frvrf, Sim generates a secret and
public key pair sk = (x, r) and pk by running rVRF.KeyGen. It adds pk to a list honest keys as a
key of Pi. In the end, Sim returns (verificationkey, sid, sk, pk) to Frvrf. Sim sets public keys[X] = pk
and secret keys[X] = (x, r) where X = xG. During the simulation, Sim populates public keys with
hypothetical public keys which are never revealed during the simulation or by Frvrf. However, it
does not populate secret keys except this part of the simulation. So, if public keys[X ′] is not empty
for a value X ′ but secret keys[X ′] is empty, it means that Sim generated the entry public keys[X ′]
just for the sake of the simulation with a key which is not functional as a real public key.

– [Simulation of corruption:] Upon receiving a message (corrupted, sid,Pi) from Frvrf, Sim removes
the public key pk from honest keys which is stored as a key of Pi and adds pk to malicious keys.

– [Simulation of the random oracles:] We describe how Sim simulates the random oracles
HG, H,Hp against the real world adversaries.

Sim simulates the random oracle HG as described in Figure 1. It selects a random element h from
Fp for each new input and outputs hG as an output of the random oracle HG. Thus, Sim knows
the discrete logarithm of each random oracle output of HG.

The simulation of the random oracle H is less straightforward (See Figure 2). The value W can
be a preout of an input generated by a malicious party or can be an anonymous key of in gen-
erated by Frvrf for an honest party. Sim does not need to know about this but H should output
evaluations[in,W] in both cases to be consistent with Frvrf. Sim treats W as if it is preout gen-
erated as in the protocol. So, Sim first obtains the discrete logarithm h of HG(in) from the HG’s
database and obtains X∗ = h−1W . Sim checks if public keys[X∗] exists. If it does not exist, Sim
samples randomly a key pk∗ which is not stored in public keys and stores public keys[X∗] = pk∗ just
to use while sending an eval message to Frvrf. Then, it sends (eval, sid, pk∗,W, in) to Frvrf and receives
back evaluations[in,W]. Remark that if W is a pre-output generated by A, then Frvrf matches it
with the evaluation value given by Frvrf. If W is an anonymous key of an honest party in the ideal
world, Frvrf still returns an honest evaluation value evaluations[in,W] even if Sim cannot know
whether W is an anonymous key of an honest party in the ideal world. During the simulation of H,
if Frvrf aborts, then there exists W ′ 6= W such that anonymous key map[in,W ′] = pk∗. Remark that
it is not possible because if it happens it means that hX∗ = W ′ 6= W where public keys[X∗] = pk∗,
but also W = hX∗. Therefore, Abort-1 never occurs.

Oracle HG
Input: in

if HG[in] =⊥
h←$ Fp
HG[in] := h
return hG

else:
h← HG[in]
HG[in] := h
return hG

Fig. 1. The random oracle HG

Oracle H
Input: in,W
if H[in,W] 6=⊥

return H[in,W]
h← HG[in]

X∗ := h−1W // candidate commitment key
if public keys[X∗] =⊥

pk∗ ←$ G
public keys[X∗] := pk∗

send (eval, sid,W, public keys[X∗], in) to Frvrf

if Frvrf ignores: Abort-1
receive (evaluated, sid,W, in, out) from Frvrf

H[in,W] := out
return H[in,W]

Fig. 2. The random oracle H

The simulation of the random oracle Hp (See Figure 3 for details) given the query query
(ad′, in, compk,W,R,Rm) makes sure that the verified signature σ = (πeval, πring, compk, comring)
of honest parties verifies πeval = (c, s1, s2) via Hp as in the protocol. For this, it first parses ad′

as ad ++ πring ++ comring. If πring is verified via NIZKRring , then the oracle Hp deduces that the

reply to this oracle query might obtained from Frvrf in case compk, πring, comring are a part of a
valid honest signature. If the oracle Hp obtains such verified signature σ from Frvrf, it returns c
if R = s1G + s2K − c compk and Rm = s1HG(in) − cW . We remark that if R and Rm satisfy
these equalities, it means that they correspond to R and Rm generated during rVRF.Verify which
is supposed to output 1 for the part of πeval.

Oracle Hp

Input: (ad′, in, compk,W,R,Rm)

parse ad′ as ad ++ πring ++ comring
if Hp[ad

′, in, compk,W,R,Rm] 6=⊥: return Hp[ad
′, in, compk,W,R,Rm]

else if NIZKRring
.Verify((compk, comring);πring)→ 1

send (request signatures, sid, ad,W, in)
receive (signatures, sid, in,Lσ)
if ∃σ′, σ ∈ Lσ such that σ = (πring, compk, comring, .,W) and σ′ = (πring, compk, comring, .,W)

Abort-2
else if ∃σ ∈ Lσ such that σ = (πring, compk, comring, πeval,W) for some πeval

get πeval = (c, s1, s2)
if R = s1G+ s2K − ccompk, Rm = s1HG(in)− cW

Hp[ad
′, in, compk,W,R,Rm] := c

if Hp[ad
′, in, compk,W,R,Rm] =⊥

c←$ Fp
Hp[ad

′, in, compk,W,R,Rm] := c
return Hp[ad

′, in, compk,W,R,Rm]

Fig. 3. The random oracle Hp

– [Simulation of verify] Upon receiving (verify, sid, ring,W, ad, in, σ) from the functionality Frvrf, Sim
runs rVRF.Verify algorithm of our ring VRF protocol. If it verifies, it sets bSim = 1. Otherwise it
sets bSim = 0.

• If bSim = 1, it sets X = h−1W where h = HG[m]. Then it obtains pk = public keys[X] if it exists.
If it does not exist, it picks a pk which is not stored in public keys and sets public keys[X] =
pk. Then it sends (verified, sid, ring,W, ad, in, σ, bSim, public keys[X]) to Frvrf and receives back
(verified, sid, ring,W, ad, in, σ, out, b).
If b 6= bSim, it means that the signature is not a valid signature in the ideal world, while it is in
the real world. So, Sim aborts in this case (Abort-3). If Frvrf does not verify a ring signature
even if it is verified in the real world, Frvrf is in either C3-2, 1 or C3-3. If Frvrf is in C3-2, it
means that |W[in, ring]| > |ringmal|. If Frvrf is in C3-1, it means that pk belongs to an honest
party but this honest party never signs in and ad for ring. So, σ is a forgery. If Frvrf is in C3- 3,
it means that there exists W ′ 6= W where anonymous key map[in,W ′] = pk. If [in,W ′] is stored
before, it means that Sim obtained W ′ = hX where h = HG[in] but it is impossible to happen
since W = hX.
If b = bSim, it sets H[in,W] = out, if it is not defined before.
• If bSim = 0, it sets pk =⊥ and sends (verified, sid, ring,W, ad,m, σ, bSim, X) to Frvrf. Then, Sim

receives back (verified, sid, ring,W, ad,m, σ,⊥, 0).

We remark that Abort-2 happens in the oracle Hp described in Figure 3 in case W is generated
by Frvrf for an honest party. The reason of this is that Frvrf asks for Sim to verify or not verify
all signatures with W which is not generated by Frvrf. Sim runs rVRF.Verify for all such requests
and replies accordingly. Therefore, the valid signatures for in, ad′ with malicious W (obtained via
request signatures) must been already validated by Sim before and Hp[(ad′, in, compk,W,R,Rm)] has
been assigned with a random value.

We next show that the outputs of honest parties in the ideal world are indistinguishable from the
honest parties running our second protocol.

Lemma 2. Assuming that the DDH problem is hard on G, the outputs of honest parties in our first
ring VRF protocol are indistinguishable from the output of the honest parties in Frvrf running Gensign
in Algorithm 1.

Proof Sketch: The the honest evaluation outputs generated by Frvrf and generated by H in the real
world protocol are in the identical distribution. The ring VRF signatures of honest parties in two
worlds ((πring, compk, comring, πeval,W) in Frvrf and (πring, compk, comring, πeval, preout) in rVRF) are
in different distributions because W and preout generated differently while the rest is in an identical
distribution. We can show that they are indistinguishable under the assumption that DDH problem is
hard (See Appendix 4).

Next we show that the simulation executed by Sim against A is indistinguishable from the real
protocol execution.

Lemma 3. The view of A in its interaction with the simulator Sim is indistinguishable from the view
of A in its interaction with real honest parties assuming that CDH is hard in G, HG, H,Hp are random
oracles, NIZKReval ,NIZKRring

,NARKRcomring are knowledge sound and Com is computationally binding
and perfectly hiding.

Proof Sketch: The simulation against the real world adversary A is identical to the real protocol
except the cases where Sim aborts. Abort-1 cannot happen as we explained. Abort-2 happens if
Gensign generates the same compk for two different signatures. This happens if Frvrf selects the same
compk for two different honest signatures which happens with a negligible probability. Now, we are
left with the abort case (Abort-3) during the verification. For this, we show that if there exists an
adversary A which makes Sim abort during the simulation, then we construct another adversary B
which breaks either the CDH problem or the binding property of Com (See Appendix 4).

This completes the security proof of our first ring VRF protocol. ut

5 Zero-knowledge Continuations

In this section, we describe our new notion that we call zero-knowledge (ZK) continuation. Our new
notion focuses on optimizing a NIZK proving system tailored for a relation R such that

R = {(ȳ, z̄; x̄, w̄1, w̄2) : (ȳ, x̄; w̄1) ∈ R1, (z̄, x̄; w̄2) ∈ R2},

and R1, R2 are NP relations. At a high level, NIZK proving systems for relations as R are based on
the commit-and-prove methodology [32,13,10] as relations R1 and R2 have input x̄ in common. These
systems typically incorporate a commitment X to x̄ in their respective proofs or arguments for R1

and R2 to hide the witness x in R. In our proposed NIZK for R, we adopt a similar methodology but
with a distinctive addition. Our design is specified to facilitate the efficient re-proving membership
for relation R1 via ZK continuation. In practice, using a NIZK that ensures a ZK continuation for
a subcomponent relation (i.e., in our case R1) means one essentially needs to create only once an
expensive proof for that subcomponent relation; the initial proof can later be re-used multiple times
(just after inexpensive operations), while preserving knowledge soundness and zero-knowledge of the
entire NIZK. Thus, our re-used proofs stay unlinkable. Below, we formally define ZK continuation.
In Section 5.1, we instantiate it via SpecialG, and finally, in section 6 we use it to instantiate our
rVRF.Sign algorithm from Section 4 with fast amortised prover time.

Definition 8 (ZK Continuation). A ZK continuation for a relation R1 with
a vector of inputs (ȳ, x̄) and witnesses w̄1 is a tuple of PPT algorithms
(ZKContR1 .Setup,ZKContR1 .Preprove,ZKContR1 .Reprove,ZKContR1 .VerCom,ZKContR1 .Verify,
ZKContR1

.Simulate) with implicit inputs R1 and security parameter λ,

– ZKContR1
.Setup(1λ)→ (crs, td, pp) : It outputs a common reference string crs, a trapdoor td and a

list pp of public parameters.
– ZKContR1

.Preprove(crs, ȳ, x̄, w̄1)→ (X ′, π′, b′) : It outputs a commitment X ′ to x̄ (called opaque),
its opening b′ and a proof π′ constructed from vector of inputs ȳ (called transparent).

– ZKContR1
.Reprove(crs, X ′, π′, b′)→ (X,π, b) : It outputs a new commitment X and proof π with a

new opening b for the commitment.
– ZKContR1 .VerCom(pp, X, x̄, b)→ 0/1 : It verifies that X is a commitment to x̄ with opening b and

outputs 1 if indeed that is the case and 0 otherwise.
– ZKContR1

.Verify(crs, ȳ, X, π)→ 0/1 : It outputs 1 if it verifies and 0 otherwise.
– ZKContR1

.Simulate(td, ȳ) → (π,X) : It outputs a proof π and X given a simulation trapdoor td
and statement (ȳ, x̄).

ZKContR1
satisfies perfect completeness, knowledge soundness and zero-knowledge as defined below.

We define perfect completeness for Preprove and Reprove separately in the most general way possible,
(i.e., with inputs supplied by the adversary where possible).
Perfect Completeness for Preprove: For all λ, for every (ȳ, x̄; w̄1) ∈ R1:

Pr[ZKContR1 .Verify(crs, ȳ, X, π) = 1 ∧ ZKContR1 .VerCom(pp, X, x̄, b) = 1 |

(crs, td, pp)← ZKContR1 .Setup(1λ), (X,π, b)← ZKContR1 .Preprove(crs, ȳ, x̄, w̄1)] = 1

Perfect Completeness for Reprove: For all λ and PPT adversaries A:

Pr[(ZKContR1 .Verify(crs, ȳ, X ′, π′) = 1 ⇒ ZKContR1 .Verify(crs, ȳ, X, π) = 1) ∧
∧ (ZKContR1 .VerCom(pp, X ′, x̄, b′) = 1⇒ ZKContR1 .VerCom(pp, X, x̄, b) = 1) |

(crs, td, pp)← ZKContR1 .Setup(1λ), (ȳ, x̄, X ′, π′, b′)← A(crs,R1),

(X,π, b)← ZKContR1 .Reprove(crs, X ′, π′, b′)] = 1

Knowledge Soundness For all λ, for every benign auxiliary input aux (as per [4]) and every non-
uniform efficient adversary A, there exists an efficient non-uniform extractor E such that:

Pr[ZKContR1 .Verify(crs, ȳ, X, π) = 1 ∧ ZKContR1 .VerCom(pp, X, x̄, b) = 1 ∧ (ȳ, x̄; w̄1) /∈ R1 |

(crs, td, pp)← ZKContR1 .Setup(1λ), (ȳ, x̄, X, π, b; w̄1)← A||E(crs, aux ,R1)] = negl(λ),

where by (outputA; outputB) ← A||B(input) we denote algorithms A, B running on the same input
and B having access to the random coins of A.

Finally, we introduce a new flavour of zero-knowledge property for ZKContR1
. It allows us to for-

malize the concept that after an initial call to ZKContR1 .Preprove with ((ȳ, x̄), w̄1) ∈ R1, subsequent
sequential calls to ZKContR1 .Reprove result in proofs that disclose no information about x̄ or w̄1. Hence,
the proofs obtained via sequential use of ZKContR1

.Reprove as described above are not linkable, i.e., a
property targeted in the preamble of this section.
Perfect Zero-knowledge w.r.t. R1: For all λ, for every benign auxiliary input aux , for all
(ȳ, x̄; w̄1) ∈ R1, for all X ′, for all π′, for all b′, for every adversary A, there exists a PPT algorithm
Simulate such that:

Pr[A(crs, aux , π,X,R1) = 1 | (crs, td, pp)← ZKContR1 .Setup(1λ),

ZKContR1 .Verify(crs, ȳ, X ′, π′) = 1, (π,X,)← ZKContR1 .Reprove(crs, X ′, π′, b′)]

= Pr[A(crs, aux , π,X,R1) = 1 | (crs, td, pp)← ZKContR1 .Setup(1λ),

ZKContR1 .Verify(crs, ȳ, X ′, π′) = 1, (π,X)← ZKContR1 .Simulate(td, ȳ)]

5.1 Specialised Groth16 Proofs

Below we instantiate our ZK continuation notion with a scheme that we call SpecialG. It is based
on Groth16 zkSNARK [29]. As in [29], we use a standard quadratic arithmetic program Q (QAP) of
size m defined over field Fq (See Appendix D for more details). Then given Q, we then set RQ that
corresponds to R1. RQ consists of pairs ((ȳ, x̄); w̄) ∈ Flq × Fn−lq × Fm−nq where Fq is a field.
We let G be a pairing friendly elliptic curve with an efficient and non-degenerate pairing e. We denote
its first and second source groups by G1,G2 with generators G1 and G2, respectively. Given a vector
~x of field elements and a group element G ∈ G1 or G2, we use short hand notation ~x ·G to naturally
represent the corresponding vector of group elements. SpecialG for relation RQ works as follows:

– SpecialG.Setup(1λ,RQ) → (crs, td, pp): It is identical to the LegoSNARK ccGro16 [10, Fig. 22]
setup which is an extension of original Groth16 [29] setup by two additional group elements in
crs and one field element in td which are underlined next. td consists of α, β, γ, δ, τ, η ←$ F∗q
and crs = (σ̄1, σ̄2) where σ̄1 = (α, β, δ, {τi}d−1i=0 , {γi}ni=1,

η
γ , {δi}

m
i=n+1, { 1δ τ

it(σ)}d−2i=0 ,
η
δ) · G1, σ̄2 =

(β, γ, δ, {τ i}d−1i=0) · G2. Here, γi = βai(τ)+αbi(τ)+ci(τ)
γ and δi = βai(τ)+αbi(τ)+ci(τ)

δ }mi=n+1. We let

pp = ({Ki}n`+1,Kγ) = ({γiG1}ni=l+1,
η
γG1) and Kδ = η

δ ·G1.

A Groth16 proof for RQ needs the public statement (ȳ, x̄) for verification. Differently than this,
we want to achieve the verification of a Groth16 proof without x̄ but with the commitment to x̄.
Therefore, we need additional elements in crs to be able to still execute the verification.

– SpecialG.Preprove(crs, ȳ, x̄, w̄1) ← (X ′, π′, b′): It runs the proving algorithm of Groth16 SNARK
outputting π′ = (A,B,C) ∈ (G1,G2,G1), then it lets b′ = 0, computes the deterministic commit-
ment X ′ =

∑n
i=`+1 xiKi to x̄. In more detail,

b′ = 0; r, s
$←− Fp;X ′ =

n∑
i=l+1

vi ·
βai(τ) + αbi(τ) + ci(τ)

γ
·G1;

a = α+

m∑
i=0

vi · ai(τ) + r · δ; b = β +

m∑
i=0

vi · bi(τ) + s · δ;

c =

∑m
i=n+1(vi(βai(τ) + αbi(τ) + ci(τ))) + h(τ)t(τ)

δ
+ o · s+ u · r − r · s · δ;

π′ = (A,B,C) = (aG1, uG2, vG1),

where v̄ = (1, x1, . . . , xn, w1, . . . , wm−n), ȳ = (x1, . . . , xl), x̄ = (xl+1, . . . , xn), w̄ = (w1, . . . , wm−n)
(same as per definition of QAP).

– SpecialG.Reprove(crs, X ′, π′, b′)← (X,π, b) : It rerandomizes π and the commitment X by using b′

i.e., given π′ = (A′, B′, C ′), pick b, r1, r2
$←− Fp and let X = X ′ + (b − b′)Kγ , π = (A,B,C) where

A = A′

r1
, B = r1B

′ + r1r2δG2, C = C ′ + r2A
′ − (b− b′)Kδ.

The Preprove and Reprove procedures of SpecialG are identical to the proving procedure in ccGro16.
In SpecialG, we split these procedures because we aim to run Preprove once which contains heavier
operations and then we can efficiently run Reprove multiple times with lighter operations.
The next algorithms SpecialG.VerCom and SpecialG.Verify are identical to ccGro16 commitment
and proof verification algorithms, respectively.

– SpecialG.VerCom(pp, X, x̄, b)→ 0/1: It outputs 1 iff X =
∑n
i=l+1 xiKi + bKγ .

– SpecialG.Verify(crs, ȳ, X, π) → 0/1: It outputs 1 iff the following holds e(A,B) = e(αG1, βG2) +

e(X + Y, γG2) + e(C, δG2) where π = (A,B,C), Y =
∑l
i=1 xiδiG1 and ȳ = (x1, . . . , xl).

We remark that SpecialG.Verify corresponds to the verify algorithm of Groth16 zkSNARK when
X is the output of SpecialG.Preprove.

– SpecialG.Simulate(td, ȳ,RQ) → (π,X): It samples x̃, a, b
$←− Fp and let π = (aG1, bG2, cG1) where

c =
ab−αβ−

∑l
i=1 xi(βai(τ)+αbi(τ)+ci(τ))−x̃

δ and, by definition ȳ = (x1, . . . , xl). Note that π is a simu-
lated proof for transparent input ȳ and commitment X = x̃G1.

Next, we prove that SpecialG is a zero-knowledge continuation. We show that the knowledge soundness
property of SpecialG (i.e., as defined for ZKContR1) is implied by the knowledge soundness property
of commit-carrying SNARK with double binding (cc-SNARK with double binding, see Definition
3.4 [10]); our notion of zero-knowledge for ZKContR1

is, in fact a new and stronger notion so we prove
that directly. Formally, we have:

Theorem 2. Let RQ be a relation as related to a QAP such that additionally {ak(X)}nk=0 are linearly
independent polynomials. Then, in the AGM [23], SpecialG is a zero-knowledge continuation as per
Definition 8.

Proof. It is straightforward to show that SpecialG has perfect completeness for Preprove thanks to the
completeness of the Groth16 zkSNARK because SpecialG.Verify is the same as the verification algorithm
of the Groth16 zkSNARK when X is the output of Preprove. For the perfect completeness for Reprove,
we have X ′, π′ = (A′, B′, C ′) and b′ given by the adversary and X,π = (A,B,C), b generated by
Reprove(crs,X ′, π′, b′). Clearly, if SpecialG.VerCom(pp,X ′, x̄, b′) verifies, SpecialG.VerCom(pp,X, x̄, b)
verifies. The verification of X,π given that X ′, π′ is verified becomes straightforward when we replace
X with X ′ + (b − b′)Kγ , A with A′

r1
, B with r1B

′ + r1r2δG2 C with = C ′ + r2A
′ − (b − b′)Kδ. After

the replacement, the equality check reduced to e(A′, B′) = e(αG1, βG2) + e(X ′+ Y, γG2) + e(C ′, δG2)
which is the verification check for X ′, π′. So, if the adversarial proof verifies then the proof generated
by Reprove verifies as desired from the perfect completeness property of Reprove.

We next prove knowledge-soundness (KS) an in Definition 8 by first arguing SpecialG is a cc-
SNARK with double binding (see Definition 3.4 [10]). We use the fact that ccGro16 as defined by the
NILP detailed in Fig.22, Appendix H.5 [10] satisfies that latter definition. Moreover, SpecialG’s Setup
on one hand, and ccGro16’s KeyGen, on the other hand, are the same procedure. Also SpecialG and
ccGro16 share the same verification algorithm. Hence, translating the notation appropriately, SpecialG
also satisfies KS of a cc-SNARK with double binding.

LetASpecialG be an adversary for KS in Definition 8 and define adversaryAccGro16 for KS in Definition
3.4 [10]:

If ASpecialG(crs, pp, aux ,RQ) outputs (ȳ, x̄, X, π, b)

then AccGro16(crs, aux ,RQ) outputs (ȳ, X, π).

Given extractor EccGro16 fulfilling Definition 3.4 [10] for AccGro16, we construct extractor ESpecialG for
ASpecialG

If EccGro16(crs, aux ,RQ) outputs (x̄∗, b∗, w̄∗)

then ESpecialG(crs, aux ,RQ) outputs w̄∗;

Otherwise EccGro16(crs, aux ,RQ) outputs ⊥.

We show ESpecialG fulfils Definition 8 for ASpecialG. Assume by contradiction that is not the case. This
implies there exists an auxiliary input aux such that each:

SpecialG.Verify(crs, ȳ, X, π,RQ) = 1 (10), SpecialG.VerCom(pp, X, x̄, b) = 1 (20), (ȳ, x̄; w̄) /∈ RQ (30)

holds with non-negligible probability. Since (20) holds with non-negligible probability and verifica-
tion (for both proofs and commitments actually) is identical in SpecialG and ccGro16 respectively,
and since EccGro16 is an extractor for AccGro16 as per Definition 3.4 [10], then each of the two events

ccGro16.VerCommit∗(ck , X, x̄∗, b∗) = 1 (40), (ȳ, x̄∗; w̄∗) ∈ RQ (50) holds with overwhelming proba-
bility. Since (20) holds with non-negligible probability and (40) holds with overwhelming probability
and together with (ii) from Definition 3.4 [10] we obtain that x̄∗ = x̄. Since (50) holds with over-
whelming probability, it implies (ȳ, x̄; w̄∗) ∈ RQ with overwhelming probability which contradicts our
assumption, so our claim that SpecialG does not have KS as per Definition 8 is false.

Finally, regarding zero-knowledge, it is clear that if π = (A,B,C) is part of the output of
SpecialG.Reprove, then A and B are uniformly distributed as group elements in their respective groups.
This holds, as long as the input to SpecialG.Reprove is a verifying proof, even when the proof was ma-
liciously generated. Hence, it is easy to check that the output π′ of SpecialG.Simulate is identically
distributed to a proof π output by SpecialG.Reprove so the perfect zero-knowledge property holds for
SpecialG.

5.2 Putting Together a NIZK and a ZKCont for Proving R

Let ZKContR1
be a zk continuation for R1 (from preamble of this section) with public parameter pp

and let NIZKR′2 be a NIZK for R′2 defined as

R′2 = {(X, z̄; x̄, b, w̄2) : ZKContR1
.VerCom(pp, X, x̄, b) = 1 ∧ (z̄, x̄; w̄2) ∈ R2},

with R2 from preamble of Section 5. Then we define the system NIZKR for relation R from the
preamble of this section as:

– NIZKR.Setup(1λ) → (crsR = (crs, crsR′2), tdR = (td, tdR′2), ppR = pp): Here, (crs, td, pp) ←
ZKContR1 .Setup(1λ,R1), (crsR′2 , tdR′2)← NIZKR′2 .Setup(1λ).

– NIZKR.Prove(crsR, ȳ, z̄; x̄, w̄1, w̄2) → (π1, π2, X): Here (X ′, π′1, b
′) is generated by

ZKContR1
.Preprove(crs, ȳ, x̄, w̄1) and (X,π1, b) generated by ZKContR1

.Reprove(crs, X ′, π′1, b
′)

and π2 is generated by NIZKR′2 .Prove(crsR′2 , X, z̄; x̄, b, w̄2).
– NIZKR.Verify(crsR, (ȳ, z̄), (π1, π2, X)) → 0/1: It outputs 1 iff ZKContR1

.Verify(crs, ȳ, X, π1) = 1
and NIZKR′2 .Verify(crsR′2 , X, z̄, π2) = 1.

– NIZKR.Simulate : (tdR, ȳ, z̄) 7→ (π1, π2, X) where (π1, X) ← ZKContR1 .Simulate(td, ȳ), π2 ←
NIZKR′2 .Simulate(tdR′2 , X, z̄).

Theorem 3. If ZKContR1 is a zk continuation for R1 and NIZKR′2 is a NIZK for R′2 for some ap-
propriately chosen public parameters pp, then the NIZKR construction described above is a NIZK for
R.

Proof sketch: The correctness, knowledge soundness and zk properties of NIZKR comes from the
same properties of ZKContR1

and NIZKR′2 . See Appendix B for the proof.

6 Our Second Ring VRF Construction based on ZKCont

We enhance our construction from Section 4 by incorporating ZKCont. This protocol leverages the
rerandomization properties of ZKCont, allowing a signer to generate a signature for a different in
within the same ring without having to recompute the most expensive part of the NIZK proof related
to the key membership of the ring. CommitRing,OpenRing works as in the first ring VRF protocol and
KeyGen works as in the alternative-1 of our first protocol.

– rVRF.Setup(1λ) outputs pprvrf = (crsRinner
ring

, crscomring, ppRinner
ring

, (p,G, G,K),Fp) where crsRinner
ring

and ppRinner
ring

are generated by ZKCont.Setup(1λ,Rinner
ring) and crscomring is generated by

NARKRcomring .Setup(1λ).

– rVRF.Sign(sk, comring, opring, in, ad) computes preout = skHG(in), lets out = H(in, preout). Then
runs NIZKRrvrf

.Prove(comring, preout, in, out; sk, opring)→ πrvrf where

Rrvrf =

{
comring, (preout, in, out);

x, r, opring

∣∣∣∣∣ (comring, x; r, opring) ∈ Rinner
ring ,

(preout, in, out;x) ∈ Rout

}
and

and

Rinner
ring =

{
(comring, x; r, opring)

∣∣∣∣∣ pk = rVRF.OpenRing(comring, opring),

x = Com.Open(pk;x, r)

}
,

Rout = {((preout, in, out), sk;⊥) : preout = skHG(in), out = H(in, preout)}

We instantiate NIZKRrvrf
.Prove as described in Section 5.2 where R1 = Rinner

ring and R′2 = Reval and
R = Rrvrf . It works as follows: It runs ZKContRinner

ring
.Preprove(crsRinner

ring
, comring, x, r, opring)

and obtains compk′, π′, b′. Then, it runs ZKContRinner
ring

.Reprove(crsRinner
ring

, X ′, π′, b′)

and obtains (compk, πinner, b). Finally, it lets preout = xHG(in) and runs
NIZKReval .Prove(compk, preout, in;x, b)→ πeval as described in Section 4 with ad′ = ad ++ πring ++
comring . In the end, it returns the ring VRF signature σ = (compk, πinner, comring, πeval, preout).

– rVRF.Verify : (comring, in, ad, σ) 7→ (1, out) ∨ (0,⊥) it parses σ as
(compk, πinner, comring, πeval, preout and runs NIZKRrvrf

.Verify(comring, preout, in, out;πeval, compk, πinner)
i.e., runs ZKContRinner

ring
.Verify(crsRinner

ring
, comring, compk, πinner) and

NIZKReval .Verify(compk, preout, in;πeval). If all verify, it outputs (1, out = H(in, preout)).
Otherwise, it returns (0,⊥).

Theorem 4. Our specialized rVRF realizes Frvrf running Gensign (Algorithm 2) [11,12] in the random
oracle model assuming that ZKCont is zero-knowledge and knowledge sound as defined in Definition
8 and NIZKReval is zero-knowledge and knowledge sound, NARKRcomring is knowledge sound, the DDH
problem are hard in G (so the CDH problem is hard as well) and the commitment scheme Com is
binding and perfectly hiding.

Algorithm 2 Gensign(ring, sk = (x, r), pk, ad, in)

1: comring, opring← rVRF.CommitRing(ring, pk)
2: compk′, π′, b′ ← ZKCont.Preprove(crs, comring, sk, (r, opring))
3: compk, πinner, b← ZKContReprove(crs, compk′, π′, b′)
4: c, s1, s2 ←$ Fp
5: πeval ← (c, s1, s2)
6: return σ = (compk, πinner, comring, πeval)

Proof Sketch: The security proof follows very similar to our first construction. We construct the same
Sim described in the proof of Theorem 1 because in the second construction, random oracles in this
construction are the same as in the first contruction. Then, we use the result of Lemma 1 because preout
is the same. The only slight difference is in Lemma 3 since Gensign is different than Algorithm 1. There,
we run the simulator and extractor of NIZKRrvrf

instead of extractors of NIZKRring
and NIZKReval . See

Appendix A.2 for more details.

7 Conclusion

We introduced a novel cryptographic primitive ring VRF in this paper which combines the unique
properties of VRFs and ring signatures. Our new primitive has notable use cases in identity systems,
where users can register their public keys and generate pseudonyms using Ring VRF outputs, ensuring
privacy protection while preventing Sybil behaviour. Ring VRF finds applications in a wide range of
other cases, including rate limiting systems, rationing, and leader elections. We presented two distinct
Ring VRF constructions, one offering flexibility in instantiation and the other focusing on optimizing
signature generation within the same ring. Moreover, we introduced the notion of ZK continuations
enabling the efficient regeneration of proofs by preserving the ZK property.

Instantiation of our second protocol with SpecialG: Since SpecialG is ZKCont, we can instantiate our
second protocol with SpecialG. In this instantiation, we let G = G1 generated in SpecialG.Setup. We
present an appropriate Com.Commit(sk) algorithm that together with SpecialG efficiently instantiate
the NIZK for Rinner

ring . To make this efficiently provable inside the SNARK, we use the Jubjub Edwards
curve J which contains a large subgroup J of prime order pJ. Here, pJ < p where p is the order of
G used in our ring VRF construction. We let J0, J1, J2 ∈ J be independent generators. We also fix
a parameter κ where (log2 p)/2 < κ < log2 pJ. Com.Commit(sk) first samples sk1, sk2 ∈ 2κ where
sk = sk0 + sk1 2λ mod p and samples a blinding factor d←$ FpJ . In the end, it outputs sk0, sk1, d as an
opening and the commitment pk = sk0 J0 + sk1 J1 + dJ2 as a public key of our ring VRF construction.
This commitment scheme is binding and perfectly hiding as our ring VRF construction requires because
pk is, in fact, a Pedersen commitment. Indeed, pk is a Pedersen commitment to sk because we can
represent sk = sk0 J0 + sk1 mod p since we have selected κ accordingly.

We can instantiate Com∗ with a Merkle tree hash function by setting the leaves as the public keys
of the ring. Then, we instantiate NARKRcomring .Prove with inclusion proof of a key with respect to the
Merkle tree root comring.

In this case, the first run of rVRF.Sign for ring with SpecialG runs linear time in terms of the size of
the statement and the witness as in the Groth16 zkSNARK [29] because it runs SpecialG.Preprove and
SpecialG.Reprove. Since the size of opring is O(log n), the first run of rVRF.Sign for a ring with SpecialG
is O(log n). For the next signatures for the same ring, rVRF.Sign runs only SpecialG.Reprove which is 4
multiplications in G1 and 2 multiplications in G2 and NIZKReval .Prove which need 3 multiplications in
G1. The proving time becomes constant after first signing. The verification time is O(1) because comring
has a constant size. We note that if we did not deploy a Merkle tree hash function for comring and let
comring = ring, the signing the first signature and verification times would be O(n). So, CommitRing
optimizes the the signing and verification times.

Instantiation of our first protocol: Our instantiation commits to the ring using KZG commitments (i.e.,
Com∗.Commit) to the x and y coordinates of the public keys. One can design a simple constraint system
to verify the correctness of such a commitment (i.e., rVRF.OpenRing) inside the custom SNARK for
Rring as in [15] without additional cost, but modified to obtain zero-knowledge [26]. For this protocol,
the prover needs to know the entire ring, i.e. opring is the entire ring rather than a KZG opening, which
results in O(n log n) proving time unlike in the second protocol but the verification time is constant.
Even though, this instantiation does not allow fast reproving, it is concretely fast with proving time
under a second for rings of size up to a few thousand (comparable to the benchmarks in [15]) without
needing opening constraints inside the SNARK.

References

1. Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas. Ouroboros
genesis: Composable proof-of-stake blockchains with dynamic availability. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages 913–930. ACM, 2018.

2. Christian Badertscher, Peter Gaži, Iñigo Querejeta-Azurmendi, and Alexander Russell. On uc-secure range
extension and batch verification for ecvrf. Cryptology ePrint Archive, 2022.

3. Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger definitions, and construc-
tions without random oracles. In Theory of Cryptography: Third Theory of Cryptography Conference, TCC
2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pages 60–79. Springer, 2006.

4. Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable one-way
functions. In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, 2014.

5. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth, and Christophe Petit.
Short accountable ring signatures based on ddh. In Computer Security–ESORICS 2015: 20th European
Symposium on Research in Computer Security, Vienna, Austria, September 21-25, 2015, Proceedings, Part
I, pages 243–265. Springer, 2016.

6. Maria Borge, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, and Bryan Ford.
Proof-of-personhood: Redemocratizing permissionless cryptocurrencies. In 2017 IEEE European Sympo-
sium on Security and Privacy Workshops (EuroS&PW), pages 23–26, 2017.

7. Joakim Brorsson, Bernardo David, Lorenzo Gentile, Elena Pagnin, and Paul Stankovski Wagner. Papr:
Publicly auditable privacy revocation for anonymous credentials. In Cryptographers’ Track at the RSA
Conference, pages 163–190. Springer, 2023.

8. Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and Mira Meyerovich. How
to win the clonewars: efficient periodic n-times anonymous authentication. In Proceedings of the 13th ACM
conference on Computer and communications security, pages 201–210, 2006.

9. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous credentials
with optional anonymity revocation. In Advances in Cryptology—EUROCRYPT 2001: International Con-
ference on the Theory and Application of Cryptographic Techniques Innsbruck, Austria, May 6–10, 2001
Proceedings 20, pages 93–118. Springer, 2001.

10. Matteo Campanelli, Dario Fiore, and Anäıs Querol. Legosnark: Modular design and composition of succinct
zero-knowledge proofs. Cryptology ePrint Archive, Paper 2019/142, 2019. https://eprint.iacr.org/

2019/142.
11. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. Cryptology

ePrint Archive, Report 2000/067, 2000. https://eprint.iacr.org/2000/067.
12. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In Proceedings

2001 IEEE International Conference on Cluster Computing, pages 136–145. IEEE, 2001.
13. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and

multi-party secure computation. Conference Proceedings of the Annual ACM Symposium on Theory of
Computing, 2003.

14. Nishanth Chandran, Jens Groth, and Amit Sahai. Ring signatures of sub-linear size without random
oracles. In Automata, Languages and Programming: 34th International Colloquium, ICALP 2007, Wroc law,
Poland, July 9-13, 2007. Proceedings 34, pages 423–434. Springer, 2007.

15. Oana Ciobotaru, Fatemeh Shirazi, Alistair Stewart, and Sergey Vasilyev. Accountable light client systems
for PoS blockchains. Cryptology ePrint Archive, 2022. https://eprint.iacr.org/2022/1205.

16. Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros Praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 66–98. Springer, 2018.

17. Vanesa Daza, Abida Haque, Alessandra Scafuro, Alexandros Zacharakis, and Arantxa Zapico. Mutual
accountability layer: accountable anonymity within accountable trust. In International Symposium on
Cyber Security, Cryptology, and Machine Learning, pages 318–336. Springer, 2022.

18. Bryan Ford. Identity and personhood in digital democracy: Evaluating inclusion, equality, security, and
privacy in pseudonym parties and other proofs of personhood, 2020.

19. Bryan Ford and Jacob Strauss. An offline foundation for online accountable pseudonyms. In Proceedings
of the 1st Workshop on Social Network Systems, SocialNets ’08, page 31–36, New York, NY, USA, 2008.
Association for Computing Machinery.

20. Jonathan Frankle, Sunoo Park, Daniel Shaar, Shafi Goldwasser, and Daniel Weitzner. Practical account-
ability of secret processes. In 27th USENIX Security Symposium (USENIX Security 18), pages 657–674,
2018.

21. Matthew Franklin and Haibin Zhang. A framework for unique ring signatures. Cryptology ePrint Archive,
2012.

https://eprint.iacr.org/2019/142
https://eprint.iacr.org/2019/142
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2022/1205

22. Matthew Franklin and Haibin Zhang. Unique ring signatures: A practical construction. In Financial
Cryptography and Data Security: 17th International Conference, FC 2013, Okinawa, Japan, April 1-5,
2013, Revised Selected Papers 17, pages 162–170. Springer, 2013.

23. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications. Cryptology
ePrint Archive, Paper 2017/620, 2017, 2017. https://eprint.iacr.org/2017/620.

24. Eiichiro Fujisaki. Sub-linear size traceable ring signatures without random oracles. IEICE TRANSAC-
TIONS on Fundamentals of Electronics, Communications and Computer Sciences, 95(1):151–166, 2012.

25. Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signature. In International Workshop on Public
Key Cryptography, pages 181–200. Springer, 2007.

26. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permutations over lagrange-bases for
oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Paper 2019/953, 2019.
https://eprint.iacr.org/2019/953.

27. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and
succinct NIZKs without PCPs. Cryptology ePrint Archive, Paper 2012/215, 2012, 2012. https://eprint.
iacr.org/2012/215.

28. Sharon Goldberg, Leonid Reyzin, Dimitrios Papadopoulos, and Jan Včelák. Verifiable Random Functions
(VRFs). Internet-Draft draft-irtf-cfrg-vrf-10, Internet Engineering Task Force, Nov 2021. Work in Progress.

29. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-Sébastien
Coron, editors, Advances in Cryptology – EUROCRYPT 2016, pages 305–326, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg. IACR ePrint Archive 2016/260.

30. Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-knowledge. Journal
of the ACM (JACM), 59(3):1–35, 2012.

31. Kobi Gurkan, Koh Wei Jie, and Barry Whitehat. Community proposal: Semaphore: Zero-knowledge sig-
naling on ethereum. ZKProof Standards, 2020.

32. Joe Kilian. Uses of randomness in algorithms and protocols. PhD Thesis. Massachusetts Institute of
Technology, 1990.

33. Stefan Köpsell, Rolf Wendolsky, and Hannes Federrath. Revocable anonymity. In International Conference
on Emerging Trends in Information and Communication Security, pages 206–220. Springer, 2006.

34. Joseph K Liu, Man Ho Au, Willy Susilo, and Jianying Zhou. Linkable ring signature with unconditional
anonymity. IEEE Transactions on Knowledge and Data Engineering, 26(1):157–165, 2013.

35. Joseph K Liu and Duncan S Wong. Linkable ring signatures: Security models and new schemes. In
Computational Science and Its Applications–ICCSA 2005: International Conference, Singapore, May 9-
12, 2005, Proceedings, Part II 5, pages 614–623. Springer, 2005.

36. Giulio Malavolta and Dominique Schröder. Efficient ring signatures in the standard model. In Advances
in Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryp-
tology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II 23, pages
128–157. Springer, 2017.

37. Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In 40th annual symposium
on foundations of computer science (cat. No. 99CB37039), pages 120–130. IEEE, 1999.

38. Lan Nguyen and Rei Safavi-Naini. Dynamic k-times anonymous authentication. In Applied Cryptography
and Network Security: Third International Conference, ACNS 2005, New York, NY, USA, June 7-10,
2005. Proceedings 3, pages 318–333. Springer, 2005.

39. Tuong Ngoc Nguyen, Anh The Ta, Huy Quoc Le, Dung Hoang Duong, Willy Susilo, Fuchun Guo, Kazuhide
Fukushima, and Shinsaku Kiyomoto. Efficient unique ring signatures from lattices. In European Symposium
on Research in Computer Security, pages 447–466. Springer, 2022.

40. Dimitrios Papadopoulos, Duane Wessels, Shumon Huque, Moni Naor, Jan Včelák, Leonid Reyzin, and
Sharon Goldberg. Making nsec5 practical for dnssec. Cryptology ePrint Archive, Paper 2017/099, 2017.
https://eprint.iacr.org/2017/099.

41. Trevor Perrin. The xeddsa and vxeddsa signature schemes. Revision 1, 2016-10-20. https://signal.org/
docs/specifications/xeddsa/.

42. Anh The Ta, Thanh Xuan Khuc, Tuong Ngoc Nguyen, Huy Quoc Le, Dung Hoang Duong, Willy Susilo,
Kazuhide Fukushima, and Shinsaku Kiyomoto. Efficient unique ring signature for blockchain privacy
protection. In Information Security and Privacy: 26th Australasian Conference, ACISP 2021, Virtual
Event, December 1–3, 2021, Proceedings 26, pages 391–407. Springer, 2021.

https://eprint.iacr.org/2017/620
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2012/215
https://eprint.iacr.org/2012/215
https://eprint.iacr.org/2017/099
https://signal.org/docs/specifications/xeddsa/
https://signal.org/docs/specifications/xeddsa/

43. Isamu Teranishi, Jun Furukawa, and Kazue Sako. K-times anonymous authentication. In Interna-
tional Conference on the Theory and Application of Cryptology and Information Security, pages 308–322.
Springer, 2004.

44. Luis Von Ahn, Andrew Bortz, Nicholas J Hopper, and Kevin O’Neill. Selectively traceable anonymity. In
Privacy Enhancing Technologies: 6th International Workshop, PET 2006, Cambridge, UK, June 28-30,
2006, Revised Selected Papers 6, pages 208–222. Springer, 2006.

45. Shuang Yao, Dawei Zhang, et al. An anonymous verifiable random function with applications in blockchain.
Wireless Communications and Mobile Computing, 2022, 2022.

A Security of Our ring VRF Construction

A.1 Security of the First ring VRF Construction

We describe the simulation in Section 4. We show below the indistinguishability of our simulation.
The proof of Lemma 2 is below:

Proof. The evaluation outputs of the ring signatures in the ideal world identical to the real world
protocol because the outputs are randomly selected by Frvrf as the random oracle H in the real protocol.
The only difference is the ring signatures of honest parties (See Algorithm 1) since the pre-output W
and π1 are generated differently in Algorithm 1 than rVRF.Sign. The distribution of πeval = (c, s1, s2)
and compk generated by Algorithm 1 and the distribution of πeval = (c, s1, s2) and compk generated
by rVRF.Sign are from uniform distribution so they are indistinguishable. So, we are left to show
that the anonymous key W selected randomly from G and pre-output W generated by rVRF.Sign are
indistinguishable given pk.

Case 1 (pk← Com.Commit(x, r)): Since pk is a perfectly hiding commitment, then pk is uniformly
random and independent from x. Therefore, the anonymous key W selected randomly from G and
pre-output W = xG generated by rVRF.Sign are indistinguishable given pk.

Case 2 (pk = xG): In this case, pk is not independent from the secret key. Therefore, we need more
to show the indistinguishability. We show this under the assumption that the DDH problem is hard. In
other words, we show that if there exists a distinguisher D that distinguishes honest signatures in the
ideal world and honest signatures in the real protocol then we construct another adversary B which
breaks the DDH problem. We use the hybrid argument to show this. We define hybrid simulations
Hi where the signatures of first i honest parties are computed as described in rVRF.Sign and the rest
are computed as in Frvrf. Without loss of generality, P1,P2, . . . ,Pnh are the honest parties. Thus, H0

is equivalent to the honest signatures generated in the ideal world and Hnh is equivalent to honest
signatures in the real world. We construct an adversary B that breaks the DDH problem given that
there exists an adversary D that distinguishes hybrid games Hi and Hi+1 for 0 ≤ i < nh. B receives
the DDH challenges X,Y, Z ∈ G from the DDH game and simulates the game against D as follows.
B runs a simulated copy of Z and starts to simulate Frvrf and Sim for Z. For this, it first runs the
simulated copy of A as Sim does. B publishes G, G = Y,K as parameters of the ring VRF protocol. B
generates the public key of all honest parties’ key as usual by running rVRF.KeyGen as Sim does except
party Pi+1. It lets the public key of Pi+1 be X.

While simulating Frvrf, B simulates the ring signatures of first i parties by running rVRF.Sign
and the parties Pi+2, . . . ,Pnh by running Algorithm 1 where W is selected randomly. The simulation
of Pi+1 is different. Whenever Pi+1 needs to sign an input in and message ad, it obtains inbase =
HG(m) = hY from the oracle Hp and lets W = hZ. Then it sets compk = X + bK and πeval ←
NIZKReval .Simulate(compk,W, in) and πring ← NIZKRring

.Simulate(compk, comring) by inputting ad in
the random oracle H. Remark that if (X,Y, Z) is a DH triple (i.e., DH(X,Y, Z)→ 1), Pi+1 is simulated
as in in our construction because W = skG in this case. Otherwise, Pi+1 is simulated as in the ideal

Frvrf runs a PPT algorithms Gensign during the execution and is parametrized with sets Seval and SW where
Seval and SW generated by a set up function Setup(1λ).
[Key Generation.] upon receiving a message (keygen, sid) from Pi, send (keygen, sid,Pi) to the simulator
Sim. Upon receiving a message (verificationkey, sid, sk, pk) from Sim, verify that sk or pk has not been recorded
before for sid in signing keys. If it is the case, store the value sk, pk in the table signing keys under Pi
and return (verificationkey, sid, pk) to Pi.
[Honest Ring VRF Signature and Evaluation.] upon receiving a message (sign, sid, ring, pki, ad, in)
from Pi, verify that pki ∈ ring and that there exists a public key pki associated to Pi in signing keys. If it
is not the case, just ignore the request. If there exists no W ′ such that anonymous key map[in,W ′] = pki, let
W ←$ SW and let out ←$ Seval. Set anonymous key map[in,W] = pki and set evaluations[in,W] = out. In
any case (except ignoring), obtain W, out where anonymous key map[in,W] = pki, evaluations[in,W] = out
and (sk, pk) is in signing keys. Then run Gensign(ring, sk, pk, ad, in) → σ. Let σ = (σ,W) and record
[in, ad,W, ring, σ, 1]. Return (signature, sid, ring,W, ad, in, out, σ) to Pi.
[Malicious Ring VRF Evaluation.] upon receiving a message (eval, sid, pki,W, in) from Sim, if pki is
recorded under an honest party’s identity or if there exists W ′ 6= W where anonymous key map[in,W ′] = pki,
ignore the request. Otherwise, record in the table signing keys the value (⊥, pki) under Sim if (., pki) is
not in signing keys. If anonymous key map[in,W] is not defined before, set anonymous key map[in,W] =
pki and let out ←$ Seval and set evaluations[in,W] = out. In any case (except ignoring), obtain
out = evaluations[in,W] and return (evaluated, sid, in, pki,W, out) to Pi. [Corruption:] upon receiving
(corrupt, sid,Pi) from Sim, remove (xi, pki) from signing keys[Pi] and store them to signing keys under
Sim. Return (corrupted, sid,Pi).
[Malicious Requests of Signatures.] upon receiving a message (signs, sid,W, ad, in) from Sim, obtain
all existing valid signatures σ such that [in, ad,W, ., σ, 1] is recorded and add them in a list Lσ. Return
(signs, sid,W, ad, in,Lσ) to Sim.
[Ring VRF Verification.] upon receiving a message (verify, sid, ring,W, ad, in, σ) from a party, do the
following:

C1 If there exits a record [in, ad,W, ring, σ, b′], set b = b′.
C2 Else if anonymous key map[in,W] is an honest verification key and there exists a record

[in, ad,W, ring, σ′, 1] for any σ′, then let b = 1 and record [in, ad,W, ring, σ, 1].
C3 Else relay the message (verify, sid, ring,W, ad, in, σ) to Sim and receive back the message

(verified, sid, ring,W, ad, in, σ, bSim, pkSim). Then check the following:

1. If pkSim is an honest verification key, set b = 0.
2. Else if W /∈ W[in, ring] and |W[in, ring]| ≥ |ringmal| where ringmal is a set of malicious keys in ring,

set b = 0. .
3. Else if there exists W ′ 6= W where anonymous key map[in,W ′] = pkSim, set b = 0.
4. Else set b = bSim.

In the end, record [in, ad,W, ring, σ, 0] if it is not stored. If b = 0, let out =⊥. Otherwise, do the following:

– if W /∈ W[in, ring], add W to W[in, ring].
– if evaluations[in,W] is not defined, sample y ←$ Seval. Then, set anonymous key map[in,W] = pkSim

and evaluations[in,W] = out.
– otherwise, set out = evaluations[in,W].

Finally, output (verified, sid, ring,W, ad, in, σ, out, b) to the party.
[Corruption:] upon receiving (corrupt, sid,Pi) from Sim, remove (ski, pki) from signing keys[Pi] and store
them to signing keys under Sim. Return (corrupted, sid,Pi).

Fig. 4. Functionality Frvrf.

world because W is random. So, if DH(X,Y, Z)→ 1, Sim simulates Hi+1. Otherwise, it simulates Hi.
In the end of the simulation, if D outputs i, Sim outputs 0 meaning DH(X,Y, Z) → 0. Otherwise, it
outputs i+1. The success probability of Sim is equal to the success probability of D which distinguishes
Hi and Hi+1. Since DDH problem is hard, Sim has negligible advantage in the DDH game. So, D has a
negligible advantage too. Hence, from the hybrid argument, we can conclude that H0 which corresponds
the output of honest parties in the ring VRF protocol and Hq which corresponds to the output of honest
parties in ideal world are indistinguishable.

This concludes the proof of showing the output of honest parties in the ideal world are indistin-
guishable from the output of the honest parties in the real protocol.

Next we show that the simulation executed by Sim against A is indistinguishable from the real
protocol execution.

The proof of Lemma 3 is below:

Proof. The simulation against the real world adversary A is identical to the real protocol except the
cases where Sim aborts. Abort-1 cannot happen as we explained during the simulation. Abort-2
happens if Gensign generates the same compk for two different signatures. This happens if Frvrf select
same compk for two different honest signature which happens with a negligible probability. Now, we
are left with the abort case (Abort-3) during the verification. For this, we show that if there exists
an adversary A which makes Sim abort during the simulation, then we construct another adversary B
which breaks either the CDH problem or the binding property of Com.

Consider a CDH game in a prime p-order group G with the challenges G,U, V ∈ G. The CDH
challenges are given to the simulator B. Then B runs a simulated copy of Z and starts to simulate Frvrf

and Sim for Z. For this, it first runs the simulated copy of A as Sim does. B provides (G, p,G,K) as
a public parameter of the ring VRF protocol to A.

Whenever B needs to generate a ring signature of input in and message ad on behalf of an honest
party, it behaves exactly as Frvrf except that it runs Algorithm 3 to generate the signature.

Algorithm 3 Gensign(ring,W, pk, ad, in)

1: compk←$ G
2: πeval ← NIZKReval .Simulate(compk,W, in)
3: comring, opring← rVRF.CommitRing(ring)
4: πring ← NIZKRring .Simulate(comring, compk)
5: return σ = (compk, πring, comring, πeval)

Clearly the ring signature of an honest party outputted by Sim (remember Frvrf generates it by
Algorithm 1) and the ring signature generated by B are indistinguishable. Remark that B does not
need to set Hp any more as Sim so that πeval verifies because Gensign in Algorithm 3 does it while
simulating the proof for Reval. Therefore, the simulation of Hp is simulated as a usual random oracle
by B.

In order to generate the public keys of honest parties, B picks a random rx ∈ Fp and sets X = rxV .
If rVRF.KeyGen generates a public key as pk = skG, it lets pk be X otherwise it picks a random
public key pk . Remark that B never needs to know the secret key of honest parties to simulate them
since B selects anonymous keys randomly and generates the ring signatures without the secret keys.
Since the public key generated by rVRF.KeyGen is random and independent from the secret key, B’s
key generation is indistinguishable from rVRF.KeyGen, if rVRF.KeyGen generates a public key as a
commitment.
B simulates Frvrf as described but with the following difference: whenever Frvrf sets up

evaluations[in,W] it queries in,W to the random oracle H. B simulates the random oracle H as

a usual random oracle. The only difference from the simulation of H by Sim is that B does not ask for
the output of H(in,W) to Frvrf but it does not make any difference because now Frvrf asks for it. B also
simulates Hring for the ring commitments as a usual random oracle. Simulation of HG by B returns hU
instead of hG.

During the simulation, whenA outputs a signature σ = (compk, πring, πeval, comring,W) of an input
in and message ad which is not recorded in B’s record as Frvrf has, B runs rVRF.Verify(comring, in, ad, σ).
If it verifies, it runs the extractor algorithm of NIZKRring

and obtains b, opring, sk in version 1 and
obtains b, opring in version 2. In both cases, the simulation is the same because B does not need sk.
Since opring = (pk, πcomring) contains a valid proof, it obtains ring by running the extractor algorithm
of NARKRcomring . Then, it computes X = compk − bK. If pk is not an honest key then B adds W to

W[m, ring]. Then, it runs the extractor algorithm of NIZKReval and obtains (x̂, b̂) such that compk =

x̂G+b̂K andW = x̂HG(m). IfW /∈ W[in, ring], B increments counter[in, ring] and addsW toW[in, ring].

If X is generated by B during a key generation process of an honest party and X = x̂G, B solves
the CDH problem as follows: W = x̂hU where h = Hp[m]. Since X = rV , W = xhuG = rhuV . So, B
outputs r−1h−1W as a CDH solution and simulation ends. Remark that this case happens when Sim
aborts because of 1.

If W[m, ring] = t′ > |ringmal| = t, B obtains all the signatures {σi}t
′

i=1 that make B to add an
anonymous key to W[m, ring]. Then it solves the CDH problem as follows: Remark that this case
happens when Sim aborts because of C2.

For all σj = (compkj , πringj , comring, πevalj ,Wj) ∈ {σi}t
′

i=1, B runs the extractor for Rring and
obtains opringj , bj , skj in version 1 and (opringj , bj) in version 2. Then it obtains the public key pkj ∈
opringj where pkj ∈ ring and Xj = compk− bjK = xjG.Then, it adds Xj to a list X and pkj to a set
PK. One of the following cases happens:

1. All Xj in X are different and |PK| ≤ t: This only happens if we are in version 1. Because in
version 2, pk = xjG = Xj . In version 1, each pkj ∈ PK commits to a secret key xj such that
xj = Com.Open(pkj , rj). If all Xj ’s are different and |PK| ≤ t, then there exists a pkj ∈ PK where
xj = Com.Open(pkj , rj) and x′j = Com.Open(pkj , r

′
j) such that xjG, x

′
jG ∈ X . So, it means that

the binding property of Com is broken which happens with a negligible probability. Therefore, B
aborts with a negligible probability.

2. All Xj in X are different and |PK| > t: If B is in this case, it means that there exists Xa ∈ X
which belongs to an honest party because PK includes more keys than the malicious keys. This
cannot happen at this point because B solves the CDH when A outputted σa when this happens
as described above.

3. There exist at least two Xa, Xb ∈ X where Xa = Xb: B runs the extractor algorithm of NIZKReval
for πringa and πringb and obtains (x̂a, b̂a) and (x̂b, b̂b), respectively such that compka = x̂aG +

b̂aKcompkb = x̂bG + b̂bK and Wa = x̂aHG(m),Wb = x̂bHG(m). Since Wa 6= Wb, x̂a 6= x̂b. So, B
can obtain two different and non trivial representation of Xa = Xb i.e., Xa = Xb = x̂aG + (b̂a −
ba)K = x̂bG + (b̂b − bb)K. Thus, B finds the discrete logarithm of K = U in base G which is
u = x̂a−x̂b

b̂a−ba−b̂b+bb
. B outputs uV as a CDH solution.

So, the probability of B solves the CDH problem is equal to the probability of A breaks the forgery
or uniqueness in the real protocol. Therefore, if there exists A that makes Sim aborts during the
verification, then we can construct an adversary B that solves the CDH problem and breaking the
binding property of Com except with a negligible probability.

This completes the security proof of our ring VRF protocol. ut

A.2 Security of Our Protocol with SpecialG

Lemma 4. Frvrf running Algorithm 2 satisfies anonymity defined in Definition 7 assuming that
ZKCont is a zero-knowledge as defined in Definition 8.

Proof. We simulate Frvrf with Algorithm 1 against D. Assume that the advantage of D is ε.
Now, we reduce the anonymity game to the following game where we change the simulation of
Frvrf by changing the Algorithm 1. In our change, we replace Line 2 and 3 of Algorithm 2 with
ZKCont.Simulate(td, comring,Rinner

ring). Since ZKCont is zero knowledge, there exists an algorithm
ZKCont.Simulate which generates a proof which is indistinguishable from the original proof and compk.
Therefore, our reduced game is indistinguishable from the anonymity game. Since in this game, no key
is used while generating the proof and W and compk is perfectly hiding, the probability that D wins
the game is 1

2 . This means that ε is negligible.

We construct the same Sim described in the proof of Theorem 1 because it does not deploy any
extractor or simulator of NIZK forReval andRring. Similarly, Lemma 2 applies here. The only difference
is in Lemma 3 since Gensign is different than Algorithm 1. We first replace Gensign run by B in Algorithm
3 defined for Lemma 3 with Algorithm 4.

Algorithm 4 Gensign(ring,W, pk, ad,m)

1: comring, opring← rVRF.CommitRing(ring)
2: πring, compk← ZKCont.Simulate(td, comring)
3: πeval ← NIZKReval .Simulate(compk,W,m)
4: return σ = (compk, πinner, comring, πeval)

The other change is that we replace all extractors in Lemma 3 for Rring,Reval with the extractor
for NIZKRrvrf

. B here is simpler than B in Lemma 3 because the secret key is the part of Rrvrf while
the secret key is not part of the witness in Rring for the case pk is defined as skG (Version 2). When
B sees a signature σ = (compk, πinner, comring, πeval) of in, it runs the extractor for NIZKRrvrf

and
obtains x, r, opring. Then, it lets X be xG. If X is generated for an honest party, it solves the CDH
as described in Lemma 3 for the same case. If W[in, ring] = t′ > |ringmal| = t, it runs the extractors
for NIZKRring

of all malicious signatures of in for ring and obtains {(xj , rj , opringj)}t
′

j=1. Then, for all
j ∈ [1, t′], it adds Xj = xjG to X and pkj = rVRF.OpenRing(comring, opring) to a list PK. Then, the
first two cases in Lemma 3 happens and B behaves the same. We note that here all skj ’s are different
because preoutj ’s are different. Therefore, the last case in Lemma 3 does not happen.

B NIZKR’s Security

Theorem 5. If ZKContR1
is a zk continuation for R1 and NIZKR′2 is a NIZK for R′2 for some ap-

propriately chosen public parameters pp, then the NIZKR construction described above is a NIZK for
R.

Proof. Putting together the results of Lemma 5, Lemma 6, Lemma 7 and we obtain the above state-
ment.

Lemma 5 (Knowledge-soundness for NIZKR). If ZKContR1 is a zk continuation for R1 and
NIZKR′2 is a NIZK for R′2 for some appropriately chosen public parameters pp, then the NIZKR con-
struction described above has knowledge-soundness for R.

Proof. This is easy to infer by linking together the extractors guaranteed for ZKContR1
and NIZKR′2

due to their respective knowledge-soundness.

Next, we define Special Perfect Completeness for all λ, for every efficient adversary A, for every
(z̄, x̄; w̄2) ∈ R2 it holds

Pr(ZKContR1
.Verify(crs, ȳ, X ′, π′1,R1) = 1 ∧ ZKContR1

.VerCom(pp, X ′, x̄, b′) = 1))

⇒ NIZKR.Verify(crsR, X, z̄, π2) = 1 |
(crs, td, pp)← ZKContR1

.Setup(1λ,R1), (crsR′2 , tdR′2)← NIZKR′2 .Setup(1λ),

(ȳ, X ′, π′1, b
′)← A(crs,R1), (X,π1, b)← ZKContR1 .Reprove(crs, X ′, π′1, b

′,R1),

π2 ← NIZKR′2 .Prove(crsR′2 , X, z̄, x̄, b, w̄2)) = 1

Lemma 6 (Special Perfect Completeness). If ZKContR1 is a zk continuation for R1 and NIZKR′2
is a NIZK for R′2 for some appropriately chosen public parameters pp, then the NIZKR construction
described above has special perfect completeness.

Proof. This is easy to infer by combining the perfect completeness properties of NIZKR′2 axnd perfect
completeness for ZKContR1

.Reprove.

Finally, we define

Zero-knowledge after Reproving a ZKContR1
Proof For all λ ∈ N, for every benign auxiliary

input aux, for all ȳ, x̄, z̄, w̄1, w̄2 with (ȳ, x̄; w̄1) ∈ R1 and (z̄, x̄; w̄2) ∈ R2, for all X ′, π′1, b
′, for every

adversary A it holds:

|Pr(A(crs, aux , π1, π2, X,R) = 1 | (crs, td, pp)← ZKContR1
.Setup(1λ,R1),

(π1, X,)← ZKContR1 .Reprove(crs, X ′, π′1, b
′,R1), π2 ← NIZKR′2 .Prove(crsR′2 , X, z̄, x̄, b, w̄2),

ZKContR1
.Verify(crs, ȳ, X ′, π′1,R1) = 1,ZKContR1

.VerCom(pp, X ′, x̄′, b′) = 1)

−Pr(A(crs, aux , π1, π2, X,R) = 1 | (crs, td, pp)← ZKContR1
.Setup(1λ,R1),

(π1, π2, X)← NIZKR.Simulate(td, ȳ,R1),ZKContR1
.Verify(crs, ȳ, X ′, π′1,R1) = 1,

ZKContR1
.VerCom(pp, X ′, x̄′, b′) = 1)| ≤ negl(λ)

Lemma 7 (ZK after Reproving a ZKContR1
Proof). If ZKContR1

is a zk continuation for R1

and NIZKR′2 is a NIZK for R′2 for some appropriately chosen public parameters pp, then the NIZKR
construction described above has zero-knowledge after reproving a ZKContR1

proof.

Proof. The statement follows from the perfect zero-knowledge w.r.t. R1 for ZKContR1
and the zero-

knowledge property of NIZKR′2 w.r.t. R′2.

C Ring VRF Variations

In this section, we give a ring VRF functionality which gives more security properties than the basic
ring VRF functionality Frvrf that we define in Figure 4.

C.1 Secret Ring VRF

We also define another version of Frvrf that we call Fsrvrf. Fsrvrf operates as Frvrf. In addition, it also lets a
party generate a secret element to check whether it satisfies a certain relation i.e., ((m, y), (η, pki)) ∈ R
where η is the secret random element. If it satisfies the relation, then Fsrvrf generates a proof. Proving
works as Fzk [30] except that a part of the witness (η) is generated randomly by the functionality.
Fsrvrf is useful in applications where a party wants to show that the random output y satisfies a certain
relation without revealing his identity.

Fsrvrf for a relation R behaves exactly as Frvrf. Differently, it has an algorithm Genπ and it additionally
does the following:

Secret Element Generation of Malicious Parties. upon receiving a message
(secret rand, sid, ring, pk,W,m) from Sim, verify that anonymous key map[m,W] = pki. If
that was not the case, just ignore the request. If secrets[m,W] is not defined, obtain
y = evaluations[m,W]. Then, run Genη(m, pki, y) → η and store secrets[m,W] = η. Obtain
η = secrets[m,W] and return (secret rand, sid, ring,W, η) to Pi.

Secret Random Element Proof. upon receiving a message (secret rand, sid, pk,W,m) from Pi, ver-
ify that anonymous key map[m,W] = pki. If that was not the case, just ignore the request. If
secrets[m,W] is not defined, run Genη(m, pki, y) → η and store secrets[m,W] = η. Obtain
η ← secrets[m,W] and y ← evaluations[m,W]. If ((m, y), (η, pki)) ∈ R, run Genπ(W,m) → π
and add π to a list zkproofs[m,W]. Else, let π be ⊥. Return (secret rand, sid,W, η, π) to Pi.

Secret Verification. upon receiving a message (secret verify, sid,W,m, π), relay the message to Sim
and receive (secret verify, sid,W,m, π, pk, η). Then,

– if π ∈ zkproofs[m,W, ring], set b = 1.
– else if secrets[W,m] = η and ((m, y, ring), (η, pki)) ∈ R, set b = 1 and add to the list

zkproofs[m,W, ring].
– else set b = 0.

Send (verification, sid, ring,W,m, π, b) to Pi.

Fig. 5. Functionality Fsrvrf.

D SpecialG as Instantiation of ZKCont

Below we describe SpecialG in more details. We start by giving a reminder about Quadratic Arithmetic
Program (QAP) [10], [27] and related RQ in a standard way.

Definition 9 (QAP). A Quadratic Arithmetic Program (QAP) Q = (A,B, C, t(X)) of size m and
degree d over a finite field Fq is defined by three sets of polynomials A = {ai(X)}mi=0, B = {bi(X)}mi=0,
C = {ci(X)}mi=0, each of degree less than d − 1 and a target degree d polynomial t(X). Given Q we
define RQ as the set of pairs ((ȳ, x̄); w̄) ∈ Flq × Fn−lq × Fm−nq for which it holds that there exist a
polynomial h(X) of degree at most d− 2 such that:

(

m∑
k=0

vk · ak(X)) · (
m∑
k=0

vk · bk(X)) = (

m∑
k=0

vk · ck(X)) + h(X)t(X) (∗)

where v̄ = (v0, . . . , vm) = (1, x1, . . . , xn, w1, . . . wm−n) and ȳ = (x1, . . . , xl) and x̄ = (xl+1, . . . , xn) and
w̄ = (w1, . . . , wm−n).

Given notation provided in section 2, in particular elliptic curve G, its pairing e and the related source,
target groups and generators, we introduce

Definition 10 (Specialised Groth16 (SpecialG)). Let RQ be as mentioned above. We call spe-
cialised Groth16 for relation RQ the following: instantiation of the zero-knowledge continuation notion
from Definition 8:

– SpecialG.Setup : (1λ,RQ) 7→ (crs, td, pp).

Let α, β, γ, δ, τ, η
$←− F∗q . Let td = (α, β, γ, δ, τ, η).

Let crs = (σ̄1, σ̄2) where

σ̄1 = (α ·G1, β ·G1, δ ·G1, {τi ·G1}d−1i=0 ,{
βai(τ) + αbi(τ) + ci(τ)

γ
·G1

}n
i=1

,
η

γ
·G1,{

βai(τ) + αbi(τ) + ci(τ)

δ
·G1

}m
i=n+1

,{
1

δ
σit(σ) ·G1

}d−2
i=0

,
η

δ
·G1),

σ̄2 = (β ·G2, γ ·G2, δ ·G2, {τ i ·G2}d−1i=0).

pp =

({
βai(τ)+αbi(τ)+ci(τ)

γ ·G1

}n
i=l+1

, ηγ ·G1

)
.

Moreover, for simplicity and later use, we call
Kγ = η

γ ·G1 and Kδ = η
δ ·G1.

– SpecialG.Preprove : (crs, ȳ, x̄, w̄1,RQ) 7→ (X ′, π′, b′) such that

b′ = 0; r, s
$←− Fp;X ′ =

n∑
i=l+1

vi ·
βai(τ) + αbi(τ) + ci(τ)

γ
·G1;

o = α+

m∑
i=0

vi · ai(τ) + r · δ;u = β +

m∑
i=0

vi · bi(τ) + s · δ;

v =

∑m
i=n+1(vi(βai(τ) + αbi(τ) + ci(τ))) + h(τ)t(τ)

δ
+

+ o · s+ u · r − r · s · δ;
π′ = (o ·G1, u ·G2, v ·G1),

where ȳ = (x1, . . . , xl), x̄ = (xl+1, . . . , xn),
w̄ = (w1, . . . , wm−n), v̄ = (1, x1, . . . , xn, w1, . . . , wm−n) (same as per definition of QAP).

– SpecialG.Reprove : (crs, X ′, π′, b′,RQ) 7→ (X,π, b) such that

b, r1, r2
$←− Fp, X = X ′ + (b− b′)Kγ , π = (O,U, V),

O =
1

r1
O′, U = r1U

′ + r1r2δG2, V = V ′ + r2O
′ − (b− b′)Kδ.

where π′ = (O′, U ′, V ′).
– SpecialG.VerCom : (pp, X, x̄, b) 7→ 0/1 where the output is 1 iff the following holds

X =

n∑
i=l+1

xi ·
βai(τ) + αbi(τ) + ci(τ)

γ
·G1 + bKγ ,

where x̄ = (xl+1, . . . , xn), 0 ≤ l ≤ n− 1.
– SpecialG.Verify : (crs, ȳ, X, π,RQ) 7→ 0/1 where the output is 1 iff the following holds

e(O,U) = e(α ·G1, β ·G2) · e(X + Y, γ ·G2) · e(V, δ ·G2),

where π = (O,U, V), Y =
∑l
i=1 xi ·

βai(τ)+αbi(τ)+ci(τ)
γ ·G1 and ȳ = (x1, . . . , xl).

– SpecialG.Simulate : (td, ȳ,RQ) 7→ (π,X) where

x, o, u
$←− Fp and let π = (o ·G1, u ·G2, v ·G1) where

v =
o·u−αβ−

∑l
i=1 xi(βai(τ)+αbi(τ)+ci(τ))−x

δ and, by definition ȳ = (x1, . . . , xl). Note that π is a
simulated proof for transparent input ȳ and commitment X = x ·G1.

	Ring Verifiable Random Functions and Zero-Knowledge Continuations

