
Time Is Money, Friend!
Timing Side-channel Attack against

Garbled Circuit Constructions

Mohammad Hashemi1, Domenic Forte2, and Fatemeh Ganji1

1 Worcester Polytechnic Institute, Worcester, MA 01609, USA
2 University of Florida, Gainesville FL 32611, USA
dforte@ece.ufl.edu {mhashemi,fgangi}@wpi.edu

Abstract. With the advent of secure function evaluation (SFE), dis-
trustful parties can jointly compute on their private inputs without dis-
closing anything besides the results. Yao’s garbled circuit protocol has
become an integral part of secure computation thanks to considerable ef-
forts made to make it feasible, practical, and more efficient. For decades,
the security of protocols offered in general-purpose compilers has been
assured with regard to sound proofs and the promise that during the
computation, no information on parties’ input would be leaking.
In a parallel effort, timing side-channel attacks have proven themselves
effective in retrieving secrets from implementations, even through remote
access to them. Nevertheless, the vulnerability of garbled circuit frame-
works to timing attacks has, surprisingly, never been discussed in the
literature. This paper introduces Goblin, the first timing attack against
commonly employed garbled circuit frameworks. Goblin is a machine
learning-assisted, non-profiling, single-trace timing SCA, which success-
fully recovers the garbler’s input during the computation under different
scenarios, including various GC frameworks, benchmark functions, and
the number of garbler’s input bits. In doing so, Goblin hopefully paves
the way for further research in this matter.

Keywords: Secure Function Evaluation; Timing Side-channel Analysis; Clus-
tering; Non-profiling Attack; Single-trace Attack.

1 Introduction

Secure function evaluation (SFE) has had an immense impact on the field of
cryptography. Practical implementations of general SFE have been proposed
and flourished after the introduction of garbled circuits (GCs) by Yao [93]. It has
found several applications including secure multi-party computation [6,22,23,57],
functional encryption [28,27,80], key-dependent message security [3,2], homomor-
phic encryption [76,26], and recently, quantum circuits [9]. The key premise of
GCs is that it allows two parties to evaluate any (known) function on their respec-
tive inputs x and y without violating their privacy. Besides real-world applica-
tions foreseen for GCs traditionally (e.g., credit evaluation function, background-

2 M. Hashemi et al.

and medical history checking, privacy-preserving database querying, etc. [53,82]),
nowadays GCs have found applications in privacy-preserving genome analy-
sis [43], email spam filtering [36], image processing [12] and machine learning
and statistical analysis [71,24,14,75], just to name a few. To face obstacles pre-
venting further adoption of GCs in real-world systems, optimization techniques
have been developed, aiming to reduce communication and computation costs.
Here we focus on two of the most acknowledged methods, namely free-XOR [53]
and half-gates [97]. Similar to other optimization mechanisms, the main argu-
ment put forward by these techniques is that security is not compromised for the
sake of being efficient. However, the question is whether this holds true when
implementing these protocols. This becomes even more critical since today’s
applications of GCs (or potential ones) encompass services run on distributed
computing systems, cloud services, connected devices, etc.

Timing side-channel analysis. Irrespective of what cryptographic functions
are embedded in programmable instruction set processors, such systems can
exhibit observable features and data-dependent behavior that leak information
about users’ data/keys from the implementation. As a prime example, timing
side channels can be observed when the time taken to execute a piece of code
depends on the secret variables [52,63,72,90]. In this regard, two broad categories
of timing side channels can be identified: instruction-related and cache-related
cf. [92]. The former refers to the number or type of instructions executed along
a path that can differ depending on the values of secret variables. On the other
hand, cache-related timing side channels correspond to the case, where the mem-
ory subsystem may behave differently based on the values of secret variables. In
both categories, CPU instruction execution, specifically the branch prediction,
memory access, and data caches, have been exploited to launch successful SCA
on the cryptographic systems cf. [78,1,7,29,20]. Recently, the security of open-
source cryptographic libraries and implementations of protocols (excluding GC)
has just been evaluated in an extensive study [45], where the vulnerability of
some of those libraries to timing SCA has been demonstrated. More interesting
and inspiring from the perspective of this work is the gap between academic
research and cryptographic engineering when it comes to timing SCA.

SCA against GC constructions. Despite the achievements made to prove the
security of GC schemes, there is a gap between what theoretical findings have
suggested and what observations can be made by parties involved in executing
a GC protocol. The only example of studies addressing this gap is a recent
attack proposed by Levi et al., which leverages the side-channel leakage as a
result of using a secret, global value for free-XOR, correlated with the power
consumption of the garbler’s device [55]. Although multiple assumptions have
been made to launch the attack, their attack has successfully disclosed the global
value used to perform free-XOR optimization. Now the question is whether one
can go even beyond this attack and perform timing SCA and whether some of
the assumptions made in [55] can be relaxed in that case.

Generally speaking, timing attacks feature outstanding properties that make
them more interesting [45]: first, timing attacks can be launched remotely, in-

Time Is Money, Friend! 3

cluding cases of running code in parallel to the victim code without the need
for local access to the target computer; second, timing attacks can be carried
out covertly. In light of this state of affairs, this work attempts to answer the
following question: Is it possible to reveal parties’ input by observing the timing
information leaking when executing a GC protocol? More specifically, we answer
this question positively for free-XOR- and half-gates-optimized constructions.
The contribution of our work is as follows.

Our Contributions are summarized as follows.

1. We introduce Goblin, the first non-profiling, single-trace timing SCA that
successfully extract the user’s input, which by definition, should have been kept
secret. To better demonstrate the power of our attack, we compare it with the re-
cent attack in [55]. The power SCA in [55] has successfully extracted the global
secret used in free-XOR optimization, whereas Goblin focuses entirely on the
recovery of the garbler’s input. Needless to say that even with the help of the
disclosed secret, the garbler’s input could not be fully recovered. Moreover, in
contrast to [55], Goblin’s effectiveness is limited to neither circuits with a mini-
mum number of input gates nor gate types (XOR or AND).
2. Goblin is machine-learning assisted in disclosing the garbler’s input, regardless
of its size. For this purpose, k-means clustering is applied, where no manual
tuning or heuristic leakage models are needed. It is, of course, advantageous to
the attacker and allows for scalable and efficient attacks.
3. Last but not least, our paper highlights the vulnerabilities of multiple avail-
able garbling tools to timing SCA. We believe that this constitutes a basis for
studying the SCA with respect to GC.

2 Background and Adversary Model

Notations. We follow a standard notation typically used in SFE-related lit-
erature. ∈R denotes uniform sampling, ∥ is used to show concatenation of bit
strings. ⟨a, b⟩ represents a vector with two components a and b, whereas a ∥ b is
its bit string representation. A gate is denoted by Wc = g(Wa,Wb) with input
wires Wa and Wb, output wire Wc and g : {0, 1}2 → {0, 1}.

2.1 Yao’s Garbled Circuit (GC)

One of the most widely studied SFE approaches, designed to meet the needs
of Boolean circuits, is garbling [56,58]. The first protocol within the context
of GC is Oblivious transfer (OT). We consider 1-out-of-2 OT, which is a two-
party protocol with the following definition. The sender P1 possesses two secret
messages m0, and m1, and the receiver P2 has a selection bit i ∈ {0, 1}. By
executing the protocol, P2 learns mi, but not m1−i, while the sender P1 does
not learn anything about i.

4 M. Hashemi et al.

Garbling. The protocol execution begins with garbling the circuit C, where
the garbler (P1) randomly chooses secrets wj

i with the garbled value of j ∈
{0, 1} on each wire Wi. Needless to say that it is expected that wj

i does not
reveal any information about j. Practical implementations of Yao’s GC, e.g., [86]
considered in this paper, represent each of the logical “0” and “1” values with
n-bit values, where n is often referred to as the security parameter. In this sense,
wj

i (so-called token) is the encryption of the concatenation of j and (n − 1)-
bit values drawn uniformly. After generating the tokens, the garbler creates
a garbled table Ti for each gate Gi, where each row of the gate truth table
is encrypted output with regard to the tokens, and the output of the gate is
called a “ciphertext,” illustrated in Figure 1.(a) as the output of the operand
E(·), i.e., the encryption operation (symmetric key operations, e.g., fixed-key
block cipher). Since the table rows can reveal information about the internal
wire values, they are permuted. The main property of Ti is that its output
can be recovered given a set of garbled inputs, while this process does not leak
any information about the garbler’s and evaluator’s (P2) inputs. For this, along
with Ti’s, the token corresponding to the garbler’s input value is obliviously
transferred to P2 through OT. P2 is then able to obtain the garbled output by
evaluating the garbled circuit gate by gate using the tables Ti and receiving j
for the output wire from P1 cf. [87]. Garbling of the output wires of the circuit
can be skipped so that two parties learn (only) the output of the circuit [53].
Optimizations of Yao’s GC. Reducing the computation and communica-
tion costs of SFE protocols has been an objective of numerous studies. Among
optimization techniques introduced in the literature, free-XOR has attracted
considerable attention since it reduces the cost on the garbler side effectively,
namely by 25%. To reduce garbler’s cost, the wire values are garbled as pre-
sented in Figure 1.(b). For any gate Gi, w1

i = w0
i ⊕ R for some secret, global

R ∈R {0, 1}n3. Here, for the sake of simplicity, let (A,A ⊕ R) and (B,B ⊕ R)
denote the wire labels. half-gates protocol complements the free-XOR proto-
col in the sense that not only are XOR gates evaluated for free, but also AND
gates are garbled using only two ciphertexts (see Figure 1.(c)). Since Goblin is
interested in recovering the garbler’s input, in Figure 1.(c), we show how the
half-gates are generated on the garbler’s side, where garbler knows which inputs
she wants to garble (for more information about the whole process, see [97]).

2.2 k-means Algorithm

The main goal of clustering algorithms, like k-means, is to group samples of a
set with some common features into subsets, i.e., clusters. With regard to the
pairwise distances, clusters are made around the mean vectors, which are called
centroids [91,37]. k-means aims to partition N members of a set into k clusters
in a way that each member of a cluster has a close value to the centroid of
the cluster [91]. To be more specific, k-means finds partitions (clusters) p =

3 For specifics of the encryption function in the free-XOR protocol, see [13,34].

Time Is Money, Friend! 5

(a)

(b) (c)

Fig. 1: Garbled gates look-up table with (a) no optimization, (b) free-XOR op-
timization, and (c) half-gate optimization.

{p1, p2, · · · , pk} for the dataset c = {ci}ni=1 to minimize

min
p,{µj}k1

k∑
j=1

∑
ci∈pj

||ci − µj ||2,

where µj is the mean of all examples assigned to jth centroid [39]:. Here the
squared Euclidean distance is one of the commonly applied distance measures
applied to minimize the total cluster variance [85].

2.3 Cache Architecture

Modern x86 processors comprise three cache layers: L1, L2, and L3, with data
inclusively across all levels [74,25]. Figure 2 presents the Intel core-i7 cache ar-
chitecture. Each CPU core has a dedicated L1 and L2 cache, with the former
divided into data and instruction caches of 32KB each [74]. L2 cache is shared
across CPU threads and has a larger capacity (256KB [74]). The largest cache,
L3, is shared across all CPU cores with an 8MB capacity [74].

Processor instructions fall into three categories: memory read/write, control
flow (data processing), and arithmetic/logic operations [25,15]. The execution
time of the latter is determined by the type of operation and the number of
arithmetic-logic unit (ALU) calls [15]. Memory access time, however, depends
on whether the instruction is accessing RAM or cache [94,64,81,32,73].

For efficient memory access management, the CPU stores operation results
in the cache hierarchy (L1, L2, L3) and an instantiation in RAM [54,98]. On
data request, the CPU checks the data availability in this order: L1 cache, L2
cache, L3 cache, and finally RAM [54].

6 M. Hashemi et al.

Fig. 2: Intel core-i7 cache architecture [74].

Cache eviction strategies. Four eviction strategies can be considered as high-
lighted in [31]. The first and second use static and dynamic eviction sets, respec-
tively, with static access patterns. The third uses both dynamic eviction set
and access pattern, enabling fully automated attacks. The fourth uses a static
eviction set with a dynamic access pattern, but is less efficient [31].

2.4 Adversary Model

The security of GCs has been considered in two main paradigms, namely honest-
but-curious and malicious adversary models. The latter reflects the situation,
where a party potentially adopts an arbitrary attack strategy. On the other
hand, honest-but-curious parties follow the protocol honestly, although they may
attempt to learn additional information from the execution, similar to the one
launching SCA. This has also been well-formulated in [5], where it is suggested
that Yao’s GC reveals no side-information beyond the function being computed,
i.e., no information about parties’ inputs leaks. One closely relevant adversary
model is devised for server-aided or cloud-assisted, where the standard SFE pro-
tocol is run with the help of a server (or a small set of them), which does not
contribute to running the protocol by giving inputs, but by making their compu-
tational resources available to the parties cf. [50,16,8,17,49,48,11,10]. In the pro-
posed setting, the server is instantiated by a public cloud service provider, where
parties who need more computational power (e.g., the garbler) can outsource
their computations. In such scenarios, the server can be honest-but-curious [51].
Our model goes one step further and take into account any -even unprivileged-
access to the CPU during the execution of the protocol.

Our adversary model assumes that the parties and the server are indepen-
dent, i.e., none of them collude [50,21,48]. In practice, given the consequences in
terms of losing the reputation and legal actions, it is reasonable to assume that
the server will not collude with the parties. The adversary is capable of perform-
ing local code execution, potentially even on the same core. Additionally, the
adversary must possess the capability to evict data from the cache to the main
memory. Note that although throughout the paper, we refer to the server as the
entity collecting the timing information, this does not rule out the fact that any
entity with the capabilities mentioned above can launch the attack.

Time Is Money, Friend! 7

3 Timing Side-channel Leakage in Garbling Tools: An
Observation

Broadly speaking, timing side-channels leak due to the dependency of the time
taken to execute a piece of software code on the values of secret variables. Here,
two types of timing side-channels are of interest, namely instruction-related and
cache-related ones. The former indicates that the number or type of instructions
executed along a path depends on the values of secret variables. In contrast,
cache-related timing side channels refer to the difference due to the memory
subsystem behavior depending on the values of secret variables, e.g., a cache
hit takes a few CPU cycles. Still, a miss takes hundreds of cycles cf. [92]. By
analyzing the code line-by-line, the adversary can find and further exploit such
vulnerabilities. Nevertheless, manual analysis of the timing characteristics of a
code is challenging as it requires thorough knowledge of the code and the plat-
form on which it is executed. The broad range of existing tools for automatically
checking timing side-channel leakage can help pinpoint such vulnerabilities. In
doing so, we select a recent tool recommended in the literature [44], namely
SC-Eliminator [92]. Among the most important features of SC-Eliminator is the
fact that, in view of available garbling protocols, it can analyze codes written
in C/C++. To this end, using an LLVM compiler performs static analyses to
identify the sensitive variables and timing leakage associated with them, given
a program and a list of secret inputs.

GC tools. To explore whether GC frameworks would be vulnerable to timing
SCA, we selected 5 open-source tools written in C/C++, which mostly support
AES-NI (Advanced Encryption Standard New Instruction) instruction set (for
more features of these tools cf. [38]). As a result, they have made computing AES
encryptions on modern processors efficient, and consequently, the computation
cost of GC is reduced drastically. JustGarble [4] is a library for garbling and
evaluating circuits licensed under GNU GPL v3 license; however, JustGarble
does not support communication or circuit generation and is, therefore, not a
general-purpose framework. Nevertheless, it has become a cornerstone of various
frameworks, e.g., [87,70,47,35,33,30]. The reason behind JustGarble’s efficiency
is its ability to make only one AES call per garbled-gate evaluation which makes
it far faster than any prior reported results [4]. JustGarble exploits the crypto-
graphic permutations realizable by fixed-key AES acting like a public random
permutation [4]. Although this might be a strong assumption cf. [33,35], thanks
to its efficiency and the theoretical foundation laid for JustGarble, it has been
used in a wide variety of MPC and GC frameworks cf. [70,30].

Songhori et al. [86,87] extended JustGarble in TinyGarble, a highly com-
pressed and scalable sequential GC, which is a self-contained framework that can
directly be used in MPC applications [38]. Three steps are taken in TinyGarble,
namely converting a function defined in Verilog to a netlist format, converting
that netlist to a custom circuit description (SCD), and finally, securely evaluat-
ing the resulting Boolean circuit using a garbled circuit protocol. This flow has
been considered a strict improvement over JustGarble as TinyGarble further in-

8 M. Hashemi et al.

Table 1: The number of leaky IF conditions (IF) in various frameworks. (for a
detailed report, refer to Appendix A)

Framework IF

TinyGarble [86] (half-gate) 4

TinyGarble [86] (free-XOR) 7

JustGarble [42] 11

EMP-toolkit [67] 0

Obliv-C [95] 4

ABY [18] 0

cludes recent protocol and circuit optimizations. Nevertheless, and irrespective
of the flexibility of TinyGarble for producing hardware circuits, changes made
to JustGarble have introduced timing side-channel leakage, as will be discussed
in Sections 5-6.

In contrast to TinyGarble, which is an extension of Verilog, Obliv-C is an
extension of C that executes a GC protocol in a two-party setting [96]. The C
language is extended by adding an obliv qualifier that is applied to C types and
constructs. By enforcing typing rules, obliv types remain secret unless explicitly
revealed. In doing so, it is suggested that oblivious functions and conditionals
could modify public data, if they are executed within a qualified obliv block,
where the code is always executed cf. [96,95]. In addition to the data security
achieved by means of these rules, modular libraries can be easily developed when
using Obliv-C. Thanks to this property, Obliv-C has found application in, e.g.,
linear regression [24], decentralized certificate authorities [46], aggregated private
machine-learning models [89], classification of encrypted emails [36] and stable
matching [19].

Besides the frameworks mentioned above, we also took EMP-toolkit [67] and
ABY [18], libraries developed in C++, into account. EMP-toolkit is composed
of multiple MPC frameworks and allows for executing circuit-based protocols
due to the available circuit generation and cryptographic libraries. ABY library
offers a mechanism for mixing protocols, including optimized versions of Yao’s
garbled circuit protocol.

Our observations. As mentioned earlier, as a first, we examined the possi-
bility of mounting timing SCA against GC frameworks enumerated above. In
such an attack scenario, the adversary attempt to take advantage of possible
unbalance if-else statements (branches). The adversary can assume that differ-
ent operations performed to generate garbled inputs in free-XOR and half-gate
optimized Yao’s GC protocols (see Figure 1) can result in leakage if neither a
constant-time implementation nor branch-less assignments are used for sensitive
branches. To examine this, SC-Eliminator [92] is applied against TinyGarble [86],
JustGarble [42], EMP-toolkit [67], Obliv-C [95], and ABY [18]. Table 1 contains
the number of leaky IFs for this experiment. When taking a close look at the
list of leaky IFs among the set of leaky IFs, we observed unbalanced IF state-
ments in the garbled-input generation, i.e., garbled inputs were generated in a

Time Is Money, Friend! 9

secret-dependent manner. The existence of these unbalanced IFs demonstrates
the likelihood of timing attacks to be successfully mounted against them. Ac-
cording to the results in Table 1, EMP-toolkit [67] and ABY [18] do not have
any leaky IFs. Nevertheless, we should stress that although SC-Eliminator does
not find any vulnerability in terms of leaky IFs in these frameworks, this does
not rule out the possibility of other attacks. Next, we introduce our attack,
Goblin, to leverage the timing side-channel leaking from existing unbalanced IF
statements.

4 Goblin and Its Building Blocks

The main steps in Goblin’s flow are: (1) filling the cache with junk by using
junk generator (JG) to evict the garbler secret from the cache. This step aims
to maximize the CPU core’s access time to the global secret (R) from the cache
and capture the CPU cycles corresponding to each gate connected to input wires
(i.e., gates in the input layer); (2) measuring the time on the CPU, including
the time taken to generate garbler token, linked to the input size; (3) recovering
the garbler’s secret (i.e., garbler’s input) after pre-processing the acquired CPU
cycles and running a clustering algorithm.

4.1 Our Eviction Method: Junk Generator

We presume that the server and parties are independent (see Section 2.4), i.e.,
the adversary lacks knowledge of the cache slice function or the victim’s physical
addresses; hence, static eviction set and static access pattern strategies are im-
possible to employ [31]. As implementing a dynamic eviction set and static access
pattern strategy requires informing the adversary about the target’s replacement
policy, it is not feasible [31]. Hence, our JG adopts the dynamic eviction set and
dynamic access pattern strategy [31]. Our JG is, in fact, an enhancement of the
dynamic eviction set and access pattern method in [31]. Our attack shares simi-
larities with Evict+Time attacks presented in the literature [65]. Specifically, in
our attack, JG accesses the memory frequently in the form of reading and writing
from/to it similar to [77]; although in their attack, the adversary should first de-
termine which part of the critical information is accessed during the encryption.
In contrast, Goblin does not require this as the time difference between garbling
“1” and “0” reveals the input bit (“0/1”) directly. To maximize this time differ-
ence, the JG algorithm recursively generates eviction sets and performs memory
accesses randomly. Despite requiring many eviction tests, this approach needs
minimal system information, enabling automated attacks on unknown systems.
It is also considered more efficient than the static eviction set and dynamic ac-
cess pattern strategy [31]. Cache eviction can also be achieved by reading the
cache line [77]. Yet, we opted to generate junk on the fly to bypass CPU mem-
ory management [31]. Despite the simplicity of iterative For loops used in our
JG (see Appendix D), we chose the recursive function for JG to generate junk
indefinitely, considering the unknown duration of a circuit garbling process.

10 M. Hashemi et al.

4.2 Measuring Time on CPUs

After the JG boosts the difference between the input bit-dependent execution
times, the time can be measured. According to Martin et al. [68], to measure the
time without breaking the software, there are three main sources to take advan-
tage of cf. [66]: (1) internal, hardware time sources, e.g., timestamp counters; (2)
external time sources, e.g., external interrupts; and (3) creating a virtual clock,
for instance, the virtual clock implementation on multi-processor systems with
shared memory [79]. Without loss of generality, we focus on how timing informa-
tion can be retrieved using the first option, namely rdtsc. The Read Timestamp
Counter rdtsc is an x86 instruction that returns the value of the CPU times-
tamp counter (TSC) register. In general, the TSC register is shared with every
user with any level of privileged access [66]; therefore, it can be accessed by: (1) a
privileged/non-privileged user who has complete control over the CPU; (2) a ser-
vice provider who shares the processor with the victim, such as cloud servers [68];
(3) a virtual-machine user with a privileged/non-privileged access level, who runs
a process on a shared processor with the victim (e.g., cross-virtual machine at-
tacks) [66]. Hence, the adversary can have either privileged/non-privileged access
to (1) the CPU on which the garbling scheme is running, (2) the CPU of the
service provider’s system, or (3) a cross-virtual machine to share the processor
with the victim running the garbling scheme. What could make a difference is
that an unprivileged attacker cannot precisely control the garbler’s execution
and interrupt it, unlike a privileged attacker. Nevertheless, if the attacker can
figure out when the garbling process begins, or use a trigger signal such as a
cache-based side channel [83], then the collected traces can be aligned based on
that timing information [62]. Therefore, without loss of generality, we consider
aligned timing measurements to mount the attack, similar to [69,41]. For the
sake of demonstration, we have inserted the rdtsc before and after the garble
gate function in the frameworks source code, which are all publicly available,
and achieved the time stamps based on their difference.

Resolution of timing measurements. The timestamps provided by rdtsc
often have a resolution between 1 and 3 cycles on modern CPUs cf. [61]. For ex-
ample, on AMD CPUs until the Zen microarchitecture, a cycle-accurate resolu-
tion can be obtained; however, more recent generations come with a significantly
lower resolution as the register is only updated every 20 to 35 cycles. Another
example is Intel Core i7−7700 Processors, i.e., what has been used in this study,
where the rdtsc register is updated every cycle [40]. Nevertheless, although it
might be thought that lower resolutions might make performing attacks more
challenging, Goblin is not affected since it requires mainly the difference between
two readings with the same resolution (see Section 6 for more details). Therefore,
in contrast to attacks requiring repetition when relying on rdtsc, it is not needed
for Goblin to do so and use the average timing differences over all executions.
We stress that Goblin is a single-trace attack, i.e., thanks to the gate-by-gate
operation in GC frameworks, the time difference directly driven from rdtsc is
a collection of time stamps associated with gates. We should also add that our

Time Is Money, Friend! 11

attack is an example of a timing attack, meaning that we believe other methods
for acquiring the timing information can definitely be applied.

4.3 Recovering Garbler’s Input

Counting the gates in the input layer. According to our adversary model,
we assume that the adversary is neither the garbler nor the evaluator. Therefore,
there is no information about the circuit, input size, and gate types in the input
layer. Here we describe how this information is retrieved by Goblin when the
garbler uses JustGarble, as an example of GC tools. This example is selected due
to its broad applications (see Section 3) and its role as the core of other garbling
frameworks, e.g., ones considered in our study [87,96]. Listing 1 illustrates a
high-level description of JustGarble primary functions. In Listing 1, NF, LF, GT,
IF, INL, WL, GC, and OL, denoted in Lines 1–9, refer to the number of fan-outs,
location of fan-outs, gates’ types, the value of filled input fan-out, initial input
values, wire labels, Garbled circuit, and output labels, respectively.

According to the protocol flow of JustGarble (see, Listing 1), in the first
step, the garbler’s tokens for zero and one logical values (IL) are constructed
through createNewWire (Listing 1 line 5). Then, the parser function (the label
corresponding function createInputLabels Listing 1 line 3) starts parsing the
simple circuit description (SCD) file and g_init files, which contain information
about the circuit and the garbler’s input values. The parser function learns
about the circuit (GT) and locates the fan-in and fan-out of the input layer
gates (LF and NF) that are connected to the garbler input based on g_init file
information. For every input, the createInputLabels is called once for garbler
label and once for the evaluator label of the input, twice per input in total.
At this point, Goblin starts counting the number of createInputLabels calls
and calculating the number of input layer gates as half of the total number of
createInputLabels function calls. Afterward, the gates are garbled one by one
by calling the garbleCircuit function (Listing 1 line 9), starting from the input
layer gates, where the garbler’s and evaluator’s inputs are fed, before proceeding
to the following layer gates. This fact allows Goblin to count the CPU cycle
associated with each gate in the input layer by knowing the number of input
gates.

Goblin against free-XOR optimization. When the framework starts gar-
bling the gates, output labels (OL) and garbled tables (GT) are generated in the
order provided in the SCD file. As JustGarble, similar to various modern gar-
bling frameworks, utilizes the free-XOR optimization to generate garbler tokens
for input value 1, the garbler must access the R frequently. When free-XOR op-
timization is enabled, GarbleCircuit function (Listing 1 line 9) skips line 11 to
line 14 of the Listing 1. Therefore, regardless of whether the input is known or
secret, it checks the type of the input gate (GT) and treats all inputs as a secret.
If the gate type is XOR, including all gates categories that are considered XOR in
GC protocols (INV, XOR and XNOR gates), it generates the OL as the XOR results
of labels 0 and 1 (Listing 1 line 16); otherwise, the OL is constructed through a

12 M. Hashemi et al.

series of encryptions, see, Listing 1, line 18 to 22. It is clearly observable that in
the last part of the encryption, Listing 1 line 14 and between lines 25 and 28, if
the garbler input value is “1”, one more encryption, one memory access, and one
XORing take place, which can result in the input dependency observable in the
execution time of garbling process.

In other words, when garbling AND (non-XOR) gates (including (AND/NAND,
OR/NOR, ANDN, ORN, NANDN, and NORN), there is an unbalanced if condition, which
means a longer execution time for input value one. This is the point that Goblin
takes advantage of differences in execution time of the garbling process for each
gate due to their input value. If R is available in the L1 level of the cache, this
difference is subtle and, in most cases, negligible to the time of the encryption
process. Hence, to maximize the difference between the time taken to generate
tokens for input 0 and 1, the JG (see Section 4.1) starts filling the cache with
junks parallel to the execution of the createNewWire function (Listing 1 line
5) to enforce CPU to fetch R into L1 cache from RAM, which increases the
execution time difference between 0 and 1 token generation. To boost the effect
of JG, Goblin first finds the CPU core and thread on which the garbling process
is happening by calling the LSCPU instruction; then asks the server to assign
the JG task to the same thread, or if not possible, at least to the same core
on which the garbling process is happening. It should be indicated that neither
any privilege is needed nor any restriction on assigning the JG to the same core
is posed as it fills the shared L3 cache level; nevertheless, assigning JG to the
same core as the garbling process core will result in faster cache filling and fewer
errors as JG first fills L1 and L2 level cache.

Goblin against half-gate optimization. Though JustGarble doesn’t support
half-gate optimization, subsequent frameworks like TinyGarble and Obliv-C do.
Despite this, Goblin remains effective against these frameworks. When half-gate
optimization is enabled, HalfGarbleGate (see Listing 2) is called by GarbleGate.
When the input value (IF) is zero and the gate type (GT) is ANDGATE, the function
bypasses the garbling process, assigning a constant to OL, thus reducing the
execution time compared to the garbling process for input value one or other gate
types. If the input value is one, encryption occurs (Listing 2 line 11), introducing
an unbalanced if path and creating a dependency between the garbling process
execution time and the input value. Just like with free-XOR optimization, Goblin
capitalizes on these differences in execution times due to the unbalanced if
conditions in Listing 2, lines 3 and 8. The rest of the steps are not interesting
for Goblin because they do not hold any information about the secret (garbler’s
input), and the above-mentioned information is adequate to launch the Goblin;
therefore, from now on, Goblin can continue the attack from an offline phase.

Pre-processing the acquired CPU cycles.As explained before, when em-
ploying free-XOR optimization, the attacker expects to see a significant differ-
ence between the CPU cycle of INV, XOR, and XNOR gates and other gate types,
including AND/NAND, OR/NOR, ANDN, ORN, NANDN, and NORN gates (refer to Sec-
tion 5 for more information). This significant difference is because in the free-
XOR optimization, as its name implies, an XOR-type gate is garbled by simply

Time Is Money, Friend! 13

1 de f JustGarble (g_init , SCD) :
2 NF, LF, GT = createNewWire (g_init , SCD) #Pasrse s the c i r c u i t ,

l o c a t e the fan−outs , and gene ra t e s wire l a b e l s .
3 IF , INL = crea te InputLabe l s (NF, LF) #F i l l s tokens to input fan−outs

(c a l l e d twice per ga rb l e r input) .
4 GC, OL, TT = ga rb l eC i r cu i t (IF , IFS , WL, GT) #Generates garb led

t ab l e s and Garbled output tokens .
5 de f createNewWire (g_init , SCD) :
6 f o r i in SCD [0] : #f i r s t l i n e o f SCD, which conta in s the in fo rmat ion

about input l ay e r gate s
7 IF [i] [0] = randomBlock () ;
8 IF [i] [1] = xorBlocks (R, IF [i] [0]) ;
9 de f g a rb l eC i r c u i t (IFS , WL, GT) :

10 R = AESEcbEncryptBlks (AES_Key)
11 i f (IFS == known) :
12 GC, OL = HalfGarbleGate (GT, IF)
13 re turn GC, OL
14 e l s e : #(IFS == s e c r e t) :
15 i f (GT == XORGATE) :
16 OL = XorBlock (IFS , R) #f r e e −XOR opt imiza t i on
17 e l s e : #i f (GT == ANDGATE)
18 mask1 , mask2 , mask3 , mask4=AESEcbEncryptBlks (AES_Key, 4)
19 #AND encrypt ions
20 OL = XorBlock (mask1 , mask2)
21 i f (IFS == 1) :
22 OL = XorBlock (OL , R) ;
23 GC = [XorBlock (OL, mask3) , XorBlock (OL, mask4)]
24 i f (gate_locat ion i s in input_layer) : #Generates a s s o c i a t e ga rb l e r

tokens to be t r a n s f e r r e d to Evaluator .
25 i f (g_init == 0) :
26 TT = IF ;
27 e l s e :
28 TT = xorBlocks (R, IF) ;
29 re turn GC, OL, TT

Listing 1: Protocol flow of primary functions of JustGarble.

using the XORing operation that takes a few CPU cycles. On the other hand,
garbling other types of gates, such as an AND gate, requires reading/writing
from/to memory and cipher generation, which results in extra memory reads;
hence, accumulating these leads to a drastic increase in CPU cycles. This is ev-
ident thanks to the definition of this optimization technique and the number of
operands included in the computation of those gates, see Figure 1.(b). When
employing clustering to discover the garbler’s input in a non-profiled manner,
this difference causes the gate types to be dominant centroids of the clustering
algorithm over the input values. To overcome this challenge, Goblin first divides
the CPU cycle into the number of subgroups equal to the number of available
gate types, i.e., AND (AND/NAND, OR/NOR, ANDN, ORN, NANDN, and NORN) and XOR
(INV, XOR and XNOR gates, hereafter called XOR gates) with regard to the median
of the CPU cycles. Afterward, it normalizes each subgroup of CPU cycles by em-
ploying z-score normalization, and finally, concatenates the normalized data to
form the CPU cycle array while maintaining the order of captured CPU cycles.
Normalization minimizes the difference between the CPU cycle requirements of
XOR and AND gate types, consequently improving the SR.

The first step is more complicated in a case where the half-gates optimization
is enabled. Specifically, according to our observation, not only garbling the XOR
gates exhibits a significantly larger number of CPU cycles compared to other

14 M. Hashemi et al.

1 de f HalfGarbleGate (GT, IF) :
2 R = AESEcbEncryptBlks (AES_Key)
3 mask1 , mask2 = AESEcbEncryptBlks (AES_Key, 2)
4 i f (IF [0] == 0) :
5 i f (GT == ANDGATE) :
6 OL = mask1 #XorBlock (mask1 , 0)
7 e l s e : #i f (GT == XORGATE) :
8 OL = XorBlock (mask1 , IF [1])
9 i f (IF [0] == 1) :

10 i f (GT == XORGATE) :
11 OL = mask1 #XorBlock (mask1 , 0)
12 e l s e : #i f (GT == ANDGATE) :
13 OL = XorBlock (mask1 , R)
14 GC = XorBlock (OL, mask2)
15 i f (gate_locat ion i s in input_layer) : #Generates a s s o c i a t e ga rb l e r

tokens to be t r a n s f e r r e d to Evaluator .
16 i f (g_init == 0) :
17 TT = IF ;
18 e l s e :
19 TT = xorBlocks (R, IF) ;
20 re turn GC, OL, TT

Listing 2: HalfGarbleGate function flow.

gate types, but also there is a dramatic difference in the number of CPU cycles
in the OR/NOR gates garbling process. There is, of course, a reason behind this,
namely how gates with truth tables containing an odd number of ones (e.g., AND,
NAND, OR, NOR, etc.) can be expressed and constructed. Generally speaking, these
gate can be defined as G : (va, vb) → (αa ⊕ va) ∧ (αb ⊕ vb) ⊕ αc, where va and
vb are logical values and αa, αb, and αc are constant values cf. [97]. For AND
gate, α values are set to 0, whereas for OR gate, they are set to 1. Therefore,
it is unsurprising that the CPU cycles collected when garbling OR/NOR gates
compose a cluster different from the others. In the same vain, one can also observe
that it takes more time for the garbler to generate the garbled OR/NOR gate with
input “0”, as opposed to AND/NAND gates with input “1”. Therefore, contrary to
the case of free-XOR optimization, where AND/NAND and OR/NOR can be
considered as belonging to the same type, it is challenging to make a distinction
between AND/NAND gates with input “0” and OR/NOR gates with input “1”.
This overlap results in inaccurate clustering since the algorithm puts both into
one cluster, although they should be put into two different clusters due to their
inputs.

To counter this challenge, Goblin applies the following additional data scaling
technique before the normalization to force the pattern to match other gate types
(i.e., a larger number of CPU cycles for input 1). First, similar to the free-XOR
case, the CPU cycle collected from the input gates {ci}ni=1 should be partitioned
into subsets corresponding to different gate types: XOR/XNOR, AND/NAND,
and OR/NOR. For this, Goblin calculates 66th percentiles of elements in {ci}ni=1

and assign the elements larger than that to the subset cOR. The remaining
elements of {ci}ni=1 are assigned to AND and XOR subsets similarly as done in
the free-XOR case: the larger elements are assigned to cAND by considering the
median of the {ci}ni=1 \ cAND. The remaining elements are then assigned to the
subset corresponding to the XOR/XNOR gates. Afterward, Goblin applies the

Time Is Money, Friend! 15

transformation ti = aci + b for ci ∈ cOR, where a and b are calculated as

a =
Max(cAND)− c̄AND

Max(cOR)− c̄AND
, b = c̄AND − a · c̄OR,

where Max(·) and c̄’s denote the maximum and the average of the subsets,
respectively. After this step, normalization is applied, similar to the free-XOR
case.
Extracting garbler’s input through clustering. After obtaining the pre-
processed data, Goblin launches the clustering algorithm to determine each gar-
bler’s input bit. As Goblin applies normalization to the CPU cycle data, the
gate types’ dominance in the centroids has vanished; therefore, Goblin clusters
CPU cycles into only two clusters corresponding to input zero and input one,
regardless of the gate types. To disclose the input bits, Goblin keeps track of
the Max({ci}ni=1) before normalization. When the clustering process is over, all
cluster members that include the maximum element are labeled as “1”, mean-
ing that the garbler input bit is “1”; consequently, other cluster includes ci’s
corresponding to garbler’s input bit “0”.

4.4 Performance Metric

Let ci be a leakage measurement, i.e., the number of CPU cycles, for a garbler
input x = x1 · · ·xn with n-bits corresponding to n wires giving the garbler’s
input to the circuit. For instance, for a garbled 128-bit AES design, n = 128. To
evaluate the effectiveness of our attack, we calculate its success rate of recovering
the garbler’s input given a single trace {c}ni . Note that Goblin is a non-profiling
attack; hence, as opposed to profiled attacks, no leakage profile is made and used
during the attack. k-means clustering algorithm is used as a distinguisher so that
any observation ci is assigned to either cluster p0 or p1 associated with input bit
xi being “0” or “1”. Precisely, the success rate is defined as follows.

SR :=
∑

j∈{0,1}

n∑
i=1

Pr(ci ∈ pj | xi = j).

To put this simply, SR indicates how many bits are correctly disclosed out
of n bits in the garbler’s input. Note that this definition aligns with the general
case considered in SCA-related literature [88]. In this context, we consider the
success rate of order 1, i.e., the probability that the correct key is ranked first.

5 Experimental Results

We ran the JustGarble, TinyGarble and Obliv-C frameworks, publicly available
via GitHub repositories [42,86,95]. Garbler and evaluator codes ran on two sys-
tems with Linux Ubuntu 20, 16 GB of memory, and an Intel Core i7−7700 CPU
3.60GHz CPU. Two systems were connected through a local area network (LAN)

16 M. Hashemi et al.

(a) (b)

(c) (d)

Fig. 3: SR of Goblin for 1000 randomly chosen inputs given to GC garbled by
TinyGarble [87] with (a) free-XOR, (b) half-gate optimizations, (c) JustGar-
ble [42], and (d) Obliv-C [95].

cable. As garbling process might access R anytime during garbling process, to
force CPU to fetch R from RAM to L1 level cache in maximum possible cases,
we started JG as soon as the garbling process begins. This can be easily deter-
mined by calling non-privileged CPU instructions showing which applications
run on each core. Moreover, we assigned the JG to the same core that generates
garbled circuits on the garbler system. To capture each trace, i.e., multiple time
stamps, we used rdtsc as discussed before in Section 4.2. We have also used the
k-means clustering algorithm implemented in Matlab 2021.

5.1 Results for Benchmark Functions

To evaluate the efficacy of Goblin, we have targeted the commonly-used bench-
mark functions, including 128-AES, 288-SHA3, 256-bit Multiplier, 128-bit Sum-
mation, and 128-bit Hamming garbled by JustGarble [42], TinyGarble [87], and
Obliv-C [95] (results for the benchmark functions with various input sizes can
be found in Section 5.3). For this purpose, to calculate the success rate (SR), we
have applied various garbler’s inputs and provided the statistics in this section.
Launching Goblin against all combinations of inputs is impractical due to the
massive number of input combinations (i.e., for a 256-bit Multiplier, the attack
had to be launched 2256 times); therefore, we have chosen 1000 random inputs
to run Goblin. For each of these inputs, a single trace is captured that has mul-
tiple time stamps. In the k-means algorithm setting, the centroids are chosen at
100 different starting values, and the algorithm returns the result for the least
within-cluster sums of point-to-centroid distances.

Figure 3 shows the SR when free-XOR or half-gate optimization was enabled.
The red lines in the boxes indicate the average SR of the attack against these

Time Is Money, Friend! 17

benchmark functions. It is observable in Figure 3.(a) that the attack achieved
a better SR when launched against the AES benchmark compared to, e.g., the
256-bit Multiplier. The reason is three-fold. First, only 1000 inputs are tested;
therefore, the results might vary. Second, the input layer of the 256-bit Multiplier
contains more XOR gates than the AES, which are more challenging because
of the subtle difference between the number of clock cycles taken for “1” and
“0”. Third, per input, notice that Goblin is a non-profiling, single-trace attack,
meaning that it receives one timing measurement per gate (and per input bit,
consequently); hence, the more input bits, the better Goblin determines them.
This is further studied in Section 5.2.

Compared to Figure 3.(a), Figure 3.(b) corresponding to the half-gates opti-
mization shows an overall reduced SR for the same benchmark functions. This
is because of the increase in the number of gate types to be identified for the
same number of input bits and observations, consequently. Needless to say, even
for circuits with various gate types, such as AES, Goblin achieved an average
SR of more than 90%, which means the effect of variation in the gate types
does not affect Goblin’s SR drastically. Imperfect process of filling the L3 level
cache with junk accounts for the outliers in Figure 3. The implication of this is
that the availability of R in the L1 cache level of the garbler core decreases the
execution time difference between garbler 0 and 1 token generation. However,
these outliers happen barely, i.e., in 11 out of 1000 experiments, which means
the JG has a small error. Note that even for the outliers, Goblin still revealed
the garbler’s input with a range of 60% to 100% SR.

5.2 Scalability of Goblin

To test Goblin’s scalability, we have launched Goblin against three benchmark
functions, including MULT, SUM, and Hamming, with a range of input sizes
between 128 and 1024. Figure 4 illustrates the results, where Figure 4.(a) and
Figure 4.(b) depict the free-XOR and half-gate optimization results. As shown
in Figure 4.(a), increasing the input size increases the minimum and average SR
for virtually all cases. This SR increment is because Goblin has a broader range
of data to cluster, which means it has more observations to compare with one
another. Similar to previous experiments, outliers can be observed in Figure 4.
To reduce the number of outliers, the natural question to ask is whether it is
possible to launch Goblin without JG. We conducted experiments to answer this
questions and found out that for JustGarble [42] and Obliv-C [95], the SR could
decrease dramatically (close to 50%) due to the small difference between the
execution times for garbler’s input “0” and “1.” Nonetheless, for TinyGarble [86],
it is indeed possible to mount the attack with high SR without using JG (see
Appendix C).

5.3 Impact of the Number of Traces

In previous expriments in this section, to evaluate the effectiveness of our attack,
we selected 1000 random inputs since capturing CPU cycles for all inputs is

18 M. Hashemi et al.

(a) (b)

(c) (d)

Fig. 4: SR of Goblin against benchmark functions for a range of input bits garbled
by TinyGarble [86] with (a) only free-XOR optimization, (b) half-gate protocol,
(c) JustGarble [42], and (d) Obliv-C [95] for 1000 randomly chosen inputs.

impractical and infeasible. This can directly impact the variance in our results.
To investigate this, we collected CPU cycles after feeding powers of tens (from 10-
100, 000) random inputs into the 128-bit SUM, Hamming, and MULT benchmark
functions, i.e., the ones demonstrating a fairly high variance (see, Figure 3).
Figure 5 illustrates the SR of Goblin when being launched against a range of CPU
cycle traces. As can be seen, increasing the number of CPU cycle traces results
in increasing the SR of Goblin. We have observed that for a higher number of
traces, SR exhibits less variance, and the average settles around 97% in all cases,
except for 128-MULT. The reason behind this is the variation in the gate types
as discussed before. Note that since Goblin is a single trace attack, each trace
is processed by Goblin individually. In other words, the increase in the number
of traces does not impact each attack but reduces the variance of the overall
results. Therefore, to judge the effectiveness of Goblin, it is recommended to use
more traces. We could not do this in the first place due to the time-consuming
process of collecting traces for all benchmark functions. Nonetheless, comparing
the results for 1000 and 100, 000 traces, the change in the average SR is subtle.

6 Discussion

Relative accuracy of rdtsc. For applications using rdtsc, successive calls
must have a difference that accurately reflects the number of cycles between two
calls. This is referred to as “relative accuracy” cf. [68], meaning that any measure-
ment through rdtsc is accurate with regard to the previous call/measurement.

Time Is Money, Friend! 19

(a) (b) (c)

Fig. 5: SR of Goblin against (a) 128-bit SUM, (b) 128-bit Hamming, and (b)
128-bit MULT for a range of 10-100, 000 randomly chosen inputs (first to last
row: JustGarble [42], Obliv-C [95], TinyGarble [86] with free-XOR, and with
half-gate optimizations).

The relative accuracy does not pose any constraint to the application since they
must tolerate some variations as rdtsc instruction’s number of cycles can vary
due to the state of caches, DVFS, scheduling, etc. [68]. Similarly, Goblin is re-
silient against variations as long as the variation is smaller than the difference
between the number of cycles spent on garbling the XOR and non-XOR gates
(in order of tens of thousands of cycles).

Limited resolution of rdtsc on some platforms. As introduced in Sec-
tion 4.2, rdtsc can have various resolutions depending on the platform. In the
same vein, as explained about the relative accuracy of the time read using rdtsc,
the resolution cannot impact the effectiveness of Goblin. The point is that as
long as the XOR gates can be distinguished from non-XOR ones, Goblin can
successfully extract the garbler’s input. For this purpose, it is necessary to have
at least a resolution comparable to the number of cycles taken to garble the XOR
gates (couples of tens cycles, e.g., 80 cycles as observed in our experiments).

20 M. Hashemi et al.

6.1 Potential Countermeasures

To come up with a countermeasure against Goblin, one should first determine
factors contributing to Goblin’s success. Here we describe these factors and em-
phasize that if they are considered and encountered when proposing a framework,
the likelihood of Goblin’s success can decrease.

The coding style of the framework. Frameworks like EMP-toolkit [67],
Obliv-C [95], and ABY [18] securely tackle the vulnerability in unbalanced IF
statements by generating both 0 and 1 garbler’s tokens, although it’s less opti-
mized than one-token-per-input methods in TinyGarble [87] and JustGarble [42].

Memory management. Assigning R to a fixed memory address reduces mem-
ory access time. Usage of registers can lead to overwrites, forcing the CPU to
fetch R from RAM and causing time variation in token generation. Most frame-
works like EMP-toolkit [67], Obliv-C [95], JustGarble [42], and ABY [18] fixed
R’s address, but TinyGarble [87] used registers in token generations, leading to
possible overwrites when using JG.

Can restricting access stop Goblin? Restricting high-resolution timer access
can deter the Goblin attack, but also negatively impact certain unprivileged
applications like adb, cargo, Docker [59]. It’s noted that an attacker could still
use a counting thread to establish a timestamp [60,84,61], which could even have
higher resolution than the rdtsc instruction on Intel CPUs [84].

7 Conclusion

Nowadays, several applications, including multi-party computation, rely on the
efficient implementations of GC.To achieve this efficiency, many optimizations,
such as free-XOR and half-gates, have been presented to reduce the cost of
garbling progress. This paper has introduced Goblin, the first machine learning-
assisted, non-profiling, single-trace timing SCA against GC frameworks. Specifi-
cally, Goblin targets frameworks using free-XOR and half-gate by collecting and
analyzing the time stamps of the garbling process by reading the time stamp
counter, i.e., calling rdtsc. In doing so, the garbler’s inputs that should have
been kept secure can be disclosed without prior knowledge about the circuit be-
ing garbled. In this regard, Goblin can be run in parallel to the garbling frame-
work without requiring any privileged access. Goblin has also been proven to
be scalable when targeting large circuits. We have studied several cases, includ-
ing various GC frameworks, benchmark functions, and the number of garbler’s
input bits. Under different scenarios, Goblin disclosed the garbler’s input with
high probability. Further, we have discussed Goblin’s success factors and coun-
termeasures against that.

Time Is Money, Friend! 21

8 Responsible Disclosure

Corresponding authors and/or owners of GitHub repositories of the affected
frameworks [86,95,42] were contacted about their GC framework vulnerabilities
presented in this paper.

9 Acknowledgments

This work has been supported partially by Semiconductor Research Corporation
(SRC) under Task IDs 2991.001 and 2992.001 and NSF under award number
2138420.

References

1. Acıiçmez, O., Koç, Ç.K.: Trace-driven cache attacks on AES (short paper). In:
International Conference on Information and Communications Security. pp. 112–
121. Springer (2006)

2. Applebaum, B.: Key-dependent message security: Generic amplification and com-
pleteness. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 527–546. Springer (2011)

3. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message
security. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 423–444. Springer (2010)

4. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: 2013 IEEE Symp. on Security and Privacy. pp. 478–492.
IEEE (2013)

5. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Proc.
of the 2012 ACM Conf. on Computer and Comm. security. pp. 784–796 (2012)

6. Benhamouda, F., Lin, H.: K-round multiparty computation from k-round oblivious
transfer via garbled interactive circuits. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. pp. 500–532. Springer
(2018)

7. Bernstein, D.J.: Cache-timing attacks on AES (2005)
8. Bogetoft, P., Christensen, D.L., Damgård, I., Geisler, M., Jakobsen, T., Krøigaard,

M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., et al.: Secure multiparty
computation goes live. In: International Conference on Financial Cryptography
and Data Security. pp. 325–343. Springer (2009)

9. Brakerski, Z., Yuen, H.: Quantum garbled circuits. In: Proceedings of the 54th
Annual ACM SIGACT Symposium on Theory of Computing. pp. 804–817 (2022)

10. Carter, H., Lever, C., Traynor, P.: Whitewash: Outsourcing garbled circuit gener-
ation for mobile devices. In: Proceedings of the 30th Annual Computer Security
Applications Conference. pp. 266–275 (2014)

11. Carter, H., Mood, B., Traynor, P., Butler, K.: Outsourcing secure two-party com-
putation as a black box. Security and Communication Networks 9(14), 2261–2275
(2016)

12. Chen, D., Chen, W., Chen, J., Zheng, P., Huang, J.: Edge detection and image
segmentation on encrypted image with homomorphic encryption and garbled cir-
cuit. In: 2018 IEEE International Conference on Multimedia and Expo (ICME).
pp. 1–6. IEEE (2018)

22 M. Hashemi et al.

13. Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.S.: On the security of the “free-xor”
technique. In: Theory of Cryptography Conference. pp. 39–53. Springer (2012)

14. Cock, M.d., Dowsley, R., Nascimento, A.C., Newman, S.C.: Fast, privacy preserv-
ing linear regression over distributed datasets based on pre-distributed data. In:
Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security. pp.
3–14 (2015)

15. Conti, M., Crane, S., Davi, L., Franz, M., Larsen, P., Negro, M., Liebchen, C.,
Qunaibit, M., Sadeghi, A.R.: Losing control: On the effectiveness of control-flow
integrity under stack attacks. In: Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security. pp. 952–963 (2015)

16. Damgård, I., Ishai, Y.: Constant-round multiparty computation using a black-
box pseudorandom generator. In: Annual International Cryptology Conference.
pp. 378–394. Springer (2005)

17. Damgård, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable multiparty
computation with nearly optimal work and resilience. In: Annual International
Cryptology Conference. pp. 241–261. Springer (2008)

18. Demmler, D., Schneider, T., Zohner, M.: Aby-a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

19. Doerner, J., Evans, D., Shelat, A.: Secure stable matching at scale. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
pp. 1602–1613 (2016)

20. Easdon, C., Schwarz, M., Schwarzl, M., Gruss, D.: Rapid prototyping for microar-
chitectural attacks. In: USENIX Security Symposium (2022)

21. Feige, U., Killian, J., Naor, M.: A minimal model for secure computation. In:
Proceedings of the twenty-sixth annual ACM symposium on Theory of computing.
pp. 554–563 (1994)

22. Garg, S., Srinivasan, A.: Garbled protocols and two-round mpc from bilinear maps.
In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS). pp. 588–599. IEEE (2017)

23. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Annual International Conference on the Theory and Applications
of Cryptographic Techniques. pp. 468–499. Springer (2018)

24. Gascón, A., Schoppmann, P., Balle, B., Raykova, M., Doerner, J., Zahur, S.,
Evans, D.: Privacy-preserving distributed linear regression on high-dimensional
data. Proc. Priv. Enhancing Technol. 2017(4), 345–364 (2017)

25. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. Journal of Cryptographic
Engineering 8, 1–27 (2018)

26. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and
rerandomizable yao circuits. In: Annual Cryptology Conference. pp. 155–172.
Springer (2010)

27. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable
garbled circuits and succinct functional encryption. In: Proceedings of the forty-
fifth annual ACM symposium on Theory of computing. pp. 555–564 (2013)

28. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Annual Cryptology Conference. pp.
162–179. Springer (2012)

29. Gras, B., Razavi, K., Bos, H., Giuffrida, C.: Translation leak-aside buffer: Defeating
cache side-channel protections with {TLB} attacks. In: 27th USENIX Security
Symposium (USENIX Security 18). pp. 955–972 (2018)

Time Is Money, Friend! 23

30. Groce, A., Ledger, A., Malozemoff, A.J., Yerukhimovich, A.: Compgc: Efficient of-
fline/online semi-honest two-party computation. Cryptology ePrint Archive (2016)

31. Gruss, D., Maurice, C., Mangard, S.: Rowhammer. js: A remote software-induced
fault attack in javascript. In: Detection of Intrusions and Malware, and Vulner-
ability Assessment: 13th International Conference, DIMVA 2016, San Sebastián,
Spain, July 7-8, 2016, Proceedings 13. pp. 300–321. Springer (2016)

32. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+ flush: a fast and stealthy
cache attack. In: Detection of Intrusions and Malware, and Vulnerability Assess-
ment: 13th International Conference, DIMVA 2016, San Sebastián, Spain, July 7-8,
2016, Proceedings 13. pp. 279–299. Springer (2016)

33. Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast garbling of circuits under standard
assumptions. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. pp. 567–578 (2015)

34. Guo, C., Katz, J., Wang, X., Weng, C., Yu, Y.: Better concrete security for half-
gates garbling (in the multi-instance setting). In: Annual International Cryptology
Conference. pp. 793–822. Springer (2020)

35. Guo, C., Katz, J., Wang, X., Yu, Y.: Efficient and secure multiparty computation
from fixed-key block ciphers. In: 2020 IEEE Symposium on Security and Privacy
(SP). pp. 825–841. IEEE (2020)

36. Gupta, T., Fingler, H., Alvisi, L., Walfish, M.: Pretzel: Email encryption and
provider-supplied functions are compatible. In: Proceedings of the Conference of
the ACM Special Interest Group on Data Communication. pp. 169–182 (2017)

37. Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H.: The Elements of Sta-
tistical Learning: Data Mining, Inference, and Prediction, vol. 2. Springer (2009)

38. Hastings, M., Hemenway, B., Noble, D., Zdancewic, S.: Sok: General purpose com-
pilers for secure multi-party computation. In: 2019 IEEE symposium on security
and privacy (SP). pp. 1220–1237. IEEE (2019)

39. Hettwer, B., Gehrer, S., Güneysu, T.: Applications of machine learning techniques
in side-channel attacks: a survey. J. of Cryptographic Engineering 10(2), 135–162
(2020)

40. Intel Corporation: Intel Core i7 Processors. [Online]https://www.intel.com/
content/www/us/en/products/details/processors/core/i7.html [Accessed:
Jan.30, 2023] (2017)

41. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a minute! a fast, cross-vm
attack on aes. In: Research in Attacks, Intrusions and Defenses: 17th International
Symposium, RAID 2014, Gothenburg, Sweden, September 17-19, 2014. Proceed-
ings 17. pp. 299–319. Springer (2014)

42. irdan: Justgarble framework. [Online]https://github.com/irdan/justGarble
[Accessed Jan.30, 2023] (2014)

43. Jagadeesh, K.A., Wu, D.J., Birgmeier, J.A., Boneh, D., Bejerano, G.: Deriving
genomic diagnoses without revealing patient genomes. Science 357(6352), 692–695
(2017)

44. Jancar, J.: The state of tooling for verifying constant-timeness of cryptographic im-
plementations. [Online]https://neuromancer.sk/article/26 [Accessed: Feb.7,
2023] (2021)

45. Jancar, J., Fourné, M., Braga, D.D.A., Sabt, M., Schwabe, P., Barthe, G., Fouque,
P.A., Acar, Y.: “they’re not that hard to mitigate”: What cryptographic library
developers think about timing attacks. In: 2022 IEEE Symposium on Security and
Privacy (SP). pp. 632–649. IEEE (2022)

46. Jayaraman, B., Li, H., Evans, D.: Decentralized certificate authorities. arXiv
preprint arXiv:1706.03370 (2017)

[Online] https://www.intel.com/content/www/us/en/products/details/processors/core/i7.html
[Online] https://www.intel.com/content/www/us/en/products/details/processors/core/i7.html
[Online] https://github.com/irdan/justGarble
[Online] https://neuromancer.sk/article/26

24 M. Hashemi et al.

47. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: {GAZELLE}: A low latency
framework for secure neural network inference. In: 27th USENIX Security Symp.
(USENIX Security 18). pp. 1651–1669 (2018)

48. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.
Cryptology ePrint Archive (2011)

49. Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set intersec-
tion to billion-element sets. In: Financial Cryptography and Data Security: 18th
International Conference, FC 2014, Christ Church, Barbados, March 3-7, 2014,
Revised Selected Papers 18. pp. 195–215. Springer (2014)

50. Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure func-
tion evaluation. In: Proceedings of the 2012 ACM conference on Computer and
communications security. pp. 797–808 (2012)

51. Kamara, S., Mohassel, P., Riva, B.: Salus: A system for server-aided secure function
evaluation. Cryptology ePrint Archive (2012)

52. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Annual International Cryptology Conference. pp. 104–113.
Springer (1996)

53. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free xor gates and ap-
plications. In: Intrl. Colloquium on Automata, Languages, and Programming. pp.
486–498. Springer (2008)

54. Lai, C.H., Zhao, J., Yang, C.L.: Leave the cache hierarchy operation as it is: A
new persistent memory accelerating approach. In: Proceedings of the 54th Annual
Design Automation Conference 2017. pp. 1–6 (2017)

55. Levi, I., Hazay, C.: Garbled-circuits from an sca perspective: Free xor can be quite
expensive... Cryptology ePrint Archive (2022)

56. Lindell, Y., Pinkas, B.: A proof of yao’s protocol for secure two-party computa-
tion. eccc report tr04-063. In: Electronic Colloquium on Computational Complexity
(ECCC) (2004)

57. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In: Annual Intrl. Conf. on the theory and
applications of cryptographic techniques. pp. 52–78. Springer (2007)

58. Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party compu-
tation. J. of cryptology 22(2), 161–188 (2009)

59. Lipp, M., Gruss, D., Schwarz, M.: Amd prefetch attacks through power and time.
In: USENIX Security Symposium (2022)

60. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: {ARMageddon}:
Cache attacks on mobile devices. In: 25th USENIX Security Symposium (USENIX
Security 16). pp. 549–564 (2016)

61. Lipp, M., Hadžić, V., Schwarz, M., Perais, A., Maurice, C., Gruss, D.: Take a way:
Exploring the security implications of amd’s cache way predictors. In: Proceedings
of the 15th ACM Asia Conference on Computer and Communications Security. pp.
813–825 (2020)

62. Lipp, M., Kogler, A., Oswald, D., Schwarz, M., Easdon, C., Canella, C., Gruss,
D.: Platypus: Software-based power side-channel attacks on x86. In: 2021 IEEE
Symposium on Security and Privacy (SP). pp. 355–371. IEEE (2021)

63. Liu, F., Ge, Q., Yarom, Y., Mckeen, F., Rozas, C., Heiser, G., Lee, R.B.: Catalyst:
Defeating last-level cache side channel attacks in cloud computing. In: 2016 IEEE
international symposium on high performance computer architecture (HPCA). pp.
406–418. IEEE (2016)

Time Is Money, Friend! 25

64. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: 2015 IEEE symposium on security and privacy. pp. 605–
622. IEEE (2015)

65. Lou, X., Zhang, T., Jiang, J., Zhang, Y.: A survey of microarchitectural side-
channel vulnerabilities, attacks, and defenses in cryptography. ACM Computing
Surveys (CSUR) 54(6), 1–37 (2021)

66. Lyu, Y., Mishra, P.: A survey of side-channel attacks on caches and countermea-
sures. Journal of Hardware and Systems Security 2(1), 33–50 (2018)

67. Malozemoff, A., Wang, X., Katz, J.: Emp-toolkit framework. [Online]https://
github.com/emp-toolkit [Accessed Jan.30, 2023] (2022)

68. Martin, R., Demme, J., Sethumadhavan, S.: Timewarp: Rethinking timekeeping
and performance monitoring mechanisms to mitigate side-channel attacks. In: 2012
39th Annual International Symposium on Computer Architecture (ISCA). pp. 118–
129. IEEE (2012)

69. Moghimi, A., Irazoqui, G., Eisenbarth, T.: Cachezoom: How sgx amplifies the
power of cache attacks. In: Cryptographic Hardware and Embedded Systems–
CHES 2017: 19th International Conference, Taipei, Taiwan, September 25-28, 2017,
Proceedings. pp. 69–90. Springer (2017)

70. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:
The garbled circuit approach. In: Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security. pp. 591–602 (2015)

71. Mohassel, P., Zhang, Y.: Secureml: A system for scalable privacy-preserving ma-
chine learning. In: 2017 IEEE symposium on security and privacy (SP). pp. 19–38.
IEEE (2017)

72. Mowery, K., Keelveedhi, S., Shacham, H.: Are AES x86 cache timing attacks still
feasible? In: Proceedings of the 2012 ACM Workshop on Cloud computing security
workshop. pp. 19–24 (2012)

73. Mushtaq, M., Mukhtar, M.A., Lapotre, V., Bhatti, M.K., Gogniat, G.: Winter is
here! a decade of cache-based side-channel attacks, detection & mitigation for RSA.
Information Systems 92, 101524 (2020)

74. Nakamoto, A.: W-shield: Protection against cryptocurrency wallet credential steal-
ing. In: Workshop on Security and Privacy in E-Commerce 2018. pp. 71–107 (2018)

75. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-
preserving ridge regression on hundreds of millions of records. In: 2013 IEEE sym-
posium on security and privacy. pp. 334–348. IEEE (2013)

76. Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Maliciously
circuit-private FHE. In: Annual Cryptology Conference. pp. 536–553. Springer
(2014)

77. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the case
of AES. In: Cryptographers’ track at the RSA conference. pp. 1–20. Springer (2006)

78. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. Cryp-
tology ePrint Archive (2002)

79. Percival, C.: Cache missing for fun and profit (2005)
80. Sahai, A., Seyalioglu, H.: Worry-free encryption: Functional encryption with public

keys. In: Proceedings of the 17th ACM conference on Computer and communica-
tions security. pp. 463–472 (2010)

81. Saxena, A., Panda, B.: Dabangg: A case for noise resilient flush-based cache at-
tacks. In: 2022 IEEE Security and Privacy Workshops (SPW). pp. 323–334. IEEE
(2022)

82. Schneider, T.: Practical secure function evaluation. In: Informatiktage. pp. 37–40
(2008)

[Online] https://github.com/emp-toolkit
[Online] https://github.com/emp-toolkit

26 M. Hashemi et al.

83. Schwarz, M., Gruss, D., Lipp, M., Maurice, C., Schuster, T., Fogh, A., Mangard,
S.: Automated detection, exploitation, and elimination of double-fetch bugs using
modern cpu features. In: Proceedings of the 2018 on Asia Conference on Computer
and Communications Security. pp. 587–600 (2018)

84. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard exten-
sion: Using SGX to conceal cache attacks. In: International Conference on Detec-
tion of Intrusions and Malware, and Vulnerability Assessment. pp. 3–24. Springer
(2017)

85. Sherali, H.D., Tuncbilek, C.H.: A squared-euclidean distance location-allocation
problem. Naval Research Logistics (NRL) 39(4), 447–469 (1992)

86. Songhori, E., Siam, H., Riazi, S.: Tinygarble framework. [Online]https://
github.com/esonghori/TinyGarble [Accessed Jan.30, 2023] (2019)

87. Songhori, E.M., Hussain, S.U., Sadeghi, A.R., Schneider, T., Koushanfar, F.: Tiny-
garble: Highly compressed and scalable sequential garbled circuits. In: 2015 IEEE
Symp. on Security and Privacy. pp. 411–428. IEEE (2015)

88. Standaert, F.X., Malkin, T.G., Yung, M.: A unified framework for the analysis
of side-channel key recovery attacks. In: Annual Intrl. Conf. on the Theory and
Applications of Cryptographic Techniques. pp. 443–461. Springer (2009)

89. Tian, L., Jayaraman, B., Gu, Q., Evans, D.: Aggregating private sparse learning
models using multi-party computation. In: NIPS Workshop on Private Multi-Party
Machine Learning (2016)

90. Vattikonda, B.C., Das, S., Shacham, H.: Eliminating fine grained timers in xen.
In: Proceedings of the 3rd ACM workshop on Cloud computing security workshop.
pp. 41–46 (2011)

91. Whitnall, C., Oswald, E.: Robust profiling for DPA-style attacks. In: International
Workshop on Cryptographic Hardware and Embedded Systems. pp. 3–21. Springer
(2015)

92. Wu, M., Guo, S., Schaumont, P., Wang, C.: Eliminating timing side-channel leaks
using program repair. In: Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis. pp. 15–26 (2018)

93. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symp. on
Foundations of Computer Science (sfcs 1986). pp. 162–167. IEEE (1986)

94. Yarom, Y., Falkner, K.: Flush+ reload: A high resolution, low noise, l3 cache side-
channel attack. In: 23rd {USENIX} Security Symposium ({USENIX} Security 14).
pp. 719–732 (2014)

95. Zahur, S., Kerneis, G., Necula, G.: Obliv-C secure computation compiler. [Online]
https://github.com/samee/obliv-c [Accessed Feb.2, 2023] (2018)

96. Zahur, S., Evans, D.: Obliv-C: A language for extensible data-oblivious computa-
tion. Cryptology ePrint Archive (2015)

97. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques.
pp. 220–250. Springer (2015)

98. Zhao, L., Iyer, R., Makineni, S., Newell, D., Cheng, L.: Ncid: a non-inclusive cache,
inclusive directory architecture for flexible and efficient cache hierarchies. In: Pro-
ceedings of the 7th ACM international conference on Computing frontiers. pp.
121–130 (2010)

Appendix A
Table 3 contains details of leaky IF conditions in each function of TinyGar-

ble [86], EMP-toolkit [67], Obliv-C [96], and ABY [18].

[Online]https://github.com/esonghori/TinyGarble
[Online]https://github.com/esonghori/TinyGarble
[Online] https://github.com/samee/obliv-c
[Online] https://github.com/samee/obliv-c

Time Is Money, Friend! 27

Table 2: Type of the gates in the input layer of the AES and 256-bit MULT
modules.

AES 256-bit MULT

Percentage (%) Count Percentage (%) Count

AND gates in input layer 75 96 50 256

XOR gates in input layer 25 32 50 256

(a) (b)

Fig. 6: SR of Goblin computed separately for AND and XOR input gates of 128-
AES, 256-bit MULT, 128-bit Hamming, 128-bit SUM, and 288-bit SHA modules
with (a) free-XOR and (b) half-gate optimization.

Appendix B
To investigate the effects of the gate types in the input layer on the SR, we

counted the number of XOR and AND gates in the input layer of the AES and
256-bit MULT since the results for these two benchmark functions vary largely
as shown in Figure 3. Table 2 contains the detail about the type of the gates
in the AES and 256-bit MULT benchmark functions. Moreover, the category
of AND gate contains AND/NAND, OR/NOR, ANDN, ORN, NANDN, and
NORN gates, and the category of XOR gate includes NV, XOR, and XNOR
gates as described in 4.3. It is observable that the AND gates are dominant in
the AES input layer (75% input layer gates) while the portions of XOR and AND
gates are equal in the input layer of 256-bit MULT. This can explain why the
results for these two benchmark functions are different. In fact, it is because of
the fact that it is more challenging to determine the inputs given to XOR gates.
To further analyze the reason behind this, we have separately calculated the SR
of Goblin against applied against AND and XOR gates. Figure 6 illustrates the
results for launching Goblin against 128-AES, 256-bit MULT, 128-bit Hamming,
128-bit SUM, and 288-bit SHA modules, similar to Figure 3, where the results
for AND and XOR gates are combined. As observable in Figure 6, Goblin’s
average SR when launching against AND gates are always close to 100% while
its average SR has a range between 100% and 65% when launching against XOR
gates for the benchmark functions. This is aligned with the results presented in

28 M. Hashemi et al.

(a) (b)

Fig. 7: SR of Goblin for 1000 randomly chosen inputs given to GC garbled by
TinyGarble [87] when (a) only free-XOR or (b) half-gate optimization is enabled
and JG is disabled.

(a) (b)

Fig. 8: SR of Goblin against MULT, SUM, and Hamming benchmark functions
for a range of inputs garbled by TinyGarble [86] when (a) only free-XOR opti-
mization, (b) half-gate protocol is enabled, and JG is disabled.

Figure 3. In that figure, the difference between the mean values of CPU cycles
collected for inputs “0” and “1” is larger for AND gates in comparison to XOR
gates.

Appendix C
To study the impact of an implementation in which not all timing side-

channel vulnerability is not considered, we have launched Goblin against Tiny-
Garble when the JG has been disabled. Figure 7 illustrates the results of Goblin
against TinyGarble when JG is disabled. It is observable in Figure 7 that even
without JG, Goblin can reveal the garbler’s input with an average SR average
of 95% or higher, slightly lower than the case when JG is enabled. To fur-
ther investigate this, we launched Goblin against MULT, SUM, and Hamming
benchmarks with input ranges between 128 and 1024 bits when JG was disabled.
Figure 8 shows the results of launching Goblin against MULT, SUM, and Ham-

Time Is Money, Friend! 29

(a) (b) (c)

Fig. 9: SR of Goblin against 128-bit (a) SUM, (b) Hamming, and (c) MULT.
CPU cycle traces captured from 10-100, 000 randomly chosen inputs when JG
is disabled. (Top: TinyGarble [86] with only free-XOR, Bottom: with half-gate
optimization).

ming benchmark functions for a range of inputs garbled by TinyGarble when
(a) only free-XOR optimization, (b) half-gate protocol is enabled, and JG is dis-
abled. Same as results in Sec 5.2, one can observe a similar pattern of increasing
SR of Goblin according to the increased size of benchmarks input. As another
part of our investigations, we have launched Goblin against MULT, SUM, and
Hamming modules without JG. Figure 9 illustrates SR of Goblin against 128-
bit (a) SUM, (b) Hamming, and (b) MULT benchmarks for a range of CPU
cycle traces captured from 10 − 100, 000 randomly chosen inputs when JG is
disabled. These results prove that Goblin can reveal garbler information from
an insecurely implemented framework even without the help of JG.

Appendix D
The JG, as in Algorithm 1, works as follows. The iteration’s parameter n

determines how many cell indexes in the array are summed and updates another
array cell. This procedure repeats until it reaches the index of (Size-1). At this
point, JG produces new random numbers and repeats the process indefinitely,
resulting in cache disruption and potentially evicting critical data, like the global
parameter R used for free-XOR [53]/Half-gates [97] optimizations.

30 M. Hashemi et al.

Algorithm 1 Junk Generator pseudo code
Require: Size = size of cache/64
Ensure: Junk ← Array[size] and n← 1

function JG(n)
while User Interrupt do

if n == 1 then
Seed← t_time
Junk[0...3]← rand(Seed)
n← n + 1 ▷ Initiate recursive algorithm.
return JG(2)

else if n == (Size− 1) then
return JG(1)

else if n ̸= (Size− 1) and n ̸= 1 then
i← n
Loop over i ≤ (Size− n− 1) :

Junk[i + n + 1]← Junk[i] + Junk[n]
n← n + 1
return JG(2)

end if
end while

end function

Time Is Money, Friend! 31

Table 3: A detailed report of leaky IF conditions (IF) of every function call
in JustGarble [4], TinyGarble [86] with half-gate and free-XOR optimization,
EMP-toolkit [67], Obliv-C [96], and ABY [18].

Framework Function IF Framework Function IF

TinyGarble
(half-gate) [86]

GarbledLowMem 0

JustGarble [42]

createNewWire 0

GarbledGate 2 TRUNCATE 0

ParseInitInputStr 0 TRUNC_COPY 0

RemoveGarbledCircuit 0 getNextId 0

HalfGarbleGateKnownValue 0 getFreshId 0

NumOfNonXor 0 getNextWire 0

HalfGarbleGate 2 createEmptyGarbledCircuit 0

InvertSecretValue 0 removeGarbledCircuit 0

XorSecret 0 startBuilding 0

OutputBN2StrLowMem 0 finishBuilding 2

RandomBlock 0 extractLabels 0

Total 4 garbleCircuit 8

TinyGarble
(free-XOR) [86]

GarbledLowMem 2 blockEqual 0

GarbledGate 5 mapOutputs 0

ParseInitInputStr 0 createInputLabels 0

RemoveGarbledCircuit 0 randomBlock 0

NumOfNonXor 0 xorBlocks 0

XorSecret 0 findGatesWithMatchingInputs 1

OutputBN2StrLowMem 0 Total 11

RandomBlock 0

EMP-toolkit [67]

HalfGateGen 0

Total 7 parse_party_and_port 0

Obliv-C [96]

yaoGenerateGate 3 NetIO 0

yaoGenrRevealOblivBits 0 Total 0

yaoGenrFeedOblivInputs 1

ABY [18]

YaoSharingInit 0

yaoKeyNewPair 0 BooleanCircuit 0

yaoSetBitAnd 0 init_aes_key 0

yaoSetBitOr 0 ceil_divide 0

yaoSetBitXor 0 clean_aes_key 0

yaoFlipBit 0 EncryptWire 0

yaoSetHashMask 0 EncryptWireGRR3 0

yaoSetHalfMask 0 PrintKey 0

yaoSetHalfMask2 0 PrintPerformanceStatistics 0

yaoKeyDouble 0 XOR_DOUBLE_B 0

Total 4 Total 0

	 Time Is Money, Friend! Timing Side-channel Attack against Garbled Circuit Constructions

