
Efficient Computation of (2n, 2n)-Isogenies

Sabrina Kunzweiler

Ruhr-Universität Bochum, Germany
sabrina.kunzweiler@rub.de

Abstract

Elliptic curves are abelian varieties of dimension one; the two-dimensional analogue are abelian
surfaces. In this work we present an algorithm to compute (2n, 2n)-isogenies of abelian surfaces de-
fined over finite fields. These isogenies are the natural generalization of 2n-isogenies of elliptic curves.
Our algorithm is designed to be used in higher-dimensional variants of isogeny-based cryptographic
protocols such as G2SIDH which is a genus-2 version of the Supersingular Isogeny Diffie-Hellman
(SIDH) key exchange. We analyze the performance of our algorithm in cryptographically relevant
settings and show that it significantly improves upon previous implementations.

Different results deduced in the development of our algorithm are also interesting beyond this
application. For instance, we derive a formula for the evaluation of (2, 2)-isogenies. Given an element
in Mumford coordinates, this formula outputs the (unreduced) Mumford coordinates of its image
under the (2, 2)-isogeny. Furthermore, we study 4-torsion points on Jacobians of hyperelliptic curves
and explain how to extract square-roots of coefficients of 2-torsion points from these points.

1 Introduction

In the past years, a lot of progress has been made in the efficient computation of elliptic curve isogenies.
The popularity of this research topic originates in the introduction of the isogeny-based cryptographic
primitives SIDH [9] and CSIDH [2] which are two promising candidates for post-quantum cryptography.
Both protocols describe a Diffie-Hellman key exchange, where the public keys are elliptic curves and the
secret keys describe isogenies. For the generation of their public keys as well as for the computation
of the shared key, both parties need to compute an isogeny of exponential (but smooth) degree. A
major difference between the two protocols is that CSIDH relies on a commutative group action similar
to the previously developed but less efficient CRS scheme [8, 18], whereas SIDH is structurally more
similar to the isogeny-based CGL hash function [3]. One great advantage of both protocols is that public
key sizes are very small in contrast to other post-quantum primitives. Moreover the structural similar-
ity to group-based Diffie-Hellman key exchange, allows to translate existing schemes into the quantum
world more easily. However in terms of running time, other candidates are currently in the lead. To
improve the efficiency of isogeny-based protocols, it is essential to further optimize isogeny computations.

Generalization of elliptic curve isogenies A generalization of pre-quantum Elliptic Curve Cryptog-
raphy (ECC), is Hyperelliptic Curve Cryptography (HECC), where the group law on the Jacobian of a
hyperelliptic curve is considered. While the group law computation on such Jacobians is more involved
than on elliptic curves, it allows to use a smaller prime field than in the elliptic curve case. It is natural
to ask, whether cryptographic protocols based on isogenies of elliptic curves can also be generalized to
hyperelliptic curves. One such proposal is G2SIDH [12], which is a generalization of the SIDH scheme
to Jacobians of hyperelliptic curves of genus 2. As expected, using genus-2 curves allows to work with
smaller finite fields, here even just one third of the bitlength compared to SIDH. While this allows for
faster prime field arithmetic, the computation of isogenies is more difficult in genus 2. The authors of
[12] provide a non-optimized proof-of-concept implementation, and at the current state G2SIDH is not
competitive with SIDH in terms of running time. The main open problem at this point is to provide
efficient methods for computing (2n, 2n)- and (3m, 3m)-isogenies for integers m,n linear in the size of the

1

security parameter.

(2n, 2n)-isogenies In this work, we focus on the computation of (2n, 2n)-isogenies, which are the natural
analogues of 2n-isogenies of elliptic curves. Let J be the Jacobian of a hyperelliptic curve C of genus
2. Further let J [2n] denote the 2n-torsion of J , which is a free Z/2nZ-module of rank 4. Similar to
the elliptic curve case, we will consider isogenies that are defined by subgroups of J [2n]. However, these
subgroups are not going to be cyclic and to describe them it is necessary to consider the Weil pairing,
which is an alternating, bilinear pairing e2n : J [2n]×J [2n]→ µ2n . Here µ2n is the group of 2n-th roots
of unity.

A (2n, 2n)-isogeny is an isogeny φ : J → J ′, where G := ker(φ) ⊂ J [2n] satisfies G ' Z/2nZ×Z/2nZ,
and the Weil-paring restricts trivially to G, that is e2n |G ≡ 1. In this case, we say that G is a (2n, 2n)-
group. The codomain J ′ is uniquely determined up to isomorphism and it is an abelian surface. Usually
this means that it is the Jacobian of another genus-2 curve C′.1 Vice versa any (2n, 2n)-subgroup of J
defines a (2n, 2n)-isogeny. In total, the Jacobian of a genus-2 curve has roughly 23n different (2n, 2n)-
subgroups. This compares very favorably to the case of elliptic curves, where there only exist about 2n

different 2n-groups for any elliptic curve.
In G2SIDH and similar applications, an algorithm for computing isogenies should take the description

of the (2n, 2n)-group G ⊂ J and possibly some further elements J1, . . . , Jk ∈ J as input. And it should
output a curve C′ and elements J ′1, . . . , J

′
k, such that there is an isogeny φ : J → J (C′) with kernel G

and J ′i = φ(Ji) for i ∈ {1, . . . , k}. Such an algorithm can also be applied to the genus-2 version of the
CGL hash function [21, 1], although it is not necessary to be able to compute the image points J ′1, . . . , J

′
k

for this application.

Contributions

Our main contribution is an efficient algorithm for computing (2n, 2n)-isogenies. The computation of a
(2n, 2n)-isogeny may be decomposed into n computations of (2, 2)-isogenies. Consequently one of the
main ingredients to our algorithm, is an efficient formula for the computation of (2, 2)-isogenies (Theorem
4.7). By this, we mean a formula that inputs data on a (2, 2)-group G ⊂ J and some element J ∈ J ,
and outputs not only the codomain of the isogeny φ corresponding to G, but also the image point
J ′ = φ(J). For efficiency, our formula is specialized to a specific form of the kernel G. The second
important ingredient to our algorithm is a way to efficiently combine these specialized (2, 2)-isogenies in
order to obtain the desired (2n, 2n)-isogeny. This is achieved by introducing a special symplectic basis
for J [2n] (Definition 5.3) and extracting certain square-roots from the coordinates of 4-torsion elements
of J (Corollary 2.8). To make this more precise, we now explain the main steps of the algorithm.

J0 = J (C0) J1 = J (C1) J2 = J (C2) . . . Jn−1 Jn = J (Cn)

J ′0 = J (C′0) J ′1 = J (C′1) J ′n−1

φ1

∼

φ2

∼

φn

∼

φ̃1 φ̃2 φ̃n

φ

Figure 1: Sketch of our method to compute (2n, 2n)-isogenies.

Setup Let K be some finite field of characteristic greater than 3. We start with the Jacobian J0 of
a curve C0, and a K-rational (2n, 2n)-group G = 〈G1, G2〉 ⊂ J0. Our goal is to compute the isogeny
φ : J0 → Jn with kernel G. This is the top dashed arrow in Figure 1. In this setting, it is no restriction
to assume that C0 is defined by an equation of the form

C0 : y2 = (x2 − 1)(x2 −A0)(E0x
2 −B0x+ C0) with A0, B0, C0, E0 ∈ K,

1In special cases it is also possible that J ′ is not the Jacobian of a genus-2 curve, but the product of two elliptic curves.
We postpone this technicality to §3.

2

and the generators of G are given as

G1 = J1 + aJ3 + bJ4, G2 = J2 + bJ3 + cJ4, with a, b, c ∈ Z/2nZ

for some special symplectic basis B = (J1, J2, J3, J4) of J0[2n].

Isogeny computation The isogeny φ is computed as φ = φn ◦ · · · ◦ φ1, where each φi : Ji−1 → Ji is a
(2, 2)-isogeny.

In the first step, we compute the (2, 2)-isogeny φ1 : J0 → J1 with kernel Gφ1
= 〈2n−1G1, 2n−1G2〉.

To this end, we first apply a coordinate transformation so that the resulting equation is of the form

C′0 : y2 = E′0 · x (x2 −A′0x+ 1)(x2 −B′0x+ C ′0) with A′0, B
′
0, C

′
0, E

′
0 ∈ K,

and the kernel transforms into G′φ1
= 〈J(x, 0), J(x2 − A′0x + 1, 0)〉. Here J(a, b) denotes an element

of the Jacobian with Mumford representation (a, b), see Definition 2.4. Such a transformation always
exists due to the special setup chosen in the algorithm and can be computed efficiently by extracting
square roots from the 4-torsion element 2n−2G1 ∈ J0. Now, it is possible to apply the formula from
Theorem 4.7 to explicitly compute the isogeny φ̃1 : J ′0 → J1 with kernel G′φ1

. When composed with the
transformation J0 → J ′0, this yields the isogeny φ1 : J0 → J1. Via these maps, we compute the images
φ1(G1), φ1(G2), which generate a (2n−1, 2n−1)-group in J1. This completes Step 1 of the algorithm.

The isogenies φ2, . . . , φn−1 are computed in a completely analogous way. Only the very last step
φn : Jn−1 → Jn, needs to be treated separately, since in this case, one cannot extract the square-root
from a 4-torsion element. More details are given in §5.3.

Note that apart from the images of the group generators, our algorithm also allows the computation
of image points φ(J) for arbitrary elements J ∈ J0.

Relation to Previous Work

Given a (2, 2)-group G ⊂ J (C) for some genus-2 curve C, there exists a very compact formula for com-
puting the codomain curve C′ of the (2, 2)-isogeny due to Richelot [17]. Moreover the so-called Richelot
correspondence provides a way to compute images of elements J ∈ J under this isogeny. However this
method includes several steps (cf. Algorithm 1). In particular, it necessitates to compute the support

of a divisor
∑k
i=1 Pi ∈ Div(C) representing J . This not only involves several square-root computations,

but also requires to pass to a degree-2 extension of the base field in about half of the cases. While our
method for computing (2, 2)-isogenies also relies on the Richelot correspondence, our formula (Theorem
4.7) completely replaces Algorithm 1 and only requires standard additions and multiplications in the
base field.

G2SIDH implementation The computation of (2n, 2n)-isogenies in G2SIDH relies on Algorithm 1
mentioned above. To compare the efficiency of this algorithm with our new methods, we use the setup
from [12, Appendix B]. In that example p = 251332− 1 and a G2SIDH key exchange on the superspecial
isogeny graph over Fp2 is performed. In this protocol, Alice has to compute a (251, 251)-isogeny φA :
J → JA and the images φA(J1), . . . , φA(J4) of four elements J1, . . . , J4 ∈ J to generate her public key.
Then for the generation of the shared key, she has to perform another (251, 251)-isogeny computation.
This time without computing any image points. The authors report on timings of 145.7 seconds 74.8
seconds for the generation of the public key and the shared key, respectively [12]. For comparison we ran
their code on our platform, a laptop with an Intel i7-8565U processor and 16 GB of RAM with Linux
5.13.0 and Magma V2.26. The obtained timings were very much dependent on the choice of the secret
key; on average the computation of the public key took around 127 seconds and the generation of the
shared key around 72 seconds.

In comparison, our code, implementing the new algorithm the public key generation takes approxi-
mately 0.14 seconds and the computation of the shared key approximately 0.18 seconds.

Genus-2 hash functions One of the first practical protocols based on elliptic curve isogenies is the
Charles–Goren–Lauter (CGL) hash function [3]. In [21], Takashima suggests a generalization to Jacobians
of genus-2 curves. Necessary improvements concerning the security have been implemented by Castryck,
Decru and Smith in [1]. The genus-2 hash function relies on the computation of (2, 2)-isogenies. However,

3

the methods developed therein cannot be applied for computing (2n, 2n)-isogenies in a G2SIDH key
exchange, since the setup is different. In particular, for the hash function it is not necessary to compute
images of elements of J under the isogeny, but it suffices to compute the codomains of isogenies.

Nevertheless, we can compare the cost for the computation of a (2n, 2n)-isogeny chain by the hash
function with the cost in our algorithm. For that comparison, we use the setup from above. That is
we compute a (251, 251)-isogeny over Fp2 with p = 251332 − 1. This corresponds to computing the hash
value of a message with 153 bits. Using the implementation provided in [1] on our platform, this takes
approximately 0.80 seconds (as opposed to 0.14 seconds with our algorithm).

Computing elliptic curve isogenies on Kummer surfaces In [5], the author develops a method to
compute 2n-isogenies of elliptic curves defined over Fp2 as isogenies of Jacobians of hyperelliptic curves
defined over Fp. To be more precise, isogenies of the Kummer surface of the Jacobians are considered.
Indeed our methods partially resemble the findings in that work. In particular the methods in [5] involve
a formula for pushing points through (2, 2)-isogenies which is similar to Theorem 4.7. However the
formulas in [5] rely on the fact that the Jacobian J is constructed as a cover of an elliptic curve and
cannot be used to compute general (2, 2)-isogenies.

A recent preprint [4] suggests generalizations of some of the formulas from [5] to arbitrary Kummer
surfaces. However the consideration is restricted to a set of three (2, 2)-isogenies (out of 15 possible
(2, 2)-isogenies) and it seems not applicable to the general case.

Applications

Our algorithm is explicitly designed for the computation of (2n, 2n)-isogenies in cryptographic contexts.
One possible application is the genus-2 variant of SIDH presented in [12]. In that key-exchange

protocol our formula can be used for Alice’s computations (in both rounds of the protocol). However it
is necessary to slightly change the setup of G2SIDH. In particular, the publicly available 2n-torsion basis
needs to be a special symplectic basis as in Definition 5.3 and the secret key space has to be restricted to a
slightly smaller subset. Note that this setup has already been suggested in [15] and considerably simplifies
the secret key selection [15, Section 2.3]. Unfortunately, to date there is no efficient implementation for
Bob’s computations.

Another application comes from hash functions. In the genus-2 hash function in [1], the hashing
happens three bits at a time. Each three bits determine a (2, 2)-isogeny. As mentioned above, our
algorithm is faster than the genus-2 hash function when computing an n-chain of (2, 2)-isogenies, where
n ≤ log(p). This suggests an alteration of the hash function, where the message is divided into chunks
of length 3n. Then each 3n bits determine a (2n, 2n)-isogeny that can be computed by our algorithm.
However this approach requires to recompute a symplectic basis for a new curve after each 3n bits
processed. Ignoring this additional cost, our algorithm would be faster than the original approach.
Unfortunately, at the moment we do not have an efficient algorithm for the computation of a symplectic
basis and we leave this for future work. Note that in the elliptic curve setting a similar idea is followed in
[11] to accelerate the CGL hash function. In that setting it was possible to achieve significant speed-ups.

Furthermore our results can be used to build a Verifiable Delay Function (VDF). A VDF protocol
based on elliptic curve isogenies was introduced in [10]. In contrast to SIDH, it only uses isogeny
computations for one small prime `. Especially, it may be instantiated by only using 2-isogenies. Both
the setup process as well as the evaluation require the computation of the image of a point P ∈ E under
a large number of consecutive 2-isogenies. This translates naturally to the genus-2 setting, where it relies
on the computation of (2, 2)-isogenies. In principle there are two approaches. One might either use the
methods from the hash function in [1] and combine these with our formula for computing image points
(Theorem 4.7), or one might readily apply our algorithm to consecutively compute (2n, 2n)-isogenies.
Note that as in the application to genus-2 hash functions, the latter approach also necessitates an efficient
algorithm for computing symplectic bases.

Outline

We start by recalling some basic facts about the arithmetic of genus-2 curves and their Jacobians in
Section 2. In that section we also introduce two types of hyperelliptic equations that will be used
throughout the paper. Further the section contains an analysis of the 4-torsion group of the Jacobian

4

variety. Section 3 is dedicated to the theory of Richelot isogenies. In particular, we explain in detail how
to use the Richelot correspondence to compute the image of elements of the Jacobian under an isogeny. In
Section 4, we proceed to study Richelot isogenies in the setting of Type-1 equations. For this specialized
setting, we derive a compact formula to compute the image of points under a Richelot isogeny. Finally
in Section 5, we introduce (2n, 2n)-isogenies and develop an algorithm for their computation. Moreover
we compare our algorithm to other implementations of (2n, 2n)-isogenies from the literature.

Appendix A provides formulas for the special cases that were excluded in Section 4. While these
only occur with negligible probability and are not overly important from a computational perspective,
some theoretically interesting configurations occur. Appendix B contains SAGE code that can be used
to verify the formulas deduced in this work. Note that this code as well as an implementation of our
algorithm in Magma are available at [14].

Acknowledgements

I would like to thank Tanja Lange for helpful discussions and various suggestions to improve the
manuscript. Thanks also go to Yan Bo Ti for sharing his code for the computation of (2n, 2n)-isogenies
in G2SIDH.

The author was supported by the DFG under Germany’s Excellence Strategy - EXC 2092 CASA -
390781972.

2 Arithmetic of Genus-2 Curves

Let K be a finite field with characteristic p > 3. Any algebraic curve C of genus 2 is a hyperelliptic
curve. It admits an affine equation of the form y2 = f(x), where f ∈ K[x] is a square-free polynomial of
degree 5 or 6. We call this equation a hyperelliptic equation for C. The set of points on C is given by

C(K̄) = {(u, v) ∈ K̄2 | v2 = f(u)} ∪

{
{∞} if deg(f) = 5,

{∞+,∞−} if deg(f) = 6.

We refer to points of the form (u, v) ∈ C(K̄) as affine points and to ∞, respectively ∞± as the point(s)
at infinity.

The hyperelliptic involution τ : C → C is defined by sending a point P = (u, v) ∈ C(K̄) to the point
τ(P) = (u,−v) ∈ C(K̄). The point P = ∞ in the degree-5 case is fixed, while in the degree-6 case
the points ∞+,∞− are swapped by the involution. The Weierstrass points of C are the points that are
fixed under the hyperelliptic involution. Writing f = cf

∏
i(x− ri) for the factorization of f over K̄, the

Weierstrass points of C are

{(r1, 0), . . . , (r5, 0),∞} if deg(f) = 5, and {(r1, 0), . . . , (r6, 0)} if deg(f) = 6.

2.1 Equations for Genus-2 Curves

Given a hyperelliptic curve C, there exist various different hyperelliptic equations for C. Coordinate
transformations as described in the well-known proposition below allow to move from one equation to
the other.

Proposition 2.1. Let C be a hyperelliptic curve of genus 2 over K and let

y2 = f(x), y′2 = g(x′)

be two hyperelliptic equations of C. Then there exist

(
a b
c d

)
∈ GL2(K) and e ∈ K \ {0} such that

x′ =
ax+ b

cx+ d
, y′ =

ey

(cx+ d)3
.

Proof. Omitted.

5

For instance, the so-called Rosenhain form is a type of hyperelliptic equation. It is an equation for C,
where the polynomial f is monic of degree 5 with roots {0, 1, λ1, λ2, λ3}. We will work with two different
types of hyperelliptic equations that are defined as follows.

Definition 2.2. Let C be a hyperelliptic curve of genus 2 defined over K. We say that a hyperelliptic
equation has Type 1 if it is of the form

y2 = Ex (x2 −Ax+ 1) (x2 −Bx+ C) [Type 1]

and Type 2 if it is of the form

y2 = (x2 − 1)(x2 −A)(Ex2 −Bx+ C) [Type 2]

for some A,B,C,E ∈ K. 2

Clearly not every genus-2 curve admits an equation of Type 1 or 2, but it might be necessary to pass to
a field extension. Further we note that the existence of a Type-1 equation is equivalent to the existence of

a Type-2 equation over the same field. To see this, apply the coordinate change (x′, y′) =
(
x−1
x+1 ,

y
(x+1)3

)
to an equation of Type 2 and redefine the constants appropriately.

A sufficient criterion for the existence of Type-1 and Type-2 equations is provided by the following
proposition.

Proposition 2.3. Let C be a hyperelliptic curve of genus 2 defined by a hyperelliptic equation y2 = g(x)
over a finite field K. Assume that all Weierstrass points are K-rational. Then there exist hyperelliptic
equations of Type 1 and 2 for C.

Proof. Let g = cg
∏
i(x − ri). We are going to construct a coordinate transformation t that for some

α ∈ K maps four of the Weierstrass points to (0, 0),∞, (α, 0) and (1/α, 0), respectively, hence generates
a Type-1 equation. First note that the transformation

ta : x 7→ a · x− r1
x− r2

with a ∈ K \ {0}

satisfies ta(r1) = 0 and ta(r2) =∞. It remains to choose a. For that purpose consider the quantities

λi =
ri − r2
ri − r1

∈ K for i ∈ {3, 4, 5}

and choose a pair i 6= j such that λi · λj is a square in K. Note that such a pair exists since K is finite.
Finally let a ∈ K such that a2 = λi · λj . Then

ta(rj) =
a

λj
=
λi
a

=
1

ta(ri)

and the resulting hyperelliptic equation with coordinates (x′, y′) =
(
ta(x), y/(x− r2)3

)
has Type 1. As

we noted before the existence of a Type-1 equation is equivalent to the existence of a Type-2 equation.

2.2 The Jacobian Variety

Let J = J (C) be the Jacobian variety of a genus-2 curve C defined by y2 = f(x). This is an abelian
surface, in particular there exists a group structure on J . Recall that for any field extension L/K, the
group of L-rational points J (L) is isomorphic to the Picard group Pic0C(L). This means that elements
of J can be represented as equivalence classes of degree-0 divisors on C.

An effective divisor D ∈ Div(C) is in general position if it is of the form

D = P1 + · · ·+ Pd, for some Pi ∈ C(K̄) \ {∞,∞±} with Pi 6= τ(Pj) for i 6= j.

In this case d = deg(D) is the degree of D.

2The letter D is omitted on purpose since it is reserved for representing divisors.

6

Definition 2.4. Let D = P1 + · · · + Pd be a divisor in general position on C and let a, b ∈ K[x] with
the following properties:

1. a is monic of degree d,

2. deg(b) < d,

3. f ≡ b2 (mod a).

4. a(ui) = 0, b(ui) = vi, where Pi = (ui, vi) for 1 ≤ i ≤ d. If a point Pi = (ui, vi) appears with
multiplicity in D, then a has a root of the same multiplicity in ui.

Then we say that (a, b) is the Mumford representation for D.

Each divisor in general position admits a Mumford representation ([20, Lemma 4.16]). Moreover
it is shown in [13, Proposition 1] that every element [D] ∈ J has a unique representative of the form
[P1 + P2 −D∞], where

D∞ =

{
2 · ∞ if deg(f) = 5,

∞+ +∞− if deg(f) = 6,

and P1 + P2 is an effective divisor with affine part in general position. In the generic case this means
that P1 +P2 is an affine divisor in general position. But it also includes cases where one or both of P1, P2

are points at infinity. This allows us to represent elements of J using the Mumford representation of
the affine part of the effective divisor P1 + P2. To avoid ambiguity, we introduce the following notation
for a Mumford pair (a, b) as in Definition 2.4.

• D(a, b) := P1 + · · ·+ Pd ∈ Div(C).

• J(a, b) := [P1 + P2 −D∞] ∈ J (C).

The first notation D(a, b) is defined for arbitrary pairs (a, b) satisfying the properties from Definition 2.4,
while in the second notation J(a, b), we implicitly assume that deg(a) ≤ 2. The case where deg(a) = 2
is clear. If deg(a) = 1, then J (a, b) = [P1 + P2 −D∞], with P1 = D(a, b) and P2 a point at infinity. For
deg(f) = 5, this is well-defined, but for deg(f) = 6, there are two options P2 ∈ {∞±}. To simplify the
exposition, we will ignore this special case here. It only becomes relevant in one special instance of our
isogeny formulas which we treat in Appendix A.2. There, we also introduce the necessary notation.

2.3 Torsion Points

We now proceed to study the torsion points of J . Recall that for any positive integer m, the m-torsion
of J is defined as

J [m] = {J ∈ J | m · J = 0}.

For any point P0 ∈ C(K), the map

ιP0 : C ↪→ J , P 7→ [P − P0]

defines an embedding of C into J . In this section, we only consider odd-degree models of C, so that
∞ ∈ C(K). In this setting, we choose P0 = ∞ and simply write ι = ι∞. This means that for a point
P = (u, v) ∈ C(K̄), we have ι(P) = (x − u, v) in Mumford representation. And ι(∞) = (1, 0) is the
identity element in J . Note that via this embedding the hyperelliptic involution τ on C induces a map
on J which corresponds to multiplication by −1 and in particular −J(a, b) = J(a,−b) for any element
J(a, b) ∈ J .

Two-torsion points

The 2-torsion of the Jacobian of a hyperelliptic curve is well-studied and explicit representations are well
known. We apply these results to curves with Type-1 equation, i.e. we assume

C : y2 = Ex (x2 −Ax+ 1) (x2 −Bx+ C).

7

As described above, we fix the embedding

ι : C ↪→ J , P 7→ [P −∞].

The 2-torsion points on J are the divisors fixed under the action of the hyperelliptic involution τ . These
are the images of the affine Weierstrass points, as well as their sums and the identity element J(1, 0).
Consequently, the number of 2-torsion points on J is 6 +

(
5
2

)
= 16.

Let α be a root of the polynomial x2 − Ax + 1 and β, γ the roots of x2 − Bx + C. Then the set of
Weierstrass points of C is given by

{(0, 0), (α, 0), (1/α, 0), (β, 0), (γ, 0),∞} ⊂ C(K̄).

Let Pr = (r, 0). Consequently, the Mumford representations of the 2-torsion points are

ι(∞) = J(1, 0),

ι(Pr) = J(x− r, 0) for r ∈ {0, α, 1/α, β, γ},
ι(Pr) + ι(Pr′) = J((x− r)(x− r′), 0) for r 6= r′ ∈ {0, α, 1/α, β, γ}.

In general not all of these points will be defined over K. But due to the structure of Type-1 equations,
the following elements are always contained in J (K):

J(1, 0), J(x, 0), J(x2 −Ax+ 1, 0), J(x2 −Bx+ C, 0).

In fact, these four points form a subgroup of J [2], that is maximal 2-isotropic (cf. §3.1).

Four-torsion points

In [23], Zarhin provides explicit formulas for division by 2 on the Jacobian of a genus-2 curve [23,
Theorem 3.2]. We will apply this result in order to obtain explicit representations for 4-torsion points
on the Jacobian and use these to extract certain square-roots. The following statement is tailored to our
situation.

Proposition 2.5. Let C : y2 = g(x) be a degree-5 hyperelliptic equation defined over K. Let P = (r, 0) ∈
C(K̄) be a Weierstrass point of C, and denote by {r1, . . . , r4} the remaining roots of g.

Then any choice of square roots

r = (r1, . . . , r4) ∈ K̄4 with r2i = r − ri for i ∈ {1, 2, 3, 4}

defines a 4-torsion point [Dr] ∈ J (C) with the property 2 · [Dr] = ι(P). Here [Dr] = J(ar, br), where

ar = (x− r)2 − s2(r)(x− r) + s4(r),

1
√
cg
· br = (s1(r)s2(r)− s3(r))(x− r)− s1(r)s4(r)

with si the i-th elementary symmetric polynomial in r = (r1, . . . , r4) and cg is the leading coefficient of
g.

Proof. The case cg = 1 is is a direct consequence of Theorem 3.2 in [23], see also Example 3.7 in loc.cit.
Let C1 be the hyperelliptic curve defined by setting cg = 1, i.e. C1 : y2 = 1

cg
·g(x) and let [D] = J(a, b)

be a 4-torsion point on J (C1) satisfying 2 · [D] = (x, 0) ∈ J (C1). Then [D′] = J(a,
√
cg b) ∈ J(C) and a

direct calculation shows that 2 · [D′] = J(x, 0) ∈ J (C).

Below, we provide an example for the application of Proposition 2.5 to a curve given by a Type-1
equation. Together with Corollary 2.7 it illustrates an easy way to extract a square-root from a four-
torsion point. This result motivates the extraction from Corollary 2.8, which is obtained in a more
general setting and is essential for our algorithm in Section 5.

8

Example 2.6. In this example, we consider a Type-1 hyperelliptic equation y2 = Ex(x2−Ax+ 1)(x2−
Bx+C) and apply Proposition 2.5 to compute the 4-torsion points J4 ∈ J satisfying 2 ·J4 = J(x, 0). In
this case r = 0 in the above proposition and r1, r2, r3, r4 are square-roots of the negative x-coordinates
of the remaining Weierstrass points respectively. We denote

r1 =
√
−α, r2 =

√
−1/α, r3 =

√
−β, r4 =

√
−γ,

having in mind that there are in total 24 choices for these 4 square roots. Note that (r1r2)2 = 1 and
(r3r4)2 = C, hence we denote r1r2 =

√
1 and r3r4 =

√
C. The elementary symmetric polynomials si(r)

are

s1(r) =
√
−α+

√
−1/α+

√
−β +

√
−γ,

s2(r) = (
√
−α+

√
−1/α)(

√
−β +

√
−γ) +

√
1 +
√
C,

s3(r) = (
√
−α+

√
−1/α)

√
C + (

√
−β +

√
−γ)
√

1,

s4(r) =
√

1 ·
√
C.

It follows that the 4-torsion points satisfying 2 · J4 = J(x, 0), have Mumford representation J4 =
J(a, b), where

a = x2 − ((
√
−α+

√
−1/α)(

√
−β +

√
−γ) +

√
1 +
√
C) · x+

√
1 ·
√
C,

b =
(
(2
√

1−A+
√
C)(
√
−β +

√
−γ) + (2

√
C +

√
1−B)(

√
−α+

√
−1/α)

)
·
√
E x

+
√

1 ·
√
C · (
√
−α+

√
−1/α+

√
−β +

√
−γ) ·

√
E.

Corollary 2.7. Let C : y2 = Ex(x2 − Ax + 1)(x2 − Bx + C) be defined over K. Assume that J4 =
J(x2 + a1x + a0, b1x + b0) ∈ J (C)(K) is a K-rational 4-torsion point satisfying 2 · J4 = J(x, 0). Then
C = βγ is a square in K and in particular a20 = C.

Proof. This follows directly from the discussion in Example 2.6.

Similarly, we obtain the following corollary in a slightly more general setting. This result is used in
Proposition 4.1 which provides the coordinate transformation needed for the isogeny chain computations
in §5.3.

Corollary 2.8. Let C : y2 = cg x (x− β1)(x− β2)(x− γ1)(x− γ2) be a hyperelliptic equation.
If J4 = J(x2 + a1x+ a0, b1x+ b0) ∈ J (K) satisfies 2 · J4 = J(x, 0), then

√
β1β2 =

(a0b0b1 − a1b20)β1β2 + cga
2
0(a0 − β1β2)2

b20β1β2 + cga20(a0 − β1β2)(−a1 − β1 − β2)

for some choice of
√
β1β2.

Proof. Let
r1 =

√
−β1, r2 =

√
−β2, r3 =

√
−γ1, r4 =

√
−γ2

be the choice of square-roots corresponding to the 4-torsion element J4, and let s1(r) . . . , s4(r) be the
symmetric polynomials in r1, . . . , r4. One can verify algebraically (cf. Appendix B.1) that

√
−β1

√
−β2 =

s1(r)s3(r)β1β2 + (s4(r)− β1β2)2

β1β2s1(r)2 + (s4(r)− β1β2)(s2(r)− β1 − β2)
.

Using Proposition 2.5, we extract the values of si from the Mumford coordinates of J4:

s1(r) =
−b0
a0
√
cg
, s2(r) = −a1, s3(r) =

b0a1 − b1a0
a0
√
cg

, s4(r) = a0.

Substituting these expressions into the equation for
√
−β1
√
−β2 above, yields the formula in the state-

ment of the corollary.

9

3 Richelot Isogenies

Let C be a genus-2 curve with hyperelliptic equation y2 = g(x), where g(x) = cg
∏d
i=1(x− ri) and J (C)

its Jacobian. Given a group G ⊂ J (C)[2] that is maximal 2-isotropic, there exists a morphism

φ : J (C)→ A with ker(φ) = G.

The map φ is a (2, 2)-isogeny and A is an abelian surface. The abelian surface A is either the Jacobian
of a hyperelliptic curve or the product of two elliptic curves.

Isogenies of this form have been extensively studied in the literature. In particular there exist very
compact formulas to compute the codomain of a given isogeny and a correspondence that can be used
to compute the image of divisors under the isogeny. These findings are attributed to Richelot, therefore
(2, 2)-isogenies are usually called Richelot isogenies. In this section, we recall the necessary background
for the next section. For proofs we refer to [12], [19].

3.1 (2, 2)-Subgroups

A group G ⊂ J [2] is called a (2, 2)-subgroup of J if G ' Z/2Z × Z/2Z and G is isotropic with respect
to the 2-Weil paring meaning that e2 restricts trivially to G, where e2 : J [2]× J [2]→ {±1}.

Recall that J [2] is a Z/2Z-module of rank 4, therefore there are 15 non-trivial 2-torsion elements
in J . The (2, 2)-subgroups of J can be described very explicitly. Let [D] = J(a, b) ∈ J [2] and
[D′] = J(a′, b′) ∈ J [2] be elements of order 2. Then b = b′ = 0 and the roots of a and a′ are x-coordinates
of the Weierstrass points of C. One can check that e2(D,D′) = 1 if and only if a · a′ divides g and g

a·a′
is a polynomial of degree 1 or 2 (see [19, Lemma 8.1.4]). Moreover in this case [D] + [D′] = (g

cgaa′
, 0).

This property already characterizes (2, 2)-subgroups. To simplify the exposition, we define r6 =∞ and
x− r6 = 0 · x+ 1 if deg(g) = 5.3

Lemma 3.1. With the notation above, a group G ⊂ J [2] is a (2, 2)-subgroup if and only if

G = 〈J(g1, 0), J(g2, 0)〉,

where g1 = (x − rσ(1))(x − rσ(2)) and g2 = (x − rσ(3))(x − rσ(4)) for some permutation σ ∈ S6. In that
case,

G =
{
J((x− rσ(1))(x− rσ(2)), 0), J((x− rσ(3))(x− rσ(4)), 0), J((x− rσ(5))(x− rσ(6)), 0), J(1, 0)

}
.

It follows that the (2, 2)-groups correspond precisely to the partitions of the set of Weierstrass points
into subsets of size 2, hence there are precisely 15 such groups. In [19], this relation is formalized by
introducing quadratic splittings.

3.2 Richelot Correspondence

The next proposition provides information on the codomain of an isogeny defined by a (2, 2)-subgroup.

Proposition 3.2. Let G = 〈J(g1, 0), J(g2, 0)〉 be a (2, 2)-subgroup and g3 = g
g1g2

, so that g = g1 · g2 · g3.

Denote gi = gi,2x
2 + gi,1x+ gi,0 for i ∈ {1, 2, 3}. Further let φ : J → A be the isogeny with kernel G and

δ = det

g1,0 g1,1 g1,2
g2,0 g2,1 g2,2
g3,0 g3,1 g3,2

 .

1. If δ 6= 0, then A is isomorphic to the Jacobian of the genus-2 curve

C′ : y2 = h1h2h3,

where

h1 = δ−1 · (g′2g3 − g2g′3), h2 = δ−1 · (g′3g1 − g3g′1), h3 = δ−1 · (g′1g2 − g1g′2),

and g′i denotes the derivative of gi with respect to x.

3In other words r6 is the x-coordinate of the Weierstrass point at infinity and 1 is the polynomial with a root at ∞.

10

2. If δ = 0, then A is isomorphic to a product of elliptic curves E1 × E2 with defining equations

E1 : y2 =

3∏
i=1

(ai,1x+ ai,2), E2 : y2 =

3∏
i=1

(ai,1 + ai,2x),

where ai,0, ai,1 are such that gi = ai,1(x− s1)2 + ai,2(x− s2)2 for some s1, s2 ∈ K.

Proof. The first part is [19, Theorem 8.4.11]. The second part follows from the discussion in [19, §8.3].

Note that the element δ defined in the proposition is only well defined up to multiplication by ±1,
since it depends on the ordering of the polynomials g1, g2, g3. A different choice of the sign corresponds
to computing an isogeny to the Jacobian of a quadratic twist of C′.

In order to compute the image of an element in J (C) under an isogeny φ, we restrict to the first case
of the above proposition, i.e. we assume that δ 6= 0.

Proposition 3.3. Let C and C′ be as defined in Part 1 of Proposition 3.2. Then the (2, 2)-isogeny
φ : J (C)→ J (C′) from Proposition 3.2 is defined by the correspondence R ⊂ C × C′ with

R : 0 = g1(u)h1(u′) + g2(u)h2(u′) (1)

vv′ = g1(u)h1(u′)(u− u′)

for points (P, P ′) = ((u, v), (u′, v′)) ∈ C × C′.

Proof. This is [19, Theorem 8.4.11].

The correspondence defined in Proposition 3.3 is called Richelot correspondence. Given a point
P = (u, v) ∈ C, the first equation in (1) has two solutions for u′ and the second equation has precisely
one solution for v′ (depending on u′). This means that one point on C corresponds to two points on C′.
The correspondence extends uniquely to a homomorphism of the Jacobians. In the following, we will
describe this map more explicitly. To simplify the exposition, we make the following assumptions:

• C is defined by a degree-5 equation, hence D∞ = 2∞ ∈ Div(C).

• C′ contains a rational Weierstrass point P ′0.

Note that we will be in this situation for the formulas developed in the next section. In most cases,
C′ will be defined by a degree-6 extension, hence D′∞ =∞+ +∞− ∈ Div(C′).

Let us consider the following diagram.

R ⊂ C × C′

C C′
π π′

Here π and π′ are the projections from R to C and C′ respectively. This gives rise to a morphism
ψ : C → J (C′), where for a point P ∈ C, we first consider its pullback along π to obtain a divisor
R = π−1(P). Here, this divisor is of the form R = (P, P1) + (P, P2) ∈ Div(R). The pushforward
along π′ yields P1 + P2 ∈ Div(C′). Finally this divisor is mapped to the Jacobian via the embedding
ι′ : C′ → J (C′), P ′ 7→ [P ′ − P ′0] for some K-rational Weierstrass point P ′0 of C′. Choosing a Weierstrass
point has the advantage that the hyperelliptic involution induces multiplication by [−1]. The map ψ is
summarized below.

ψ : C Div(R) Div(C′) J (C′),

P (P, P1) + (P, P2) P1 + P2 [P1 + P2 − 2P ′0].

π∗ π′∗ ι′

Finally ψ induces a homomorphism of the Jacobians of C and C′,

φ : J (C) → J (C′),
[P +Q−D∞] 7→ ψ(P) + ψ(Q)− 2ψ(∞).

11

Using the correspondence from Proposition 3.3. the computation of ψ(P) is straightforward for an affine
point P ∈ C(K) \ {∞}. To compute ψ(∞), we use that one of gi for i ∈ {1, 2, 3} has degree 1, and write
[P ∗ −∞] ∈ G for the corresponding element in the kernel of φ. Then ψ(∞) = ψ(P ∗) can be computed
using the coordinates of the affine point P ∗.

Note that φ does not depend on the embedding ι′ : C′ → J (C′) that was chosen in the construction
of ψ. Moreover, with P1 + P2 as above and analogously Q1 +Q2 = π′∗ ◦ π∗(Q), we have that

ψ(P) + ψ(Q)− 2ψ(∞) = [P1 + P2 −D′∞] + [Q1 +Q2 −D′∞] ∈ J (C′),

where we used that 2 · ψ(∞)− 2 · [D′∞] = 0.

Algorithm 1: Computing (2, 2)-isogenies

Input: A curve C : y2 = g1(x)g2(x)g3(x), the (2, 2)-group G = 〈J(g1, 0), J(g2, 0)〉, and an
element J(a, b) ∈ J (C), where deg(a) = 2.

Output: A curve C′ and an element J(a′, b′) ∈ J (C′) such that there is an isogeny
φ : J (C)→ J (C′) with kernel G and φ(J(a, b)) = J(a′, b′).

1 Step 1 Compute C′.
2 δ = det

(
(gij)1≤i≤3, 0≤j≤2

)
3 for i = 1 to 3 do
4 hi = δ−1(g′i+1gi+2 − gi+1g

′
i+2),

5 indices are viewed mod 3.

6 Set C′ : y2 = h1h2h3.

7 Step 2 Compute P,Q ∈ C(K̄) with
J(a, b) = [P +Q−D∞].

8 Compute the roots u, s ∈ K̄ of a ∈ K[x].
9 Evaluate v = b(u), t = b(s) ∈ K̄.

10 ⇒ P = (u, v) and Q = (s, t).

11 Step 3 Compute DP , DQ ∈ Div(C′).
12 Set DP = D(aP , bP), where
13 aP = monic(g1(u)h1(x) + g2(u)h2(x)),
14 bP = g1(u)h1(x)(u− x) · v−1 (mod aP).
15 Set DQ = D(aQ, bQ), where
16 aQ = monic(g1(s)h1(x) + g2(s)h2(x)),
17 bQ = g1(s)h1(x)(s− x) · t−1 (mod aQ).

18 Step 4 Compute [D′] = [DP +DQ − 2D′∞] using
Cantor’s algorithm.

19 (a) Composition:
20 ⇒ D(a′, b′) = DP +DQ ∈ Div(C′).
21 (b) Reduction:
22 ⇒ [D′] = J(a′′, b′′) ∈ J (C′).

The above discussion contains all ingredients to explicitly compute the image of elements J(a, b) ∈
J (C) under the isogeny φ. For future reference, the overall procedure is summarized in Algorithm 1. We
restrict this description to the case where deg(a) = 2. The case deg(a) = 1 is easier since in this case
J(a, b) = [P −∞] for a point P ∈ C(K) and in particular ψ(P) ∈ J (C)[K].

We would like to point out that Algorithm 1 is not new, but it is a standard procedure to compute
the image of elements in J (C) under a (2, 2)-isogeny, see for example [5], [12]. The algorithm consists of
four main steps.
Step 1 concerns the computation of the codomain of φ, more precisely an equation for the curve C′ such
that J (C′) is the codomain of φ. This is done as outlined in Proposition 3.2. The remaining steps are
needed to compute φ(J(a, b)).
In Step 2 the support of the divisor D(a, b) is computed, that is we compute P,Q ∈ C(K̄) with D(a, b) =
P + Q. This requires the computation of the roots of the polynomial a ∈ K[x]. In about half of the
cases this also requires passing to a degree-2 field extension of K.
In Step 3 the Richelot correspondence (Equation 1) is used to compute the divisors DP = π′∗ ◦ π∗(P)
and DQ = π′∗ ◦ π∗(Q) ∈ Div(C′).
In Step 4 we compute J(a′, b′) = φ(J(a, b)) as the sum of [DP −D′∞] and [DQ−D′∞]. This summation
is done using Cantor’s algorithm. It consists of a composition step and a reduction step. For more details
on Cantor’s algorithm, the reader is referred to [16, 20] in the odd-degree case and [13] in the even-degree
case.

12

4 Richelot Isogenies for Type-1 Equations

In this section, we consider a genus-2 curve C defined by a Type-1 equation

C : y2 = Ex (x2 −Ax+ 1)(x2 −Bx+ C).

Moreover, we fix the (2, 2)-group

G = 〈J(x, 0), J(x2 −Ax+ 1, 0)〉 ⊂ J (C)[2]

and restrict our considerations to the isogeny φ : J (C)→ A with ker(φ) = G. First, we show that under
some mild conditions any (2, 2)-group may be transformed into a group of this form (Proposition 4.1)
and then translate the results from the previous section into our setting. In the second part, we develop
formulas that completely replace Algorithm 1. Our main result is Theorem 4.7.

4.1 Richelot Correspondence for Type-1 Equations

In order to apply the formulas that will be developed in this section for an arbitrary (2, 2)-isogeny φ, it is
necessary to perform a coordinate transformation to obtain a kernel of the form G. In general, this might
require to extend the field of definition. The next proposition shows that a coordinate transformation
is possible over the base field K if there exists a K-rational point J of order 4 such that 2 · J is in the
kernel of φ. Since the goal of this work is to compute (2n, 2n)-isogenies (see §5), this is not a serious
restriction.

Proposition 4.1. Let g1, g2, g3 ∈ K[x] be quadratic polynomials, C : y2 = g1(x)g2(x)g3(x) a genus-2
curve and G = 〈J(g1, 0), J(g2, 0)〉 a (2, 2)-subgroup of J (C). If the roots of g1 are K-rational and there
exists a K-rational 4-torsion point J4 ∈ J (C) such that 2 · J4 = J(g1(x), 0), then there exists a rational
coordinate transformation t : (x, y) 7→ (x′, y′) such that

C : y′2 = Ex′ (x′2 −Ax′ + 1)(x′2 −Bx′ + C)

is a Type-1 equation and G = 〈J(x′, 0), J(x′2 −Ax′ + 1, 0)〉.

Proof. The transformation t is constructed as the composition of two transformations, t1 and t2. We
denote

g1 = (x− α1)(x− α2), g2 = (x− β1)(x− β2), g3 = cg · (x− γ1)(x− γ2).

Note that α1, α2 ∈ K by assumption, and β1, β2, γ1, γ2 ∈ K̄. The first transformation is defined as

t1 : x 7→ x− α2

x− α1
, y 7→ y

(x− α1)3
.

This leads to an equation of the form

y2 = cg · x(x− β′1)(x− β′2)(x− γ′1)(x− γ′2),

where β′i and γ′i are the images of βi and γi respectively.
The final transformation is of the form t2 : x 7→ a · x, where a satisfies a2 = 1/(β′1β

′
2). This square

root can be extracted from the Mumford coordinates of the 4-torsion element t1(J4) as explained in
Corollary 2.8.

The next two propositions are translations of Proposition 3.2 and Proposition 3.3 to the setting
specified in this section.

Proposition 4.2. Let C be a genus-2 curve defined by a Type-1 equation y2 = Ex (x2 − Ax + 1)(x2 −
Bx+C) and let φ : J (C)→ A be the isogeny with kernel ker(φ) = 〈J(x, 0), J(x2−Ax+1, 0)〉 ⊂ J (C)[2].

1. If C 6= 1, then A is isomorphic to the Jacobian of the genus-2 curve with Type-2 equation

C′ : y2 = (x2 − 1)(x2 −A′)(E′x2 −B′x+ C ′),

where

A′ = C, B′ =
2

E
, C ′ =

B −AC
E(1− C)

, E′ =
A−B
E(1− C)

.

13

2. If C = 1, then A is isomorphic to a product of elliptic curves E1 × E2 with defining equations

E1 : y2 = c1·(x−1)

(
x− A+ 2

A− 2

)(
x− B + 2

B − 2

)
, E2 : y2 = c2·(x−1)

(
x− A− 2

A+ 2

)(
x− B − 2

B + 2

)
,

where
c1 = E · (A− 2)(B − 2) and c2 = −E · (A+ 2)(B + 2).

Proof. The proposition is implied by Proposition 3.2. To see this, first note that

δ = E · det

0 1 0
1 −A 1
C −B 1

 = −E · (1− C),

hence δ = 0 if and only if C = 1.
The case C 6= 1 can be easily verified by a direct computation. Note that we further applied the

coordinate change (x, y) 7→ (x, (1− C) · y) in order to obtain a simpler form of the equation for C′.
For the case C = 1, we use the identities

x =
1

4
(x+ 1)2 − 1

4
(x− 1)2,

x2 −Ax+ 1 =
−A+ 2

4
(x+ 1)2 +

A+ 2

4
(x− 1)2,

x2 −Bx+ 1 =
−B + 2

4
(x+ 1)2 +

B + 2

4
(x− 1)2.

Inserting these values into the elliptic curve equations provided in Proposition 3.2 and scaling x appro-
priately, yields the desired result.

The description of the Richelot correspondence simplifies as well when applied in our specific setting.

Proposition 4.3. Let C and C′ be as defined in Part 1 of Proposition 4.2, in particular C 6= 1. Then
the (2, 2)-isogeny φ : J (C) → J (C′) from Proposition 3.2 is defined by the correspondence R ⊂ C × C′
with

R : 0 =
(
u2 −Bu+ 1

)
· u′2 + 2(C − 1)u · u′ − Cu2 +Bu− C

vv′ = (A−B)u · u′3 −
(
(A−B)u2 + 2(1− C)u

)
· u′2

+
(
2(1− C)u2 − (AC −B)u

)
· u′ + (AC −B)u2

for points (P, P ′) = ((u, v), (u′, v′)) ∈ R ⊂ C × C′.

Proof. This is a consequence of Proposition 3.3 with g1 = x, g2 = x2−Ax+1 and h1 = E′x2−B′x+C ′,
h2 = x2 − A′. Note that we applied the same coordinate change (u′, v′) 7→ (u′, (1− C) · v′) to points in
C′ as in the previous proposition.

4.2 Explicit Formulas

In this section, we present compact formulas for the Richelot isogeny φ. By this we mean formulas for
the image φ(J(a, b)) for any element J(a, b) ∈ J (C).

First, we consider the easier case, where J(a, b) = [P−∞]. Here it is necessary to distinguish between
Weierstrass points (Proposition 4.4) and general points P ∈ C(K) (Proposition 4.6). Note that in these
cases, our formulas do not provide a major advantage over Algorithm 1.

A significant speed-up occurs in the general case J(a, b), where a is a degree-2 polynomial. In that
case, Algorithm 1 necessitates to factor the polynomial a and possibly pass to a degree-2 extension of
the ground field, whereas our formula completely avoids these computations. It works only with the
Mumford coordinates and consists of additions, multiplications and inversions in the ground field. This
formula is provided in Theorem 4.7. It presents the main result of this section.

14

In the main theorem, we have to exclude some edge cases which are treated in Appendix A. The
first of these cases is when D(a, b) is supported at a Weierstrass point of C. This situation is very
similar to the case where J(a, b) = [P −∞] and is explained in §A.1. The second special case is when
gcd(a, x2 −Bx+ 1) 6= 1. In this case, it is necessary to consider elements of the form [P +∞± −D′∞] ∈
J (C′) to describe the image φ(J(a, b)). These were the elements that we excluded in the notation
introduced in §2.2. The necessary notation and formulas for this case are provided in Appendix A.2.
The last special case concerns divisors where the polynomial a is a square or a = (x − u)(x − 1/u) for
some u ∈ K̄. This case is treated in §A.3 All possible cases and criteria to decide which formula to apply
are summarized in Table 1. To keep this overview compact, we did not include precise references to the
intersection of cases (i.e. when two different criteria apply). But this information is of course included
in the statements. The last column of the table also provides an overview concerning the frequency of
these cases, where q = #K is assumed to be large. Apart from the general case in Theorem 4.7, all other
cases appear with negligible probability for randomly chosen elements J(a, b) ∈ J (C).

Criteria Formula Number of Cases

a = x + a0, b = b0

b0 = 0 Proposition 4.4 O(1)
a20 +Ba0 + 1 = 0 Proposition A.4 O(1)
b0(a20 +Ba0 + 1) 6= 0 Proposition 4.6 O(q)

a = x2 + a1x + a0, b = b1x + b0

b1(a1b0 − a0b1) + b20 = 0 Corollary A.2 O(q)
a0B

2 + (a0 + 1)a1B + (a0 − 1)2 + a21 = 0 Propositions A.6, A.7 O(q)
(a0 − 1)(a21 − 4a0) = 0 Propositions A.9, A.10 O(q)
general case Theorem 4.7 O(q2)

Table 1: Formulas for the image of J(a, b) under the (2, 2)-isogeny φ.

Throughout, we assume that C is a genus-2 curve defined by a Type-1 equation

y2 = Ex (x2 −Ax+ 1)(x2 −Bx+ C)

with C 6= 1. Further φ : J (C)→ J (C′) is the isogeny with kernel ker(φ) = 〈J(x, 0), J(x2−Ax+ 1, 0)〉 ⊂
J (C)[2] from Proposition 4.2. In particular, C′ is of the form

C′ : y2 = (x2 − 1)(x2 −A′)(E′x2 −B′x+ C ′),

with

A′ = C, B′ =
2

E
, C ′ =

B −AC
E(1− C)

, E′ =
A−B
E(1− C)

.

Proposition 4.4. Let P ∈ C(K) be a Weierstrass point, then φ([P −∞]) is as described below.

1. If P ∈ {(0, 0),∞}, then φ([P −∞]) = 0.

2. If P = (α, 0), where α2 −Aα+ 1 = 0, then φ([P −∞]) = J(x2 − 1, 0).

3. If P = (β, 0), where β2 −Bβ + C = 0, then φ([P −∞]) = J(x2 −A′, 0).

Proof. In Case 1, if P = ∞, then [P −∞] = 0 ∈ J (C), so there is nothing to show. For P = (0, 0), we
have [(0, 0)−∞] = [(0, 0) +∞− 2∞] ∈ ker(φ) by definition.

For the next cases, we fix a Weierstrass point P ′0 ∈ C′(K) and use the map ψ : C → J (C′) subject to
the embedding ι : C′ → J (C′), Q 7→ [Q − P ′0] as defined in §3.2. Moreover, we note that the Richelot
correspondence (Proposition 4.3) implies ψ(∞) = ψ((0, 0)) = [D(x2 −A′, 0)− 2P ′0].

In Case 2, we find ψ(P) = [D(E′x2 −B′x+ C ′, 0)− 2P ′0]. It follows that

φ([P −∞]) = [D(E′x2 −B′x+ C ′, 0)−D(x2 −A′, 0)]

= [D(E′x2 −B′x+ C ′, 0) +D(x2 −A′, 0)− 2D′∞]

= J(x2 − 1, 0).

15

Here, we did not normalize the Mumford representation of D(E′x2−B′x+C ′, 0) so that the case E′ = 0
is included.

For Case 3, denote D(x2 − Bx + C, 0) = P + Q with P = (β, 0) and Q = (γ, 0). The first relation
in the Richelot correspondence shows that ψ(P) = [P1 + P2 − 2P ′0], where x(P1) = x(P2) = β. Similarly
ψ(Q) = [Q1 + Q2 − 2P ′0], where x(Q1) = x(Q2) = γ. The second relation vanishes for all possible
y-coordinates for P1, P2 and Q1, Q2. Indeed, we find that τ(P1) = P2 and τ(Q1) = Q2, where τ is the
hyperelliptic involution τ : C′ → C′. To see this, note that necessarily

[P1 + P2 −D(x2 −A′, 0)] = φ([P −∞]) = −φ([Q−∞]) = −[Q1 +Q2 −D(x2 −A′, 0)].

Adding J(x2 −A′, 0) on both sides yields

[P1 + P2 −D′∞] = [τ(Q1) + τ(Q2)−D′∞].

Since x(P1) = x(P2) 6= x(Q1) = x(Q2), this implies that both sides of the equation are zero, hence
P1 = τ(P2) and Q1 = τ(Q2) as claimed above. Consequently,

φ([P −∞]) = φ([Q−∞]) = J(x2 −A′, 0).

Lemma 4.5. Let R ⊂ C × C′ be the Richelot correspondence defined in Proposition 4.3 and denote by
π : R → C, π′ : R → C′ the natural projections from this correspondence. If P = (u, v) ∈ C(K̄) with
(u2 − Bu + 1) · v 6= 0, then DP := π′∗ ◦ π∗(P) is equal to D(aP , bP), where aP = x2 + aP,1x + aP,0,
bP = bP,1x+ bP,0 with

aP,1 =
2(C − 1)u

u2 −Bu+ 1
, aP,0 =

−Cu2 +Bu− C
u2 −Bu+ 1

,

bP,1 =
u(1− C)(u2 −Au+ 1)

(u2 −Bu+ 1)2 · v
· (2u3 −Bu2 + (−B2 + 4C − 2)u+B),

bP,0 =
−u(1− C)(u2 −Au+ 1)

(u2 −Bu+ 1)2 · v
· (Bu3 + (−B2 + 2C)u2 −Bu+ 2C).

Proof. The statement is deduced from the description of the Richelot correspondence provided in Propo-
sition 4.3. Normalizing the first equation from the correspondence, yields aP . Then bP is obtained by
dividing the right hand side of the second equation in the proposition by v and reducing this modulo
aP .

Proposition 4.6. Let C be a genus-2 curve defined by a Type-1 equation y2 = Ex (x2−Ax+1)(x2−Bx+
C) and assume C 6= 1. Further let φ : J (C)→ J (C′) be the isogeny with kernel ker(φ) = 〈J(x, 0), J(x2−
Ax + 1, 0)〉 ⊂ J (C)[2] from Proposition 4.2. Then for an element J(a, b) = J(x + a0, b0) ∈ J (C) with
b0(a20 +Ba0 + 1) 6= 0, its image under the isogeny φ is given by

φ(J(a, b)) = [DP +DQ − 2D′∞] ∈ J (C′),

where DQ = (x2 −A′, 0) and DP = (aP , bP) as in Lemma 4.5 for (u, v) = (−a0, b0).

Proof. We have that J (x+ a0, b0) = [(−a0, b0)−∞]. This means that

φ(J(a, b)) = ψ((−a0, b0))− ψ(∞),

where ψ : C → J (C′) is the map induced by the Richelot correspondence R in Proposition 4.3 with
respect to the embedding ι : C′ → J (C′), P 7→ [P − P ′0] (see §3.2).

As in the proof of the previous proposition, we use that ψ(∞) = [D(x2 − A′, 0) − 2P ′0]. Further
ψ((−a0, b0)) = [DP − 2P ′0], where DP is as in Lemma 4.5 (with (u, v) = (−a0, b0)).

In conclusion

φ(J(x+ a0, b0)) = [D(aP , bP)−D(x2 −A′, 0)] = [D(aP , bP) +D(x2 −A′, 0)− 2D′∞],

where we used that 2 ·
[
D(x2 −A′, 0)−D′∞

]
= 0.

16

The remainder of this section is dedicated to Theorem 4.7 and its proof. This theorem provides a
formula for the image of a general element J(x2 + a1x+ a0, b1x+ b0) ∈ J (C) under φ.

Theorem 4.7. Let C be a genus-2 curve defined by a Type-1 equation y2 = Ex (x2−Ax+1)(x2−Bx+C)
and assume C 6= 1. Further let φ : J (C) → J (C′) be the isogeny with kernel ker(φ) = 〈J(x, 0), J(x2 −
Ax+ 1, 0)〉 ⊂ J (C)[2] from Proposition 4.2. We assume that J(a, b) = J(x2 +a1x+a0, b1x+ b0) ∈ J (C)
satisfies

0 6= −b1(a1b0 − a0b1) + b20,

0 6= a0B
2 + (a0 + 1)a1B + (a0 − 1)2 + a21, (2)

0 6= (a0 − 1)(a21 − 4a0).

Then

φ(J(a, b)) =

[
D

(
a′4x

4 + a′3x
3 + a′2x

2 + a′1 + a′0
a′4

,
b′3x

3 + b′2x
2 + b′1x+ b′0
b′den

)
− 2D′∞

]
∈ J (C′),

where

a′0 = ((a0 − 1)2 + a21)C2 + (a0 + 1)a1BC + a0B
2

a′1 = 2 · (C − 1) · ((a0 + 1)a1C + 2a0B)

a′2 = − (a0 + 1)a1B(C + 1)− 2a0B
2 + 4a0C

2 − 2((a0 + 1)2 + a21)C + 4a0

a′3 = − 2 · (C − 1) · (2a0B + (a0 + 1)a1)

a′4 = a0B
2 + (a0 + 1)a1B + (a0 − 1)2 + a21

and

µ = a1b0 − a0b1
b′0 = a0µAB + (a0b0(a0 − 1) + a1µ)AC + a0 (a1µ− b0(a0 − 1))B + µ((a0 − 1)2 + a21)C

b′1 = a0b0AB + (a0a1b0 + µ(a0 + 1))AC − 2a0µA+ a0(µ+ b1)B

+
(
2a0a1µ+ b0(−a20 + a21 + 1)

)
C − 2a0a1µ+ 2a0b0(a0 + 1)

b′2 = − a0µAB + 2a0b0AC + (−a0b0(a0 + 1)− a1µ)A+ a0 (−a1µ+ b0(a0 − 1))B

+ 2a0 (µ+ b1)C − (a20 + a21 + 1)µ

b′3 = − a0b0AB +
(
−a20b1 − µ

)
A− a0(µ+ b1)B − b0((a0 − 1)2 + a21)

b′den = (a0 − 1) · (−µb1 + b20).

Note that the formulas as presented in Theorem 4.7 are not completely optimized. Instead, we decided
for a presentation that achieves a better readability. For an optimized version, where the number of
multiplications and additions is reduced, the reader is referred to our implementation [14].

Proof. The proof involves several symbolic computations that were performed using the Computer Alge-
bra System SAGE [22]. Here, we explain the overall strategy and give some details on the computations.
The formulas that we obtained may be verified using the Code provided in Appendix B and in our
GitHub repository [14].

Let C be a genus-2 curve defined by a Type-1 equation y2 = Ex (x2 − Ax + 1)(x2 − Bx + C) and
J(a, b) = (x2 + a1x+ a0, b1x+ b0) ∈ J (C). We use K = Q(A,B,C, a0, a1, b0, b1) for our computations.

The first step of the algorithm is already covered by Proposition 4.2, so we directly proceed to the
second step. This step requires to compute the support P = (u, v), Q = (s, t) of the divisor D(a, b).
Having in mind that

a(u) = a(s) = 0, v = b(u), t = b(s),

we see that it suffices to consider the field extension

L = K[u]/
(
u2 + a1u+ a0

)
17

and set
s = −a1 − u, v = b0 + ub1, t = b0 + sb1.

In the third step, we compute the divisors DP and DQ that correspond to P and Q under the Richelot
correspondence. Here, we can use the explicit description from Lemma 4.5. We denote DP = (aP , bP)
and DQ = (aQ, bQ) ∈ Div(C′), where aP , bP are just as in the statement of the lemma and aQ, bQ are
obtained by replacing (u, v) by (s, t). Note that the first two inequalities in (2) guarantee that we do not
divide by zero in this step. To make this more precise, 0 6= a0B

2+(a0+1)a1B+(a0−1)2+a21 is equivalent
to requiring that u2−Bu+1 and s2−Bs+1 are non-zero (cf. Lemma A.5); and 0 6= −b1(a1b0−a0b1)+b20,
means that none of P and Q are Weierstrass points, hence v, t 6= 0 (cf. Lemma A.1).

Finally, we perform Step 4(a), the composition step of Cantor’s Algorithm with output the Mumford
representation D(a′, b′) = DP +DQ. Our goal is to eliminate the element u ∈ L \K in order to obtain
formulas that are defined over K. Here we make use of the third inequality 0 6= (a0− 1)(a21− 4a0) which
implies that gcd(aP , aQ) = 1 (cf. Lemma A.8). In that case a′ = aP · aQ. Due to the symmetry in the
expressions for aP and aQ, we find that a′ ∈ K[x] (L[x] as one would expect. The formulas for the
coefficients of a′ are provided in the statement of the theorem. Now b′ is the unique polynomial in K[x]
with deg(b′) ≤ 3 that satisfies

b′ ≡ bP (mod aP),

b′ ≡ bQ (mod aQ),

b′2 ≡ f (mod a′),

where f = (x2−1)(x2−A′)(E′x2−B′x+C ′) is the defining polynomial for C′. We denote DP = P1 +P2

and DQ = Q1 +Q2, with Pi = (ui, vi) ∈ C′(K̄) and Qi = (si, ti) ∈ C′(K̄) for i ∈ {1, 2}. Then the above
conditions on b′ are equivalent to requiring

b′(ui) = vi and b′(si) = ti for i ∈ {1, 2}.

This is satisfied by the polynomial

b′ =

(
bP (u1)

x− u2
aQ(u1)

− bP (u2)
x− u1
aQ(u2)

)
· aQ(x)

u1 − u2
+

(
bQ(s1)

x− s2
aP (s1)

− bQ(s2)
x− s1
aP (s2)

)
· aP (x)

s1 − s2
.

For the computations it is necessary to further extend the field of definition to

M = L[u1, s1]/ (aP (u1), aQ(s1))

and set
u2 = −aP,1 − u1, s2 = −aQ,1 − s1.

Carefully evaluating the expression for b′ and taking into account the relations between the different
variables, we obtain the formulas for b′ ∈ K[x] from the theorem.

In conclusion, the image of J(a, b) under φ is given by [D(a′, b′)− 2D′∞].

Remark 4.8. The formula provided in Theorem 4.7 replaces steps 1, 2, 3, 4(a) in Algorithm 1. This results
in a major speed-up in the isogeny computation, since all of the square root computations as well as
the computation of a field extension are avoided. In order to find the (reduced) Mumford representation
(a′′, b′′) for the divisor class J (C), it remains to carry out Step 4(b). Here, this last step consists of two
computations:

• Computing the quotient
(
f − b′2

)
/a′, where f = (x2−1)(x2−A′)(E′x2−B′x+C ′) is the defining

polynomial for C′. The normalization of that quotient is then a monic polynomial a′′ of degree at
most 2.

• Computing the residue of −b′ modulo a′′. This residue is the polynomial b′′ with deg(b′′) < deg(a′′).

Both of these computations can be executed very efficiently using the methods developed for HECC.
It is also possible to extract a formula for the reduced Mumford representation directly. However the

formula that we obtained is not very compact, hence it is computationally preferable to use the formula
from Theorem 4.7 and then perform Step 4(b) of Algorithm 1 when computing a (2, 2)-isogeny of the
given form.

18

5 Efficiently Computing (2n, 2n)-Isogenies

In this section, we first introduce (2n, 2n)-isogenies and analyze these in more detail for the case of Type-2
equations. In particular, we define the term special symplectic basis. Then, we present our algorithm for
computing (2n, 2n)-isogenies as chains of (2, 2)-isogenies and compare its efficiency to other algorithms
in the literature.

5.1 (2n, 2n)-Isogenies

Let A be a principally polarized abelian surface. For any n ∈ N, the 2n-torsion group A[2n] is a Z/2nZ-
module of rank 4. Let µµµ2n be the multiplicative group of 2n-th roots of unity. The Weil pairing

e2n : A[2n]×A[2n]→ µµµ2n

is an alternating, bilinear pairing on this module. We say that a basis (J1, J2, J3, J4) for A[2n] is
symplectic (w.r.t. the Weil pairing) if for some primitive 2n-th root µ ∈ µµµ2n ,

e2n(Ji, Jj) = µ±1 if j = i± 2

and the Weil pairing is trivial on all other combinations of basis elements, more precisely

e2n(Ji, Jj) = 1 if j /∈ {i± 2}.

Phrased differently, the pairing matrix of the basis is of the formlog(e2n(J1, J1)) . . . log(e2n(J1, J4))
...

...
log(e2n(J4, J1)) . . . log(e2n(J4, J4))

 =

(
0 Id2

− Id2 0

)
,

where the logarithm is taken with respect to µ and Id2 is the identity matrix.
We are interested in isogenies φ : A → A′ that can be evaluated as a non-backtracking n-chain

of (2, 2)-isogenies. The kernels of such isogenies are maximal 2n-isotropic subgroups of A. The group
structure of such groups is analyzed in [12]. In particular, the authors show that for any maximal
2n-isotropic subgroup G, there exists a k ∈ {0, . . . , bn2 c} such that

G ' Z/2nZ× Z/2n−kZ× Z/2kZ .

We restrict our considerations to the case of rank-2 subgroups (i.e. the case k = 0). These constitute
roughly two thirds of all 2n-isotropic groups of A. For short, we say that an isogeny φ : A → A′ is a
(2n, 2n)-isogeny if G = kerφ ' Z/2nZ× Z/2nZ and call G a (2n, 2n)-group.

Given a (2n, 2n)-group G = 〈G1, G2〉 ⊂ A[2n], we consider the isogeny chain

A = A0 A1 . . . Ai . . . An = A′,φ1

ψi

φi φn

where φi : Ai−1 → Ai is the isogeny with kernel 2n−i〈ψi−1(G1), ψi−1(G2)〉 and ψi = φi ◦ · · · ◦ φ1.

5.2 (2n, 2n)-Groups and Type-2 Equations

The set of (2n, 2n)-groups has been analyzed in [15]. In particular the authors provide a method for
the random sampling of such groups when provided with a symplectic basis (J1, J2, J3, J4) of A[2n]. As
suggested in that article, we restrict to the subset

G = {〈J1 + aJ3 + bJ4, J2 + bJ3 + cJ4〉 | a, b, c ∈ Z/2nZ} (3)

of (2n, 2n)-subgroups. Each tuple (a, b, c) ∈ (Z/2nZ)3 defines a different (2n, 2n)-group, hence groups
can be sampled by choosing (a, b, c) at random. Of course, this sampling method depends on the choice

19

of the symplectic basis for A[2n]. In the following, we will discuss a choice that is particularly favorable
for our setting.

From now on, we consider a genus-2 curve C given by a Type-2 equation

C : y2 = (x2 − 1)(x2 −A)(Ex2 −Bx+ C)

for some A,B,C,E ∈ K, and the abelian variety J = J (C). We denote the Weierstrass points of C by

{(1, 0), (−1, 0), (α, 0), (−α, 0), (β, 0), (γ, 0)},

where α is a square-root of A and β, γ are the roots of (Ex2 −Bx+ C). As before, we assign γ =∞ if
E = 0, and in this case treat the polynomial x− γ as a constant.

Lemma 5.1. Let C be defined by a Type-2 equation. Then B = (J1, J2, J3, J4) with

J1 = J ((x− 1)(x− α), 0) , J3 = J ((x− 1)(x+ 1), 0) ,

J2 = J ((x+ α)(x− β), 0) , J4 = J ((x− β)(x− γ), 0) ,

is a symplectic basis for J = J (C)[2], where α, β, γ are as defined above.

Proof. This is easily verified by a direct computation.

Lemma 5.2. Let B = (J1, J2, J3, J4) and C as in Lemma 5.1. Then the set G of (2, 2)-groups from
Equation 3 comprises the 8 groups of the form〈

J
(
(x− (−1)i)(x− (−1)jα

)
, 0), J

(
(x− (−1)j+1α)(x− r), 0

)〉
,

where i, j ∈ {0, 1} and r ∈ {β, γ}.

Proof. For i ∈ {0, . . . , 7}, define

Gi = 〈J1 + aiJ3 + biJ4, J2 + biJ3 + ciJ4〉,

where (ai, bi, ci) is the 2-adic representation of i, meaning i = 4ai + 2bi + ci with (ai, bi, ci) ∈ {0, 1}3.
Then

G0 = 〈J ((x− 1)(x− α), 0) , J ((x+ α)(x− β), 0)〉,
G1 = 〈J ((x− 1)(x− α), 0) , J ((x+ α)(x− γ), 0)〉,
G2 = 〈J ((x+ 1)(x+ α), 0) , J ((x− α)(x− γ), 0)〉,
G3 = 〈J ((x+ 1)(x+ α), 0) , J ((x− α)(x− β), 0)〉,
G4 = 〈J ((x+ 1)(x− α), 0) , J ((x+ α)(x− β), 0)〉,
G5 = 〈J ((x+ 1)(x− α), 0) , J ((x+ α)(x− γ), 0)〉,
G6 = 〈J ((x− 1)(x+ α), 0) , J ((x− α)(x− γ), 0)〉,
G7 = 〈J ((x− 1)(x+ α), 0) , J ((x− α)(x− β), 0)〉.

These are precisely the 8 groups from the statement of the lemma.

Definition 5.3. For a genus-2 curve C defined by a Type-2 equation, we say that a symplectic basis
B = (J1, J2, J3, J4) of J (C)[2n] is a special symplectic basis if 2n−1 ·B = (2n−1J1, 2

n−1J2, 2
n−1J3, 2

n−1J4)
is the basis from Lemma 5.1.

Note that a special symplectic basic exists for any genus-2 curve C defined by a Type-2 equation.
However, it is in general not unique. For the case n = 1 the basis from Lemma 5.1 is the only special
symplectic basis. For n > 1, a special symplectic basis can be constructed as follows. Starting with some
symplectic basis B for J (C)[2n], one first computes a base change from the 2-torsion basis 2n−1B to the
basis from Lemma 5.1. The base change matrix M is a symplectic matrix over Z/2Z, hence it can be
lifted to a symplectic matrix M ′ over Z/2nZ. Applying M ′ to the original basis B then yields a basis
with the desired properties.

20

5.3 Algorithm

We are now ready to describe an efficient algorithm for the computation of (2n, 2n)-isogenies. This
algorithm takes as input any genus-2 curve defined by a Type-2 equation over some finite field K.
Moreover it is assumed that the 2n-torsion of the Jacobian J (C) is K-rational. A typical example
relevant for cryptographic applications is a superspecial hyperelliptic curve C defined over K = Fp2 with
p ≡ −1 (mod 2n). In that case Proposition 2.3 guarantees the existence of a Type-2 equation.

Moreover it is assumed that the (2n, 2n)-group defining the (2n, 2n)-isogeny is sampled from the re-
stricted set G (see Equation 3) of cardinality 23n corresponding to a special symplectic basis (J1, J2, J3, J4)
for J (C)[2n] as in Definition 5.3. Note that for cryptographic applications this is not a serious restriction,
since G contains more than half of the (2n, 2n)-groups of J (C). Indeed this restriction has already been
suggested in the framework of G2SIDH in [15].

In the box below, we summarize the requirements on the setting and the steps in the isogeny chain
computation. Figure 1 in the introduction contains a schematic presentation of the algorithm. More
details on the individual steps and their efficient execution are provided in the subsequent paragraphs.

Setup We fix a finite field K, an integer n and a genus-2 curve C0 defined by a Type-2 hyperelliptic
equation

C0 : y2 = (x2 − 1)(x2 −A0)(E0x
2 −B0x+ C0)

for some A0, B0, C0, E0 ∈ K such that the J (C)[2n] is K-rational; and choose a special symplectic
basis (J1, J2, J3, J4) for J (C)[2n].

Random Sampling To randomly select a (2n, 2n)-isogeny, three elements a, b, c ∈ Z/2nZ are
chosen and the elements

G1,0 = J1 + aJ3 + bJ4, G2,0 = J2 + bJ3 + cJ4

are computed. The following procedure computes an isogeny φ : J (C0) → J (Cn) with kernel
〈G1,0, G2,0〉.

Isogeny Chain For 1 ≤ i ≤ n, perform the following steps.

1. Compute G∗1 = 2n−iG1,i−1, G
∗
2 = 2n−iG2,i−1 and denote G∗1 = J(g1, 0), G∗2 = J(g2, 0).

2. Factor g1, g2 and denote g1 = (x− α1)(x− α2), g2 = (x− β1)(x− β2).

3. Perform a coordinate change (x′, y′) = t(x, y) to obtain a Type-1 equation

C′i−1 : y′2 = E′i−1 x
′ (x′2 −A′i−1x′ + 1)(x′2 −B′i−1x′ + C ′i−1)

satisfying t(g1) = x′ and t(g2) = x′2 −A′i−1x′ + 1.

4. If C ′i−1 = 1, abort. Otherwise, apply the Richelot isogeny φ̃i : J (C′i−1) → J (Ci) from
Proposition 4.2 to obtain a Type-2 equation

Ci : y2 = (x2 − 1)(x2 −Ai)(Eix2 −Bix+ Ci)

and the formula from Theorem 4.7 to compute G1,i = φi(G1,i−1), G2,i = φi(G2,i−1) with

φi = φ̃i ◦ t.

Using the results and methods developed in this work, all steps in the isogeny chain computation can
be performed efficiently. Below we provide some more details on our implementation.

1. The first step only consists of iterative doublings for elements in the Jacobian. There already exist
efficient algorithms that were developed in the framework of HECC, see for example [16, 6]. Building
on these results, we constructed formulas tailored to Type-2 equations for this computation. Strictly

following the algorithm, we need to compute n(n−1)
2 such doublings in total. But this number may

be decreased by using the alterations described in Remark 5.5.

21

For i < n, we also save the 4-torsion element 2n−i−1G1,i−1 obtained during the computation. This
will be used later in Step 3.

2. At a first glance, the second step seems costly since it requires the factorization of two polynomials.
Here, we can exploit the properties of the special symplectic basis B. It follows from Lemma 5.2
that α1 ∈ {±1}. This allows us to find α1, α2 by a simple case distinction. Further Lemma 5.2
implies that β1 = −α2, hence β2 can be easily computed from the coefficients of the polynomial g2.

3. For the third step, the case k = n has to be treated separately. If k < n, we use the coordinate
transformation provided in the proof of Proposition 4.1.

In the last step, this Proposition cannot be applied since we do not have a 4-torsion point. Therefore
the last round necessitates one square-root computation to obtain a suitable coordinate transfor-
mation. Note that the structure of J (Cn)(K) guarantees that this square-root is contained in K,
so it is not necessary to pass to a field extension. A possible modification to avoid the square-root
computation in the last round is discussed in Remark 5.4.

4. The fourth step consists of applying the formulas from Proposition 4.2 once to obtain the coefficients
for the new Type-2 equation, and the formula from Theorem 4.7 has to be applied twice to compute
the images of the kernel generators.

Note that these formulas can only be applied if the codomain of the isogeny φ̃i is a Jacobian of a
hyperelliptic curve, or equivalently δ = C ′i−1 − 1 6= 0 (cf. Proposition 4.2). In the case that δ = 0,
the algorithm aborts. In the G2SIDH setting, where the curve C0 is superspecial and n ≈ log(p)/2,
this happens with probability approximately log(p)/p, see for example [7, §5].

Remark 5.4. For the last (2, 2)-isogeny in the isogeny chain, the above algorithm requires one square-root
computation in the execution of Step 3. This computation can be avoided by slightly changing the setup.
For example, one can choose a curve C such that J (C)[2n+1] is k-rational and provide the kernel G for
a (2n+1, 2n+1)-isogeny, but consider only the (2n, 2n)-isogeny defined by 2 · G. In other words, the last
step of the isogeny computation is omitted. In the superspecial case, this necessitates to increase the
size of the underlying prime field by two bits.

Remark 5.5. Running the algorithm as described above, requires to perform n(n−1)
2 point doublings in

total, since in each step i ∈ {1, . . . , n}, one has to compute the kernel generators of the current isogeny
G∗1 = 2n−iG1,i−1 and G∗2 = 2n−iG2,i−1. Note that

G∗1 = ψi−1(2n−iG1), G∗2 = ψi−1(2n−iG2).

This observation provides a different way of computing G∗1 and G∗2 which reduces the total number of
doublings. More precisely, in the beginning of the algorithm one computes a list containing

H1,i = 2n−iG1, H2,i = 2n−iG2 for i ∈ {1, . . . , n}.

At each step, one additionally computes the image φi(H1,j) for all j ≥ i so that G∗1 and G∗2 can always be
recovered without performing any additional point doublings. While this procedure reduces the number
of doublings to n, it increases the number of point image computations by n(n− 1).

In practice it has shown to be beneficial to use a mix of both methods. For example, one can divide the
(2n, 2n)-isogeny computation into m computations of (2k, 2k)-isogenies for some integers k,m with k·m =
n. For each i ∈ {1, . . . ,m}, one first computes H1,ki = 2n−kiψ(k−1)i(G1) and H2,ki = 2n−kiψ(k−1)i(G2)

which generate the kernel of the next (2k, 2k)-isogeny. Then, one proceeds as usual to compute this
isogeny, where in addition to the images of H1,ki, H2,ki, one needs to keep track of the images of the
original kernel generators in order to be able to compute the kernel for the next (2k, 2k)-isogeny. In total,
this only adds 2(n− k) additional image point computations and reduces the number of point doublings
to nm+k−2

2 .
This method can be further optimized by allowing to vary the degree of the isogeny chunks. In other

words, one chooses integers k1, . . . , km with
∑
ki = n and divides the isogeny into m computations of

(2ki , 2ki)-isogenies. This strategy is analogous to the strategy developed in [9, §4.2.2] in the elliptic curve
setting. One can apply similar techniques to find optimal parameters k1, . . . , km for a specific value of n.

22

5.4 Implementation

A Magma implementation for our algorithm is made available in [14]. Here, we compare its efficiency
to related results in the literature. For that comparison, we use a setup which is typical for a genus-2
SIDH key-exchange (G2SIDH). This means that we consider a prime of the form p = e · 2n3m − 1 with
2n ≈ 3m and a small integer e. We choose a superspecial genus-2 curve C defined over Fp2 so that
J (C)[2n] ⊂ J (C)(Fp2) and compute a (2n, 2n)-isogeny. If applicable, we also compute the image of the
3m-torsion basis under this isogeny. The comparison is done on two different instances which for G2SIDH
correspond to a (conjectural) classical security of 75 bits and 128 bits respectively.

All computations were performed on our platform, a laptop with an Intel i7-8565U processor and
16 GB of RAM with Linux 5.13.0 and Magma V2.26. For the genus-2 hash function, we used the code
provided in [1, Appendix B] and for the comparison to the original genus-2 SIDH implementation, the
authors of [12] kindly provided their source code. The results are summarized in Table 2.

n = 51, log(p) ≈ 100 n = 86, log(p) ≈ 171
pure isogeny with image points pure isogeny with image points

Genus-2 SIDH [12] 72 127 omitted omitted
Genus-2 Hash Function [1] 0.80 x 2.26 x
This work 0.14 0.18 0.27 0.34

Table 2: Runtime in seconds for different algorithms computing a (2n, 2n)-isogeny φ : J (C)→ J (C′).

Isogeny Chains in G2SIDH [12]

The authors of [12], implemented the genus-2 version of the SIDH key-exchange in Magma. Here, Alice’s
computations correspond to the computation of a (2n, 2n)-isogeny. In essence, their implementation
follows Algorithm 1 for each (2, 2)-isogeny in the isogeny chain. We compare the two algorithms on
examples in the setting of [12, Appendix B]. This means, we use the prime p = 251332 − 1 and consider
a superspecial hyperelliptic curve C defined over Fp2 . With these parameters the classical security level
of G2SIDH is assumed to be at 75 bits.

In the first round of the key exchange, Alice computes a (251, 251)-isogeny and the image of a basis
for 332-torsion module of J (C) under this isogeny. The second round of the protocol only requires the
computation of a (251, 251)-isogeny. The obtained timings were very much dependent on the choice of
the secret key; on our platform the computation of the public key took around 127 seconds and the
generation of the shared key around 72 seconds on average. This is slightly faster than the timings
reported in [12, Appendix B].

With our methods, the first round takes approximately 0.18 seconds and the second round takes 0.14
seconds with the same parameter choices. Here, we made use of the improvements described in Remark
5.5. But we did not apply the improvements explained in Remark 5.4, since we did not want to alter the
parameters of the example for an honest comparison.

Genus 2 Hash Functions [1, 21]

Another implementation of (2n, 2n)-isogeny comes from the setting of hash function. In [21], Takashima
suggests a generalization of the Charles–Goren–Lauter hash function [3] to Jacobians of genus-2 curves.
Necessary improvements concerning the security have been implemented by Castryck, Decru and Smith in
[]. The genus-2 hash function relies on consecutive computations of (2, 2)-isogenies. However the methods
developed for these computations cannot be applied for computing (2n, 2n)-isogenies in a G2SIDH key
exchange, since the setup is different. In particular, for the hash function it is not necessary to compute
images of elements of J under the isogeny, but it suffices to compute the codomains of isogenies.

Nevertheless, we compare the cost for the computation of a (2n, 2n)-isogeny chain by the hash func-
tion with the cost in our algorithm. We perform this comparison on two instances. First, we consider
the instance from above. That is we compute a (251, 251)-isogeny over Fp2 with p = 251332−1. This cor-
responds to computing the hash value of a message with 153 bits. Using the implementation provided in
[1], this takes approximately 0.8 seconds (as opposed to 0.14 seconds with our algorithm). As mentioned

23

before, these methods do not allow to compute the image of the 332-torsion module under this isogeny,
therefore we cannot compare the cost of this computation.

As a second instance, we use the 171-bit prime p = 53287349 − 1 and compute a (286, 286)-isogeny.
This would correspond to a classical security of 128 bits in G2SIDH. Here, the isogeny computation
takes approximately 2.26 seconds using the implementation from [1]. In comparison, our algorithm
needs approximately 0.27 seconds.

Isogeny Chains in SIDH

Finally, we also compare our implementation to isogeny computations for elliptic curves. In the elliptic
curve based SIDH protocol, Alice computes 2n-isogenies in both rounds of the protocol. When comparing
these to (2n, 2n)-isogenies in the genus-2 setting, it is important to bear in mind that the space of
(2n, 2n)-isogenies is much larger than the space of 2n-isogenies. To make this more precise, consider a
prime p = 2n3m − 1. If E is a supersingular elliptic curve defined over Fp2 as in the SIDH protocol,
then Alice’s key space has size ≈ 2n. In contrast if we choose a superspecial genus-2 curve over the same
prime field, then Alice’s key space is of size ≈ 23n. Consequently, it makes sense to use primes of one
third of the bit-size for the comparison to elliptic curve isogeny chains.

We compare the performance of our algorithm to the results of elliptic curve algorithms summarized
in [9, Table 3]. For a 512-bit prime, Alice’s first round takes 28.1 milliseconds and the second round 23.3
milliseconds in the elliptic curve scenario. For comparison, we use the 171-bit prime p = 53287349 − 1
and compute a (286, 286)-isogeny chain in the genus-2 setting. Here, the first round takes 0.34 seconds
and the second round 0.27 seconds.

5.5 Open Questions and Future Research

This paper developed the mathematics and an algorithm to efficiently compute (2n, 2n)-isogenies of
Jacobians of genus-2 curves via chains of (2, 2)-isogenies and coordinate transformations.

Our implementation in Magma is significantly faster than previously known methods. Follow-up
papers aiming for speed records in low-level languages could potentially try to find shorter formulas for
some of the steps involved in our algorithm or combine steps for higher efficiency.

Another improvement could be achieved by translating our setup to the Kummer surface. In a
different context, efficient formulas for (2, 2)-isogenies on the Kummer surface were obtained in [5]. If
it is possible to achieve similar efficiency in our setting and still maintain the advantages of our special
choices that avoid square-root computations, then this would probably result in another speed-up. We
leave the investigation of this approach for future work.

An important open problem is the treatment of reducible abelian surfaces. Our formulas for pushing
points through (2, 2)-isogenies only work for isogenies of the form φ : J (C)→ J (C′), where both C and
C′ are genus-2 curves. However for a randomly chosen (2n, 2n)-group, it is possible that one encounters a
product of elliptic curve at some step of the isogeny path. At the moment, our algorithm aborts in such a
case. While the probability for this to happen is very low, in the G2SIDH setting it is O(log(p)/p), this is
still unsatisfactory from a theoretical point of view. Moreover it offers room for attacks on the G2SIDH
protocol. We leave it as an open problem to find formulas for (2, 2)-isogenies of the form J (C)→ E1×E2
and E1 × E2 → J (C) for elliptic curves E1, E2.

24

A Special Cases of the (2, 2)-Isogeny Formula

In this section, we treat the special cases that are not covered by Theorem 4.7 or Propositions 4.4 and
4.6. For the entire section, we assume that we are in the setting of Proposition 4.2, Case 1. This means,
we consider the isogeny φ : J (C)→ J (C′), where C and C′ are hyperelliptic curves defined as

C : y2 = Ex (x2 −Ax+ 1)(x2 −Bx+ C) and C′ : y2 = (x2 − 1)(x2 −A′)(E′x2 −B′x+ C ′),

with

A′ = C, B′ =
2

E
, C ′ =

B −AC
E(1− C)

, E′ =
A−B
E(1− C)

,

and ker(φ) = 〈J(x, 0), J(x2 −Ax+ 1, 0)〉 ⊂ J (C)[2]. Some of the computations in this section are quite
tedious to perform by hand and we recommend to use our code available at [14] or in Section B for
verification.

A.1 Divisors Supported at Weierstrass Points

First, we consider the cases, where the divisor D(a, b) ∈ Div(C) is supported on a Weierstrass points of
C. This is very similar to the situation where a = x + a0 is a degree-1 polynomial which is treated in
Proposition 4.6. The next lemma provides an easy check for this property.

Lemma A.1. Let C : y2 = f(x) be a genus-2 curve and J(a, b) ∈ J (C) with (a, b) = (x2 +a1x+a0, b1x+
b0). Then

−b1(a1b0 − a0b1) + b20 = 0

if and only if the support of D(a, b) contains a Weierstrass point of C.

Proof. Note that −b1(a1b0 − a0b1) + b20 is the resultant of a and b. The resultant vanishes if and only if
there exists a common root u ∈ K̄. In this case, P = (u, 0) lies in the support of D(a, b).

Corollary A.2. Let J(a, b) ∈ J (C) with (a, b) = (x2+a1x+a0, b1x+b0) satisfying b1(a1b0−a0b1)+b20 = 0,
b 6= 0 and a0B

2 + (a0 + 1)a1B + (a0 − 1)2 + a21 6= 0. Then D(a, b) = (u, v) + (r, 0), where

r = −b0
b1
, u = −a1 −

b0
b1
, v = −a1b1;

and φ(J(a, b)) = [DP +DQ − 2D′∞], where DP is the divisor from Lemma 4.5 and DQ = (aq, 0) with

aQ =


x2 −A′ if r = 0,

E′x2 −B′x+ C ′ if r2 −Ar + 1 = 0,

1 if r2 −Br + C = 0.

Proof. This is a consequence of Propositions 4.4 and 4.6.

For the case a0B
2 + (a0 + 1)a1B + (a0 − 1)2 + a21 = 0, we refer to Proposition A.6. Moreover, we

excluded the case b = 0, which happens if and only if J(a, b) ∈ J (C)[2]. The formulas for φ(J(a, b)) in
this case can be easily extracted from Proposition 4.4. While we leave this to the reader, we observe that
〈J(x2 − 1, 0), J(x2 −A′, 0)〉 defines the dual isogeny φ̂ : J (C′)→ J (C). This is implied by the corollary
below.

Corollary A.3. Let J(a, b) ∈ J (C) with (a, b) = (x2+a1x+a0, b1x+b0) satisfying −b1(a1b0−a0b1)+b20 =
0 and b = 0. Then

φ(J(a, b)) ∈ 〈J(x2 − 1, 0), J(x2 −A′, 0)〉.

Proof. This is a consequence of Propositions 4.4.

25

A.2 Image Points Supported at Infinity

The curve C′ is defined by a degree-6 equation,

C′ : y2 = (x2 − 1)(x2 −A′)(E′x2 −B′x+ C ′),

hence has two points at infinity.4 Let us fix an element e′ ∈ K̄ satisfying e′2 = E′, then the projective
coordinates for the points at infinity are ∞+ = (1 : e′ : 0) and ∞− = (1 : −e′ : 0). In this context,
we denote sgn(e′) = +1 and sgn(−e′) = −1. As opposed to the divisor D′∞ = ∞+ +∞−, the points
∞+, ∞− are not necessarily K-rational. But in case they are rational, we need to deal with elements
on the Jacobian J (C′) of the form [P −∞+] = [P +∞− −D′∞] and [P −∞−] = [P +∞+ −D′∞]. We
therefore introduce the notation

J(x+ a0, b0,−) = [(−a0, b0) +∞− −D′∞], and J(x+ a0, b0,+) = [(−a0, b0) +∞+ −D′∞].

Similarly, we denote

D(a, b,+) = D(a, b) +∞+, D(a, b,−) = D(a, b) +∞−.

Note that these cases are not captured by the notation introduced in §2.2.
The next two propositions, describe cases, where the image of an element J(a, b) ∈ J (C) under the

isogeny φ is of the special form described above. In other words, φ(J(a, b)) = J(a′, b′,±). It is easy
to see from the description of the Richelot correspondence (Proposition 4.3) that this happens if and
only if gcd(a, x2 − Bx + 1) 6= 1. First, we treat the case, where a = x + a0 is a factor of x2 − Bx + 1
(Proposition A.4). Then we consider the cases, where a = x2 + a1x + a0. Lemma A.5 provides an
easy criterion to check, whether gcd(a, x2 − Bx + 1) 6= 1. We distinguish two cases. Proposition A.6
deals with the case where gcd(a, x2 − Bx + 1) has degree 1. This implies that a has two K-rational
roots, which can be computed using the Euclidean algorithm. This allows to determine two rational
divisors DP , DQ ∈ Div(C′) such that φ(J(a, b)) = [DP + DQ − 2D′∞]. The case a = x2 − Bx + 1 is
treated in Proposition A.7. Here, some interesting configurations occur. For example if b = b1x, then
φ(J(a, b)) ∈ ±[∞+ −∞−].

Proposition A.4. Let φ : J (C) → J (C′) as described above. Let J(a, b) ∈ J (C) satisfying a = x + a0
and a20 +Ba0 + 1 = 0, then

φ(J(a, b)) = [DP +DQ − 2D′∞] ∈ J (C′),

where DQ = (x2 − C, 0) and

DP = D

(
x− B

2
,

(4C −B2)(A−B)

8

a0(B + 2a0)

b0
, sgn

(
(B −A)

a0
b0

))
.

Proof. We proceed similarly as in the proof of Proposition 4.4. To summarize, we have J (x+ a0, b0) =
[(−a0, b0)−∞], hence

φ(J(a, b)) = ψ((−a0, b0))− ψ(∞),

where ψ : C → J (C′) is the map induced by the Richelot correspondence R in Proposition 4.3 with
respect to some embedding ι : C′ → J (C′), P 7→ [P − P ′]. It holds that ψ(∞) = [D(x2 − C, 0)− 2P ′].

The computation of ψ((−a0, b0)) = [DP −2P ′] however differs from that in Proposition 4.4. Inserting
the coordinates of P = (u, v) into the equation from the Richelot correspondence 4.3, we find that there
is only one (affine) solution u1 = B

2 . The second solution is u2 = ∞. The corresponding y-coordinates
can be determined from the second equation of the Richelot correspondence. We obtain

v1 =
(4C −B2)(A−B)

8

a0(B + 2a0)

b0
, v2 = (B −A)

a0
b0
.

Note that v2 is indeed a square-root of E′, the leading coefficient of the hyperelliptic equation for C′, in
particular v2 = ±e′. We denote sgn(v2) ∈ {±} for the sign of v2. This means

DP = (u1, v1) +∞sgn(v2) = D(x− u1, v1, sgn(v2)).

4For the sake of simplicity, we assume A 6= B so that E′ = A−B
E(1−C)

6= 0 here. But the reader can convince themselves

that the formulas for A = B are very similar.

26

Lemma A.5. Let a = x2 + a1x+ a0 and g = x2 − Bx+ 1 be polynomials in K[x]. Then gcd(a, g) 6= 1
if and only if

a0B
2 + (a0 + 1)a1B + (a0 − 1)2 + a21 = 0.

Proof. The expression above is the resultant of the polynomials a and g.

Proposition A.6. Let φ : J (C)→ J (C′) as described above. Let J(a, b) ∈ J (C) with a = x2 + a1x+ a0
satisfying gcd(a, x2 −Bx+ 1) = (x− s) and write t = b1s+ b0. Then

φ(J(a, b)) = [D − 2D′∞], where D = DP +DQ

with

DQ = D

(
x− B

2
,

(4C −B2)(B −A)

8

s(B − 2s)

t
, sgn

(
(A−B)

s

t

))

and DP is as described below.

1. If a = (x − u)(x − s) with s 6= u, then DP is the divisor from Lemma 4.5; unless P = (u, 0) is
a Weierstrass point, in which case DP = (aP , 0) with aP ∈ {1, x2 − A′, E′x2 − B′x + C ′} as in
Corollary A.2.

2. If a = (x− s)2, then D(a, b) = 2 · (s, t) and DP = DQ.

Proof. In Case 1, gcd(a, x2 − Bx + 1) = x − s for some s ∈ K. We write a = (x − u)(x − s) and
v = b(u), t = b(s). Then P = (u, v) and Q = (s, t). For the point P the divisor DP is described
in Lemma 4.5 or Corollary A.2 depending on whether P is a Weierstrass point. For Q = (s, t) the
computation is identical to the proof of Proposition A.4, when setting a0 = −s and b0 = t.

In the second case P = Q = (s, t) and the result follows from the first case.

Proposition A.7. Let φ : J (C)→ J (C′) as described above, and J(a, b) ∈ J (C) with a = x2 −Bx+ 1.

1. If B = ±2, then D(a, b) = 2 · (±1, b0) and φ(J(a, b)) = 2 · J
(
x∓ 1, 0,∓ sgn

(
A−2
b0

))
.

Otherwise, when B 6= ±2, the following cases occur.

2. If b0 = 0, then (A−B)2b21 = E′ and φ(J(a, b)) = s · [∞+ −∞−], where s = sgn((A−B)b1).

3. If b0 6= 0, then φ(J(a, b)) = J
((
x− B

2

)2
, (4C−B2)(B−A)

4b0

)
.

Proof. Let us write a = x2 − Bx + 1 = (x− u)(x− s) ∈ K̄[x]. We denote v = b(u) and t = b(s), hence
D(a, b) = P + Q with P = (u, v) and Q = (s, t). Similar as in Case 1 of Proposition A.6, we find that
φ(J(a, b)) = DP +DQ, where

DP = D(x−B/2, v1, sgn(v2)), and DQ = D(x−B/2, t1, sgn(t2)),

with

v1 =
(4C −B2)(B −A)

8

u(B − 2u)

v
, v2 = (A−B)

u

v
.

and

t1 =
(4C −B2)(B −A)

8

s(B − 2s)

t
, t2 = (A−B)

s

t
.

If B = ±2, then DP = DQ = P1 +∞sgn(v2) are K-rational. The image φ(J(a, b)) is easily computed
by inserting B = ±2 everywhere.

From now on we assume B 6= ±2, hence u 6= s. In that case DP = P1 + ∞sgn(v2) and DQ =
Q1 +∞sgn(t2) are K-rational. In order to compute their composition DP +DQ, note that t1 = ±v1 and
t2 = ±v2, since these points share the same x-coordinate on C′.

27

If b0 = 0, then u/v = s/t, hence v2 = t2, and

v1
t1

=
u(B − 2u)t

s(B − 2s)v
=
B − 2u

B − 2s
= −1.

This means that P1 = τ(Q1), where τ is the hyperelliptic involution, hence [P1 + Q1 −D′∞] = 0. And
[∞sgn(v2) +∞sgn(t2) −D′∞] = s · [∞+ −∞−] ∈ J (C′), where s = sgn((A−B)b1).

Otherwise if b0 6= 0, then , we have v1 = t1 and v2 = −t2. In that case [∞sgn(v2) +∞sgn(t2)−D′∞] = 0
and we find that

P1 = Q1 =

(
B

2
,

(4C −B2)(B −A)

4b0

)
.

A.3 Shared Support

Let J(a, b) = [P + Q −D∞] and let DP = (aP , bP) and DQ = (aQ, bQ) be the divisors associated to P
and Q under the Richelot correspondence. In the last step of Algorithm 1, the composition D = D(a′, b′)
of DP and DQ is computed. In most cases aP and aQ are coprime, so that a′ = aP · aQ. In this part,
we take care of the cases where this is not true. First, we provide a criterion to distinguish this scenario
from the general case (Lemma A.8). This criterion shows that there are two subcases which are covered
in Propositions A.9 and A.10 respectively.

Lemma A.8. Let J(a, b) = [P +Q−D∞] ∈ J (C). Consider the map π′∗ ◦ π∗ : C → Div(C′) induced by
the Richelot correspondence. Denote DP = (aP , bP) = π′∗ ◦ π∗(P) and DQ = (aQ, bQ) = π′∗ ◦ π∗(Q). We
assume that a0B

2 + (a0 + 1)a1B + (a0 − 1)2 + a21 6= 0. Then the gcd(aP , aQ) 6= 1 if and only if a0 = 1
or a21 = 4a0. Moreover, in these cases aP = aQ.

Proof. Denote P = (u, v) and Q = (s, t). Since a0B
2 + (a0 + 1)a1B + (a0 − 1)2 + a21 6= 0, we are not in

the situation of §A.2. In particular, u2 −Bu+ 1 6= 0 and s2 −Bs+ 1 6= 0, hence the first relation in the
Richelot correspondence yields

aP = x2 +
2(C − 1)u

u2 −Bu+ 1
· x+

−Cu2 +Bu− C
u2 −Bu+ 1

,

aQ = x2 +
2(C − 1)s

s2 −Bs+ 1
· x+

−Cs2 +Bs− C
s2 −Bs+ 1

.

The resultant of aP and aQ is

res(aP, aQ) = (u− s)2(us− 1)2 · (C− 1)2(4C− B2)

(u2 − Bu + 1)2(s2 − Bs + 1)2
,

which is zero if and only if u = s or u = 1/s. Translated to the Mumford coordinates of D = (u, v)+(s, t),
this means that a21 = 4a0 or a0 = 1.

If u = s, it is clear that aP = aQ. If u = 1/s, then

aP = x2 +
2(1− C)

B + a1
x− B + a1C

B + a1
= aQ.

Proposition A.9. Let φ : J (C)→ J (C′) as described above and J(a, b) ∈ J (C) with a = x2 + a1x+ a0,
b = b1x+ b0 and 4a0 = a21. Then,

φ(J(a, b)) = [2D(aP , bP)− 2D′∞] ∈ J (C′),

where (aP , bP) is as in Lemma 4.5 with (u, v) =
(
−a12 , b0

)
.

Proof. Clearly J(a, b) = [2P − D∞], where P =
(
−a12 , b0

)
. This implies φ(J(a, b)) = [2DP − 2D′∞],

where DP is as in Lemma 4.5.

28

Proposition A.10. Let φ : J (C)→ J (C′) as described above. Let J(a, b) ∈ J (C) with a = x2 +a1x+1,
b1x + b0 (i.e. a0 = 1) and assume a1 /∈ {2,−A,−B}, −b1(a1b0 − b1) + b20 6= 0, a0B

2 + (a0 + 1)a1B +
(a0 − 1)2 + a21 6= 0 . Then φ(J(a, b)) = [2P −D∞], where

P =

(
d0
d1
,

(B2 − 4C)(C − 1)(a1 +A)

d1

)
,

with

d0 = (B(b1 − a1b0) + 2b0C)(a1 +B)− 2b0B(C − 1),

d1 = (2(b1 − a1b0) + b0B)(a1 +B)− 4b0(C − 1).

Proof. Let J(a, b) = [P + Q − D∞] ∈ J (C). Consider the map π′∗ ◦ π∗ : C → Div(C′) induced by the
Richelot correspondence and denote DP = (aP , bP) = π′∗ ◦ π∗(P) and DQ = (aQ, bQ) = π′∗ ◦ π∗(Q). As
per Lemma A.8, aP = aQ and we denote

aP = aQ = (x− u1)(x− u2) ∈ K̄[x].

In order to compute the composition DP +DQ, we show that bP 6= bQ and compute the intersection of
the two polynomials.

Using the presentation for bP and bQ from Lemma 4.5, we deduce that

bP,0 − bQ,0 = − (C − 1)(A+ a1)(2u+ a1)

(B + a1)2vt
d0, bP,1 − bQ,1 =

(C − 1)(A+ a1)(2u+ a1)

(B + a1)2vt
d1.

One can show that d1 6= 0 in our setting, hence bP,1 6= bQ,1 and bP and bQ intersect in a unique point

S = (x̂, ŷ) =

(
d0
d1
,

(B2 − 4C)(C − 1)(a1 +A)

d1

)
.

Moreover, we find that aP (x̂) = 0, hence S is a point in the support of both DP and DQ. Taking
into account that bP 6= bQ, we deduce that DP = S + P2 and DQ = S + Q2 with P2 = (u2, v2) and
Q2 = (u2,−v2), for some u2 ∈ K̄. Consequently,

[DP +DQ − 2D′∞] = [2(x̂, ŷ) + (u2, v2) + (u2,−v2)− 2D′∞] = [2(x̂, ŷ)−D′∞].

B Verification of the Formulas

In the following, we provide SAGE code that can be used to verify the formulas obtained in this work.
This code is also made available in our GitHub repository [14].

B.1 Proofs for Section 2

print("Corollary 2.8")

R.<r1,r2,r3,r4> = PolynomialRing(QQ)

s1 = r1+r2+r3+r4

s2 = r1*r2 + r1*r3 + r1*r4 + r2*r3 + r2*r4 + r3*r4

s3 = r1*r2*r3 + r1*r2*r4 + r1*r3*r4 + r2*r3*r4

s4 = r1*r2*r3*r4

b1 = -r1^2

b2 = -r2^2

print(r1*r2 == (s1*s3*b1*b2 + (s4-b1*b2)^2) / (b1*b2*s1^2 + (s4-b1*b2)*(s2-b1-b2)))

29

B.2 Proofs for Section 4

def Richelot(G, delta):

Gd = [g.derivative() for g in G]

H = [(Gd[(i+1)%3]*G[(i+2)%3]-Gd[(i+2)%3]*G[(i+1)%3])/delta for i in range(3)]

return H

#Type 1 Equation:

R.<A,B,C,E,u,v> = QQ[]

S.<x> = Frac(R)[]

F = E*x*(x^2-A*x+1)*(x^2-B*x+C)

G = [E*x,x^2-A*x+1, (x^2-B*x+C)]

print("Proposition 4.2")

delta = -E*(1-C)

H = Richelot(G,delta);

Ap = C

Bp = 2/E

Cp = (B-A*C)/(E*(1-C))

Ep = (A-B)/(E*(1-C))

print(prod(H)*(1-C)^2 == (x^2-1)*(x^2-Ap)*(Ep*x^2-Bp*x+Cp))

print("Proposition 4.3")

P.<up> = Frac(R)[]

rel1 = (G[0](u)*H[0](up)+G[1](u)*H[1](up))*(1-C);

rel2 = (G[0](u)*H[0](up))*(u-up)*(1-C); #rel2=(1-C)*v’*v

print(rel1 == -(u^2-B*u+1)*up^2 - 2*(C-1)*u*up + C*u^2-B*u+C)

print(rel2 == (A-B)*u*up^3 - ((A-B)*u^2+2*(1-C)*u)* up^2

+ (2*(1-C)*u^2 - (A*C-B)*u)*up + (A*C-B)*u^2)

print("Lemma 4.5")

aP1 = 2*(C-1)*u/(u^2-B*u+1)

aP0 = (-C*u^2+B*u-C)/(u^2-B*u+1)

print(rel1/(-u^2+B*u-1) == up^2 + aP1*up + aP0)

bP1 = u*(1-C)*(u^2-A*u+1)/(u^2-B*u+1)^2 * (2*u^3-B*u^2 + (-B^2+4*C-2)*u+B)

bP0 = -u*(1-C)*(u^2-A*u+1)/(u^2-B*u+1)^2 * (B*u^3+(-B^2+2*C)*u^2 - B*u+2*C)

print(rel2 % rel1 == bP1*up + bP0)

print("Theorem 4.7")

K.<A,B,C,E,u,a0,a1,b0,b1> = QQ[]

R.<x> = K[]

#Relations among the elements

1) u is a root of a(x) = x^2+a1*x+a0

2) a0,a1,b0,b1 describe a divisor on the curve y^2 = x(x^2-Ax+1)(x^2-Bx+C)

rel1 = u^2 + a1*u + a0

F = E*x*(x^2-A*x+1)*(x^2-B*x+C)

b = b1*x+b0

a = x^2+a1*x+a0

[q,r] = (F-b^2).quo_rem(a) #r must be zero

relations = [rel1] + r.coefficients()

I = K.ideal(relations)

v = b0 + b1*u

s = -a1 - u

30

t = b0 + b1*s

#expressions for aP, bP from above

aP1 = 2*(C-1)*u/(u^2-B*u+1)

aP0 = (-C*u^2+B*u-C)/(u^2-B*u+1)

bP1 = u*(1-C)*(u^2-A*u+1)/(u^2-B*u+1)^2/v * (2*u^3-B*u^2 + (-B^2+4*C-2)*u+B)

bP0 = -u*(1-C)*(u^2-A*u+1)/(u^2-B*u+1)^2/v * (B*u^3+(-B^2+2*C)*u^2 - B*u+2*C)

aP = x^2+aP1*x+aP0

bP = bP1*x +bP0

aQ1 = 2*(C-1)*s/(s^2-B*s+1)

aQ0 = (-C*s^2+B*s-C)/(s^2-B*s+1)

bQ1 = +s*(1-C)*(s^2-A*s+1)/(s^2-B*s+1)^2/t * (2*s^3-B*s^2 + (-B^2+4*C-2)*s+B)

bQ0 = -s*(1-C)*(s^2-A*s+1)/(s^2-B*s+1)^2/t * (B*s^3+(-B^2+2*C)*s^2 - B*s+2*C)

aQ = x^2+aQ1*x+aQ0

bQ = bQ1*x +bQ0

a00 = a0*B^2 + (a0*a1 + a1)*B*C + (a0^2 + a1^2 - 2*a0 + 1)*C^2

a11 = 4*a0*B*C + (2*a0*a1 + 2*a1)*C^2 + (-4*a0)*B + (-2*a0*a1 - 2*a1)*C

a22 = (-2*a0)*B^2 + (-a0*a1 - a1)*B*C + 4*a0*C^2 + (-a0*a1 - a1)*B

+ (-2*a0^2 - 2*a1^2 - 4*a0 - 2)*C + 4*a0

a33 = (-4*a0)*B*C + 4*a0*B + (-2*a0*a1 - 2*a1)*C + 2*a0*a1 + 2*a1

aden = a0*B^2 + (a0*a1 + a1)*B + a0^2 + a1^2 - 2*a0 + 1

ap = (a00 + a11*x + a22*x^2 + a33*x^3+aden*x^4)/aden

acomp = (aP*aQ).coefficients()

print("representation for a’:")

print("a0’:", K(a00-acomp[0].numerator()).reduce(I) == 0)

print("a1’:", K(a11-acomp[1].numerator()).reduce(I) == 0)

print("a2’:", K(a22-acomp[2].numerator()).reduce(I) == 0)

print("a3’:", K(a33-acomp[3].numerator()).reduce(I) == 0)

print("a4’:", all([c.denominator().reduce(I) == aden for c in acomp[:3]]))

b00 = (a0*a1*b0 - a0^2*b1)*A*B + (a0^2*b0 + a1^2*b0 - a0*a1*b1 - a0*b0)*A*C

+ (a0*a1^2*b0 - a0^2*a1*b1 - a0^2*b0 + a0*b0)*B

+ (a0^2*a1*b0 + a1^3*b0 - a0^3*b1 - a0*a1^2*b1

- 2*a0*a1*b0 + 2*a0^2*b1 + a1*b0 - a0*b1)*C

b11 = a0*b0*A*B + (2*a0*a1*b0 - a0^2*b1 + a1*b0 - a0*b1)*A*C

+ (-2*a0*a1*b0 + 2*a0^2*b1)*A + (a0*a1*b0 - a0^2*b1 + a0*b1)*B

+ (2*a0*a1^2*b0 - 2*a0^2*a1*b1 - a0^2*b0 + a1^2*b0 + b0)*C

- 2*a0*a1^2*b0 + 2*a0^2*a1*b1 + 2*a0^2*b0 - 2*a0*b0

b22 = (-a0*a1*b0 + a0^2*b1)*A*B + 2*a0*b0*A*C

+ (-a0^2*b0 - a1^2*b0 + a0*a1*b1 - a0*b0)*A

+ (-a0*a1^2*b0 + a0^2*a1*b1 + a0^2*b0 - a0*b0)*B

+ (2*a0*a1*b0 - 2*a0^2*b1 + 2*a0*b1)*C

- a0^2*a1*b0 - a1^3*b0 + a0^3*b1 + a0*a1^2*b1 - a1*b0 - a0*b1

b33 = (-a0*b0)*A*B + (-a0^2*b1 - a1*b0 + a0*b1)*A

+ (-a0*a1*b0 + a0^2*b1 - a0*b1)*B - a0^2*b0 - a1^2*b0 + 2*a0*b0 - b0

bden = -1*(a0 - 1) * (-a1*b0*b1 + a0*b1^2 + b0^2)

bp = (b33*x^3+b22*x^2+b11*x+b00)/bden

print("representation for b’:")

print("b’=bP(mod aP):", all([c.numerator().reduce(I) == 0 for c in

((bp-bP)%aP).coefficients()]))

print("b’=bQ(mod aQ):", all([c.numerator().reduce(I) == 0 for c in

((bp-bQ)%aQ).coefficients()]))

Ap = C

Bp = 2/E

31

Cp = (B-A*C)/(E*(1-C))

Ep = (A-B)/(E*(1-C))

Fp = (x^2-1)*(x^2-Ap)*(Ep*x^2-Bp*x+Cp)

print("b’^2=f(mod a’):", all([c.numerator().reduce(I) == 0 for c in

((Fp-bp^2)%ap).coefficients()]))

B.3 Proofs for Appendix A

#Type 1 Equation:

K.<u,A,B,C,E,a0,a1,b0,b1> = QQ[]

S.<x> = K[]

F = E*x*(x^2-A*x+1)*(x^2-B*x+C)

Ap = C

Bp = 2/E

Cp = (B-A*C)/(E*(1-C))

Ep = (A-B)/(E*(1-C))

Fp = (x^2-1)*(x^2-Ap)*(Ep*x^2-Bp*x+Cp)

#Richelot correspondence:

rel1 = (u^2-B*u+1)*x^2 + 2*(C-1)*u*x - C*u^2+B*u-C

rel2 = (A-B)*u*x^3 - ((A-B)*u^2+2*(1-C)*u)* x^2 +

(2*(1-C)*u^2 - (A*C-B)*u)*x + (A*C-B)*u^2

#relations among Mumford coefficients

a = x^2+a1*x+a0

b = b1*x+b0

[q,r] = (F-b^2).quo_rem(a) #r must be zero

relations = [a(u)] + r.coefficients()

I = K.ideal(relations)

v = b0 + b1*u

s = -a1 - u

t = b0 + b1*s

print("Lemma A.1:", -b1*(a1*b0-a0*b1)+b0^2 == a.resultant(b))

print("Proposition A.4")

print("v1:", rel2(u=-a0, x = B/2) == 1/8*(4*C-B^2)*(A-B)*a0*(B+2*a0))

print("v2:", (rel2(u=-a0, x=1/x)*x^3)(0) == (B-A)*a0)

print("Lemma A.5:", a0*B^2 + (a0+1)*a1*B+(a0-1)^2+a1^2 == a.resultant(x^2-B*x+1))

print("General checks")

s = -a1-u

t = b1*s+b0

J = I + K.ideal(s^2-B*s+1)

s1 = B/2

t1 = (4*C-B^2)*(B-A)*s*(B-2*s)/(8*t)

e = (A-B)*s/t

print("Q1 on curve:", (t1^2-Fp(s1)).numerator().reduce(J) == 0)

print("square-root E", (Ep-e^2).numerator().reduce(J) == 0)

print("Proposition A.7:", 0)

J = I + K.ideal([a1+B,a0-1])

u1 = B/2

32

v1 = (4*C-B^2)*(B-A)*u*(B-2*u)/(8*v)

print("case b0=0:", (v1/t1).numerator().reduce(J + K.ideal(u*t-s*v))

== -1*(v1/t1).denominator().reduce(J + K.ideal(u*t-s*v)))

print("case b0!=0:",(v1 - (4*C-B^2)*(B-A)/(4*b0)).numerator().reduce(J+K.ideal(u*t+s*v)) == 0)

#Section A.3

aP1 = 2*(C-1)*u/(u^2-B*u+1)

aP0 = (-C*u^2+B*u-C)/(u^2-B*u+1)

bP1 = u*(1-C)*(u^2-A*u+1)/(u^2-B*u+1)^2/v * (2*u^3-B*u^2 + (-B^2+4*C-2)*u+B)

bP0 = -u*(1-C)*(u^2-A*u+1)/(u^2-B*u+1)^2/v * (B*u^3+(-B^2+2*C)*u^2 - B*u+2*C)

aP = x^2+aP1*x+aP0

bP = bP1*x +bP0

aQ1 = 2*(C-1)*s/(s^2-B*s+1)

aQ0 = (-C*s^2+B*s-C)/(s^2-B*s+1)

bQ1 = +s*(1-C)*(s^2-A*s+1)/(s^2-B*s+1)^2/t * (2*s^3-B*s^2 + (-B^2+4*C-2)*s+B)

bQ0 = -s*(1-C)*(s^2-A*s+1)/(s^2-B*s+1)^2/t * (B*s^3+(-B^2+2*C)*s^2 - B*s+2*C)

aQ = x^2+aQ1*x+aQ0

bQ = bQ1*x +bQ0

print("Lemma A.8:", (aQ.resultant(aP).numerator().reduce(I)

==-(C-1)^2*(u-s)^2*(4*C-B^2)*(1-u*s)^2).reduce(I))

print("Proposition A.10:")

J = I + K.ideal([a0-1])

rel1_s = (B+a1)*x^2 - 2*(C-1)*x - (B+a1*C)

print(all([c.reduce(J) == 0 for c in (rel1 +u*rel1_s).coefficients()]))

d1 = (B*b0 - 2*(a1*b0-b1))*(a1+B) -4*b0*(C-1)

d0 = (B*(b1-a1*b0)+ 2*C*b0)*(a1+B) - 2*B*b0*(C-1)

nz = [B+a1,4*C-B^2, C-1, A+a1, -a1*b0*b1+b0^2+b1^2] #nonzero terms

print("bP1-bQ1:", all([(bP1-bQ1).numerator().reduce(J) ==

-nz[0]^2*nz[2]*nz[3]*(2*u+a1)*d1,

(bP1-bQ1).denominator().reduce(J) == (v*t*nz[0]^4).reduce(J)]))

print("bP0-bQ0:", all([(bP0-bQ0).numerator().reduce(J)

== nz[0]^2*nz[2]*nz[3]*(2*u+a1)*d0,

(bP1-bQ1).denominator().reduce(J) == (v*t*nz[0]^4).reduce(J)]))

xhat = (bQ0-bP0)/(bP1-bQ1)

print("xhat:", (xhat - d0/d1).numerator().reduce(J) == 0)

yhat = bP1*xhat + bP0

print("yhat:", (yhat - nz[1]*nz[2]*nz[3]/d1).numerator().reduce(J) == 0)

print("xhat is a root of aP:", rel1(xhatr).numerator().reduce(J) == 0)

print("check that d1 nonzero (by contradiction):")

print("if d1=d0=0, ")

J1 = J + K.ideal([d0,d1])

print("then b1=b0=0 (contradiction):", all([prod(nz)^2*b0 in J1, prod(nz)^2*b1 in J1]))

print("if d0 nonzero, then bP1=bQ1=0.", True) #geometric argument

J2 = J + K.ideal([d1, (bP1+bQ1).numerator().reduce(J)])

print("then 0=1 (contradiction):", prod(nz)^2 in J2)

33

References

[1] Wouter Castryck, Thomas Decru, and Benjamin Smith. Hash functions from superspecial genus-2
curves using Richelot isogenies. Journal of Mathematical Cryptology, 14(1):268–292, 2020.

[2] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH: An
efficient post-quantum commutative group action. In Thomas Peyrin and Steven Galbraith, editors,
ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages 395–427. Springer, Heidelberg, December
2018.

[3] Denis Xavier Charles, Kristin E. Lauter, and Eyal Z. Goren. Cryptographic hash functions from
expander graphs. Journal of Cryptology, 22(1):93–113, January 2009.

[4] Chao Chen and Fangguo Zhang. Richelot isogenies, pairings on squared kummer surfaces and
applications. Cryptology ePrint Archive, Report 2021/1617, 2021. https://eprint.iacr.org/

2021/1617.

[5] Craig Costello. Computing supersingular isogenies on Kummer surfaces. In Thomas Peyrin and
Steven Galbraith, editors, ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages 428–456.
Springer, Heidelberg, December 2018.

[6] Craig Costello and Kristin Lauter. Group law computations on Jacobians of hyperelliptic curves.
In Ali Miri and Serge Vaudenay, editors, SAC 2011, volume 7118 of LNCS, pages 92–117. Springer,
Heidelberg, August 2012.

[7] Craig Costello and Benjamin Smith. The supersingular isogeny problem in genus 2 and beyond.
In Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography - 11th International
Conference, PQCrypto 2020, pages 151–168. Springer, Heidelberg, 2020.

[8] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive, Report 2006/291,
2006. https://eprint.iacr.org/2006/291.

[9] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. Journal of Mathematical Cryptology, 8(3):209–247, 2014.

[10] Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable delay functions
from supersingular isogenies and pairings. In Steven D. Galbraith and Shiho Moriai, editors, ASI-
ACRYPT 2019, Part I, volume 11921 of LNCS, pages 248–277. Springer, Heidelberg, December
2019.

[11] Javad Doliskani, Geovandro C. C. F. Pereira, and Paulo S. L. M. Barreto. Faster cryptographic
hash function from supersingular isogeny graphs. Cryptology ePrint Archive, Report 2017/1202,
2017. https://eprint.iacr.org/2017/1202.

[12] E. Victor Flynn and Yan Bo Ti. Genus two isogeny cryptography. In Jintai Ding and Rainer
Steinwandt, editors, Post-Quantum Cryptography - 10th International Conference, PQCrypto 2019,
pages 286–306. Springer, Heidelberg, 2019.

[13] Steven D Galbraith, Michael Harrison, and David J Mireles Morales. Efficient hyperelliptic arith-
metic using balanced representation for divisors. In Alfred J. van der Poorten and Andreas Stein,
editors, International Algorithmic Number Theory Symposium, pages 342–356, Berlin, Heidelberg,
2008. Springer.

[14] Sabrina Kunzweiler. Richelot isogenies. https://github.com/sabrinakunzweiler/richelot-isogenies,
2022.

[15] Sabrina Kunzweiler, Yan Bo Ti, and Charlotte Weitkämper. Secret keys in genus-2 SIDH. In Riham
AlTawy and Andreas Hülsing, editors, Selected Areas in Cryptography, LNCS, pages 483–507, Cham,
2022.

[16] Tanja Lange. Formulae for arithmetic on genus 2 hyperelliptic curves. Applicable Algebra in Engi-
neering, Communication and Computing, 15(5):295–328, 2005.

34

https://eprint.iacr.org/2021/1617
https://eprint.iacr.org/2021/1617
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2017/1202

[17] Friedrich J Richelot. Ueber die Integration eines merkwürdigen Systems Differentialgleichungen.
1842.

[18] Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem Based On Isogenies. Cryp-
tology ePrint Archive, Report 2006/145, 2006. https://eprint.iacr.org/2006/145.

[19] Benjamin Andrew Smith. Explicit endomorphisms and correspondences. PhD thesis, University of
Sydney, 2005.

[20] Michael Stoll. Lecture notes in arithmetic of hyperelliptic curves, Summer semester 2014.

[21] Katsuyuki Takashima. Efficient algorithms for isogeny sequences and their cryptographic applica-
tions. In Mathematical modelling for next-generation cryptography, pages 97–114. Springer, 2018.

[22] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.0), 2020.

[23] Yuri G Zarhin. Division by 2 on hyperelliptic curves and Jacobians. arXiv preprint arXiv:1606.05252,
2016.

35

https://eprint.iacr.org/2006/145

	Introduction
	Arithmetic of Genus-2 Curves
	Equations for Genus-2 Curves
	The Jacobian Variety
	Torsion Points
	Two-torsion points
	Four-torsion points

	Richelot Isogenies
	(2,2)-Subgroups
	Richelot Correspondence

	Richelot Isogenies for Type-1 Equations
	Richelot Correspondence for Type-1 Equations
	Explicit Formulas

	Efficiently Computing (2n,2n)-Isogenies
	(2n,2n)-Isogenies
	(2n,2n)-Groups and Type-2 Equations
	Algorithm
	Implementation
	Isogeny Chains in G2SIDH PQCRYPTO:FlyTi19
	Genus 2 Hash Functions castryck2020hash,takashima2018efficient
	Isogeny Chains in SIDH

	Open Questions and Future Research

	Special Cases of the (2,2)-Isogeny Formula
	Divisors Supported at Weierstrass Points
	Image Points Supported at Infinity
	Shared Support

	Verification of the Formulas
	Proofs for Section 2
	Proofs for Section 4
	Proofs for Appendix A

