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Abstract. Implicit certificates own the shorter public key validation data. This
property makes them appealing in resource-constrained IoT systems where public-
key validation is performed very often, which is common in Host Identity Pro-
tocol (HIP). However, it is still a critical challenge in IoT how to guarantee the
security and efficiency of implicit certificates. This article presents a forgery at-
tack for the Privacy-aware HIP (P-HIP), and then propose a Secure and Efficient
Implicit Certificate (SEIC) scheme that can improve the security of the P-HIP
and the efficiency of elliptic-curve point multiplications for IoT devices. For a
fix-point multiplication, the proposed approach is about 1.5 times faster than the
method in SIMPL scheme. Furthermore, we improve the performance of SEIC
with the butterfly key expansion process, and then construct an improved P-HIP.
Experimental results show that the improved P-HIP can achieve the performance
gains.

1 Introduction

Public-key validation is a critical issue for any IoT system that relies on public/private
key pairs for digital signature, key exchange and/or asymmetric encryption. Many cur-
rent IoT devices rely on the Public Key Infrastructure (PKI) to achieve public-key
validation[1]. Traditionally, this is accomplished by means of explicit certificates, digi-
tal documents that enclose the device’s public key and are signed by a trusted Certificate
Authority (CA). This relies basically on X.509 certificates [2] for verifying the owner-
ship of public keys. For instance, for the authentication and key exchange of HIP shown
in Figure 1, the certificates cert, and cert, are carried in the messages 21 and I, re-
spectively. Digital signatures of the parties are applied for this situation. In order to
verify the correctness of a message signed by the private key of the sender, a receiver
first needs to validate the corresponding public-key via its certificate.

This work focuses on a specific yet important problem: how to attain fast public-key
validation in IoT. Allowing one IoT device to achieve public key validation remains
a challenging problem [1]. This is because certificate verification involves expensive
public key encryption and bandwidth cost for certificate transmission. Certificate veri-
fication consists of three main steps: (1) check its validity period; (2) validate the CA’s
digital signature using CA’s public key; (3) verify the certificate revocation status. Step
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Fig. 1. HIP handshakes for authentication and key exchange.

(1) is simple and Step (3) is discussed in the next paragraph of this section. In partic-
ular, step (2) has to perform at least one expensive public key operation. On the other
hand, from Table 1 we notice that the certificate size is much larger than the public
key size, and their ratio is greater than 5. Some authors [3, 4] explored how to reduce
the communication overhead for public-key validation. Compared to traditional explicit
certificates, an implicit certificate has the shorter public key validation data. This better
efficiency makes implicit certificates appealing in IoT devices. This paper will propose

a scheme to further improve the efficiency of public key validation using implicit cer-
tificates.

Table 1. X.509 certificate size versus public-key length

RSA ECC
KL KS; CS rat KL KS2|CS rat
1024 128 1237 9.66 112 28 | 948 33.85
2048 256 1590 6.21 160 40 | 981 24,52
3072 384 1935 5.03 256 64 | 1050 16.40
KL: Key Length(bits); KS1: Modulus N size(Bytes); CS: Certificate Size(Bytes)
KS2: Uncompressed point Q(X,Y) size(Bytes); rat: CS/KS; or CS/KS;

Fast public-key revocation validation seems to be a dilemma on IoT devices. In PKI,
public-key revocation is achieved through the certificate revocation. The unexpired cer-
tificates are revoked by using Certificate Revocation Lists (CRLs) or the Online Certifi-
cate Status Protocol (OCSP). The CRL introduces substantial communication overhead
since the CRL size is proportional to the number of revoked certificates. The OCSP
increases certificate revocation verification latency and the risk of leaking user privacy
(such as accessing history of the device). Hence none of the above methods is desired



for IoT. In order to reduce both the communication overhead and the latency, based on
Nyberg’s one-way accumulator, this paper designs a credential revocation mechanism
which is significantly efficient in the verifier’s side.

Privacy protection on IoT devices is a rising issue as identity masquerade and iden-
tity tracing have become common attacks in wireless mobile environments. HIP is a
suitable solution for IoT devices considering the security and privacy requirements of
IoT systems [5]. In the HIP, an IoT device is issued a public key as host identifier and
a 128-bits hash of the public key as Host Identity Tag (HIT). A mobile IoT device uses
the same public key and HIT to authenticate to its peers when it moves from one net-
work to another network. By learning the public key and HIT, an attacker can track the
mobile IoT device. This paper improves the security of P-HIP in [5] such that devices
can avoid tracking by changing the short-lived implicit certificates.

The main requirements of practical public-key validation in IoT are summarized as
follows: (1)Security: The CA can not be compromised or coerced to assign a public key
to a malicious attacker. (2)Accuracy: A device should determine a certificate revocation
status without error. (3)User privacy: The protocol should not leak the identities of the
accessing devices. (4)Efficiency: The protocol should cost small memory, computation,
and network resource on IoT devices. (5)Compatibility: The protocol is required to be
compatible with current certificate standards and existing certificates.

Our contribution In this paper, we first present a forgery attack for P-HIP scheme [5],
and then propose a secure and efficient implicit certificate (SEIC) scheme to overcome
its weaknesses. Specifically, the SEIC scheme runs the signature algorithm to output a
signature by hashing the public key validation data, the timestamp and the CA’s public
key. A table-and-optimality-based technique is designed for Elliptic-Curve (EC) fixed-
point multiplication such that it’s achievement is about 1.5 times faster than the method
[6]. In addition, SEIC contains a credential revocation mechanism which is significantly
efficient in the verifier’s side. That is, the verifier achieves the revocation verification of
a public key by performing one Nyberg one-way accumulator operation while keeping
only one Z, symbol. Furthermore, we improve SEIC via the butterfly key expansion
process, and then construct an improved P-HIP. Experimental results show that the im-
proved P-HIP can achieve performance gains during credential issuance and mutual
authentication, while preserving the user privacy.

The rest of this paper is organized as follows: Section 2 analyzes the security of
the implicit certificate scheme in P-HIP [5] after an overview of the scheme, and then
introduces related work. Section 3 explains the basics notations as well as the primitives
of proposed scheme. Section 4 introduces SEIC scheme and discusses its security and
performance. Section 5 shows that SEIC can be improved via the butterfly key expan-
sion process, and then an improved P-HIP is constructed. Section 6 formally analyzes
the privacy of the improved P-HIP and the corresponding performance gains is shown
in Section 7. Finally, Section 8 concludes the discussion.



2 Analysis of the implicit certificate scheme in P-HIP and related
work

2.1 The implicit certificate scheme in P-HIP

Consider an additive cyclic group G generated by a point G on the elliptic curve y? =
x3 + ax + b over a finite field F,,, where ¢ is a large prime and 4a® + 276 # 0(mod q),
and n is the order of generator G. We assume that ()., and Qz; in G are the public keys
of CA and CA, respectively.

As shown in Figure 2, an implicit certificate scheme was proposed recently to de-
sign a P-HIP [5]. We review the scheme as follows. The basic goal of the scheme was
to bind a public key @, to its owner u via the public-key validation data V,,. To com-
pute the private key construction data s,,, the scheme is different from the conventional
ECQYV implicit certificate schemes. That is, the CA does not issue a certificate (cert,)
to the user. The scheme computed s,, as s, = ky, + deq(modn), which did not multi-
ply h,=Hash(cert,,) with k,, or d., to compute s,, (see the steps 23 of Fig. 2). Then,
s, and 6, were encrypted and then sent to the user. Upon receiving a new ECQV-
based credential s,, and d,,, the user computed a unique public key Q,=d,, * G and HIT
HIT,=Hash(Q,,) for a network that it would join without communicating with the
CA.

A user device provided its ECQV public key @, and the public-key validation pa-
rameter V, to a verifier device. The verifier computed a public key Q!, as @, =V4, + Qcq-
If Q/,=Q., then the verifier ensured that the public key was genuine and issued by the
CA.

user CA user
ZO-de (EQW(RH)) 31-a'u = F Qca
11.7, € [n—1] 2;-’; € E{ﬂ - é] :;-\{Da};ﬁ:u[sw[%]n)& ]
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Fig. 2. The implicit certificate scheme in P-HIP [5].

2.2 Security weaknesses of the implicit certificate scheme in P-HIP

We have observed weaknesses of the implicit certificate scheme in P-HIP [5]. First,
the scheme suffered from a forgery attack. This is because a malicious user holding



the implicit certificate issued by a CA is able to forge an implicit certificate issued by
another CA, precluding the use of any digital signature scheme. In the case, as shown in
Figure 2, the CA whose public key is ), had issued an implicit certificate (V,,, d,,, Q)
to u. Assume that an adversary either is w himself or colluding with him. Let CA be
compromised by the adversary who knows its public key Qcx = (Z,7). The adversary
disguising as CA can mount a forge attack such that a forged (V,,, d,,, Q) passes in the
public key verification. Here, V., = Vi, + Qe + (—Qzz), and —Qzz = (T, —7 mod n).
This is because in the scheme [5], CA had issued the public key @, to w if and only if
its implicit certificate satisfied the equation Q,, = V', + Qzz. It is easy to see that the
equation holds under the condition that @, = V,, + Q.. This means that the forged
implicit certificate under the CA is valid to u. Therefore, the implicit certificate scheme
in P-HIP [5] is insecure.

In addition, we deplore implicit certificate schemes in [5, 6] lack of a revocation
mechanism. Thus, there is a risk that a malicious attacker might try to use the relevant
credential that it is no longer valid while the credential itself has not expired. Instead of
CRLs and OCSP, we propose a certificate revocation mechanism that uses only one Z,,-
symbol as the authentication information to achieve the revocation validation of implicit
certificates.

2.3 Related work

Public-key validation is emerged as a popular tool in IoT applications. In PKI, the CA
issues and manages public keys of users by using digital certificates. In the traditional
explicit certification model,a user’s digital certificate cert, = (meta, Qy, sigy) is is-
sued by a trusted CA. The signature sig,, on cert, implies that the owner of cert,
knows the private key d,, of public key ),,. In the implicit certification model, the key
pair (d,, Q) is computed by the user u in collaboration with the CA. Implicit cer-
tificates were introduced in the work of Guinther [7] and Girault [8]. Brown et al. [9]
defined a general notion of security for implicit certificates, and proved that optimal
mail certificates were secure under this definition. However, it has various drawbacks
in terms of security and efficiency. In 2013, Campagna [10] presented an implicit cer-
tification solution in the Elliptic Curve Qu-Vanstone (ECQV) protocol. Unfortunately,
this approach suffered from certificate misbinding attacks. Recently, Barreto et al. [6]
proposed an improvement for its security weaknesses and computational efficiency.

The authenticated key establishment between two IoT devices was achieved via
HIP [11]. Figure 1 shows that the host identifiers (public keys and HITs) were validated
by the HIP peers exchanging X.509 certificates. However, the size of the certificate is
much larger than both that of its public key (see Table 1) and the maximum transmission
unit of the IEEE 802.15.4 link [12] in IoT networks. Recently, Hossain and Hasan [5]
proposed P-HIP in which the ECQV implicit certification scheme was able to reduce the
public-key validation data for mutual authentication while protecting the user privacy.
In this work,we shows that the ECQV implicit certificate in P-HIP suffered from a
forgery attack, that is, a malicious user holding the implicit certificate issued by a CA
was able to forge an implicit certificate issued by another CA. Then, a new scheme
SEIC is proposed to resist the forge attacks.



3 Preliminaries

In this section, we introduce some notations and Nyberg’s one-way accumulator needed
later.

3.1 Notations

We shall use the following notations throughout the paper. A set with integers 1,2, --- ,n—
1, is written either Z?, or simply [n — 1]. We denote by || the length of the binary string
corresponding to z, and [x] the least integer that is greater than or equal to the given
number z. Let F, be a finite fields, Z,, be a addition group, and Z}, = Z, \ {0}, where

q and n are two prims, ¢ > n + 1, and n is the size of a signature (see step 24 in Figure

3 and 5). We let H : {0,1}" x {0,1}* — {0,1}" denote a NOWA for one-way hash
function, Hash : {0,1}* — Z, and h : {0,1}* — {0, 1}"¢ be two one-way hash func-
tions, where h is used to construct the required H. Let p is a prime number satisfying
r=|p|, where A, € Z, (see Section 4.2)).

3.2 Nyberg’s one-way accumulator

Here, the concept of the Nyberg One-Way Accumulator (NOWA) in [13] is reviewed.
Let H(-,-) denote NOWA from {0,1}" x {0,1}* to {0,1}", and ©® be the bitwise
operation AND. The NOWA was constructed by a one-way hash function & : {0,1}* —
{0,1}7%. Here, N = 2¢ is an upper-bound to the number of items to be accumulated,
and r = |g| is an integer. All that was required to specify an NOWA was hashing process
and AND operation.

Let hy, ho, -+ ,hp, n < N be the items to be accumulated, and h(h;) = y;, i =
1,--- ,m be their hash values. Each hash value is a string of length rd bits. The heart
of NOWA was the hashing process. The hashing process applied a hash function h to
the input to produce a r-bit output. The hashing process was composed of the following
operations: (1)Hashing operation: Hash accumulated item h; of the input and output
a rd bits binary string v;=h(h;). (2)Transfer o: NOWA did a transfer operation on
the binary string v; which was divided into = blocks, (v; 1, - ,v; ), of length d. The
transfer of a block from a d-bit input to a bit output was performed as follows: If v; ;
was a string of zero bits, it was replaced by 0; otherwise, v; ; was replaced by 1. That
is, a(v;) =(b; 1, -+, b; ), where b; ; € {0,1}, j=1,--- ,r. In this way, we can transfer
an accumulated item h; to a bit string, b;=a(h(h;)) € {0,1}", which can be considered
as a value of r independent binary random variable if & is an ideal hash function.

In practice, the NOWA is effectively implemented by using the generic symmetry-
based hash function and simple bit-wise operations. The NOWA on an accumulated
item h; € S with an accumulated key k& € {0,1}" was able to be implemented us-
ing the AND operation described as H(k, h;) = k © a(v;) = k © a(h(h;)). And it
also could be represented as A = H(k, h;) =k © a(v;) =k © a(h(h;)) G € [n]) if S
was a set of accumulated items S = {s1, s2,- -+, $p }. H(-, ) has the following proper-
ties: (1) Quasi-commutativity: H(H (k,h1), he) = H(H (k, ha), h1). (2) Absorbency:
H(H(k,h;),h;) =k © a(h(h;)) = H (k,h;). (3) An item h; within the accumulated
value A can be verified by H(A, h;) = A® a(h(h;)) = A.



4 The proposed scheme

In the section, we propose a secure and efficient implicit certificate (SEIC) scheme to
overcome the P-HIP’s weaknesses in Section 2.1. In order to make the signature s,, pre-
vent the forgery attack, the SEIC scheme constructs a secure digital signature algorithm
by hashing the public key validation data V,,, the time-stamp ¢,, and the CA’s public
key Q.. The scheme also presents a table-and-optimality-based technique that makes
the fixed-point multiplication in [6] more computationally efficient. Then, a certificate
revocation mechanism is proposed. Finally, a formal proof for the security of SEIC is
provided.

user CA user

11.1, € [n—1] 20. Dy (Eg,, (R.)) 3.a, =10,

12.R, =71, *G 21. ky€[n—1],readt, 32.Dg (B, [0, Vi tu])
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Eaca®u) 54 b, = Hash(V,,.t,, Q.s) 5.0, #C
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Fig. 3. The proposed secure and efficient implicit certificate (SEIC) scheme.

4.1 Proposed SEIC

The user sends a request R, to the CA via a secure way (i.e.,public key encryption),
by choosing a random integer ,, € [n — 1] and then calculating R,, = r, * G. Upon
receiving the request, the CA obtains R,. Then, by picking a random integer k, €
[n — 1] and computing V,, = R, + ky, * G and s,=k,, + hy X d.q mod n, the CA
issues a public key construction data s,, and a unique public-key validation data V,, to
the user, where h,=Hash(Vy, ty, Qca), L., is the current time-stamp of the CA. Before
sending (sy, Vi, t,,) to the user, the CA uses the shared session key, «,, = dcq * Ry, to
encrypt them and compute their Message Authentication Code (MAC). Upon receiving
the messages from CA, the user computes «,, to decrypt E, [y, Vu, t.], and verifies
MAC,,,[su||Vul||t]. Then, the user generates a private key d,, = r,, + s, mod n and
public key @, = d, * G. The user validates the result using the equality Q,=V,, +
Hash(Vy,ty, Qca) * Qca- The details of the proposed implicit certificate protocol are
shown in Figure 3.

The proposed SEIC can prevent the forged attacks in Section 2.1. Since Hash(-)
is one-way and collision-resistant, it is hard to compute a pre-image of a given value.



That is, given a randomly chosen h,, = Hash(V,, t., Qca), it is computationally infea-
sible to find a tuple (V, t,, Qzz) such that Hash(V .y, t,, Qzz) = h.,. Thus, based on
(Vius tu, Qca), it is hard to forge an V,, satisfying Q,=V, + h., * Qzz. In other word,
in the proposed SEIC, it is computationally infeasible for a malicious user holding the
implicit certificate issued by the CA to forge an implicit certificate issued by another
CA.

4.2 Performance considerations

Assume that all the users know the system parameter pas={G, G,n, Hash(-)}. The
proposed SEIC can be very efficient since it allows a certain amount of precomputation.

Precomputation for h,, * Q., Assume that b, (bits) is the memory size used to the
precomputation for h,, * (... Notice that the binary length of the output of Hash is
|n|, and the elliptic curve is on the finite field F,. We observe that the computational
efficiency of h % Qcq is significantly improved when h is restricted to a sufficiently
small range. Note that the CA’s public key )., is commonly a fixed point for each
user. Therefore, h,, * Q.. is amenable to optimization methods typical of fixed-point
EC multiplications [6]. For a larger integer h, € {0, 1}, we select a suitable base
B and obtain its expansion (1) on the base B, so that each term (c¢; - Bl) * (Qcq Ccan be
calculated efficiently.

hy=¢u - B*+¢o_1-B" '+ 4¢ -B+cp. )

Here,0 < ¢; < B,1=0,1,--- ,k,and k = [|n|/(log2B))] is the number of substrings
of length logs B in h,,.

Given b,, and 7, we design a table-and-optimality-based technique: how to choose
an optimal base B such that the operation h* ()., is accelerated. The specific operations
are as follows:

(1) Define allowed values AV = {B = 29 : 2|q|[|n|/6]2° < bas}. This is because that
there are « - B intermediate results (¢; - Bl) * (¢q to be stored, and z,y € F, fora
point Qcaz(xv y)

(2) It is recommended to select the largest B = 2% in AV. We notice that x = [|n|/0]
decreases as B = 27 increases.

(3) By pre-computing T[l][cl] =(c;-BY*Qeq (0 < ¢; < B,0 < I < k)and then storing
them in the memory of the device, the h,, * Q.. operation can be implemented via
table look-ups as follows:

hu * Qca

:(c,gfl-B“71+~~-+C1'B+Co)*Qca

= (er-1- Bmfl) * Qea + -+ (1 Bl) * Qca + o * Qca
— Pls — 1fewa] + - + Pl1][ea] + F{0][co].

This means that h,, * Q., operation can be attained through (x — 1) point additions.



For example, assuming that |n|=256, |¢|=512, and s,,=512KBs=4194304 bits (IoT
devices have a few megabytes of memory (8—32 KB of RAM and 48-512 KB of ROM),
e.g., eZ1-Mote [14] has 32 KB of RAM and 512 KB of ROM). In the case, the allowed
values is AV = {8,16,32,64}. We choose B=64, and then k=[256/(log264)]=43.
Ignoring the (usually small) cost of table look-ups, this approach would take only
42 point additions. The size of the memory block storing the intermediate results is
43 x 64 x (512 + 512) bits =344 KBs.

In comparison, the method in SIMPL [6] using B=16 would require 63 point addi-
tions and 128 KBs memory. Thus, the table-and-basis-based technique is expected to
be about 1.5 times faster than the method [6].

Implicit certificate revocation Let H/1P(") be the set of revoked implicit certificates
in time slot LI. Based on the NOWA H, the revocation manager (RM) compute a NOWA
value in Z,, by accumulating the hash values of implicit certificates in H I P®)_ Then,
the RM distributes the value in Z,, to all users in advance. Keeping just one Z,-symbol
for the revocation verification reduces the storage and communication costs of each
user. Specifically, when a user u requests to revoke her/his implicit certificate, the RM
can revoke the implicit certificate as follows.

(1) The user u sends the implicit certificate (V,,,t,,dy, Q) and the CA’s ID to the
RM. The RM first determines the implicit certificate to be unexpired and correct by
using the steps 36-37 in Figure 3.

(2) The RM revokes the unexpired and correct implicit certificate by updating the pre-
vious Ay, with the new A, for the time epoch LI/, where A, = H (A, HIT,,), and
HIT, = Hash(Q,). The RM then sends the value A, to all users via the block
chain or a tamper-proof electronic bulletin board.

(3) Each verifier downloads timely the new A, /. The verifier then checks if H (A, HIT,) #
A,y for the valid public key Q,,, where HIT,, = Hash(Q,,). If the inequality holds,

(Vu, tu, Q) is valid; otherwise, it has been revoked.

4.3 Security analysis

Under the assumption that the elliptic curve discrete logarithm problem (ECDLP) is
hard on G, we provide the security proof of SEIC as follows.

As shown in Figure 3, the corresponding digital signature scheme DS=(Gen, K, S, V)
is defined as follows:

- pas ={G,G,n, Hash(-), H} < Gen(1"): On inputting the security parameter x,
the probabilistic algorithm Gen outputs an array of system parameters pas.

- (deas Qea) < K(pas): On inputting the system parameters pas, the probabilistic
algorithm K generates a pair of public and private keys (dcq, Qo) for a CA.

- (Ru, Vi, tu, Su))  S(deq, Ry): On inputting a private key d., and a message
R, €< G >, the CA runs the probabilistic algorithm S to produce a signature o =
(Ve sy Sau)-



- {0,1} + V(Qcq, Ry, 0): On inputting the CA’s public key Q.,, a message R,, and
a signature o, anyone can run the deterministic algorithm V to check whether o is a
valid signature. That is, o is a valid signature if Q,, =V,,+Hash(Vy, ty, Qca) *Qca»
where Q,, = R, + s, * G.

The Lemma 1 in Appendix proves the unforgeability of DS in the proposed SEIC
against adaptive chosen-message attacks.

Assume a scenario with n,, legitimate users, denoted usr; for 1 < i < ny,, and
with 1., CAs, denoted CA; for 1 < j < ng,. Let (R; = r; * G, j) denote usr;’s
implicit certificate request for C'A;, and let (V;, t;, s;) be the response sent by that CA.
Also, let @; and d; denote, respectively, the public and the private keys reconstructed
by usr; from C'A;’s response, using that CA’s public key ();. There are no restrictions
on the number of credential requests that can be sent by usr; to C'A;.

Definition 1 A (7, €)-adversary A (of an implicit certificate scheme) is a probabilistic
Turing machine that runs in time at most T, interacting with legitimate users and CAs
by performing each of the following operations any number of times:

(1) receive a request (R; = r; x G, j) from usr; for an implicit certificate from C A;;
and

(2) send a request (R;; = ry * G, j') to CAjs, and receive response (s;, Vi, mac;:)
Sfrom CAj.

With probability at least €, A outputs a triple (r,V, t, s) such that d=r + s is the private
key associated with the public key Q) reconstructed from' V and some Q) (that is, d x G
=V + Hash(V,t,Q.) x Q) such that either

(1) [Forgery attack against CA,]: (V,t,s) was never part of a response of C A, for
the request (r * G, z); or

(2) [Key compromise against usr;]: (V,t,s) was included in a response of CA; to
some request (r x G, j) originally from usr;, where j # z.

A (7', €)-adversary is considered successful if € is non-negligible for a polynomial time
/

7'

In summary, as shown in Figure 4, this model covers a scenario where the adversary
A acts as proxy for requests from users and responses from CAs. Hence, .4 can: simply
relay the request to the correct CA; modify the value of R, =r;*G in the request; modify
the user identifier ¢ in the request, thus affecting the value of V in the credential; and/or
forward the request to a different CA.

Under the security model of Definition 1(see Figure 4) and the random oracle
model, Theorem 2 in Appendix proves the security of the proposed SEIC.

S Application to HIP in IoT

Public key validation can ensure the authenticity of an HIT in HIP. HIP is based on
the Diffie-Hellman key exchange, using public key identifiers from a new host iden-
tity name-space for mutual peer authentication. The device uses a 128-bits hash of the
public key as HIT.
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Fig. 4. Security model for implicit certificate adapted from [[9]].

An important challenge in HIP environments is to build a privacy-preserving HIP
where authorized devices cannot be tracked, either by eavesdroppers or by the system
itself [5]. One common approach for this issue is to provide a IoT device with mul-
tiple short-lived public keys. Then, IoT devices can avoid tracking by changing the
public keys employed to sign its messages while it move from one network to another
one. Hence, messages broadcast from different locations and using distinct public keys
cannot be easily linked to any given IoT device. However, the total number of pub-
lic keys valid simultaneously should be limited [6]. Among the existing solutions, the
Secure Credential Management System (SCMS)[15] is one of the most relevant. The
approach in SCMS combines privacy and scalability in the so-called butterfly key ex-
pansion process. Essentially, this process can issue multiple implicit certificates with a
single request from a user. Furthermore, in the proposed SEIC, it reduces the amount of
data exchanged and also the number of operations performed by the user.

In this section, we improve SEIC via the butterfly key expansion process, and then
construct an improved P-HIP, We also formally analyze the privacy of the improved
P-HIP.

5.1 Performance improvement for SEIC

The implicit certificate issuance and revocation in the improved SEIC involves mainly
four entities: User, Registration Authority (RA), CA and RM. Assume that there is no
CA-RA collusion. They are respectively responsible for the following operations:

— User: the entity that requests credentials from a registration authority (RA). For
better efficiency, each request leads to the provisioning of a batch containing 3
implicit certificates.

— RA: the entity that creates 8 implicit certificate requests to the CA from a single
request of a user (called butterfly key expansion process). Those requests are indi-
vidually forwarded to the CA, in such a manner that requests associated to different
users are shuffled together.

— Credential Authority (CA): responsible for issuing credentials upon the requests
by the RA. The credentials are then individually signed and encrypted by the CA
before being sent back to the RA, from which they are delivered to the requesting
user.

— Revocation Manager (RM): the entity that identifies the implicit certificates of
users/devices and, whenever necessary, revokes them by accumulating their hash



values to generate a value A, in Z, (see Section 4.2). Then, the RM distributes
timely A, to all users in advance.

In the improved P-HIP, Figure 5 presents the message exchange in the implicit cer-
tificate issuance phase, where the revocation operations are the same as that of the SEIC
in Section 4.2). All communications are made via secure ways, using standard protocols
(e.g., Transport Layer Security-TLS) or public key encryption.

The user first sends (R, f) to the RA. In response to the request of the user, the
RA expands the point R,, into [ points RV = w+f (1) x G. Note that f is shared only
between the user and the RA. The RA then sends each individual RT(LI ) to the CA, while
shuffling together requests from different batches to ensure their unlinkability.

The CA, in turn, randomizes Rﬁ ) by picking randomly an integer kff) and adding

ff) * (G to it. The randomized point is used as the butterfly public key validation data
Vu(l). Then, according to the procedure in Sectlons 4.1, the CA generates the hash value
for (Vu(l), tg ), Qca), and outputs its signature 5 ). The resulting credential is encrypted
and verified with the Diffie-Hellman-key o& deq * th) and sent back to the RA. The
RA, unable to decrypt the CA’s response pkg, forwards it back to the requesting user,
in batch.

Finally, the user computes aq(f ) to decrypt pkg. Tt then verifies that the retrieved
credential is indeed valid via Mac o [s [s )H (l)] and Q) = V" + P Q. aiming to
ensure there is no Man-in-the-Middle attack by the RA. If the verification is successful,
the obtained keys, (Vu(l) t(l) dq(f ), q(f )), can be used for signing messages.

user /RA CA user
User:
11.7, € [n—1] 21k e—1lreadty  31.al = (u+F(D) *Cua
w € In— O _ 0
2268, =k, *G . (@ @ L
12-Ru =1, %G u 32.D (:,.(E (IJ(S VL )

230 = (1) + 80

@O @@
33 Verify Mac o0 (s, ||V lt,")
24.h0 = Hash(Vm s ‘

i 2550 = kP + bV . d,,modn 34 dP =7, + f©) + s modn
=(1) 3 A
: B 26.a® = d.o « RO 35.00 =0 <6
oy 36.h = Hash(va,tEf), Qo)
1380 =R+ f(D =6 . 0 _2 y® | O
n<l<p) B ¥t Mac o1V 16) 37.Qu = Vi b+ Qea

38. HITY = Hash(Q"")
3gstore VP e a® @@ piT?
39.destroy- si(f), Ry, 1, f

Fig. 5. The implicit certificate issuance phase in the improved P-HIP.



Algorithm 1 : Public kry validation

{0,1} < PubKeyValid(pas, Qeca, Au, (Vu, tu, Qu, HIP,)): It takes pas,Qca,
Ay and (Vi tu, Qu, HIP,) as the input, and outputs 1 if (Q., HIP,) is authentic
or 0 if either the public-key or HIT is forged.

(1) t,, is unexpired.

(2) Q. is unrevoked by computing HI Tl(LD = Hash(Q.) and then check if
H(AL, HIT") # A,

(3) Qv is correct and issued by CA if QSP:V,LEZ) + A « Qcq holds.

(4) If the above checks are true, it returns 1; otherwise, it return 0.

Algorithm 2 : Keying material generation

null or ((dpu, Qpu)s Vou) — KeyMatGen(HIT,,d., PuzSol): It takes the
initiator/responder host identifier H 1T, her/his private key d,, and puzzle/solution
PuzSol as the input, and outputs null or a message ((dpu, @pu), Vpu) as follows:
It HIT, equals null or HIT, is revoked or PuzSol equals null, it returns null;
otherwise, it returns ((dpu, Qpu), Vpu) by the following operations.

(1) Choose a random integer ., € [n—1] and generate a random point Vy,,, = 1y *xG.
(2) Compute the hash value hy,,, = Hash(HIT,|| PuzSol||Vpu).

(3) Use the private key d. to generate Vp,,’s validation data QQp, = dpu * G, where
dpu=hpy X dy + Tpy, mod n.

Algorithm 3 : Keying material validation

nullor {0,1} + KeyMatValid(HIT,,Qu, PuzSol,Qpu, Vpu): It takes the
initiator/responder host identifier HIT,,, her/his public key @Q., puzzle/solution
PuzSol, the random point V.., and the validation data Q. as the input, and outputs
null or 1 if V},, is authentic or 0 if the random point is forged. Specifically, if HIT.,
equals null or PuzSol equals null, it returns null; otherwise, it returns {0, 1} by
the following operations.

(1) Compute the hash value hy,, = Hash(HIT,|| PuzSol||Vp).

(2) Generate the point Qp,, = hpu * Qu + Vpu.

(3) If Q). = Qpu, it returns 1; otherwise, it returns 0.

Fig. 6. The algorithms in the improved HIP




5.2 Performance improvement for P-HIP

Host identity and host identity tag Suppose that v € {i,7} is an authorized user as
an initiator ¢ or a responder 7. Then, 8 implicit certificates {Vu(l), t&l), dg ), ng )} are
first obtained via the process in Section 5.1, [=1,--- , 8. For each implicit certificate
{Vu(l)7 tg), dq(f), 1(})}, its host identity is the public key Qq(f). The corresponding HIT
can be computed by the user v as HIPSf) =H ash(Qq(f )). Hence, the mobile user u can
use a new host identity Qq(f ) and its HIPS}) to avoid identity tracking when she/he moves
from one network to another network.

Host identity validation Here, we present the procedure to validate host identifiers,
such as public keys and HITs. Without loss of generality, assume that a prover is the user
u who holds an implicit certificate {Vu(l), t,(f ), dgl ), Qg )} and HIPS). Now, the prover
provides its host identity Qg ), HIP), the public-key validation data (Vu(l)7 ¢ )) and
the CA’s identity to a verifier. The verifier validates w’s implicit certificate by running
Algorithm 1 in Figure 6 as PubKeyV alid(pas, Qca, ALy Vi, tu, Qu, HIP,)).

The correctness of the host identity QS} ) can be seen as follows. Qg ) = dq(f ) %G =
(rut F()+5D) 6 G=(ru+ FO) + 5D+ deg) « G =RY + 6O 4+ (WP - dpo) + G
VO b s

Mutual Authentication Let the CA issue (V;(l), tgl), dgl)7 le)) and (VT(L) , tgL), dg), QSL))
to the initiator and responder, respectively. Assume that CA’s public key ()., and RM’s
authentication information A, are correctly sent to all users in advance. The initiator
and responder compute HITz(-l) and HIT&‘) as Section 5.2), respectively. For the im-
proved P-HIP, the mutual authentication procedure is shown in Figure 7.

In the improved P-HIP,the operations in the first step and the last step are the same
to the common HIP. We will omit the statement of these two steps, and will describe
the other intermediate steps and operations in detail.

Upon receiving the message I, the responder then creates a message R; that con-
tains HITZ(.I), HITY, a puzzle, its keying material (Q,, V,), its host identity Q" and
the corresponding validation data (VT(L) , t&")). The keying material is generated by the
responder running the Algorithm 2 in Figure 6 as ((dpy, Qpr), Vor) «— KeyMaterialGen(
HIr , av ,puzzle).

After receiving the message R;, the initiator first validates the host identity QﬁL)
and HITLL) by using the Algorithm 1 in Figure 6 to ensure that the keying material
(Qpr, Vpr) is generated by an authorized user. Next, the initiator solves the puzzle to get
its solution, and then verifies the keying material (Q,,, V}) in Ry by running the Algo-
rithm 3 in Figure 6, this is, {0, 1} « KeyMatValid(HIT", Q") puzzle, Qpr, Vir).
The initiator generates the keying material by using the Algorithm 2 in Figure 6 as
((dpi, Qpi), Vpi) < KeyMatGen( HITi(Z), dz(-l), solution). Finally, the initiator com-
putes a session key K=d,,; * )p,, and sends the message > to the responder. The mes-
sage I includes the elements as shown in Figure 7. If one of the above checks returns
false, the initiator exits.



Similar to the initiator’s approaches, the responder verifies the authenticity of the
host identity Q&L) and HIT&‘), validates the keying material (Q;,, V;,-) in I, and au-
thenticates the initiator. Next, the responder computes the session key using d,, and
Qir as K = d,, * Q;, , and then validates the M ACk (N;).

Finally, at the last step, the responder sends R» and the initiator validates M AC'k (N,.)
to ensures that a shared session key K is created successfully. After this point, the com-
munications between them are encrypted using K.

Initiator Responder
<Vi(l) 7tgl) ,dgl) ’QEZ) ,HIPEU) (Vﬁl') ,tg,b) ,d$£,) ’QSL) ,HIP,&O)

1 ={up{Y 1Pl y

Ry ={HIP{") HIP{Y) puzzle,Qpr, Vpr, @8, V() ¢}

Io={HP" 1P solution, @y, Vips , Ni, Mac e (N;),Q80, v (D)3

Ro={HP{") HIPY) N, Macy (Nr)}

Fig. 7. The mutual authentication in the improved P-HIP

User privacy In the improved P-HIP, a user may utilize a remaining unused implicit
certificate to generate the new host identity while she/he moves to a different network or
wants to update its host identity. This way provides a secure interact between different
parties without compromising user privacy. Let us suppose, an adversary is provided
with the implicit certificates, {(Vu(l), tg), dg), Ef))};zl, of a user v that were used in
w number of networks. The goal of the adversary is to infer that the implicit certificates
belong the same user. In Section 6.2, we utilize the formal privacy definition [20], to
prove that the improved P-HIP gives rigorous, rather than ad-hoc or intuition-based
privacy guarantees.

6 The security analysis of the improved P-HIP

In this section, we analyze the security of the improved SEIC and the privacy of im-
proved P-HIP.
6.1 The security analysis for improved SEIC

Here, we show that the improved SEIC in Section 5.1 is secure. Under the attack model
in Definition 1, Theorem 2 shows that there is no adversary A that is successful against



the proposed SEIC. Form Lemma 1, we know that SEIC’s signature scheme DS is se-
cure against adaptive chosen-message attacks. The improved SCMS in Section is the
butterfly key expansion of the proposed SEIC. The attacks in Definition 1 does not
invalidate SEIC’s security claims for at least three reasons[6]. The first is that in the
improved SEIC, one of security assumptions is that there is no CA-RA collusion. Next,
SCMS recommends using the ECDSA-signature algorithm [15], for which SEIC’s sig-
nature scheme D.S is a secure ECDSA-signature against the attacks in Definition 1. Fi-
nally, the latest version of SCMS already suggests the countermeasure hereby proposed
[16], that is, the signer’s certificate information is included in the hash computation.
Therefore, the improved SEIC remains secure against the forgery in Definition 1.

6.2 The formal privacy analysis of the improved P-HIP

We first define the privacy model, and then formally analyze the privacy of the improved
P-HIP.

Privacy model We now consider Ouafi and Phan’s privacy model [20]. In this model,
attacker A can eavesdrop on all the channels between two users, and he/she can also
perform any active or passive attacks. In this regard, A needs to model the following
queries in polynomial time:

Execute(P,U, s): This query represents the passive attacks. In this context, the
attacker can eavesdrop all the transmitted messages between the user &/ and a party
P € {CA, RA,V} in the s-th session, where the user V satisfies VV # U. Consequently,
the attacker obtains all the exchanged data between U and P.

Send(U,V, m, s): This query models the active attacks in the system. In this query,
attacker A has the permission to impersonate a user I/ in the s-th session, and forwards
a message m to another user V. Besides, the attacker has the permission to block the
exchanged message m between I/ and V.

Query(U, my,ms): This query models the adversary’s ability to investigate a user.
For this, A sends m; to U and receives mso from U.

Corrupt(U, K): In this query, the attacker A has the permission to access secret
information K stored in the user /’s memory.

Test(Uo, Ui, s): This query is the only query that does not correspond to any of A’s
abilities or any real-world event. This query allows to define the indistinguishability-
based notion of untraceable privacy.

If the party has accepted and is being asked a Test query, then depending on a
randomly chosen bit b € {0,1}, A is given U, from the set {Up,U; }. Informally, A
succeeds if it can guess the bit b. In order for the notion to be meaningful, a Test session
must be fresh in the sense of Definition 3.

Definition 2 (Partnership and session completion) An initiator instance i and a re-
sponder instance r are partners if, and only if, both have output Accept(i) and Accept(r),
respectively, signifying the completion of the protocol session.

Definition 3 (Freshness) A party instance is fresh at the end of execution if, and only
if (1) it has output Accept with or without a partner instance and (2) both the instance
and its partner instance (if such a partner exists) have not been sent a Corrupt query.



Definition 4 (Indistinguishable Privacy (INDPriv)) It is defined using the game G
played between a malicious adversary A and a collection of initiators and responders
and RAs and CA instances. A runs the game G whose setting is as follows.

— Learning phase: A is able to send any Execute, Send, Query, and Corrupt queries
and interact with the RA, the CA and users Uy, U, that are chosen randomly.

— Challenge phase: The attacker selects two users Uy and Uy, and forwards a Test
query (Uy, U, s) to challenger C. After that, C randomly selects b € {0, 1} and the
attacker determines a user Uy, € {Up, U } using Execute, Send and Query queries.

— Guess phase: The attacker A finishes the game G and outputs a bit be {0,1} as
guess of b. The success of attacker A in the game G and consequently breaking the
security of INDPriv is quantified via A’s advantage in recognizing whether attacker
A received Uy or Uy, and is denoted by Adv'¥PP™ (k) = | Pr[b = b] — 1/2|, where
k is a security parameter.

Theorem 1 The improved P-HIP satisfies indistinguishable privacy.

Proof 1 In the improved P-HIP, after a successful authentication, the user Uy update
its secret key dy,. Besides, the host identities HIPy,, change in each session. Therefore,
it will be difficult for an adversary to perform any traceability attack by performing the
following phases:

— Learning phase: In the p-th authentication instance, the adversary A is able to
send any Execute(C' A, Uy, 1) queries and obtains the public key Qé,‘; ) and the host
identity HIPZ(/Z) ) such that HIPZ(/,‘; )=H ash(Qz(j; )) holds.

— Challenge phase: The adversary A selects two fresh users Uy, Uy and forwards a

Test query (Uy, U1, + 1) to the challenger C. Next, according to the randomly
chosen bitb € {0,1}, A is given a user Uy, € {Uy, U, }. After that, the adversary A
sends a query Execute(C'A,Uy, u + 1) and obtains the public key Qé{‘zﬂ) and the
host identity HIPI(/ZH), where HIPZ(/;;)H):Hash(QZ(/{‘:H)).

— Guess phase: In the Learning phase the user Uy updates its secret dy,, therefore
for the two subsequent sessions |1 and |1 + 1, the public keys Q&f, )=dz(/{’f) ) % G and
Qz(,;:-i_l) = dz(,z+1) x G are calculated as follows: dz(,;:)) = [(ru, + f(p) + kz(,{l;) +
HaSh((TMo + f(,u)) * G, tz(,{,f))v Qca)dca] mod n, d((/{lz+1) = [(Tub + f(,LL + 1)) +
k&zﬂ) + Hash((ry, + f(p+ 1)) * G,tgzﬂ), Qca)dea] mod n. Note that ry,,
k&;), Ty, and kz(j; ™ are the random numbers. Assume that the hash Sfunction
Hash is truly random, mapping each data item independently and uniformly to
the range {0,1}", that is, Pr{Hash(z) = Hash(z")] = 5= where x # z'. Since
tz(/;:)) #* tz(j:H), therefore d&‘)ﬂ) = dgzﬂ) with the probability less than 2%1 In
other word, Qz(ll;) = Z(A‘:H) holds with the probability less than 2%1 Again,
HIP&?:Hash( Z(//:)) and HIPZ(/ZH):Hash(QZ(j:)H)). Hence, the adversary needs
make a random guess for HIPZ(/Z ) In this contextf the advantaﬁge of the adversary
recognizing Uy or Us, can be denoted AdvIN PP (k) = |Prib = b — 1/2| < ¢,
where € = 2%1 is negligible when r is large enough.



7 Performance analysis and comparison

In this section, based on the improved scheme in Section 5, we compare it with other
similar solutions in the literature in terms of the desired security properties, computation
cost and communication cost.

7.1 Performance comparison

A comparison of the security properties among the improved scheme with other im-
plicit certificate schemes [5, 6, 15] is given in Table 2. The improved scheme in Section
V is secure against the forger and credential misbinding attacks. The signature algo-
rithm’s input (see step 24 Figure 3 and 5) includes both ( u(l), 1(} )) and the signer’s
public key Q.. In the P-HIP scenario, enforcing this technique when signing public-
key validation data can avoid forgery attacks that builds upon the properties of butterfly
keys. Under the attack model in Definition and Ouafi and Phan’s privacy model, the
improved scheme provides the rigorous security proof in Section 4.3 and 6.1 and the
formal privacy analysis in Section 6.2, respectively. In addition, the improved scheme
achieves the revocation verification of a public key by performing one NOWA operation
in Section 4.2. However, the schemes [5, 6, 15] focused on the informal analysis of user
privacy, and did not consider the revocation of unexpired implicit certificates. Note that
the formal security proof did not provided in [5].

Table 2. Performance comparison based on security properties with respect to implicit certificate
schemes

Scheme SP1| SP2 SP3 SP4 SP5
ECQV [15] No | formal |informal| No -
SIMPL [6] Yes | formal |informal| No SCMS
P-HIP [5] No |informal|informal| No HIP
SEIC Yes | formal No Yes HIP
improved P-HIP| Yes | formal | formal | Yes SCMS, HIP
SP1: preventing the credential misbinding attacks and a forgery attack
SP2: security proof; SP3: user privacy proof;
SP4:credential revocation; SP5: Compatibility

7.2 Effectiveness analysis

We evaluate the effectiveness of the improved scheme in terms of the computation and
communication costs.

Experimental results To show the effectiveness of the improved scheme with respect
to the existing implicit certificate schemes, we conduct simulations of the cryptographic
operations used by various schemes on an Intel(R) Core(TM) i7-8550U CPU@1.80



GHz laptop computer with 8.00 GB memory and Windows10 using JDK1.8 (operating
as the initiator or the responder as per the scheme). The simulations used the JPBC
library jpbc-2.0.0 [18] to evaluate the execution time of different cryptographic opera-
tions.

We create an ECC self-signed X.509 certificates using the type A pairings on the
curve y? = 2% 4+ x over the finite field F,. SHA-256 is chosen as the cryptographic
hash function Hash. In addition, we select SHA-512 for hashing ~» in NOWA H with
a 128 bit output, where N = 2% is an upper bound to the number of accumulated items.
When N > 2%, we do this by selecting n = [N/(2%)] different SHA-512 as Remark
1 in [19]. For the function Hash and the message authentication code (MAC), the
SHA-256 is chosen as suggested. Furthermore, the leftmost 128 bits in the output of
Hash(Q,) is taken as a HIT corresponding public key @Q,. With the above param-
eter settings, we consider the average value of over 100 trials for an operation o €
{Hash, H, a(Point addition), m(Point multiplication), e( AES encryption), d(AES decryption)}.
The results are as follows: Ty ,sp, = 1.2828milliseconds(ms), Ty = 53.8039(ms), T, =
1.3418(ms), T}, = 96.9339(ms), T, = 13.1607(ms), and T; = 3.7243(ms). In particular,
the average time performing an addition or a multiplication of two numbers is 0.6626ms
or 0.7615ms, which is negligible compared to other operations.

Implicit certificate issuance

Computation cost Computation costs are the principal constraint for IoT users/devices,
and we show a reduction in required computation in the improved P-HIP as compared to
the existing schemes. Table 3 shows the computation cost of a user in different schemes.
The improved P-HIP is similar to the approach discussed in [6], the key difference is
that instead of 63 point addition, h * Q. is computed by using 42 point addition. In
both schemes, the user generates the request (R, = r, * G, f), and then obtains an
implicit certificate the 5 by computing an ), dg ) % G and hg ) Q. It means that in the
improved P-HIP, the computation cost of the user is S(2T,,+ 44T,+ Ty + 3T grasn)+Tin.-
In addition, the verifier performs only one H operation to check whether the unexpired
implicit certificates is unrevoked. From Figure 8 (a), it is evident that the computation
cost of a user increases with the number of implicit certificate, but it grows relatively
slowly in the improved scheme. In particular, the improved P-HIP makes a user has the
smallest computation cost.

Table 3. The cost comparison of different schemes in the implicit certificate issuance phase

Scheme Computation cost Communication cost
ECQV[IS]  |BBTm+Ta +THasn)+Tm > B(2g| +800) +2|q| + ||
SIMPL[6] BTy +64Ta +THasn)+Tm > B(2]q| + 320) + 2[q| + | f]|
P-HIP [5] BBTm+2Ta+Ta+2THasn) B(4lq| + 320)

SEIC BBTm+44To+Ta+3T 1rash) B(4]q| + 320)

Improved P-HIP| 32T, +44To+Ta+3T asn )+ Tm |B(2]¢| + 320) + 2|q| + | f]




Communication cost The advantage of the improved scheme is that the communication
cost is low for IoT users/devices in the implicit certificate issuance. The communication
cost comparison of these schemes [5, 6, 15] is shown in Table 3. To give a detailed
quantitative analysis, we create a ECC self-signed X.509 certificates using the OpenSSL
library [2], and choose n = 160 bits and ¢ = 512 bits. The sizes of an identity and a time-
stamp are recommended to be 20 bytes [16]. In the improved P-HIP, the communication

cost at the user is as follows: The size of /3 responses from the CA (cg ), M acq(f )) are
B(2|q| + n + 320) bits, and the size of a request is |R,| + | f|=2|¢|+f bits. The total
communication cost of a user is (28 + 2)|q| + 3205 + | f| bits. We notice that the size
of meta in [6, 15] is not less than 160 bits since meta contains at least a time-stamp.

The ECDSA-based signature outputs at least two numbers in IF,. The length of sz‘gg)

in ECQV[15] is 2|q|. However, the size of |sigq(f)| is |g| since sigt? is a number in
Zy,. Figure 8 (a) and (b) shows that the improved scheme makes a user have both the

smallest computation cost and the smallest communication cost.

Mutual authentication: Implicit credential validation We also evaluate the benefits
of the improved P-HIP when users perform mutual authentication. The gains in this
case originate from the following observations.

In Section 5.2), the cost of validating a public key and its HIT is T+ Tm+ To+2T gash,

where hq(f ) % Q.. can be accelerated at cost Tm =42T,< T,,. In addition, the costs for
keying material generation and keying material validation (see Algorithm 2 and 3 in
Figure 6) are 2T,,+ To+ Thasph) and T+ To+ Trash, respectively. However, the gen-
eration/validation of a MAC requires one hash operation. Therefore, the total computa-
tional cost of an initiator or a responder is Ty +3T,,,+ 40T+ 6 Trrgsp, ~ 411.3416m:s.

The improved HIP has stronger capabilities (such as public key revocation verifica-
tion) than P-HIP [5], with an approximate computational cost and the same communi-
cation cost. In P-HIP, an initiator or a responder takes the total computational cost to be
4T+ 3Te+ 6 Trasn =~ 399.4578ms. This value is close to the computational cost of
the user in the improved P-HIP. On the other hand, the time for the device to perform
a public key revocation verification operation is 53.8039(ms). Since A, is sent to all
users in advance, both schemes have the same communication cost. The result gives
a glimpse of SEIC’s potential to speed up both signature verification and public-key
validation in HIP environments.

8 Conclusion

In this article, we propose SEIC that can improve the security of the P-HIP and the
efficiency of EC point multiplications for IoT devices. For fix-point multiplication, the
proposed method is about 1.5 times faster than the method in SIMPL scheme. At the
same time, by making use of the butterfly key expansion process, we constructs an im-
proved P-HIP by reducing the amount of data exchanged and the number of operations
performed by user. Our evaluation shows that the improved P-HIP helps to achieve all
the important security properties and ensures the user privacy with reasonable com-
putation cost. However, one limitation is that for the solution to become a reality, the
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revocation verification information A, must be updated timely and sent to all users in
advnce, which can be costly. How to effectively implement the update and release for
A, is a potential future direction of this research.

Appendix

Lemma 1 Assuming (1) ECDLP is hard for G and (2) Hash is a random oracle, the
Schnorr signature scheme DS in Figure 3 is secure against adaptive chosen-message
attacks.

Proof 2 Let Adv? ' 1(K) be the probability that A breaks the above Schnorr signature
scheme DS and achieve a forgery. Assume that Advf;§” ' 1(K) is nonnegligible. We will
construct an algorithm B which can solve the ECDLP in G.

Let G be a generator of G. Given a point Q.q=dcq * G €< G > as a challenge
to B, it aims to output such a value d., € Z;. The hash function Hash behaves as a
random oracle.

B starts A on input 17. Let T (k) denote the bound of the number of CAs. B picks at
randomai € {1,--- ,T1(k)}, guessing that A will succeed against the entity i. B runs
K(pas) to generate for each entity its private/public pair, except i. i is given a public
key Q.o , while the corresponding private key d. is unknown to B. A i’s signature on
a message can be generated by querying the signing oracle S(dcq, -).

B can simulate the entity i to respond messages to via the following oracles:

Hash queries: At any time, A can query Hash. B maintains a list Hy;st of tuples
(R, V,t,k,Qca) which is initially empty, and a query counter p which is initially set
to 0. A provides a new pair (R, V,t,Q.a) for hash query by first choosing a message
R and then computing V.= R + k x G, where k is a random number in Z. Upon a
hash query (R,V,t,Qcq) for which there exists a record (R,V,t,Qcq, h) in Hyist, B
return h to A; otherwise, 1B uniformly chooses a random number h € Z as the value
of HV,t,Qca), places (R, V,t,Qcq, h) into Hy;sy, and returns h to A.

Signature queries: Proceeding adaptively, the adversary B answers A’s queries for
signing oracle S(dq, -). When A provides a query message R, B works as follows:

(1) Randomly choose two numbers u,v € Z*, and compute V = R+uxG+(—vxQ.q);
(2) Set s =wu, H(V,t,Qco) = v, and place (R, V,t,Qcq,v) into Hy;g;
(3) Returns (v, s) as a signature on message R to A.

After A makes H-hash query on (R, V,t,Qcq) to get v = H(V,t,Q.q), it can verify
that (V,s) satisfies R+ s * G =V + v x Q. Therefore, (V,s) is a valid signature
on message R with respect to j’s public key Q.. Since V and s follows the uniform
distribution, and H ash behaves as a random oracle, A cannot distinguish between I3’s
response and the real life.

Output: Eventually, suppose A returns a forgery (R*, V* t*, s*), where (V*,t*, s*)
is a valid forgery distinct from any previously given signature on message R* with re-
spect to the public key Qc,.

According to the above proof, A can find a valid signature with non-negligible
probability Advy’ '1(K). Then, by using the forming lemma, A can outputs a new



forgery (V*,t*,8*) on the same message R* and a different oracle Hash(-), with
non-negligible probability, such that Hash(V*,t*,Q%,) # Hash(V*,t*,Q%,) and
s* #£ §*. From this, we get
s* =k +degHash(V*,t*,Q},) mod n
§ =k +deHash(V*,t*,Q",) mod n
Thus, BB can solve out the private key
8* _ é*

" Hash(V*,t*,Q*,) — Hash(V*,t*, Q%)

ca ca

mod n 2)

ca

which is just B’s challenge d.o. The choices of i in algorithm B imply that with proba-

bility at least ﬁ he can ‘hit’ the correct value of A. Thus, Advéf%l (k) > %’
where Advgf%l(ﬁz) = Prpas + Gen(1%); Qe + G;deq  B(pas,Qeq) : deq ¥ G =
Qcq)- Since the ECDLP is assumed to be hard in G, then Adv&f‘él (k) must be negligible.
This contradicts the assumption that Adv’ 1 (k) is nonnegligible. Thus, we conclude

that Adv3§* (k) is negligible for all adversaries A.

Theorem 2 Assuming (1) ECDLP is hard for G and (2) Hash is a random oracle,
there is no adversary A that is successful against the proposed scheme SEIC.

Proof 3 Assume that the proposed scheme SEIC is not secure in the case where the hash
function Hash is a random oracle. Then there exists a successful (7', €)-adversary A.
We construct a polynomial-time algorithm B that uses A as a subroutine to compute
logarithms in G with non-negligible probability.

The input to B consists of a discrete logarithm challenge Q €g G, Q # O, and the
desired output of B is an integer d € [1,n) such that Q = dxG. We shall construct BB in
two stages. The first stage By takes as input (Q, R, H1) where R is a random message,
and H; is a random oracle independent of Hash. By can use A as a subroutine. The
desired output of By is either (i) an integer d € [1,n) such that Q = d x G, or (ii)
an ordered pair (V,t,s) such that s * G+ R =V + H1(V,t,Q) * Q (ie, (V,t,s)
is a signature of message R with respect to the public key Q). If case (i) occurs, then
B outputs d and terminates. If case (ii) occurs, then Lemma 1 is used to reduce the
signature forger B1 to a discrete logarithm solver in order to extract d. If this stage is
successful, then B outputs d and terminates.

To find d, algorithm BBy runs algorithm A. Algorithm A expects there to be one or
more CAs, each with a public key for which A is not given the private key, and zero
or more requester user; making one or more requests R; for which A is not given the
discrete logarithm r;. Algorithm By randomly selects one of the CA public keys or one
of the requests to be the challenge point (Q which is the input of B. The other request
points and CA public keys can be selected by B1 according to the normal procedure of
selecting a random secret integer and multiplying G by this value. Let 7' be the total
number of CA public keys and requests. We shall see that there will be a € /7" probability
that A can be used to obtain d or a forgery of a signature with public key Q.

Since A can request an implicit certificate from the CA with public key Q) (if By has
selected such a CA) and expect a legitimate response, By must supply a response that



seems legitimate at least from A’s perspective. (Otherwise A is not guaranteed success,
and By may not find A useful to find d.) However, By does not know the private key d
associated with Q). But since Hash is a random oracle, By can simulate the role of
the CA and answer A’s implicit certificate requests without knowing d by careful pre-
selection of the random values of Hash. Algorithm By simulates the role of the CA
as follows: given a request R; for an implicit certificate with Q, B, generates integers
siyhi €r [1,n) and computes V; = R;+ (s; %G —h; xQ), By defines Hash(V;, t;, Q) =
h; and returns the triple (V;, t;, s;) as the response to A’s request. Since R; + s; * G =
Vi + Hash(V;, t;, Q) * Q holds, the response to the implicit certificate request appears
legitimate from A’s perspective. Furthermore, the hash function will be random from
A’s perspective because the value h; was initially chosen randomly.

The adversary A is of course allowed to query Hash directly. Given a hash query
input, say, (V,t,Q), which has not been previously queried or determined as above, By
outputs H1(V,t,Q) where R is the message on which it is trying to forge a signature,
V=R + k x G and k is a random number in [1,n). Clearly, the distribution of the sim-
ulated hash values generated by B will be indistinguishable to A from the distribution
of hash values generated by a random oracle.

Suppose that A is successful. Then A returns a tuple (V. t,s) such that R + s x G
=V + h*Q, for some j, with h = Hash(V,t,Q;), such that either:

(i) (V,t,s) is an implicit certificate created by C'A; for a request from user;; or
(ii) (V,t,s) is an implicit certificate which was not issued by C A;.

Assume we are in the first case. Then there is at least a 1/7' probability that the
request R; of user; was the challenge point () given as input to the algorithm 31. The
private key d; of user; discovered by A satisfies d; = (r; + s) mod n. But d = r;, and
By can observe s as C Ay,’s response. Thus By can compute d = (d; — s)modn.

Assume we are in the second case. Then there is at least a 1/7' probability that
public key Q; of CA; is the challenge point Q) given as input to the algorithm B;.
We can assume that (V,t,s) was an input query to the random oracle hash Hash,
because otherwise the equation R 4+ s x G =V + h x Q; will hold with negligible
probability, contradicting the assumption that € is non-negligible. Thus Hash(V,t,Q;)
= H1(V,t,Q;) by definition of the simulation. But now (V,t,s) is a signature of the
message R.

There is a minor problem that, if during execution of By with A, the message (V,t, s)
appears first as a direct query to Hash, and subsequently as an implicit certificate con-
structed during the simulation of a CA. Since the values k; and h; are chosen randomly
during simulation of the CA, the point V; will be uniformly distributed, and thus, this
event of V. = V; will happen with negligible probability. Nevertheless, in this case By
can simply start over.

Clearly, if A runs in polynomial time and succeeds with non-negligible probability
then so will By. By Lemma I and above, if A runs in polynomial time and succeeds
with non-negligible probability then so will B. But by hypothesis, it was assumed that
no such B for solving discrete logarithms in G existed. Therefore no adversary A exists
in the random oracle model unless discrete logarithms in G can be efficiently solved.
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