
Side-Channel Attacks on Lattice-Based KEMs
Are Not Prevented by Higher-Order Masking

Kalle Ngo, Ruize Wang, Elena Dubrova and Nils Paulsrud

KTH Royal Institute of Technology, Stockholm, Sweden
{kngo,ruize,dubrova,nilspa}@kth.se

Abstract. In this paper, we present the first side-channel attack on a higher-order
masked implementation of an IND-CCA secure lattice-based key encapsulation mech-
anism (KEM). Our attack exploits a vulnerability in the procedure for the arithmetic
to Boolean conversion which we discovered. On the example of Saber KEM, we
demonstrate successful message and secret key recovery attacks on the second- and
third-order masked implementations running on a different device than the profiling
one. In our experiments, we use the latest publicly available higher-order masked
implementation of Saber KEM in which all known vulnerabilities are patched. The
presented approach is not specific to Saber and can be potentially applied to other
lattice-based PKE and KEM algorithms, including CRYSTALS-Kyber which has
been recently selected for standardization by NIST.
Keywords: Public-key cryptography · post-quantum cryptography · Saber KEM ·
LWE/LWR-based KEM · side-channel attack · power analysis · deep learning

1 Introduction
Masking is a well-known countermeasure against power/EM side-channel analysis [CJRR99].
A k-order masking partitions any sensitive variable x into k + 1 shares, x1, x2, . . . , xk+1,
such that x = x1 ◦ x2 ◦ . . . ◦ xk+1, and executes all operations separately on the shares.
The operator “◦” depends on the type of masking, e.g. in arithmetic masking “◦” is equal
to “+” and in Boolean masking “◦” is “⊕” .

In theory, performing operations separately on the shares x1, x2, . . . , xk+1 should
prevent the leakage of side-channel information related to x since computations do not
directly involve x. Instead, the leakage is linked to the shares x1, x2, . . . , xk+1. Since the
shares are randomized at each execution of the algorithm, they are not expected to contain
exploitable information about x. The randomization is usually done by assigning random
masks r1, r2, . . . , rk to k shares and computing the last share as x− (r1 + r2 + . . . + rk)
for arithmetic masking or x⊕ r1 ⊕ r2 ⊕ . . .⊕ rk for Boolean masking.

However, it has been shown that, in practice, a first-order masked implementation can
be broken by side-channel analysis. In the attack presented in [NDGJ21], the sensitive
variable is recovered directly, without explicitly extracting random masks at each execution.
Apart from its simplicity, such an approach enables profiling on traces captured from the
device under attack (because it does not need to know masks). Previous attacks on masked
implementations of LWE/LWR-based PKEs/KEMs [RBRC20] required a controllable
profiling device which can be re-programmed to the implementation with known masks.
Profiling on the device under attack helps maximize the neural network’s prediction
accuracy.

The side-channel attack in [NDGJ21] was mounted on a first-order masked software
implementation of Saber KEM which, at that time, was the only NIST round 3 candidate

mailto:{kngo,ruize,dubrova,nilspa}@kth.se

2 Higher-Order Masking Does Not Prevent Side-Channel Attacks

having a publicly available protected implementation. In response to vulnerabilities
discovered in [NDGJ21] and other related worksa new, higher-order masked implementation
of Saber KEM has been recently released [KDB+22] in which the procedures with known
leakage points are re-implemented.
Our contributions: In this paper, we show that the higher-order masked implementation
of Saber KEM presented in [KDB+22] has an exploitable vulnerability in its arithmetic
to Boolean conversion procedure A2B_bitsliced_msg(). This vulnerability allows us to
extend the message recovery method from [NDGJ21] to higher-order masked implementa-
tions. We demonstrate sucessfull message and secret key recovery attacks on the second-
and third-order masked implementations. To the best of our knowledge, no side-channel
attacks on a higher-order masked implementation of a lattice-based PKE or KEM algorithm
has been reported until now.

The presented approach is not specific to Saber KEM and can be applied to other lattice-
based PKE and KEM algorithms using a similar implementation of A2B_bitsliced_msg()
procedure, including CRYSTALS-Kyber [S+20] which has been recently selected for
standardization by NIST [NIS16]. We use Saber for our experiments because its higher-
order masked implementation is publicly available.1

The rest of this paper is organized as follows. Section 2 reviews previous work related
to side-channel analysis of lattice-based PKE/KEMs. Section 3 gives a background on
the Saber algorithm. Section 4 describes the new vulnerability exploited in our attacks.
Sections 5 and 6 present the profiling and attack stages, respectively. Section 7 shows
experimental results. Section 8 concludes the paper and discusses future work.

2 Previous work
In this section, we describe previous side-channel attacks on lattice-based PKE and KEM
algorithms.

Since the beginning of NIST post-quantum cryptorgaphy (PQC) standardization
process in 2016 [NIS16], timing, power and electromagnetic (EM) emanations-based side-
channel attacks on implementations of lattice-based PKE/KEMs have received a lot of
attention. This is due to the fact that three out of four round 3 candidates of the NIST
PQC standardization process are based on lattice problems: an NTRU-based scheme
NTRU [C+20], a Learning With Errors (LWE)-based scheme Kyber [S+20], and a Learning
With Rounding (LWR)-based scheme Saber [D+20]. Lattice problems are believed to be
difficult for large-scale quantum computers.

In [SKL+20], message recovery attacks using a single power trace from an unpro-
tected encapsulation part of round 3 candidates CRYSTALS-Kyber and Saber as well
as round 3 alternate candidate FrodoKEM were presented. In [MBM+22], attacks using
correlation power analysis are presented, targeting the polynomial multiplication in un-
protected implementations of all lattice-based finalists in the NIST PQC standardization
process. In [BDH+21], side-channel attacks on two implementations of masked polynomial
comparison, applied to Kyber, are presented.

In [RSRCB20], a near field EM message recovery attack on Kyber using a vulnerability in
the Fujisaki-Okamoto (FO) transform is demonstrated. In [XPSR+21], a secret key recovery
attack on an unprotected Kyber using near field EM side-channels was demonstrated.
In [RBRC20], near field EM secret key recovery attacks on unprotected and protected
implementations of NIST PQC round 3 candidates CRYSTALS-Kyber, Saber and round 3
alternate candidate FrodoKEM, as well as some round 2 candidates, were presented. It was
shown how masked implementations can be broken by attacking each share individually.
The resistance of an unprotected Saber KEM to amplitude-modulated EM emanations has

1A higher-order masked implementation of Kyber has been presented at CHES’2021 [BGR+21], however,
it is not publicly available.

Kalle Ngo, Ruize Wang, Elena Dubrova and Nils Paulsrud 3

been investigated in [WND22b] and [WND22a]. In [GJN20], a timing attack on FrodoKEM
was presented.

In [NDGJ21], a message and secret key recovery attack on a first-order masked im-
plementation of Saber KEM through the use of deep learning-based power analysis was
demonstrated. In [NDJ21], it was shown that it is possible to recover the secret key from
Saber KEM, even if masking is complemented with a shuffling countermeasure. An attack
using a method similar to [NDGJ21] on a first-order masked implementation of Kyber was
presented in [WCCL22], targeting the message encoding vulnerability found in [SKL+20].

In [UXT+21], power/near field EM secret key recovery attacks on KEMs were described,
including Kyber, Saber, and NTRU. These attacks use side-channel leakage during the
re-encryption step of decapsulation as a plaintext-checking oracle that determines whether
the results of the PKE decryption and the reference plaintext are equivalent.

3 Saber KEM algorithm

Saber [D+20] is one of the candidates of the NIST PQC standardization process which
made it all the way to the third round. However, it has not been selected for standardization
after the third round, and will not continue into the fourth round [NIS16]. The winner
among candidates for key-establishment is CRYSTALS-Kyber [S+20].

The security of Saber is based on the hardness of the Module Learning with Rounding
problem (MLWR). The core of Saber is an IND-CPA secure encryption scheme, Saber.PKE,
and which is followed by an IND-CCA secure key encapsulation mechanism, Saber.KEM.
The latter is created by transforming Saber.PKE into Saber.KEM using a variation of
the FO transform [FO99]. Figs. 1 and 2 describe algorithms Saber.PKE and Saber.KEM,
respectively. We follow the notation of [NDGJ21].

Let Zq denote the ring of integers modulo a positive integer q and Rq the quotient ring
Zq[X]/(Xn + 1). The rank of the module and the rounding modulus are denoted by p
and l, respectively. The positive integers q, p, and T are chosen to be a power of 2, i.e.,
q = 2ϵq , p = 2ϵp , and T = 2ϵT , respectively. Saber uses parameters n = 256, l = 3, q = 213,
p = 210, and T = 24.

Let U denote the uniform distribution and βµ the centered binomial distribution with
parameter µ, where µ is an even positive integer. Saber uses µ = 8. The samples of βµ are
in the interval [−µ/2, µ/2] and its probability mass function is given by P [x|x← βµ] =

µ!
(µ/2+x)!(µ/2−x)!2

−µ, where x ← βµ stands for sampling from βµ. The term βu(Rl×k
q ; r)

induces a matrix in Rl×k
q where the coefficients of polynomials in Rq are sampled in a

deterministic manner from βµ using seed r.
The hash functions F and H are realized using SHA3-256, and the hash function G

is realized using SHA3-512. An extendable output function gen is used to generate a
pseudorandom matrix A ∈ Rl×l

q from a seed seedA. It is implemented by SHAKE-128.
The bitwise right shift operation is denoted by “≫”. It extends to polynomials and

matrices by applying it coefficient-wise. In order to implement rounding operations by
a simple bit shift, Saber uses two constant polynomials h1 ∈ Rq and h2 ∈ Rq with all
coefficients fixed to 2ϵq−ϵp−1 and 2ϵp−2−2ϵp−ϵT −1+2ϵq−ϵp−1, respectively, and one constant
vector h ∈ Rl×1

q in which each polynomial equals to h1.
Due to specific features of its design: power-of-two moduli q, p and T , and limited noise

sampling of LWR, Saber can be efficiently masked. Due to the former, modular reductions
are basically free. The latter implies that only the secret key has to be sampled securely.

4 Higher-Order Masking Does Not Prevent Side-Channel Attacks

Saber.PKE.KeyGen()
1: seedA ← U({0, 1}256)
2: A = gen(seedA) ∈ Rl×l

q

3: r ← U({0, 1}256)
4: s← βµ(Rl×1

q ; r)
5: b = ((AT s + h) mod q)≫ (ϵq − ϵp) ∈ Rl×1

p

6: return (pk
.= (seedA, b), sk

.= s)

Saber.PKE.Dec(s, (cm, b′))
1: v = b′T (s mod p) ∈ Rp

2: m′ = ((v + h2 − 2ϵp−ϵT cm) mod p)≫ (ϵp −
1) ∈ R2

3: return m′

Saber.PKE.Enc((seedA, b), m; r)
1: A = gen(seedA) ∈ Rl×l

q

2: if r is not specified then
3: r ← U({0, 1}256)
4: end if
5: s′ ← βµ(Rl×1

q ; r)
6: b′ = ((As′ + h) mod q)≫ (ϵq − ϵp) ∈ Rl×1

p

7: v′ = bT (s′ mod p) ∈ Rp

8: cm = ((v′ + h1 − 2ϵp−1m) mod p) ≫ (ϵp −
ϵT) ∈ RT

9: return (c .= (cm, b′))

Figure 1: Description of Saber.PKE algorithm from [D+20].

Saber.KEM.KeyGen()
1: (seedA, b, s) = Saber.PKE.KeyGen()
2: pk = (seedA, b)
3: pkh = F(pk)
4: z ← U({0, 1}256)
5: return (pk

.= (seedA, b), sk
.= (z, pkh, pk, s))

Saber.KEM.Decaps((z, pkh, pk, s),c)
1: m′ = Saber.PKE.Dec(s, c)
2: (K̂′, r′) = G(pkh, m′)
3: c′ = Saber.PKE.Enc(pk, m′; r′)
4: if c = c′ then
5: return K = H(K̂′, c)
6: else
7: return K = H(z, c)
8: end if

Saber.KEM.Encaps((seedA, b))
1: m← U({0, 1}256)
2: (K̂, r) = G(F(pk), m)
3: c = Saber.PKE.Enc(pk, m; r)
4: K = H(K̂, c)
5: return (c, K)

Figure 2: Description of Saber.KEM algorithm from [D+20].

4 Vulnerability exploited in the attack
In this section, we first describe known vulnerabilities in software implementations of
LWE/LWR-based PKE/KEMs and then present the new vulnerability which we discovered
in the arithmetic to Boolean conversion procedure A2B_bitsliced_msg() of the higher-
order masked implementation of Saber KEM from [KDB+22].

4.1 Known vulnerabilities
In previous work, a number of vulnerabilities have been discovered in software imple-
mentations of LWE/LWR-based PKE/KEMs including incremental-storage vulnerabil-
ity [RBRC20], weakness of re-encryption operation in FO transform [UXT+21] and weak-
ness of polynomial multiplication [MBM+22].

In [RBRC20], it was shown that two procedures in some non-masked implementations
of LWE/LWR-based PKE/KEMs contain an exploitable incremental-storage vulnerability.
The first one is message decoding function (line 2 of Saber.PKE.Dec() at Fig. 1) in which
each polynomial coefficient is iteratively mapped into the corresponding message bit. Since
the message is computed one bit at a time, an attacker can recover the bit by building a
distinguisher for ‘0’s and ‘1’s.

The second one is POL2MSG() procedure, shown in Fig. 3. It iterates over an array of
values encoded as single bits and saves them into a packed array of bytes. As one can see

Kalle Ngo, Ruize Wang, Elena Dubrova and Nils Paulsrud 5

void POL2MSG(uint16 *msg_unpacked, char *msg_dec)
int i, j;
1: for (j = 0; i < 32; i++) do
2: msg_dec[j] = 0;
3: for (i = 0; i < 8; i++) do
4: msg_dec[j] |= (msg_unpacked[j*8+1]«i);
5: end for
6: end for

Figure 3: C and assembly codes of the original POL2MSG() implementation from [BDK+21]
using bit-wise storage in memory.

void POLmsg2BS(uint8 bytes[N], uint16 data[256])
int i, j;
uint8 byte;
1: for (j = 0; i < 32; i++) do
2: byte = 0;
3: for (i = 0; i < 8; i++) do
4: for (k = 0; i < 32; k++) do
5: byte |= ((data[j*8+i] & 0x01 « i);
6: end for
7: bytes[j] = byte
8: end for
9: end for

Figure 4: C and assembly codes of the improved POLmsg2BS() implementation
from [BDK+21] and [KDB+22] using byte-wise storage in memory.

6 Higher-Order Masking Does Not Prevent Side-Channel Attacks

void A2B_bitsliced_msg(uint16 msg[SHARES][N],
uint16 vp[N][SHARES])
uint32 v1_BS[SHARES][SABER_EP];
uint32 v2_BS[SHARES][SABER_EP];
1: for (i = 0; i < N/32; i+= 1) do
2: pack_bitslice(SHARES,SABER_EP,v1_BS,&vp[32*i]);

3: A2B_bitsliced(SHARES,SABER_EP,v2_BS,v1_BS);
4: for (j=0; i<SHARES; j++) do
5: for (k = 0; i<32; k++) do
6: msg[j][32*i+k] =

(v2_BS[j][SABER_EP-1]»k)&1;
7: end for
8: end for
9: end for

Figure 5: C and assembly codes of A2B_bitsliced_msg() implementation from [KDB+22]
using bit-wise storage in memory.

void InnerProdDec_masked_HO(uint8 m[SHARES][SABER_KEYBYTES], uint8
ct[SABER_BYTES_CCA_DEC], uint16 s[SHARES][L][N])
uint16 v[SHARES][N], vtemp[SHARES][N];
uint16 bp[N];
uint16 (*cm) = bp;
1: for (i = 0; i < N; i++) do
2: BS2POLp(&ct[i * SABER_POLYCOMPRESSBYTES], cm);
3: /* polynomial multiplication */
4: end for
5: BS2POLT(ct+SABER_POLYVECCOMPRESSBYTES, cm);
6: for (i = 0; i < N; i++) do
7: v[0][i] += h2-(cm[i]<<(SABER_EP-SABER_ET));
8: end for
9: for (j = 0; j < SHARES; j++) do

10: for (i = 0; i < N; i++) do
11: vtemp[i][j] = (v[j][i]&(SABER_P-1));
12: end for
13: end for
14: A2B_bitsliced_msg(v, vtemp);
15: for (i = 0; i < SHARES; i++) do
16: POLmsg2BS(m[i],v[i]);
17: end for

Figure 6: C code of InnerProdDec_masked_HO() procedure of Saber.PKE.Dec algorithm
which calls A2B_bitsliced_msg() [KDB+22].

from the assembly code in Fig. 3, the inner loop is unrolled into eight store byte (strb)
ARM instructions. Each of these store instructions updates the memory with a single
new bit of information, resulting in bit-wise leakage. This makes message recovery by
side-channel analysis easy.

In [NDGJ21] it was shown that POL2MSG() vulnerability can also be exploited in the
first-order masked implementation of Saber KEM from [BDK+21]. In addition, it was
demonstrated that poly_A2A() primitive designed in [BDK+21] for masked logical shifting
on arithmetic shares contains an exploitable vulnerability.

In the subsequently released version of the first-order masked implementation of Saber
KEM by Van Beirendonck et al. [BDK+21] and the higher-order masked implementation of
Saber KEM by Kundu et al. [KDB+22], POL2MSG() was patched by re-implementing it to
accumulate the message bits in a register before writing the entire byte to memory, as shown
in Fig. 4. This results in a byte-dependent leakage, making side-channel analysis more
difficult. Additionally, in the implementation from [KDB+22], poly_A2A() was replaced
by the A2B_bitsliced_msg() procedure, shown in Fig. 5, which performs arithmetic to
Boolean conversion of shares in a bitsliced fashion.

Kalle Ngo, Ruize Wang, Elena Dubrova and Nils Paulsrud 7

Figure 7: An average power trace representing the first iteration of A2B_bitsliced_msg()
in the second-order masked implementation (top), a zoomed-in view of the segment in
which three 32-bit shares are stored in memory bit-by-bit after conversion (middle), and
t-test results for 10K traces with known masks (bottom).

4.2 New vulnerability
We discovered an exploitable vulnerability in A2B_bitsliced_msg() procedure of the
higher-order masked implementation of Saber KEM from [KDB+22]. A2B_bitsliced_msg()
is called by the procedure InnerProdDec_masked_HO() of Saber.PKE.Dec() algorithm
during the decapsulation (see line 1 of Saber.KEM.Decaps() in Fig. 2). The C code of
InnerProdDec_masked_HO() is shown in Fig. 6, where the call to A2B_bitsliced_msg()
is marked in red.

Due to the bitsliced organization, A2B_bitsliced_msg() is executed in eight 32-bit
iterations, as shown in the C code in Fig. 5. Fig. 7 (top) shows a power trace representing
the first iteration of A2B_bitsliced_msg() in the second-order masked implementation.
This trace is obtained by averaging 10K traces captured for ciphertexts encrypting random
messages.

8 Higher-Order Masking Does Not Prevent Side-Channel Attacks

Figure 8: An average power trace representing a segment of the first iteration of
A2B_bitsliced_msg() in the third-order masked implementation.

At the end of each iteration, when the arithmetic to Boolean conversion of shares is
completed, the shares are copied from the intermediate variables into the message data
structure in memory one bit at a time (see line 6 of Fig. 5). This is the location of the new
vulnerability. Fig. 7 (middle) gives a zoomed-in view of the segment of trace where the
lines 4-8 of the C code of A2B_bitsliced_msg() at Fig. 5 are executed during the first
iteration. One can count 32 peaks in each of the three shares, corresponding to the storage
of individual bits in memory. By running Welch’s t-test [Wel47] on traces with known
masks, we can verify that there are noticeable differences in measurements representing
‘0’ and ‘1’ bits, see Fig. 7 (bottom). The t-test scores of some bits reach 70. High t-test
scores mean that ‘0’s and ‘1’s can be distinguished. Therefore, a neural network classifier
capable of computing the k + 1-argument XOR of the extracted bit values of k + 1 shares
should be able to recover the message from traces of a k-order masked implementation.

It is known that neural networks are capable of learning the XOR operation [GBC16,
p. 166]. It is also known that neural networks can be trained to distinguish between ‘0’
and ‘1’ at a given bit location in a first-order masked implementation [NDGJ21]. In the
second-order implementation, we can find the location of any given bit by finding the
first peak of each share and measuring the distance between the peaks corresponding to
bits. For example, in Fig. 7 (middle) the distance between the peaks is 7. This allows us
to select a correct segment of trace for training and testing of neural networks without
knowing the value of masks. For the third-order masked implementation, power traces
look similarly (see Fig. 8) except that the shares are four and the distance between the
peaks corresponding to bits is 8.

Note that the A2B_bitsliced_msg() procedure, which is our attack point, is not
specific for the Saber KEM implementation from [KDB+22]. Any LWE/LWR-based
PKE or KEM algorithm using a similar implementation of A2B_bitsliced_msg() can
be attacked in a similar way. The arithmetic to Boolean conversion implemented by
A2B_bitsliced_msg() is designed in [DBV22] as a general method for both, higher-order
masked Saber and higher-order masked CRYSTALS-Kyber algorithms. A similar to
A2B_bitsliced_msg() procedure is called A2B_keepbitsliced() in the implementation
of [DBV22].

It is also important to mention that, not only A2B_bitsliced_msg(), but also any
other procedure which stores bits of a sensitive variable in memory one-by-one may
potentially contain an exploitable vulnerability. As an example, in Fig. 9 we show C and
assembly codes of masked_poly_tomsg() procedure of CRYSTALS-Kyber implementation
from [HKL+22]. The lines marked in red may contain an exploitable vulnerability since
the shares are processed bit-wise.

Kalle Ngo, Ruize Wang, Elena Dubrova and Nils Paulsrud 9

void masked_poly_tomsg(uint8 msg[2][32], uint16
poly[2][256])
uint16 c[2];
1: for (j = 0; i < 32; i++) do
2: byte = 0;
3: for (int i = 0; i < 32; i++) do
4: for (int j = 0; i < 8; j++) do
5: ... Processing ...
6: msg[0][i] += ((c[0]»15)&1)«j;
7: msg[1][i] += ((c[1]»15)&1)«j;
8: end for
9: end for

10: end for

Figure 9: C and assembly codes of masked_poly_tomsg() procedure from the first-order
masked CRYSTALS-Kyber implementation from [HKL+22] using bit-wise storage to
memory. The lines marked in red may contain an exploitable vulnerability.

Figure 10: The comparison of average power traces of all eight iterations of
A2B_bitsliced_msg() in the second-order masked implementation (top) and zoomed-in
view of two bits (bottom).

5 Profiling stage
Our overall profiling strategy is similar to the one of [NDGJ21]. However, there are also
differences which we highlight in this section.

5.1 Neural network type and input data shape
Let R to denote the set of real numbers and I denote a subset of R with elements within
the interval [0,1], I := {x ∈ R | 0 ≤ x ≤ 1}.

We use the method introduced in [NDGJ21] in which neural networks are trained to
extract messages directly, without explicitly retrieving the random masks. Message bits

10 Higher-Order Masking Does Not Prevent Side-Channel Attacks

Figure 11: The comparison of average power traces of five different bits during the execution
of A2B_bitsliced_msg() in the second-order masked implementation.

values ‘0’ and ‘1’ are used as labels for traces. To train a neural network Nj : R|T | → I
capable of predicting a given message bit j, each trace T in the training set T is assigned
a label l(T) = m[j], where m[j] is the jth bit of the message m contained in the input
ciphertext c which is decapsulated when T is captured.

Each T ∈ T contains k +1 intervals representing a given bit of k +1 shares x1, . . . , xk+1
of a k-order masked implementation. Fig. 12 show traces which we give as input to neural
networks for the second-order (top left) and third-order (top right) masked implementations,
respectively. We select the intervals containing a given bit in each share xi and concatenate
them. The red dashed lines show the borders where the shares are concatenated. Note that,
if a very large training set is available, one can also give a full trace to the network and let
it figure out where the bits of shares are. However, we prefer to select and concatenate
manually because it allows us to increase the size of the training set “for free” by applying
the cut-and-join technique from [NDGJ21].

5.2 Cut-and-join technique
The cut-and-join technique [NDGJ21] composes the training set as a union of trace intervals
corresponding to the processing of n different bits. This makes it possible increasing the
size of the training set by a factor of n without having to capture n times as many traces.
For example, for the third-order masked implementation, it takes us 12 hour to capture
100K traces. By cut-and-joining on 30 bits, we can get a training set of size 3M which
would take us 15 days to capture otherwise.

The cut-and-join technique works best on implementations in which trace intervals
corresponding to different bits look the same. As we mentioned in Section 4, due to the
bitsliced organization A2B_bitsliced_msg() performs the conversion in eight iterations,
in blocks of 32-bits. In Fig. 10 we compare the traces of all iterations in the second-order
masked implementation. Fig. 10 (bottom) gives a zoomed-in view of two bits. One can
see that their shape is very similar. Furthermore, within each iteration, the shape of 32
peaks corresponding to 32 bits is similar as well, except for the first and the last bits. The
first and the last bits of each iteration are special, see Fig. 11, because their previous and
next instructions, respectively, are different from the ones of other bits processed within
the same iteration. Due to the ARM Cortex-M4 CPU’s three-stage pipeline, the next
instruction starts being processed before the previous instruction has finished. As a result,
the power consumption during the processing of the first and the last bits of each iteration
differs from the power consumption during the processing of other bits.

The similarity of traces of all eight iterations makes it possible to use traces of the first
iteration for training universal neural networks which can recover message bits from other

Kalle Ngo, Ruize Wang, Elena Dubrova and Nils Paulsrud 11

Table 1: The MLP architecture used for message recovery attack on the second-order
masked implementation. For the third-order masked implementation, the input size is 80
and the width of all layers, except the output one, is doubled.

Layer type (Input, output) shape # Parameters
Batch Normalization 1 (60, 60) 240
Dense 1 (60, 128) 7808
Batch Normalization 2 (128, 128) 512
ReLU (128, 128) 0
Dense 2 (128, 32) 4128
Batch Normalization 3 (32, 32) 128
ReLU (32, 32) 0
Dense 3 (32, 16) 528
Batch Normalization 4 (16, 16) 64
ReLU (16, 16) 0
Dense 4 (16, 1) 17
Softmax (1, 1) 0

iterations as well. This is one of the differences from the attack in [NDGJ21] which uses
intervals representing all message bits for training. Our models can recover bits from the
positions they have never seen during training.

We would like to mention that, most likely, the prediction accuracy of neural networks
would be even higher if one would train a specialized model Ni for each message bit
i ∈ {0, 1, . . . , 255} using the training set of size equal to the size of our training set after
cut-and-join. However, unless access to device under attack is very limited, it may not be
worthwhile spending 30 times more time on trace acquisition and training.

5.3 Standardization
From Fig. 10 (bottom) we can see that traces of eight iterations of A2B_bitsliced_msg()
have some small shifts along y-axis. To smooth them, we apply standardization to
traces (also known as variance scaling) [ZC18]. This is another difference from the attack
in [NDGJ21] which does not use scaling2.

Given a set of traces T with elements T = (τ1, . . . , τ|T |), each T ∈ T is standardized
to T ′ = (τ ′

1, . . . , τ ′
|T |) such that, for all i ∈ {1, . . . , |T |}:

τ ′
i = τi − µi

σi
,

where and µi and σi are the mean and standard deviation of the elements of T at the ith
data point.

5.4 Neural network architecture and hyperparameter selection
Table 1 shows the architecture of the multilayer perceptron (MLP) networks which we
use for message recovery attack on the second-order masked implementation (same as
in [NDGJ21]). For the third-order masked implementation, the network’s input size is 80
and the width of all layers, except the output one, is doubled.

During training, we use NAdam optimizer [Doz16], which is an extension of RMSprop
with Nesterov momentum, with a learning rate of 0.01 and numerical stability constant
epsilon=1e-8. Binary cross-entropy is used as a loss function to evaluate the network
classification error. The training is run for a maximum of 200 epochs, with a batch size of

2Scaling is not so important for the attack in [NDGJ21] because they give trace intervals representing
all bits to neural networks during training.

12 Higher-Order Masking Does Not Prevent Side-Channel Attacks

Figure 12: Segments of traces given as input to neural networks for the second-order (top
left) and third-order (top right) masked implementations and the corresponding gamma
parameters of the first Batch Normalization layer of a model after training.

1024 for training from scratch and 256 for fine-tuning from a pre-trained model. We use
early stopping with patience 20. 70% of the training set is used for training, and 30% is
reserved for validation. Only the model with the highest validation accuracy is saved.

5.5 Training from scratch vs pre-training
In our experiments with the second-order masked implementation, neural networks were
easily learning from scratch. However, we spent some time figuring out how to get networks
to learn for the third-order masked implementation. Training from scratch on cut-and-
joined traces, or on traces for individual bits, consistently resulted in a random guess
accuracy.

Finally, we found that neural networks start learning if we cut-and-join a small numbers
of bits first. Fig. 13 (left) shows the training and validation accuracies of a neural network
trained on cut-and-joined traces of bits 2-7, 600K traces in total. The validation accuracy
flattens around 0.93. We then continued training on the cut-and-joined traces of bits 1 and
8-30, by loading the pre-trained model N2−7 as the starting state. Fig. 13 (right) shows
that the validation accuracy increased above 97% as a result. Similarly, we trained models
N0 and N31 starting from the pre-trained model N2−7.

We analysed weights of the resulting models to check if they correctly identify the
position of leakage points in four shares. Fig. 12 (bottom, right) shows gamma parameters
of the first Batch Normalization layer of a model after training. We can clearly see

Kalle Ngo, Ruize Wang, Elena Dubrova and Nils Paulsrud 13

0 20 40 60 80 100
Epoch

0.5

0.6

0.7

0.8

0.9

Pr
ed

ict
io

n
ac

cu
ra

cy

0 20 40 60 80 100
Epoch

0.93

0.94

0.95

0.96

0.97

Pr
ed

ict
io

n
ac

cu
ra

cy

Figure 13: The training (blue) and validation (orange) accuracies of neural networks
trained on traces from the third-order masked implementation for two cases: training from
scratch (left) and training from a pre-trained model (right).

four groups of peaks corresponding to the leakage points in each share. This might be
an indication that the model recovers the individual share bits and then XORs them
together to get the final message bit. As we mentioned before, neural networks are
capable of realizing the two-argument XOR operation [GBC16, p. 166]. Given that the
two-argument XOR can be realized, the complexity of realizing the k + 1-argument XOR,
x = x1 ⊕ x2 ⊕ . . .⊕ xk+1, grows linearly in the number of arguments. Therefore, it is not
surprising that the complexity of a deep learning-based side-channel attack grows linearly
in the number of shares.

6 Attack stage
In this section, we describe the message, session key and secret key recovery methods used
in our attacks. We also quantify the probability to recover the complete secret key as a
function of the probability to recover a single message bit. The latter helps us decide how
many times each measurement should be repeated for a successful attack.

6.1 Message recovery
Let m be a message to be recovered and c = (cm, b′) be a properly generated ciphertext
which contains m. To recover m, we use the device under attack to decapsulate c and
capture the corresponding power trace T . Then we locate in T the segment corresponding
to storage of shares in memory at the end of each iteration of A2B_bitsliced_msg()
(marked by red lines in Fig. 7 (middle)) and, for each bit i ∈ {0, 1, . . . , 255}, locate ith bit
of each share. The segments containing these bits are extracted and concatenated. In our
experiments, we use the segments of size p = 20.

The resulting p× (k + 1)-point trace is given as input to the MLP models trained at
the profiling stage. The models N0 and N31 are used to recover the bits 32b and 32b + 31,
respectively, for b ∈ {0, 1, . . . , 7}. The model N1−30 is used to recover the bits 32b + j for
all j ∈ {1, 2, . . . , 30} and b ∈ {0, 1, 2, . . . , 7}.

6.2 Session key recovery
A successful recovery of the message from a properly generated ciphertext c trivially implies
the session key recovery, since the session key can be derived as K = H(K̂ ′, c) where

14 Higher-Order Masking Does Not Prevent Side-Channel Attacks

Table 2: The mapping of bits of eight messages into secret key coefficients [NDGJ21].
Coef.
of s

Message bit value for the pair (k1, k0)

(186,0) (293,7) (311,7) (615,2) (613,2) (890,4) (903,4) (199,0)

-4 0 1 1 1 1 0 0 0
-3 1 1 1 0 0 0 0 1
-2 1 0 0 1 1 0 0 1
-1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1 0
2 1 0 0 0 0 1 1 1
3 1 1 1 1 1 1 1 1
4 1 1 0 1 0 0 1 0

(K̂ ′, r′) = G(pkh, m) (see lines 2 and 4 of Saber.KEM.Encaps()).

6.3 Secret key recovery
For secret key recovery, we use the ECC-based method of [NDGJ21] based on recovering
the secret key from 24 chosen ciphertexts. Although the method of [NDGJ21] uses twice
as many ciphertexts as methods presented in [RBRC20, RSRCB20], it is able to correct
single-bit errors and detect double-bit errors in every coefficient of the secret key. This is
a great advantage since perfect message recovery from a different device is difficult. The
methods [RBRC20, RSRCB20] cannot correct any errors.

The chosen ciphertexts are constructed as ci = (cm, b′) where cm = k0
∑255

j=0 xj ∈ RT

and

b′ =


(k1, 0, 0) ∈ R3×1

p for i = {1, . . . , 8},
(0, k1, 0) ∈ R3×1

p for i = {9, . . . , 16},
(0, 0, k1) ∈ R3×1

p for i = {17, . . . , 24},

where the pairs (k0, k1) are defined in Table 2. The 768 coefficients of the secret key
are mapped into codewords of the [8, 4, 4]2 extended Hamming code composed from the
bits of eight messages. The first group of 256 secret key coefficients is derived from the
messages recovered from c1, . . . , c8, the second group of 256 coefficients - from the messages
recovered from c9, . . . , c16, and the third group of 256 coefficients - from the messages
recovered from c17, . . . , c24.

For each chosen ciphertext ci, i ∈ {1, . . . , 24}, we capture N traces from the device
under attack. As our experimental results show, repeating the same measurement more
than once is necessary for handling errors which are beyond the ECC capacity. Using the
24×N traces, we recover 24 messages encrypted in the chosen ciphertexts as described in
the previous section. Finally, the secret key is derived from the recovered messages using
the mapping in Table 2.

Next we quantify the probability to recover the complete secret key of Saber KEM as
a function of the probability to recover a single message bit. The expression enumeration
degree K used in the sequel means that 9K enumerations are required.

Property 1. If p is the probability to recover a message bit correctly and bit errors are
mutually independent, then the sucess probability to recover the complete secret key of
Saber KEM with enumeration degree K using the ECC method of [NDGJ21] is given by:

Ps =
K∑

k=0

(
768
k

)
Pk

d (Pc + Pp)768−k, (1)

where
Pp = p8 is the probability to recover a secret key coefficient correctly,

Kalle Ngo, Ruize Wang, Elena Dubrova and Nils Paulsrud 15

Figure 14: Secret key recovery probability computed using eq.(1).

Pc = 8(1− p)p7 is the probability to correct an error in a secret key coefficient by ECC,(8
2
)
(1− p)2p6 < Pd < 1− Pp − Pc is the probability to detect an error in a secret key

coefficient by ECC.

Proof. The enumeration of degree K can handle at most K detected errors. The rest of
secret key coefficients should be either predicted correctly, or corrected by the ECC. The
probability of k detected errors is Pk

d and the probability of (768− k) correct predictions
is (Pc + Pp)768−k. The success probability of secret key recovery is a sum of products
Pk

d (Pc + Pp)768−k for all possible combinations
(768

k

)
.

The upper bound on Pd is given by 1− Pp − Pc because the probability of undetected
errors is higher than zero. The lower bound on Pd is given by

(8
2
)
(1− p)2p6 because the

ECC can detect two errors in the predicted eight message bits and, if there are more than
two errors, the ECC can detect them only if the Hamming distance between the predicted
eight message bits and the message bits in Table 2 is larger than 1.

Fig. 14 shows how the success probability of secret key recovery grows for different
enumeration degrees.

7 Experimental results
This section describes the equipment we use for capturing traces and presents the re-
sults of message and secret key recovery attacks on the second- and third-order masked
implementations of Saber KEM.

7.1 Measurement setup
Our measurement setup is shown in Fig. 15. It consists of the ChipWhisperer-Lite board,
the CW308 UFO board and two CW308T-STM32F4 target boards, DP and DA.

The ChipWhisperer-Lite board [New] is used to measure power consumption and control
the communication between the target device and the computer. It uses a synchronous

16 Higher-Order Masking Does Not Prevent Side-Channel Attacks

Figure 15: Equipment used for trace acquisition.

capture method which produces well-synchronized traces and reduces the required sample
rate and the data storage. The maximum sampling rate of the ChipWhisperer-Lite board
is 105 MS/sec and its buffer size is 24,400 samples.

The CW308 UFO board is a generic platform for evaluating multiple targets [CW3].
The target board is plugged into a dedicated U connector. The target board CW308T-

STM32F4 contains a 32-bit ARM Cortex-M4 CPU with STM32F415-RGT6 device. The de-
vice is programmed to the C implementation of higher-order masked Saber from [KDB+22].
The implementation is compiled with arm-none-eabi-gcc using the compiler optimization
level -O3 (recommended default). This is the highest optimization level which is typically
the most difficult to break by side-channel analysis [SKL+20]. The target board is run at
24 MHz and sampled at 24 MHz (1 pt/clock cycle).

The device DP is used for capturing 100K traces for training neural networks at the
profiling stage. The traces are captured for ciphertexts encrypting random messages
and random secret keys. Each trace represents the execution of the first iterations on
A2B_bitsliced_msg() procedure shown as Fig. 7 (top).

The device DA is used for capturing test traces for the attack stage. The traces are
captured with repetitions N ∈ {1, 3, 5, 7, 9} for chosen ciphertexts and a fixed secret key.
The execution of the eight iterations of A2B_bitsliced_msg() are recorded.

All traces in the training and test sets are pre-processed using standardization, as
described in Section 5.3.

Table 3 shows the amount of time it takes us to capture the training and test sets. For
test traces, the capture time is limited by the communication baud rate of 38,000 bps
(sending chosen ciphertexts). For training traces, it is limited by the microprocessor clock
frequency of 24 MHz. Note that, if profiling is done on DP , the capture time from DA

defines the required access time to device under attack. Otherwise, the access time to
device under attack is the sum of the training and test set capture times.

7.2 Message recovery attack

At the profiling stage, we used 100K traces captured from the profiling device, DP ,
to train neural networks for recovering message bits. As described in Section 5, we
train neural networks on the segment of traces corresponding to the first iterations of

Kalle Ngo, Ruize Wang, Elena Dubrova and Nils Paulsrud 17

Table 3: Time for capturing the training and test sets.

Test set
captured
from DA

Shares Time for capturing 24 traces with N repetitions (mins)
1 3 5 7 9

3 01:16 03:02 04:47 06:33 08:19
4 01:37 04:05 06:32 09:01 11:29

Training set # Shares Time for capturing 100K traces
captured 3 8.82 hrs
from DP 4 12.13 hrs

Table 4: Empirical probability to recover a message bit using traces captured without
repetitions from the second-order masked implementation on DP .

2nd-order DP Bit position in byte average
Byte 0 1 2 3 4 5 6 7

0 0.951 0.919 0.981 0.985 0.990 0.986 0.988 0.991 0.974
1 0.984 0.981 0.989 0.991 0.991 0.990 0.987 0.982 0.987
2 0.985 0.980 0.985 0.992 0.982 0.986 0.985 0.984 0.985
3 0.983 0.984 0.982 0.988 0.986 0.989 0.951 0.966 0.979

average 0.976 0.966 0.984 0.989 0.987 0.988 0.978 0.981 0.981

Table 5: Empirical probability to recover a message bit using traces captured without
repetitions from the second-order masked implementation on DA.

2nd-order DA Bit position in byte average
Byte 0 1 2 3 4 5 6 7

0 0.925 0.896 0.954 0.971 0.946 0.975 0.958 0.979 0.951
1 0.975 0.979 0.971 0.958 0.975 0.967 0.963 0.954 0.968
2 0.967 0.988 0.963 0.971 0.967 0.975 0.950 0.979 0.970
3 0.967 0.958 0.954 0.967 0.971 0.979 0.929 0.887 0.952

average 0.9585 0.9553 0.9605 0.967 0.965 0.974 0.950 0.949 0.960

Table 6: Empirical probability to recover a message bit using traces captured without
repetitions from the third-order masked implementation on DP .

3rd-order DP Bit position in byte average
Byte 0 1 2 3 4 5 6 7

0 0.954 0.981 0.960 0.954 0.979 0.979 0.980 0.977 0.971
1 0.983 0.985 0.984 0.983 0.977 0.984 0.986 0.983 0.983
2 0.982 0.980 0.971 0.975 0.980 0.976 0.967 0.976 0.976
3 0.977 0.977 0.976 0.974 0.979 0.976 0.938 0.945 0.968

average 0.974 0.981 0.973 0.972 0.979 0.979 0.968 0.970 0.974

A2B_bitsliced_msg() procedure. Thanks to the similarity of traces of all iterations, and
standardization of traces, the model trained on the ith message bit of the first iteration is
also capable to recover the bits 32b + i, for all i ∈ {0, 1, . . . , 31} and b ∈ {1, 2, . . . , 7}.

We train one universal model for bits 1 to 30, N1−30, and two specialized models
for the corner bits 0 and 31, N0 and N31, respectively. For each of the three types, we
trained nine different models to be used in an ensemble at the attack stage. The ensemble
approach [GBC16] is well-known to be beneficial for side-channel attacks. The models
for the bits 0 and 31 were trained on 100K traces. The models for the bits 1 to 30 were
trained on 3M traces composed using the cut-and-join technique of [NDJ21].

Tables 4 and 5 list the average empirical probabilities to recover a message bit from

18 Higher-Order Masking Does Not Prevent Side-Channel Attacks

Table 7: Empirical probability to recover a message bit using traces captured without
repetitions from the third-order masked implementation on DA.

3rd-order DA Bit position in byte average
Byte 0 1 2 3 4 5 6 7

0 0.850 0.971 0.942 0.938 0.971 0.975 0.963 0.950 0.945
1 0.967 0.963 0.950 0.971 0.975 0.975 0.946 0.979 0.966
2 0.908 0.942 0.975 0.971 0.967 0.912 0.954 0.929 0.945
3 0.983 0.925 0.963 0.954 0.946 0.946 0.958 0.679 0.919

average 0.927 0.950 0.957 0.958 0.965 0.952 0.955 0.884 0.944

Table 8: Empirical probability to recover a message bit using traces captured with N
repetitions from DA.

Implementation Number of repetitions N

3 5 7 9

2nd-order 0.982 0.993 0.996 0.998
3rd-order 0.974 0.988 0.990 0.996

traces captured without repetitions from the second-order masked implementation running
on the same as profiling device and on a different device, respectively, for the first 32
message bits. Tables 6 and 7 present the corresponding numbers for the third-order masked
implementation. We include test results for the profiling device to illustrate the impact of
intra-device variability on neural network’s prediction accuracy.

As expected, the third-order masked implementation is more difficult to break that the
second-order one. However, the average drop in prediction accuracy is only 0.7-1.6%. This
justifies our hypothesis that the complexity of the attack grows linearly with the number
of shares.

We can also see from the tables that, when traces are captured without repetitions, the
models cannot predict message bits with a sufficiently high accuracy. An accuracy of at
least 0.9973% per bit is required to recover a complete message with the probability higher
than 50%, since 0.9974256 = 0.5005. For this reason, in the secret key recovery attack
presented in the next section, we use the ECC-based approach from [NDGJ21] which can
correct single-bit errors and detect double-bit errors in every coefficient of the secret key.
In addition, we raise the number of repetitions of the same measurement to N = 9. This
helps us boost the average probability of recovering a message bit from a different device
to 0.998 for the second-order masked implementation, see Table 8. From Fig. 14 we can see
that, for the average message bit prediction accuracy of 0.998, we may expect to recover
the secret key with the enumeration degree K = 1, i.e. using 9 enumerations only.

7.3 Secret key recovery attack

The secret key recovery attack follows the procedure presented in Section 6.3. First, the
messages m1, . . . , m24 contained in the chosen ciphertexts c1, . . . , c24 are recovered from
traces captured with N repetitions. Then, 768 coefficients of the secret key are derived
from these messages using the mapping in Table 2.

Tables 9 and 10 show the results for the second- and third-order masked implementations
running on the device under attack DA, respectively for different number of repetitions
N ∈ {1, 3, 5, 7, 9}. There are four possible outcomes. The first one is when the ground
truth secret key coefficient and the recovered coefficient agree (the column “No errors”).
In the second case, there is one error in the eight message bits from which the coefficient

Kalle Ngo, Ruize Wang, Elena Dubrova and Nils Paulsrud 19

Table 9: The empirical distribution of errors in 768 coefficients of the secret key recovered
using 24×N traces captured from the second-order masked implementation on DA.

2nd-order DA # Correct predictions # Errors

N No errors Errors corrected
by ECC

Detected
errors

Undetected
errors

1 424 232 99 13
3 670 83 12 3
5 731 32 5 0
7 746 22 0 0
9 757 10 1 0

Table 10: The empirical distribution of errors in 768 coefficients of the secret key recovered
using 24×N traces captured from the third-order masked implementation on DA.

3rd-order DA # Correct predictions # Errors

N No errors Errors corrected
by ECC

Detected
errors

Undetected
errors

1 384 275 98 11
3 613 113 18 3
5 714 43 10 1
7 724 33 9 2
9 751 13 4 0

is derived according to the mapping in Table 2. The ECC corrects this error (the 3rd
column). The third case is when more than one error is detected by the ECC in the eight
message bits and this combination of bits is not in Table 2. The ECC detects these faults
(the 4th column). The fourth case is when the eight message bits are combined as shown
in Table 2, but the recovered coefficient differs from the ground truth secret key coefficient
(the last column).

In the fourth case, the key recovery attack fails since the location of the incorrectly
recovered coefficient is unknown. Contrary, in the third case, if the number of detected
errors is small, they can be fixed since the relation between the public key and the secret
key is known:

b = ((AT s + h) mod q)≫ (ϵq − ϵp) ∈ Rl×1
p .

So, one can either employ a post-processing step with lattice reduction, or use enumeration.
The complexity of enumeration is 9K , where K is the number of detected errors.

We can see from Tables 9 and 10 that, for the second-order masked implementation,
the secret key can be successfully recovered with N = 5 and 95 enumerations3. For the
third-order masked implementation, N = 9 and 94 enumerations are required for key
recovery. This means that, if profiling is done on a different device DP , the required access
time to device under attack is 4.47 min and 11.29 min for the second- and third-order
masked implementations, respectively (see Table 3).

8 Conclusion
We demonstrated the first side-channel attack on a higher-order masked Saber KEM
implementation which exploits a vulnerability in the A2B_bitsliced_msg() procedure for
the arithmetic to Boolean conversion. The presented attack is not specific for Saber KEM.

3We believe that the inconsistency of N = 7 and N = 9 cases in Table 9 is due to the small size of our
test set.

20 Higher-Order Masking Does Not Prevent Side-Channel Attacks

It can potentially be applied to any LWE/LWR-based PKE/KEM algorithm which uses a
similar to A2B_bitsliced_msg() implementation of the arithmetic to Boolean conversion.
Furthermore, other procedures which perform bit-wise storage of sensitive variables in
memory might also be vulnerable.

Our work shows that even a higher-order masking may fail to protect software im-
plementations of cryptogrpahic algorithms from side-channel attacks. We believe that
masking is more suitable for protecting hardware implementations, where the shares are
processed in parallel. For software implementations, one may try to increase the attack
difficulty by accumulating n bits of a sensitive variable into a register before writing them
in memory. The more bits are accumulated, the harder it is to extract the sensitive variable.
Note, however, that accumulating a byte is not enough because 28 a small number and thus
the multiple-bit injection method from [WND22a] can potentially be applied to extract
bytes. A rule of thumb is that any n for which a good 2n-class neural network model can
be trained is too small. As with the secret key size, the bound on the required size of n is
likely to increase with further advances in deep learning.

Future work includes analysing hardware implementations of LWE/LWR-based PKE/
KEMs and designing deep learning-resistant countermeasures.

9 Acknowledgments
This work was supported in part by the Swedish Civil Contingencies Agency (Grant No.
2020-11632) and the Swedish Research Council (Grant No. 2018-04482).

References
[BDH+21] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann,

and Michiel Van Beirendonck. Attacking and defending masked polynomial
comparison for lattice-based cryptography. Cryptology ePrint Archive, Paper
2021/104, 2021. https://eprint.iacr.org/2021/104.

[BDK+21] Michiel Van Beirendonck, Jan-Pieter D’anvers, Angshuman Karmakar, Josep
Balasch, and Ingrid Verbauwhede. A side-channel-resistant implementation
of SABER. ACM Journal on Emerging Technologies in Computing Systems
(JETC), 17(2):1–26, 2021.

[BGR+21] Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Chris-
tine van Vredendaal. Masking Kyber: First- and higher-order implementa-
tions. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(4):173–214, Aug. 2021.

[C+20] C. Chen et al. NTRU algorithm specifications and supporting documentation,
2020. https://csrc.nist.gov/projects/postquantum-cryptography/
round-3-submissions.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. To-
wards sound approaches to counteract power-analysis attacks. In Advances in
Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings, volume
1666 of Lecture Notes in Computer Science, pages 398–412. Springer, 1999.

[CW3] CW308 UFO Target. https://wiki.newae.com/CW308_UFO_Target.

https://eprint.iacr.org/2021/104
https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions
https://wiki.newae.com/CW308_UFO_Target

Kalle Ngo, Ruize Wang, Elena Dubrova and Nils Paulsrud 21

[D+20] J. D’Anvers et al. Saber algorithm specifications and supporting docu-
mentation. https://csrc.nist.gov/projects/postquantum-cryptography/round-3-
submissions, 2020.

[DBV22] Jan-Pieter D’Anvers, Michiel Van Beirendonck, and Ingrid Verbauwhede.
Revisiting higher-order masked comparison for lattice-based cryptography:
Algorithms and bit-sliced implementations. Cryptology ePrint Archive, Paper
2022/110, 2022. https://eprint.iacr.org/2022/110.

[Doz16] Timothy Dozat. Incorporating Nesterov momentum into Adam. 2016.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Annual international cryptology conference,
pages 537–554. Springer, 1999.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[GJN20] Qian Guo, Thomas Johansson, and Alexander Nilsson. A key-recovery timing
attack on post-quantum primitives using the Fujisaki-Okamoto transformation
and its application on FrodoKEM. Cryptology ePrint Archive, Paper 2020/743,
2020. https://eprint.iacr.org/2020/743.

[HKL+22] Daniel Heinz, Matthias J. Kannwischer, Georg Land, Thomas Pöppelmann,
Peter Schwabe, and Daan Sprenkels. First-order masked Kyber on ARM
Cortex-M4. Cryptology ePrint Archive, Paper 2022/058, 2022. https://
eprint.iacr.org/2022/058.

[KDB+22] Suparna Kundu, Jan-Pieter D’Anvers, Michiel Van Beirendonck, Angshuman
Karmakar, and Ingrid Verbauwhede. Higher-order masked Saber. Cryptology
ePrint Archive, Paper 2022/389, 2022. https://eprint.iacr.org/2022/
389.

[MBM+22] Catinca Mujdei, Arthur Beckers, Jose Maria Bermudo Mera, Angshuman
Karmakar, Lennert Wouters, and Ingrid Verbauwhede. Side-channel anal-
ysis of lattice-based post-quantum cryptography: Exploiting polynomial
multiplication. Cryptology ePrint Archive, Paper 2022/474, 2022. https:
//eprint.iacr.org/2022/474.

[NDGJ21] Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johansson. A side-channel
attack on a masked IND-CCA secure Saber KEM implementation. IACR
Trans. on Cryptographic Hardware and Embedded Systems, pages 676–707,
2021.

[NDJ21] Kalle Ngo, Elena Dubrova, and Thomas Johansson. Breaking masked and
shuffled CCA secure Saber KEM by power analysis. In Proc. of the 5th
Workshop on Attacks and Solutions in Hardware Security, pages 51–61, 2021.

[New] NewAE Technology Inc. Chipwhisperer. https://newae.com/tools/
chipwhisperer.

[NIS16] NIST. Submission requirements and evaluation criteria for the
post-quantum cryptography standardization process, 2016. https:
//csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/call-for-proposals-final-dec-2016.pdf.

https://eprint.iacr.org/2022/110
http://www.deeplearningbook.org
https://eprint.iacr.org/2020/743
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/389
https://eprint.iacr.org/2022/389
https://eprint.iacr.org/2022/474
https://eprint.iacr.org/2022/474
https://newae.com/tools/chipwhisperer
https://newae.com/tools/chipwhisperer
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

22 Higher-Order Masking Does Not Prevent Side-Channel Attacks

[RBRC20] Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay.
On exploiting message leakage in (few) NIST PQC candidates for practical
message recovery and key recovery attacks. Cryptology ePrint Archive, Report
2020/1559, 2020. https://eprint.iacr.org/2020/1559.

[RSRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam
Bhasin. Generic side-channel attacks on CCA-secure lattice-based PKE
and KEMs. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2020(3):307–335, Jun. 2020.

[S+20] P. Schwabe et al. CRYSTALS-Kyber algorithm specifications and
supporting documentation, 2020. https://csrc.nist.gov/projects/
postquantum-cryptography/round-3-submissions.

[SKL+20] Bo-Yeon Sim, Jihoon Kwon, Joohee Lee, Il-Ju Kim, Taeho Lee, Jaeseung Han,
Hyojin Yoon, Jihoon Cho, and Dong-Guk Han. Single-trace attacks on the
message encoding of lattice-based KEMs. Cryptology ePrint Archive, Report
2020/992, 2020. https://eprint.iacr.org/2020/992.

[UXT+21] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and
Naofumi Homma. Curse of re-encryption: A generic power/EM analysis on
post-quantum KEMs. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2022(1):296–322, Nov. 2021.

[WCCL22] Jian Wang, Weiqiong Cao, Hua Chen, and Haoyuan Li. Practical side-channel
attack on masked message encoding in latticed-based KEM. Cryptology ePrint
Archive, Paper 2022/859, 2022. https://eprint.iacr.org/2022/859.

[Wel47] Bernard L Welch. The generalization of ‘student’s’problem when several
different population varlances are involved. Biometrika, 34(1-2):28–35, 1947.

[WND22a] Ruize Wang, Kalle Ngo, and Elena Dubrova. Making biased DL models
work: Message and key recovery attacks on Saber using amplitude-modulated
EM emanations. Cryptology ePrint Archive, Paper 2022/852, 2022. https:
//eprint.iacr.org/2022/852.

[WND22b] Ruize Wang, Kalle Ngo, and Elena Dubrova. Side-channel analysis of Saber
KEM using amplitude-modulated EM emanations. In Proc. of 25th Euromicro
Conference on Digital System Design (DSD), 2022. https://eprint.iacr.
org/2022/807.

[XPSR+21] Zhuang Xu, Owen Michael Pemberton, Sujoy Sinha Roy, David Oswald, Wang
Yao, and Zhiming Zheng. Magnifying side-channel leakage of lattice-based
cryptosystems with chosen ciphertexts: The case study of Kyber. IEEE
Transactions on Computers, pages 1–1, 2021.

[ZC18] Alice Zheng and Amanda Casari. Feature engineering for machine learning:
principles and techniques for data scientists. O’Reilly Media, Inc., 2018.

https://eprint.iacr.org/2020/1559
https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions
https://eprint.iacr.org/2020/992
https://eprint.iacr.org/2022/859
https://eprint.iacr.org/2022/852
https://eprint.iacr.org/2022/852
https://eprint.iacr.org/2022/807
https://eprint.iacr.org/2022/807

	Introduction
	Previous work
	Saber KEM algorithm
	Vulnerability exploited in the attack
	Known vulnerabilities
	New vulnerability

	Profiling stage
	Neural network type and input data shape
	Cut-and-join technique
	Standardization
	Neural network architecture and hyperparameter selection
	Training from scratch vs pre-training

	Attack stage
	Message recovery
	Session key recovery
	Secret key recovery

	Experimental results
	Measurement setup
	Message recovery attack
	Secret key recovery attack

	Conclusion
	Acknowledgments

