
Tweakable Sleeve: A Novel Sleeve Construction
based on Tweakable Hash Functions

David Chaum1, Mario Larangeira2,3?, and Mario Yaksetig1,4

1 xx Network
2 Tokyo Institute of Technology

3 IOHK
4 University of Porto

{david, mario}@xx.network,
mario.larangeira@iohk.io,mario@c.titech.ac.jp

Abstract. Recently, Chaum et al. (ACNS’21) introduced Sleeve, which
describes an extra security layer for signature schemes, i.e., ECDSA. This
distinctive feature is a new key generation mechanism, allowing users
to generate a “back up key” securely nested inside the secret key of a
signature scheme. Using this novel construction, the “back up key”, which
is secret, can be used to generate a “proof of ownership”, i.e., only the
rightful owner of this secret key can generate such a proof. This design
offers a quantum secure fallback, i.e., a brand new quantum resistant
signature, ready to be used, nested in the ECDSA secret key. In this work,
we rely on the original Sleeve definition to generalize the construction
to a modular design based on Tweakable Hash Functions, thus yielding
a cleaner design of the primitive. Furthermore, we provide a thorough
security analysis taking into account the security of the ECDSA signature
scheme, which is lacking in the original work. Finally, we provide an
analysis based on formal methods using Verifpal assuring the security
guarantees our construction provides.

Keywords: Provable Security · Digital Wallet · Hash-based Signa-
tures.

1 Introduction

The ECDSA signature scheme is widely used; however it achieved new levels
of exposure after it found new applications in electronic wallets for cryptocur-
rencies such as Bitcoin [22], Ethereum [25] and Cardano/Ouroboros [2,11,19].
This intensive exposure drove the research community to channel its efforts to
propose new attacks on the signature scheme/wallets [1,24].

Recently, Chaum et al. [8] proposed Sleeve, a signature based new crypto-
graphic primitive in order to mitigate damages during massive leaks of wallet
private information. In a nutshell, the goal of [8] is to allow the rightful user
to prove its (correct) ownership in the face of the situation that its secret key
? This work was supported by JSPS KAKENHI Grant Number JP21K11882.

becomes public. In such a situation, proving the knowledge of the correct secret
key, via zero knowledge protocols, for example, is of no use as, potentially, anyone
could generate such proof. Furthermore, Sleeve leaves at the disposal of the user
a second signature scheme. More concretely, Sleeve leverages a regular ECDSA
scheme to have a nested “back up key” to generate the proof of ownership, or
even be fully discarded for a (post quantum) signature scheme; a hash based
signature scheme. In theory, wallets implementing Sleeve can be easily switched
to be quantum resistant, since in addition to ECDSA, they would also contain
a post quantum signature as the fallback feature.

Sleeve Design Limitations. The novel approach in [8], in particular the
construction the original authors introduced, deals with the aggregation of a
W-OTS+ public key into a single value to be used in the ECDSA as the se-
cret key. Their solution was to adapt the L-Tree data structure [10] in order
to execute the integration. This approach works for their purpose; however its
design seems fairly limited and ad hoc, i.e. left and right branches of the L-Tree
requires pair of values which needs to be added to the key pairs. More modern
approaches exist and seem more suitable to such integration between ECDSA
and hash based signatures, such as relying on Tweakable Hash Functions [3].
The security analysis of [8] introduces two new properties: proof of ownership
and fallback; however it does not detail the impacts in the signature scheme.
Namely, the introduction of a back up key nested into the ECDSA signature
scheme is not shown to have any side effects on its security. In fact, the ECDSA
security in [8] is not assured by a computational problem. Transactions gener-
ated by wallets rely on signatures, therefore this state of uncertainty is not ideal
for the security of regular users. Moreover, a closer look on the ECDSA security
literature shows that it is more involved than a naive reader would previously
expect [6,7,13,14].

History of the ECDSA Security. Brown [6,7] has shown that the ECDSA
is strong unforgeable (when the adversary receives only one signature per mes-
sage) in a chosen message attack considering a proof technique based on the
Random Oracle Model (ROM) and Generic Group Model (GGM). Fersch et
al. [13] pointed out, that indeed ECDSA is strong unforgeable in these models;
however in the real world, when no assumption is assumed in the group (thus
not in the GGM), that is not the case. The reason for the discrepancy is the
modelling of the group in the conversion function of the scheme, i.e., mapping
the group elements to the field Zq for a large prime q.

The works [13,14] sidestep the briefly mentioned limitations of the proof tech-
nique by dropping the GGM, while still relying on the ROM. Both works show
that ECDSA is indeed secure; however when the adversary is given only one sig-
nature per message employing a proof method relying on a “Generic ElGamal
Framework”, which subsumes several variants of DSA, including the ECDSA.
Perhaps, surprisingly, the proven security is based in the Semi Logarithm Prob-
lem (SLP) [6] instead of the more standard Discrete Logarithm Problem (DLP)
as one would expect. Attempts to show the security of Sleeve must take into
account these developments, and that is what we do within this work.

2

Our Contributions. Succinctly, the main contributions of this work are
• Section 3 (and Appendix A) introduces a clean and modular construction to
quantum-secure fallback and proof of ownership of ECDSA under the Sleeve
definition and based on Tweakable Hash Functions;

• Section 4 presents a proof of security with respect to the original Sleeve
definition, for proof of ownership and fallback, regarding the signatures gen-
erated by Sleeve with respect to the unforgeability security of the ECDSA
scheme, and based on the computational problem SLP (dependence of a
computational problem is crucial in provable security standard);

• Section 5 introduces benchmarks of an open-source, fully audited, and de-
ployed implementation currently in use on existing blockchain platform;

• Section 6 shows the security of the construction using Verifpal, a formal
methods analysis tool, and provides the first ever analysis of a hash-based
signature scheme using formal methods analysis tools, highlighting the ex-
isting challenges in this type of modelling.
The most remarkable differences between the work from [8] and ours is (1) the

use of Tweakable Hash functions, which [8] does not use. Therefore, as in [8], our
construction works with basic wallet scripts, e.g., multisig. Their construction
relies heavily on L-Tree as used in [16], therefore our construction takes the more
modern approach, (2) the security guarantees and analysis we introduce.
2 Background
As preparation, let n be the security parameter, and PPT denote probabilistic
polynomial-time. We rely on the standard notion of negligible function. That is
negl(n) is said to be negligible if and only if for all c ∈ N, there is a n0 such that
for all n ≥ n0, negl(n) < n−c.

Now we can review the Sleeve and Tweakable Hash Function definitions.
Overview of the Sleeve construction. The principle behind the construction
is that users first generate a public-private key pair that is quantum resistant
along with a secret key value, hash the quantum-resistant public key along with
the secret key value, and use this output as a secret key to be used as an elliptic
curve secret key. Upon obtaining the elliptic curve secret key, users can trivially
generate the corresponding public key. To finalize, users may have to perform
additional steps to obtain a wallet address associated with an elliptic curve public
key. For example, on blockchain platforms like Bitcoin [22], Ethereum [25] and
Cardano/Ouroboros [2,11,19], users hash their ECDSA public key to obtain their
wallet address. The construction is designed to be modular such that users can
easily use the best suitable cryptographic assumptions for each of the modules.
Figure 1 illustrates an overview diagram of the construction.
Sleeve Desired Properties. The design [8] is due to the need to integrate
a quantum-secure fallback into the ECDSA scheme. Namely, the question it
addresses is: If an adversary breaks the Elliptic Curve based DLP (ECDLP),
compromising the security of a cryptocurrency, can users redeem (or rollover)
their assets in a safe manner without the risk of theft from this adversary?

Before addressing the required properties for our design, we highlight similar
research in this area, such as [18] and [17], that provide a different alternative

3

PQsk

X

PQpk H(·) ECCsk ECCpk Wseed

Fig. 1: Overview of the Sleeve construction, where the user generates a post-
quantum (PQ) key pair (PQsk,PQpk) along with a hash key X from the local
randomness seed, which is used as an input when hashing the fallback public
key. The result of the hashing operation is used as an elliptic curve secret key,
ECCsk, then used as elliptic curve cryptography (ECC) trapdoor and obtain
the elliptic curve public key ECCpk. Diamond arrows represent a trapdoor, and
normal arrows showcase the values acting either as input or output.

solution to this question. These approaches rely on a user Alice publishing one
hash commit of both the elliptic curve public key and the fallback public key. At
a later point in time, Alice signs a reveal transaction using the fallback secret
key which reveals both the elliptic curve public key and the fallback key. This
transaction then proves that Alice is the true owner of a specific wallet address.

The scheme in [8] requires some different properties, which are now enumer-
ated. First, and intuitively, users should have the ability to integrate a (quantum-
secure) fallback for traditional cryptocurrency wallets, which typically rely on
the ECDSA scheme. Ideally, this solution should not incur in any type of addi-
tional communication costs and should not assume an interactive protocol if it is
not strictly necessary. This segregation and lack of interactivity with any other
parties is particularly relevant as it allows a user to, upon completion of the
key generation, quickly and simply store the fallback key in a cold wallet with-
out requiring any signature until a quantum threat appears. Second, the users
should have the ability to leak the fallback public key in a manner that does
not expose the ECDSA secret key. For example, Alice should be able to disclose
that she owns a wallet address WA, and a fallback public key to inform all in
the system that she may need to provide a signature that can be verified under
such fallback key. The reveal of the fallback public key should not translate to
a compromise of the ECDSA secret key as then any entity in the system could
produce signatures and attempt to perform transactions on behalf of Alice.

Third, the design should be modular, easy to use, and compatible with cur-
rently used cryptocurrency wallets. Therefore, the design should have the pos-
sibility of supporting any elliptic curve based wallet, any post-quantum secure
fallback, and should support the use of mnemonics and other features that im-
prove usability for the end user. Ideally, the security proofs for each of the com-
ponents should be modular such that changing the used schemes in the different
parts of the design does not affect other parts of the construction.

4

Lastly, one of the main properties of this construction is fork voiding in a
blockchain system. Upon redeeming the digital assets into the fallback public
key, users should fully expose the ECDSA secret key such that the value of
the assets stored on the original chain naturally converges towards zero, thus it
incentives users to abandon the initial chain towards the new and safer fork.
Sleeve and its Security Properties. The Sleeve primitive is composed by the
tuple (Genπ,Sign, Verify, Proof,Verify-Proof). The generation algorithm outputs
the pairs of keys, vk and sk, and the backup key bk. The first pair is the regular
verification key, used for verifying a signature, and the secret-key used for issuing
a signature. While the last key is used to issue the Proof of Ownership π, with
respect to vk as follows

Definition 1 (Sleeve [8]). A fallback scheme Sleeve = (Genπ, Sign,Verify,Proof,
Verify-Proof) is a set of PPT algorithms:

• Genπ (1n) on input of a security parameter n outputs a private signing key
sk, a public verification key vk and the back up key bk;
• Sign (sk,m) outputs a signature σ under sk for a message m using the des-
ignated main signature scheme, in our example this is an ECDSA signature;
• Verify (vk, σ,m) outputs 1 iff σ is a valid signature on m under vk;
• Proof(bk, c) on input of the backup information bk and the challenge c, it
outputs the ownership proof π. In our example, this is a W-OTS+ signature
on the challenge c using the fallback key bk;
• Verify-Proof(vk, sk, π, c) is a deterministic algorithm that on input of a public-
key vk, secret-key sk, an ownership proof π and a challenge c, it outputs
either 0, for an invalid proof, or 1 for a valid one.

The two main security properties of Sleeve are (1) the capability of issuing
a proof to confirm the ownership of the secret key, even in the face of a massive
leakage, when the secret key becomes public, and (2) the capability to smoothly
switch to another signature scheme, namely a quantum resistant one. Briefly, we
formally review both properties.

Definition 2 (Proof of Ownership [8]). For any PPT algorithm A and se-
curity parameter n, it holds

Pr[(vk, sk, bk)← Genπ(1n) : (c∗, π∗)← A(sk, vk)
∧Verify-Proof(vk, sk, π∗, c∗) = 1] < negl

for all the probabilities are computed over the random coins of the generation
and proof verification algorithms and the adversary.

Definition 3 (Fallback [8]). We say that the scheme (Genπ,Sign, Verify), with
secret and verification key respectively sk and vk such that Genπ(1n)→ (vk, sk, bk),
has fallback if there are sign and verification algorithms Signπ and Verifyπ such
that sk and bk can be used as verification and secret keys respectively, along with
Signπ and Verifyπ as fully independent signature scheme.

5

Tweakable Hash Functions. Introduced to allow better abstraction of hash-
based signature scheme. By decoupling the computations of hash chains, hash
trees, and nodes, protocol designers can separate the analysis of the high-level
construction from exactly how the computation is done. Therefore abstracting
the computation away in hash-based schemes only requires analyzing the hashing
construction. The standard definition is as follows.

Definition 4 (Tweakable Hash Function [3]). Let P the public parameters
space, T the tweak space, and n, α ∈ N. A Tweakable Hash Function is an
efficient function mapping an α-bit message M to an n-bit hash value MD using
a function key called public parameter P ∈ P and a tweak T ∈ T . Therefore, we
have Th : P × T × {0, 1}α → {0, 1}n, MD← Th(P, T,M).

A tweakable hash function takes public parameters P and context information
in the form of a tweak T in addition to the message. The public parameters
might be thought as a function key or index. The tweak might be interpreted as
a nonce. We use the term public parameter for the function key to emphasize it
is intended to be public. Thus we explicitly assume an extra property for Th.

Definition 5 (Indistinguishability). For the security parameter n, and the
tweakable hash function Th, we say that Th has the Computational Indistin-
guishability from Uniformly Random Distribution Property, if for every PPT
distinguisher D, and arbitrary choices of the parameters P , T and M , the fol-
lowing holds |Pr[x← Th(P, T,M),D(x) = 1]−Pr[x← U ,D(x) = 1]| ≤ negl(n),
for the uniform distribution U .

3 The Tweakable Sleeve

We now describe our Sleeve construction, with W-OTS+ as the fallback, and a
tweakable hash function for the public key integration, i.e. Tweakable Sleeve.

Definition 6 (Family of Functions). Given the security and the Winternitz
parameters, respectively, n ∈ N and w ∈ N, w > 1, let a family of functions Hn
be {hk : {0, 1}n → {0, 1}n|k ∈ Kn} with key space Kn.

Definition 7 (Chaining Function). Given a family of functions Hn, x ∈
{0, 1}n, an iteration counter i ∈ N, a key k ∈ Kn, for j n−bit strings r =
(r1, . . . , rj) ∈ {0, 1}n×j with j ≥ i, then we have the chaining function as follows

cik(x, r) =
{
hk(ci−1

k (x, r)⊕ ri), 1 ≤ i ≤ j;
x, i = 0.

Additionally, we review the notation for the subset of randomness vector r =
(r1, . . . , r`). We denote by ra,b the subset of (ra, . . . , rb), and for our construction
to be presented next, we rely on a Key-Derivation Function KDF which follows
the recently announced set of recommendations [9].

6

Protocol Description. Sleeve is 5-tuple set of PPT algorithms (Genπ,Sign,
Verify,Proof,Verify-Proof). We describe the generic version of (Genπ,Sign,Verify)
in Table 1, based on the formalism of [14] which is convenient for our security
analysis in Section 4. The algorithms Proof and Verify-Proof are given in Table 2
and Table 3, respectively.

3.1 The Generic Sleeve: GenSleeve
In order to formulate the definition for GenSleeve, we review more basic defini-
tions to cast it in more generic terms and bases its security on a computational
problem, i.e. SLP.

Our security analysis relies on the work of [14] which is the state of the art in
the understanding of the security of the ECDSA. Their proof bases the analysis
in the Semi Logarithm Problem (SLP) with respect to the Conversion Function
f . Such a function was introduced in the GenElGamal Framework which sub-
sumes ECDSA and other ElGamal based schemes. The proposed framework is
parameterized by a Defining Equation E for a set D which gives the distribution
of the values to be used in the signature generation, consequently, generating
the different “flavors” of the ElGamal/DSA schemes 5. For a better readability
and completeness of this work, we now review these definitions.
Conversion Function. A component of the GenElGamal Framework is the
conversion function f . More concretely, the conversation function maps the group
members from G to Zq. The SLP is with respect to f and, in its simplest form,
can be stated as given a pair of group members g and X = gx, it is required to
output s and t such that t = f((g ·Xt) 1

s). Its more general form is given by the
next definition.
Definition 8 (SLP [6]). Let (G, g, q) be a prime-order group and let f : G∗ →
Zq and ρ0, ρ1 : Z2

q → Zq be functions. We say that an algorithm I(τ, ε)-breaks the
SLP in G with respect to f , ρ0 and ρ1 if it runs in time at most τ and achieves
probability ε = Pr[X ← G; (u, v)← I(g,X) : v = f(gρ0(u,v) ·Xρ1(u,v))].

The Defining Equation. The sign and verification procedures for the ECDSA
and Sleeve variants can be defined in a modular and general fashion. The tech-
nique to make the variants is crucially dependent on the sampling values; Each
variant has a different distribution. The Defining Equation rules the distribution,
thus we review the definition.
Definition 9 (Defining Equation). Let D ⊂ Z3

q be a set. An equation E =
E(s, h, t, r, x) over D× (Z∗q)2 is said to be defining (a signature scheme) if E has
the form E(s, h, t, r, x) = C0(s, h, t) + r ·Cr(s, h, t) +x ·Cx(s, h, t), where C0 and
Cx are functions D → Zq, and Cr is a function D → Z∗q . With other words, E
is defining if it is affine linear in x and r, and E can always be solved for r.
The concrete example of Defining Equation is E(s, h, t, r, x) = h − rs + tx for
the Defining Set D = Z∗q × Zq × Z∗q as given by [14].
5 For a complete list of the supported schemes, we refer the reader to the full list
in [14].

7

Definition 10 (Sign and Verification Function). Let E be a defining equa-
tion. Then we define the signing function SE(h, t, r, sk) = SEsk(h, t, r) as follows:
if there exists a unique s such that E(s, h, t, r, sk) is satisfied, SE returns s;
otherwise, the function returns ⊥. Further, we define the verification function
VE(g, s, h, t, sk) = VEg,sk(s, h, t) with respect to a prime-order group (G, g, q) as
follows: if r is the (unique) solution of E(s, h, t, r, sk) then VE returns gr.

As remarked by [14], the affine linear form of E makes possible to efficiently
evaluate VE given just the tuple (s, h, t, gsk), i.e., without knowing sk explicitly.
Now we are ready to define our generic construction.

Definition 11 (GenSleeve Framework). Given a hash function H, and the S
and V, respectively the Sign and Verification Functions, the Conversion Function
f , the Defining Equation E and Set D, and the Generic Sleeve scheme is the
tuple (Genπ,SignH ,VerifyH ,Proof, Verify-Proof), such that k is the parameter of
the family of function, the three first algorithms are given as follows.

Genkπ(1n) SignH(m, sk) VerifyH(m, vk, σ)
Pick a random public seed P h← H(m) Parse: (s, t) p← σ

Pick (`+ w − 1) n-bit strings ri r
$← Zp;R← gr h← H(m)

Set bki ← ri, for 1 ≤ i ≤ ` If R = 1:Return ⊥ If (s, h, t) /∈ D: Return 0
Set r = (r`+1, . . . , r`+w−1) t← f(R) R̂← VEg,x(s, h, t)
Set vki = cw−1

k (bki, r), 1 ≤ i ≤ ` s← SEsk(h, t, r) If R̂ = 1: Return 0
Pick a random hash key X If (s, h, t) /∈ D: Return ⊥ t̂← f(R̂)
Pick a random tweak T Return σ = (s, t) If t 6= t̂: Return 0
W-OTS+

pk = Th(P, T, vk1, . . . , vk`) Return 1
sk← ((r, k),Th(P,X ,W-OTS+

pk))
vk← gsk1

Return (vk, sk, bk)
Table 1: GenSleeve is based on the GenElGamal Framework [6,14] and it re-
lies on the Th which is indistinguishable from the uniform distribution as per
Definition 5, and Proof and Verify-Proof are the concrete algorithms.

4 Security Analysis

This sections introduces the security analysis of the Tweakable Sleeve in three
complementary ways. The next sections cover, respectively, the following:

1. Security with respect of generic attacks and fallback security, as these were
introduced in [8];

2. Lemma 1 proposal that shows Tweakable Sleeve has equivalent security as
the ECDSA in terms of unforgeability of signatures, i.e. EUF-CMA;

3. The security of the GenSleeve (introduced in Section 3.1), in the same fash-
ion of [14], i.e. Generic ECDSA, and show GenSleeve to be secure with
respect to the Semi Logarithm Problem (SLP).

8

4.1 Generic Attack Security and Unforgeability of Fallback Scheme

The authors of Sleeve describe in [8] the security level of the construction against
generic attacks targeted at the underlying hash function and prove the unforge-
ability of the fallback scheme. Additionally, they prove that, for an appropriate
choice of parameters, the best attack against the fallback scheme (i.e., eW-OTS+

the W-OTS+ variant introduced in [8]) is the same attack against the original
W-OTS+. We use these results as a reference as we consider the same fallback
scheme and note that, by replacing the assumptions of the underlying hash func-
tion with a tweakable hash function, the security results remain well-defined.

4.2 Tweakable Sleeve is at least as secure as an ECDSA One

The security of the ECDSA scheme is given by [14]. However Sleeve introduces a
new key generation method, which is not considered in the security proof of [8].
Concretely, the generation method relies on the tweakable hash function in order
to generate the ECDSA secret key sk; however it is not clear if such modification
on the ECDSA scheme introduces weaknesses. We address this gap now.

The Unforgeability of Sleeve. In addition to the listed properties of Section 2,
Sleeve is also suitable to similar security definitions as the ones for signature
schemes. The difference is the generation of the keys, which Sleeve introduces
an extra one, the back up key. Table 4 defines the security notion, derived from
standard EUF-CMA security for signature schemes. The difference is only the
extra back up key. The goal of the next lemma is to show that the EUF-CMA
security of Sleeve, constructed with a suitable tweakable hash function, and
ECDSA, instantiated with uniformly random sampling for the secret key, are
equivalent.

Proof(c, bk)
Parse bk→ (bk0, bk1, . . . , bk`)
Parse bk0 → (T ,P,X)
Set π0 = bk0

Compute c→ (c1, . . . , c`1),
for ci ∈ {0, . . . , w − 1}

Compute checksum C =
∑`1

i=1(w − 1− ci),
w-base representation (C1, . . . , C`2),
for Ci ∈ {0, . . . , w − 1}

Parse B = c‖C as (b1, . . . , b`1+`2)
Set πi = cbi

k (bki, r), for 1 ≤ i ≤ `1 + `2
Return π = (π0, π1, . . . , π`1+`2)

Table 2: Proof algorithm, which is the eW-OTS+ Signature Scheme from [8].
The changes introduced by our construction are necessary in order to be used
in combination with ECDSA signatures.

9

Verify-Proof(vk, sk, c, π)
Parse sk→ (sk0, sk1)
Parse sk0 → (r, k)
Parse π → (π0, π1, . . . , π`1+`2), π0 → (T, P,X)
Compute c→ (c1, . . . , c`1),

for ci ∈ {0, . . . , w − 1}
Compute checksum C =

∑`1
i=1(w − 1− ci),

and the base w representation (C1, . . . , C`2),
for Ci ∈ {0, . . . , w − 1}

Parse B = c||C as (b1, . . . , b`1+`2)
Set vki = cw−1−bi

k (πi, rbi+1,w−1) for 1 ≤ i ≤ `1 + `2
Set W-OTS+

pk = Th(P ||T ||vk1, . . . , vk`1+`2)
Return 1, if the following equations hold
sk1 = Th(P ||X ||W-OTS+

pk)
vk = gsk1

Table 3: The verification of the proof π adapts the verification procedure for
eW-OTS+ by adding an extra check on the ECDSA verification key vk.

Lemma 1. Assume ECDSA is EUF-CMA secure and the generation algorithm
Genπ from Table 1 is constructed with a tweakable hash function Th indistinguish-
able from the uniform distribution as per Definition 5 for the security parameter
n. Then Sleeve is EUF-CMA as given by the security game of Table 4.

Proof (sketch). Assume the existence of a Sleeve forger F which wins the game
from Table 4 by outputting a forgery (m∗, σ∗) with non-negligible probability.

Procedure Init(n) Procedure Sign(m)
L ← ∅ If m ∈ L: Abort
(vk, sk, bk)← Genπ(1n) σ ← Sign(sk,m)
Return vk If σ = ⊥: Return ⊥

L ← L ∪ {m}
Procedure Fin(m∗, σ∗) Return σ
If m∗ ∈ L: Abort
If Verify(vk,m∗, σ∗) = 0: Abort
Return 1

Table 4: Unforgeability for Sleeve, i.e. three keys are generated. The above
game is One-Message Existential Unforgeability with Chosen Message Attack
game, i.e. (EUF-CMA1). For the general form, i.e. the standard (EUF-CMA),
the Sign Procedure does not abort when the message is in the list L. For the
key only (UF-KOA) variant of the game, the adversary does not access the Sign
Procedure.

10

Then we construct a PPT distinguisher algorithm D which breaks the indistin-
guishability property of Th with high probability. We construct D as follows:

• D performs the security game given by Definition 5, and receives as input
the string x;

• D modifies the generation algorithm Genπ from Table 1, by using the received
string x to generate the public, key. In the modified game the public key is
vk′ = gsk′ for sk′ ← x;
• D simulates the EUF-CMA security game of Table 4 to F using (vk′, sk′);
• With high probability F outputs (m∗, σ∗), then D uses the verification al-
gorithm Verify to perform the following and stop:
− If Verify(m∗, σ∗) = 1, then output 1
− Else, output 0;

Now we estimate the success probability of F in the EUF-CMA game of Table 4,
by considering three points:

• From the indistinguishability property of Th, we know |Pr[x← Th(P, T,M),
D(x) = 1]− Pr[x← U ,D(x) = 1]| is negligible for arbitrary choices of P , T
and M as given by Definition 5 and initial hypothesis;

• Following from the EUF-CMA security of ECDSA, we have that Pr[x ←
U ,Verify(m∗, σ∗) = 1] is negligible for the uniform random distribution U ;

• Finally, note that Pr[x ← Th(P, T, v),D(x) = 1] and Pr[x ← Th(P, T, v),
Verify(m∗, σ∗) = 1] are equal by design of D and success probability of F .

Therefore, |Pr[x ← Th(P, T,M),D(x) = 1] − Pr[x ← U ,D(x) = 1]| ≤ negl(n),
and |Pr[x ← Th(P, T,M),Verify(m∗, σ∗) = 1] − negl(n)| ≤ negl(n). Hence
Pr[x ← Th(P, T, v),Verify(m∗, σ∗) = 1] must be negligible and Sleeve is also
EUF-CMA, thereby giving the lemma. ut
The earlier lemma only relates the security of Sleeve and ECDSA. In order to
thoroughly prove the hardness of breaking Sleeve it is convenient to consider a
computational problem. That is what we do next.

4.3 The Security of GenSleeve
From now we take the approach of [14] in order to build a full proof of the
unforgeability of the generic Sleeve variant based on the assumed hard compu-
tational problem. Namely, show the security of GenSleeve with respect to SLP.
What we do now is to review the main definitions from [14] combined with the
ones introduced in Section 3.1.
Definition 12 (h-decomposable). Let E = E(s, h, t, r, x) be a defining equa-
tion with corresponding set D. We say that E is h-decomposable (with respect
to D) if there exist functions ν0, ν1 : Zq → Zq and ρ0, ρ1 : Z2

q → Zq such that
ν0, ν1 6= 0 if h 6= 0 and r = ν0(h) · ρ0(s, t) + x · ν1(h) · ρ1(s, t) for all (s, h, t) ∈ D
and r, x ∈ Z∗q satisfying E(s, h, t, r, x).
For completeness, in the next definition we consider the standard notion for δ
statistical distance. That is, for any two ensembles {X(x, k)}x∈{0,1}∗,k∈N and
{Y (x, k)}x∈{0,1}∗,k∈N, for index k and input x, the value |Pr[X(x, k) = 1] −
Pr[Y (x, k) = 1]| is at most δ.

11

Definition 13 (δ-Simulatability). Let (E,G, H, f,D) be an instantiation of
GenSleeve as in Definition 11. It is said that the instantiation is δ-simulatable
if there exists a function SimE : Z3

q × Z2
q ∪ {⊥} that is computable in about the

same time as SE such that for all sk ∈ Z∗q the statistical distance between the
outputs of the two protocols depicted by Table 5 is at most δ.

Preal(sk, g) PSim(vk, g)
r

$← Zp a, b
$← Zp

R← gr R← vkagb

If R = 1: Return ⊥ If R = 1: Return ⊥
t← f(R) t← f(R)
h

$← Zq (s, h)← SimE(a, b, t)
s← SEsk(h, t, r) If (s, h, t) /∈ D: Return ⊥
If (s, h, t) /∈ D: Return ⊥ Return (s, h, t)
Return (s, h, t)

Table 5: PSim shows that, given a procedure Sim, it is possible to generate a
tuple (s, h, t) statistically close without knowing the secret key sk.

The generic security is derived from the work on [14]. Namely, the next two
theorems which are defined according to the number of random oracle and signa-
ture queries, respectivelyQH andQs and the big-O notation O. For completeness
we present them altered to GenSleeve. However we refer the reader to the full
work for the proofs of the theorems, which are the same for GenSleeve.

Theorem 1. [14] Let (E,G, H, f,D) be a δ-simulatable of GenSleeve. Then if
H is modeled as random oracle, for every forger F that (τ,Qs,QH , ε)-breaks the
one-per-message unforgeabillity if this instantiation there also exists a forger F ′
that (τ ′, 0,QH , ε′)-breaks the key-only unforgeability of this instantiation, where
ε′ ≥ ε/(e2(Qs + 1))−Qsδ and τ ′ = τ + O(QH).

Theorem 2. [14] Let (G, g, q) be a prime-order group, let E be a defining equa-
tion with corresponding set D, and let f : G∗ → Zq and H : {0, 1}∗ → Zq be
functions. If E is h-decomposable with functions ρ0 and ρ1, and H is modelled
as a random oracle, then the SLP in G with respect to f , ρ0, ρ1 is non-tightly
equivalent to the key-only unforgeability of GenSleeve when instantiated with
(E,G, H, f,D).

That is, for any adversary I that (τ, ε)-breaks SLP, there exists a forger F
that (τ ′, ε)-breaks the key-only unforgeability of Generic Sleeve, where τ ≈ τ ′.

Conversely, for any forger F that (τ,QH , ε)-breaks the key-only unforgeability
of GenSleeve, there exists an adversary I that (τ ′, ε/QH − 1/q)-breaks SLP,
where τ ≈ τ ′ and QH is the number of random oracle queries posed by F .

Sections 4.1, 4.2 and 4.3 fully cover the security of the Tweakable Sleeve,
regarding ECDSA security, and GenSleeve with respect to SLP.

We now focus on the experimental results.

12

5 Implementation & Performance

This section describes our open-source implementation, the audit results along
with the associated fixes, and details of the Verifpal formal analysis model.

Reference Implementation. We implemented a single-threaded version in
Golang. In our implementation, W-OTS+ uses SHA3 for public key compres-
sion and Blake2b for hash ladder calculations. We use the secp256k1 curve with
ECDSA as the main signature scheme and verified the correctness of our code,
which integrates BIP39 [4], by comparing it with reference BIP39 implemen-
tations [5,15]. Our implementation differs slightly from the original W-OTS+

specification, which defines a secret key as ` random numbers and, instead, de-
rives the secret key values from a single seed parameter by using a KDF. The
W-OTS+

pk is compressed using a tweakable hash function using the public seed,
and the secret hash key value X .

Audit. We expose the detailed results obtained from the official audit of the
reference implementation and the subsequent fixes.

• Scope: The scope of the audit included the correctness of the cryptogra-
phy and associated security, finding eventual timing leaks, usage of unsafe
APIs, missing security checks, risk from dependencies, and poor randomness
generation.
• Security Issues: No outstanding security issue appeared in the core cryp-
tographic modules and the main security remarks are associated with a com-
mand line interface (CLI) tool created to improve the usability of the user.
The audit results are openly available in [23].
• Verifpal Implementation: The code associated with the formal analysis
tools is openly available on a Github repository in a special folder dedicated
to the formal verification component [23].

Performance Metrics. We present performance metrics for our single-threaded
implementation running on one Amazon c5.xlarge benchmark machine with an
Intel Xeon Platinum 8124M 3.00GHz CPU and 8GiB RAM. Our code runs a
Sleeve key generation in 1.81 ms, which comprises a W-OTS+ key generation
that takes 1.75 ms and an ECDSA key generation that takes 0.059 ms. These
early results demonstrate that the key generation of the (tweakable) Sleeve con-
struction is significantly slower than presently used key generation mechanism
(i.e., ECDSA). These results are expected as the Sleeve construction introduces
a significant amount of additional steps in the wallet generation process. Poten-
tial improvements may include calculating the W-OTS+ hash-ladders in parallel
and the use of different and potentially faster hash functions implementations.

13

6 Formal Methods Analysis

This section reports on the mathematical security proof of our construction, and
outlines the Verifpal [21,20] model we used to analyze the tweakable Sleeve along
with some of the challenges that appeared throughout this process. We start by
giving a brief summary on the Verifpal tool.
Verifpal. Verifpal is a software for verifying the security of cryptographic pro-
tocols. This tool is oriented towards real-world practitioners attempting to inte-
grate formal verification into their line of work. To achieve this, Verifpal uses a
new, intuitive language for modeling protocols that is considered easier to write
and understand than the languages currently employed by existing tools.
Challenges to Modelling Sleeve in Verifpal. A commonly found problem
in symbolic model protocol verifiers is that, for complex protocols, the different
combinations of variables that the verifier must assess, quickly becomes too large
to terminate in reasonable time. This is a challenge we faced in our modelling
process as we initially attempted to model a W-OTS+ fallback for ECDSA and
the tool constantly issued memory fault errors when starting to perform the
hash ladder iterations, which resulted in the stopping of the verification process
in a faulty manner. Additionally, we highlight the lack of existence of the XOR
logical function in the tool, which lead to design attempts with changed variants
of the chaining function.
Verifpal Model of Sleeve. To avoid the memory fault issues derived from
iterating different attack scenarios involving a high number of hash function
calls, we model a simpler Lamport signature scheme as a quantum-secure fallback
instead of W-OTS+.
Attacker model. All the interactions in the model go through an active at-
tacker. Therefore, we assume the Dolev-Yao model [12] where the adversary is
in charge of delivering the messages.
Results. The tool output that regardless of the compromise of the ECDSA
secret key value, the queried values remain confidential, and only the true owner
of the hash-based fallback key pair is able to produce a safety signature. We
assume correctness of the Verifpal execution results, especially since there reslts
match the results obtained in the security proof of Sleeve.

7 Final Remarks

The Sleeve definition is a promising and novel scheme designed as an extension
to existing wallets since, as quantum computers evolve, the security of most
cryptocurrency wallets is at risk.

In this work, we improve on the original Sleeve construction by proposing
the Tweakable Sleeve. Thus we introduced a more modular approach that is
simpler to analyze and implement. Moreover, we fill the missing gaps in the
security proof of the original proposal, connecting it to the state-of-the-art of

14

the ECDSA security. Namely, (1) our construction presents the same capabili-
ties of the original Sleeve, (2) it is at least as secure as the ECDSA signature
scheme given a tweakable hash function whose output is computationally indis-
tinguishable from the uniformly random distribution, and (3) our construction
is generically secure, i.e. GenSleeve with respect to SLP.

Finally, we showcase our security results using the formal method analysis
tool called Verifpal, which produced positive results matching the ones obtained
in the mathematical proof of security. The distinctive extra level of security
provided by Sleeve has the potential to help in the adoption of this new crypto-
graphic primitive in the context of blockchain applications. Moreover this work
illustrates that our construction is now open-source, audited, and features a more
complete security proof relating the construction with a concrete computational
problem: a must in provable security practice.

Finally, this work illustrates a fruitful combination of theoretical work, from
the protocol specification/construction, to the formal method analysis. Such
thorough work which might raise the expectation of due diligence teams to in-
clude formal analysis when designing and evaluating cryptographic protocols.

References

1. Aranha, D.F., Novaes, F.R., Takahashi, A., Tibouchi, M., Yarom, Y.: Ladderleak:
Breaking ecdsa with less than one bit of nonce leakage. In: Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security. p.
225–242. CCS ’20, Association for Computing Machinery, New York, NY, USA
(2020)

2. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. In: Lie, D., Man-
nan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 913–930. ACM Press
(Oct 2018). https://doi.org/10.1145/3243734.3243848

3. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe,
P.: The SPHINCS+ signature framework. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (eds.) ACM CCS 2019. pp. 2129–2146. ACM Press (Nov 2019). https:
//doi.org/10.1145/3319535.3363229

4. Mnemonic code for generating deterministic keys. https://github.com/bitcoin/
bips/blob/master/bip-0039.mediawiki, accessed: 2021-09-10

5. Mnemonic code converter. https://iancoleman.io/bip39/, accessed: 2021-09-10
6. Brown, D.: On the Provable Security of ECDSA, p. 21–40. London Mathematical

Society Lecture Note Series, Cambridge University Press (2005)
7. Brown, D.R.: Generic groups, collision resistance, and ecdsa. vol. 35, pp. 119–152.

Springer (2005)
8. Chaum, D., Larangeira, M., Yaksetig, M., Carter, W.: Wots+ up my sleeve! a

hidden secure fallback for cryptocurrency wallets. In: International Conference on
Applied Cryptography and Network Security. pp. 195–219. Springer (2021)

9. Chen, L.: Recommendation for key derivation using pseudorandom functions-
revision 1. NIST special publication (2021), https://doi.org/10.6028/NIST.SP.
800-108r1-draft, accessed: 2022-02-20

10. Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital signatures out
of second-preimage resistant hash functions. In: Buchmann, J., Ding, J.

15

https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1145/3319535.3363229
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://iancoleman.io/bip39/
https://doi.org/10.6028/NIST.SP.800-108r1-draft
https://doi.org/10.6028/NIST.SP.800-108r1-draft

(eds.) Post-quantum cryptography, second international workshop, PQCRYPTO
2008. pp. 109–123. Springer, Heidelberg (Oct 2008). https://doi.org/10.1007/
978-3-540-88403-3_8

11. David, B., Gazi, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 66–98. Springer, Hei-
delberg (Apr / May 2018). https://doi.org/10.1007/978-3-319-78375-8_3

12. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on
Information Theory 29(2), 198–208 (1983)

13. Fersch, M., Kiltz, E., Poettering, B.: On the provable security of (ec)dsa signatures.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security. p. 1651–1662. CCS ’16, Association for Computing Machinery,
New York, NY, USA (2016)

14. Fersch, M., Kiltz, E., Poettering, B.: On the one-per-message unforgeability of
(EC)DSA and its variants. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II.
LNCS, vol. 10678, pp. 519–534. Springer, Heidelberg (Nov 2017). https://doi.
org/10.1007/978-3-319-70503-3_17

15. Golang implementation of the bip39 spec. https://godoc.org/github.com/
tyler-smith/go-bip39, accessed: 2021-09-10

16. Hülsing, A.: W-OTS+ - shorter signatures for hash-based signature schemes.
In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 13. LNCS,
vol. 7918, pp. 173–188. Springer, Heidelberg (Jun 2013). https://doi.org/10.
1007/978-3-642-38553-7_10

17. Ilie, D.I., Karantias, K., Knottenbelt, W.J.: Bitcoin crypto–bounties for quantum
capable adversaries. Cryptology ePrint Archive, Paper 2020/186 (2020), https:
//eprint.iacr.org/2020/186, https://eprint.iacr.org/2020/186

18. Ilie, D.I., Knottenbelt, W.J., Stewart, I.: Committing to quantum resistance, bet-
ter: A speed–and–risk–configurable defence for bitcoin against a fast quantum
computing attack. Cryptology ePrint Archive, Paper 2020/187 (2020), https:
//eprint.iacr.org/2020/187, https://eprint.iacr.org/2020/187

19. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part I. LNCS, vol. 10401, pp. 357–388. Springer, Heidelberg (Aug 2017). https:
//doi.org/10.1007/978-3-319-63688-7_12

20. Kobeissi, N.: Verifpal: Cryptographic Protocol Analysis for Students and Engi-
neers. https://verifpal.com (2021), [Online; accessed 05-August-2021]

21. Kobeissi, N., Nicolas, G., Tiwari, M.: Verifpal: Cryptographic protocol analysis for
the real world. In: Proceedings of the 2020 ACM SIGSAC Conference on Cloud
Computing Security Workshop. p. 159. CCSW’20, Association for Computing Ma-
chinery, New York, NY, USA (2020)

22. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2009), http://www.
bitcoin.org/bitcoin.pdf

23. Sleeve. https://github.com/xx-labs/sleeve/tree/main/verifpal_model, ac-
cessed: 2022-02-21

24. Trinity attack incident part 1: Summary and next steps. https://blog.iota.org/
trinity-attack-incident-part-1-summary-and-next-steps-8c7ccc4d81e8,
accessed: 2020-09-22

25. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151, 1–32 (2014)

16

https://doi.org/10.1007/978-3-540-88403-3_8
https://doi.org/10.1007/978-3-540-88403-3_8
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-70503-3_17
https://doi.org/10.1007/978-3-319-70503-3_17
https://godoc.org/github.com/tyler-smith/go-bip39
https://godoc.org/github.com/tyler-smith/go-bip39
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-642-38553-7_10
https://eprint.iacr.org/2020/186
https://eprint.iacr.org/2020/186
https://eprint.iacr.org/2020/186
https://eprint.iacr.org/2020/187
https://eprint.iacr.org/2020/187
https://eprint.iacr.org/2020/187
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://verifpal.com
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://github.com/xx-labs/sleeve/tree/main/verifpal_model
https://blog.iota.org/trinity-attack-incident-part-1-summary-and-next-steps-8c7ccc4d81e8
https://blog.iota.org/trinity-attack-incident-part-1-summary-and-next-steps-8c7ccc4d81e8

A High-level Diagram of the Tweakable Sleeve
Construction

This section exposes a high-level diagram of the sequence of performed steps in
the key generation component of the Sleeve construction

seed

· · ·s2s1 s` T XPublic Seed

H H H H

H H H H

WOTS+
pk = Th(P, T, v1, . . . , v`)

sk = ECDSAsk = Th(P,X ,W-OTS+
pk)

vk = ECDSApk = gsk

KDF(seed)

Fig. 2: Sleeve high-level diagram of the key generation.

17

	Tweakable Sleeve: A Novel Sleeve Construction based on Tweakable Hash Functions
	Introduction
	Background
	The Tweakable Sleeve
	The Generic Sleeve: GenSleeve

	Security Analysis
	Generic Attack Security and Unforgeability of Fallback Scheme
	Tweakable Sleeve is at least as secure as an ECDSA One
	The Security of GenSleeve

	Implementation & Performance
	Formal Methods Analysis
	Final Remarks
	High-level Diagram of the Tweakable Sleeve Construction

