
Supersingular Isogeny Diffie-Hellman with Legendre Form

Jesse Elliott∗, Aaron Hutchinson†

Abstract

SIDH is a key exchange algorithm proposed by Jao and De Feo that is conjectured to be post-quantum
secure. The majority of work based on an SIDH framework uses elliptic curves in Montgomery form;
this includes the original work by Jao, De Feo and Plût and the sate of the art implementation of SIKE.
Elliptic curves in twisted Edwards form have also been used due to their efficient elliptic curve arithmetic,
and complete Edwards curves have been used for their benefit of providing added security against side
channel attacks. As far as we know, elliptic curves in Legendre form have not yet been explored for
isogeny-based cryptography. Legendre form has the benefit of a very simple defining equation, and the
simplest possible representation of the 2-torsion subgroup. In this work, we develop a new framework
for constructing 2a-isogenies in SIDH using elliptic curves in Legendre form, and in doing so optimize
Legendre curve arithmetic and 2-isogeny computations on Legendre curves by avoiding any square root
computations. We also describe an open problem which if solved would skip the strategy traversal
altogether in SIDH through the Legendre curve framework.
Keywords— Post-quantum cryptography, SIKE, elliptic curves

∗David R. Cheriton School of Computer Science, University of Waterloo, On, Canada
†Cyber Engineering & Mathematics and Statistics, Louisiana Tech University

1

1 Introduction

1.1 Background

Elliptic Curves and Isogenies. Let Fq be a finite field with q elements, where q = pk for some prime p.
Let E1 and E2 be elliptic curves over Fq. An isogeny φ : E1 → E2 is a non-constant rational map preserving
the identity element, and also a group homomorphism from E1(Fq) to E2(Fq). The degree of an isogeny
φ, denoted degφ, is its degree as a rational map. When an isogeny is separable and non-constant, then its
degree is finite and equal to the size of its kernel. An isogeny of degree ℓ is called an ℓ-isogeny. Moreover,
non-constant separable isogenies are determined by their kernel, up to isomorphism, in the following sense.

Theorem 1. ([6, Proposition 4.12]) Let E be an elliptic curve and let G be a finite subgroup of E. There
exists a unique (up to isomorphism) elliptic curve E′ and a separable isogeny φ : E → E′ with ker(φ) = G.

The curve E′ in the theorem above is often labeled E/G and is called the quotient of E by G. Vélu’s
formulas (see [7]) provide the equations for the codomain curve E/G and for the isogeny φ : E → E/G.
For a point P in E, Vélu’s formulas give explicit equations φ(P) = (φ1(P), φ2(P)) where

φ1(P) = x(P) +
∑

Q∈G\{O}

[x(P +Q)− x(Q)]

φ2(P) = y(P) +
∑

Q∈G\{O}

[y(P +Q)− y(Q)].

Furthermore, non-constant separable isogenies can be factored into a composition of isogenies of prime
degree over Fq. In particular, if φ is a non-constant and separable isogeny with degree ℓe for some prime ℓ,
then φ can be factored into a composition φ = φeφe−1 · · ·φ1 where degφi = ℓ for all 1 ≤ i ≤ e.

For an elliptic curve E defined over Fq and an integer n, the multiplication by n map [n] : E → E is an
isogeny. The kernel of [n] is the n-torsion subgroup E[n] of E, given by E[n] = {P ∈ E : [n]P = O}. If n
does not divide p, then E[n] is isomorphic to Z/nZ⊕ Z/nZ as an abelian group.

We say that E1 and E2 are isogenous if there exists a non-constant isogeny φ : E1 → E2. For any such
φ, there always exists a dual isogeny φ̂ : E2 → E1 satisfying degφ = deg φ̂ and φφ̂ = φ̂φ = [degφ], making
the property of being isogenous an equivalence relation.

An endomorphism of an elliptic curve E defined over Fq is an isogeny φ : E → E. The set of all
endomorphisms, together with point-wise addition and function composition, forms the structure of a
ring called the endomorphism ring, which is denoted by End(E). We say that E is supersingular when
dimZ(End(E)) = 4 and we say that E is ordinary when dimZ(End(E)) = 2. Isogenous elliptic curves
are either both supersingular or both ordinary. Every supersingular elliptic curve is isomorphic to an
elliptic curve that is defined over a finite field of order p2. The work in this paper focuses exclusively on
supersingular elliptic curves, and therefore we assume in the remainder that q = p2.

E EA

EB EBA
∼= EAB

φA

φB φ
′
B

φ
′
A

Figure 1: A high-level depiction of Supersingular Isogeny Diffie-Hellman. The initial curve E is given as a
public parameter. In round 1, Alice (resp. Bob) constructs the secret isogeny φA (resp. φB). In round 2,
Alice (resp. Bob) constructs another secret isogeny φ′

A (resp. φ′
B). The shared secret is the j-invariant of

the final curve EAB
∼= EBA.

2

Supersingular Isogeny Diffie-Hellman (SIDH). SIDH is a key exchange algorithm proposed by Jao
and De Feo [4] that is conjectured to be post-quantum secure (resistant to both classical and quantum
attacks). We now describe SIDH at a high level. Let p = 2a3bf ± 1 be a prime number, where f is a small
co-factor and 2a ≈ 3b. Let E be a supersingular elliptic curve defined over Fp2 .

The key exchange provided by SIDH is a variation of Diffie-Hellman. The public parameters consist of
a supersingular elliptic curve E and points PA, QA, PB, QB ∈ E such that E[2a] = ⟨PA, QA⟩ and E[3b] =
⟨PB, QB⟩. In the first round of SIDH, Alice chooses integersmA, nA ∈ Z/2aZ as her secret key and computes
an isogeny φA : E → EA with

EA := E/⟨mAPA + nAQA⟩, ker(φA) = ⟨mAPA + nAQA⟩.

Similarly, Bob chooses integers mB, nB ∈ Z/3bZ as his secret key and computes an isogeny φB : E → EB

with

EB := E/⟨mBPB + nBQB⟩, ker(φB) = ⟨mBPB + nBQB⟩

Now, akin to Diffie-Hellman, Alice and Bob exchange some information: Alice sends (EA, φA(PB), φA(QB))
to Bob, and Bob sends (EB, φB(PA), φB(QA)) to Alice. The second round then begins, where Alice com-
putes an isogeny φ′

A : EB → EBA and Bob computes an isogeny φ′
B : EA → EAB such that:

EBA := EB/⟨mAφB(PA) + nAφB(QA)⟩, EAB := EA/⟨mBφA(PB) + nBφA(QB)⟩,
ker(φ′

A) = ⟨mAφB(PA) + nAφB(QA)⟩, ker(φ′
B) = ⟨mBφA(PB) + nBφA(QB)⟩,

The two curves EAB and EBA are isomorphic since they are both isomorphic to the curve E/⟨mBPB +
nBQB,mAPA + nAQA⟩. The shared key is then the j invariant of EBA

∼= EAB.

·

· Re

R1 ··
φ1 φe−1 φe

. . .· ·

·

·

·

[ℓ]

[ℓ]

[ℓ]

[ℓe−1]R1

·

·

·

·

· ·
...

...
...

. . .

. . .

[ℓe−2]R2

[ℓ]Re−1

Figure 2: A visual representation of the computational structure of computing φ = φe . . . φ1.

Computing Isogenies in SIDH: Strategies In both rounds of SIDH, both Alice and Bob are tasked
with computing (and possibly evaluating) an isogeny φ : E → E/⟨R⟩ for some curve E and some point
R ∈ E of order ℓe for ℓ ∈ {2, 3} and e ∈ {a, b}, such that ker(φ) = ⟨R⟩. Applying Vélu’s formulas
directly to ⟨R⟩ to construct φ is not efficient; the computation requires O(degφ) = O(ℓe) = O(

√
p) field

operations. For better efficiency, the isogeny construction is instead broken up into a decomposition of
prime degree isogenies φi, 1 ≤ i ≤ e, with φ = φeφe−1 · · ·φ1. Using this method, φ can be computed with
e × O(degφi) = O(eℓ) field operations. We now describe in detail how the construction of φe, . . . , φ1 is
made efficient.

As in [5], we let E1 = E and R1 = R, and for 1 ≤ i ≤ e define

Ei+1 = Ei/⟨ℓe−iRi⟩, φi : Ei → Ei+1, Ri+1 = φi(Ri).

3

Then E/⟨R⟩ = Ee and φ = φe . . . φ1 has kernel ⟨R⟩. Each curve Ei+1 and isogeny φi (which has degree ℓ)
can be computed using Vélu’s formulas once the subgroup ⟨ℓe−iRi⟩ of Ei is known.

Figure 2 provides a visual representation of the computational structure of the problem. Vertices
represent elliptic curve points, with points on the same positive diagonal having the same order, and points
on the same vertical belonging to the same curve. Downward edges represent point multiplications by ℓ,
and right edges represent ℓ-isogeny evaluations. The goal is to compute all the order ℓ points along the
bottom diagonal, from which we can apply Vélu’s formulas to compute the corresponding φi. Figure 2
motivates the idea of a strategy, originally defined in [5].

Definition 1. For positive integers n, let Tn = (V,E) be the graph defined as follows:

1. The set of vertices V consists of all points in the plane with integer coordinates which lie inside or on
the boundary of the region bounded by the lines x = 0, y = 0, and y = −x− n+ 1.

2. The edge set E consists of all line segments of unit length which connect two vertices in V .

It follows from Definition 1 that every edge of Tn is either horizontal or vertical. We turn Tn into a directed
graph by orienting all horizontal edges to the right and all vertical edges downward. We say that a vertex
is a leaf if it has no outgoing edges (consequently, the leaves of Tn are exactly the integral points on the
line y = −x− n+ 1).

Definition 2. A strategy S is a subgraph of Tn such that:

1. The vertex (0, 0) and all vertices on the line y = −x− n+ 1 are in S.

2. For each vertex v on the line y = −x− n+ 1, there is a path from (0, 0) to v in S.

3. No two edges of S share the same target.

4. There are no leaves in S distinct from the leaves of Tn.

We write |S| = n when S is a strategy in Tn. Any strategy yields a valid algorithm to compute the isogeny
φ = φe . . . φ1 by decorating Te as in Figure 2 (a consequence of [5, Lemma 4.2]).

We now give a method for combining two strategies together to form a larger strategy. For strategies
S1 and S2 with |S1| = n1 and |S2| = n2, define a strategy S1#S2 in Tn1+n2 by:

1. S1#S2 contains the (unique) path connecting (0, 0) to (n2, 0).

2. S1#S2 contains the (unique) path connecting (0, 0) to (0,−n1).

3. S1#S2 contains S1 as a subgraph, shifted to the right n2 units.

4. S1#S2 contains S2 as a subgraph, shifted down n1 units.

We refer to the binary operation # as join; note that it is nonassociative and noncommutative.

Definition 3. A strategy S in Tn is canonical if S can be expressed as n− 1 many applications of the join
operator on the strategy T1. That is, S is some parenthesization of T1#T1# . . .#T1︸ ︷︷ ︸

n

.

Two naive canonical strategies immediately come to mind. We define the nth multiplication-based
strategy An and isogeny-based strategy Bn recursively as A1 = B1 = T1 and An+1 = T1#An and Bn+1 =
Bn#T1. Figure 3 shows 3 strategies in T5: the multiplication-based strategy, the isogeny-based strategy,
and a canonical strategy.

When a strategy is used in SIDH, horizontal edges correspond to isogeny evaluations and vertical edges
correspond to point multiplications. Furthermore, all vertical edges have a common computational cost and
all horizontal edges have a common computational cost. To get a sense of the computational effort required
to construct an isogeny of degree ℓe with a given strategy, we assign weights to each edge in a strategy. We
define a measure as a pair (p, q) of positive real numbers, and turn a strategy S into a weighted strategy
as follows.

4

Definition 4. A weighted strategy with the measure (p, q) is a strategy turned into a weighted graph,
where vertical edges have weight p and horizontal edges have weight q. The cost of the weighted strategy
is the sum of the weights of all the edges in the strategy. An optimal strategy is one of minimal cost.

In [5, Proposition 4.6] it is shown that every optimal strategy must be canonical.

·

·

·

·

·

·

·

·

·

·

·

·

·

·

· ·

·

·

·

·

·

·

·

·

·

·

·

·

·

· ·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

Figure 3: The multiplication-based strategy (left), the isogeny-based strategy (middle), and a canonical
strategy (right) in T5.

Supersingular Isogeny Key Encapsulation (SIKE) The most current and optimized version of
SIDH is SIKE (see [3]). In 2016, Galbraith, Petit, Shani and Ti showed that if a static public key is used
in SIDH then the protocol becomes vulnerable to an active attack, where an advisary can fully recover the
corresponding secret key in a number of iterations equalling the bit-length of the secret [2]. In SIKE, one
applies a variant of the Fujisaki-Okamoto transform to force Bob to reveal his encryption key to Alice,
which Alice then uses to re-encrypt Bob’s ciphertext and verify its validity, thus preventing the active
attack.

Montgomery Curves A Montgomery curveMb,a is given by an equation of the form by2 = x3+ax2+x,
where a, b ∈ Fq are the curve coefficients. In isogeny-based cryptography, most formulas do not require
the value of b and it is often left unspecified. To avoid field inversions, it’s often useful to projectivize the
variable a as [a : 1] ∈ P1, so that [A : C] = [a : 1] if and only if Ca = A. Furthermore, the most efficient
implementations involving Montgomery curves, such as [3], use the quantity [A+

24 : C24] in place of [A : C],
where [A+

24 : C24] = [A+ 2C : 4C].

The Choice of Curve Model The majority of work based on an SIDH framework uses Elliptic curves
in Montgomery form; this includes the original work by Jao, De Feo and Plût [4, 5] and the sate of the
art [3]. Elliptic curves in twisted Edwards form have also been used because of their efficient elliptic curve
arithmetic, and complete Edwards curves have been used for their benefit of providing added security
against side channel attacks [1].

As far as we know, elliptic curves in Legendre form have not yet been explored for isogeny-based
cryptography. Legendre form has the benefit of a very simple defining equation, and the simplest pos-
sible representation of the 2-torsion subgroup. We therefore find motivation in using Legendre form for
constructing 2a-isogenies in SIDH.

1.2 Contributions

The main contributions of this work are as follows.

1. We describe in detail how a degree 2a isogeny can be constructed between elliptic curves in Legendre
form for use in isogeny-based cryptographic protocols such as SIDH. To achieve this, we derive many

5

results for elliptic curves in Legendre form and degree 2 isogenies between curves in Legendre form in
Section 2. Naively constructing a degree 2 isogeny between Legendre curves requires the computation
of a square root. Our formula for 2-isogenies shows that the computation of this square root can be
avoided when an order 4 point above the kernel generator is known. Furthermore, we describe how to
convert between Montgomery form and Legendre form and give explicit isomorphisms for this task.

2. We detail algorithms which implement the theoretic results on Legendre curves from Section 2. In
particular, we describe Algorithm 7, which can be viewed as an analogue of Algorithm 19 of [3]
adapted to the setting of Legendre curves. Algorithm 7 takes as input the projectivized coefficients
[κ : µ] of a Legendre curve L[κ:µ] and the coordinates (XR : ZR) of a point on L[κ:µ] of order exactly 2a.
The algorithm constructs a degree 2a isogeny φ : L[κ:µ] →Mb,a to some Montgomery curve Mb,a such
that ker(φ) = ⟨R⟩; this is performed by constructing a sequence of 2-isogenies φ1, . . . , φa, such that
φi is a degree 2 isogeny between Legendre curves for 1 ≤ i < a, φa has the form φa : L[κ′:µ′] →Mb,a,
and φ = φa · · ·φ1. The final curve is given in Montgomery form so that it can easily be sent to Bob in
the first round of SIDH. Algorithm 7 relies on subroutine Algorithms 1–6 which efficiently implement
the results from Section 2.

3. In Section 4 we further describe an open problem—the original motivation for this work—which if
solved would skip the strategy traversal performed in SIDH altogether, using the fact that the 2-
torsion of Legendre curves has a simple representation and is known in advance for all intermediate
curves.

1.3 Paper Organization

In Section 2, we discuss elliptic curves in Legendre form. We give many results regarding their arithmetic,
torsion structure, and construction of 2 isogenies between them. In Section 3, we provide a collection of
algorithms which implement the results from Section 2 for use in SIDH key exchange. We discuss these
algorithms in detail and explain how they relate to the results from Section 2. In Section 4, we give
concluding remarks and discuss some future work.

2 Formulas for Legendre Form

This section provides formulas for various operations on elliptic curves in Legendre form. Throughout this
section, we use F to denote an arbitrary field.

2.1 Legendre Form

For λ ∈ F with λ ̸= 0, 1, the Legendre curve Lλ with coefficient λ is the elliptic curve in P2(F) given by the
affine equation

Lλ : y2 = x(x− 1)(x− λ), (1)

where λ is called the Legendre coefficient. The j-invariant of Lλ is the value

j(λ) = 28
(λ2 − λ+ 1)3

λ2(λ− 1)2
∈ F,

and two curves are isomorphic if and only if they have the same j-invariant. The mapping j : F\{0, 1} → F
given by λ 7→ j(λ) is exactly six-to-one, except above j(λ) = 0 and j(λ) = 1728; the six values mapping to
j(λ) ̸= 0, 1728 under j are ß

λ,
1

λ
, 1− λ, 1

1− λ
,

λ

λ− 1
,
λ− 1

λ

™
,

and therefore these six values define the same Legendre curve up to isomorphism.

6

2.2 Projective Coordinates and Coefficients

We embed affine F space into projective space P(F) using the usual mapping. Specifically, λ ∈ F is
represented in projective form as [λ : 1]. Projective form has the property that for any κ, µ ∈ F not both
zero and c ∈ F nonzero, we have that [κ : µ] = [cκ : cµ]. We will sometimes abuse notation by writing
λ = [λ : 1], and so [κ : µ] = κ/µ when µ is nonzero.

For efficiency reasons, it will be useful to use projective coordinates for the coefficient of our elliptic
curves. We therefore give an alternative definition of a Legendre curve which uses a curve coefficient in
projective form.

Definition 5. Let [κ : µ] ∈ P(F) with (κ− µ)κµ ̸= 0. The Legendre curve L[κ:µ] with coefficient [κ : µ] is

the elliptic curve in P2(F) defined by the homogeneous polynomial

L[κ:µ] : µY 2Z = X(X − Z)(µX − κZ). (2)

Note that the curve is well defined even when changing the representation of [κ : µ]. The Legendre
curve L[κ:µ] is identical to the Legendre curve Lλ from the previous section, where λ = κ/µ. Using the
projective form of the curve coefficient will help reduce the computational cost of constructing isogenies
later in this section. Going forward, we work entirely with projective coefficients.

2.3 Legendre Arithmetic

Points on the Legendre curve L[κ:µ] are elements of P2(F) which satisfy the defining homogeneous polynomial
given in Equation 2. These points form an abelian group through the group law, with the single point at
infinity O = [0 : 1 : 0] playing the role of the group identity. The following theorem describes part of the
group law for Legendre form.

Theorem 2. Let L[κ:µ] be a Legendre curve. The points of L[κ:µ] form an abelian group with identity
O = [0 : 1 : 0], and the doubling of [X : Y : Z] ∈ L[κ:µ] is given by 2[X : Y : Z] = [X ′ : Y ′ : Z ′], where

X ′ = (µX2 − κZ2)2,

Y ′ =
(µX2 − 2κXZ + κZ2)(µX2 − 2µXZ + κZ2)(µX2 − κZ2)

2µY Z
,

Z ′ = 4µXZ(µX2 − (κ+ µ)XZ + κZ2)

when Y Z ̸= 0.

Proof. Legendre form is a special case of generalized Weierstrass form, and so the theorem follows imme-
diately from well-known results. See [6] for details.

Notice that X ′ and Z ′ above depend only on X,Z, κ, and µ, and so even if the value of Y is not known
repeated doubling may be partially computed by ignoring Y ′. If the X and Z coordinates of some point
are known, the value of Y can be determined up to sign through Equation 2.

2.4 The 2-Torsion of a Legendre Curve

One of the most appealing features of a Legendre curve is the simplicity of their 2-torsion points. Recall
for n ∈ N that the n-torsion of a curve L[κ:µ] is the subgroup L[κ:µ][n] = {P ∈ L[κ:µ] : nP = O}.

Theorem 3. The 2-torsion subgroup of L[κ:µ] is isomorphic to Z/2Z× Z/2Z and has the form

L[κ:µ][2] = {O, [0 : 0 : 1], [1 : 0 : 1], [κ : 0 : µ]} .

7

Given [X : Y : Z] ∈ L[κ:µ][2], at first glance the nonuniqueness of projective representations of points
may give the impression that determining which of the four above points [X : Y : Z] corresponds to may
require at least a field multiplication. Upon closer inspection we see the following algorithm, requiring at
most three field equality checks:

[X : Y : Z] =


O if Z = 0,
[0 : 0 : 1] if X = 0,
[1 : 0 : 1] if X = Z,
[κ : 0 : µ] otherwise.

2.5 The 4-Torsion of a Legendre Curve

Here we give a description of L[κ:µ][4]. The 4-torsion consists of 16 points, 4 of which are the 2-torsion
subgroup L[κ:µ][2] given previously. Aside from these, there are 12 points of order 4, which can be partitioned
into 3 subsets based upon which 2-torsion point they double to. That is, if T ∈ L[κ:µ][2] has order 2, then
each of the subsets ST = {P ∈ L[κ:µ] : 2P = T} has size 4 and do not intersect each other. For such a fixed
T , the points within ST can be written to have a very similar expression, which only differs by at most
two minus signs. The computation to determine each ST is tedious, and the end result is given in Figure
4. The three points in the Order 4 row of Figure 4 each represent one of the sets ST , where the value of T
is the point in the Order 2 row directly below.

[±
√
κ : ± :

√
µ] [

√
µ±
√
µ− κ : ± :

√
µ] [κ±

√
κ(κ− µ) : ± : µ]

[0 : 0 : 1] [1 : 0 : 1] [κ : 0 : µ]

[0 : 1 : 0]

Order 4:

Order 2:

Order 1:

Figure 4: The 4-torsion of L[κ:µ]. Each point in the Order 4 row above actually represents four distinct
points of order 4 on L[κ:µ], found by taking all possible choices of sign; for brevity the Y -coordinates have
been omitted. All arrows represent the doubling map, with double arrows indicating that all four points
at the tail are mapped to the same point at the tip.

2.6 2-Isogenies: Legendre to Legendre

We will be primarily interested in 2-isogenies between Legendre curves. Such isogenies will have a kernel
generated by some 2-torsion point, which were fully described in Section 2.4. This subsection gives con-
structions for 2-isogenies between Legendre curves, restricting to the cases in which the kernel is generated
by either of the 2-torsion points T0 := [0 : 0 : 1] or T1 := [1 : 0 : 1].

One may attempt to apply Velu’s formulas directly to T ∈ {[0 : 0 : 1], [1 : 0 : 1]} to obtain a degree 2
isogeny ψ : L[κ:µ] → E, and then post compose with an isomorphism which puts E into Legendre form. This
approach works, except that the resulting expressions for the codomain curve coefficients and point image
coordinates involve square roots of κ and µ. Since in most instances these square roots aren’t efficiently
computable, we avoid this problem by using the coordinates of an order 4 point P4 such that 2P4 = T .
Theorems 4 and 5 below give formulas for a degree 2 isogeny between Legendre curves using the coordinates
of P4.

Theorem 4. Let L[κ:µ] be a Legendre curve. Assume that P4 = [XP4 : YP4 : ZP4] is a point of order 4
on the curve with 2P4 = [0 : 0 : 1]. The 2-isogeny whose kernel is ⟨[0 : 0 : 1]⟩ can be written in the form

8

φ : L[κ:µ] → L[κ′:µ′] with φ([X : Y : Z]) = [X ′ : Y ′ : Z ′] for any [X : Y : Z] ∈ L[κ:µ], where

κ′ = κZP4 + 2µXP4 + µZP4 , X ′ = µZP4X
2 + 2µXP4XZ + κZP4Z

2,

µ′ = 4µXP4 , Y ′ =
µX2 − κZ2

2(κ/µ)1/4X
ZP4Y,

Z ′ = µ′XZ.

Proof. The theorem can be verified as follows. Write L[κ:µ] in affine form Lλ and apply Velu’s formulas
for generalized Weierstrass form on Lλ with kernel ⟨(0, 0)⟩. This results in a 2-isogeny ψ : Lλ → E for
some curve E. One can then construct an isomorphism θ : E → Lλ′ to a Legendre curve Lλ′ using
well-known results (Proposition 2.16 of [8]). Projectivizing Lλ, Lλ′ and the composition θψ yields a 2-
isogeny between Legendre curves with kernel [0 : 0 : 1], but many of the expressions involve square roots.
The expressions stated in the theorem can be obtained using the fact that XP4

√
µ = ZP4

√
κ, where

P4 = [XP4 : YP4 : ZP4] ∈ L[κ:µ] satisfies 2P4 = [0 : 0 : 1].

For φ as above, notice that φ([1 : 0 : 1]) = [κ′ : 0 : µ′] = φ([κ : 0 : µ]). Consequently, it follows from the
theory of dual isogenies that the isogeny having kernel ⟨[κ′ : 0 : µ′]⟩ corresponds to the dual of φ.

Theorem 5. Let L[κ:µ] be a Legendre curve. Assume that P4 = [XP4 : YP4 : ZP4] is a point of order 4
on the curve with 2P4 = [1 : 0 : 1]. The 2-isogeny whose kernel is ⟨[1 : 0 : 1]⟩ can be written in the form
φ : L[κ:µ] → L[κ′:µ′] with φ([X : Y : Z]) = [X ′ : Y ′ : Z ′] for any [X : Y : Z] ∈ L[κ:µ], where

κ′ = κZP4 + 2µXP4 − 4µZP4 , X ′ = µZP4X
2 + (κ′ − κZP4)XZ − κ′Z2,

µ′ = 4µXP4 − 4µZP4 , Y ′ =
µX2 − 2µXZ + κZ2

2(1− κ
µ)

1/4(X − Z)
ZP4Y,

Z ′ = µ′(XZ − Z2).

The proof for Theorem 5 is very similar to that of Theorem 4. As before, for φ as in Theorem 5 we
have that φ([0 : 0 : 1]) = [κ′ : 0 : µ′] = φ([κ : 0 : µ]), and so ⟨[κ′ : 0 : µ′]⟩ is the subgroup corresponding to
the dual of φ.

Because [κ′ : 0 : µ′] ∈ L[κ:µ] always corresponds to the dual of φ when ker(φ) = ⟨T ⟩ for T ∈ {[0 : 0 :
1], [1 : 0 : 1]}, isogenies with kernel ⟨[κ : 0 : µ]⟩ never need to be considered when constructing a degree 2a

isogeny with kernel ⟨R⟩ such that 2a−1R ̸= [κ : 0 : µ]. This fact will be used implicitly when formulating
algorithms for SIDH (see Algorithm 7 to come).

2.7 2-Isogenies: Legendre to Montgomery

Since Bob expects that the information he receives from Alice is in terms of a Montgomery curve, we
construct the last 2-isogeny so that its codomain curve is in Montgomery form. The following theorem
describes how this is done.

Theorem 6. Let L[κ:µ] be a Legendre curve. Define the curves M0 and M1 and maps φ0 : L[κ:µ] → M0

and φ1 : L[κ:µ] →M1 by:

M0 :
µ

κ− µ
Y 2Z = X3 +

2(κ+ µ)

κ− µ
X2Z +XZ2

M1 :
µ

κ
Y 2Z = X3 +

2(κ− 2µ)

κ
X2Z +XZ2

φ0([X : Y : Z]) = [(X − Z)(µX − κZ) : µX
2 − κZ2

X
Y : (κ− µ)XZ]

φ1([X : Y : Z]) = [X(µX − κZ) : µ(X − Z +
(κ− µ)Z2

(X − Z)µ
)Y : κ(X − Z)Z]

9

Then M0 and M1 are Montgomery curves and φ0 and φ1 are degree 2 isogenies with ker(φ0) = ⟨[0 : 0 : 1]⟩
and ker(φ1) = ⟨[1 : 0 : 1]⟩. The j-invariants of M0 and M1 are

j(M0) =
(κ2 + 14κµ+ µ2)3

(κµ(κ− µ))2
, j(M1) =

(κ2 − 16κµ+ 16µ2)3

(κµ(κ− µ))2
.

Proof. Everything in the theorem can be verified as follows. We work in affine coordinates so that κ = λ
and µ = 1. Apply the standard Velu’s formulas for Weierstrass form to Lλ in each case to arrive at the
(affinized) curves

E0 : y
2 = x3 − (λ+ 1)x2 − 4λx+ 4λ(λ+ 1),

E1 : y
2 = x3 − (λ+ 1)x2 + (6λ− 5)x− (λ− 1)(4λ− 3).

The curves E0 and E1 contain the 2-torsion points P0 := (λ+ 1, 0) and P1 := (λ− 1, 0), respectively. The
other 2-torsion points on each curve can then be found by factoring the cubic defining the curve. The
curves M0 and M1 (respectively isomorphic to E0 and E1) can be derived by using an affine change of
coordinates to some curve By2 = x3 + Ax2 + x such that Pi is sent to (0, 0) and the x-coordinates of the
other 2-torsion points are sent to the zeros of x2 +Ax+1. Composing the Velu maps with these change of
coordinates and projectivizing the result yields φ0 and φ1.

In round 1 of SIDH, the coefficient of the curve Mi (for some value of i) needs to be sent to Bob, as well
as the images of certain points (see Section 1). For efficiency, rather than sending the curve coefficients of
Mi directly, the related quantity [A+

24 : C24] is sent along with the images of Bob’s points in projective form
to avoid field inversions. In round 2, only the j-invariant of Mi is needed, which can be computed directly
using Theorem 6 without computing the coefficients of Mi or the evaluation coefficients of φi.

2.8 Isomorphisms: Montgomery and Legendre

Here we state formulas for converting between Legendre and Montgomery forms of elliptic curves.

Lemma 1. Let MA,B be a Montgomery curve. Define κ = A2 −A
√
A2 − 4− 2 and µ = 2. Then

φM,L :MA,B → L[κ:µ], φM,L([X : Y : Z]) =

ñ
2X :

8B

−A−
√
A2 − 4

Y : −(A+
√
A2 − 4)Z

ô
φL,M : L[κ:µ] →MA,B, φL,M ([X : Y : Z]) =

ñ
−(A+

√
A2 − 4)X :

(−A−
√
A2 − 4)3/2√
8B

Y : 2Z

ô
are inverse isomorphisms.

If one instead starts with a Legendre curve L[κ:µ] and defines A = (κ + µ)/
√
κµ and B = 1, the same

maps above allow one to convert from Legendre to Montgomery form.
The most recent version of SIKE [3] uses the Montgomery curve with coefficient A = 6 as the public

parameter in the key exchange (the curve E in Figure 1.1). Lemma 1 above gives that the Legendre form
of this curve is given by the value [κ : µ] = [36− 6

√
36− 4− 2 : 2] = [16− 12

√
2 : 1]. Since p ≡ 7 mod 8, we

have that 2 is a quadratic residue mod p, and so
√
2 ∈ Fp. The curve L[16−12

√
2:1] can therefore be used as

a starting point for Alice (where Alice and Bob’s public parameter points from E can be mapped through
the isogeny from Lemma 1). Similarly, Alice can convert the Montgomery curve she receives from Bob in
round 2 into Legendre form using Lemma 1.

3 Algorithms

Here we discuss our algorithms that implement the results given in previous sections. What follows is
written through Alice’s perspective, as Bob’s perspective is unchanged and uses Montgomery curves.

10

3.1 The Main Algorithm

Algorithm 7 is the top-level algorithm that computes Alice’s 2a-isogeny φ : L[κ:µ] →Mb,a with ker(φ) = ⟨R⟩
for a point R of exact order 2a with 2a−1R ̸= [κ : 0 : µ]. The input curve and all intermediate curves use
Legendre form, while the final curve (the codomain of φ) uses Montgomery form in order to synchronize
with Bob. Algorithm 7 can be seen as the analog of Algorithm 19 from [3] adapted to our setting. However,
note that Algorithm 7 uses 2-isogenies whereas Algorithm 19 of [3] uses 4-isogenies. Furthermore, since
points of order 4 are used as a means of constructing 2-isogenies, we use a strategy S in Ta−1. The strategy
S is computed ahead of time using a dynamic programming algorithm (see [5, Section 4.2.2] for details),
and is given as a parameter to Algorithm 7 in linearized form (again, see [3]). The input of Algorithm 7
consists of the Legendre curve coefficients [κ : µ] ∈ P1 and the coordinates [XR : ZR] of the point R ∈ L[κ:µ]

with the Y coordinate omitted. An optional input is used for Bob’s points when using Algorithm 7 in the
first round of SIDH, in which case the optional input points are evaluated under each isogeny constructed.
The coefficients [A+

24 : C24] of the final Montgomery curve are given as output, along with the evaluated
points. Algorithm 7 may be used for the second round of SIDH by giving no optional input, in which case
the j-invariant of the shared key is given as output.

3.2 Subroutines

By traversing the strategy S, Algorithm 7 constructs a − 1 many 2-isogenies of the form φi : L[κi:µi] →
L[κi+1:µi+1] for 1 ≤ i ≤ a − 1, as well as a 2-isogeny φa : L[κa:µa] → Mb,a. The composition φaφa−1 . . . φ1

is the desired isogeny φ from Section 3.1. To ease the presentation, Algorithm 7 uses Algorithms 1–6 as
subroutines, which we give an overview of now. Throughout all algorithms, the Y coordinate of every point
is omitted.

Algorithm 1 computes the codomain curve coefficients [κi+1 : µi+1] for an isogeny of the form φi :
L[κi:µi] → L[κi+1:µi+1], as well as coefficients c0, c1, c2 used to evaluate φi at a point. Algorithm 1 takes
the coefficients [κi : µi] and a point P4 ∈ L[κi:µi] of order (exactly) 4 as input, where it is assumed that
2P4 ∈ {[0 : 0 : 1], [1 : 0 : 1]}. First, the algorithm checks whether 2P4 = [0 : 0 : 1] is true by checking
the value of µX2

P4
− κZ2

P4
, the partial doubling of P4 (see Theorem 2); a bit b is set as 0 if µX2

P4
= κZ2

P4

and 1 otherwise, where b = 0 indicates that 2P4 = [0 : 0 : 1]. Depending on the value of b, the values of
[κi+1 : µi+1] and c0, c1, c2 are computed according to Theorem 4 or Theorem 5. Note that b = 1 if and only
if b = 0. The quantities c0, c1, c2 are the coefficients of X2, XZ,Z2, respectively, in the expression for X ′

of Theorem 4 or Theorem 5. Algorithm 1 uses conditional swaps to avoid branching based on the value of
2P4.

∗

Algorithm 2 evaluates the 2-isogenies φi : L[κi:µi] → L[κi+1:µi+1] at a given point. It receives the
codomain curve coefficient µi+1 (κi+1 is not needed), the evaluation coefficients c0, c1, c2 and the bit variable
b computed in Algorithm 1, and a point Q ∈ L[κi:µi] to evaluate under φi. The output of Algorithm 2 is
the coordinates of the point φ(Q) ∈ L[κi+1:µi+1], computed using the formulas given in Theorems 4 and 5.
Again, conditional swaps are used with the value of b to avoid branching.

Algorithm 3 performs coordinate doubling for Legendre curves. The input consists of curve coefficients
[κ : µ] for a Legendre curve L[κ:µ] and the coordinates (XP : ZP) for a point P ∈ L[κ:µ]. The output consists
of the coordinates (X[2]P : Z[2]P) corresponding to [2]P , computed using Theorem 2.

Depending on whether Algorithm 7 is used for the first or second round of SIDH, the desired outcome
is different. In the first round, the [A+

24 : C24] coefficients of Mb,a and the evaluation of certain points under
φa are needed in order to send to Bob; in the second round, only the j-invariant of Mb,a is needed in order
to compute the shared key. Therefore once the isogeny φa−1 is computed, a different action can be taken
based upon which round is being performed; in round one we run Algorithms 4 and 5, and in round two
we run Algorithm 6 (see the final branch statement in Algorithm 7).

Algorithm 4 computes the quantities [A+
24 : C24] of the codomain Montgomery curve Mb,a of the final

isogeny φa : L[κa:µa] → Mb,a, as well as an isogeny evaluation coefficient C. The input to Algorithm 4

∗Note that we use the command cswap(α, β, b), which swaps the values of α and β conditioned on b = 1.

11

consists of the curve coefficients [κa : µa], a point (XP4 : ZP4) ∈ L[κa−1:µa−1] of exact order 4 on the curve
L[κa−1:µa−1], and the evaluation coefficients c0, c1, c2 for the isogeny φa−1 : L[κa−1:µa−1] → L[κa:µa] with
ker(φa−1) = ⟨2P4⟩. The point P4 here can be seen as lying in the upper right corner of the strategy S (see
Section 1). Since ker(φa−1) = ⟨2P4⟩, we have that φa−1(P4) ∈ {[0 : 0 : 1], [1 : 0 : 1]}. Algorithm 4 partially
evaluates P4 under φa−1 and checks whether Xφa−1(P4) is zero. A bit variable b′ is assigned 0 if Xφa−1(P4)

is zero and 1 otherwise. The values of [A+
24 : C24] is then computed according to Theorem 6, where b = 0

indicates using the formula for M0 and b = 1 indicates using that of M1. The evaluation coefficient C is
also computed, whose value is either κi+1− µi+1 when b = 0 or κi+1 when b = 1. Again, conditional swaps
are used based on b.

Algorithm 5 evaluates φa : L[κa:µa] → Mb,a at a given point. It receives as input the coordinates
(XQ : ZQ) of a point Q ∈ L[κa:µa], the quantity C from Algorithm 4 for evaluating φa, and the bit variable
b′ for which ker(φa) = ⟨[b′ : 0 : 1]⟩. The output is the point (Xφa(Q) : Zφa(Q)), computed according to
Theorem 6.

Algorithm 6 computes the j-invariant of the final Montgomery curveMb,a from the isogeny φa−1 and the
point P4 ∈ L[κa−1:µa−1] used to generate φa−1. The input to Algorithm 6 is the same as that of Algorithm
4. Similar to Algorithm 4, Algorithm 6 performs a partial evaluation of the input point P4 to determine if
the image is [0 : 0 : 1] on L[κa:µa]. Depending on the result, the proper formula from Theorem 6 is used to
compute the j-invariant of Mb,a using conditional swaps. In this way, the curve coefficients of Mb,a (or the
related quantities [A+

24 : C24]) and the isogeny φa coefficients are not computed.

3.3 Algorithm Costs

Table 1 summarizes the computational costs of the subroutine Algorithms 1–6. The costs are given in
terms of m, s, and i, which denote the costs of multiplication, squaring, and inversion in Fp2 . We assume
that the costs of addition, negation, flipping bits, and the cswap function are negligible.

Alg. Function Cost

1 2IsoLegCurve 5m
2 2IsoLegEval 4m+ 3s
3 coordinateDBL 5m+ 4s
4 2IsoMontCurve 4m+ 2s
5 2IsogMontEval 5m
6 jInv 8m+ 6s+ i

Table 1: Computational costs of each algorithm in terms of field arithmetic costs. Here, m, s, and i denote
the costs of multiplication, squaring, and inversion in Fp2 , respectively. The costs of addition and negation
are considered to be negligible and are not reported in the cost values.

4 Conclusion

Future Work Here we expand on our initial motivation for wanting to use Legendre curves for isogeny-
based cryptography. As explained in Section 1, at a low level SIDH constructs an ℓe isogeny φ as a sequence
of ℓ-isogenies φi : Ei → Ei+1 with ker(φi) = ⟨Ri⟩. The points Ri are obtained through the laborious task
of strategy traversal and are only needed in order to construct φi. When ℓ = 2, each Ri is a nontrivial
2-torsion point on the curve Ei. If Ei is a Legendre curve Lλi

, then Lλi
[2] = {O, (0, 0), (1, 0), (λ, 0)} and

so Ri has a particularly simple form.
The appeal for using Legendre curves is that since the 2-torsion is known in advance and is identical

for all curves, one may consider an alternative approach for constructing the isogeny φ. If each φi is
constructed so that Ri is chosen as (0, 0) or (1, 0), Section 2 showed that (λ, 0) will correspond to the
dual isogeny; in other words, the value of each Ri corresponds to some bit βi, where Ri = (βi, 0). In this

12

way, rather than beginning SIDH by choosing private key values mA, nA ∈ [0, 2a) and computing the root
R = mAPA + nAQA of the strategy, one could instead use some bitstring (β1, . . . , βe) as the private key
and choose to use the value of Ri = (βi, 0) for each kernel generator rather than derive Ri through strategy
traversal. This would have the effect of skipping strategy traversal altogether—a huge cost savings—since
all points Ri are known from the start.

The drawback to this approach (as shown in Section 2) is that while applying Velu’s formulas to Lλi

and (βi, 0) is easy and results in an efficiently computable isogeny φi : Lλi
→ Ei+1, it’s rarely the case that

Ei+1 is also in Legendre form and so this efficiency is lost when attempting to make this approach iterable.
In particular, the isomorphism which puts Ei+1 in Legendre form is not efficiently computable (apparently
requiring at least a square root). Even if this process was made to be efficiently iterable, another issue
is present: using a bitstring such as (β1, . . . , βa) as the private key for the first round of SIDH may not
correspond to using the same bitstring in the second round. This is due to the fact that there are 6 different
field values which all represent the same Legendre curve Lλi

(see Section 2), and the 2-torsion is permuted
between the different representations. One would then need to ensure that the proper bitstring is used in
the second round so that the appropriate kernel is obtained (by, say, selecting the correct representation of
each Legendre curve).

Concluding Remarks In this work, we detailed many results regarding Legendre curves, including
point doubling formulas, the 4-torsion structure, and formulas for 2-isogenies between Legendre curves.
Furthermore, we used these theoretical results to devise algorithms for constructing 2a-isogenies between
Legendre curves for use in Supersingular Isogeny Diffie-Hellman.

References

[1] R. Azarderakhsh, E. Bakos Lang, D. Jao, and B. Koziel. Edsidh: Supersingular isogeny diffie-hellman
key exchange on edwards curves. In Anupam Chattopadhyay, Chester Rebeiro, and Yuval Yarom,
editors, Security, Privacy, and Applied Cryptography Engineering, pages 125–141, Cham, 2018. Springer
International Publishing.

[2] S. D. Galbraith, C. Petit, B. Shani, and Y. B. Ti. On the security of supersingular isogeny cryptosystems.
Advances in Cryptology – ASIACRYPT, page 63–91, 2016.

[3] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess, A. Hutchinson, A. Jalali,
K. Karabina, B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, G. Pereira, J. Renes, V. Soukharev, and
D. Urbanik. Supersingular isogeny key encapsulation, 2020.

[4] D. Jao and L. De Feo. Towards quantum-resistant cryptosystems from supersingular elliptic curve
isogenies. In Bo-Yin Yang, editor, Post-Quantum Cryptography, pages 19–34, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[5] D. Jao, L. De Feo, and J. Plût. Towards quantum-resistant cryptosystems from supersingular elliptic
curve isogenies. Journal of Mathematical Cryptology, 8(3):209–247, 2014.

[6] Joseph H. Silverman. The Arithmetic of Elliptic Curves. Graduate Tests in Mathematics. Springer,
2nd edition, 2008.

[7] Jacques Vélu. Isogénies entre courbes elliptiques. C. R. Acad. Sci., Paris, Sér. A, 273:238–241, 1971.

[8] Lawrence C Washington. Elliptic Curves: Number Theory and Cryptography. CRC press, 2008.

A Algorithms

13

Algorithm 1: Computing a 2-isogenous Legendre curve

Function: 2IsoLegCurve
Input: Curve coefficients (κ : µ) defining a curve L[κ:µ];a point (XP4 : ZP4) ∈ L[κ:µ] with exact

order 4.
Output: Curve coefficients (κ′ : µ′) defining a curve L[κ′:µ′]; evaluation coefficients c0, c1, c2 for an

isogeny φ : L[κ:µ] → L[κ′:µ′]; a bit variable b satisfying ker(φ) = ⟨[b : 0 : 1]⟩.

1 t0 ← µ ·XP4

2 t1 ← κ · ZP4

3 t2 ← µ · ZP4

4 s0 ← t0 ·XP4 // s0 = µX2
P4

5 s1 ← t1 · ZP4 // s1 = κZ2
P4

6 b← s0
?
̸= s1 // b = 0 (Theorem 4); b = 1 (Theorem 5)

// κ′

7 r0 ← −t2 // r0 = −µZP4

8 r0 ← r0 + r0 // r0 = −2µZP4

9 r0 ← r0 + r0 // r0 = −4µZP4

10 cswap(r0, t2, b) // b = 0: r0 = µZP4; b = 1: r0 = −4µZP4

11 κ′ ← r0 // b = 0: κ′ = µZP4; b = 1: κ′ = −4µZP4

12 κ′ ← κ′ + t1 // b = 0: κ′ = κZP4 + µZP4; b = 1: κ′ = κZP4 − 4µZP4

13 r1 ← t0 + t0 // r1 = 2µXP4

14 κ′ ← κ′ + r1 // b = 0: κ′ = κZP4 + 2µXP4 + µZP4; b = 1: κ′ = κZP4 + 2µXP4 − 4µZP4

// µ′

15 r2 ← t0 // r2 = µXP4

16 r2 ← t0 + t0 // r2 = 2µXP4

17 r2 ← t0 + t0 // r2 = 4µXP4

18 cswap(r0, 0, b) // b = 0: r0 = 0; b = 1: r0 = −4µZP4

19 r3 ← r2 + r0 // b = 0: r3 = 4µXP4; b = 1: r3 = 4µXP4 − 4µZP4

20 µ′ ← r3 // b = 0: µ′ = 4µXP4; b = 1: µ′ = 4µXP4 − 4µZP4

// c0, c1, c2 (coefficients for X ′)
21 c0 ← t2 // c0 = µZP4

22 r4 ← −t1 // r4 = −κZP4

23 r4 ← r4 + κ′ // r4 = κ′ − κZP4

24 r2 ← t0 // r2 = µXP4

25 r2 ← r2 + t0 // r2 = 2µXP4

26 cswap(r4, r2, b) // b = 0: r4 = 2µXP4; b = 1: r4 = κ′ − κZP4

27 c1 ← r4 // b = 0: c1 = 2µXP4; b = 1: c1 = κ′ − κZP4

28 r5 ← −κ′ // r5 = −κ′

29 cswap(r5, t1, b) // b = 0: r5 = κZP4; b = 1: r5 = −κ′
30 c2 ← r5 // b = 0: c2 = κZP4; b = 1: c2 = −κ′
31 Return (κ′ : µ′), c0, c1, c2, b

14

Algorithm 2: Evaluating a 2-isogenous Legendre curve at a point

Function: 2IsoLegEval
Input: a point (XQ : ZQ) on some curve L[κ:µ]; evaluation coefficients c0, c1, c2 for an isogeny
φ : L[κ:µ] → L[κ′:µ′]; the codomain curve coefficient µ′; a bit variable b satisfying

ker(φ) = ⟨[b : 0 : 1]⟩.
Output: a point (XQ′ : ZQ′), where φ(Q) = Q′.

1 t0 ← X2
Q

2 t1 ← (XQ + ZQ)
2 // t1 = X2

Q + 2XQZQ + Z2
Q

3 t2 ← Z2
Q

4 t1 ← t1 − t0 // t1 = 2XQZQ + Z2
Q

5 t1 ← t1 − t2 // t1 = 2XQZQ

6 t1 ← t1/2 // t1 = XQZQ

// XQ′

7 XQ′ ← c0 · t0 // XQ′ = c0X
2
Q

8 s0 ← c1 · t1 // s0 = c1XQZQ

9 XQ′ ← XQ′ + s0 // X ′ = c0X
2
Q + c1XQZQ

10 s1 ← c2 · t2 // s1 = c2Z
2
Q

11 XQ′ ← XQ′ + s1 // XQ′ = c0X
2
Q + c1XQZQ + c2Z

2
Q

// ZQ′

12 r0 ← t1 // r0 = XQZQ

13 r0 ← r0 − t2 // r0 = XQZQ − Z2
Q

14 cswap(r0, t1, b) // b = 0: r0 = XQZQ; b = 1: r0 = XQZQ − Z2
Q

15 ZQ′ ← µ′ · r0 // b = 0: ZQ′ = µ′XQZQ; b = 1: ZQ′ = µ′(XQZQ − Z2
Q)

16 Return (XQ′ : ZQ′)

15

Algorithm 3: Coordinate doubling

Function: coordinateDBL
Input: curve coefficients (κ : µ) defining a curve L[κ:µ]; a point (XP : ZP) ∈ L[κ:µ]

Output: a point (X[2]P : Z[2]P), the doubling of P .

1 t0 ← X2
P

2 t1 ← µ · t0 // t1 = µX2
P

3 t2 ← Z2
P

4 t3 ← κ · t2 // t3 = κZ2
P

// X[2]P

5 X[2]P ← t1 − t3 // X[2]P = µX2
P − κZ2

P

6 X[2]P ← X2
[2]P // X[2]P = (µX2

P − κZ2
P)

2

// Z[2]P

7 r0 ← XP + ZP

8 r0 ← r20 // r0 = (XP + ZP)
2 = X2

P + Z2
P + 2XPZP

9 r0 ← r0 − t0 // r0 = Z2
P + 2XPZP

10 r0 ← r0 − t2 // r0 = 2XPZP

11 r0 ← r0/2 // r0 = XPZP

12 r1 ← κ+ µ
13 r1 ← r0 · r1 // r1 = (κ+ µ)XPZP

14 Z[2]P ← t1 − r1 // Z[2]P = µX2
P − (κ+ µ)XPZP

15 Z[2]P ← Z[2]P + t3 // Z[2]P = µX2
P − (κ+ µ)XPZP + κZ2

P

16 Z[2]P ← r0 · Z[2]P // Z[2]P = XPZP (µX
2
P − (κ+ µ)XPZP + κZ2

P)

17 Z[2]P ← µ · Z[2]P // Z[2]P = µXPZP (µX
2
P − (κ+ µ)XPZP + κZ2

P)

18 Z[2]P ← Z[2]P + Z[2]P // Z[2]P = 2µXPZP (µX
2
P − (κ+ µ)XPZP + κZ2

P)

19 Z[2]P ← Z[2]P + Z[2]P // Z[2]P = 4µXPZP (µX
2
P − (κ+ µ)XPZP + κZ2

P)

20 Return (X[2]P : Z[2]P)

16

Algorithm 4: Computing a 2-isogenous Montgomery curve from a Legendre curve

Function: 2IsoMontCurve
Input: Curve coefficients (κ′ : µ′) ∈ P1; a point (XP4 : ZP4) ∈ L[κ:µ] where P4 has exact order 4 on
some curve L[κ:µ]; evaluation coefficients c0, c1, c2 for an isogeny φ : L[κ:µ] → L[κ′ :µ′] with

ker(φ) = ⟨2P4⟩.
Output: Curve coefficients [A+

24 : C24] for a Montgomery curve Mb,a satisfying
4A+

24 = C24(A+ 2); an isogeny evaluation coefficient C for an isogeny φ
′
: L[κ′:µ′] →Mb,a with

ker(φ′) = ⟨φ(P4)⟩; a bit variable b′ satisfying ker(φ′) = ⟨[b′ : 0 : 1]⟩.

1 t0 ← X2
P4

2 t1 ← XP4 · ZP4

3 t2 ← Z2
P4

// X
′
P4

4 X
P4

′ ← c0 · t0 // X
P4

′ = c0X
2
P4

5 s0 ← c1 · t1 // s0 = c1XP4ZP4

6 X
P4

′ ← X
P4

′ + s0 // X ′ = c0X
2
P4

+ c1XP4ZP4

7 s1 ← c2 · t2 // s1 = c2Z
2
P4

8 X
P4

′ ← X
P4

′ + s1 // X
P

′
4
= c0X

2
P4

+ c1XP4ZP4 + c2Z
2
P4

9 b′ ← X
P

′
4

?
̸= 0 // b′ = 0 if X

P
′
4
= 0; b′ = 1 otherwise

// C
10 t0 ← κ′

11 C ← t0 − µ′ // C = κ′ − µ′
12 cswap(C, t0, b

′) // b′ = 0: C = κ′ − µ′; b′ = 1: C = κ′

// A
13 s0 ← κ′

14 s1 ← µ′

15 s2 ← −µ′
16 s2 ← s2 + s2 // s2 = −2µ′
17 cswap(s1, s2, b

′) // b′ = 0: s1 = µ′; b′ = 1: s1 = −2µ′
18 A′ ← s1 // b′ = 0: A′ = µ′; b′ = 1: A′ = −2µ′
19 A′ ← A′ + κ′ // b′ = 0: A′ = κ′ + µ′; b′ = 1: A′ = κ′ − 2µ′

20 A′ ← A′ +A′ // b′ = 0: A′ = 2(κ′ + µ′); b′ = 1: A′ = 2(κ′ − 2µ′)

// A+
24

21 A+
24 ← C // A+

24 = C
22 A+

24 ← A+
24 + C // A+

24 = 2C
23 A+

24 ← A+
24 +A // A+

24 = A+ 2C
// C24

24 C24 ← C // C24 = C
25 C24 ← C24 + C24 // C24 = 2C
26 C24 ← C24 + C24 // C24 = 4C
27 Return A+

24, C24, C, b
′

17

Algorithm 5: Evaluating φ
′
: L[κ′:µ′] →Mb,a at a point

Function: 2IsogMontEval
Input: Curve coefficients (κ′ : µ′); an evaluation coefficient C for an isogeny φ

′
: L[κ′:µ′] →Mb,a; a

point Q = (XQ : ZQ) ∈ L[κ′:µ′] to be evaluated; a bit variable b′ satisfying ker(φ′) = ⟨[b′ : 0 : 1]⟩.
Output: (XQ′ : ZQ′), where Q′ = φ′(Q)

// XQ′

1 t0 ← XQ

2 t1 ← t0 − ZQ // t1 = XQ − ZQ

3 cswap(t1, t0, b
′) // b′ = 0: t1 = XQ − ZQ; b′ = 1: t1 = XQ

4 s0 ← µ′ ·XQ

5 s1 ← κ′ · ZQ

6 s2 ← s0 − s1 // s2 = µ′XQ − κ′ZQ

7 XQ′ ← t1 · s2 // b′ = 0: XQ′ = (XQ − ZQ)(µ
′XQ − κ′ZQ); b′ = 1: XQ′ = XQ(µ

′XQ − κ′ZQ)

// ZQ′

8 r0 ← XQ

9 t1 ← r0 − ZQ // r1 = XQ − ZQ

10 cswap(r0, r1, b
′) // b′ = 0: r0 = XQ; b′ = 1: r0 = XQ − ZQ

11 ZQ′ ← r0 // b′ = 0: ZQ′ = XQ; b′ = 1: ZQ′ = XQ − ZQ

12 ZQ′ ← r0 · ZQ // b′ = 0: ZQ′ = XQZQ; b′ = 1: ZQ′ = (XQ − ZQ)ZQ

13 ZQ′ ← C · ZQ // b′ = 0: ZQ′ = CXQZQ; b′ = 1: ZQ′ = C(XQ − ZQ)ZQ

14 Return (XQ′ : ZQ′)

18

Algorithm 6: j-invariant computation on Montgomery curves

Function: jInv
Input: Curve coefficients (κ′ : µ′) ∈ P1; a point (XP4 : ZP4) ∈ L[κ:µ] where P4 has exact order 4 on
some curve L[κ:µ]; evaluation coefficients c0, c1, c2 for an isogeny φ : L[κ:µ] → L[κ′ :µ′] with

ker(φ) = ⟨2P4⟩.
Output: The j-invariant j(Mb,a) where Mb,a is the codomain of the isogeny φ′ : L[κ′:µ′] →Mb,a

whose kernel is generated by P4 with ker(φ′) = ⟨φ(P4)⟩.

1 t0 ← X2
P4

2 t1 ← XP4 · ZP4

3 t2 ← Z2
P4

// X
′
P4

4 X
P4

′ ← c0 · t0 // X
P4

′ = c0X
2
P4

5 s0 ← c1 · t1 // s0 = c1XP4ZP4

6 X
P4

′ ← X
P4

′ + s0 // X ′ = c0X
2
P4

+ c1XP4ZP4

7 s1 ← c2 · t2 // s1 = c2Z
2
P4

8 X
P4

′ ← X
P4

′ + s1 // X
P

′
4
= c0X

2
P4

+ c1XP4ZP4 + c2Z
2
P4

9 b′ ← X
P

′
4

?
̸= 0 // b′ = 0 if X

P
′
4
= 0; b′ = 1 otherwise

// j-invariant numerator10 t0 ← κ
11 t1 ← t20 // t1 = κ2

12 t2 ← µ
13 t3 ← t22 // t3 = µ2

14 s0 ← t3 // s0 = µ2

15 s0 ← s0 + s0 // s0 = 2µ2

16 s0 ← s0 + s0 // s0 = 4µ2

17 s0 ← s0 + s0 // s0 = 8µ2

18 s0 ← s0 + s0 // s0 = 16µ2

19 cswap(t3, s0, b
′) // b′ = 0: t3 = µ2; b′ = 1: t3 = 16µ2

20 r0 ← κ · µ
21 r1 ← r0 + r0 // r1 = 2κµ
22 r1 ← r1 + r1 // r1 = 4κµ
23 r1 ← r1 + r1 // r1 = 8κµ
24 r1 ← r1 + r1 // r1 = 16κµ
25 r2 ← −r1 // r2 = −16κµ
26 r3 ← r1 − r0 // r3 = 15κµ
27 r3 ← r3 − r0 // r3 = 14κµ
28 cswap(r3, r2, b

′) // b′ = 0: r3 = 14κµ; b′ = 1: r3 = −16κµ
29 N0 ← t1 // N0 = κ2

30 N0 ← N0 + r3 // b′ = 0: N0 = κ2 + 14κµ; b′ = 1: N0 = κ2 − 16κµ
31 N0 ← N0 + t3 // b′ = 0: N0 = κ2 + 14κµ+ µ2; b′ = 1: N0 = κ2 − 16κµ+ 16µ2

32 N1 ← N2
0 // b′ = 0: N1 = (κ2 + 14κµ+ µ2)2; b′ = 1: N1 = (κ2 − 16κµ+ 16µ2)2

33 N1 ← N1 ·N0 // b′ = 0: N1 = (κ2 + 14κµ+ µ2)3; b′ = 1: N1 = (κ2 − 16κµ+ 16µ2)3

// j-invariant denominator

34 D0 ← r0 // D0 = κµ
35 D1 ← κ− µ
36 D0 ← D0 ·D1 // D0 = κµ(κ− µ)
37 D0 ← D2

0 // D0 = (κµ(κ− µ))2
38 j ← 1/D0 // j = 1

(κµ(κ−µ))2

39 j ← j ·N1 // b′ = 0: j = (κ2+14κµ+µ2)3

(κµ(κ−µ))2
; b′ = 1: j = (κ2−16κµ+16µ2)3

(κµ(κ−µ))2

40 Return j

19

Algorithm 7: Computing and evaluating a 2a-isogeny

Function: 2aIso
Parameters: Integer a ∈ N, Strategy (s1, . . . , sa−2) ∈ (N+)a−2

Input: Legendre curve coefficients (κ : µ) ∈ P1, a point (XR : ZR) ∈ L[κ:µ] of exact order 2a with

2a−1R ̸= (κ : 0 : µ).
Optional Input: (X1 : Z1), (X2 : Z2), (X3 : Z3) ∈ L[κ:µ]

Output: either Montgomery curve coefficients (A24 : C24) such that φ : L[κ:µ] →Mb,a is an

isogeny with ker(φ) = ⟨R⟩; or the j-invariant of Mb,a.
Optional Output: φ(X1 : Z1), φ(X2 : Z2), φ(X3 : Z3) ∈Mb,a

1 Initialize empty deque S
2 push(S, (a− 1, (XR : ZR)))
3 i← 1
4 while S is not empty do
5 (h, (X : Z))← pop(S)
6 if h = 1 then
7 ([κ : µ], (c0, c1, c2), b)← 2IsoLegCurve((κ : µ), (X : Z)) // Alg. 1

8 Initialize empty deque S′

9 while S is not empty do
10 (h, (X : Z))← pull(S)
11 (X : Z)← 2IsoLegEval((X : Z), (c0, c1, c2), µ, b) // Alg. 2

12 push(S′, (h− 1, (X : Z)))

13 S← S′

14 else if 0 < si < h then
15 push(S, (h, (X : Z)))
16 for j = 1 to si do
17 (X : Z)← coordinateDBL((κ : µ), (X : Z)) // Alg. 3

18 push(S, (h− si, (X : Z)))
19 i← i+ 1

20 else
21 Error: invalid strategy

22 if optional input is empty then
23 jInv ← jInv((κ : µ), (X : Z), (c0, c1, c2)) // Alg. 6

24 Return jInv;

25 else
26 ((A+

24 : C24), c, b)← 2IsoMontCurve((κ : µ), (X : Z), (c0, c1, c2)) // Alg. 4

27 for (Xj : Zj) in optional input do
28 (Xj : Zj)← 2IsogMontEval((κ : µ), c, (Xj : Zj), b); // Alg. 5

29 Return ((A+
24 : C24), (X1 : Z1), (X2 : Z2), (X3 : Z3))

20

	Introduction
	Background
	Contributions
	Paper Organization

	Formulas for Legendre Form
	Legendre Form
	Projective Coordinates and Coefficients
	Legendre Arithmetic
	The 2-Torsion of a Legendre Curve
	The 4-Torsion of a Legendre Curve
	2-Isogenies: Legendre to Legendre
	2-Isogenies: Legendre to Montgomery
	Isomorphisms: Montgomery and Legendre

	Algorithms
	The Main Algorithm
	Subroutines
	Algorithm Costs

	Conclusion
	Algorithms

