
1

Linked Fault Analysis
Ali Asghar Beigizad, Hadi Soleimany, Sara Zarei and Hamed Ramzanipour

Abstract— Numerous fault models with distinct
characteristics and effects have been developed. The
costs, repeatability, and practicability of these models
should be assessed. Moreover, there must be effective
ways to use the injected fault to retrieve the secret
key, particularly if the implementation includes any
countermeasures. In this paper, we introduce a new
fault analysis called “linked fault analysis” (LFA), a
more powerful technique than other well-known fault
attacks against implementations of symmetric primitives,
especially in software implementations. For known fault
analysis, the basis for the fault model is either the bias over
the faulty value or the relationship between the correct
value and the faulty one. In the LFA, however, a single
fault involves two intermediate values. The faulty target
variable, u′, is linked to a second variable, v, such that a
particular relation holds: u′ = l(v). LFA lets the attacker
perform fault attacks without the input control, using far
fewer data than previously introduced fault attacks in the
same class. We show the utilization of LFA in the presence
or absence of typical redundancy-based countermeasures
by introducing “Linked Differential Fault Analysis’ ’ (LDFA)
and “Linked Ineffective Fault Analysis’ ’ (LIFA). We also
demonstrate that, under specific circumstances, LFA
is still effective even when masking protections are in
place. We have performed our attacks against the public
implementation of AES and PRESENT in ATMEGA328p to
show the feasibility of LFA in the real world. The practical
results and simulations validate our theoretical models as
well.

Index Terms— Fault Analysis, Linked Fault

I. INTRODUCTION

Fault attacks are a type of physical attack in which the
attacker purposefully induces a fault in the target device and
monitors the target’s reaction to that fault to learn some
information on the secret key. Based on how long they last,
induced faults can be grouped into three categories. The
majority of the suggested fault attacks are based on transient
faults, which affect the system only temporarily. "Permanent
faults" are the second category. They have a long-lasting
negative impact on the target device. Persistent faults are
the third form of fault. They persist but can be removed by
resetting the target device. In this paper, we will concentrate
on transient faults.

Research on transient fault attacks against symmetric
primitives has largely focused on how well they can convert

A.A. Beigizad, H. Soleimany, and S. Zarei are with the
Cyber Research Center, Shahid Beheshti University, Tehran,
Iran, e-mail: beigizad@yahoo.com, h_soleimany@sbu.ac.ir, and
sarazareei.94@gmail.com

H. Ramzanipour is with the Electrical Engineering Dept. of Shahid
Rajaee Teacher Training University (SRTTU), Tehran, Iran, e-mail:
h.ramzanipour@sru.ac.ir

an intermediate value into an faulty one. The attacker injects
a fault into value u to transform it into the faulty value
u′. These two values are typically expected to have some
extractable correlations. One can mention fault models like
stuck-at, bit-flips, random-AND, biased, random fault, etc.,
where the correlation is distinct in each case. In this work, we
take a previously unseen perspective and develop a novel fault-
based attack called “linked fault analysis" (LFA) based on an
out-of-sight type of relation. While in traditional fault attacks,
the fault model is defined based on the relation between the
correct and the faulty values, in the LFA model, the fault
involves more than one intermediate value, the target variable
u, and a second variable v. The relationship brought on by the
fault effect is the transformation of the u value to the faulty
value u′ according to the v value. We entitle this event as a
linked change and utilize it in our new analysis.

A. Overview of Prior Transient Fault Attacks
Due to numerous factors playing a role in the settings of

fault attacks, and also different demands and assumptions, it
is challenging to declare a comprehensive classification for
fault attacks. In what follows, we classify well-known existing
fault attacks based on two critical benchmarks. Along with the
classification, we will take a quick look on three additional
most notable characteristics of attacks that fall under each
group. It would help to pinpoint the precise location of LFA
and its properties.

Control vs. no-control over the inputs. From this point
of view, attacks can be classified based on whether or not the
attacker can repeatedly encrypt a fixed plaintext. Sometimes
this fixed input is presumed to be chosen by the attacker,
and sometimes this is not a requirement. The underlying
presumption in each situation is that the attacker has access to
the input. A second class of attacks, on the other hand, does
not necessitate input control on the part of the attacker.

Bypassing vs. losing to redundancy-based
countermeasures. In the presence of typical redundancy-
based countermeasures (infection-based [1]–[3] or detection-
based [4]), the adversary is unable to detect defective
ciphertexts. Hence, it would not be possible for him to
execute attacks that rely on the faulty ciphertext. However,
some faults do not alter any intermediate value and are
therefore invisible to embedded countermeasure systems. This
phenomenon is known as an “ineffective fault.” There are
attacks that are respectively able to circumvent redundancy-
based countermeasures because they exclusively employ
ineffective faults.

Table I represents the four subcategories created by the
two abovementioned criteria, along with a list of well-

2

TABLE I: Classifications of prior transient fault attacks on
block ciphers.

Group
Tag

Attack
Name

Input’s
Control

Redundancy-based
Countermeasures

Bypassing

Is Applied to
Masked

Implementations

Sensitivity
to Noise:

Missed Fault -
Shuffling

Accurate
Equipment

(G1)

DFA

Need ✗

✗ Low-Medium † ✗

IDFA ✗ Low-Medium † ✗

DFIA ✗ Low-Medium † ✗

CFA ✗ Low-Medium † ✗

(G2)
FTA

Need ✓
✓ Unexplored ¶ ✓

FSA ✗ Unexplored ¶ ✗
SEFA ✓ Low-High ✗

(G3) SFA Do Not Need ✗
✗ High-High ✗

LDFA∗ ✗ Low-Medium † ✗

(G4)

SEA

Do Not Need ✓

✗ Unexplored ¶ ✗

IFA ✗ Low-Medium † ✓
SIFA ✓ High-High ✗

LIFA∗∗ ✓ Low-Medium † ✗

∗,∗∗ Linked-DFA and Linked-IFA, proposed in sections III-B, and III-C of this research.
† Due to using deterministic relations.
¶ To the best of our knowledge.

known attacks falling within each group. The first group (G1)
contains Differential Fault Analysis (DFA) [5], one of the most
prominent fault attacks, able to defeat many implementations
requiring few computations. However, this power comes at
the cost of the adversary’s access to both correct and faulty
ciphertexts corresponding to a given plaintext. DFA has been
widely applied to numerous unprotected implementations of
block ciphers [6]–[9], authenticated encryption schemes [10],
and even stream ciphers [11]. Extensive research has been
conducted on DFA, and multiple generalized and automated
frameworks have been developed to identify vulnerabilities
against this attack methodology [12]–[14]. The Impossible
Differential Fault Attack (IDFA) is a differential-based fault
attack based on an impossible characteristic [15]. Algebraic
Fault Attack (AFA) is similar to DFA, since it requires both
faulty and correct outputs [16]–[18]. However, AFA constructs
algebraic equations and focuses on the solution of a system
of equations instead of using differential characteristics.
Differential Fault Intensity Analysis (DFIA) [19] is another
method in which the key-recovery procedure relies on the
repetition of encryption for a fixed plaintext and the knowledge
of the value of faulty ciphertexts. Collision Fault Analysis
(CFA) [20] is another fault attack belonging to the first group.
It applies when an attacker encrypts two related inputs, injects
a fault into one of the computations, and then exploits a
collision that may occur (usually in the outputs). Redundancy-
based countermeasures can prevent attacks of group (G1),
since the attacker needs to control the input.

The second group (G2) contains attacks that require input
control but can bypass redundancy-based countermeasures.
Fault Sensitivity Analysis (FSA) [21] needs to encrypt the
same plaintext during the profiling phase to determine the
critical fault injection intensity for various plaintexts. The
adversary should be able to determine whether the injected
fault was effective. Therefore, FSA does not necessarily
require faulty ciphertexts. On the other hand, Fault Template
Attack (FTA) [22] is another technique that can circumvent
redundancy-base countermeasures since it does not rely on
faulty ciphertexts. However, an attacker should be able
to encrypt a fixed (but unknown) plaintext several times.
Therefore, both FSA and FTA can circumvent redundancy-

based countermeasures, but in practice, the attacker must
control the input to repeat the encryption process of the same
input. The last member of this group is the newly introduced
Statistical Effective Fault Analysis (SEFA) [23]. A dual for
the most famous SIFA attack.

The last two groups ((G3) and (G4)) comprise attacks
not requiring input control. Statistical Fault Analysis (SFA)
[24] eliminates the requirement of repeated encryptions of
a particular plaintext by means of employing statistics.
However, it demands faulty ciphertexts and therefore can be
thwarted by redundancy-based countermeasures. The fourth
group (G4) includes attacks that can get over redundancy-
based countermeasures while not requiring input control.
These attacks exclusively target cases in which the fault
does not affect the computation. Safe Error Attack (SEA)
[25] is typically relevant to public-key cryptographic systems.
Ineffective Fault Analysis (IFA) [26] and its statistical
counterpart (SIFA) [27] are included in this group as well.
IFA typically uses models such as stuck-at faults, which are
difficult to achieve in practice and require the use of costly
tools such as laser [28], [29].

As mentioned at the beginning of this section, we have
also presented three other crucial fault attack characteristics
in Table I: applicability when masking is present, noise
sensitivity, and accuracy required for fault injection (the last
three columns). Although it is not straightforward enough to
measure or figure out these characteristics accurately in all
listed attacks, we provided them with our best try just to give
a helpful overlook. Applicability in the presence of masking
is supplied in accordance with the published practical results
in the community. It is worth noting given that masking is
a crucial protection strategy. The perfect fault injection, on
the other hand, is a common assumption in the literature,
however it is rarely practical in real-world settings. So, we
have set aside the column Sensitivity to Noise to look at this
property under the many presented attacks. Unwanted events
occur as a result of either missed faults or the noise created by
hiding tactics like shuffling. Naturally, as noise levels rise, the
data complexity of fault attacks rises as well, although noise’s
effects on attacks can vary. Given that missed and ineffective
faults cannot be distinguished, even strong attacks like SIFA
are unavoidably significantly influenced by high rated missed
faults. Shuffling is a well-known effective countermeasure
against side-channel and fault assaults. Therefore, shuffling
also can increase data complexity. It has less impact on fault
attacks that exploit a relation with a high likelihood between
faulty and correct values compared to statistical attacks.

The third mentioned property is the accuracy needed in the
equipment and setup of fault injection. In some attacks, the
attacker should have control over the intensity, position, and
duration of the fault injection, however, in others, just the
distribution disturbance is important (the precise impact of
the fault is presumed to be unknown). Attacks, such as FTA
or IFA, in which the attacker will inject stuck-at or bit-flip
faults, are really more difficult to accomplish in practice. On
the other side, the cost of the necessary equipment is closely
tied to the accuracy required for fault injection; more accuracy
will demand more expensive equipment.

3

B. Our Contributions

In certain applications, it is not possible to encrypt (or
sign) the same message more than once. A prominent example
is in protocols, in which the message is padded with a
random value. Consequently, fault attacks that require input
control (whether they require chosen plaintexts or repeated
computation with an unknown input) are inapplicable in
such applications. This covers all of the attacks indicated
in Table I’s first two groups ((G1) and (G2)). Consider,
as another example, the devices that use block ciphers in
operation modes such as Cipher Feedback (CFB), Output
Feedback (OFB), and Counter Mode (CTR). Even though it is
sometimes assumed that the underlying block cipher is utilized
in ECB mode, alternative modes like CTR, OFB, CBC, and
CFB may also be applied in real-world applications, where the
input is fundamentally not repeated. The modes construct the
following block by encrypting successive values which depend
on a value “counter” or “initial value (IV)” that will not repeat
over an extended period. Attacks that require input control are
challenging to carry out in these applications too because it is
not always possible for an attacker to reset the counter [30].

On the other hand, techniques that do not necessitate input
control usually rely on specific statistical properties (groups
(G3), and (G4) in Table I). As a result, the key-recovery
technique usually needs more samples than attacks with input
control in order to statistically distinguish between the correct
key and incorrect ones. On the other side of the spectrum
is DFA, which requires input control but consumes a lot
less data than SFA. In certain real-world settings, both small
amounts of data and control-free scenarios might be crucial;
however, none of them are free in the DFA, SFA, and their
other family members. In this research, we propose a new
fault technique that, compared to previously presented fault
attacks in groups (G3) and (G4), greatly reduces the amount
of data required to perform fault attacks without the need
for input control. In our attack model, we assume that an
intermediate value will become faulty and linked to another
intermediate value due to the instruction skipping, and we are
particularly focusing on software-based implementations on
microcontrollers. Our approach can work both in the presence
or absence of countermeasures.

1) In the Absence of redundancy-based Countermeasures:
For DFA and CFA to work, there must exist associations
between two intermediate values, one from the correct
computation and the other from the faulty one. Despite the
limited data available, this attribute enables the attacker to
utilize associations and carry out the attack. We employ a
similar strategy to that of DFA and CFA in our first suggested
method, with a simple but tactical difference. Our approach is
based on correlations between the intermediate values of only
faulty computations. In other words, we employ an intrinsic
attribute of the faulty system and do not need access to the
correct computation. Consequently, our proposed method can
be viewed within the framework carried out with a relatively
limited number of inputs based on a deterministic relation
(similar to DFA and CFA), and at the same time, it avoids
the need for repeated encryption (similar to SFA). We choose

the term Linked-DFA, or abbreviately LDFA for this method.
2) In the Presence of redundancy-based Countermeasures:

Similar to other attacks that do not require input control
and are applicable in the face of countermeasures (such as
SIFA), the key to encountering embedded countermeasures is
using ineffective ciphertexts. These ciphertexts can circumvent
redundancy-based defenses. We demonstrate that our method
applies to ineffective ciphertexts too, and it also gives
the attacker the ability to find missed faults under certain
conditions. Missed faults occur when the fault is injected,
but the desired change is not achieved. These are important
phenomena in real-world applications since they can influence
the performance of a powerful attack like SIFA (more
explanations are given in section III-E.1). We also demonstrate
that LFA might be applicable in the presence of first-order
masking and detection-based countermeasures. We choose
the term Linked-IFA, or abbreviately LIFA for our second
proposed method.

II. PRELIMINARIES

A. Notations

While most of the fault attacks are not specific to any
particular cipher, in the interest of clarity, we will describe
the attacks with an illustration using an R-round word-oriented
Substitution-Permutation Network (SPN) cipher. The majority
of block ciphers, such as AES, have an SPN structure. Let us
assume a standard SPN design EK(P) which accepts a b-bit
plaintext P and a k-bit key to produce the ciphertext C. The
process of encrypting the plaintext using the key can be viewed
as an iteration of an invertible function that is referred to as
round function Fskr

(), where skr stands for the r-th round key
for 1 ≤ r ≤ R. As implied by the name of the structure, each
round of the cipher employs a substitution NL (non-linear
layer) and a permutation L (invertible linear layer), followed
by the addition of a round key. Typically, the substitution layer
is constructed by combining some relatively basic nonlinear
bijective functions known as Sboxes. We denote the Sbox of
the cipher by S. The b-bit state is formed of L words of
the same length (m = b/L). Let xr[i] and yr[i] represent,
respectively, the i−th word input into the substitution layer
in the r−th round and the i−th word output from it where
0 ≤ j ≤ L− 1 and 1 ≤ r ≤ R.

B. Target Ciphers

In our experiments, we concentrate on AES [31] and
PRESENT [32], even though our methods apply to any SPN
block cipher. AES is the most frequently utilized cipher in
real-world applications. PRESENT is an ISO/IEC standard
lightweight block cipher. In what follows, we briefly describe
our target ciphers, and refer to the original proposals for more
information [31], [32].

AES is a 128-bit SPN-structured block cipher with a key
size of 128, 192, or 256 bits. It operates on an array of eight
bytes (m = 8). In our experiments, we considered AES with
128-bit keys, denoted by AES-128, which contains R = 10
rounds, each of which involves four transformations: SubByte

4

(SB), ShiftRows (SR), MixColumns (MC), and AddRoundKey
(AK). Exceptionally, the last round lacks MixColumns.

PRESENT is a 64-bit block cipher and supports a key length
of 80 or 128 bits. Each of PRESENT’s 31 rounds contains the
application of a 4-bit Sbox to 16 nibbles, a simple bit-wise
permutation, and a key addition.

C. DFA
The most widely used technique for fault analysis is

differential fault analysis, which was first introduced in [5].
The assumption is that the attacker can inject a difference at
a certain intermediate value in a particular round. Typically,
the fault is injected into one of the state’s words preceding
the nonlinear layer. In the basic key-recovery technique, the
attacker guesses the subkey bits involved in the last rounds
of the cipher and partially decrypts both faulty and correct
ciphertexts to compute the desired intermediate value. The
intended difference is expected to be seen more frequently
for the correct key than for the incorrect ones.

D. SFA, SIFA, and SEFA
The Statistical Fault Attack (SFA) employs a biased

distribution across an intermediate value. The attacker decrypts
faulty ciphertexts with the key candidates over the final
round(s) of the cipher and computes a statistical scoring
function for each key candidate to assess how closely the
computed distribution resembles the predicted distribution
with the correct key. SIFA, enabled by SFA and Ineffective
Fault Attack (IFA) methods, utilizes the biased distribution
of the intermediate value over ineffective faults and bypasses
redundancy-based countermeasures since it only requires
ineffective outputs. The younger twin of SIFA is SEFA, which
employs the same statistical strategies as SIFA but focuses on
making use of effective faults.

Different statistical tests can be applied given N samples.
The attacker uses statistical test SEI to rank the key candidates,
if he does not know the details of the faulty distribution.

SEI(k) =
∑
x∈X

(p̂k(x)− θ(x))2 . (1)

where θ denotes a uniform distribution and p̂ is the probability
distribution in the intermediate value for the key candidate.
The number of required ciphertexts in SEI test to obtain the
correct key can be estimated based on Equation (2) [27].

NSEI ≈
β · Φ−1

0,1(α)

C(p, θ)
(2)

where p is the true statistical distribution of intermediate value,
and C(p, θ) denotes the capacity and is given in Equation (3)
in case that p is close to θ.

C(p, θ) =
∑
x∈X

(p(x)− θ(x))2

θ(x)
. (3)

The probability of an ineffective and effective event is
referred to as the ineffectivity rate Πi and effectivity rate Πe,
respectively. Hence, the total number of required ciphertexts
for SIFA and SEFA is N = NSEI

Πi
and N = NSEI

Πe
, respectively.

SFA and SIFA were initially applied to the 8th and 9th
rounds of AES, respectively. Because the SEI between a
uniform distribution and the probability distribution p̂ of the
target intermediate value is the same for all key candidates,
the original description of SFA and SIFA did not apply to
the last round of AES. [33] has shown that statistical fault
attacks can be deployed effectively on the last round Sbox
of AES by taking into account the distribution of Hamming
weight of the targeted variable. Section V-D will compare LFA
to earlier fault attacks. We will evaluate the statistical fault
attacks presented in [33] to have a fair comparison because
we applied LFA on the last round of AES.

E. Limitations of Instruction Skip Attacks in Block
Ciphers

A very efficient method of altering processed values
is to skip the execution of one or more multiprocessor
instructions. A variety of laser [4], [34], or electromagnetic
pulses [35]–[37], clock [38]–[42], and power glitches
[43] have been suggested for skipping single or multiple
instructions on microcontrollers. Most instruction-skipping
fault attacks on symmetric-key primitives require input control
and cannot naturally get beyond typical redundancy-based
countermeasures.

One possible attack is bypassing the final round’s key
addition [38], [44]. The last round subkey can be obtained
by computing the exclusive-or of the faulty ciphertext with
the correct ciphertext. Skipping addition is a well-known
attack technique that has been employed against stream
ciphers [45]. Pessl and Prokop recently demonstrated at CHES
2021 that addition skip can be used to attack lattice-based
KEMs [46]. Despite the public key schemes [43], [47], this
approach is not typically relevant to symmetric primitives in
the presence of typical redundancy-based countermeasures.
Given that symmetric primitives are not based on algebraic
structures, skipping an operation typically results in an active
fault that can be identified by redundancy.

In another method, skipping the conditional branching
following the redundant computation [40], would detour the
equality check. Albeit, such faults that target the equality
check in detection-based countermeasures or reduce the
number of iterations in a loop are apparent targets and the
community is already aware of the necessity to protect these
obvious targets with additional protections.

III. LINKED FAULT ANALYSIS (LFA)

A. Fault Model

As stated before, we target software-based implementations
on microcontrollers, and our analysis is based on instruction
skipping. In our attack model, we have three assumptions:

1) The attacker can control the intensity and duration of
the fault. Given that faults are physical disturbances,
the more intensely they are introduced, the more
severely the device being tested is impressed, resulting
in the occurrence of one or more faults (depending on
the intensity). Therefore, there is always a minimum

BEIGIZAD et al.: LINKED FAULT ANALYSIS 5

intensity threshold. On the other hand, if the intensity
is increased significantly from a maximum value, the
device’s response might stop changing considerably or
it might change in an unfavorable way for that attack
model. Thus, the ideal interval should be discovered
through trial and error. The duration (frequency)
parameter is almost the same. The attacker should
identify the optimal frequency range for the system.
Fortunately, in our case (model), this interval isn’t too
wide to require a lot of experimentation. The vicinity is
known (for instance, the Sbox of the last round). Later, in
section V-D, where we report our experimental results,
we will see that other attacks like SIFA and SFA also
require this trial and error to determine their appropriate
interval.

2) Similar to the majority of proposed fault attacks, the
attacker is aware of the timing (fault location). Although
later in Section III-D, we show that the assumption of
precise knowledge about the timing can be relaxed under
some circumstances.

3) The target is a word-oriented block cipher, and its
nonlinear layer is implemented using one or more pre-
computed look-up tables. We assume two variables u
and v are processed sequentially to load the output of
such look-up tables.

We use instruction skipping to cause a fault on an
intermediate value u so that the faulted value u′ is linked
to another intermediate value v, without the attacker knowing
what v, u, and u′ are. Under certain conditions that v and
u are processed sequentially, the value of faulty u (i.e., u′)
becomes equivalent to the v value (i.e., the created link is
equality1). The created links across intermediate values may
result in linked words in the ciphertexts, which an attacker
can exploit to obtain information about the secret key. In the
rest of this section, we describe the mechanism of injecting
the fault using cheap instruments, well-timed power spikes, or
clock glitches.

Each Sbox pre-computed table is called several times
throughout round function execution to process all input values
of the nonlinear part of the algorithm. The invocations result in
loading the corresponding Sbox outputs to the RAM or flash
memory. The attacker targets two of these load instructions
with instruction skipping. Either skipping the instruction that
selects the address of the data or the instruction that settles the
values of these data into RAM or flash memory. Finding the
exact location of the second load instruction after hitting the
first one can be achieved by trial and error, and the attacker’s
knowledge about the implementation’s timing.

Even though causing the instruction skipping fault and
achieving our desired effect by it was a roughly challengeless
task in our experimental setup, it may be difficult in some
complex microcontrollers, and we do not assert that it is
always achievable for all cases. Maybe more sophisticated
methods can help or not [48]. Moreover, the underlying idea of

1We do not assert that the equality relation is the only useful or conceivable
link that can be made. We observed equality and found our model on its basis.
However, there may be other relations useful for extending the model. We
leave the investigation for future work.

our model, which is to link two variables, may also be satisfied
via any other method instead of instruction skipping. We have
chosen the instruction skip since it is more well-known, and
we make no claim (rejection) about other methods that would
(would not) exist for fulfilling this necessity. Anyway, we
leave the investigation of these possibilities to future work.
In this work, we simply state that our fault model and the
general strategy of our proposed attack would be effective if
the instruction skip and the described effect are achievable.

And last but not least, firstly, we assume that the instruction
skip occurs perfectly. We will discuss the effects of missed or
unwanted faults later in the last subsection.

B. Linked Differential Fault Attack (LDFA)

In the absence of redundancy-based countermeasures,
attacks like DFA and CFA are applicable. A common property
of DFA and CFA is utilizing the existence of two intermediate
values that are either identical or related in the correct and
faulty computations. This property permits the attacker to
utilize deterministic relations and perform the attack with an
extremely small amount of data. In our first proposed method,
we apply a similar idea, our method is based on relations
between the intermediate values of the faulty computation
itself. Hence, it does not require input control. For the sake of
clarity, we will first describe our attack against the last round
of an arbitrary SPN cipher, and then present a general method.

1) Application to the Last Round of an Arbitrary SPN: First,
we recall a well-known technique for analyzing the final round
of an arbitrary SPN block cipher. Since both the key addition
layer and the permutation layer L are linear, these operations
in the final round can be interchanged by altering the subkey
from skR to eskR = L−1(skR), which is called “equivalent
subkey”.

L(yR)⊕ skR = L(yR)⊕ L(L−1(skR)) = L(yR⊕
L−1(skR)) = L(yR ⊕ eskR)

(4)

Based on Equation (4), an equivalent representation of the
final round in SPN can be found as illustrated in Figure 1. For a
simpler analysis, the adversary can eliminate the permutation
layer L in the final round by obtaining the value of wR =
L−1(C), which can be easily derived from the ciphertext C. If
the attacker retrieves a certain m-bit word from the equivalent
subkey eskR, he can get m-bit information about the subkey
skR, since the relation between skR and eskR is bijective
(i.e., eskR = L−1(skR)). To illustrate that LFA applies to
any word-oriented SPN block cipher, we will now examine the
equivalent representation of the last round in an SPN cipher,
which is illustrated in Figure 1b.

Assume that the word xR[j] becomes equal to xR[i]
(demonstrated by blue) or yR[j] becomes equal to S(xR[i])
(demonstrated by red) when an instruction skip occurs during
the execution of Sboxes. The corresponding words in the
state wR, i.e. wR[i] and wR[j] are not necessarily equal after
adding the equivalent subkey skR, but they can be used to
retrieve information about the equivalent subkey (these words
are illustrated in grey in Figure 1b).

6

SB L AK

xR yR zR C

(a) Last round in an SPN cipher

SB AEK L

xR yR w = L−1(C) C

(b) Equivalent representation of last round in SPN (AEK stands for
addition of equivalent subkey)

Fig. 1: Different representation of the last round in an arbitrary
SPN block cipher

As shown in Equation (5), it is simple to verify that the
words w′

R[i] and w′
R[j] that can be computed from the faulty

ciphertext (w′ = L−1(C ′)) are linked based on the value
∆eskR[i, j] ≜ eskR[i]⊕ eskR[j].

w′
R[i]⊕ w′

R[j] = (y′R[i]⊕ eskR[i])⊕ (y′R[j]⊕ eskR[j])

= ∆eskR[i, j]
(5)

According to Equation (5), the relationship between the linked
bytes in w = L−1(C ′) is deterministic and depends on the
value of the equivalent subkey.

Pr(w′
R[i]⊕ w′

R[j] = α) =

{
1 α = ∆eskR[i, j],

0 α ̸= ∆eskR[i, j].
(6)

As shown in Algorithm 1, Equation (6) shows how an attacker
can get one word of information about the last equivalent
subkey from just one faulty ciphertext without notable cost.

Algorithm 1 LDFA on the last round of an arbitrary SPN
cipher

Require: One Faulty ciphertext C ′
1 caused by a linked fault

in yR[i] and yR[j] ▷ In case of LIFA, ineffective
ciphertext is needed.

Ensure: Correct value of ∆eskR[i, j]
1: ∆eskR[i, j]← L−1(C ′

1)[i]⊕ L−1(C ′
1)[j]

2: return ∆eskR[i, j]

Full key recovery: It should be noted that this attack
is repeatable for different words. Assume, without loss of
generality, that the words in the Sbox layer are executed from
x[0] to x[L−1] in incremental order. In this example, a linked
fault can occur between x[i] and x[i + 1] for any value of
i between 0 and L − 2. So totally (L − 1) different linked
faults can be induced. Since each linked fault can expose
m-bits of information about the equivalent subkey eskR, the
adversary can get (m× (L− 1))-bit of information about the
equivalent subkey. More precisely, a linked fault between x[i]
and x[i+1] causes the value of ∆esk[i, i+1] to leak as shown
in Algorithm 1 where 0 ≤ i ≤ L−2. So the attacker can obtain
the values ∆esk[i, i+1] for all 0 ≤ i ≤ L−2 by repeating the

attack (L− 1) times. Hence, if the attacker guesses the value
of eskR[0], he can obtain eskR[j] for 1 ≤ j ≤ L as shown in
Equation (7).

esk[j] = esk[0]

j−1⊕
ℓ=0

∆eskR[ℓ, ℓ+ 1] (7)

Therefore, the number of candidates for the last equivalent
key eskR significantly decreases from 2m×L to 2m by
applying (L − 1) distinct linked faults. This is a generic and
practical attack applicable to any SPN cipher with a time
complexity of (L− 1)2 simple XOR operations and requiring
only (L− 1) faulty ciphertexts from distinct faults.

2) General Framework for Middle Rounds: Assume that u
and v, two m−bit intermediate values in the r-th round, are
linked after fault injection. In other words, u′ and v satisfy
the relation u′ = l(v), for example, they are equal. The
intermediate values u and v, as well as some subkey bits over
the last round(s), influence a portion of the ciphertext. In other
words, the intermediate values u′ and v can be determined by
guessing the value of these subkey bits. These bits are referred
to as the target key bits. There are τ = 2κ candidates for a
κ-bit target key. Given N faulty ciphertexts C ′

1, C
′
2, ..., C

′
N ,

we can partially decrypt the ciphertexts for a guessed key and
check whether the relation u′ = l(v) holds. This technique is
illustrated in Algorithm 2. The relation u′ = l(v) holds for
the correct key in all cases, but with a probability of 2−m·N

for the wrong key.
Equation (8) can be used to figure out how many faulty

ciphertexts are needed to eliminate all the wrong candidates
for the target subkey bits.

τ · 2−m·N < 1⇒ 2κ−m·N ≤ 1⇒ κ−m ·N ≤ 0⇒ N ≥ κ

m
(8)

Regarding Equation (8), one should note that the actual
probability of holding the characteristic for a wrong key may
differ from 2−m·N . Peeling the last rounds for a guessed key
and checking a characteristic for the intermediate value(s) is
a key-recovery method that dates back to the 1990s, before
fault attacks were introduced. As with all previous approaches,
due to the impossibility of approximating the exact probability
of a wrong key, we adhere to the well-known "hypothesis
of wrong-key randomization" [49], which is widely embraced
by cryptographers and states that the key-dependent bias is
significantly greater for the correct key than for a wrong
key. This hypothesis comes from the fact that decrypting a
ciphertext with a wrong key during the last rounds can be
thought of as encrypting it again with a random key over
more rounds. Therefore, when estimating the probability of
a wrong key, we implicitly use an approximation that may not
be accurate in reality. But, like other studies, the attack will
work in real life with the same amount of data complexity
or a little bit more data, depending on the situation. As will
be described in Section V, the results of our experiments in
various scenarios indicate that our approximation is realistic
and Equation (8) provides a reasonable estimation in practice.

Application to PRESENT The time complexity of
performing Algorithm 2, depends on the number of

BEIGIZAD et al.: LINKED FAULT ANALYSIS 7

Algorithm 2 Key-recovery process in LDFA

Require: Faulty ciphertexts C ′
1, C

′
2, . . . , C

′
N , Key candidates

for last round(s) k0, ..., kτ−1.
Ensure: Correct Key

1: for ℓ = 0 to (τ − 1) do
2: for h = 1 to N do
3: (u′, v)← E−1

kℓ
(C ′

h) ▷ Partial decryption
4: if u′ = l(v) then
5: cnt[ℓ] = cnt[ℓ] + 1

6: return argmaxℓ(cnt[ℓ])

candidates for the involved subkey bits τ = 2κ. The number
of target key bits (κ) is determined based on the permutation
layer used in the SPN block cipher. Similar to other attacks,
LFA can be applied to earlier rounds (before the final round)
of block ciphers with weaker linear layers. This part examines
PRESENT, which employs a bit permutation as the linear
layer. Bit permutation has been used frequently in lightweight
block ciphers such as PRESENT because it is an effective and
nearly cost-free method. Let us denote the i-th bit of the state
x by x{i} where the leftmost one is 0. Besides, we denote
the concatenation of {i, i + 1, ..., j}-th bits of x by x{i − j}
where i < j. In this part, we consider two consecutive nibbles
in the 30th round of PRESENT that are linked following the
injection of a fault. More precisely, we consider a fault in
which the two nibbles y30{0 − 3}, and y30{4 − 7} after the
substitution layer in the 30th round become equal. Figure 2
depicts the propagation of the linked fault over the last two
rounds of PRESENT, with the active bits shown in red. As
seen in Figure 2, four Sboxes become active in the last round;
hence, Algorithm 2 can be executed by guessing 24 bits of
the subkeys. More precisely, 16 bits from the last round key
sk31{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60}
and 8 bits from the 30th round
sk30{0, 1, 16, 17, 32, 33, 48, 49} are involved. Since the
number of involved subkey bits is κ = 24, the time
complexity of performing Algorithm 2 is τ = 224, which is
feasible. The required number of faulty ciphertexts is around
N = 24

4 = 6, which is determined based on Equation (8).
Since the key length of the PRESENT master key is 80 bits,
56 bits are remaining to be determined. The remaining bits
are similarly retrievable by injecting linked faults on other
nibbles during the 30th round of PRESENT. If each repetition
of Algorithm 2 leaks 24 bits of key information, this method
must be repeated a maximum of four times to retrieve the
entire key. So the total data complexity is at most 4 · 6 = 24
faulty ciphertexts.

C. Linked Ineffective Fault Attack (LIFA)
Some attacks concentrate on ineffective faults. As they

let the attacker circumvent several fault countermeasures,
such as detection-based and infection-based countermeasures.
Examples are IFA, SIFA, etc.

LFA, unlike IFA, does not require complex equipment,
and unlike SIFA, does not rely on a static that cannot be
distinguished by a small number of ciphertexts. In addition,

as we will show in Section III-E, LIFA is substantially less
susceptible to undesired faults than SIFA. Therefore, linked
fault analysis appears to be a suitable technique when a
redundancy-based countermeasure is utilized in the target
device. The following is a description of how LFA can be
easily adapted to be performed over ineffective ciphertexts.

We begin by describing a linked fault in the final round
of an arbitrary SPN block cipher that causes the word x′

R[j]
to equal to xR[i], or the word y′R[j] to equal to S(xR[i]).
The faulty ciphertext C ′ is unavailable to the attacker when
redundancy-based countermeasures are present. Nevertheless,
if yR[i] = yR[j], the fault does not affect the processed data.
In other words, if the relation yR[i] = yR[j] holds, the fault is
ineffective, and the device returns the output which is a fault-
free ciphertext. The probability of observing an ineffective
ciphertext is 2−m. This indicates that, on average, the attacker
must repeat the process 2m times for each fault. Then, the
attacker can retrieve m-bit information about the equivalent
subkey in a manner similar to the previous subsection by
observing an ineffective event. More precisely, wR[i] and
wR[j] have a similar relationship, and Algorithm 1 can be
used similarly but over ineffective ciphertexts.

Pr(w′
R[i]⊕ w′

R[j] = α|i) =

{
1 α = ∆eskR[i, j],

0 α ̸= ∆eskR[i, j].
(9)

Generally speaking, linked faults occur between two m-bit
intermediate values u and v, where m is quite small (typically
4 or 8 in most ciphers). Adopting Algorithm 2 over ineffective
events is therefore highly efficient, as one ineffective fault
happens on average for every 2m faulty computation. Since
LFA requires a very small number, the total amount of data
required for LIFA might be significantly less than for other
ineffective fault variant attacks.

D. Unknown Fault’s Location
In all proposed methods in Section III-B and Section III-

C, we assumed that the attacker knows the order in which
the Sbox calls the words. Similarly, in most fault attacks, it
is implicitly assumed that the attacker is familiar with the
implementation, as the fault must be injected at a precise
time. In some applications, the attacker does not necessarily
know the implementation’s details, since they are not publicly
available or due to hiding-based countermeasures (such as
dummy operations or shuffling). This makes the execution
of the fault attacks difficult. In this part, we show how
the assumption of exact knowledge of the loading order of
intermediate values can be relaxed on the condition of using a
linked fault. To demonstrate the advantage of a key-dependent
link in a faulty ciphertext, we will analyze the LFA on the last
round on an arbitrary SPN cipher proposed in Section III-B.1.

ℓ1 · ℓ2 · τ · 2−m·N < 1⇒ 2log(τ)+log(ℓ1)+log(ℓ2)−m·N ≤ 1

⇒ log(τ) + log(ℓ1) + log(ℓ2)−m ·N ≤ 0

⇒ N ≥ log(τ) + log(ℓ1) + log(ℓ2)

m
(10)

8

S S S S S S S S S S S S S S S S

sk31

S S S S S S S S S S S S S S S S

sk30

Fig. 2: Application of LDFA on the 30th round of PRESENT

The last round attack on an SPN cipher has respectively
ℓ1 = L, ℓ2 = L − 1, and τ = 2m possibilities for i, j, and
eskR (here it refers to ∆eskR[i, j]), while m-bit filtering is
provided. In the case of AES, given N = 3 faulty ciphertexts,
the attacker can determine not only the value of ∆esk10[i, j]
but also the location of the fault and how it is linked to the
other words. It should be noted that a similar technique may
be applied to LIFA. However, rather than exploiting faulty
ciphertext, the attacker applies Algorithm 3 to ineffective
ciphertext.

Algorithm 3 Finding the location of fault

Require: Faulty ciphertexts C ′
1, C

′
2, . . . , C

′
N ▷ In case of

LIFA, only ineffective ciphertexts are considered
Ensure: Location of fault and its linked word (i, j), and the

correct value of ∆eskR[i, j]
1: for h = 1 to N do
2: for i = 0 to L− 1 do
3: for j = i+ 1 to L− 1 do
4: δ ← L−1(C ′

h)[i]⊕ L−1(C ′
h)[j]

5: cnti,j [δ] = cnti,j [δ] + 1

6: return argmaxi,j,δ(cnti,j [δ], i, j)

E. Missed and Unwanted Faults
The assumption of perfect fault injection is rarely practical

in the real world. It is possible that the fault is not injected as
desired due to several factors. In this part, we first look at how
these occurrences affect the LFA and then show that LFA is
less affected by undesirable events than other fault analyses.

1) Unwanted and Missed Faults: The instruction skip could
occasionally happen at an undesirable time (location). Such
events are referred to as “unwanted faults.” They happen
either as a result of incidental noise that naturally arises in
real-world experiments or as a result of purposeful noise
produced by hiding countermeasures like shuffling and dummy
operations. These countermeasures are designed to make
fault injection into a specific location more challenging by
limiting the attacker’s knowledge of the precise timing of
instruction execution and data processing. Dummy operations
cost significantly more and have a limited effect against attacks
like SEFA. Shuffling, however, seems to be an efficient, low-
overhead defense against the vast majority of fault attacks.

Other undesirable situations are missed faults. As introduced
in section I-B.2, there is missed fault where no instruction skip
happens after the fault injection. Missed faults are inevitable
even with a reliable and perfect setup, and since it is difficult
to identify them from ineffective faults, they have a significant
impact on fault attacks that use ineffective events. This feature
has encouraged the development of novel attacks, such as
[23], [46], which employ correct ciphertexts that correlate to
effective faults. To acquire non-faulty effective ciphertexts, an
attacker must, however, perform the encryption twice: once
to compute the faulty encryption to see if it is effective, and
again to obtain the corresponding correct ciphertext.

2) LFA in the Presence of Undesired Cases: Most fault
attacks are impacted by missed and unwanted faults, since they
are typically indistinguishable from desired faults, especially
when the attacker lacks input control to repeat the experiment
with a fixed input. In this part, we demonstrate how LFA
may manage undesirable situations without requiring input-
controlled computation repetition. We solely discuss situations
where extra countermeasures, such as shuffling, are not
employed. Shuffling will be discussed later in Section IV-A.
It indicates that the noise is the result of a missed fault or
that the fault was introduced at the incorrect moment due to a
weakness in the attack’s setup. We denote the rate of missed
faults and unwanted (and unintentional) faults by Πm and Πu,
respectively. When N experiments are performed, there are
approximately N×(1−(Πm+Πu)) cases in which the relation
u′ = l(v) always holds. Because no fault occurs or occurs in
an incorrect location in the remaining N × (Πm +Πu) cases,
the relation u′ = l(v) holds with the probability of 2−m on
average. In contrast to the situation discussed in Section III-B
and Section III-C, the relation u′ = l(v) is not deterministic.
However, as shown in Equation (11), u′ = l(v) satisfies with
different probabilities for the correct key and a wrong key.

Pr(u′ = l(v)) ={
(1− (Πm +Πu)) + 2−m · (Πm +Πu) Correct key
2−m Wrong key.

(11)

Hence, the attacker can apply Algorithm 2 similarly, but it
requires more data.

BEIGIZAD et al.: LINKED FAULT ANALYSIS 9

IV. COUNTERMEASURES AND FURTHER DISCUSSIONS

In this section, we investigate the efficiency of LFA against
known countermeasures.

A. Shuffling
The performance of the majority of fault attacks is severely

impacted by shuffling. Shuffling randomizes the order of
operations in the executions of the Sboxes. As a result,
injecting a fault at a certain time does not necessarily affect a
fixed intermediate value.

To generate a linked fault like u′ = l(v), the values u and v
must be processed sequentially. However, this is not always the
case when shuffling is present. Let us assume that the linked
fault is introduced during a certain processing time interval
for two variables. In the presence of shuffling, there are L ·
(L− 1) distinct ways of processing two words in this period
of time. After injecting a fault, if shuffling is employed, there
are two possible outcomes. The intended fault occurs when the
intermediate values u and v (or v and u) are processed. The
likelihood of such an occurrence is 2

L(L−1) . The intermediate
values processed during fault injection deviate from what the
attacker desires with a probability of 1− 2

L(L−1) . The relation
u′ = l(v) may be randomly satisfied with a probability of
2−m in these cases. As a result, as illustrated in Equation (12),
u′ = l(v) satisfies with different probabilities for the correct
key and a wrong key.

Pr(u′ = l(v)) ={
2

L(L−1) + 2−m · (1− 2
L(L−1)) Correct key

2−m Wrong key.

(12)

Equation (12) indicates that the attacker can use Algorithm 2
to retrieve the key, but he needs more data. Similarly, if one
portion of the faulty ciphertext C ′ (or L−1(C ′)) is linked to
another via a key-dependent relationship, Algorithm 1 can be
used. The amount of data N required to extract the correct
key is determined by the number of wrong keys and the
probability Pr(u′ = l(v)) for the correct and wrong keys.
Our experimental results which will be presented in Section V
demonstrate that LDFA and LIFA can be applied to AES
by around 350 and 89,600 faulty computations, respectively.
Note that in the presence of shuffling, an attacker can utilize
the same collection of faulty ciphertexts to recover ∆i,j for
different values of i and j. It is proved in [33] that the required
data for performing statistical fault attacks such as SIFA grows
quadratically in the number of operations that are shuffled.
In case of AES or PRESENT, the number of required data
increases from N to N × 216. It demonstrates that shuffling
is far less effective against LFA than statistical fault analysis
techniques such as SFA, SIFA, and SEFA.

B. Repetition of Instructions
The primary premise of the instruction-level

countermeasures is that idempotent instructions, such as
the move instruction, can be repeated several times without
changing the output [50]. Inserting multiple faults is a way

to undermine such an implementation. It has also been
shown that their security can be violated even by adding a
single clock glitch using a low-cost tool [42]. Such security
issues with the protection provided by numerous copies of
the instructions mean that these countermeasures should be
used with caution. Despite these problems, it is clear that
instruction-level countermeasures, like repeating idempotent
instructions, can make it much harder to use LFA, especially
when used with other countermeasures like shuffling.

C. Masking
Masking is the most widely used protection against side-

channel attacks. Even though it is not intended to prohibit fault
attacks, it can make it more challenging to use the majority
of fault attacks in practice. In this part, we show that LIFA
might work even when first-order masking and detection-based
countermeasures are in place.

1) Precomputed Masked Sbox: A Sbox can be easily
masked in software [51] by generating and storing masked
Sbox tables Sm(x⊕m) = S(x)⊕m′, where m and m′ are the
input and output masks, respectively. The generation of such
tables should be performed for all mask values. Therefore, as
the number of masks increases, the time required to generate
these tables, and the amount of memory required to store
the tables increase as well. LIFA can be applied without
additional difficulty if Sm′(X[i])⊕m equals Sm(X[j])⊕m, as
explained in Section III-C when using the first-order masking
implementation of AES provided in [51].

Algorithm 4 SIFA-protected masked implementation of χ3

Require: (a0, a1, b0, b1, c0, c1)
Ensure: (r0, r1, s0, s1, t0, t1)

1: T0 ← b0c1; T2 ← a1b1
2: T1 ← b0c0; T3 ← a1b0
3: T0 ← T0 ⊕ a0; T2 ← T2c1
4: r0 ← T0 ⊕ T1; t1 ← T2T3

5:
6: T0 ← c0a1; T2 ← b1c1
7: T1 ← c0a0; T3 ← b1c0
8: T0 ← T0 ⊕ b0; T2 ← T2a1
9: r0 ← T0 ⊕ T1; t1 ← T2T3

10:
11: T0 ← a0b1; T2 ← c1a1
12: T1 ← a0b0; T3 ← c1a0
13: T0 ← T0 ⊕ c0; T2 ← T2b1
14: r0 ← T0 ⊕ T1; t1 ← T2T3

2) SIFA-Protected Sbox: SIFA has proven to be applicable
even when masking is present. A SIFA-protected masking
scheme that can be used in both software and hardware
implementations was proposed by [52]. Algorithm 4 illustrates
a SIFA-protected masked implementation of χ3, which we
consider here for simplicity.

In certain circumstances, a linked fault may result in a
scenario where an ineffective event leaks knowledge about an
intermediate value, which LIFA subsequently takes advantage
of. In each step of Algorithm 4, the values of T0 and T1 always

10

consist of both shares of a single value. Let us assume that
a linked fault attack causes T1 to become equal to T0 in the
first step. An ineffective fault only happens when T0 = T1 and,
equivalently, b0c1 = b0c0. The injected linked fault is always
ineffective if b0 = 0. However, when b0 = 1, the injected
linked fault is only ineffective when b0 = b1 or equivalently
b = 0. The same holds for T2 and T3 in each step. Consider a
second, more straightforward example where the input values
are changed so that a0 and a1 are loaded sequentially in the
input of the Sbox. In this instance, LFA may lead a0 and a1
to become equal. Consequently, the fault is ineffective only if
a0 = a1 or, equivalently, a = 0. Hence, the ineffective event
may leak information about intermediate values.

This observation does not contradict the security claim
made in [52], but it does provide strong evidence that
even the security of SIFA-protected masking should be
strengthened by instruction-level countermeasures in software
implementations or that the order of instructions should be
taken into consideration to thwart attacks like LIFA. On the
other hand, we note that the SIFA-masked implementation
does not consider Keccak in the MAC mode, so there is no
key for recovery. We just aimed to demonstrate that the non-
linear layer of this implementation is also vulnerable to the
LIFA.

V. EXPERIMENTS

A. Experimental Setup
We realized the linked fault using a typical setup. We set our

target system’s (µController’s) clock to be fed by an external
clock. Then we built the clock with a Field-Programmable
Gate Array (FPGA). The first achievement is the ability to
increase the µController’s working frequency from its highest
achievable value by tens of times, using the FPGA’s internal
Phase-Locked Loop (PLL). In an ATMEGA328p (an 8-bit
AVR µController) case, we had an increase from 16 MHz
to 160 MHz. The second achievement is the ability to induce
the fault at the exact desirable point in time and algorithm
calculations in every repetition of the fault inducement. The
FPGA’s high synchronicity with the µController allows us to
have accurate control over the time and location of our fault.
The mechanism includes an alerting signal from the desired
point of the algorithm (for instance, the start of the next to last
round of the AES). From the FPGA side, this signal triggers
the commencement of the frequency perturbation. Two more
subsidiary parameters aid in finely determining the exact point
at which the frequency rise will result in a linked fault, as
well as the duration of the increase. We refer to these two
parameters as the fault’s start and offset values, respectively.

The AES and PRESENT implementations are carried out
through conventional C codes with standard publicly available
libraries 2,3. Since our attack involves only a single instruction
skip, the performance of the attack will not be significantly
affected by the use of assembly-optimized code.

Based on the recommendation by the reviewers, we also
performed statistical fault attacks in the same platform.

2https://github.com/suculent/thinx-aes-lib
3https://github.com/Pepton21/present-cipher/blob/master/PRESENT.c

B. Application of LDFA and LIFA

Firstly, we take the AES implementation and apply LFA
to the last round of cipher. To convert x10[4] to x10[0], we
applied a linked fault. Our primary results indicate that, out
of 23862 tests, there were nearly 99.1% successfully linked
faults. Besides, we observed ineffective, missed, and unwanted
faults in 108, 42, and 54 of the experiments, respectively. Our
trials’ effective rate (108/23862 = 2−7.79) is quite close to
our prediction (2−8). This result demonstrates that LIFA is
also relevant if LDFA works. We repeated Algorithm 1 for
one faulty ciphertext 20 times and were able to obtain the
correct value of ∆0,4 = esk10[0]⊕ esk10[4] in all cases. This
is not unexpected given that our fault configuration provides
us with a high success rate and a minimal number of missing
or undesirable faults. We applied similar linked faults in
other locations and could obtain 15-byte information about
esk10. We finally used Equation (7) to reduce the number of
candidates for esk10 from 2128 to 28.

We then repeated the procedure, this time for the PRESENT
implementation. We targeted its last round to convert x31[0]
to x31[1]. In the experiment targeting the last round of the
PRESENT, out of 34575 tests, there were nearly 93.3%
successful linked faults. The number of ineffective, missed,
and unwanted faults were 2164, 127, and 16, respectively. We
repeated Algorithm 1 for one faulty ciphertext 20 times and
could retrieve the correct value of ∆0,4 = sk31[0] ⊕ sk31[4]
in all cases. The remaining procedure closely resembles that
described for AES. However, the results demonstrate that
Algorithm 1 can be applied to various ciphers.

After that, we target the next to the last round of the
PRESENT for the instance illustrated in Figure 2 (ref. to
Section III-B.2). There were successfully linked faults in
nearly 93.4% of 25454 tests. The number of ineffective,
missed, and unwanted faults were 1552, 117, and 21,
respectively. Equation (8) estimates that we need at most
N = 24/4 = 6 faulty ciphertexts to perform Algorithm 2
successfully. However, our experiments demonstrate that even
N = 4 faulty ciphertexts were enough in practice for retrieving
the involved subkey bits presented in Figure 2. We repeated
Algorithm 2, 20 times on the 30th round of PRESENT, and
in all cases, we could retrieve the key uniquely by utilizing
four faulty ciphertexts. Our experiments demonstrate that
Equation (8) provides a reasonable estimation for the required
data to perform Algorithm 2 successfully.

As stated in Section III-D, the attacker might not be aware of
the precise location of the fault. Even though we were aware of
this information, we assumed the attacker testing Algorithm 3
would not be able to access it. We executed Algorithm 3, 1,500
times and determined that the success probability of finding
the fault location and the linked value for N = 2 and N = 3
is 65.84% and 99.84%, respectively.

Since very little noise is present in our setup, to investigate
the effect of missed faults discussed in Section III-E, we
followed this procedure: We generated a free-fault ciphertext
with a probability of Pmissed, and used one of the faulty
ciphertexts obtained from the practical experiment with a
probability of (1 − Pmissed). Then, we repeated the attack

BEIGIZAD et al.: LINKED FAULT ANALYSIS 11

with varying quantities of faulty ciphertexts to determine
the probability of success for different missed fault rates.
Figure 3 illustrates the outcomes for both AES and PRESENT
which demonstrate that LFA is very effective in this scenario.
For instance, by utilizing only 12 (respectively 100) faulty
ciphertexts, LDFA can retrieve 8 (respectively 4) bits of
information about the last round key equivalent of AES
(respectively PRESENT) in the event of a 75% missed fault
rate.

75 80 85 90
0

25

50

75

100

Missed Faults

Su
cc

es
s

Pr
ob

ab
ili

ty

N=6

N=12

N=18

N=24

N=30

(a) AES-128

75 80 85 90
0

25

50

75

100

Missed Faults

Su
cc

es
s

Pr
ob

ab
ili

ty

N=5

N=25

N=50

N=75

N=100

(b) PRESENT

Fig. 3: Success probability of retrieving a word of the last
round key in the presence of missed faults, N denotes the
number of available faulty ciphertexts.

C. LDFA and LIFA in the Presence of Countermeasure
We performed LDFA on AES implementation in the

presence of shuffling. Shuffling is used with the nonlinear
layer of the AES. We ran the tests 10 times and discovered
that the correct key can be identified exclusively with around
350 faulty ciphertexts. Figure 4 reflects the results of this
experiment. Accordingly, LIFA can retrieve the correct key
by utilizing around 350× 256 ≃ 216.45 data.

We then applied LFA on a publicly available byte-masked
implementation4 to check if it works with masked look-up
tables in practice. We found that LDFA can easily be applied
to this implementation. By introducing one linked fault, LDFA

4https://github.com/Secure-Embedded-Systems/Masked-AES-
Implementation/tree/master/Byte-Masked-AES

0 40 80 120 160 200 240 280 320 360
0

40

80

120

160

200

240

Faulty ciphertexts

R
an

k
of

th
e

co
rr

ec
t

ke
y

Fig. 4: The rank of the correct key for LDFA on last round
of AES in the presence of shuffling

can get 8-bit information about the last round’s key, just like
in the typical scenario. We ran our experiments 1400 times
and identified 7 ineffective and 8 missed faults. The fact that
the ineffective rate is close to 2−8 proves that LIFA applies
in this instance, as well.

Additionally, we applied LFA to the SIFA-protected,
masked implementation of χ5, which is publicly accessible5.
We tried to apply LFA to the given source, but it did not
work because the variables we wanted to be linked are not
processed in order (see Section IV-C.2). But to check if LFA
could be applied to SIFA-protected masking implementations,
we moved code line 351 to line 347. This modification does
not alter the SIFA-masked implementation principle described
in [52], but it makes it so that two shares of the single variable
(like a) to be processed successively. Then we used LFA on
this changed implementation and saw that the target values,
which are called a0 and a1, were linked with a success rate
of nearly 98.2% in 27432 experiments. This fault is only
ineffective if a0 = a1 or, equivalently, a = a0 ⊕ a1 = 0.
Thus, LIFA can be employed for this kind of implementation
too. This does not negate the security assertion made in [52],
as stated in Section IV-C.2, but it provides compelling proof
that even SIFA-protected masking must be used with caution
due to LIFA’s impact on instruction orders.

D. Comparison With Previous Attacks
We will compare LDFA and LIFA with previous works

in this section. As noted in Section I-A, a fair comparison
necessitates taking into account both the required data and the
assumptions made about the attacks and their performance
in various scenarios (such as undesired faults, the existence
of various countermeasures, etc.) Therefore, we will compare
LDFA (LIFA) to transient fault attacks, which cannot (can)
bypass redundancy-based countermeasures.

1) Comparing LDFA with Previous Works: According to the
published results, DFA, IDFA, DFIA, and CFA on AES
require only a few faulty ciphertexts. Similarly, LDFA is
applicable with a relatively minimal quantity of data; on
AES. For example, it only requires 15 faulty ciphertexts for
full key recovery, which is comparable to DFA attacks and
substantially less than SFA. However, similar to SFA and in
contrast to DFA, IDFA, DFIA, and CFA, LDFA does not
require input control. This is a significant factor in various real-
world applications, which are covered in detail in Section I-A.

The SFA can take advantage of any non-uniformly
distributed fault. As explained in Section II-D, the required
data for performing SFA is directly dependent on the bias that
exists in the faulty word. The original paper that proposed
SFA [24] does not offer experimental results, instead providing
simulations based on theoretical models. According to the
simulations in [24], SFA requires 80 faulty ciphertexts to
obtain the AES key if the fault model is stuck at an unknown
value, which is difficult to produce in practice. To provide
a clearer instance, we attempted to implement SFA on our
platform. In the last round of AES, we considered one

5https://github.com/sifa-aux/countermeasures/blob/master/keccakf200-
avr8/main.c

12

byte and attempted to inject a biased fault on the target
byte. As expected, the capacity of the biased fault varies
greatly depending on the circumstances. To discover the most
suitable situation to apply SFA, we employed the trial-and-
error method. The start parameter was the beginning of the add
round key at the end of the ninth round, the offset parameter
was 1280 clocks, and the fault duration was 24 clocks. We
were able to uniquely obtain the correct key by utilizing
around 290 faulty ciphertexts. We repeated the key-recovery
attack on ten separate sets of data and computed the average
rank of the correct key based on the number of available faulty
ciphertexts. Figure 5a depicts the results of our experiments.

0 50 100 150 200 250 300 350
0

20

40

60

80

100

120

Faulty ciphertexts

R
an

k
of

th
e

co
rr

ec
t

ke
y

(a) Without missed faults

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

120

140

160

Faulty ciphertexts

R
an

k
of

th
e

co
rr

ec
t

ke
y

(b) Missed faults with 80% rate

Fig. 5: The rank of the correct key on unprotected AES for
applying SFA to the last round of AES

Our results, depicted in different figures demonstrate that
LDFA is far less sensitive to undesired faults, whether they
come from the noise associated with the attack’s setup or
from countermeasures such as shuffling. Even with a noisy
setup and a missed fault rate of 75%, LDFA can obtain 8-bit
key information from AES with only 12 faulty ciphertexts.
Therefore, the total key space can be decreased from 2128 to
28. Figure 5b shows that with 80% missed fault rate, SFA key-
recovery requires around 1275 ciphertexts. Compared to the
LDFA’s required data in the same scenario, SFA has a sharper
increase. Finally, we applied SFA to an AES implementation
that uses shuffling. Figure 6 presents the results of this test.
As it demonstrates, key recovery requires more than 10000
ciphertexts which is notably more than what is required for
LDFA when shuffling is present.

2) Comparing LIFA with Previous Works: The required data
for SEFA and SIFA, like SFA, is based on the bias that
exists on the faulty word over effective and ineffective events,
respectively. Furthermore, the effective rate and ineffective
rate influence the amount of total data required for SEFA and
SIFA, respectively (ref. Section II-D). The original SIFA paper
[27] offers a variety of experimental results demonstrating that
data complexity varies greatly (from 1000 to 130,000 faulty
computations) depending on the target device, implementation,
setup noise, and so on. The same is true for SEFA [23].

0 0.7 1.4

·104

0

20

40

60

80

100

120

Faulty ciphertexts

R
an

k
of

th
e

co
rr

ec
t

ke
y

Fig. 6: The rank of the correct key on AES for applying SFA
to the last round of AES in the presence of shuffling

Because of this, it is difficult to compare SIFA, SEFA,
and LIFA fairly. However, we applied SIFA and SEFA to
our platform to prepare a fair comparison. As previously
explained, we target a Sbox in the last round of AES. We
repeated the key-recovery attack on 10 different sets of data
and computed the average rank of the correct key based on the
number of accessible ineffective and effective ciphertexts for
SIFA and SEFA. Figure 7a and Figure 7b depict the outcomes.
SIFA requires 1900 ineffective ciphertexts, as shown in
Figure 7a. Given that our experiment’s ineffective rate was
roughly 10%, the overall data complexity is 19,000 faulty
computations, which is significantly more than LIFA. We
remind that LIFA requires only one ineffective ciphertext (i.e.,
1× 28 = 256 faulty computations) as presented in Section V-
B. Finally, even with tens of thousands of faulty computations,
SEFA was unable to obtain the key. The reason could be that
our setup has minimal noise. SEFA can outperform SIFA only
in a noisy setup, as indicated in [23].

0 500 1,000 1,500 2,000
0

20

40

60

80

100

120

140

Ineffective ciphertexts

R
an

k
of

th
e

co
rr

ec
t

ke
y

(a) Results for SIFA

0 0.7 1.4 2.1 2.8

·104

0

40

80

120

160

Effective ciphertexts

R
an

k
of

th
e

co
rr

ec
t

ke
y

(b) Results for SEFA

Fig. 7: The rank of the correct key on protected AES for
applying SIFA & SEFA against to the last round of AES

As indicated in [23], [27], as noise grows, the data
complexity of SIFA or SEFA increases considerably. This
involves noise caused during the attack’s setup as well as
noise caused by the countermeasures. We simulated missed
faults by adding non-faulty ciphertexts to the tests, as we did
with LIFA, to assess the effect of noise and compare SIFA

BEIGIZAD et al.: LINKED FAULT ANALYSIS 13

0 0.7 1.4 2.1

·104

0

40

80

120

160

Ineffective ciphertexts

R
an

k
of

th
e

co
rr

ec
t

ke
y 50 %

80 %

Fig. 8: The rank of the correct key on protected AES for
applying SIFA against to last round of AES in the presence
of missed faults

and LIFA in a noisy scenario. We repeated the key-recovery
attack on ten separate sets of data and calculated the average
rank of the correct key based on the number of available
ineffective ciphertexts for SIFA in two scenarios: once with a
50% missed fault rate and once with an 80% missed fault rate.
Figure 7b displays the results. As expected, the benefit of the
LIFA over the SIFA grows as noise increases. SIFA requires
between 7,000 and 17,000 ineffective ciphertexts (70,000 and
170,000 faulty computations, respectively) in the case of 50%
and 80% missed faults. In case of 80% missed faults, LIFA
necessitates only 18 ineffective ciphertexts (18× 256 = 4608
faulty computations) as it is shown in Figure 3a.

As stated in [27] and [23], shuffling has a significant
impact on SIFA and SEFA. Even SEFA, which is not greatly
impacted by missed faults, can be impacted by shuffling. This
is because missed faults do not influence effective events,
whereas shuffling has a direct effect. We could not retrieve
the correct key by applying SIFA to the last round of AES,
even by using 40,000 ineffective ciphertexts. As the ineffective
rate in our experiment is 10%, the correct key cannot be
found by SIFA even if the adversary performs 400,000 faulty
computations in a case where the shuffling exits. As it is
presented in Figure 4, LDFA can retrieve the correct key in the
presence of shuffling by using 350 faulty ciphertexts. Hence,
LIFA can requires 350× 28 = 89, 600 faulty computations to
find the correct key in the presence of shuffling. And finally,
the fact that even SIFA-protected masking can be broken by
LIFA shows how powerful it could be.

3) Summary: To facilitate the comparison, we give the
results of several attacks that do not require input control in
different circumstances side by side in this section. Table II
shows a summary of the practical outcomes for LDFA and
SFA. As expected, LDFA has a significant advantage against
SFA. Table III shows an overview of practical results of
LIFA and SIFA. We would like to remind that the data
necessary for SIFA can change substantially depending on the
circumstances. As a result, we have taken into account two
kinds of SIFA outcomes in this table. The first row of the table
demonstrates the practical outcomes of SIFA on the platform
where we executed the LIFA attack. The results of the SIFA
simulation for a 4-bit random-AND fault, which produces a
faulty distribution with a high bias are shown in the second
row of Table III. This circumstance is challenging to achieve
in practice. The publicly available codes from [23] 6 were used

6https://github.com/Navidvafaei/SEFA

for these simulations. In the case of 4-bit random-AND, SIFA
needs approximately 1,450 and 8,454 faulty computations for
a missed fault rate of 50% and 80%, respectively. Table III
demonstrates that when the setup is noisy or a common
countermeasure, such as shuffling, is applied, the gap between
LIFA and SIFA grows larger. Our experiments do not prove
LIFA can always beat SIFA, but they show that in a noisy
environment, LIFA outperforms SIFA with a high likelihood.

TABLE II: Comparison practical results of LDFA and SFA

Required faulty ciphertexts

Unprotected Missed Fault (80%) With Shuffling

SFA 290 1275 13, 000 ≃ 213.6

LDFA 1 12 350

TABLE III: Comparison of LIFA and SIFA

Required Faulty Computations

Ineffective
Rate

With
Detection-based
Countermeasure

Missed Faults
(50%)

Missed Faults
(80%)

With
Shuffling

Applicable to
SIFA-protected

Masking

SIFA† 10%
1900× 10
= 19, 000

7000× 10
= 70, 000

17, 000× 10
= 170, 000

> 40, 000× 10
= 400, 000

No

SIFA‡ 32% 232 1, 450 8, 454 > 400, 000 No

LIFA 2−7.79 ≃ 2−8 1× 256
= 256

12× 256
= 3, 072

18× 256
= 4, 608

350× 256
= 89, 600

Maybe

† Practical results.
‡ Simulation results with random-AND model.

ACKNOWLEDGEMENTS

The authors would like to thank anonymous reviewers for
their thoughtful comments, and insightful suggestions which
significantly improved this paper.

REFERENCES

[1] B. Gierlichs, J. Schmidt, and M. Tunstall, “Infective computation and
dummy rounds: Fault protection for block ciphers without check-before-
output,” in LATINCRYPT, ser. Lecture Notes in Computer Science, vol.
7533. Springer, 2012, pp. 305–321.

[2] H. Tupsamudre, S. Bisht, and D. Mukhopadhyay, “Destroying fault
invariant with randomization - A countermeasure for AES against
differential fault attacks,” in CHES, ser. Lecture Notes in Computer
Science, vol. 8731. Springer, 2014, pp. 93–111.

[3] J. Feng, H. Chen, Y. Li, Z. Jiao, and W. Xi, “A framework for evaluation
and analysis on infection countermeasures against fault attacks,” IEEE
Trans. Inf. Forensics Secur., vol. 15, pp. 391–406, 2020.

[4] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The
sorcerer’s apprentice guide to fault attacks,” Proc. IEEE, vol. 94, no. 2,
pp. 370–382, 2006.

[5] E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in Advances in Cryptology - CRYPTO ’97, 17th Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 1997, Proceedings, ser. Lecture Notes in Computer
Science, vol. 1294. Springer, 1997, pp. 513–525.

[6] D. Saha, D. Mukhopadhyay, and D. R. Chowdhury, “A diagonal fault
attack on the advanced encryption standard,” IACR Cryptol. ePrint Arch.,
p. 581, 2009.

[7] S. Ali and D. Mukhopadhyay, “Differential fault analysis of twofish,” in
Inscrypt, ser. Lecture Notes in Computer Science, vol. 7763. Springer,
2012, pp. 10–28.

[8] ——, “Improved differential fault analysis of CLEFIA,” in FDTC. IEEE
Computer Society, 2013, pp. 60–70.

14

[9] S. Ali, D. Mukhopadhyay, and M. Tunstall, “Differential fault analysis
of AES: towards reaching its limits,” J. Cryptogr. Eng., vol. 3, no. 2,
pp. 73–97, 2013.

[10] D. B. Roy, A. Chakraborti, D. Chang, S. V. D. Kumar,
D. Mukhopadhyay, and M. Nandi, “Fault based almost universal
forgeries on CLOC and SILC,” in SPACE, ser. Lecture Notes in
Computer Science, vol. 10076. Springer, 2016, pp. 66–86.

[11] P. Dey, A. Chakraborty, A. Adhikari, and D. Mukhopadhyay, “Improved
practical differential fault analysis of grain-128,” in DATE. ACM, 2015,
pp. 459–464.

[12] S. Saha, D. Mukhopadhyay, and P. Dasgupta, “Expfault: An automated
framework for exploitable fault characterization in block ciphers,” IACR
Trans. Cryptogr. Hardw. Embed. Syst., vol. 2018, no. 2, pp. 242–276,
2018.

[13] J. Breier, X. Hou, and Y. Liu, “Fault attacks made easy: Differential fault
analysis automation on assembly code,” IACR Trans. Cryptogr. Hardw.
Embed. Syst., vol. 2018, no. 2, pp. 96–122, 2018.

[14] X. Hou, J. Breier, F. Zhang, and Y. Liu, “Fully automated differential
fault analysis on software implementations of block ciphers,” IACR
Trans. Cryptogr. Hardw. Embed. Syst., vol. 2019, no. 3, pp. 1–29, 2019.

[15] P. Derbez, P. Fouque, and D. Leresteux, “Meet-in-the-middle and
impossible differential fault analysis on AES,” in CHES, ser. Lecture
Notes in Computer Science, vol. 6917. Springer, 2011, pp. 274–291.

[16] X. Zhao, S. Guo, F. Zhang, Z. Shi, C. Ma, and T. Wang, “Improving and
evaluating differential fault analysis on LED with algebraic techniques,”
in FDTC. IEEE Computer Society, 2013, pp. 41–51.

[17] F. Zhang, X. Zhao, S. Guo, T. Wang, and Z. Shi, “Improved algebraic
fault analysis: A case study on piccolo and applications to other
lightweight block ciphers,” in COSADE, ser. Lecture Notes in Computer
Science, vol. 7864. Springer, 2013, pp. 62–79.

[18] F. Zhang, S. Guo, X. Zhao, T. Wang, J. Yang, F. Standaert, and D. Gu,
“A framework for the analysis and evaluation of algebraic fault attacks
on lightweight block ciphers,” IEEE Trans. Inf. Forensics Secur., vol. 11,
no. 5, pp. 1039–1054, 2016.

[19] N. F. Ghalaty, B. Yuce, M. Taha, and P. Schaumont, “Differential fault
intensity analysis,” in 2014 Workshop on Fault Diagnosis and Tolerance
in Cryptography. IEEE, 2014, pp. 49–58.

[20] J. Blömer and V. Krummel, “Fault based collision attacks on AES,” in
FDTC, ser. Lecture Notes in Computer Science, vol. 4236. Springer,
2006, pp. 106–120.

[21] Y. Li, K. Sakiyama, S. Gomisawa, T. Fukunaga, J. Takahashi, and
K. Ohta, “Fault sensitivity analysis,” in Cryptographic Hardware and
Embedded Systems, CHES 2010, 12th International Workshop, Santa
Barbara, CA, USA, August 17-20, 2010. Proceedings, ser. Lecture Notes
in Computer Science, S. Mangard and F. Standaert, Eds., vol. 6225.
Springer, 2010, pp. 320–334.

[22] S. Saha, A. Bag, D. B. Roy, S. Patranabis, and D. Mukhopadhyay,
“Fault template attacks on block ciphers exploiting fault propagation,” in
EUROCRYPT (1), ser. Lecture Notes in Computer Science, vol. 12105.
Springer, 2020, pp. 612–643.

[23] N. Vafaei, S. Zarei, N. Bagheri, M. Eichlseder, R. Primas, and
H. Soleimany, “Statistical effective fault attacks: The other side of the
coin,” IEEE Trans. Inf. Forensics Secur., vol. 17, pp. 1855–1867, 2022.

[24] T. Fuhr, É. Jaulmes, V. Lomné, and A. Thillard, “Fault attacks on AES
with faulty ciphertexts only,” in 2013 Workshop on Fault Diagnosis and
Tolerance in Cryptography, Los Alamitos, CA, USA, August 20, 2013,
W. Fischer and J. Schmidt, Eds. IEEE Computer Society, 2013, pp.
108–118.

[25] S.-M. Yen and M. Joye, “Checking before output may not be enough
against fault-based cryptanalysis,” IEEE Transactions on computers,
vol. 49, no. 9, pp. 967–970, 2000.

[26] C. Clavier, “Secret external encodings do not prevent transient fault
analysis,” in Cryptographic Hardware and Embedded Systems - CHES
2007, 9th International Workshop, Vienna, Austria, September 10-13,
2007, Proceedings, ser. Lecture Notes in Computer Science, P. Paillier
and I. Verbauwhede, Eds., vol. 4727. Springer, 2007, pp. 181–194.

[27] C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel, and
R. Primas, “SIFA: Exploiting ineffective fault inductions on symmetric
cryptography,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2018, no. 3, pp. 547–572, 2018.

[28] B. Selmke, S. Brummer, J. Heyszl, and G. Sigl, “Precise laser fault
injections into 90 nm and 45 nm sram-cells,” in CARDIS, ser. Lecture
Notes in Computer Science, vol. 9514. Springer, 2015, pp. 193–205.

[29] B. Selmke, J. Heyszl, and G. Sigl, “Attack on a DFA protected AES by
simultaneous laser fault injections,” in FDTC. IEEE Computer Society,
2016, pp. 36–46.

[30] A. Baksi, S. Bhasin, J. Breier, M. Khairallah, and T. Peyrin, “Protecting
block ciphers against differential fault attacks without re-keying,” in
HOST. IEEE Computer Society, 2018, pp. 191–194.

[31] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced
Encryption Standard, ser. Information Security and Cryptography.
Springer, 2002.

[32] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J.
Robshaw, Y. Seurin, and C. Vikkelsoe, “Present: An ultra-lightweight
block cipher,” in International workshop on cryptographic hardware and
embedded systems. Springer, 2007, pp. 450–466.

[33] G. Barbu, L. Castelnovi, and T. Chabrier, “Generalizing statistical
ineffective fault attacks in the spirit of side-channel attacks,” in
Constructive Side-Channel Analysis and Secure Design - 12th
International Workshop, COSADE 2021, Lugano, Switzerland, October
25-27, 2021, Proceedings, ser. Lecture Notes in Computer Science, vol.
12910. Springer, 2021, pp. 105–125.

[34] E. Trichina and R. Korkikyan, “Multi fault laser attacks on protected
CRT-RSA,” in FDTC. IEEE Computer Society, 2010, pp. 75–86.

[35] A. Dehbaoui, J. Dutertre, B. Robisson, P. Orsatelli, P. Maurine, and
A. Tria, “Injection of transient faults using electromagnetic pulses -
practical results on a cryptographic system-,” IACR Cryptol. ePrint
Arch., p. 123, 2012.

[36] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz,
“Electromagnetic fault injection: Towards a fault model on a 32-bit
microcontroller,” in FDTC. IEEE Computer Society, 2013, pp. 77–
88.

[37] A. Dehbaoui, J. Dutertre, B. Robisson, and A. Tria, “Electromagnetic
transient faults injection on a hardware and a software implementations
of AES,” in FDTC. IEEE Computer Society, 2012, pp. 7–15.

[38] J. Balasch, B. Gierlichs, and I. Verbauwhede, “An in-depth and black-
box characterization of the effects of clock glitches on 8-bit mcus,” in
FDTC. IEEE Computer Society, 2011, pp. 105–114.

[39] T. Korak and M. Hoefler, “On the effects of clock and power supply
tampering on two microcontroller platforms,” in FDTC. IEEE Computer
Society, 2014, pp. 8–17.

[40] S. Endo, N. Homma, Y. Hayashi, J. Takahashi, H. Fuji, and T. Aoki, “A
multiple-fault injection attack by adaptive timing control under black-
box conditions and a countermeasure,” in COSADE, ser. Lecture Notes
in Computer Science, vol. 8622. Springer, 2014, pp. 214–228.

[41] B. Yuce, N. F. Ghalaty, and P. Schaumont, “Improving fault attacks
on embedded software using RISC pipeline characterization,” in FDTC.
IEEE Computer Society, 2015, pp. 97–108.

[42] B. Yuce, N. F. Ghalaty, H. Santapuri, C. Deshpande, C. Patrick, and
P. Schaumont, “Software fault resistance is futile: Effective single-glitch
attacks,” in FDTC. IEEE Computer Society, 2016, pp. 47–58.

[43] J. Schmidt and C. Herbst, “A practical fault attack on square and
multiply,” in FDTC. IEEE Computer Society, 2008, pp. 53–58.

[44] J. Breier, D. Jap, and C. Chen, “Laser profiling for the back-side
fault attacks: With a practical laser skip instruction attack on AES,”
in CPSS@ASIACSS. ACM, 2015, pp. 99–103.

[45] K. Fukushima, R. Xu, S. Kiyomoto, and N. Homma, “Fault injection
attack on salsa20 and chacha and a lightweight countermeasure,” in
TrustCom/BigDataSE/ICESS. IEEE Computer Society, 2017, pp. 1032–
1037.

[46] P. Pessl and L. Prokop, “Fault attacks on cca-secure lattice kems,” IACR
Trans. Cryptogr. Hardw. Embed. Syst., vol. 2021, no. 2, pp. 37–60, 2021.

[47] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault
injection attacks on cryptographic devices: Theory, practice, and
countermeasures,” Proc. IEEE, vol. 100, no. 11, pp. 3056–3076, 2012.

[48] A. Menu, J.-M. Dutertre, O. Potin, J.-B. Rigaud, and J.-L. Danger,
“Experimental analysis of the electromagnetic instruction skip fault
model,” in 2020 15th Design & Technology of Integrated Systems in
Nanoscale Era (DTIS). IEEE, 2020, pp. 1–7.

[49] C. Harpes, G. G. Kramer, and J. L. Massey, “A generalization of
linear cryptanalysis and the applicability of matsui’s piling-up lemma,”
in EUROCRYPT, ser. Lecture Notes in Computer Science, vol. 921.
Springer, 1995, pp. 24–38.

[50] S. Patranabis and D. Mukhopadhyay, Idempotent Instructions to Counter
Fault Analysis Attacks. Cham: Springer International Publishing, 2019,
pp. 195–208.

[51] C. Herbst, E. Oswald, and S. Mangard, “An AES smart card
implementation resistant to power analysis attacks,” in ACNS, ser.
Lecture Notes in Computer Science, vol. 3989, 2006, pp. 239–252.

[52] J. Daemen, C. Dobraunig, M. Eichlseder, H. Groß, F. Mendel, and
R. Primas, “Protecting against statistical ineffective fault attacks,” IACR
Trans. Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 3, pp. 508–543,
2020.

	Introduction
	Overview of Prior Transient Fault Attacks
	Our Contributions
	In the Absence of redundancy-based Countermeasures
	In the Presence of redundancy-based Countermeasures

	Preliminaries
	Notations
	Target Ciphers
	DFA
	SFA, SIFA, and SEFA
	Limitations of Instruction Skip Attacks in Block Ciphers

	Linked Fault Analysis (LFA)
	Fault Model
	Linked Differential Fault Attack (LDFA)
	Application to the Last Round of an Arbitrary SPN
	General Framework for Middle Rounds

	Linked Ineffective Fault Attack (LIFA)
	Unknown Fault's Location
	Missed and Unwanted Faults
	Unwanted and Missed Faults
	LFA in the Presence of Undesired Cases

	Countermeasures and Further Discussions
	Shuffling
	Repetition of Instructions
	Masking
	Precomputed Masked Sbox
	SIFA-Protected Sbox

	Experiments
	Experimental Setup
	Application of LDFA and LIFA
	LDFA and LIFA in the Presence of Countermeasure
	Comparison With Previous Attacks
	Comparing LDFA with Previous Works
	Comparing LIFA with Previous Works
	Summary

	References

